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SUMMARY

Low-dimensional signal structures naturally arise in a large set of applications in

various fields such as medical imaging, machine learning, signal, and array processing.

A ubiquitous low-dimensional structure in signals and images is sparsity, and a new

sampling theory; namely, compressive sensing, proves that the sparse signals and

images can be reconstructed from incomplete measurements. The signal recovery is

achieved using efficient algorithms such as `1-minimization. Recently, the research

focus has spun-off to encompass other interesting low-dimensional signal structures

such as group-sparsity and low-rank structure.

This thesis considers low-rank matrix recovery (LRMR) from various structured-

random measurement ensembles. These results are then employed for the in depth

investigation of the classical blind-deconvolution problem from a new perspective, and

for the development of a framework for the efficient sampling of correlated signals (the

signals lying in a subspace).

In the first part, we study the blind deconvolution; separation of two unknown

signals by observing their convolution. We recast the deconvolution of discrete sig-

nals w and x as a rank-1 matrix wx∗ recovery problem from a structured random

measurement ensemble. The convex relaxation of the problem leads to a tractable

semidefinite program. We show, using some of the mathematical tools developed re-

cently for LRMR, that if we assume the signals convolved with one another live in

known subspaces, then this semidefinite relaxation is provably effective.

In the second part, we design various efficient sampling architectures for signals

acquired using large arrays. The sampling architectures exploit the correlation in the

xvii



signals to acquire them at a sub-Nyquist rate. The sampling devices are designed

using analog components with clear implementation potential. For each of the sam-

pling scheme, we show that the signal reconstruction can be framed as an LRMR

problem from a structured-random measurement ensemble. The signals can be re-

constructed using the familiar nuclear-norm minimization. The sampling theorems

derived for each of the sampling architecture show that the LRMR framework pro-

duces the Shannon-Nyquist performance for the sub-Nyquist acquisition of correlated

signals.

In the final part, we study low-rank matrix factorizations using randomized linear

algebra. This specific method allows us to use a least-squares program for the recon-

struction of the unknown low-rank matrix from the samples of its row and column

space. Based on the principles of this method, we then design sampling architec-

tures that not only acquire correlated signals efficiently but also require a simple

least-squares program for the signal reconstruction.

A theoretical analysis of all of the LRMR problems above is presented in this

thesis, which provides the sufficient measurements required for the successful recon-

struction of the unknown low-rank matrix, and the upper bound on the recovery

error in both noiseless and noisy cases. For each of the LRMR problem, we also

provide a discussion of a computationally feasible algorithm, which includes a least-

squares-based algorithm, and some of the fastest algorithms for solving nuclear-norm

minimization.
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A brief list of the main contributions of this work is given below.

• A new method for the deconvolution of two unknown signals living in known

subspaces. (Chapter 3)

• A method for protecting coded messages against an unknown channel in wireless

communications. (Chapter 3)

• An experimental evaluation illustrating the potential of the proposed blind-

deconvolution method in image deblurring. (Chapter 3)

• A theoretical analysis of the proposed blind-deconvolution method based on

LRMR using the concept of duality in convex programming, which proves the

exact recovery of signals from their convolution under a precise set of conditions.

(Chapter 3)

• Design of multiple architectures for compressive sampling for array processing.

(Chapter 4)

• Design of a compressive multiplexer; a low-power, efficient sampling architecture

for micro-sensor arrays. (Chapter 5)

• A derivation of a sampling theorem, based on LRMR, for each of the proposed

sampling architecture. The sampling theorems prove that the sub-Nyquist rate
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• Design of a universal compressive multiplexer for the acquisition of ensembles
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CHAPTER I

INTRODUCTION

In a broad set of applications, we are interested in recovering a low-rank matrix

from a partial or an incomplete set of observations. Such applications arise across

different fields in science and engineering; for example, in collaborative filtering to

recommend based on a limited set of ratings in the database, e.g., Netflix [12]; in

reconstructing the low-dimensional geometry of the locations of objects based on an

incomplete information of the distance between the objects [87, 89]; in systems and

controls to fit a discrete time LTI state space model to a sequence of inputs [65]; in

facial alignment, and recognition using the principal component analysis [24, 74]; in

recovering the phase of a signal from the intensity only measurements [21]; in quantum

state tomography [45]; and in graph theory to represent cliques in graphs [5]. This

list by no means spans the vast set of applications in which the rank minimization

arises. Randomness plays a key role in matrix recovery from a fewer generalized

measurements. The results in the literature show that the unknown low-rank matrix

can be recovered from a limited number of random Gaussian projections, or from

the observations of a few of its randomly chosen entries. The problems studied in

this thesis, however, require low-rank matrix recovery results from structured -random

projections.

This thesis mainly presents low-rank matrix recovery (LRMR) results from various

structured-random measurement ensembles. These results are then employed; first, to

study a fundamental problem in signal processing and communications; namely, the

blind deconvolution; and second, to develop methods for the sub-Nyquist acquisition

of multiple signals lying in a subspace—such signals will be referred to as correlated
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signals. Briefly, the blind-deconvolution problem can be framed as a rank-1 matrix

recovery problem from a multi-Toeplitz measurement ensemble, and the efficient sam-

pling problem of signals lying in an a priori unknown subspace of dimension R, can be

viewed as a rank-R matrix recovery problem from a structured random measurement

ensemble. This chapter introduces the blind-deconvolution problem and then poses

it as a rank-1 matrix recovery problem. Moreover, we demonstrate its connections to

other interesting problems such as the phase retrieval of a signal from its magnitude

measurements, and the solution of bilinear equations. Furthermore, we will layout

a simple presentation of our sampling techniques for the sub-Nyquist acquisition of

correlated signals using a simple sampling architecture. Our introductory discussion

on this topic will mainly focus on how to recast the reconstruction of correlated sig-

nals from limited samples as an LRMR problem. Before beginning our discussion, we

specify here the notation that will be employed throughout the thesis.

1.1 Notation

Unless specified otherwise, we use uppercase bold, lowercase bold, and not bold letters

for matrices, a vectors, and scalars, respectively. For example, X denotes a matrix,

x represents a vector, and x refers to a scalar. We use X[i, j] to specify the (i, j)-th

entry of a matrix X, and x[i] to signify the i-th entry of a vector x. Calligraphic

letters specify linear operators, e.g., A : CM×N → RL denotes a linear operator that

maps an M × N complex matrix to a length L real vector. The symbols C or c

(sometimes with subscripts) refer to constant numbers, which may not refer to the

same number every time they are used. The matrix X∗, and the row vector x∗ are

obtained by taking conjugate transpose of X, and column vector x, respectively. In

addition, A∗ denotes the adjoint of a linear operator A. The notations ‖·‖, ‖·‖∗, and

‖·‖F specify the operator, nuclear, and the Frobenius norms of matrices, respectively.

Furthermore, we will use ‖ · ‖2, and ‖ · ‖1 to represent the vector `2, and `1 norms. A
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brief overview of norms and inner products is provided in Section 2.1.

1.2 Blind deconvolution: Introduction and Motivation

In this section, we introduce the classical blind-deconvolution problem in signal pro-

cessing and communications. We view this problem from a new perspective and

recast it as a rank-1 matrix recovery problem, and briefly describe the conditions,

developed in Chapter 3, under which the deconvolution is successful. Consider the

blind-deconvolution problem: we observe the circular convolution of two unknown

discrete signals w ∈ RL and x ∈ RL, and want to separate them. The circular

convolution of w and x is defined as

y = w ∗ x, or y[`] =
L∑

`′=1

w[`′]x[`− `′ + 1], (1.2.1)

where the index `− `′ + 1 in the sum above is understood to be modulo {1, . . . , L},

and y[`] denotes the `-th entry of vector y. We will specify the Fourier transform of

a vector z by ẑ = Fz, where F is the L-point normalized discrete Fourier transform

(DFT) matrix:

F [ω, `] =
1√
L

e−j2π(ω−1)(`−1)/L, 1 ≤ ω, ` ≤ L,

and let f ∗` ∈ CL be the rows of F . For a complex vector z, the notation z∗ rep-

resents the vector obtained by taking conjugate transpose of z, and the vector zT

denotes the row vector obtained by taking only the transpose (without conjugation).

Furthermore, for vectors x and y, the notation 〈·, ·〉 signifies the standard `2 inner

product defined as

〈x,y〉 = x∗y,

and for matrices X, and Y , the same notation represents the matrix trace inner

product:

〈X,Y 〉 = Tr (X∗Y ) ,
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where Tr (·) takes a matrix and returns the sum of its diagonal entries. Using these

definitions, we can write the convolution in the Fourier domain as

ŷ[`] =
√
L · ŵ[`]x̂[`], ` = 1, . . . , L

=
√
L · 〈f`,w〉〈f`,x〉 =

√
L · (f ∗`w)(f ∗` x), (1.2.2)

where ŷ[`], ` = 1, . . . , L denote the entries of the measurement vector ŷ. The key

observation here is that although the observations y are non linear in w and x, but

are linear in the matrixwxT , i.e., measurements in (1.2.2) can be equivalently written

as

ŷ[`] =
√
L · 〈f`fT

` ,wx
T〉, (1.2.3)

where fT
` denotes the transpose (without taking the conjugate) of the complex Fourier

vector f`. Thus, the blind-deconvolution problem reduces to finding a rank-1 matrix

wxT from the observations ŷ. However, this insight does not make the problem any

easier as we are still looking to solve for an L × L unknown matrix wxT form L

observations. We will make a structural assumption that the length L signals live in

known subspaces of RL whose dimensions are K and N . That is, we can write

w = Bh, h ∈ RK , x = Cm, m ∈ RN (1.2.4)

for some L ×K matrix B and an L × N matrix C. The columns of these matrices

span the subspaces in which w and x live; recovering h and m, then, is equivalent

to recovering w and x. Let b̂∗` = f ∗`B be a row vector in CK , and ĉ` =
√
Lf ∗`C be

the column vector in CN , then the observations in (1.2.3) can be framed as

ŷ[`] = 〈A`,hm
∗〉 = Tr (A∗`X0) , A` = b̂`ĉ

∗
` ,

and the unknown matrix is now a smaller K ×N matrix X0 = hm∗. Define a linear

operator A : RK×N → RL as

A(X0) = {Tr (A∗`X0) : ` = 1, . . . , L},

4



that is, the measurements of X0 can be compactly expressed as ŷ = A(X0). The

equivalent formulation of the blind-deconvolution problem above is then

find X

subject to A(X) = ŷ

rank (X) = 1

⇐⇒
min rank (X)

subject to A(X) = ŷ.

(1.2.5)

The rank minimization is intractable; however, the problem can be convexified. In

Chapter 2, we will examine rank minimization, its convex relaxation, and the condi-

tions on A that guarantee exact and stable recovery of X0. Figure 1 shows an exper-

iment that illustrates that deconvolution using rank minimization works in practice.
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Figure 1: Rank minimization for deconvolution. Two signals x and w each of
length L = 1600 are convolved. The support of the non-zero entries of both signals
is known in advance. The number of non-zero entries of x and w are N = 350
and K = 10, respectively. The signals x̂ and ŵ are recovered exactly by observing
only the convolution w ∗ x and solving a convex surrogate of the rank-minimization
program.
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The blind-deconvolution problem can be split into several cases depending upon

whether the matrices B and C are deterministic or random. We will now discuss

some of these cases in context of some applications.

1.2.1 Applications

In this section, we motivate the blind deconvolution with a few of its applications.

Chapter 3 considers an interesting case of the blind deconvolution; matrix B is

deterministic and consists of a subset of the columns of the identity matrix, and the

matrix C is random. For now, the precise distribution of the random matrix C is

unimportant. Qualitatively, the results say that if both w and x have length L, w

lives in a fixed subspace (spanned by the columns of B) of dimension K and is spread

out in the frequency domain, and x lives in a “generic” subspace chosen at random

(spanned by the columns of C), then w and x are separable with high probability.

This particular result has a direct application in the context of channel coding

for transmitting a message over an unknown multipath channel. The problem is

illustrated in Figure 2. A message vector m ∈ RN is encoded through an L × N

encoding matrixC. The protected message x = Cm travels through a channel whose

impulse response is w. The receiver observes y = w ∗ x, and from this would like to

jointly estimate the channel and determine the message that was sent. In this case, a

reasonable model for the channel response w is that it is nonzero in relatively small

number of known locations. Each of these entries corresponds to a different path over

which the encoded message traveled; we are assuming that we know the timing delays

for each of these paths, but not the fading coefficients. The matrix B in this case is

a subset of columns from the identity, and the b` are partial Fourier vectors. In this

context, our main result on blind deconvolution in Theorem 3.1.1 tell us that a length

N message can be protected against a channel with K reflections that is relatively

flat in the frequency domain with a random code of length L & (K + N) log3(KN).
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Essentially, we have a theoretical guarantee that we can estimate the channel without

knowledge of the message from a single transmitted codeword.

Figure 2: Example of multipath channels. (a) Underwater multipath channel (taken
from http://www.doc.ic.ac.uk) (b) Multipath channel in urban environment (taken
from http://en.wikipedia.org)

In another case, we can choose bothB andC to be random matrices. An approach

similar to the previous case confirms that if w, and x live in the random subspaces

spanned by the columns of B, and C, respectively, then w, and x are separable.

Suppose, the matrices B and C contain the columns of an L × L identity matrix

chosen at random. Then the result in this case would mean that two sparse vectors

w, and x with “generic” support can be successfully deconvolved with high probability

when L & (K +N) log3(KN).

The blind-deconvolution method introduced above is also useful for image deblur-

ring. Figure 3 shows the result of rank minimization on image deblurring, when we

have an estimate of the subspace in which the image and the blur kernel live; for

details, see, Chapter 3.

The technique to convert the measurement constraints (1.2.2), quadratic in w

and x, into constraints that are linear in wx∗ is referred to as lifting. This technique

can directly be applied to solve other interesting problems, such as solving bilinear

equations and recovering phase from intensity-only measurements. These results are
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Figure 3: Image deblurring. (a) Blurred Image: Convolution of unknown image with
an unknown blur kernel. (b) Deblurred Image: Deconvolution using rank minimiza-
tion.

briefly described below.

1.2.2 Solving systems of bilinear equations

Blind deconvolution of w ∗ x, as is apparent from (1.2.1), is equivalent to solving a

system of bilinear equations in the entries of w and x. The discussion in Section 1.2

shows how this system of quadratic equations can be recast as a linear set of equations

with a rank constraint. In fact, this same recasting can be used for any system of

bilinear equations in w and x. The reason is simple: taking the outer product of w

and x produces a rank-1 matrix that contains all the different combinations of the

entries of w multiplied with the entries in x:

wx∗ =




w[1]x[1] w[1]x[2] · · · w[1]x[L]

w[2]x[1] w[2]x[2] · · · w[2]x[L]

...
...

...

w[L]x[1] w[L]x[2] · · · w[L]x[L]



. (1.2.6)

Then any bilinear equation can be written as a linear combination of the entries

in this matrix, and any system of equations can be written as a linear operator acting

on this matrix. The subspace constraints in the blind-deconvolution problem can be

interpreted as adding additional linear constraints on the matrix in (1.2.6).
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The phase-retrieval problem, as will be described below, is a special case of the

blind-deconvolution problem considered above. Suppose that instead of observing

the element wise product of the Fourier transform of two vectors in (1.2.2), we are

observing the element wise product of the Fourier transform of x and its conjugate,

i.e., the measurements are

ŷ[`] =
√
L · x̂[`]x̂∗[`], ` = 1, . . . , L

=
√
L · |x̂[`]|2 =

√
L · |〈f`,x〉|2

=
√
L · (f ∗` x)(f ∗` x)∗.

We are observing only the magnitude in the Fourier transform of x and our goal is to

recover the lost phase component from the measurements ŷ. This problem is referred

to as the phase retrieval problem. Using the same lifting strategy as before, we can

express the quadratic constraints in x as linear constraints in terms of rank-1 matrix

xx∗ to obtain

ŷ[`] =
√
L · 〈f`f ∗` ,xx∗〉, ` = 1, . . . , L.

Recent work on phase retrieval [21] has used the same methodology of “lifting” a

quadratic problem into a linear problem with a rank constraint to show that a vector

x ∈ RN can be recovered from O(N logN) measurements when x is a member of a

“generic” subspace, chosen at random. In particular, the results suggest that when

C is random then the phase can be recovered, within a global phase factor, from

phaseless measurements.

1.3 Efficient Sampling of Correlated Signals: Introduction
and Motivation

An ensemble Xc(t) = {x1(t), . . . , xM(t)} of M signals, each of which is bandlimited

to W/2 radians per second, can be captured completely at MW samples per second.

Suppose, the signals lie in a small subspace of dimension R � M , i.e., the ensemble
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Xc(t) is

Xc(t) = {xm(t) : xm(t) ≈
R∑

r=1

A[m, r]sr(t), 1 ≤ m ≤M},

where A[m, r] are the entries of a matrix A ∈ RM×R. The signal structure is illus-

trated in Figure 4. We want to exploit the low-dimensional signal structure in the

ensemble Xc(t), and come up with sampling strategies for the signal acquisition at a

rate comparatively much smaller than the Nyquist rate MW . For this purpose, we

will design sampling architectures using implementable components that can acquire

such an ensemble at a sub-Nyquist rate [2, 3]. The problem is challenging as the

matrix A is unknown, that is, we only know that the signals live in a low-dimensional

subspace but the subspace itself is not known in advance. In this thesis, we pro-

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAAAA 

Xc(t) = fxm(t)g1·m·M A Sc(t) = fsr(t)g1·r·R
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x2(t)

xM(t)

...
A[m;r]
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sR(t)
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Figure 4: Acquire an ensemble of M signals, each bandlimited to W/2 radians per
second. The signals lie in a subspace of dimension R, i.e., M signals {xm(t)}m can
be well approximated by the linear combination of R underlying signals {sr(t)}r. In
other words, we can write M signals in ensemble Xc(t) (on the left) as a tall matrix
A multiplied by an ensemble of R underlying independent signals.

pose several sampling architectures for the efficient sampling of correlated signals.

For an introductory discussion, we will present here a particularly simple acquisition

architecture; namely, the modulating multiplexer (M-Mux) shown in Figure 5. The

M-Mux takes a two-step approach for signal acquisition. Briefly, in the first step, each
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Figure 5: The M-Mux for efficient acquisition of correlated ensembles. Signals
{xm(t)}1≤m≤M in the ensemble Xc(t) are multiplied by independently generated ran-
dom binary waveform d1(t), d2(t), · · · , dM(t), respectively. The binary waveforms
alternate at rate Ω. After the modulation the signals are added and sampled at rate
Ω. The reconstruction algorithm uses the nuclear-norm minimization.

signal xm(t) in the ensemble is modulated with a ±1-binary waveform dm(t) alternat-

ing at rate Ω; the modulation is performed by pointwise multiplication xm(t) · dm(t)

of each signal xm(t) with the waveform dm(t). We will take Ω > W , i.e., the binary

waveforms are alternating at a rate greater than the Nyquist rate W . In the second

step, the coded signals xm(t) · dm(t) are then added together and sampled using a

single ADC at rate Ω. Define a matrix X0 with rows xm ∈ RΩ that contain the

uniformly spaced Ω-rate samples in t ∈ [0, 1) of xm(t). The rows xm are

xm := {xm(tk) : tk ∈ {0,
1

Ω
, . . . , 1− 1

Ω
}}.

Since the signalsXm(t) live in an R-dimensional subspace, the matrixX0 is an M×Ω

matrix with rank (X) = R. In addition, define

d(m) := {dm(tk) : tk ∈ {0,
1

Ω
, . . . , 1− 1

Ω
}}.

The ω-th sample taken by the ADC in t ∈ [0, 1) is

y[ω] =
M∑

m=1

d(m)[ω]xm[ω], ω = 1, . . . ,Ω.
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Let dω = [d(1)[ω], . . . , d(M)[ω]]T ∈ RM . Then the sample y[ω] can be equivalently

expressed as

y[ω] = 〈dωe∗ω,X0〉, ω = 1, . . . ,Ω,

where {eω}1≤ω≤Ω are the standard basis vectors of dimension Ω. How many samples

y[ω] are necessary for the reconstruction of the ensemble Xc(t) in the time window

t ∈ [0, 1)? In other words, how many measurements y[ω] are required to recover

M ×Ω matrix X0? Since X0 is of rank R, its degrees of freedom are R(M + Ω−R).

As the number of measurements always obey Ω < R(M + Ω−R), it is impossible to

recover X0 from measurements y[ω]. However, we can use the fact that the signals

xm(t), 1 ≤ m ≤M are bandlimited to W/2, that is, we can write

xm = F̃ cm,

where F̃ : CΩ×W is the partial DFT matrix containing a subset of the columns of the

Ω× Ω orthonormal DFT matrix. The selected subset of the columns corresponds to

the W active frequency components in the bandlimited signals xm(t). Now define a

matrix C0 with c∗m ∈ CW as its rows; it follows that rank (C0) = R. Using the fact

that the signals are bandlimited, we can write the measurements y[ω] as

y[ω] = 〈dωe∗ω,X0〉 = 〈dωe∗ω,C0F̃
∗〉

= 〈dωe∗ωF̃ ,C0〉 = 〈dωf ∗ω,C0〉

= Tr (A∗ωC0) , ω = 1, . . . ,Ω,

where f ∗ω ∈ CW are the rows of F̃ . Thus, using the fact that the signals are ban-

dlimited, we have reduced the dimension of the unknown rank R matrix to M ×W .

Define a linear operator A : CM×W → RΩ that maps C0 to measurement vector y as

follows:

A(C0) = {Tr (A∗ωC0) : ω = 1, . . . ,Ω}.

The measurements y are then equivalently expressed as y = A(C0). The reconstruc-

tion of ensemble Xc(t) in t ∈ [0, 1) follows from the recovery of C0. Recovery of
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low-rank C0 from limited measurements y[ω] can be recast as the rank-minimization

problem below:

find C

subject to A(C) = y

rank (X) = R

⇐⇒
min rank (C)

subject to A(C) = y.

(1.3.1)

Our main results in Chapter 5 show that if we take the vectors dω ∈ RM to be

rademacher vectors with independent entries, which amounts to dm(t) being indepen-

dent random binary waveforms switching their polarity after every interval of width

1/Ω, than the signal ensemble Xc(t) can be reconstructed exactly from the samples

y with high probability when the sampling rate Ω obeys Ω & R(W +M) log3(WM).

Correlated signals often arise in large sensor arrays in various signal processing

applications, some of which are outlined in Chapter 4, and 5. In such applications,

often the task is to estimate the signal parameters from their covariance matrix, e.g.,

the MUSIC algorithm in array processing uses the covariance matrix to estimate

the signal parameters, such as the estimation of the angle of arrival. In several

wideband signal processing applications, the sampling rate required to acquire the

covariance matrix; which turns out to be a low-rank matrix, may be prohibitive. This

is especially true in view of the increasing trend of using high frequency spectrum

in some applications in array processing. Our proposed sampling architecture can

be employed to estimate the covariance matrix of the input signal ensemble with a

much fewer samples; hence, relieving the burden on the analog-to-digital converters

(ADCs).

In comparison to the standard Gaussian linear operator A for which the corre-

sponding Ai’s are dense random matrices with iid Gaussian entries, the linear oper-

ators A considered in each of the context above the corresponding Ai’s are formed

by the outer product of two vectors, which are either random or deterministic vec-

tors, i.e., the randomness appears in a structured form. These kind of measurement
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ensembles are referred to as structured random measurement ensembles.

1.4 An Overview of the Results in the Thesis

In this thesis, we mainly study the effectiveness of convex optimization to recover

low-rank matrices from structured random measurement ensembles. Our theoretical

results for each of the measurement ensemble provide the number of measurements,

and the incoherence conditions for the exact recovery of unknown low-rank matrix in

the noiseless case. In the noisy case, we present stable recovery results, which bound

the Frobenius error of the estimated matrix. The LRMR results using structured-

random measurement ensembles are then applied to study the blind-deconvolution

problem in signal processing and communications, and to develop efficient sampling

architectures for large arrays.

The main contributions of this thesis can be broadly classified into three categories

described in the following three subsections.

1.4.1 Blind deconvolution using convex programming

In Chapter 3, we consider the problem of recovering two unknown vectors, w and

x, of length L from their circular convolution. We make the structural assumption

that the two vectors are members of known subspaces, one with dimension N and

the other with dimension K. Although the observed convolution is nonlinear in

both w and x, it is linear in the rank-1 matrix formed by their outer product wx∗.

This observation allows us to recast the deconvolution problem as low-rank matrix

recovery problem from linear measurements, whose natural convex relaxation is a

nuclear-norm-minimization program.

We prove the effectiveness of this relaxation by showing that for “generic” signals,

the program can deconvolvew and x exactly when the maximum ofN andK is almost

on the order of L. That is, we show that if x is drawn from a random subspace of

dimension N , and w is a vector in a subspace of dimension K whose basis vectors
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are “spread out” in the frequency domain, then nuclear-norm minimization recovers

wx∗ without error.

We discuss this result in the context of blind channel estimation in communica-

tions. If we have a message of length N which we code using a random L×N coding

matrix, and the encoded message travels through an unknown linear time-invariant

channel of maximum length K, then the receiver can recover both the channel re-

sponse and the message when L & N +K, to within constant and log factors.

1.4.2 Sampling architectures for compressive array processing

Chapters 4 is devoted to the design and analysis of sampling architectures for the

efficient acquisition of multiple signals lying in a subspace (referred to as correlated

signals). Although the signal subspace is unknown in advance, the proposed sam-

pling architecture acquires the signals at a sub-Nyquist rate using the latent low-

dimensional signal structure. Prior to sampling at a sub-Nyquist rate, the analog

signals are diversified using analog preprocessing. The preprocessing step is carried

out using implementable components that inject “structured” randomness into the

signals. We frame the signal reconstruction from fewer samples as an LRMR problem

from a limited generalized linear measurements. Our results also include a sampling

theorem that provides the sufficient sampling rate for the exact reconstruction of the

signals using the nuclear-norm minimization. We also discusses an application of

the sampling architectures in the estimation of the covariance matrix, required for

parameter estimation in several important array processing applications, from much

fewer samples.
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1.4.3 Compressive multiplexers for correlated signals

In Chapter 5, we propose two compressive multiplexers for the efficient sampling of

ensembles of correlated signals. The proposed multiplexers acquire correlated ensem-

bles, taking advantage of their (a priori-unknown) correlation structure, at a sub-

Nyquist rate. The multiplexers are constructed using simple analog devices such as

modulators and filters. We recast the reconstruction of the ensemble as an LRMR

problem from generalized linear measurements. Our main theoretical results include

sampling theorems that provide sufficient sampling rate for the successful reconstruc-

tion of the signal ensembles using the nuclear-norm minimization. We complete the

discussion with the applications of the proposed architectures in micro-sensor arrays.

1.4.4 Sampling architectures with least-squares reconstruction

In Chapter 6, we study the randomized linear algebra for low-rank matrix factoriza-

tions. The advantage of the randomized linear algebra is that we can solve an easier

least-squares program for LRMR. The least-squares program, however, requires a

more restrictive class of sampling techniques compared to the nuclear-norm mini-

mization. In particular, we need to observe the samples of the row and the column

space of the unknown low-rank matrix in order to use least squares for matrix recov-

ery; whereas, we can work with a more generalized set of samples composed of the

linear combinations of the entries of the unknown low-rank matrix.

LRMR results using least squares and random samples of the row and the column

space of the unknown low-rank matrix have been well-studied in the literatures. Our

main contribution in Chapter 6 shows that the structured -random samples work just

as well as the completely-random samples of the row and column space. Using this

result, we design a new set of sampling architectures for the efficient acquisition of

correlated signals. The advantage of these sampling architectures is that we can use a

computationally less expensive least-squares program (compared to the nuclear-norm
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minimization). Our results include the sampling theorems for each of the architecture.

The sampling theorems prove the sub-Nyquist rate suffices for the successful signal

reconstruction using least squares.

In particular, the results in Chapter 4, 6, and 5 indicate that we can recover an

ensemble of correlated signals containing M signals composed of R�M independent

signals, each bandlimited to W/2 Hz, by taking O(RW logqW ) (assuming W ≥ M)

samples per second, where q > 1 is a small constant. All of the sampling theorems

are matrix recovery results form various structured random measurement ensembles.

17



CHAPTER II

BACKGROUND

In Chapter 1, we introduced some of the main problems addressed in this thesis.

Since the problems boil down to the recovery of a matrix with a minimum rank

subject to measurement constraints, we dedicate this chapter on the development of

mathematical preliminaries for the LRMR problem. We begin with an introduction

to some useful vector and matrix norms that will be used in this thesis.

2.1 Vector and matrix norms

Mostly, we will be working with signals and images that are elements of a finite

dimensional space, e.g., an N -dimensional Euclidean space RN , or CN . The vector

norms of interest include the `1-norm of a vector x : ‖x‖1 = |x1| + · · · + |xN |; the

`2-norm of a vector x: ‖x‖2 =
√
|x1|2 + · · ·+ |xN |2; and the `∞-norm of a vector x:

‖x‖∞ = max{|x1|, · · · , |xN |}. In general,

‖x‖p :=

(
N∑

i=1

|xi|p
)1/p

defines an `p-norm of an N -dimensional vector x. Equivalence of the above mentioned

norms is given by the following inequalities

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
N‖x‖2 ≤ N‖x‖∞.

The Euclidean space `2 is also equipped with an inner product between vectors x,

and y, which is defined as

〈x,y〉 := y∗x =
N∑

i=1

xiy
∗
i .
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We will be frequently using the Holder’s, and the Cauchy-Schwartz inequalities, which

are listed in the same order below.

〈x,y〉 ≤ ‖x‖1‖y‖∞ 〈x,y〉 ≤ ‖x‖2‖y‖2.

The vectors norms, defined above, have natural generalization to matrices. Let

X be an M ×N matrix, with σi being its i-th singular value. The rank of matrix X

will be denoted by R, which is equal to the number of non zero singular values of X.

For matrices X, and Y of same dimensions, we will often use the trace inner product

〈X,Y 〉 := Tr (X∗Y ) =
∑

i,j

X∗[i, j]Y [i, j].

The trace inner product induces the Frobenius norm ‖ · ‖F , which is defined as

‖X‖2
F := Tr (X∗X) =

∑

i,j

|X[i, j]|2 =
R∑

i=1

σ2
i .

The operator norm of X equals its largest singular value, i.e.,

‖X‖ := σ1,

and finally, the nuclear norm is the sum of the singular values

‖X‖∗ =
R∑

i=1

σi.

Equivalence relation between some useful matrix norms is

‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
R‖X‖F ≤ R‖X‖.

The Holder’s and the Cauchy-Schwartz’s inequalities for matrices are

〈X,Y 〉 ≤ ‖X‖∗‖Y ‖, 〈X,Y 〉 ≤ ‖X‖F‖Y ‖F ,

respectively. In addition to the above mentioned matrix norms, some other useful

matrix norms are ‖X‖∞ := maxi,j |X[i, j]| and ‖X‖1 =
∑

i,j |X[i, j]|.
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2.2 Matrix-rank Minimization

As remarked earlier, the matrix-rank minimization often emerges in this work; there-

fore, we start with the rank-minimization problem subject to convex constraint set

C

min rank(X) (2.2.1)

subject to X ∈ C,

where X : RM×N . Mainly, we will focus on the rank-minimization problem in which

the feasible set is affine in X, i.e., we observe limited measurements y = A(X0) of

an unknown matrix X0. Then to find a matrix with minimum rank that obeys the

affine measurements constraints above, we solve

min rank(X) (2.2.2)

subject to y = A(X),

where linear map A : RM×N → RL and measurement vector y are known, and the

optimization program seeks a matrix X with minimum rank in the affine space y =

A(X). The optimization problems in (2.2.1) and (2.2.2) are, in general, intractable,

non-convex, and NP-hard problems and the complexity of the algorithms to solve

these problems scales exponentially with the dimension of the matrix.

2.2.1 Convex relaxation of the rank function: Nuclear norm

To solve the minimization of rank efficiently, we can resort to the best convex relax-

ation of the rank function; the nuclear norm. We state here the result in [40,42].

Theorem 2.2.1 (Theorem 1, [42]). The convex envelop of the function rank (X) on

the convex set

{X ∈ RM×N : ‖X‖ ≤ 1}

is ‖X‖∗.
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The proof of this statement follows from the facts that the nuclear norm is a

biconjugate of the rank function on the above set, and that the biconjugate of the

rank function is its convex envelop. As a result, the best convex surrogate for the

minimization of the rank function subject to affine equality constraints (2.2.2) is

min ‖X‖∗ (2.2.3)

subject to y = A(X).

In contrast to the rank-minimization problem, nuclear-norm minimization is a convex

program that can be solved in polynomial time and recently many algorithms and

software packages have been introduced to solve it efficiently; see, for example, [9,11,

15–17, 66, 90]. The affine nuclear-norm minimization (2.2.3) reduces to the familiar

`1 minimization subject to affine constraints when matrix X is constrained to be

diagonal. The nuclear-norm minimization problem is studied extensively in last few

years [19, 22, 75, 76] and the conditions under which it is guaranteed to yield the

optimal solution, are characterized.

2.2.2 Formulation as an SDP

The nuclear-norm minimization can be formulated as a semi-definite program (SDP).

To accomplish that, we first give here the definition of the dual norm ‖ · ‖d of a norm

‖ · ‖ in an inner-product space

‖X‖d := max
X
{〈X,Y 〉 : ‖Y ‖ ≤ 1}.

It can be verified from the above definition that the dual norm of the nuclear norm

is the operator norm, i.e.,

‖X‖∗ = max
X
{Tr (X∗Y ) : ‖Y ‖ ≤ 1}.

21



Using this fact, we can write the dual of the optimization program (2.2.3) as the SDP

max
X

Tr(X∗Y ) (2.2.4)

s.t.



IM Y

Y ∗ IN


 � 0

y = A(X).

The dual of the above SDP [42] is

min
W1,W2,X

1
2
Tr(W1) + 1

2
Tr(W2) (2.2.5)

s.t.



W1 X

X∗ W2


 � 0

y = A(X),

which is completely equivalent to the nuclear-norm minimization program subject to

the affine constraints. Standard solvers exist to solve the SDP.

2.3 Guarantees for the Success of the Nuclear-norm Min-
imization

In this section, we provide conditions on the linear map A : RM×N → RL to ensure

that the solution X̃ to the convex optimization program in (2.2.3) equals the unknown

rank-R matrix X0 with high probability. First, we present the restricted isometry

property of linear map A that guarantees the recovery of matrices X of rank (X) ≤

R using nuclear-norm minimization. Second, we will describe the dual-certificate

approach to guarantee the exact recovery of X using the nuclear-norm minimization

under some isometry conditions on linear map A.

2.3.1 The restricted isometry property for low-rank matrices

We begin with the definition of the restricted isometry property (RIP) for low-rank

matrices [76]. The RIP for low-rank matrices can be thought of as an extension of
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the RIP for sparse vectors. In fact, it can be shown that the LRMR problem reduces

to a sparse-vector recovery problem if the matrices to be recovered are restricted to

be the diagonal matrices.

Definition 1. A linear map A : RM×N → RL is said to satisfy the R-RIP if for every

integer 1 ≤ R ≤ min(M,N), we have a smallest constant δR such that

(1− δR)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δR)‖X‖F

for all matrices of rank (X) ≤ R.

The scalar δR is the smallest number that satisfies the above condition and it

determines the behavior of A on the set of matrices of rank less than or equal to

R. The RIP of A for low-rank matrices [18, 76] follows if A is nearly isometrically

distributed.

Theorem 2.3.1 (Theorem 2.3, [18]). Fix 0 ≤ δ < 1, and let A be a random measure-

ment ensemble obeying the following condition: for any X : M × N , and any fixed

0 < t < 1,

P
{
|‖A(X)‖2

2 − ‖X‖2
F | > t‖X‖2

F

}
≤ C exp(−cL), (2.3.1)

where C, c > 0 are constants that may depend on t. Suppose now that L ≥ Dmax(M,N)R,

then A satisfies R-RIP for δR ≤ δ with probability exceeding 1−Ce−dL for fixed con-

stants d,D > 0.

This concentration statement can be extended to the matrix RIP by using a

simple covering argument for the set of low-rank matrices; for details, see Theorem

2.3 in [18]. The standard Gaussian and Bernoulli measurement ensembles A are

isometrically distributed, and hence obey the matrix RIP. We will show in Chapter 5,

the matrix RIP of A obtained by multiplying the columns of a random multi-Toeplitz

matrix with binary random variables.
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Suppose, we obtain measurements y

y = A(X0) (2.3.2)

of a rank-R matrix X0, where A is an operator that obeys RIP . Following two

theorems demonstrate the role of δR in establishing when the solution to the nuclear-

norm minimization in (2.2.3) equals X0.

Theorem 2.3.2 (Theorem 3.2, [76]). Suppose that δ2R < 1 for some integer R ≥ 1.

Then X0 is the only matrix of rank at most R satisfying A(X) = y.

The proof of this theorem follows directly from the matrix RIP.

Theorem 2.3.3 (Theorem 3.3, [76]). Suppose that R ≥ 1 such that δ5R < 0.1. Then

X̃ = X0.

The matrix RIP also guarantees stable matrix recovery in noise. Suppose, the

measurement y are contaminated with noise, i.e.,

y = A(X0) + z, (2.3.3)

where z is the noise term such that ‖z‖2 ≤ δ holds. Then the solution X̃ to the

optimization program

min ‖X‖∗ (2.3.4)

subject to ‖y −A(X)‖2 ≤ δ

obeys the following theorem.

Theorem 2.3.4 (Theorem 4, [41]). Assume that δ5R < 0.1, then

‖X̃ −X0‖F ≤ C0.
‖X0 −X0,R‖∗√

R
+ C1δ,

where C0 and C1 are small constants that depend on isometry constant δ5R.

The matrix X0,R is the best rank-R approximation of X0. Again, the proof hinges

mainly on the matrix RIP to guarantee the stable recovery. Note that the solution

X̃ gives the best rank-R approximation of X0 if the noise strength δ = 0.
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2.3.2 Duality

Suppose, matrix X0 ∈ RM×N is an unknown rank-R matrix and its reduced form

SVD is

X0 = UΣV ∗. (2.3.5)

Let T ⊕ T⊥ = RM×N be the orthogonal decomposition of the space RM×N , where

T = {Z1V
∗ +UZ∗2 : Z1 ∈ RM×R,Z2 ∈ RW×R}.

The orthogonal projections PT and PT⊥ can be defined as

PT (X) = PUX +XPV − PUXPV , PT⊥(X) = (IM − PU)X(IN − PV ),

respectively.

Suppose, we measure unknown X0 using (2.3.2). Then a matrix X is optimal for

(2.2.3) if there exists a dual vector λ ∈ RL such that

A∗(λ) ∈ ∂‖X‖∗ y = A(X)

holds [13], where ∂‖X‖∗ denotes the subdifferential of the nuclear norm at X. The

subgradient of the nuclear norm at X0 [62, 100] is given by

∂‖X0‖∗ = {UV ∗ +W : W ∗U = 0,WV = 0, and ‖W ‖ ≤ 1},

where U and V denote the left and right singular vectors of X0, as in (2.3.5). The

following lemma gives the conditions for exact recovery when solving (2.2.3); for

details, see, for example [19,44,75].

Lemma 2.3.1. Suppose we take the measurements of X0 as in (2.3.2). The matrix

X0 is the unique minimizer of (2.2.3) if there exists a Y ∈ Range(A∗) such that

〈UV ∗ − PT (Y ),PT (Z)〉 − 〈PT⊥(Y ),PT⊥(Z)〉+ ‖PT⊥(Z)‖∗ > 0

for all Z ∈ Null(A).
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Proof. Let X̃ denote the solution to (2.2.3). To exhibit exact recovery, it will be

enough to show

∀Z ∈ Null(A);Z 6= 0⇒ ‖X0 +Z‖∗ > ‖X0‖∗ . (2.3.6)

Using (2.3.6), we have

Z = X̃ −X0 ∈ Null(A), (2.3.7)

and using the definition of X̃

‖X̃‖∗ ≤ ‖X0‖∗. (2.3.8)

Then (2.3.6), (2.3.7) and (2.3.8) imply that X̃ = X0. Now,

‖X0 +Z‖∗ − ‖X0‖∗ ≥ 〈∆,Z〉, ∆ ∈ ∂‖X0‖∗.

The gradient of the nuclear norm at X0 is

∂‖X0‖∗ = UV ∗ + PT⊥(W ), ‖W ‖ ≤ 1.

This gives us

‖X0 +Z‖∗ − ‖X0‖∗ ≥ 〈UV ∗,Z〉+ 〈W ,PT⊥(Z)〉.

If we maximize the second inner product w.r.t. ‖W ‖ ≤ 1, then by the definition of

the dual of the operator norm, we have

‖X0 +Z‖∗ − ‖X0‖∗ ≥ 〈UV ∗,Z〉+ ‖PT⊥(Z)‖∗.

For ∀Y ∈ Range(A∗), we can write

‖X0 +Z‖∗ − ‖X0‖∗ ≥ 〈UV ∗ − Y ,Z〉+ ‖PT⊥(Z)‖∗

= 〈UV ∗ − PT (Y ),PT (Z)〉 − 〈PT⊥(Y ),PT⊥(Z)〉+ ‖PT⊥(Z)‖∗.

Thus, to guarantees that the solution to the nuclear norm minimization (2.2.3) is

exact, it is enough to show that the R.H.S is greater than zero. This proves the

lemma.

26



In light of Lemma 2.3.1, it is enough to show that ∃Y ∈ Range(A∗), which meets

the condition given in the lemma. Such a Y is called the dual certificate; the geometry

of the dual certificate is illustrated in Figure 6.

.

(a)

.
Y

Schatten 1-norm Ball

(b)

X0X0

Figure 6: Geometry of the dual certificate [44]. (a) The unknown matrix X0 belongs
to the linear space of dimensions M × N . The axis labeled Range(A∗) signifies
the range of the operator A, and the axis labeled Null(A) specifies the orthogonal
complement of Range(A∗). The set of feasible matrices forms an affine hyperplane
labeled as y = A(X). (b) The unknown matrix X0 is recovered by solving the
nuclear norm minimization program in (2.2.3) when X0 is the unique minimizer of
the nuclear norm restricted to the plane y = A(X). Thus, a sufficient condition
for the exact recovery is that the subgradient Y at X0 of the nuclear norm ball is
perpendicular to the affine feasible set y = A(X).

2.3.3 Matrix completion

In this section, we consider a specific example of LRMR; namely, the matrix-completion

problem, where we fill in the missing entries in a matrix from the partial observation

of a few randomly chosen entries. Before discussing the results of the matrix comple-

tion, we briefly investigate the incoherence requirements on the unknown matrix X0

for the matrix-completion problem to be effective. Let us write the SVD of matrix

X0:

X0 = UΣV ∗, (2.3.9)
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where U ∈ RM×R, V ∈ RW×R are orthogonal matrices and Σ ∈ RR×R is a diagonal

matrix of singular values. To state the main results of matrix completion, we first

need to define the coherence [19] of X0.

Definition 2 (Coherence, [19]). Let U , and V be as defined in (2.3.9). Then the

coherence µ2
0 is defined as

µ2
0 = max{M

R
max

1≤i≤M
‖U ∗ei‖2

2 ,
N

R
max

1≤i≤N
‖V ∗ei‖2

2 ,
MN

R
‖UV ∗‖2

∞}.

The coherence parameter µ2
0 quantifies the correlation between the left, and right

singular vectors of X0 with the standard basis vectors in the quantities

µ2(U) :=
M

R
max

1≤i≤M
‖U ∗ei‖2

2, µ2(V ) :=
N

R
max

1≤i≤N
‖V ∗ei‖2

2,

respectively. Thus, the parameters µ2(U), and µ2(V ) are a measure of the sparsity

of the singular vectors. The parameter µ2(U) varies in the range 1 ≤ µ2(U) ≤M/R.

For example, an orthonormal matrix U with each entry of magnitude 1/
√
M achieves

µ2(U) = 1; the smallest value of the coherence parameter µ2(U). On the other hand

an orthonormal matrix that contains standard basis vectors in at least one of its

columns achieves µ2(U) = M/R, the largest value of µ2(U). Similarly, the range of

parameter µ2(V ) is 1 ≤ µ2(V ) ≤ W/R. Also, the quantity

µ2(UV ∗) :=
MN

R
‖UV ∗‖2

∞,

estimates the sparsity of the sign matrix UV ∗ of X0. It can easily be verified that

1 ≤ µ2(UV ∗) ≤ MN

R
.

Also, it follows form the Cauchy-Schwartz inequality that

MN

R
‖UV ∗‖2

∞ ≤ Rµ2(U)µ2(V ).

Let Z ∈ RM×N represent the noise perturbations and Γ be the set of cardinality |Γ| =

L selected uniformly at random from the index set {(i, j) ∈ {1, . . . ,M}×{1, . . . ,W}}
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of matrix X0. Each observation Y [i, j] of matrix X0 contaminated with noise Z[i, j]

is

Y [i, j] = X0[i, j] + Z[i, j], (i, j) ∈ Γ. (2.3.10)

Let us define an operator RΓ : RM×N → RM×N that maps a given matrix X to a

new matrix with entries in the set Γc set to zero, i.e.,

RΓ(X) =





X[i, j], (i, j) ∈ Γ

0, (i, j) ∈ Γc.
(2.3.11)

That is, we can equivalently write (2.3.10) as

Y = RΓ(X0) +RΓ(Z).

We state here the recovery results of matrix X0 from observations Y in the noise-

less and noisy case in the following Theorem.

Theorem 2.3.5 (Matrix completion, [22,27,75]). Let X0 be as in (2.3.9) with coher-

ence µ2
0 defined in (2). Suppose L entries of X0 are observed with locations sampled

uniformly at random. Then if

L ≥ Cβµ2
0Rmax(M,N) log2(max(M,N)) (2.3.12)

for some β > 1. Then

1. In the noiseless case (RΓ(Z) = 0) the minimizer X̃ to the problem

minimize ‖X‖∗

subject to RΓ(X) = RΓ(X0)

is unique and equal to X with probability at least 1−O(max(M,N)−β)

2. In the noisy case with noise level ‖RΓ(Z)‖F ≤ δ, under some conditions [22]

that are true provided L satisfies (2.3.12) with probability at least 1−O(max(M,N)−β),
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the solution X̃ to the following optimization program

minimize ‖X‖∗

subject to ‖Y −RΓ(X)‖F ≤ δ

obeys

‖X̃ −X0‖F ≤ 4

√
CK min(M,N)

K
δ + 2δ

with CK = 2 +K, where K is the fraction of the number of observed entries L

to the total number of entries MN in X0.

2.4 Randomized Linear Algebra for Low-rank Matrix Re-
covery

Nuclear-norm minimization is an effective way of LRMR from various measurement

ensembles A such as the Gaussian measurement ensemble, the random sampling

measurement ensemble in (2.3.11), the random multi-Toeplitz measurement ensemble

in Chapter 3, and the random block-diagonal measurement ensemble in Chapter

4. The LRMR from limited measurements can also be achieved using randomized

algorithms for partial matrix factorizations. These algorithms use random sampling

to approximate the row and the column subspaces of unknown low-rank matrix X0.

Given the knowledge of these subspaces, we use a matrix least-squares approach

that determines the small linkage matrix to compute the estimate X̃. In Chapter

6, we present matrix least-squares based sampling schemes, which will be useful for

the compressive acquisition of correlated signals. In addition, we derive sampling

theorems that will portray the desired sampling rate for the stable recovery of multiple

signals lying in a subspace (referred to as correlated signals). In the following section,

we illustrate the LRMR using least squares from limited measurements.
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2.4.1 Estimation of the row and column spaces

We want to reconstruct an unknown low-rank matrix X0 of rank-R from limited

measurements of its rows and column space. In particular, we observe

Row measurements: Y1 = Φ1X0 (2.4.1)

Column measurements: Y2 = X0Φ
∗
2, (2.4.2)

where Φ1 : ∆ ×M , and Φ2 : Ω ×W are the measurement matrices. We will study

random matrices with various distributions that can be used as measurement matri-

ces. The measurements Y1, and Y2 produce an orthonormal basis for the row and the

column space of X0. As we will see later, the knowledge of the row and the column

space of the unknown X0 allows us to use a convenient least-squares program for

LRMR.

The randomness in the measurement matrices Φ1, and Φ2 plays a central role in

the successful reconstruction. To see this, consider a simple example [47]: Suppose,

we seek a basis for the column space of a matrix X0 of exact rank R. Form a vector

yi = X0φi, i = 1, . . . , R,

where φi is a random vector. Intuitively, the vector yi is a random sample of the

column space of X0. Repeat this process R times, each time with a new choice of

a random vector φi to obtain a set of samples {yi : i = 1, . . . , R} of the column

space of X0. Since the vectors {φi : i = 1, . . . , R} are independent, it is improbable

that these vectors will fall into the null space of X0. This implies that the vectors

{yi : i = 1, . . . , R} are also independent and span the column space of X0, and hence

the basis of column space can be obtained from these samples. Exact same reasoning

applies to the construction of the basis of the row space of X0.

In general, if the matrix X0 is not exactly rank R but is rather compressible, that

is, the spectrum of the singular values of X0 decays rapidly after first R significant
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singular values, then we can write such a matrix X0 = Z + ξ, where Z is a rank-R

matrix under consideration and ξ accounts for the perturbation. Now we take the

samples of the range space of X0, and we observe

yi = X0φi = Zφi + ξφi, i = 1, . . . , R + κ,

where κ is the amount of oversampling. We are interested in the column space of

Z; instead, the samples {yi} observed are deviated outside of the column space of Z

because of the perturbation ξ. Intuitively, we oversample to make sure that we cover

as much of the column space of X0 as possible. As will be clear from theoretical

results presented later that a small amount of oversampling, κ = 5, 10, suffices for

many practical situations; for details, see [47].

2.4.2 Least squares for matrix recovery

We estimate the basis column and row spaces of X0 by computing SVDs, truncated

to top R singular values, of Y1 and Y2. We factor

Y1 ≈ U1Σ1V
∗

1

Y2 ≈ U2Σ2V
∗

2 , (2.4.3)

where U1 : ∆×R, Σ1 : R×R, V1 : W ×R, U2 : M ×R, Σ2 : R×R, and V2 : Ω×R.

We will use U2 as an orthobasis for the column space of our estimate and V1 as an

orthobasis for the row space of our estimate; we will take

X̃ = U2AV
∗

1 , (2.4.4)

for some R × R matrix A. We will choose A so that Φ1X̃ and X̃Φ∗2 are as close to

Y1 and Y2, respectively, as possible. That is, we take

Ã = argminA ‖U2AV
∗

1 Φ∗2 − Y2‖2
F + ‖Φ1U2AV

∗
1 − Y1‖2

F

= argminA ‖AV ∗1 Φ∗2 −U ∗2Y2‖2
F + ‖Φ1U2A− Y1V1‖2

F . (2.4.5)
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Suppose the measurement matrices Φ1, and Φ2 are standard Gaussian. Then,

the following theorem gives an error bound on the estimate computed using the least

squares approach descried above.

Theorem 2.4.1 (Theorem 10.7, [47]). Suppose that X0 is a real M ×W matrix with

singular values σ1 ≥ σ2 ≥ σ3 ≥ · · · . Choose a target rank R ≥ 2, and ∆,Ω ≥ R + κ,

where κ ≥ 4, and ∆,Ω ≤ min(M,W ). Draw a ∆×M standard Gaussian matrix Φ1,

and a Ω×W standard Gaussian matrix Φ2. Observe the measurements Y1 = Φ1X0,

and Y2 = X0Φ
∗
2 with SVDs in (2.4.3). Then for all t ≥ 1, the solution X̃ to the

least-squares program in (2.4.5) obeys

‖X̃ −X0‖F ≤
(

1 + t ·
√

3R

κ+ 1

)(∑

j>R

σ2
j

)1/2

with failure probability at most 2t−κ.

The least-squares approach for LRMR is in some sense similar to the greedy algo-

rithms for the recovery of S-sparse vector x of length N from limited measurements.

In the sparse-recovery algorithms; see, for example, [72, 95], the support of non-zero

entries of x is first determined and then by solving a least-squares problem on this

support, one can decode x. Likewise, in the LRMR, one needs to first detect the

row and the column space of matrix X0. Since the dimension R of the row and the

column space is much smaller than min(M,W ), i.e., R� min(M,W ), the idea is to

determine the row and the column space and solve a smaller least-squares problem

on this subspace from limited measurements [47, 101].

2.5 Concentration inequalities

This section provides an overview of concentration inequalities to bound sums of

random scalar, vector, and matrix variables. Proving some of the key theoretical

results in this thesis revolves around estimating the sizes of sums of these random

variables using the concentration inequalities listed below. These random variables
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are either the absolute value of a sum of independent random scalars, the euclidean

norm of a sum of independent random vectors (or equivalently, the Frobenius norm

of a sum of random matrices), or the operator norm (maximum singular value) of a

sum of random linear operators. In this section, we very briefly overview the tools

from probability theory that we will use to make these estimates. The essential tool

is the recently developed matrix Bernstein inequality [93].

We start by recalling the classical scalar Bernstein inequality. A nice proof of the

result in this form can be found in [37, Chapter 2].

Proposition 1 (Scalar Bernstein, subexponential version). Let z1, . . . , zK be inde-

pendent random variables with E[zk] = 0, σ2
k := E[z2

k], and

P {|zk| > u} ≤ Ce−u/σk , (2.5.1)

for some constants C and σk, k = 1, . . . , K with

σ2 =
K∑

k=1

σ2
k and B = max

1≤k≤K
σk.

Then

P {|z1 + · · ·+ zK | > u} ≤ 2 exp

( −u2

2Cσ2 + 2Bu

)
,

and so

|z1 + · · ·+ zK | ≤ 2 max
{√

Cσ
√
t+ log 2, 2B(t+ log 2)

}

with probability exceeding 1− e−t.

To make the statement (and usage) of the concentration inequalities more compact

in the vector and matrix case, we will characterize the size of random scalars, vectors,

and matrices using their Orlicz-α norms.

Definition 3. Let Z be a random matrix. We will use ‖ · ‖ψ1 to denote the Orlicz-α

norm:

‖Z‖ψα = inf
u≥0
{E[exp(‖Z‖α/uα)] ≤ 2} , α ≥ 1, (2.5.2)

where ‖Z‖ is the spectral norm of Z.
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Note that the definition above also applies when Z is a vector (M × 1 matrix) as

in this case the operator norm ‖Z‖ in (2.5.2) reduces to the `2 vector norm. Similarly,

when Z specifies a scalar (1× 1 matrix), the same definition applies as the operator

norm is simply the absolute value of the scalar random variable.

The next basic result shows that the Orlicz-α norm of a random variable can be

systematically related to the rate at which the distribution function approaches 1 (i.e.

σk in (2.5.1)).

Lemma 2.5.1 (Lemma 2.2.1, [37]). Let Z be a random variable which obeys P {|X| > u} ≤

βe−γu
α

for constants β and γ, and for α ≥ 1. Then ‖X‖ψα ≤ ((1 + β)/γ)1/α.

Following lemmas give some useful facts about the Orlicz norms.

Lemma 2.5.2 (Lemma 5.9 in [99]). Consider a finite number Q of independent sub-

gaussian random variable Xq. Then,

∥∥∥∥∥

Q∑

q=1

Xq

∥∥∥∥∥

2

ψ2

≤ c

Q∑

q=1

‖Xq‖2
ψ2
,

where c is an absolute constant.

Lemma 2.5.3 (Lemma 5.14 in [99]). A random variable X is subgaussian iff X2 is

subexponential. Futhermore,

‖X‖2
ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2

ψ2
.

Lemma 2.5.4. Let X1, and X2 be two subgaussian random variables, i.e., ‖X1‖ψ2 <

∞, and ‖X2‖ψ2 < ∞. Then the product X1X2 is a subexponential random variable

with

‖X1X2‖ψ1 ≤ c‖X1‖ψ2‖X2‖ψ2 .

Proof. For a subgaussian random variable, the tail behaviour is

P {|X| > t} ≤ e · exp

(
−ct2
‖X‖2

ψ2

)
∀t > 0;
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see, for example, [99]. We are interested in

P {|X1X2| > λ} ≤ P {|X1| > t}+ P {|X2| > λ/t}

≤ e · exp
(
−ct2/‖X1‖2

ψ2

)
+ e · exp

(
−cλ2/t2‖X2‖2

ψ2

)
.

Select t2 = λ‖X1‖ψ2/‖X2‖ψ2 , which gives

P {|X1X2| > λ} ≤ 2e · exp (−cλ/‖X1‖ψ2‖X2‖ψ2) .

Now Lemma 2.2.1 in [37] imples that if a random variable Z obeys P {|Z| > u} ≤

αe−βu, then ‖Z‖ψ1 ≤ (1 + α)/β. Using this result, we obtain

‖X1X2‖ψ1 ≤ c‖X1‖ψ2‖X2‖ψ2 ,

which proves the result.

Using the Definition 3, we have a following powerful tool for bounding the size of

a sum of independent random vectors or matrices. This result is mostly due to [93],

but appears in the form below in [53].

Proposition 2 (Matrix Bernstein, Orlicz-norm version). Let Z1, . . . ,ZQ be indepen-

dent M × N random matrices with E[Zq] = 0. Let Bα be an upper bound on the

Orlicz-α norms:

max
1≤q≤Q

‖Zq‖ψα ≤ Bα,

and define

σ2 = max

{∥∥∥∥∥

Q∑

q=1

E[ZqZ
∗
q ]

∥∥∥∥∥ ,
∥∥∥∥∥

Q∑

q=1

E[Z∗qZq]

∥∥∥∥∥

}
. (2.5.3)

Then there exists a constant C such that for all t ≥ 0

‖Z1+· · ·+ZQ‖ ≤ C max

{
σ
√
t+ log(M +N), Bα log

(√
QBα

σ

)
(t+ log(M +N))

}
,

(2.5.4)

with probability at least 1− e−t.
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Essential to establishing some important results in this thesis is bounding both

the upper and lower eigenvalues of the operator AA∗. We do this in e.g., Lemma 3.3.2

with a relatively straightforward application of the following Chernoff-like bound for

sums of random positive symmetric matrices.

Proposition 3 (Matrix Chernoff [93]). Let Z1, . . . ,ZQ be independent M×M random

self-adjoint matrices whose eigenvalues obey

0 ≤ λmin(Zq) ≤ λmax(Zq) ≤ R almost surely.

Define

ρmin := λmin

(
Q∑

q=1

E[Zq]

)
and ρmax := λmax

(
Q∑

q=1

E[Zq]

)
.

Then

P

{
λmin

(
Q∑

q=1

Zq

)
≤ tρmin

}
≤ M e−(1−t)2ρmin/2R for t ∈ [0, 1], (2.5.5)

and

P

{
λmax

(
Q∑

q=1

Zq

)
≥ tρmax

}
≤ M

[e

t

]tρmax/R

for t ≥ e. (2.5.6)

This ends a whirlwind tour of the background material required to understand

the main results in this thesis.
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CHAPTER III

BLIND DECONVOLUTION USING CONVEX

PROGRAMMING

3.1 Introduction

This chapter1 considers a fundamental problem in signal processing and communi-

cations: we observe the convolution of two unknown signals, w and x, and want to

separate them. We will show that this problem can be naturally relaxed as a semidef-

inite program (SDP), in particular, a nuclear norm minimization program. We then

use this fact in conjunction with recent results on recovering low-rank matrices from

underdetermined linear observations to provide conditions under which w and x can

be deconvolved exactly. Qualitatively, these results say that if both w and x have

length L, w lives in a fixed subspace of dimension K and is spread out in the fre-

quency domain, and x lives in a “generic” subspace chosen at random, then w and

x are separable with high probability.

The general statement of the problem is as follows. We will assume that the length

L signals live in known subspaces of RL whose dimensions are K and N . That is, we

can write

w = Bh, h ∈ RK

x = Cm, m ∈ RN

for some L × K matrix B and L × N matrix C. The columns of these matrices

provide bases for the subspaces in which w and x live; recovering h and m, then, is

equivalent to recovering w and x.

1This chapter is taken from article “Blind Deconvolution using Convex Programming” by Ali
Ahmed, Benjamin Recht, and Justin Romberg.
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We observe the circular convolution of w and x:

y = w ∗ x, or y[`] =
L∑

`′=1

w[`′]x[`− `′ + 1], (3.1.1)

where the index `− `′+1 in the sum above is understood to be modulo {1, . . . , L}. It

is clear that without structural assumptions on w and x, there will not be a unique

separation given the observations y. But we will see that once we account for our

knowledge that w and x lie in the span of the columns of B and C, respectively, they

can be uniquely separated in many situations. Detailing one such set of conditions

under which this separation is unique and can be computed by solving a tractable

convex program is the topic of this chapter.

3.1.1 Matrix observations

We can break apart the convolution in (3.1.1) by expanding x as a linear combination

of the columns C1, . . . ,CN of C,

y = m(1)w ∗C1 +m(2)w ∗C2 + · · ·+m(N)w ∗CN

=

[
circ(C1) circ(C2) · · · circ(CN)

]




m(1)w

m(2)w

...

m(N)w



,

where circ(Cn) corresponds to the L× L circulant matrix whose action corresponds

to circular convolution with the vector Cn. Expanding w as a linear combination of

the columns of B, this becomes

y =

[
circ(C1)B circ(C2)B · · · circ(CN)B

]




m(1)h

m(2)h

...

m(N)h



. (3.1.2)
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We will find it convenient to write (3.1.2) in the Fourier domain. Let F be the

L-point normalized discrete Fourier transform (DFT) matrix

F (ω, `) =
1√
L

e−j2π(ω−1)(`−1)/L, 1 ≤ ω, ` ≤ L.

We will use Ĉ = FC for the C-basis transformed into the Fourier domain, and also

B̂ = FB. Then circ(Cn) = F ∗∆nF , where ∆n is a diagonal matrix constructed

from the nth column of Ĉ, ∆n = diag(
√
LĈn), and (3.1.2) becomes

ŷ = Fy =

[
∆1B̂ ∆2B̂ · · · ∆NB̂

]




m(1)h

m(2)h

...

m(N)h



. (3.1.3)

Clearly, recovering ŷ is the same as recovering y.

The expansions (3.1.2) and (3.1.3) make it clear that while y is a nonlinear com-

bination of the coefficients h and m, it is a linear combination of the entries of their

outer product X0 = hm∗. We can pose the blind deconvolution problem as a linear

inverse problem where we want to recover a K ×N matrix from observations

ŷ = A(X0), (3.1.4)

through a linear operator A which maps K×N matrices to RL. For A to be invertible

over all matrices, we need at least as many observations as unknowns, L ≥ NK. But

since we know X0 has special structure, namely that its rank is 1, we will be able to

recover it from L� NK under certain conditions on A.

As each entry of ŷ is a linear combination of the entries in hm∗, we can write

them as trace inner products of different K×N matrices against hm∗. Using b̂` ∈ CK

for the `th column of B̂∗ and ĉ` ∈ CN as the `th row of
√
LĈ, we can translate one
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entry in (3.1.3) as2

ŷ(`) = ĉ`(1)m(1)〈h, b̂`〉+ ĉ`(2)m(2)〈h, b̂`〉+ · · ·+ ĉ`(N)m(N)〈h, b̂`〉

= 〈ĉ`,m〉〈h, b̂`〉

= Tr (A∗`(hm
∗)) , where A` = b̂`ĉ

∗
` . (3.1.5)

Now that we have seen that separating two signals given their convolution can be

recast as a matrix recovery problem, we turn our attention to a method for solving it.

In the next section, we argue that a natural way to recover the expansion coefficients

m and h from measurements of the form (3.1.3) is using nuclear norm minimization.

3.1.2 Convex relaxation

The previous section demonstrated how the blind deconvolution problem can be recast

as a linear inverse problem over the (nonconvex) set of rank-1 matrices. A common

heuristic to convexify the problem is to use the nuclear norm, the sum of the singular

values of a matrix, as a proxy for rank [40]. In this section, we show how this heuristic

provides a natural convex relaxation.

Given ŷ ∈ CL, our goal is to find h ∈ RK and m ∈ RN that are consistent with

the observations in (3.1.3). Making no assumptions about either of these vectors

other than the dimension, the natural way to choose between multiple feasible points

is using least-squares. We want to solve

min
u,v
‖u‖2

2 + ‖v‖2
2 subject to ŷ(`) = 〈ĉ`,u〉〈v, b̂`〉, ` = 1, . . . , L. (3.1.6)

This is a non-convex quadratic optimization problem. The cost function is convex,

but the quadratic equality constraints mean that the feasible set is non-convex. A

standard approach to solving such quadratically constrained quadratic programs is

2As we are now manipulating complex numbers in the frequency domain, we will need to take
a little bit of care with definitions. Here and below, we use 〈u,v〉 = v∗u = Tr (uv∗) for complex
vectors u and v.
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to use duality (see for example [73]). A standard calculation shows that the dual of

(3.1.6) is the semi-definite program (SDP)

max
λ

Re〈ŷ,λ〉 (3.1.7)

subject to




I
∑L

`=1 λ(`)A`

∑L
`=1 λ(`)∗A∗` I


 � 0,

with the A` = b̂`ĉ
∗
` defined as in the previous section. Taking the dual again will give

us a convex program which is in some sense as close to (3.1.6) as possible. The dual

SDP of (3.1.7) is [76]

min
W1,W2,X

1
2

Tr (W1) + 1
2

Tr (W2) (3.1.8)

subject to



W1 X

X∗ W2


 � 0

ŷ = A(X),

which is equivalent to

min ‖X‖∗
subject to ŷ = A(X)

. (3.1.9)

That is, the nuclear norm heuristic is the “dual-dual” relaxation of the intuitive but

non-convex least-squares estimation problem (3.1.6).

Our technique for untangling w and x from their convolution, then, is to take

the Fourier transform of the observation y = w ∗ x and use it as constraints in the

program (3.1.9). That (3.1.9) is the natural relaxation is fortunate, as an entire body

of literature in the field of low-rank recovery has arisen in the past five years that

is devoted to analyzing problems of the form (3.1.9). We will build on some of the

techniques from this area in establishing the theoretical guarantees for when (3.1.9)

is provably effective presented in the next section.

There have also been tremendous advances in algorithms for computing the so-

lution to optimization problems of both types (3.1.6) and (3.1.9). In Section 3.2.1,
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we will briefly detail one such technique we used to solve (3.1.6) on a relatively large

scale for a series of numerical experiments in Sections 3.2.2–3.2.4.

3.1.3 Main results

We can guarantee the effectiveness of (3.1.9) for relatively large subspace dimensions

K and N when B is incoherent in the Fourier domain, and when C is generic. Before

presenting our main analytical result, Theorem 3.1.1 below, we will carefully specify

our models for B and C, giving a concrete definition to the terms ‘incoherent’ and

‘generic’ in the process.

We will assume, without loss of generality, that the matrixB is an arbitrary L×K

matrix with orthonormal columns:

B∗B = B̂∗B̂ =
L∑

`=1

b̂`b̂
∗
` = I, (3.1.10)

where the b̂` are the columns of B̂∗, as in (3.1.5). Our results will be most powerful

when B is diffuse in the Fourier domain, meaning that the b̂` all have similar norms.

We will use the (in)coherence parameter µmax to quantify the degree to which the

columns of B are jointly concentrated in the Fourier domain:

µ2
max =

L

K
max

1≤`≤L
‖b̂`‖2

2. (3.1.11)

From (3.1.10), we know that the total energy in the rows of B̂ is
∑L

`=1 ‖b̂`‖2
2 = K, and

that ‖b̂`‖2
2 ≤ 1. Thus 1 ≤ µ2

max ≤ L/K, with the coherence taking its minimum value

when the energy in B̂ is evenly distributed throughout its rows, and its maximum

value when the energy is completely concentrated on K of the L rows. Our results

will also depend on the minimum of these norms

µ2
min =

L

K
min

1≤`≤L
‖b̂`‖2

2. (3.1.12)

We will always have 0 ≤ µ2
min ≤ 1 and µ2

min ≤ µ2
max. An example of a maximally
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incoherent B, where µ2
max = µ2

min = 1, is

B =



IK

0


 , (3.1.13)

where IK is the K×K identity matrix. In this case, the range ofB consists of “short”

signals whose first K terms may be non-zero. The matrix B̂ is simply the first K

columns of the discrete Fourier matrix, and so every entry has the same magnitude.

Our analytic results also depend on how diffuse the particular signal we are trying

to recover w = Bh is in the Fourier domain. With ŵ = Fw = B̂h, we define

µ2
h = L max

1≤`≤L
|ŵ(`)|2 = L · max

1≤`≤L
|〈h, b̂`〉|2. (3.1.14)

Note that it is always the case that 1 ≤ µ2
h ≤ µ2

maxK. The lower bound follows from

the Cauchy-Schwartz’s inequality, i.e.,

µ2
h ≤ L · max

1≤`≤L
‖b̂`‖2

2‖h‖2
2 ≤ Kµ2

max,

where the last inequality is the result of (3.1.11), and ‖h‖2 = 1. To show the lower

bound of µ2
h, take a summation over ` on both sides

L∑

`=1

µ2
h = L

L∑

`=1

max
1≤`≤L

|〈h, b̂`〉|2,

which means

µ2
h ≥

L∑

`=1

|〈h, b̂`〉|2 = ‖h‖2
2 = 1,

where the equality is true because B̂ is a matrix with orthonormal columns. As

an illustration, if B is as in (3.1.13) (i.e., B̂ is the partial Fourier matrix), then µ2
h

quantifies the dispersion of w in the frequency domain. In particular, if the signal w

is more or less “flat” in the frequency domain, then µ2
h will be a small constant.

With the subspace in which w resides fixed, we will show that separating w and

x = Cm will be possible for “most” choices of the subspace C of a certain dimension
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N — we do this by choosing the subspace at random from an isotropic distribution,

and show that (3.1.9) is successful with high probability. For the remainder of the

chapter, we will take the entries of C to be independent and identically distributed

random variables,

C[`, n] ∼ Normal(0, L−1).

In the Fourier domain, the entries of Ĉ will be complex Gaussian, and its columns

will have conjugate symmetry (since the columns of C are real). Specifically, the rows

of Ĉ will be distributed as3

ĉ` ∼





Normal(0, I) ` = 1

Normal(0, 2−1/2I) + jNormal(0, 2−1/2I) ` = 2, . . . , L/2 + 1

, (3.1.15)

ĉ` = ĉL−`+2, for ` = L/2 + 2, . . . , L.

Similar results to those we present here most likely hold for other models for C. The

key property that our analysis hinges critically on is the rows ĉ` of Ĉ are independent

— this allows us to apply recently developed tools for estimating the spectral norm

of a sum of independent random linear operators.

We now state our main result:

Theorem 3.1.1. Suppose the bases B,C and expansion coefficients h,m satisfy the

conditions (3.1.10), (3.1.11), (3.1.14), and (3.1.15) above. Fix α ≥ 1. Then there

exists a constant4 Cα = O(α) depending only on α, such that if

max
(
µ2

maxK, µ
2
hN
)
≤ L

Cα log3 L
, (3.1.16)

then X0 = hm∗ is the unique solution to (3.1.9) with probability 1−O(L−α+1).

When the coherences are low, meaning that µmax and µh are on the order of a

3We are assuming here that L is even; the argument is straightforward to adapt to odd L.
4Throughout the manuscript we will use the notation Cα to denote a constant which depends only

on the probability exponent α. Its value may be different from instantiation to instantiation.
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constant, then (3.1.16) is tight to within a logarithmic factor, as we always have

max(K,N) ≤ L.

While Theorem 3.1.1 establishes theoretical guarantees for specific types of sub-

spaces specified by B and C, we have found that treating blind deconvolution as a

linear inverse problem with a rank constraint leads to surprisingly good results in

many situations; see, for example, the image deblurring experiments in Section 3.2.4.

The recovery can also be made stable in the presence of noise, as described by our

second theorem:

Theorem 3.1.2. Let X0 = hm∗ and A as in (3.1.4) with N,K,L obeying (3.1.16).

We observe

ŷ = A(X0) + z,

where z ∈ RL is an unknown noise vector with ‖z‖2 ≤ δ, and estimate X0 by solving

min ‖X‖∗
subject to ‖ŷ −A(X)‖2 ≤ δ

. (3.1.17)

Let λmin be the smallest non-zero eigenvalue of AA∗, and λmax be the largest. Then

with the same probability 1 − L−α+1 as in Theorem 3.1.1 the solution X̃ to (3.1.17)

will obey

‖X̃ −X0‖F ≤ C
λmax

λmin

√
min(K,N) δ, (3.1.18)

for a fixed constant C.

The program in (3.1.17) is also convex, and is solved with numerical techniques

similar to the equality constrained program in (3.1.9). The performance bound relies

on the conditioning of AA∗. Lemma 3.3.2 below tells us that when A is sufficiently

underdetermined,

NK ≥ Cα
µ2

min

L log2 L, (3.1.19)
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then with high probability we can replace the ratio of eigenvalues in (3.1.18) with the

ratio of coherence parameters for B̂, as

λmax

λmin

∼ µmax

µmin

.

For L large enough, there will be many N and K which satisfy (3.1.19) and (3.1.16)

simultaneously.

In the end, we are interested in how well we recover x and w. The stability result

for X0 can easily be extended to a guarantee for the two unknown vectors.

Corollary 1. Let σ̃1ũ1ṽ1 be the best rank-1 approximation to X̃, and set h̃ =
√
σ̃1ũ1

and m̃ =
√
σ̃1ṽ1. Set δ̃ = ‖X̃ −X0‖F . Then there exists a constant C such that

‖h−αh̃‖2 ≤ C min
(
δ̃/‖h‖2, ‖h‖2

)
, ‖m−α−1m̃‖2 ≤ C min

(
δ̃/‖m‖2, ‖m‖2

)
.

for some scalar multiple α.

Proof of this corollary follows the exact same line of reasoning as the later part of

Theorem 1.2 in [21].

3.1.4 Relationship to phase retrieval and other quadratic problems

Blind deconvolution of w ∗ x, as is apparent from (3.1.1), is equivalent to solving

a system of quadratic equations in the entries of w and x. The discussion in Sec-

tion 3.1.1 shows how this system of quadratic equations can be recast as a linear set

of equations with a rank constraint. In fact, this same recasting can be used for any

system of quadratic equations in w and x. The reason is simple: taking the outer

product of the concatenation of w and x produces a rank-1 matrix that contains all

the different combinations of entries of w multiplied with each other and multiplied
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by entries in x:



w

x



[
w∗ x∗

]
=




w[1]2 w[1]w[2] · · · w[1]w[L] w[1]x[1] w[1]x[2] · · · w[1]x[L]

w[2]w[1] w[2]2 · · · w[2]w[L] w[2]x[1] w[2]x[2] · · · w[2]x[L]

...
...

...

w[L]w[1] w[L]w[2] · · · w[L]2 w[L]x[1] w[L]x[2] · · · w[L]x[L]

x[1]w[1] x[1]w[2] · · · x[1]w[L] x[1]2 x[1]x[2] · · · x[1]x[L]

x[2]w[1] x[2]w[2] · · · x[2]w[L] x[2]x[1] x[2]2 · · · x[2]x[L]

...
...

...

x[L]w[1] x[L]w[2] · · · x[L]w[L] x[L]x[1] x[L]x[2] · · · x[L]2




.

(3.1.20)

Then any quadratic equation can be written as a linear combination of the entries in

this matrix, and any system of equations can be written as a linear operator acting on

this matrix. For the particular problem of blind deconvolution, we are observing sums

along the skew-diagonals of the matrix in the upper right-hand (or lower left-hand)

quadrant. Incorporating the subspace constraints allows us to work with the smaller

K × N matrix hm∗, but this could also be interpreted as adding additional linear

constraints on the matrix in (3.1.20).

Recent work on phase retrieval [21] has used this same methodology of “lifting” a

quadratic problem into a linear problem with a rank constraint to show that a vector

w ∈ RN can be recovered from O(N logN) measurements of the form |〈w,an〉|2 for an

selected uniformly at random from the unit sphere. In this case, the measurements are

being made entirely in the upper left-hand (or lower-right hand) quadrant in (3.1.20),

and the measurements in (3.1.5) have the form An = ana
∗
n. In fact, another way to

interpret the results in [21] is that if a signal of length L is known to live in a generic

subspace of dimension ∼ L/ logL, then it can be recovered from an observation of a

convolution with itself. Phase retrieval using convex programming was also explored

in [32,70]
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In the current work, we are considering a non-symmetric rank-1 matrix being

measured by matrices b̂`ĉ
∗
` formed by the outer product of two different vectors, one

of which is random, and one of which is fixed. Another way to cast the problem,

which perhaps brings these differences into sharper relief, is that we are measuring

the symmetric matrix in (3.1.20) by taking inner products against rank-two matri-

ces 1
2






b̂`

0



[
0 ĉ∗`

]
+




0

ĉ`



[
b̂∗` 0

]

. These seemingly subtle differences lead to a

much different mathematical treatment.

3.1.5 Application: Multipath channel protection using random codes

The results in Section 3.1.3 have a direct application in the context of channel coding

for transmitting a message over an unknown multipath channel. The problem is

illustrated in Figure 7. A message vector m ∈ RN is encoded through an L × N

encoding matrix C. The protected message x = Cm travels through a channel

whose impulse response is w. The receiver observes y = w ∗ x, and from this would

like to jointly estimate the channel and determine the message that was sent.

In this case, a reasonable model for the channel response w is that it is nonzero

in relatively small number of known locations. Each of these entries corresponds to

a different path over which the encoded message traveled; we are assuming that we

know the timing delays for each of these paths, but not the fading coefficients. The

matrix B in this case is a subset of columns from the identity, and the b̂` are partial

Fourier vectors. This means that the coherence µmax in (3.1.11) takes its minimal

value of µ2
max = 1, and the coherence µ2

h in (3.1.14) has a direct interpretation as

the peak-value of the (normalized) frequency response of the unknown channel. The

resulting linear operator A corresponds to a matrix comprised of N L ×K random

Toeplitz matrices, as shown in Figure 8. The first column of each of these matrices

corresponds to a columns of C. The formulation of this problem as a low-rank

matrix recovery program was proposed in [7], which presented some first numerical
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experiments.

In this context, Theorem 3.1.1 tell us that a length N message can be protected

against a channel with K reflections that is relatively flat in the frequency domain

with a random code whose length L obeys L/ log3 L & (K +N). Essentially, we have

a theoretical guarantee that we can estimate the channel without knowledge of the

message from a single transmitted codeword.

It is instructive to draw a comparison in to previous work which connected error

correction to structured solutions to underdetermined systems of equations. In [23,

82], it was shown that a message of length N could be protected against corruption

in K unknown locations with a code of length L & N +K log(N/K) using a random

codebook. This result was established by showing how the decoding problem can be

recast as a sparse estimation problem to which results from the field of compressed

sensing can be applied.

For multipath protection, we have a very different type of corruption: rather

than individual entries of the transmitted vector being tampered with, instead we

observe overlapping copies of the transmission. We show that with the same type

of codebook (i.e. entries chosen independently at random) can protect against K

reflections during transmission, where the timing of these bounces is known (or can

be reasonably estimated) but the fading coefficients (amplitude and phase change

associated with each reflection) are not.

3.1.6 Other related work

As it is a ubiquitous problem, many different approaches for blind deconvolution

have been proposed in the past, each using different statistical or deterministic mod-

els tailored to particular applications. A general overview for blind deconvolution

techniques in imaging (including methods based on parametric modeling of the in-

puts and incorporating spatial constraints) can be found in [55]. An example of a
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x

Figure 7: Overview of the channel protection problem. A message m is encoded by
applying a tall matrix C; the receiver observes the encoded message convolved with
an unknown channel response w = Bh, where B is a subset of columns from the
identity matrix. The decoder is faced with the task of separating the message and
channel response from this convolution, which is a nonlinear combination of h and
m.

=

y

⇤

Bh Cm

· · ·[ ]
2
6664

m(1)h
m(2)h

...
m(N)h

3
7775

=

Figure 8: The multi-toeplitz matrix corresponding to the multipath channel pro-
tection problem in Section 3.1.5. In this case, the columns of B are sampled from
the identity, the entries of C are chosen to be iid Gaussian random variables, and
the corresponding linear operator A is formed by concatenating N L × K random
Toeplitz matrices, each of which is generated by a column of C.
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more modern method can be found in [31], where it is demonstrated how an image,

which is expected to have small total-variation with respect to its energy, can be effec-

tively deconvolved from an unknown kernel with known compact support. In [61], a

maximum-a-posteriori (MAP) based scheme is analyzed for image deblurring; the ar-

ticle illustrates the shortcomings of imposing sparsity enforcing priors on the gradients

of natural images, and presents an alternative MAP estimator to recover only the blur

kernel and then uses it to deblur the image. In wireless communications, knowledge

of the modulation scheme [83] or an estimate of the statistics of the source signal [92]

have been used for blind channel identification; these methods are overviewed in the

review papers [43,51,64,91]. An effective scheme based on a deterministic model was

put forth in [102], where fundamental conditions for being able to identify multichan-

nel responses from cross-correlations are presented. The work in this chapter differs

from this previous work in that it relies only on a single observation of two convolved

signals, the model for these signals is that they lie in known (but arbitrary) subspaces

rather than have a prescribed length, and we give a concrete relationship between the

dimensions of these subspaces and the length of the observation sufficient for perfect

recovery.

Recasting the quadratic problem in (3.1.1) as the linear problem with a rank

constraint in (3.1.5) is appealing since it puts the problem in a form for which we

have recently acquired a tremendous amount of understanding. Recovering a N ×K

rank-R matrix from a set of linear observations has primarily been considered in two

scenarios. In the case where the observations come through a random projection,

where either the A` are filled with independent Gaussian random variables or A is

an orthoprojection onto a randomly chosen subspace, the nuclear norm minimization

program in (3.1.9) is successful with high probability when [18,76]

L ≥ Const ·Rmax(K,N).

When the observations are randomly chosen entries in the matrix, then subject to
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incoherence conditions on the singular vectors of the matrix being measured, the

number of samples sufficient for recovery, again with high probability, is [19,22,44,75]

L ≥ Const ·Rmax(K,N) log2(max(K,N)).

Our main result in Theorem 3.1.1 uses a completely different kind measurement sys-

tem which exhibits a type of structured randomness; for example, when B has the

form (3.1.13), A has the concatenated Toeplitz structure shown in Figure 8. In this

chapter, we will only be concerned with how well this type of operator can recover

rank-1 matrices, ongoing work has shown that it also effectively recover general low-

rank matrices [2].

While this chapter is only concerned with recovery by nuclear norm minimization,

other types of recovery techniques have proven effective both in theory and in practice;

see for example [52, 53, 60]. It is possible that the guarantees given in this chapter

could be extended to these other algorithms.

As we will see below, our mathematical analysis has mostly to do how matrices

of the form in (3.1.2) act on rank-2 matrices in a certain subspace. Matrices of

this type have been considered in the context of sparse recovery in the compressed

sensing literature for applications including multiple-input multiple-output channel

estimation [78], multi-user detection [6], and multiplexing of spectrally sparse signals

[88].

3.2 Numerical Simulations

In this section, we illustrate the effectiveness of the reconstruction algorithm for the

blind deconvolution of vectors x and w with numerical experiments5. In particular,

we study phase diagrams, which demonstrate the empirical probability of success

over a range of dimensions N and K for a fixed L; an image deblurring experiment,

5MATLAB code that reproduces all of the experiments in this section is available at http:

//www.aliahmed.org/code.html.
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where the task is to recover an image blurred by an unknown blur kernel; a channel

protection experiment, where we show the robustness of our algorithm in the presence

of additive noise.

Some of the numerical experiments presented below are “large scale”, with thou-

sands (and even 10s of thousands) of unknown variables. Recent advances in SDP

solvers, which we discuss in the following subsection, make the solution of such prob-

lems computationally feasible.

3.2.1 Large-scale solvers

To solve the semidefinite program (3.1.8) on instances where K and M are of prac-

tical size, we rely on the heuristic solver developed by Burer and Monteiro [15]. To

implement this solver, we perform the variable substitution


H

M






H

M




∗

=



W1 X

X∗ W2




where H is K×r and M is N×r for r > 1. Under this substitution, the semidefinite

constraint is always satisfied and we are left with the nonlinear program:

min
M ,H

‖M‖2
F + ‖H‖2

F subject to ŷ = A(HM ∗), ` = 1, . . . , L. (3.2.1)

When r = 1, this reformulated problem is equivalent to (3.1.6). Burer and Monteiro

showed that provided r is bigger than the rank of the optimal solution of (3.1.8), all of

the local minima of (3.2.1) are global minima of (3.1.8) [16]. Since we expect a rank

one solution, we can work with r = 2, declaring recovery when a rank deficient M

or H is obtained. Thus, by doubling the size of the decision variable, we can avoid

the non-global local solutions of (3.1.6). Burer and Monteiro’s algorithm has had

notable success in matrix completion problems, enabling some of the fastest solvers

for nuclear-norm-based matrix completion [59,77].

To solve (3.2.1), we implement the method of multipliers strategy initially sug-

gested by Burer and Monteiro. Indeed, this algorithm is explained in detail by Recht
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et al in the context of solving problem (3.1.9) [76]. The inner operation of minimizing

the augmented Lagrangian term is performed using LBFGS as implemented by the

Matlab solver minfunc [85]. This solver requires only being able to apply A and A∗

quickly, both of which can be done in time O(rmin{N logN,K logK}). The param-

eters of the augmented Lagrangian are updated according to the schedule proposed

by Burer and Monteiro [15]. This code allows us to solve problems where N and K

are in the tens of thousands in seconds on a laptop.

3.2.2 Phase transitions

Our first set of numerical experiments delineates the boundary, in terms of values for

K,N and L, for when (3.1.9) is effective on generic instances of four different types of

problems. For a fixed value of L, we vary the subspace dimensions N and K and run

100 experiments, with different random instances of w and x for each experiment.

The vectors h and m are selected to be standard Gaussian vectors with independent

entries. Figures 9 and 10 show the collected frequencies of success for four different

probabilistic models. We classify a recovery a success if its relative error is less than

2%6, meaning that if X̂ is the solution to (3.1.9), then

‖X̂ −wx∗‖F
‖wx∗‖F

< 0.02. (3.2.2)

Our first set of experiments mimics the channel protection problem from Sec-

tion 3.1.5 and Figure 7. Figure 9 shows the empirical rate of success when C is taken

as a dense L×N Gaussian random matrix. We fix L = 2048 and vary N and K from

25 to 1000. In Figure 9(a), we take w to be sparse with known support; we form B

by randomly selecting K columns from the L × L identity matrix. For Figure 9(b),

we take w to be “short”, forming B from the first K columns of the identity. In both

cases, the basis expansion coefficient were drawn to be iid Gaussian random vectors.

6The diagrams in Figures 9 and 10 do not change significantly if a smaller threshold, say on the
order of 10−6, is chosen.
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Figure 9: Empirical success rate for the deconvolution of two vectors x and w. In
these experiments, x is a random vector in the subspace spanned by the columns of
an L×N matrix whose entries are independent and identically distributed Gaussian
random variables. In part (a), w is a generic sparse vector, with support and nonzero
entries chosen randomly. In part (b) w is a generic short vector whose first K terms
are nonzero and chosen randomly.

In both cases, we are able to deconvolve this signals with a high rate of success when

L & 2.7(K +N).

Figure 10 shows the results of a similar experiment, only here both w and x are

randomly generated sparse vectors. We take L to be much larger than the previous

experiment, L = 32, 768, and vary N and K from 1000 to 16, 000. In Figure 10(a),

we generate both B and C by randomly selecting columns of the identity — despite

the difference in the model for x (sparse instead of randomly oriented) the resulting

performance curve in this case is very similar to that in Figure 9(a). In Figure 10(b),

we use the same model for C and x, but use a “short” w (first K terms are non-

zero). Again, despite the difference in the model for x, the recovery curve looks

almost identical to that in Figure 9(b).

3.2.3 Recovery in the presence of noise

Figure 11 demonstrates the robustness of the deconvolution algorithm in the presence

of noise. We use the same basic experimental setup as in Figure 9(a), with L = 2048,

N = 500 and K = 250, but instead of making a clean observation of w ∗ x, we add
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Figure 10: Empirical success rate for the deconvolution of two vectors x and w. In
these experiments, x is a random sparse vector whose support and N non-zero values
on that support are chosen at random. In part (a), w is a generic sparse vector, with
support and K nonzero entries chosen randomly. In part (b) w is a generic short
vector whose first K terms are nonzero and chosen randomly.

a noise vector z whose entires are iid Gaussian with zero mean and variance σ2. We

solve the program (3.1.17) with δ = (L+
√

4L)1/2σ, a value chosen since it will be an

upper bound for ‖z‖2 with high probability.

Figure 11(a) shows how the relative error of the recovery changes with the noise

level σ. On a log-log scale, the recovery error (show as 10 log10 (relative error squared))

is linear in the signal-to-noise ratio (defined as SNR= 10 log10(‖wx∗‖2
F/‖z‖2

2). For

each SNR level, we calculate the average relative error squared over 100 iterations,

each time using independent set of signals, coding matrix, and noise. Figure 11(b)

shows how the recovery error is affected by the “oversampling ratio”; as L is made

larger relative to N +K, the recovery error decreases. As before, each point is aver-

aged over 100 independent iterations.

3.2.4 Image deblurring

The discrete signals w and x in the deconvolution problem (3.1.1) may also represent

higher-dimensional objects such as images. For example, the unknown x ∈ RL may

represent an image of the form x[`1, `2], and the unknown w ∈ RL may signify a
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Figure 11: Performance of the blind deconvolution program in the presence of noise.
In all of the experiments, L = 2048, N = 500, K = 250, B is a random selection of
columns from the identity, and C is an iid Gaussian matrix. (a) Relative error vs.
SNR on a log-log scale. (b) Oversampling rate vs. relative error for a fixed SNR of
20dB

2D blur kernel w[`1, `2], where 1 ≤ `1 ≤ L1, 1 ≤ `2 ≤ L2, and L = L1L2. The 2D

convolution y = w ∗ x produces blurred image y[`1, `2]. Most natural images are

sparse in some basis such as wavelets, DCT, or curvelets. If we have an estimate

of the active coefficeints of the image x, then the image can be expressed as the

multiplication of a small set of basis functions arranged as the columns of matrix

C and the corresponding short vector of active coefficients m, i.e., x = Cm. In

addition, if the non-zero components in the blur kernel w are much smaller than

the total number of pixels L, and we have an estimate of the support of the active

components in w, then we can write w = Bh, where B is the matrix formed by a

subset of the columns of the identity matrix, and h is an unknown short vector.

Figure 12, 13, and 14 illustrate an application of our blind deconvolution technique

to two image deblurring problems. In the first problem, we assume that we have oracle

knowledge of a low-dimensional subspace in which the image to be recovered lies. We

observe a convolution of the L = 65, 536 pixel Shapes image shown in Figure 12(a)

with the motion blurring kernel shown in Figure 12(b); the observation is shown

in Figure 12(c). The Shapes image can be very closely approximated using only
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N = 5000 terms in a Haar wavelet expansion, which capture 99.9% of the energy

in the image. We start by assuming (perhaps unrealistically) that we know the

indices for these most significant wavelet coefficients; the corresponding wavelet basis

functions are taken as columns of B. We will also assume that we know the support

of the blurring kernel, which consists of K = 65 connected pixels; the corresponding

columns of the identity constitute C. The image and blur kernel recovered by solving

(3.1.9) are shown in Figure 13.

 

 

(a)

 

 

(b)

 

 

(c)

Figure 12: Shapes image for deblurring experiment. (a) Original 256 × 256 Shapes
image x. (b) Blurring kernel w with a support size of 65 pixels, the locations of which
are assumed to be known. (c) Convolution of (a) and (b).

Figure 14 shows a more realistic example where the support of the image in the

wavelet domain is unknown. We take the blurred image shown in Figure 12(c) and, as

before, we assume we know the support of the blurring kernel shown in Figure 12(b),

with K = 65 non-zero elements, but here we use the blurred image to estimate the
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(a)

 

 

(b)

Figure 13: An oracle assisted image deblurring experiment; we assume that we know
the support of the 5000 most significant wavelet coefficients of the original image.
These wavelet coefficients capture 99.9% of the energy in the original image. We
obtain from the solution of (3.1.9): (a) Deconvolved image x̂ obtained from the
solution of (3.1.9), with relative error of ‖x̂−x‖2/‖x‖2 = 1.6× 10−2. (b) Estimated
blur kernel ŵ with relative error of ‖ŵ −w‖2/‖w‖2 = 5.4× 10−1.

 

 

(a)

 

 

(b)

Figure 14: Image recovery without oracle information. Take the support of the
9000 most-significant coefficients of Haar wavelet transform of the blurred image as
our estimate of the subspace in which original image lives. (a) Deconvolved image
obtained from the solution of (3.1.9), with relative error of 4.9× 10−2. (b) Estimated
blur kernel; relative error = 5.6× 10−1.

support in the wavelet domain — we take the Haar wavelet transform of the image

in Figure 12(c), and select the indices of the N = 9000 largest wavelet coefficients

as a proxy for the support of the significant coefficients of the original image. The

wavelet coefficients of the original image at this estimated support capture 98.5% of
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the energy in the blurred image. The recovery using (3.1.9) run with these linear

models is shown in Figure 14(a) and Figure 14(b). Despite not knowing the linear

model explicitly, we are able to estimate it well enough from the observed data to get

a reasonable reconstruction.

3.3 Proof of main theorems

In this section, we will prove Theorems 3.1.1 and 3.1.2 by establishing a set of stan-

dard sufficient conditions for X0 to be the unique minimizer of (3.1.9). At a high

level, the argument follows previous literature [19, 45] on low-rank matrix recovery

by constructing a valid dual certificate for the rank-1 matrix X0 = hm∗. The main

mathematical innovation in proving these results comes in Lemmas 3.3.2, 3.3.3, 3.3.4

and 3.3.5, which control the behavior of the random operator A.

We will work through the main argument in this section, leaving the technical

details (including the proofs of the main lemmas) until Sections 3.4 and 3.5.

Key to our argument is the subspace (of RK×N) T associated with X0 = hm∗:

T =
{
X : X = αhv∗ + βum∗, v ∈ RN , u ∈ RK , α, β ∈ R

}

with the (matrix) projection operators

PT (X) = PHX +XPM − PHXPM

PT⊥(X) = (I − PH)X(I − PM ),

where PH and PM are the (vector) projection matrices PH = hh∗ and PM = mm∗.

3.3.1 Theorem 3.1.1: Sufficient condition for a nuclear norm minimizer

The following proposition is a specialization of the more general sufficient conditions

for verifying the solutions to the nuclear norm minimization problem (3.1.9) that

have appeared multiple times in the literature in one form or another (see [75], for

example).
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Proposition 4. The matrix X0 = hm∗ is the unique minimizer to (3.1.9) if there

exists a Y ∈ Range(A∗) such that

〈hm∗ − PT (Y ),PT (Z)〉F − 〈PT⊥(Y ),PT⊥(Z)〉F + ‖PT⊥(Z)‖∗ > 0

for all Z ∈ Null(A).

For any two matrices A, B with same dimesensions, we will use the Holder’s

inequality:

〈A,B〉F ≤ ‖A‖‖B‖∗,

and the Cauchy-Schwartz’s inequality:

〈A,B〉F ≤ ‖A‖F‖B‖F .

In view of the above ineqaulities, we have

〈hm∗ − PT (Y ),PT (Z)〉F − 〈PT⊥(Y ),PT⊥(Z)〉F + ‖PT⊥(Z)‖∗

≥ −‖hm∗ − PT (Y )‖F‖PT (Z)‖F − ‖PT⊥(Y )‖ ‖PT⊥(Z)‖∗ + ‖PT⊥(Z)‖∗;

therefore, it is enough to find a Y ∈ Range(A∗) such that

−‖hm∗ − PT (Y )‖F‖PT (Z)‖F + (1− ‖PT⊥(Y )‖) ‖PT⊥(Z)‖∗ > 0, (3.3.1)

for all Z ∈ Null(A).

In Lemma 3.3.1 in Section 3.3.4 below we show that ‖A‖ ≤
√

(α + 1)N logL =: γ

with probability at least 1−L−α+1. Corollary 2 below also shows that (3.1.16) implies

‖A(PT (Z))‖F ≥ 2−1/2‖PT (Z)‖F for all Z ∈ Null(A),

with high probability. Then, since

0 = ‖A(Z)‖F

≥ ‖A(PT (Z))‖F − ‖A(PT⊥(Z))‖F

≥ 1√
2
‖PT (Z)‖F − γ‖PT⊥(Z)‖F ,
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we will have that

‖PT (Z)‖F ≤
√

2γ‖PT⊥(Z)‖F ≤
√

2γ‖PT⊥(Z)‖∗. (3.3.2)

Applying this fact to (3.3.1), we see that it is sufficient to find a Y ∈ Range(A∗) such

that
(

1−
√

2γ‖hm∗ − PT (Y )‖F − ‖PT⊥(Y )‖
)
‖PT⊥(Z)‖∗ > 0.

Since Lemma 3.3.3 also implies that PT⊥(Z) 6= 0 for Z ∈ Null(A), our approach will

be to construct a Y ∈ Range(A∗) such that

‖hm∗ − PT (Y )‖F ≤
1

4
√

2γ
and ‖PT⊥(Y )‖ < 3

4
. (3.3.3)

In the next section, we will show how such a Y can be found using Gross’s golfing

scheme [44, 45].

3.3.2 Construction of the dual certificate via golfing

The golfing scheme works by dividing the L linear observations of X0 into P disjoint

subsets of size Q, and then using these subsets of observations to iteratively construct

the dual certificate Y . We index these subsets by Γ1,Γ2, . . . ,ΓP ; by construction

|Γp| = Q,
⋃
p Γp = {1, . . . , L}, and Γp ∩ Γp′ = ∅. We define Ap be the operator that

returns the measurements indexed by the set Γp:

Ap(W ) = {Tr (ckb
∗
kW )}k∈Γp , A∗pApW =

∑

k∈Γp

bkb
∗
kWckc

∗
k.

The A∗pAp are random linear operators; the expectation of their action on a fixed

matrix W is

E[A∗pApW ] =
∑

k∈Γp

bkb
∗
kW .

For reasons that will become clear as we proceed through the argument below, we

would like this expectation to be as close to a scalar multiple of W as possible for

all p. In other words, we would like to partition the L rows of the matrix B̂ into P
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different Q ×K submatrices, each of which is well-conditioned (i.e. the columns are

almost orthogonal to one another).

Results from the literature on compressive sensing have shown that such a parti-

tion exists for L×K matrices with orthonormal columns whose rows all have about

the same energy. In particular, the proof of Theorem 1.2 in [20] shows that if B̂ is a

L×K matrix with B̂∗B̂ = I, Γ is a randomly selected subset of {1, . . . , L} of size Q,

and the rows b∗k of B̂ have coherence µ2
max as in (3.1.11), then there exists a constant

C such that for any 0 < ε < 1 and 0 < δ < 1,

Q ≥ C
µ2

maxK

ε2
max {logK, log(1/δ)} ,

implies ∥∥∥∥∥
∑

k∈Γ

bkb
∗
k −

Q

L
I

∥∥∥∥∥ ≤
εQ

L
.

with probability exceeding 1 − δ. If our partition Γ1,Γ2, . . . ,ΓP is random, then,

applying the above result with δ = L−1 and ε = 1/4 tells us that if

Q ≥ C µ2
maxK logL, (3.3.4)

then

max
1≤p≤P

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
k −

Q

L
I

∥∥∥∥∥∥
≤ Q

4L
⇒ max

1≤p≤P

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
k

∥∥∥∥∥∥
≤ 5Q

4L
, (3.3.5)

with positive probability. This means that with Q chosen to obey (3.3.4), at least

one such partition must exist and we move forward assuming that (3.3.5) holds.

Along with the expectation of each of the A∗pAp being close to a multiple of the

identity, we will also need tail bounds stating that A∗pAp is close to its expectation

with high probability. These probabilities can be made smaller by making the subset

size Q larger. As detailed below (in Lemmas 3.3.3,3.3.4, and 3.3.5), taking

Q = CαM log(L) log(M), where M = max
(
µ2

maxK,µ
2
hN
)
, (3.3.6)
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will make these probability bounds meaningful. For Cα chosen appropriately, this

means (3.3.4) will hold.

The construction of Y that obeys the conditions (3.3.3) relies on three technical

lemmas which are stated below in Section 3.3.4. Their proofs rely heavily on re-

writing different quantities of interest (linear operators, vectors, and scalars) as a

sum of independent subexponential random variables and then using a specialized

version of the “Matrix Bernstein Inequality” to estimate their sizes. Section 2.5

below contains a brief overview of these types of probabilistic bounds. The proofs

of the key lemmas (3.3.3, 3.3.4, and 3.3.5) are in Section 3.4. These proofs rely on

several miscellaneous lemmas which compute simple expectations and tail bounds for

various random variables; these are presented separately in Section 3.5.

With the Γp chosen and the key lemmas established, we construct Y as follows.

Let Y0 = 0, and then iteratively define

Yp = Yp−1 +
L

Q
A∗pAp (hm∗ − PT (Yp−1)) .

We will show that under appropriate conditions on L, taking Y := YP will satisfy

both parts of (3.3.3) with high probability.

Let Wp be the residual between Yp projected onto T and the target hm∗:

Wp = PT (Yp)− hm∗.

Notice that Wp ∈ T and

W0 = −hm∗, Wp =
L

Q

(
Q

L
PT − PTA∗pApPT

)
Wp−1. (3.3.7)

Applying Lemma 3.3.3 iteratively to the Wp tells us that

‖Wp‖F ≤
1

2
‖Wp−1‖F ≤ 2−p‖hm∗‖F = 2−p, p = 1, . . . , P, (3.3.8)

with probability exceeding 1−3L−α+1. Thus we will have the first condition in (3.3.3),

‖hm∗ − PT (YP )‖F ≤
1

4
√

2γ
,
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for

P =
L

Q
≥ log(4

√
2γ)

log 2
,

which can be achieved with Q as in (3.3.6) and M = max(µmax2K,µ2
hN) as in (3.1.16).

To bound ‖PT⊥(Yp)‖, we use the expansion

Yp = Yp−1 −
L

Q
A∗pApWp−1 = Yp−2 −

L

Q
A∗p−1Ap−1Wp−2 −

L

Q
A∗pApWp−1 = · · ·

= −
P∑

p=1

L

Q
A∗pApWp−1,

and so

‖PT⊥(YP )‖ =

∥∥∥∥∥PT⊥
(

P∑

p=1

L

Q
A∗pApWp−1

)∥∥∥∥∥

=
L

Q

∥∥∥∥∥PT⊥
(

P∑

p=1

A∗pApWp−1 −
Q

L
Wp−1

)∥∥∥∥∥ , (since Wp−1 ∈ T )

≤ L

Q

∥∥∥∥∥
P∑

p=1

A∗pApWp−1 −
Q

L
Wp−1

∥∥∥∥∥

≤
P∑

p=1

L

Q

∥∥∥∥A∗pApWp−1 −
Q

L
Wp−1

∥∥∥∥ .

Lemma 3.3.5 shows that with probability exceeding 1− L−α+1,

∥∥∥∥A∗pApWp−1 −
Q

L
Wp−1

∥∥∥∥ ≤ 2−p
3Q

4L
, for all p = 1, . . . , P.

and so

‖PT⊥(YP )‖ ≤
P∑

p=1

3 · 2−p−2 <
3

4
.

Collecting the results above, we see that both conditions in (3.3.3) will hold with

probability exceeding 1−O(L−α+1) when M is chosen as in (3.1.16).

3.3.3 Theorem 3.1.2: Stability

With the condition (3.1.16), we know though the arguments in the previous section

that with the required probability there will exist a dual certificate Y that obeys the

conditions (3.3.3) and that A∗A is well conditioned on T : ‖PTA∗APT −PT‖ ≤ 1/2.
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With these facts in place, the stability proof follows the template set in [27, 45].

We start with two observations; first, the feasibility of X0 implies

‖X̃‖∗ ≤ ‖X0‖∗, (3.3.9)

and

‖A(X̃ −X0)‖2 ≤ ‖ŷ −A(X0)‖2 + ‖A(X̃)− ŷ‖2 ≤ 2δ. (3.3.10)

Set X̃ = X0 + ξ. With PA as the projection operator onto the row space of A, we

break apart the recovery error as

‖ξ‖2
F = ‖PA(ξ)‖2

F + ‖PA⊥(ξ)‖2
F (3.3.11)

= ‖PA(ξ)‖2
F + ‖PTPA⊥(ξ)‖2

F + ‖PT⊥PA⊥(ξ)‖2
F .

A direct result of of Proposition 4 is that there exists a constant C > 0 such that

for all Z ∈ Null(A), ‖X0 + Z‖∗ − ‖X0‖∗ ≥ C‖PT⊥(Z)‖∗ (this is developed cleanly

in [75]). Since PA⊥(ξ) ∈ Null(A), we have

‖X0 + PA⊥(ξ)‖∗ − ‖X0‖∗ ≥ C‖PT⊥PA⊥(ξ)‖∗.

Combining this with (3.3.9) and the triangle inequality yields

‖X0‖∗ ≥ ‖X0‖∗ + C‖PT⊥PA⊥(ξ)‖∗ − ‖PA(ξ)‖∗,

which implies

‖PT⊥PA⊥(ξ)‖∗ ≤ C‖PA(ξ)‖∗

≤ C
√

min(K,N)‖PA(ξ)‖F .

In addition, in (3.3.2) we established that for all Z ∈ Null(A), we have

‖PTPA⊥(ξ)‖2
F ≤ 2λ2

max‖PT⊥PA⊥(ξ)‖2
F ,

and as a result

‖PA⊥(ξ)‖2
F ≤ (2λ2

max + 1)‖PT⊥PA⊥(ξ)‖2
F .
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Revisiting (3.3.11), we have

‖X̃ −X0‖2
F ≤ (2λ2

max + 1)‖PT⊥PA⊥(ξ)‖2
F + ‖PA(ξ)‖2

F

≤ C(2λ2
max + 1) min(K,N)‖PA(ξ)‖2

F + ‖PA(ξ)‖2
F ,

and then absorbing all the constants into C,

‖X̃ −X0‖F ≤ Cλmax

√
min(K,N)‖PA(ξ)‖F

≤ C
√

min(K,N)λmax‖A†‖ ‖A(ξ)‖2,

where A† is the pseudo-inverse of A. Using (3.3.10) and the fact that ‖A†‖ = λ−1
min,

we obtain the final result

‖X̃ −X0‖F ≤ C
λmax

λmin

√
min(K,N)δ. (3.3.12)

3.3.4 Key lemmas

We start with two lemmas which characterize the singular values of the random linear

operator A. The first, which gives a loose upper bound on the maximum singular

value, holds for all N,K,L. The second gives a tighter bound on the maximum

singular value and a comparable lower bound on the minimum singular value, but

requires A to be sufficiently underdetermined.

Lemma 3.3.1 (Operator norm of A). Let A be defined with Ak = bkc
∗
k as in Sec-

tion 3.1.3. Fix α ≥ 1. Then

‖A‖ ≤
√
N(log(NL/2) + α logL),

with probability exceeding 1− L−α.
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Proof. Writing A in matrix form we have

‖A‖2 =

∥∥∥∥
[
∆1B̂ ∆2B̂ · · · ∆NB̂

]∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥




B̂∗∆∗1

B̂∗∆∗2
...

B̂∗∆∗N




∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥




∆∗1

∆∗2
...

∆∗N




∥∥∥∥∥∥∥∥∥∥∥∥∥

≤ ‖∆1‖2 + ‖∆2‖2 + · · ·+ ‖∆N‖2

≤ N max
1≤n≤N

‖∆n‖2

= N max
1≤n≤N

max
1≤`≤L/2

|ĉ`[n]|2.

Since the |ĉ`[n]|2 are independent chi-squared random variables,

P

{
max
n,`
|ĉ`[n]|2 > λ

}
≤ NL

2
e−λ,

and the lemma follows by taking λ = log(NL/2) + α logL.

Lemma 3.3.2 (AA∗ is well conditioned.). Let A be as defined in (3.1.4), with coher-

ences µ2
max and µ2

min as defined in (3.1.11) and (3.1.12). Suppose that A is sufficiently

underdetermined in that

NK ≥ Cα
µ2

min

L log2 L (3.3.13)

for some constant Cα > 1. Then with probability exceeding 1− O(L−α+1), the eigen-

values of AA∗ obey

0.48µ2
min

NK

L
≤ λmin(AA∗) ≤ λmax(AA∗) ≤ 4.5µ2

max

NK

L
.

The proof of Lemma 3.3.2 in Section 3.4 decomposes AA∗ as a sum of independent

random matrices, and then applies a Chernoff-like bound discussed in Section 2.5.
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Our third key lemma tells us that, with high probability, A is well conditioned

when restricted to the subspace T .

Lemma 3.3.3 (Conditioning on T ). With the coherences µ2
max and µ2

h defined in

Section 3.1.3, let

M = max(µ2
maxK,µ

2
hN). (3.3.14)

Fix α ≥ 1. Choose the subsets Γ1, . . . ,ΓP described in Section 3.3.2 so that they have

size

|Γp| = Q = C ′α ·M log(L) log(M), (3.3.15)

where C ′α = O(α) is a constant chosen below, and such that (3.3.5) holds. Then the

linear operators A1, . . . ,AP defined in Section 3.3.2 will obey

max
1≤p≤P

∥∥∥∥PTA∗pApPT −
Q

L
PT
∥∥∥∥ ≤

Q

2L
,

with probability exceeding 1− 3PL−α ≥ 1− 3L−α+1.

Corollary 2. Let A be the operator defined in (3.1.4), and M be defined as in (3.3.14).

Then there exists a constant Cα = O(α) such that

M ≤ L

Cα log2 L
, (3.3.16)

implies

‖PTA∗APT − PT‖ ≤
1

2
,

with probability exceeding 1− 3L−α.

Lemma 3.3.4. Let M , Q, the Γp, and the Ap be the same as in Lemma 3.3.3. Let

Wp be as in (3.3.7), and define

µ2
p = L max

`∈Γp+1

‖W ∗
p b̂`‖2

2. (3.3.17)

Then there exists a constant Cα = O(α) such that if

M ≤ L

Cα log3/2 L
, (3.3.18)
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then

µp ≤
µp−1

2
, for p = 1, . . . , P, (3.3.19)

with probability exceeding 1− 2L−α+1.

Lemma 3.3.5. Let α, M , Q, the Γp, and the Ap be the same as in Lemma 3.3.3,

and µp and Wp be the same as in Lemma 3.3.4. Assume that (3.3.8) and (3.3.19)

hold:

‖Wp−1‖F ≤ 2−p+1 and µp−1 ≤ 2−p+1µh.

Then with probability exceeding 1− PL−α ≥ 1− L−α+1,

max
1≤p≤P

∥∥∥∥A∗pApWp−1 −
Q

L
Wp−1

∥∥∥∥ ≤ 2−p
3Q

4L
.

3.4 Proof of key lemmas

3.4.1 Proof of Lemma 3.3.2

The proof of Lemma 3.3.2 is essentially an application of the matrix Chernoff bound

in Proposition 3.

Using the matrix form of A,

A =

[
∆1B̂ ∆2B̂ · · · ∆NB̂

]
,

we can write AA∗ as sum of random matrices

AA∗ =
N∑

n=1

∆nB̂B̂
∗∆∗n,

where ∆n = diag({ĉ`[n]}`) as in (3.1.3). To apply Proposition 3, we will need to

condition on the maximum of the magnitudes of the ĉ`[n] not exceeding a certain

size. To this end, given an α (which we choose later), we define the event

Γα =



 max

1≤n≤N
1≤`≤L/2

|ĉ`[n]| ≤ α



 ,
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and since the |ĉ`|2 are Rayleigh random variables,

P {Γcα} ≤
NL

2
e−α

2

.

We can now breakdown the calculation as

P {λmax(AA∗) > v} ≤ P {λmax(AA∗) > v | Γα} P {Γα}+ P {Γcα} (3.4.1)

≤ P {λmax(AA∗) > v | Γα}+ P {Γcα} , (3.4.2)

and similarly for P {λmin(AA∗) > v}. Conditioned on Γα, the complex Gaussian ran-

dom variables ĉ`[n] are still zero mean and independent; we denote these conditional

random variables as ĉ′`[n], and set ∆′n = diag({ĉ′`[n]}`), noting that

E[|ĉ′`[n]|2] = E[|ĉ`[n]|2 | Γα] =
1− (α2 + 1)e−α

2

1− e−α2 =: σ2
α ≤ 1.

We now apply Proposition 3 with

R = max
n

{
λmax(∆′nB̂B̂

∗∆′∗n )
}
≤ max

n

{
λmax(∆′n)λmax(B̂B̂∗)λmax(∆′∗n )

}
≤ α2,

and

ρmax = λmax

(
N∑

n=1

E[∆′nB̂B̂
∗∆′∗n ]

)
= Nλmax

(
E[∆′nB̂B̂

∗∆′∗n ]
)

≤ Nσ2
α max

`
‖b̂`‖2

2 = µ2
maxN

K

L
,

and

ρmin = λmin

(
N∑

n=1

E
[
∆′nB̂B̂

∗∆′∗n

])
= Nσ2

α min
`
‖b̂`‖2

2 = σ2
αµ

2
minN

K

L
,

which yields

P

{
λmin(AA∗) < σ2

αµ
2
minNK

2L

∣∣∣∣ Γα

}
≤ L exp

(
−σ

2
αµ

2
minNK

8α2L

)
,

where we have take t = 1/2 in (2.5.5), and

P

{
λmax(AA∗) > e3/2µ2

maxNK

L

∣∣∣∣ Γα

}
≤ L exp

(
−2µ2

maxNK

α2L

)
,

where we have taken t = e3/2 in (2.5.6). Then taking α =
√

2 logL establishes the

lemma.
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3.4.2 Proof of Lemma 3.3.3

The proof of the Lemma and its corollary follow the exact same line of argumentation.

We will start with the conditioning of the partial operators Ap on T ; after this, the

argument for the conditioning of the full operator A will be clear.

We start by fixing p, and set Γ = Γp. With

Ak = bkc
∗
k,

where the bk ∈ CK obey (3.1.10),(3.1.11),(3.1.14) and the ck ∈ CN are random

vectors distributed as in (3.1.15), we are interested in how the random operator

PTA∗pApPT =
∑

k∈Γ

PT (Ak)⊗ PT (Ak)

concentrates around its mean in the operator norm. This operator is a sum of inde-

pendent random rank-1 operators on N ×K matrices, and so we can use the matrix

Bernstein inequality in Proposition 2 to estimate its deviation.

Since Ak = bkc
∗
k, PT (Ak) is the rank-2 matrix given by

PT (Ak) = 〈bk,h〉hc∗k + 〈m, ck〉bkm∗ − 〈bk,h〉〈m, ck〉hm∗

= hv∗k + ukm
∗,

where vk = 〈h, bk〉ck and uk = 〈m, ck〉(bk − 〈bk,h〉h) = 〈m, ck〉(I − hh∗)bk.

The linear operator PT (·), since it maps K × N matrices to K × N matrix, can

itself be represented as a KN × KN matrix that operates on a matrix that has

been rasterized (in column order here) into a vector of length KN . We will find it

convenient to denote these matrices in block form: {M(i, j)}i,j, where M(i, j) is a

K×K matrix that occupies rows (i−1)K+1, . . . , iK and columns (j−1)K+1, . . . , jK.

Using this notation, we can write PT as the matrix

PT = {hh∗δ(i, j)}i,j + {m[i]m[j]I}i,j − {m[i]m[j]hh∗}i,j, (3.4.3)

where δ(i, j) = 1 if i = j and is zero otherwise.
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We will make repeated use the following three facts about block matrices below:

1. Let M be an operator that we can write in matrix form as

M = {Mδ(i, j)}i,j

for some K ×K matrix M . Then the action of M on a matrix X is

M(X) = MX,

and so ‖M‖ = ‖M‖. Also, M∗(X) = M ∗X.

2. Now suppose we can write M in matrix form as

M = {p[i]∗q[j]I}i,j,

for some p, q ∈ CN . Then the action of M on a matrix X is

M(X) = Xqp∗,

and so ‖M‖ = ‖qp∗‖ = ‖q‖2‖p‖2. Also, M∗(X) = Xpq∗.

3. Now let

M = {p[i]∗q[j]M}i,j.

Then the action of M on a matrix X is

M(X) = MXqp∗,

and so ‖M‖ = ‖M‖ ‖qp∗‖ = ‖M‖ ‖q‖2‖p‖2. Also M∗(X) = M ∗Xpq∗.

We will break PT (Ak) ⊗ PT (Ak) into four different tensor products of rank-1

matrices, and treat each one in turn:

PT (Ak)⊗PT (Ak) = hv∗k⊗hv∗k+hv∗k⊗ukm∗+ukm∗⊗hv∗k+ukm
∗⊗ukm∗. (3.4.4)
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To handle these terms in matrix form, note that if u1v
∗
1 and u2v

∗
2 are rank-1 matrices,

with ui ∈ CK and vi ∈ CN , then the operator given by their tensor product can be

written as

u1v
∗
1⊗u2v

∗
2 =




v1[1]∗v2[1]u1u
∗
2 v1[1]∗v2[2]u1u

∗
2 · · · v1[1]∗v2[N ]u1u

∗
2

v1[2]∗v2[1]u1u
∗
2 v1[2]∗v2[2]u1u

∗
2 · · · v1[2]∗v2[N ]u1u

∗
2

...
. . .

v1[N ]∗v2[1]u1u
∗
2 · · · · · · v1[N ]∗v2[N ]u1u

∗
2




= {v1[i]∗v2[j]u1u
∗
2}i,j .

For the expectation of the sum, we compute the following:

E[hv∗k ⊗ hv∗k] = |〈h, bk〉|2 E[{ĉk[i]∗ĉk[j]hh∗}i,j]

= |〈h, bk〉|2 {δ(i, j)hh∗}i,j,

and

E[ukm
∗ ⊗ ukm∗] = E[|〈m, ck〉|2] {m[i]m[j](I − hh∗)bkb∗k(I − hh∗)}i,j

= {m[i]m[j](I − hh∗)bkb∗k(I − hh∗)}i,j,

since E[|〈m, ck〉|2] = ‖m‖2
2 = 1, and

E[hv∗k ⊗ ukm∗] = E{vk[i]∗m[j]hu∗k}i,j

= 〈bk,h〉 {E[ĉk[i]
∗〈ck,m〉]m[j]hb∗k(I − hh∗)}i,j

= 〈bk,h〉 {m[i]m[j]hb∗k(I − hh∗)}i,j,

and

E[ukm
∗ ⊗ hv∗k] = 〈h, bk〉 {E[ĉk[j]〈m, ck〉]m[i](I − hh∗)bkh∗}i,j

= 〈h, bk〉 {m[i]m[j](I − hh∗)bkh∗}i,j.

A straightforward calculation combines these four results with (3.4.3) to verify that

E[PT (Ak)⊗ PT (Ak)] = PT ({bkb∗kδ(i, j)}i,jPT ).
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In light of (3.3.5), this means

E

[∑

k∈Γ

PT (Ak)⊗ PT (Ak)

]
=
Q

L
PT + G, (3.4.5)

where ‖G‖ ≤ Q/4L.

We now derive tail bounds for how far the sum over Γ for each of the terms in

(3.4.4) deviates from their respective means. Starting with first term, we use the

compact notation

Zk = hv∗k ⊗ hv∗k − E[hv∗k ⊗ hv∗k],

for each addend. To apply Proposition 2, we need to uniformly bound the size (Orlicz

ψ1 norm) of each individual Zk as well as the variance σ2 in (2.5.3). For the uniform

size bound,

‖Zk‖ = |〈h, bk〉|2 ‖{(ĉk[i]∗ĉk[j]− δ(i, j))hh∗}i,j‖

= |〈h, bk〉|2 ‖{(ĉk[i]∗ĉk[j]− δ(i, j))I}{hh∗δ(i, j)}i,j‖

≤ |〈h, bk〉|2 ‖hh∗‖ ‖ckc∗k − I‖

≤ µ2
h

L
max(‖ck‖2

2, 1).

Applying Lemma 3.5.2,

P
{

max(‖ck‖2
2, 1) > u

}
≤ 1.2 e−u/8N ,

and combined with Lemma 2.5.1 this means

‖Zk‖ψ1 ≤
µ2
h

L
‖max(‖ck‖2

2, 1)‖ψ1 ≤ C
µ2
hN

L
.

For the variance, we need to compute E[Z∗kZk]. This will be easiest if we rewrite the

action of Zk on a matrix X as

Zk(X) = |〈h, bk〉|4hh∗X(ckc
∗
k − I),

and so

Z∗kZk(X) = |〈h, bk〉|4‖h‖2
2hh

∗X(ckc
∗
k − I)2,
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and

E[Z∗kZk(X)] = |〈h, bk〉|4‖h‖2
2hh

∗X E[(ckc
∗
k − I)2]

= N |〈h, bk〉|4hh∗X,

and finally
∥∥∥∥∥
∑

k∈Γ

E[Z∗kZk]
∥∥∥∥∥ = N

∑

k∈Γ

|〈h, bk〉|4

≤ µ2
hN

L

∑

k∈Γ

|〈h, bk〉|2

≤ 5µ2
hNQ

4L2
,

where we have used (3.3.5) in the last step. Collecting these results and applying

Proposition 2 with t = α logL yields
∥∥∥∥∥
∑

k∈Γ

hv∗k ⊗ hv∗k − E[hv∗k ⊗ hv∗k]
∥∥∥∥∥ ≤

Cα
µh
√
N logL

L
max

{√
Q, µh

√
N logL log(µ2

hN)
}
, (3.4.6)

with probability exceeding 1− L−α.

For the sum over the second term in (3.4.4), set

Zk = ukm
∗ ⊗ ukm∗ − E[ukm

∗ ⊗ ukm∗]

=
(
|〈m, ck〉|2 − 1

)
{m[i]m[j](I − hh∗)bkb∗k(I − hh∗)}i,j,

then using the fact that ‖I − hh∗‖ ≤ 1 (since ‖h‖2 = 1), we have

‖Zk‖ =
∣∣ |〈m, ck〉|2 − 1

∣∣ ‖(I − hh∗)bk‖2
2 ‖m‖2

2

≤
∣∣ |〈m, ck〉|2 − 1

∣∣ ‖bk‖2
2

≤
∣∣ |〈m, ck〉|2 − 1

∣∣ µ
2
maxK

L
.

This is again a subexponential random variable whose size we can characterize using

Lemma 3.5.4:

‖|〈m, ck〉|2 − 1‖ψ1 ≤ C and so ‖Zk‖ψ1 ≤ C
µ2

maxK

L
.
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To bound the variance in (2.5.4), we again write out the action of Zk on an arbitrary

K ×N matrix X:

Zk(X) = (|〈m, ck〉|2 − 1)(I − hh∗)bkb∗k(I − hh∗)Xmm∗,

and so

E[Z∗kZk(X)] = E[(|〈m, ck〉|2 − 1)2]‖(I − hh∗)bk‖2
2(I − hh∗)bkb∗k(I − hh∗)Xmm∗

= ‖(I − hh∗)bk‖2
2(I − hh∗)bkb∗k(I − hh∗)Xmm∗,

where in the last step we have used the fact that |〈m, ck〉|2 is a chi-square random

variable with two degrees of freedom with variance E[(|〈m, ck〉|2 − 1)2] = 1. This

gives us
∥∥∥∥∥
∑

k∈Γ

E[Z∗kZk]
∥∥∥∥∥ =

∥∥∥∥∥
∑

k∈Γ

‖(I − hh∗)bk‖2
2(I − hh∗)bkb∗k(I − hh∗)

∥∥∥∥∥

≤ max
k∈Γ

(
‖(I − hh∗)bk‖2

2

)
∥∥∥∥∥
∑

k∈Γ

(I − hh∗)bkb∗k(I − hh∗)
∥∥∥∥∥

≤ µ2
maxK

L

∥∥∥∥∥
∑

k∈Γ

bkb
∗
k

∥∥∥∥∥

≤ 5µ2
maxKQ

4L2
.

Collecting these results and applying Proposition 2 with t = α logL yields
∥∥∥∥∥
∑

k∈Γ

ukm
∗ ⊗ ukm∗ − E[ukm

∗ ⊗ ukm∗]
∥∥∥∥∥ ≤

Cα
µmax

√
K logL

L
max

{√
Q, µmax

√
K logL log(µ2

maxK)
}
, (3.4.7)

with probability exceeding 1− L−α.

The last two terms in (3.4.4) are adjoints of one another, so they will have the

same operator norm. We now set

Zk = hv∗k ⊗ ukm∗ − E[hv∗k ⊗ ukm∗]

= 〈h, bk〉{m[i](ĉk[j]〈m, ck〉 −m[j])(I − hh∗)bkh∗}i,j,
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and so the action of Zk on an arbitrary matrix X is given by

Zk(X) = 〈h, bk〉(I − hh∗)bkh∗X(ckc
∗
k − I)mm∗,

from which we can see

‖Zk‖ ≤ |〈h, bk〉| ‖bk‖2‖(ckc∗k − I)m‖2

≤ µhµmax

√
K

L
‖(ckc∗k − I)m‖2.

From Lemmas 3.5.5 and 2.5.1, we that the random variable ‖(ckc∗k−I)m‖2 is subex-

ponential with ‖(ckc∗k − I)m‖ψ1 ≤ C
√
N , and so

‖Zk‖ψ1 ≤ C
µhµmax

√
KN

L
.

For the variance σ2 in (2.5.3), we need to bound the sizes of both Z∗kZk and ZkZ∗k .

Starting with the former, we have

E[Z∗kZk(X)] = |〈h, bk〉|2‖(I − hh∗)‖2
2hh

∗X E[(ckc
∗
k − I)mm∗(ckc

∗
k − I)],

and then applying Lemma 3.5.6 yields

∥∥∥∥∥
∑

k∈Γ

E[Z∗kZk]
∥∥∥∥∥ =

∑

k∈Γ

|〈h, bk〉|2 ‖(I − hh∗)bk‖2
2

≤
∑

k∈Γ

|〈h, bk〉|2 ‖bk‖2
2

≤ µ2
maxK

L

∑

k∈Γ

|〈h, bk〉|2

≤ 5µ2
maxKQ

4L2
.

For ZkZ∗k ,

E[ZkZ∗k(X)] = |〈h, bk〉|2(I − hh∗)bkb∗k(I − hh∗)Xmm∗ E[(ckc
∗
k − I)2]mm∗,
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and then applying Lemma 3.5.3 yields
∥∥∥∥∥
∑

k∈Γ

E[ZkZ∗k ]

∥∥∥∥∥ = N

∥∥∥∥∥(I − hh∗)
(∑

k∈Γ

|〈h, bk〉|2bkb∗k

)
(I − hh∗)

∥∥∥∥∥

≤ N

∥∥∥∥∥
∑

k∈Γ

|〈h, bk〉|2bkb∗k

∥∥∥∥∥

≤ µ2
hN

L

∥∥∥∥∥
∑

k∈Γ

bkb
∗
k

∥∥∥∥∥

≤ 5µ2
hNQ

4L2
.

Collecting these results and applying Proposition 2 with t = α logL and M =

max {µ2
maxK,µ

2
hN} yields

∥∥∥∥∥
∑

k∈Γ

hv∗k ⊗ ukm∗ − E[hv∗k ⊗ ukm∗]
∥∥∥∥∥ ≤ Cα

√
M logL

L
max

{√
Q,
√
M logL log(M)

}
,

(3.4.8)

with probability exceeding 1− L−α.

Using the triangle inequality
∥∥∥∥PTA∗pApPT −

Q

L
PT
∥∥∥∥ ≤

∥∥PTA∗pApPT − E[PTA∗pApPT ]
∥∥+

∥∥∥∥E[PTA∗pApPT ]− Q

L
PT
∥∥∥∥ ,

we can combine (3.4.5) with (3.4.6), (3.4.7), and (3.4.8) to establish that
∥∥∥∥PTA∗pApPT −

Q

L
PT
∥∥∥∥ ≤ Cα

√
M logL

L
max

{√
Q,
√
M logL log(M)

}
+

Q

4L
,

with probability exceeding 1− 3L−α. With Q chosen as in (3.3.15), this becomes
∥∥∥∥PTA∗pApPT −

Q

L
PT
∥∥∥∥ ≤ Cα

Q

L
max

{
1√

C ′α logM
,

1

C ′α

}
+

Q

4L

≤ Q

2L
,

for C ′α chosen appropriately. Applying the union bound establishes the lemma.

To prove the corollary, we take Γ = {1, . . . , L} and Q = L above. In this case, we

will have
∑

k∈Γ bkb
∗
k = I, and so G = 0 in (3.4.5). We have

‖PTA∗APT − PT‖ ≤ Cα max

{√
M logL

L
,
M log(L) log(M)

L

}
,
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with probability exceeding 1− 3L−α. Then taking L as in (3.3.16) will guarantee the

desired conditioning.

3.4.3 Proof of Lemma 3.3.4

We start by fixing ` ∈ Γp+1 and estimating ‖W ∗
p b̂`‖2. We can re-write Wp as a sum

of independent random matrices: since Wp−1 ∈ T , PT (Wp−1) = Wp−1 and

Wp = PT
(
A∗pApWp−1 −

Q

L
Wp−1

)

= PT


∑

k∈Γp

bkb
∗
kWp−1ckc

∗
k −

∑

k∈Γp

bkb
∗
kWp−1


+ PT


∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1




=
∑

k∈Γp

PT (Zk) + PT


∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1


 ,

where Zk = bkb
∗
kWp−1(ckc

∗
k − I). Then

‖W ∗
p b̂`‖2 ≤

∥∥∥∥∥∥
∑

k∈Γp

b̂∗`PT (Zk)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
b̂∗`PT


∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1



∥∥∥∥∥∥

2

. (3.4.9)

For the second term above
∥∥∥∥∥∥
b̂∗`PT


∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1



∥∥∥∥∥∥

2

≤

∥∥∥∥∥∥
PT


∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1



∥∥∥∥∥∥
‖b̂`‖2

≤
√
µ2

maxK

L

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
kWp−1 −

Q

L
Wp−1

∥∥∥∥∥∥

≤
√
µ2

maxK

L

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
k −

Q

L
I

∥∥∥∥∥∥
‖Wp−1‖F

≤ 2−p+1µmax

√
KQ

4L3/2
,

where we have used (3.3.5) and the fact that the Frobenius norms of the Wp decrease

geometrically with p; see (3.3.8).

The first term in (3.4.9) is the norm of a sum of independent zero-mean random

vectors, which we will bound using Propositions 1 and 2. We set wk = W ∗
p−1bk and
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expand b̂∗`PT (Zk) as

b̂∗`PT (Zk) = 〈h, b̂`〉〈bk,h〉w∗k(ckc∗k − I)+

+ 〈bk, b̂`〉w∗k(ckc∗k − I)mm∗ − 〈h, b̂`〉〈bk,h〉w∗k(ckc∗k − I)mm∗,

and so
∥∥∥∥∥∥
∑

k∈Γp

b̂∗`PT (Zk)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑

k∈Γp

zk

∥∥∥∥∥∥
2

+

∣∣∣∣∣∣
∑

k∈Γp

zk

∣∣∣∣∣∣
, (3.4.10)

where the zk are independent random vectors, and the zk are independent random

scalars:

zk = 〈b̂`,h〉〈h, bk〉(ckc∗k − I)wk, zk = 〈bk, (I − hh∗)b̂`〉 〈(ckc∗k − I)m,wk〉.

Using Lemma 3.5.7, we have a tail bound for each term in the scalar sum:

P {|zk| > λ} ≤ 2e · exp

(
− λ

‖wk‖2|〈bk, (I − hh∗)b̂`〉|

)
.

Applying the scalar Bernstein inequality (Proposition 1) with

B = max
k
‖wk‖2|〈bk, (I − hh∗)b̂`〉| ≤

µp−1µ
2
maxK

L3/2
,

and

σ2 =
∑

k∈Γp

‖wk‖2
2|〈bk, (I − hh∗)b̂`〉|2

≤ µ2
p−1

L

∑

k∈Γp

|〈bk, (I − hh∗)b̂`〉|2

≤ 5µ2
p−1Q

4L2
‖(I − hh∗)b̂`‖2

2

≤ 5µ2
p−1µ

2
maxKQ

4L3
,

and t = α logL tells us that
∣∣∣∣∣∣
∑

k∈Γp

zk

∣∣∣∣∣∣
≤ Cα

µp−1µmax

√
K logL

L3/2
max

{√
Q, µmax

√
K logL

}
, (3.4.11)
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with probability at least 1− L−α.

For the vector term in (3.4.10), we apply Lemmas 3.5.5 and 2.5.1 to see that

‖zk‖ψ1 ≤ C
√
N‖wk‖2|〈b̂`,h〉〈h, bk〉|

≤ C
µp−1µ

2
h

√
N

L3/2
.

For the variance terms, we calculate

∑

k∈Γp

E[z∗kzk] =
∑

k∈Γp

|〈h, b̂`〉|2|〈bk,h〉|2w∗k E[(ckc
∗
k − I)2]wk

= N
∑

k∈Γp

|〈h, b̂`〉|2|〈bk,h〉|2‖wk‖2
2 (by Lemma 3.5.3)

≤ µ2
p−1µ

2
hN

L2

∑

k∈Γp

|〈bk,h〉|2

≤ 5µ2
p−1µ

2
hNQ

4L3
,

and ∥∥∥∥∥∥
∑

k∈Γp

E[zkz
∗
k]

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

k∈Γp

|〈h, b̂`〉|2|〈bk,h〉|2 E[(ckc
∗
k − I)wkw

∗
k(ckc

∗
k − I)]

∥∥∥∥∥∥

=

∥∥∥∥∥∥
∑

k∈Γp

|〈h, b̂`〉|2|〈bk,h〉|2‖wk‖2
2I

∥∥∥∥∥∥
(by Lemma 3.5.6)

≤ µ2
p−1µ

2
h

L2

∑

k∈Γp

|〈bk,h〉|2

≤ 5µ2
p−1µ

2
hQ

4L3
.

Thus ∥∥∥∥∥∥
∑

k∈Γp

zk

∥∥∥∥∥∥
2

≤ Cα
µp−1µh

√
N logL

L3/2
max

{√
Q, µh log(µh)

√
logL

}
(3.4.12)

with probability at least 1− L−α.

Combining (3.4.11) and (3.4.12) and taking the union bound over all ` ∈ Γp+1

yields

µp ≤ µp−1
Cα
√
MQ logL

L
,
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with probability exceeding 1 − 2QL−α. Then taking Q as in (3.3.15) and the union

bound over 1 ≤ p ≤ P establishes the lemma.

3.4.4 Proof of Lemma 3.3.5

We start by fixing p and writing
∥∥∥∥A∗pApWp−1 −

Q

L
Wp−1

∥∥∥∥ ≤
∥∥A∗pApWp−1 − E[A∗pApWp−1]

∥∥+

∥∥∥∥E[A∗pApWp−1]− Q

L
Wp−1

∥∥∥∥ .

We will derive a concentration inequality to bound the first term, and use (3.3.5)

for the second. We can write the first term above as the spectral norm of a sum of

random rank-1 matrices:

A∗pApWp−1 − E[A∗pApWp−1] =
∑

k∈Γp

Zk, Zk := bkb
∗
kWp−1(ckc

∗
k − I). (3.4.13)

We will use Proposition 2 to estimate the size of this random sum; we proceed by

calculating the key quantities involved. With wk = W ∗
p−1bk, we can bound the size

of each term in the sum as

‖Zk‖ = ‖bkb∗kWp(ckc
∗
k − I)‖

= ‖bk‖2 ‖(ckc∗k − I)wk‖2

≤ µmax

√
K

L
‖(ckc∗k − I)wk‖2

and then applying Lemmas 3.5.5 and 2.5.1 yields

‖Zk‖ψ1 ≤ C µmax

√
KN

L
‖wk‖2 ≤ C µmaxµp

√
KN

L
.

For the variance terms, we calculate∥∥∥∥∥∥
∑

k∈Γp

E[Z∗kZk]

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

k∈Γp

‖bk‖2
2 E[(ckc

∗
k − I)wkw

∗
k(ckc

∗
k − I)]

∥∥∥∥∥∥

=
∑

k∈Γp

‖bk‖2
2‖wk‖2

2 (by Lemma 3.5.6)

≤ µ2
maxK

L

∑

k∈Γp

‖W ∗
p bk‖2

2

≤ 5µ2
maxKQ

4L2
‖Wp‖2

F (using (3.3.5)),
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and
∥∥∥∥∥∥
∑

k∈Γp

E[ZkZ
∗
k ]

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

k∈Γp

bkw
∗
k E[(ckc

∗
k − I)2]wkb

∗
k

∥∥∥∥∥∥

= N

∥∥∥∥∥∥
∑

k∈Γp

‖wk‖2
2bkb

∗
k

∥∥∥∥∥∥
(by Lemma 3.5.3)

≤ µ2
pN

L

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
k

∥∥∥∥∥∥

≤ 5µ2
pNQ

4L2
.

Then with M = max {µ2
maxK,µ

2
hN}, we apply Proposition 2 with t = α logL to

get

‖A∗pApWp−1 − E[A∗pApWp−1]‖ ≤ Cα 2−p
√
M logL

L
max

{√
Q,
√
M logL log(M)

}
,

with probability exceeding 1− L−α. With Q as in (3.3.15), this becomes

‖A∗pApWp−1 − E[A∗pApWp−1]‖ ≤ Cα 2−p
Q

L
max

{
1√

C ′α logM
,

1

C ′α

}

≤ 2−p
Q

4L
,

for an appropriate choice of C ′α. Thus

∥∥∥∥A∗pApWp−1 −
Q

L
Wp−1

∥∥∥∥ ≤
∥∥A∗pApWp−1 − E[A∗pApWp−1]

∥∥+

∥∥∥∥E[A∗pApWp−1]− Q

L
Wp−1

∥∥∥∥

≤ 2−p
Q

4L
+

∥∥∥∥∥∥
∑

k∈Γp

bkb
∗
k −

Q

L

∥∥∥∥∥∥
‖Wp−1‖F

≤ 2−p
Q

4L
+ 2−p+1 Q

4L
.

Applying the union bound over all p = 1, . . . , P establishes the lemma.

3.5 Supporting Lemmas

Lemma 3.5.1. Let ck ∈ CN be normally distributed as in (3.1.15), and let u ∈ CN be

an arbitrary vector. Then |〈ck,u〉|2 is a chi-square random variable with two degrees
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of freedom and

P
{
|〈ck,u〉|2 > λ

}
≤ e−λ/‖u‖

2
2 .

Lemma 3.5.2. Let ck ∈ CN be normally distributed as in (3.1.15). Then

P
{
‖ck‖2

2 > Nu
}
≤ 1.2 e−u/8, for all u ≥ 0, (3.5.1)

and since 1.2e−1/8N ≥ 1 for all N ≥ 1,

P
{

max(‖ck‖2
2, 1) > Nu

}
≤ 1.2 e−u/8.

Proof. It is well-known (see, for example, [35]) that

P
{
‖ck‖2

2 > N(1 + λ)
}
≤





e−λ
2/8 0 ≤ λ ≤ 1

e−λ/8 λ ≥ 1

≤ 1.05 e−λ/8, λ ≥ 0. (3.5.2)

Plugging in λ = u− 1 above yields

P
{
‖ck‖2

2 > Nu
}
≤ 1.2 e−u/8, u ≥ 1.

Since 1.2 e−1/8 > 1, the bound above can be extended for all u ≥ 0.

Lemma 3.5.3. Let ck ∈ CN be normally distributed as in (3.1.15). Then

E[(ckc
∗
k − I)2] = NI.

Proof. Using the expansion

(ckc
∗
k − I)2 = ‖ck‖2

2ckc
∗
k − 2ckc

∗
k + I,

we see that the only non-trivial term is R = ‖ck‖2
2ckc

∗
k. We compute the expectation

of an entry in this matrix as

E[R(i, j)] =
N∑

n=1

E[|ĉk[n]|2ĉk[i]ĉk[j]∗] =





∑
n E[|ĉk[n]|2|ĉk[i]|2] i = j

0 i 6= j

.
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For the addends in the diagonal term

E[|ĉk[n]|2|ĉk[i]|2] =





E[|ĉk[n]|4] = 2 n = i

1 n 6= i

,

where the calculation for n = i relies on the fact that E[|ĉk[n]|4] is the second moment

of a chi-square random variable with two degrees of freedom. Thus E[R] = (N + 1)I,

and

E[(ckc
∗
k − I)2] = (N + 1)I − 2I + I = NI.

Lemma 3.5.4. Let ck ∈ CN be normally distributed as in (3.1.15), and let v be an

arbitrary vector. Then E[|〈ck,v〉|2] = ‖v‖2
2 and

P
{∣∣|〈ck,v〉|2 − ‖v‖2

2

∣∣ > λ
}
≤ 2.1 exp

(
− λ

8‖v‖2
2

)
.

Proof. A slight variation of (3.5.2) gives us that

P
{∣∣|〈ck,v〉|2 − ‖v‖2

2

∣∣ > λ
}
≤





2e−λ
2/8‖v‖22 0 ≤ λ ≤ 1

e−λ/8‖v‖
2
2 λ > 1

.

The lemma follows from combining these two cases into one subexponential bound.

Lemma 3.5.5. Let ck ∈ CN be normally distributed as in (3.1.15), and let v ∈ CN

be an arbitrary vector. Then

P {‖(ckc∗k − I)v‖2 > λ} ≤ 3 exp

(
− λ√

8N‖v‖2

)
.

Proof. We have

‖(ckc∗k − I)v‖2 = ‖〈v, ck〉ck − v‖2 ≤ |〈v, ck〉‖ck‖2 + ‖v‖2.
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For the first term above, we have for any τ > 0,

P
{
|〈v, ck〉| ‖ck‖2 > λ

√
N‖v‖2

}
≤ P

{
|〈v, ck〉| >

√
λ‖v‖2/τ

}
+ P

{
‖ck‖2 > τ

√
λN
}

= P
{
|〈v, ck〉|2 > λ‖v‖2

2/τ
2
}

+ P
{
‖ck‖2

2 > τ 2λN
}

We can then use the fact that |〈v, ck〉|2 is a chi-squared random variable along with

(3.5.1) above to derive the following tail bound:

P
{
|〈v, ck〉| ‖ck‖2 > λ

√
N‖v‖2

}
≤ e−λ/τ

2

+ 1.05 e−τ
2λ/8

= 2.05 e−λ/
√

8,

where we have chosen τ 2 =
√

8. Thus

P {|〈v, ck〉| ‖ck‖2 + ‖v‖2 > λ} ≤ 2.05 e1/
√

8 · e−λ/
√

8N .

Lemma 3.5.6. Let ck ∈ CN be normally distributed as in (3.1.15), and let v ∈ CN

be an arbitrary vector. Then

E[(ckc
∗
k − I)vv∗(ckc

∗
k − I)] = ‖v‖2

2I.

Proof. We have

E[(ckc
∗
k − I)vv∗(ckc

∗
k − I)] = E[|〈v, ck〉|2ckc∗k − ckc∗kvv∗ − vv∗ckc∗k − vv∗]

= E[|〈v, ck〉|2ckc∗k]− vv∗.

Let R(i, j) be the entries of the first matrix above:

R(i, j) = E[|〈v, ck〉|2ĉk[i]ĉk[j]∗]

=
∑

n1,n2

v[n1]v[n2] E[ĉk[n1]ĉk[n2]∗ĉk[i]ĉk[j]
∗].

On the diagonal, where i = j, all of the terms in the sum above are zero except when

n1 = n2, and so

R(i, i) =
N∑

n=1

|v[n]|2 E
[
|ĉk[n]|2|ĉk[i]|2

]
.
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Using the fact that

E
[
|ĉk[n]|2|ĉk[i]|2

]
=





2 n = i

1 n 6= i

,

we see that R(i, i) = |v[i]|2 + ‖v‖2
2. Off the diagonal, where i 6= j, we see immedi-

ately that E[ĉk[n1]ĉk[n2]∗ĉk[i]ĉk[j]
∗] will be zero unless one of two (non-overlapping)

conditions hold: (n1 = i, n2 = j) or (n1 = j, n2 = i). Thus

R(i, j) = v[i]v[j] E[ĉk[i]
2] E[ĉk[j]

2] + v[j]v[i] E[|ĉk[j]|2] E[|ĉk[i]|2].

Note the lack of absolute values in the first term on the right above; in fact, since

the ĉk[i] have uniformly distributed phase, E[ĉk[i]
2] = E[ĉk[j]

2] = 0, and so R(i, j) =

v[i]v[j]. As such

E[(ckc
∗
k − I)vv∗(ckc

∗
k − I)] = E[|〈v, ck〉|2ckc∗k]− vv∗ = vv∗ + ‖v‖2

2I − vv∗ = I.

Lemma 3.5.7. Let ck ∈ CN be normally distributed as in (3.1.15), and let u,v ∈ CN

be arbitrary vectors. Then

P {|〈ck,v〉〈u, ck〉 − 〈u,v〉| > λ} ≤ 2e · exp

(
− λ

‖u‖2‖v‖2

)
.

Proof. For any t > 0,

P {|〈ck,v〉〈u, ck〉| > λ} ≤ P {|〈ck,v〉| > t}+ P {|〈u, ck〉| > λ/t}

= P
{
|〈ck,v〉|2 > t2

}
+ P

{
|〈u, ck〉|2 > λ2/t2

}

≤ exp

(
− t2

‖v‖2
2

)
+ exp

(
− λ2

t2‖u‖2
2

)
.

Choosing t2 = λ‖v‖2/‖u‖2 yields

P {|〈ck,v〉〈u, ck〉| > λ} ≤ 2 exp

(
− λ

‖u‖2‖v‖2

)
,
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and so

P {|〈ck,v〉〈u, ck〉 − 〈u,v〉| > λ} ≤ P {|〈ck,v〉〈u, ck〉| > λ− ‖u‖2‖v‖2}

≤ 2 exp

(
− λ

‖u‖2‖v‖2

+ 1

)

= 2e · exp

(
− λ

‖u‖2‖v‖2

)
.
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CHAPTER IV

SAMPLING ARCHITECTURES FOR COMPRESSIVE

ARRAY PROCESSING

4.1 Introduction

In this chapter, we present sampling architectures for the efficient acquisition of mul-

tiple signals lying in a subspace. The problem is illustrated in Figure 15 and 16: M

signals, each of which is bandlimited to W/2 radians/sec, are outputs from a sensor

array. Since the signals are bandlimited, they can be captured completely at MW

samples per second. This can be achieved using an ADC operating at the Nyquist

rate for each signal. We show that if the signals lie in a small subspace of dimension

R � M , meaning that all the signals in the ensemble can be written as (or closely

approximated by) distinct linear combinations of R�M underlying signals, then the

net sampling rate can be reduced considerably by using analog diversification [2, 3].

The signals are diversified using implementable analog devices and then sampled at

a smaller rate. In Section 4.2.4, we will show that these samples can be expressed as

linear measurements of a low-rank matrix. Over the course of one second, we want

to acquire an M ×W matrix comprised of the Nyquist rate samples of the ensem-

ble. The proposed sampling architecture produces a series of linear combinations of

entries of this matrix. The conditions (on the signals and the acquisition system)

under which this type of recovery is effective have undergone an intensive study in

the recent literature [19,40,44,76].

Multiple signals lying in a subspace often arise from the outputs of a sensor array

in various signal processing applications, some of which are outlined in Section 4.2.6.

In such application, often the task is to estimate the signal parameters from their
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Xc(t) = fxm(t)g1·m·M A Sc(t) = fsr(t)g1·r·R

x1(t)

x2(t)

xM(t)

...
A[m;r]

s1(t)

sR(t)

...

A[m;r]

Figure 15: Acquire an ensemble of M signals, each bandlimited to B radians per
second. The signals are correlated, i.e., M signals can be well approximated by the
linear combination of R underlying signals. Therefore, we can write M signals in
ensemble Xc(t) (on the left) as a tall matrix (a correlation structure) multiplied by
an ensemble of R underlying independent signals.
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A[m;r]
M

W

W

R

Figure 16: Samples X of ensemble Xc(t) inherit the low-rank property. Therefore,
the problem of recovering Xc(t) from samples at a sub-Nyquist rate can be recast as
a low-rank matrix recovery problem from partial-generalized measurements.

92



covariance matrix, e.g., the MUSIC algorithm in array processing uses the covariance

matrix to estimate the signal parametrs, such as the estmation of angle of arrival, and

frequency offsets. In several wideband signal processing applications, the sampling

rate required to acquire the covariance matrix may be prohibitive; especially, in view

of the increasing trend of using high frequency spectrum in some applications in

array processing. Our proposed sampling architecture can be employed to estimate

the covariance matrix of the input signal ensemble at a lower sampling rate; hence,

relieving the sampling burden on the analog-to-digital converters (ADCs).

The main contributions of this chapter are the design of implementable sampling

architectures, and a sampling theorem, which dictates the sampling rate required for

the reconstruction of the signal ensemble, for each of the sampling architecture. In

addition, we show that the proposed sampling schemes can be employed in several

compressive array processing tasks. Specifically, we demonstrate that the sampling

architectures can be used to compressively estimate the angle of arrival in several

array processing applications.

The chapter is organized as follows. In Section 4.1.1, we describe the signal model

followed by Section 4.1.2 that introduces architectural components. In Section 4.2,

we present the sampling architectures, model the samples taken by the ADCs as the

generalized measurements of a low-rank matrix, and state the releveant sampling

theorems. In Section 4.2.6, we layout the applications in multiple signal parameter

estimation problem. Numerical simulations, illustrating our theoretical results, are

presented in Section 4.3. Finally, Sections 4.5, and 4.8 provide the derivation of the

theoretical results.

4.1.1 Signal model

We will use notationXc(t) to denote a signal ensemble of interest and x1(t), . . . , xM(t)

to denote the individual signals within that ensemble. Conceptually, we may think
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of Xc(t) as a “matrix” with finite M number of rows, but each row contains a ban-

dlimited signal. Our underlying assumption is that the signals in the ensemble lie in

a subspace S of dimension R; that is, we can write

Xc(t) ≈ ASc(t), (4.1.1)

where Sc(t) is a smaller signal ensemble with R signals that lie in subspace S and A

is a M×R matrix with entries A[m, r]. We will use the convention that fixed matrices

operating to the left of the signal ensembles simply “mix” the signals point-by-point,

and so (4.1.1) is equivalent to

xm(t) ≈
R∑

r=1

A[m, r]sr(t).

The only structure we will impose on individual signals is that they are real-

valued, bandlimited, and periodic. We will extend the results to a more general class

of non-periodic signals in Section 5.2.6. Thus, signals live in a finite-dimensional

linear subspace and provide a natural way of discretizing the problem; that is, what

exists in Xc(t) for t ∈ [0, 1] is all there is to know, and each signal can be captured

exactly with W equally-spaced samples, which, for the most part, reduces the clutter

in mathematics. In a detailed manuscript under preparation, we discuss how to adapt

our results to more realistic signal models in which the (non-periodic) signal is win-

dowed in time and overlapping sections are reconstructed jointly. Each bandlimited,

periodic signal in the ensemble can be written as

xm(t) =
B∑

f=−B

αm[f ] ej2πft,

where αm[f ] are complex but have symmetry αm[−f ] = αm[f ]∗ to ensure that xm(t)

is real. We can capture xm(t) perfectly by taking W = 2B+1 equally spaced samples

per row. We will call this the M ×W matrix of samples X; of course, knowing every

entry in this matrix is the same as knowing the entire signal ensemble. We can write

X = CF , (4.1.2)
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where F is a W ×W normalized discrete Fourier matrix and C is a M ×W matrix

whose rows contain Fourier series coefficients for the signals in Xc(t). Matrix F is

orthonormal, while C inherits the correlation structure of the original ensemble. The

estimate of the covariance matrix of the ensemble from W samples is then defined as

RXX = lim
W→∞

1

W
XX∗.

We will be concerned with estimating RXX from much fewer samples than dictated

by Shannon-Nyquist framework.

4.1.2 Architectural components

In addition to analog-to-digital converters, our proposed architectures will use three

standard components: analog vector-matrix multipliers, modulators, and linear time-

invariant filters. The analog vector-matrix multiplier (AVMM) produces an output

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AA 

AVMM

M £N

AXc(t) AXc(t)

ADCx(t) x(tk)

LTI ¯lter
h(t)x(t) x(t) ¤h(t)

d(t)

x(t) x(t)d(t)

(a)

(b)

(c)

(d)

Figure 17: (a)The analog vector matrix multiplier (AVMM) takes random linear
combinations of M input signals to produce N output signals. The action of AVMM
can be thought of as the left multiplication of random matrix A to ensemble Xc(t).
Intuitively, this operation amounts to distributing energy in the ensemble equally
across channels. (b) Modulators multiply a signal in analog with a random binary
waveform that disperses energy in the Fourier transform of the signal. (c) Random
LTI filters randomize the phase information in the Fourier transform of a given signal
by convolving it with hc(t) in analog, which distributes energy in time. (d) Finally,
ADCs convert an analog stream of information in discrete form. We use both uniform
and non-uniform sampling devices in our architectures.
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signal ensemble AXc(t) when we input it with signal ensemble Xc(t), where A is an

N ×M matrix whose elements are fixed. Since the matrix operates pointwise on the

ensemble of signals, sampling output AXc(t) is the same as applying A to matrix X

of the samples (i.e., sampling commutes with the application ofA). Currently, analog

VMM blocks can be built with hundreds of inputs and outputs and with bandwidths

in the tens-to-hundreds of megahertz [33, 84]. We will use the VMM block to ensure

that energy disperses more or less evenly throughout the channels. If A is a random

orthogonal transform, it is highly probable that each signal in AXc(t) will contain

about the same amount of energy regardless of how the energy is distributed among

the signals in Xc(t) (formalized in Lemma 4.2.1 below), allowing us to deploy equal

sampling resources in each channel while ensuring that resources on channels that are

“quiet” are not being wasted.

The second component of the proposed architecture is the modulators, which

simply take a single signal x(t) and multiply it by fixed and known signal dc(t). We

will take dc(t) to be a binary ±1 waveform that is constant over time intervals of a

certain length 1/W . That is, the waveform alternates at the Nyquist sampling rate.

If we take W samples of dc(t)x(t) on [0, 1], then we can write the vector of samples y

as

y = Dx, (4.1.3)

where x is the W -vector containing the Fourier coefficients of x(t), and D is an Ω×Ω

diagonal matrix whose entries are samples d ∈ RΩ of dc(t). We will choose a binary

sequence that randomly generates dc(t), which amounts to D being a random matrix

of the following form:

D =




d[0]

d[1]

. . .

d[W − 1]




where d[n] = ±1 with probability 1/2, (4.1.4)
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and the d[n] are independent. Conceptually, the modulator disperses the information

in the entire band of x(t) — this allows us to acquire the information at a smaller

rate by filtering a sub-band as will be shown in Section 4.2.

Compressive sampling architectures based on the random modulator have been

analyzed previously in the literature [67,96]. The principal finding is that if the input

signal is spectrally sparse (meaning the total size of the support of its Fourier trans-

form is a small percentage of the entire band), then the modulator can be followed

by a low-pass filter and an ADC that takes samples at a rate comparable to the size

of the active band. This architecture has been implemented in hardware in multiple

applications [49,50,56,68,71].

The third type of component we will use to preprocess the signal ensemble is a

linear time-invariant (LTI) filter that takes an input x(t) and convolves it with a fixed

and known impulse response hc(t). We will assume that we have complete control over

hc(t), even though this brushes aside admittedly important implementation questions.

Because x(t) is periodic and bandlimited, we can write the action of the LTI filter as

a W ×W circular matrix H operating on samples x (the first row of H consists of

samples h of hc(t)). We will make repeated use of the fact that H is diagonalized by

the discrete Fourier transform:

H = F HĤF , (4.1.5)

where F is the W ×W normalized discrete Fourier matrix with entries, and Ĥ is a

diagonal matrix whose entries are ĥ =
√
WFh. The vector ĥ is a scaled version of

the non-zero Fourier series coefficients of h(t).

To generate the impulse response, we will use a random unit-magnitude sequence
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in the Fourier domain . In particular, we will take

Ĥ =




ĥ(0)

ĥ(1)

. . .

ĥ(W − 1)




(4.1.6)

where

ĥ(ω) =





±1,with prob. 1/2, ω = 0

ejθω , with θω ∼ Uniform([0, 2π]), 1 ≤ ω ≤ (W − 1)/2

ĥ(W − ω + 1)∗, (W + 1)/2 ≤ ω ≤ W − 1

. (4.1.7)

These symmetry constraints are imposed so that h (and hence, hc(t)) is real-valued.

Conceptually, convolution with hc(t) disperses a signal over time while maintaining

fixed energy (note that H is an orthonormal matrix).

Convolution with a random pulse followed by sub-sampling has also been analyzed

in the compressed sensing literature [46, 48, 79, 97]. If the random filter is created in

the Fourier domain as above, then following the filter with an ADC that samples at

random locations produces a universally efficient compressive sampling architecture

— the number of samples that we need to recover a signal with only S active terms

at unknown locations in any fixed basis scales linearly in S and logarithmically in

ambient-dimension W .

4.2 Main Results: Sampling Architectures

This section presents the main results and their implications on the problem of efficient

sampling of the ensemble of correlated signals. We will present a simplistic case of a

known correlation structure first to motivate the problem followed by a discussion on

each sampling architecture and a presentation of the main results.
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4.2.1 Known correlation structure

If the mixing matrixA for ensembleXc(t) is known at the receiver, then a straightfor-

ward way exists to sample the ensemble efficiently. Let A = UΣV T be the singular

value decomposition of A, where U is M × R matrix with orthogonal columns, Σ

is R × R diagonal matrix, and V is W × R with orthogonal rows. Then an efficient

way is to whiten ensemble A with UT and sample the resulting R signals (each at

rate W ). This scheme is shown in Figure 18. X can be written as a multiplication

of matrix U and R ×W matrix Y , which contains the Nyquist samples of signals

x1(t), · · · ,xR(t) respectively in its R rows. The signal ensemble can the be obtained

using the multiplicaion

X = UY .

Therefore, if we know the correlation structureU , thenX and henceXc(t) (using sinc

interpolation of samples in X) can be recovered from the optimal total sampling rate

of RW samples per second. In practice, the correlation structure of ensemble Xc(t) is

AVMM

Xc(t)

ADC

ADC…
 

=Y

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAAA 

M £R

UT
UTXc(t)

Figure 18: If, we know the correlation structure then efficient sampling structure is
to whiten with UT and then sample, which requires R ADCs, each operating at a
rate W samples per second. Hence, ADCs take a total of RW samples per second,
RW being the degrees of freedom in the R signals bandlimited to W/2.

not known and in this paper, we focus on designing sampling strategies that enable the

blind acquisition (unknown correlation structure) of the signal ensemble at a sampling

rate within log factors of the optimal sampling rate of RW samples per second. The
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sampling schemes take generalized samples of signals by performing some analog

preprocessing of the signals using VMMs, filters, and modulators. The randomness

introduced by these components disperses energy over time and across channels so

that the ADCs are always sensing information; that is, injection of randomness allows

the wise use of sampling resources.

4.2.2 Matrix recovery

The generalized samples of the signals obtained by the sampling architectures can be

used for the recovery of ensemble Xc(t) using convex optimization. Given L linear

samples in y of matrix X0 through linear operator A, i.e.,

y = A(X0), y ∈ RL, X0 ∈ RM×W ,

we solve

min
X

‖X‖∗ (4.2.1)

subject to y = A(X)

where ‖X‖∗ is the nuclear norm; the sum of the singular values of X. But when

noise ξ, such that ‖ξ‖2 ≤ δ, contaminates the measurements

y = A(X0) + ξ, (4.2.2)

we instead solve the following quadratically constrained convex optimization program

min
X

‖X‖∗ (4.2.3)

subject to ‖y −A(X)‖2 ≤ δ.

An optimal sampler would recover X0 from y when we sample at a rate of RW , which

is roughly the information content in the correlated signal ensemble Xc(t).
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4.2.3 Architecture 1: Random sampling of time-dispersed correlated sig-
nals

The architecture presented in this section simply consists of a non-uniform sampling

(nus) ADC per channel. The ADC in each channel operates randomly and inde-

pendently of the ADCs in the rest of the channels. In the time window t ∈ [0, 1),

an nus ADC takes input signal xm(t) and returns the samples {xm(tk) : tk ∈ Tm ⊂

{0, 1/W, · · · , 1− 1/W}. The average sampling rate is |Tm| = Ω for each of the ADC.

Thus, the bank of M nus ADCs sample input signal ensemble randomly on a uniform

grid at rate MΩ. The sampling architecture is shown in Figure 19. The sampling

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: A 
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Figure 19: M signals recorded by the sensors are sampled separately by the indepen-
dent random sampling ADCs, each of which samples on a uniform grid at an average
rate of Ω samples per second. This sampling scheme takes on the average a total of
MΩ samples per second and is equivalent to observing MΩ entries of the matrix X
at random

model is equivalent to observing L = MΩ randomly chosen entries of the matrix

of samples X, defined in (4.1.2). This problem is exactly the same as the matrix-

completion problem [19, 27], which states that given a small number of entries of a

low-rank matrix, we can fill in missing entries under some incoherence assumptions

on the matrix X. Since X is rank-R, its svd is

X = UΣV ∗, (4.2.4)
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where U ∈ RM×R, Σ ∈ RR×R, and V ∈ RW×R. The coherence is then defined as

µ2
0 = max

{
M

R
max

1≤i≤M
‖U ∗ei‖2

2 ,
W

R
max

1≤i≤W
‖V ∗ei‖2

2 ,
MW

R
‖UV ∗‖2

∞

}
. (4.2.5)

Now the matrix-completion results [19, 27] in the noiseless case assert that if MΩ &

Cµ2
0R(W + M) log2(W ), the solution of the nuclear norm minimization program

(4.2.1) (with A : RM×W → RMϕ such that A maps X to randomly chosen entries of

X) exactly equals X with high probability. The result indicates that the sampling

rate scales (within some log factors) with the number R of independent signals rather

than with the total number M of signals in the ensemble. When the measurements

y are contaiminated with noise as in (4.2.2) then the the result in [27] suggest that

the solution X̃ to the optimization problem (4.2.3) satisfies

‖X̃ −X‖F ≤ Cµ0
√

min(M,W )δ,

where Cµ0 is a contant that depends on the coherence µ0, defined in (4.2.5).

As discussed before, the number of samples for the matrix completion incearse with

increasing µ2
0. The coherence parameter is small for matrices with even distribution of

energy among their entries; see, [19] for details. Furthermore, signals are also known

to be bandlimited, which implies that Architecture 1 is more effective for the efficient

sampling of signals dispersed across channels and time. We will show in Section 4.2.5

that using AVMM and filters at the front end of the sampling scheme forces the signal

energy to be distributed evenly. This will allow us to build sampling architectures

that are effective uniformly for all SlS.

4.2.4 Architecture 2: The random modulator for correlated signals

To efficiently acquire the signal ensemble lying in a subspace, the architecture 2, shown

in Figure 20, follows a two-step approach. In the first step, each of the M signals

undergo analog preprocessing, which involves modulation, and low-pass filtering. The

modulator takes an input signal xm(t) and multiplies it by a fixed and known dm(t).
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We will take dm(t) to be a binary ±1 waveform that is constant over an interval of

length 1/W . Intuitively, the modulation results in the diversification of the signal

information over the frequency band of width W . The diversified analog signals are

then processed by an analog-low-pass filter; implemented using an integrator, see [96]

for details. The low-pass filter only selects a frequency sub-band (or a subspace)

of width roughly equal to Ω, and as will be shown in Theorem 4.2.1, this partial

information is enough for the signal reconstruction. The partial information suffices

as the signals are scrambled using modulators before low-pass filtering. Note that the

low-pass filter in each channel in Fig. 20 can be replaced; in general, by a band-pass

filter, i.e., the location of the band does not matter only its width does. This also

explains why we don’t need to know the subspace in which signals live in advance.

In the second step, the filtered signal is sampled by an ADC in each channel at

a lower rate Ω. The result in Theorem 4.2.1 asserts that Ω is roughly of a factor of

R/M smaller than the Nyquist rate W .

code d1

code d2

code dM

X …
 …
 

rateW

rateW

rateW …
 

LTI
low pass

LTI

LTI

low pass

low pass

ADC

ADC

ADC

rateΩ 

rateΩ 

rateΩ 

Figure 20: The random demodulator for multiple signals lying in a subspace: M
signals lying in a subspace are preprocessed in analog using a bank of independent
modulators, and low-pass filters. The resultant signal is then sampled uniformly by
an ADC in each channel operating at rate Ω samples per second. The net sampling
rate is L = ΩM samples per second.

System in matrix form

Each of the M input signals xm(t), 1 ≤ m ≤M is multiplied by an independently
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generated random binary waveform dm(t), 1 ≤ m ≤ M alternating at rate W . That

is, the output after the modulation in the mth channel is

ym(t) = xm(t) · dm(t), m = 1, · · · ,M, and t ∈ [0, 1).

The ym(t) are then low-pass filtered using an integrator, which integrates ym(t) over

an interval of width 1/Ω and the result is then sampled at rate Ω using an ADC. The

samples taken by the ADC in the mth channel are

ym[n] =

∫ n/Ω

(n−1)/Ω

ym(t)dt, n = 1, · · · ,Ω.

The integration operation commutes with the modulation process; hence, we can

equivalently integrate the signals xm(t), 1 ≤ m ≤M over the interval of width 1/W ,

and treat them as samples X0 ∈ RM×W of the ensemble Xc(t). The entries X0[m,n]

of the matrix X0 are

X0[m,n] =

∫ n/W

(n−1)/W

xm(t)dt,

=
∑

|ω|≤W/2

C[m,ω]

[
eι2πω/W − 1

ι2πω

]
e−ι2πωn/W ,

where the bracketed term representing the low-pass filter

L̃[ω] =

[
eι2πω/W − 1

ι2πω

]

is evaluated in the window ω = 0,±1, · · · ,±(W/2−1),W/2. We will use an equivalent

evaluation L[ω] of L̃[ω] in the window ω = 1, · · · ,W . The Fourier coefficients of

C[m,ω] of X defined in (4.1.2) are related to the Fourier coefficients C0[m,ω] of X0

C0[m,ω] = C[m,ω]L[ω] ω = 1, · · · ,W, (4.2.6)

and in time domain

X0 = C0LF , (4.2.7)

where L is a W ×W diagonal matrix containing L[ω] as its diagonal entries, F is the

W ×W DFT matrix, and C0 is the coefficients matrix with entries defined in (4.2.6).
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Since C0 inherits its low-rank structure from C; therefore, X0 is also a low-rank

matrix of rank R. In the rest of this write up, we will consider recovering the rank

R matrix X0. Since L is well-conditioned, the recovery of X0 implies the recovery of

X in (4.1.2).

In light of (4.1.3), the W equally-spaced samples of dm(t)xm(t) are Dmxm, where

xm is contains the W uniformly-spaced samples of xm(t), and Dm, as in (4.1.4), is

a random diagonal matrix containing random binary signs dm[n] along the diagonal.

The binary waveform for the modulators in each channel is independently generated,

which amounts to {Dm} being independent.

The samples ym ∈ RΩ in t ∈ [0, 1) taken by the ADC in the mth branch are

ym = PDmxm, 1 ≤ m ≤M,

where xm ∈ RW are the rows of X0 defined in (4.2.7); Dm is the independent in-

stantiation of W ×W random diagonal matrix defined in (4.1.4), and corresponds to

the modulator in the mth branch; and P : Ω ×W is the matrix for the integrator

(used as low-pass filter; for more details, see [96]) that contains ones in locations

(α, β) ∈ (j,Bj), for j = 1, · · · ,Ω, where

Bj = {(j − 1)W/Ω + 1 : jW/Ω} 1 ≤ j ≤ Ω,

where we are assuming for simplicity that Ω is a factor of W . Since the action

of the integrator commutes with the action of the modulator, the operation of the

integrator can be simply represented as a block-diagonal matrix P operating on the

modulated entries of the rows of X0, which contains the samples of the integrated

signals. Putting it all together, the samples acquired by the ADCs can be written

as a random block-diagonal matrix times the vector vec(X0), formed by stacking the
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rows of low-rank X0 as

y =




y1

...

yM




=




PD1

. . .

PDM



· vec(X0), (4.2.8)

where y ∈ RΩM is the vector containing the samples acquired by all the ADCs. We

will denote by L, the total number of samples per second MΩ taken by all the ADCs.

Sampling theorem: Exact and stable recovery

Clearly, the samples y at the ADCs are a linear transformation A of the rank-R

matrix X0

y = A(X0).

Let X0 = UΣV T be the reduced form svd of X0 with U : M × R, V : W × R

being the matrices of left and right singular vectors, respectively, and Σ : R×R being

a diagonal matrix containing singular values of X0. Let {ei}1≤i≤M , and {ēk}1≤k≤W

be the standard basis vectors of dimensions M , and W , respectively. The coherences

of X0 is defined as

µ2
1 =

M

R
max

1≤i≤M
‖U ∗ei‖2

2, (4.2.9)

µ2
2 =

W

R
max

1≤j≤W
‖V ∗ēj‖2

2, (4.2.10)

and

µ2
3 =

MΩ

R
max

1≤i≤M
1≤j≤Ω

∑

k∼Bj

〈UV ∗, eiē∗k〉2. (4.2.11)

A simple calculation shows that 1 ≤ µ2
1 ≤ M/R, and 1 ≤ µ2

2 ≤ W/R; see, [19] for

details. We will only show here that 1 ≤ µ2
3 ≤MW/R. Begin with

∑

k∼Bj

〈UV ∗, eiē∗k〉2 ≤
∑

k∼Bj

max
i
‖U ∗ei‖2

2 ·max
k
‖V ∗ēk‖2

2

= |Bj|µ2
1µ

2
2

R2

MW
,

where the first inequality follows from the Cauchy-Schwartz’s inequality, and the

last equality follows from the definitions in (4.2.9), and (4.2.10). The fact that
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µ2
3 ≤ MW/R follows by using the upper bounds on µ2

1, and µ2
2, and plugging in

the definition. Similarly, the lower bound is obtained by summing over j on both

sides of the definition as follows

∑

j

µ2
3 ≥

MΩ

R

∑

j

∑

k∼Bj

〈UV ∗, eiē∗k〉2,

which implies that

Ω · µ2
3 ≥

MΩ

R
‖Ue∗i ‖2

2,

and it follows that µ2
3 ≥ 1 by using the fact that µ2

1 ≥ 1. All three coherence quantities

take smallest values for equally dispersed singular vectors and largest values for sparse

singular vectors [19]. In our context, this implies that the coherence parameters

quantify the dispersion of the signal-ensemble energy across time and channels.

Theorem 4.2.1. Suppose L = MΩ measurements of the ensemble X0 are taken

using (4.2.8). If

Ω ≥ CβRmax((W/M) max(µ2
1µ

2
3),max(µ2

2, µ
2
3)) log3(WM) (4.2.12)

for some β > 2, then the minimizer X̃ to the problem (4.2.1) is unique and equal to

X0 with probability at least 1−O((WM)1−β).

The result indicates that each ADC operates at a rate Ω that is smaller than

the Nyquist rate W by a factor of R/M . The net sampling rate L scales with the

number R of independent signals rather than with the total number M of signals in

the ensemble. Thus, the random demodulator provably acquires multiple signals lying

in a subspace at a rate that is within log factors of the optimal sampling rate without

knowing the subspace in advance. The coherence terms suggest that the sampling

architecture is more effective for sampling signals with energy dispersed evenly across

channels and time.

Stable recovery
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In a realistic scenario, the measurements are almost always contaminated with

noise, as in (4.2.2). In the case, when the noise is bounded, i.e., ‖ξ‖2 ≤ δ, then

following the template of the proof in [27], it can be shown that under the conditions

of Theorem 4.2.1, the solution X̃ of (4.2.3) obeys

‖X̃ −X0‖F ≤ C
√

min(W,M)δ, (4.2.13)

with high probability; for more details on this, see a similar stability result in The-

orem 2 in [4]. The above stability result is weak due to the multiplication factor
√

min(W,M). In contrast to the optimization program in (4.2.3), the solution X̃ to

a slightly different optimization program:

X̃ = argminX{‖X‖2
F − 2〈y,A(X)〉+ λ ‖X‖∗}, (4.2.14)

proposed in [53] can be theoretically shown to obey essentially optimal stable recov-

ery results. By completing the square, it is easy to see that the above esimator is

equivalent to

X̃ = argminX{‖X −A∗(y)‖2
F + λ‖X‖∗}.

Taking the sub-differential ∂C(X) of the cost function C(X) = {‖X − A∗(y)‖2
F +

λ‖X‖∗} and using the fact X̃ is the minimizer iff 0 ∈ ∂C(X), it can be shown

[53] that the estimate X̃ is a soft thresholding of the singular values of the matrix

XA = A∗(y) ∈ RM×W

X̃ =
∑

i

{σi(XA)− λ

2
}+ui(XA)v∗i (XA),

where x+ = max{x, 0}; in addition, ui(XA), and vi(XA) are the left and right

singular vectors of the matrix XA, respectively; and σi(XA) is the corresponding

singular value.

In comparison to the estimator (4.2.14), the matrix Lasso in (4.2.3) does not use

the knowledge of the known distribution of A and instead minimizes the empirical
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risk ‖y −A(X)‖2 = ‖y‖2
2 − 2〈y,A(X)〉+ ‖A(X)‖2

2. Knowing the distribution, and

the fact that EA∗A = I holds in our case, we replace ‖A(X)‖2
2, by its expected

value E ‖A(X)‖2
2 = ‖X‖2

F in the empirical risk to obtain the estimator in (4.2.14).

Although the KLT estimator is easier to analyze, and gives optimal stable recovery

results in theory but it does not empirically perform as well as matrix Lasso.

Before stating the stable recovery results, we introduce the statistical assumptions

on the additive measurement noise ξ, which are given as

max
ij

E exp

( |ξij|2
σ2

)
< c̃ (4.2.15)

‖ξ‖2
ψ2

= c
∑

i,j

E ξ2
ij = cLσ2, (4.2.16)

where ψ2 denotes the Orlicz-2 norm of vector ξ ∈ RL that contains ξij as its entries.

The choice of the indexing with double-index i, j will be clear in Section 4.5. With

this the following result is in order.

Theorem 4.2.2. Let X0 ∈ RM×W be a rank R matrix, and suppose that we observe

yij as in (4.2.2) contaminated with noise ξij such that (4.2.15) holds. Then with

probability at least 1 − O((WM)−β) for some β > 1, the solution X̃ to (4.2.14) will

obey

‖X̂ −X0‖F ≤ C‖ξ‖ψ2 , (4.2.17)

for a fixed constant C, when Ω ≥ Cβµ2
3 max(W/M, 1) log2(WM)

Roughly speaking, the stable recovery theorem states that the nuclear norm pe-

nalized estimators are stable in the presence of additive measurement noise. The

results in Theorem 4.2.2 are derived assuming that ξij are random with statisitcs in

(4.2.15). In contrast, the stable recovery results in the compressed sensing literature

only assume that the noise is bounded, i.e., ‖ξ‖2 ≤ δ, where ξ is the noise vector

introduced earlier. Here, we give a brief comparison of the results in Theorem (4.2.2)

with the stable recovery results in [27,41].
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Compare the result in (4.2.13) with (4.2.17), it follows that our results improve

upon the results in [27] by a factor of 1/(W ∧M). We will also compare our stable

recovery results against the stable recovery results derived in [41]. The result roughly

states if the linear operator A satisfies the matrix RIP [76], and ‖ξ‖2 ≤ δ, then the

solution X̃ to (4.2.3) obeys

‖X̃ −X0‖F ≤ Cδ. (4.2.18)

The above result is essentially optimal stable recovery result. In comparison to

(4.2.18), the result in (4.2.17) is also optimal, however, we prove it for a different

estimator and under a statistical bound on the noise term ‖ξ‖ψ2 ≤ δ. In addition, we

also donot require the matrix RIP for A.

The result in Theorem 4.2.1 is more effective for incoherent X. Roughly speaking,

the incoherence conditions are satisfied by a matrix with even distribution of energy

among its entries. The incoherence conditions on the matrix of samples X0 when

combined with the fact that the signals are also known to be bandlimited implies

that Architectures 2 is also feasible for the efficient sampling of spread out correlated

signal ensembles. In contrast, a universal sampling scheme will work for any ensemble

of correlated signals. We can design such a sampling scheme by preprocessing signals

in analog by components that transform (with high probability) matrix X to an

incoherent matrix. We present such an architecture in the following section.

4.2.5 Architecture 3: Uniform sampling architectures

The performance of Architecture 1 and 2 depends on the coherences in defined (4.2.5);

and (4.2.9), (4.2.10), (4.2.11) of ensemble Xc(t). That is, the net sampling rate

depends on the energy distribution of the signal ensemble. In this section, we present

uniform sampling architectures that sample any given ensemble of correlated signals

with no prior requirements on the energy distribution. We will present uniform

versions of Architecture 1 and 2 shown in Figure 21, and 22. In both uniform-sampling
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schemes, we force the coherences to be small by adding a little analog preprocessing

using AVMM and filters at the front end of the Architecture 1 and 2.

AVMM

A…
 

…
 

LTI ¯lter
h(t)

LTI ¯lter
h(t)

LTI ¯lter
h(t)

M £M

X0

Ω avg-rate

Ω 

Ω avg-rate

avg-rate

ADC
nus

ADC
nus

ADC
nus

Figure 21: Analog vector-matrix multiplier (AVMM) takes random linear combina-
tions of M input signals to produce M output signals. This equalizes energy across
channels. The random LTI filters convolve the signals with a diverse waveform that
results in dispersion of signals across time. The resultant signals are then sampled,
at locations selected randomly on a uniform grid, at an average rate Ω, using a non-
uniform sampling (nus) ADC in each channel.

The sampling architectures shown in Figure 21, and 22 preprocess the signals in

analog with an analog-vector-matrix multiplier that spreads energy across channels.

The analog ensemble is then processed by a bank of random filters that spread the

energy over time. The combined action of the AVMM with a random matrix A and

the analog LTI filters with a random matrix H forces the processed output Xp to

be incoherent w.h.p. The incoherent signals are then either sampled randomly with

an nus ADC in each channel, as in Architecture 1, or sampled unifromly using a

modulator, an integrator, and a uniform ADC in each channel, as in Architecture2.

The AVMM takes the random linear combination of M input signals to produce

M output signals. The action of the AVMM can be modeled by left multiplication of

random matrixA ∈ RM×M with ensembleX, which then equalizes w.h.p., the energy

in each of the channels regardless of the initial energy distribution. Furthermore, the

all pass LTI filters convolve the signals with a diverse impulse response hc(t), which

disperses signal energy over time w.h.p. (see Lemma 4.2.1). We will use the same
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Figure 22: Analog vector-matrix multiplier (AVMM) takes random linear combina-
tions of M input signals to produce M output signals. This equalizes energy across
channels. The random LTI filters convolve the signals with a diverse waveform that
results in dispersion of signals across time. The resultant signals are then sampled
uniformly at rate Ω using the random demodulator in each channel.

random LTI filter hc(t) in each channel. The action of the random convolution [79]

of hc(t) with each signal in the ensemble can be modeled by the right multiplication

of a circulant random orthogonal matrix H ∈ RW×W with X, assuming W is even;

it will be clear how to extend the argument to W odd. We can write H = WQ∗,

where

Q[n, ω] =





1√
W

ω = 0

2√
W

cos
(

2πωn
W

)
ω = [1, W

2
− 1]

1√
W

(−1)k−1 ω = W
2

2√
W

sin
(

2πωn
W

)
ω = [W

2
+ 1,W − 1]

(4.2.19)
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W [n, ω] =





z0√
W
, ω = 0

2√
W

cos
(

2πωn
W

+ θω
)

ω = [1, W
2
− 1]

zW/2√
W

(−1)k−1, ω = W
2

2√
W

sin
(

2πωn
W

+ θω
)
, ω = [W

2
+ 1,W − 1]

. (4.2.20)

and z0, zW/2 = ±1 with equal probability and θω for ω = 1, · · · ,W/2 − 1 are

uniform on [0, 2π] and all W/2 + 1 of these random variables are independent.

Application of the AVMM with random orthogonal A and the LTI random filters

with random orthogonal H on input ensemble X spreads signals out across channels

and over time w.h.p. As a result, we obtain Xp ∈ RM×W :

Xp = AXHT = AUΣV THT . (4.2.21)

Let Up = AU and Vp = HV , where Up ∈ RM×R,Vp ∈ CW×R be the left and right

singular vectors of matrix Xp, respectively. Note that matrix Xp is an isometry with

X and has the same rank as X. The left and right singular vectors Up and Vp of

Xp are in some sense random orthogonal matrices and hence, incoherent w.h.p. The

following Lemma shows the incoherence of matrix Xp.

Lemma 4.2.1. Fix matrices U ∈ RM×R and V ∈ CW×R of the left and right singu-

lar vectors, respectively, each of which consists of R orthogonal unit norm columns.

Create random orthonormal matrices A ∈ RM×M and H ∈ RW×W . Then

• max1≤i≤M ‖U ∗p ei‖2
2 ≤ Cβ max (R, logM)/M with a probability exceeding 1 −

M−β.

• max1≤j≤W ‖V ∗p ej‖2
2 ≤ Cβ max (R, logW )/W with a probability exceeding 1 −

W−β.

• max1≤i≤M
1≤j≤W

〈UpV
∗
p , eiē

∗
j〉2 ≤ Cβ logW max (R, logM)/MW with a probability ex-

ceeding 1−O(W−β +M−β).
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• max1≤i≤M
1≤j≤Ω

∑
k∼Bj〈UpV

∗
p , eiēk〉2 ≤ Cβ logW max (R, logM)/MΩ with a proba-

bility exceeding 1−O(W−β +M−β).

Proof of Lemma 4.2.1 is presented in Section 4.4.

Sufficient sampling rate for the first uniform sampling architecture

Lemma 4.2.1 combined with the definition (4.2.5) shows tha the coherence pa-

rameter µ2
0 ≤ Cβ log(W ) holds for for R > logM with high probability. Using this

bound in the matrix-completion results [19, 27] in the noiseless case asserts that if

MΩ & CR(W +M) log3(W ), the solution of the nuclear norm minimization program

(4.2.1) exactly equals X with high probability. We are paying an extra log factor in

the measurements but now there is no dependence on the energy distribution of the

ensemble.

Sufficient sampling rate for the second uniform sampling architecture

Combining Lemma 4.2.1 with Theorem 4.2.1 immediately provides with the fol-

lowing corollary.

Corollary 3. Suppose Ω measurements of the ensemble X0 are taken through the

uniform random demodulator setup. If

Ω ≥ CβRmax(W/M, 1) log4(WM) (4.2.22)

for some β > 1, and R > logM , the minimizer X̃ to the problem (4.2.1) is unique

and equal to X0 with probability at least 1−O(WM)−β.

Hence, we can recover X̃ and hence, X in both uniform sampling architectures

in Figure 21, and 22 using the nuclear-norm minimization.

4.2.6 Application: Compressive parameter estimation in array processing

In many array processing applications, the goal is to estimate the parameters of mul-

tiple signals from the samples acquired. The parameters of interest include: the angle
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of arrival of wavefronts impinging on antenna arrays, this arises in several applica-

tions, such as surveillance radars, sonars, and seismic exploration; the estimation of

frequency content of signals in several spectral estimation tasks; and the estimation

of carrier frequency offsets in OFDMA-based wireless communications.

As an illustration, we will discuss here the angle-of-arrival estimation in wide-

band radars. Suppose, an application at hand is concerned with the detection of the

location of R point sources radiating energy. A reasonable assumption is that the

energy arrives at the sensors as a sum of plane waves and the signals are narrow-band

centered around frequency ωc. The signal radiated by the rth point source is

sr(t) = g(t)e−jωct,

where the narrow-band assumption implies that the envelop g(t) is slowly varying,

i.e., for small time delays τ , we have g(t− τ) ≈ g(t). For this reason, the time delay

only induces a phase shift on sr(t). This is to say,

sr(t− τ) ≈ sr(t)e
−jωcτ .

As a result, the signal xm(t) at the mth antenna element is

xm(t) =
R∑

r=1

am(θr)sr(t− τm(θr)),

where τm(θr) is the propagation delay at the mth antenna with respect to a reference

point, and am(θr) is the mth array-element response to the plane wave incident at an

angle θr. By arranging the signals xm(t), 1 ≤ m ≤ M as the rows of Xc(t), we can

write the signal ensemble received at the antenna array as

Xc(t) = A(θ)Sc(t), (4.2.23)

where A(θ) is an M × R matrix containing as its rth column, the array gain vector

at angle θr

a(θr) = [a1(θr)e
−jωcτ1(θr), · · · , aM(θr)e

−jωcτM (θr)],
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and Sc(t) can be thought of as a matrix containing R independent analog signals

sr(t), 1 ≤ r ≤ R as its rows. The model in (4.2.23) is more general and is applicable to

a wide variety of problems involving estimation of other parameters like frequency, or

the estimation of location in an azimuth/elevation/range system, where the location

of sources is specified by three angles θ, φ, and γ. In general, the number R of point

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 
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Figure 23: Problem Setup: Estimation of Location Parameters of Point Sources

sources is much smaller than the number M of antenna arrays; that is, the signal lives

in a smaller subspace. Multiple signal classification algorithm such as MUSIC [86]

estimate the signal subspace based on the estimate of the signal covariance matrix,

and then find the intersection of this subspace with the array manifold, which is a set

composed of all steering vectors a(θr) for the entire range of the parameter θr [81].

This procedure reveals the estimates of the unknown parameter, which in this case is

the direction of arrival. The central role in this computation is the estimation of the

covariance matrix RXX , which requires sampling the signal ensemble Xc(t) to obtain

the corresponding matrix of samples X given as

X = A(θ)S, (4.2.24)

whereX : M×W , and S : R×W are the matrix of samples. The transformation from

(4.2.23) to (4.2.24) involves sampling analog signals xm(t) using ADCs. With an ever

increasing trend of radars operating at high frequencies in the range of 35-40 GHz, the

sampling burden on the ADCs keeps escalating. The advances in the sampling rate
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of the ADCs are not up to pace with the advances in signal processing. Therefore,

it is important to design the systems in a way that reduces the sampling burden on

the ADCs. Since Xc(t) is by construction an ensemble consisting of multiple signals

lying in a subspace with R � M , the sampling architectures presented can be used

to acquire the ensemble Xc(t) efficiently at a lower sampling rate. The benefits are

two-fold: first, the covariance matrix RXX := limW→∞ 1/WXX∗ of input signal

ensemble Xc(t) can be estimated accurately from fewer samples; second, in some

cases the effective frequency range at which radar can operate can increase as the

ADCs are sampling at sub-Nyquist rate.

In summary, the sampling architectures can be employed to efficiently acquire

multiple signals lying in a subspace that can be useful in compressively estimating

several parameters of interest in varoious signal processing applications.

…

µ1

d d

incoming signalsµ2

Figure 24: Angle of arrival detection in radar

4.3 Numerical Experiments

In this section, we study the performance of the proposed sampling architectures

with some numerical experiments. Since the first sampling architecture reduces to
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an already well-studied matrix completion problem, we have chosen here to present

only the sampling performance of Architecture 2, which reduces to a matrix recovery

problem from a block-diagonal measuremnt matrix that has not been studied before.

4.3.1 Sampling performance

In all of the experiments in this section, we generate the unknown rank-R matrix

X0 by the multiplication of a tall M × R, and a fat R×W Gaussian matrices. Our

objective is to recover a batch of M = 100 signals, with W = 1024 samples taken in

a given window of time using Architecture 2. We will use the following parameters

to evaluate the performance of the sampling architecture:

Oversampling factor : η =
MΩ

R(W +M −R)
,

where the oversampling factor is the ratio between the combined sampling rate of all

the ADCs in Figure 20, and the degrees of freedom in rank-R matrix of samples X0.

The successful reconstruction is declared when the relative error obeys

Relative error :=
‖X̃ −X0‖F
‖X0‖F

≤ 10−2.

The first experiment shows a graph, in Figure 25(a), between the oversampling

factor η, and R. Each point, marked with a black dot, represents the minimum

sampling rate required for the successful reconstruction of a given value of rank R.

The empirical probability of success for each point is 0.99. The empirical probability

is computed over 100 iterations with a new instance of randomly generated X0 in

each iteration. The red line shows the least-squares fit of the black points. It is clear

from the plot that the for reasonably large values of R, the sampling rate is within a

small constant of the optimal rate R(W +M −R). In context of the application, and

under the narrow-band assumption described in Section 4.2.6, the graph in Figure

25(b) shows that for a fixed number of sources R = 10, the sufficient sampling rate

Ω required for the successful reconstruction of the ensemble decreases inversely with
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increasing number M of the receiving antennas. Each black point gives the minimum

sampling rate required for the successful reconstruction with probability 0.99. The

red line is the least-squares fit of these marked points. In other words, Figure 25(b)

illustrates the relationship between the number of ADCs, or receiving antennas M ,

and the sampling rate Ω of each of the ADC for a fixed number of sources R = 10.

The important point is that as we increase the number of antennas the the sampling

burden on each of the ADCs decreases.
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Figure 25: Performance of the random demodulator for multiple signals lying in a
subspace. In these experiments, we take an ensemble of 100 signals, each bandlimited
to 512Hz. The probability of success is computed over 100 iterations. (a) Oversam-
pling factor η as a function of the number R of underlying independent signals. The
blue line is the least-squares fit of the data points. (b) Sampling rate Ω versus the
number M of recieving antennas. The blue line is the least-sqaures fit of the data
points.

4.3.2 Stable recovery

In the second set of experiments, we study the performance of the the recovery algo-

rithm when the measurements are contaminated with noise as in (4.2.2). The noise

vector is standard Gaussian, i.e., ξ ∼ N (0, σ2I). We select δ ≤ σ(L +
√
L)1/2; a

natural choice as the condition ‖xi‖2 ≤ δ holds with high probability. In the first set

of experiments shown in Figure 26, we solve the optimization program in (4.2.3). The
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plot in Figure 26(a) shows the relationship between the signal-to-noise ratio (SNR):

SNR(dB) = 10 log

(‖X0‖2
F

‖ξ‖2
2

)
,

and the realtive error(dB):

Relative error (dB) = 10 log

(
‖X̃ −X0‖2

F

‖X0‖2
F

)

for a fixed oversampling factor η = 3.5. The result shows that the relative error

degrades gracefully with decreasing SNR. In the Figure 26(b), the plot depicts relative

error as a function of the oversampling factor for a fixed SNR = 40dB. The relative

error decrease with increasing sampling rate.
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Figure 26: Recovery using matix Lasso in the presence of noise. The input ensemble
to the simulated random demodulator consists of 100 signals, each bandlimited to
512Hz with number R = 15 of latent independent signals.(a) The SNR in dB versus
the relative error in dB. The oversampling factor η = 3.5. (b) Relative error as a
function of the sampling rate. The SNR is fixed at 40dB.

4.4 Proof of Lemma 4.2.1

We start with the proof of Theorem 4.2.1

Proof. The point (1) is the standard result [57]. We give proof of (2) now. It is a

fact that in (4.2.19) and (4.2.20) for fixed a and θ ∼ Uniform([0, 2π]), the random

variables sign(cos(a+ θ)) and sign(sin(a+ θ)) are independent of one another. Thus
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H has the same probability distribution as WZQ∗, where Z = diag(z) and the

entries of z are i.i.d ±1 random variables. In light of this, we will replace H with

WZQ∗. For a fixed k, we can write

Ṽ ∗ek = V ∗H∗ek = V̂ ∗Zwk

=
W∑

ω=1

z(ω)wk(ω)v̂ω

where V̂ = Q∗V and wk = W ∗ek and v̂ω = V̂ ∗eω is the ωth row of V̂ . We will

apply the following concentration inequality,

Theorem 4.4.1. [58] Let η ∈ Rn be a vector whose entries are independent random

variables with |η(i)| < 1, and let S be a fixed m× n matrix. Then for every t ≥ 0

P {‖Sη‖2 ≥ E ‖Sη‖2 + t} ≤ 2e−t
2/16‖S‖2 ,

where

E ‖Sη‖2 ≤ ‖S‖F .

We can apply the above theorem with S = V̂ ∗Wk, where Wk = diag(wk), and

η = z. In this case, we have

∥∥∥V̂ ∗Wk

∥∥∥
2

F
=

W∑

ω=1

|wk(ω)|2 ‖v̂ω‖2
2

≤ 2

W

W∑

ω=1

‖v̂ω‖2
2

≤ 2R

W
,

and

‖V̂ ∗Wk‖ ≤
√

2

W
‖V̂ ∗‖ =

√
2

W
.

Thus,

P

{
‖Ṽ ∗ek‖2 >

√
2R

W
+ t

√
2

W

}
≤ 2e−t

2/16,
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and

P

{
max

1≤k≤W
‖Ṽ ∗ek‖2 >

√
2R

W
+ t

√
2

W

}
≤ 2We−t

2/16.

We can make this probability less than W−β by taking t ≥ C
√

logW , and (2) follows.

Now for (3), we can write H = WZQ∗. Let w` be the `th column of W ∗ and let

ũ∗k be the kth row of Ũ . For a fixed row index k and column index `, we can write

an entry of Ũ Ṽ ∗ as

(
Ũ Ṽ ∗

)
(k, `) = Ũ(WZQ∗V )∗

= ŨQ̃∗ZW ∗

= (Q̃Ũk)
∗Zw`

=
W∑

ω=1

(Q̃ũk(ω))∗z(ω)w`(ω),

where Q̃ = Q∗V is a tall orthonormal matrix. Since the z(ω) are i.i.d. random

variables, a standard applications of the Hoeffding inequality tells us that

P
{∣∣∣
(
Ũ Ṽ ∗

)
(k, `)

∣∣∣ > λ
}
≤ 2e−λ

2/2σ2

,

where

σ2 =
W∑

ω=1

∣∣∣
(
Q̃ũk(ω)

)∣∣∣
2

|w`(ω)|2

≤
2
∥∥∥Q̃ũk

∥∥∥
2

2

W

=
2 ‖ũk‖2

2

W
.

Thus, with probability exceeding 1− 2W−β

max
1≤k≤M
1≤`≤W

∣∣∣
(
Ũ Ṽ ∗

)
(k, `)

∣∣∣
2

≤ 4(β + 2) logW

W
max

1≤`≤M
‖ũk‖2

2 .

The point (1) tells us that

max
1≤k≤M

‖ũk‖2
2 ≤ Cβ

max (R, logM)

M
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with probability exceeding 1 − M−β. Thus (3) holds with probability exceeding

1−O(W−β +M−β).

4.5 Proof of Theorem 4.2.1

Define a subspace T ⊂ RM×W associated with X0 with svd
∑R

k=1 σkukv
∗
k:

T = {X : X = UZ∗1 +Z2V
∗,Z1 ∈ RW×R,Z2 ∈ RM×R}.

The orthogonal projection of PT onto T is

PT (Z) = UU ∗Z +ZV V ∗ −UU ∗ZV V ∗,

and its orthogonal complement

PT⊥(Z) = (I − PT )(X) = (IM −UU ∗)X(IW − V V ∗).

A sufficient condition for the uniqueness of the minimizer to (4.2.1) is given by the

following Proposition [19,44].

Proposition 5. The matrix X is the unique minimizer to (4.2.1) if ∃Y ∈ Range(A∗)

such that

‖PT⊥(Z)‖∗ − ‖UV ∗ − PT (Y )‖F‖PT (Z)‖F − ‖PT⊥(Y )‖‖PT⊥(Z)‖∗ > 0,

for all Z ∈ Null(A).

Proposition 5 implies that the uniqueness of the minimizer is gauranteed, if ∃Y ∈

Range(A∗), such that

‖PT (Y )−UV ∗‖F ≤
√

Ω

9W
, ‖PT⊥(Y )‖ ≤ 1

2
, (4.5.1)

holds. Also for Z 6= 0, and ∀Z ∈ Null(A) the following

‖PT⊥(Z)‖F ≥
√

Ω

2W
‖PT (Z)‖F (4.5.2)
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is true. To show (4.5.2), for Z ∈ Null(A)

0 = ‖A(Z)‖F

0 ≥ ‖A(PT (Z))‖F − ‖A(PT⊥(Z))‖F ,

which after using the fact that ‖A‖ =
√
W/Ω implies that

‖A(PT⊥(Z))‖F ≤
√
W

Ω
‖P⊥T (Z)‖F . (4.5.3)

In addition, for an arbitrary Z, we have

‖A(PT (Z))‖2
F = 〈A(PT (Z)),A(PT (Z))〉

= 〈Z,PTA∗APT (Z)〉

≥ (1− ‖PTAA∗PT − PT‖)‖PT (Z)‖2
F

≥ 1

2
‖PT (Z)‖2

F , (4.5.4)

where the last inequality is obtained by plugging in ‖PTAA∗PT −PT‖ ≤ 1
2
, which is

true with probability at least 1−O(WM)−β by the application of Corollary 4, using

Ω ≥ CβR(µ2
1(W/M) +µ2

2) log2(WM). Collecting the facts in (4.5.3), and (4.5.4), the

result in (4.5.2) is obtained.

4.5.1 Measurements as a matrix trace inner product

The (i, j)th sample taken by the ADC in the i-th branch in Figure 20 will be expressed

using trace inner product as

yij = 〈Aij,X0〉 = tr(A∗ijX0) =
∑

k∈Bj

di[k]X0[i, k], (i, j) = {1, · · · ,M} × {1, · · · ,Ω},

(4.5.5)

where the sampling mask Aij is

Aij =
∑

k∼Bj

di[k]eiē
∗
k. (4.5.6)
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where {ei}1≤i≤M , and {ēk}1≤k≤W are standard basis vectors of dimension M , and W ,

respectively. It follows that

A∗A(X) =
∑

(i,j)

〈Aij,X〉Aij,

and

A∗A =
∑

(i,j)

Aij ⊗Aij, (4.5.7)

where ⊗ denotes the tensor product. It is clear that the measurement matrices Aij

are rank-1 random matrices. In general, the tensor product of rank-1 matrices u1v
∗
1,

u2v
∗
2 with ui ∈ RM , and vi ∈ RW is given by the big matrix

u1v
∗
1 ⊗ u2v

∗
2 =




u1[1]∗u2[1]v1v
∗
2 u1[1]∗u2[2]v1v

∗
2 · · · u1[1]∗u2[N ]v1v

∗
2

u1[2]∗u2[1]v1v
∗
2 u1[2]∗u2[2]v1v

∗
2 · · · u1[2]∗u2[N ]v1v

∗
2

...
. . .

u1[N ]∗u2[1]v1v
∗
2 · · · · · · u1[N ]∗u2[N ]v1v

∗
2,




and we will denote (α, β)th, W ×W submatrix by

{u1v
∗
1 ⊗ u2v

∗
2}(α,β) = u1[α]∗u2[β]v1v

∗
2.

Using the above notation, we can write

{Aij ⊗Aij}(α,β) = ei[α]ei[β]
∑

k,k′∼Bj

di[k]di[k
′]ēkē

∗
k′ . (4.5.8)

Taking the expectation, we can see that

{E(Aij ⊗Aij)}(α,β) = ei[α]ei[β]
∑

k∼Bj

ēkē
∗
k,

and using the fact that ei[α]ei[β] = 1 when α = β and is zero otherwise, we can see

that
∑

(i,j)

E(Aij ⊗Aij) = IWM ,

where IWM denotes WM × WM identity matrix. In operator notation, we have

EA∗A = I.
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Let {u∗k}1≤k≤M , and {v∗k}1≤k≤W denote the rows of the matrices U , and V , re-

spectively. The following quantity will be used repeatedly in the theoretical analysis

‖PT (Aij)‖2
F = 〈PT (Aij),Aij〉

= 〈U ∗Aij,U
∗Aij〉+ 〈AijV ,AijV 〉 − 〈U ∗AijV ,U

∗AijV 〉

= ‖U ∗Aij‖2
F + ‖AijV ‖2

F − ‖U ∗AijV ‖2
F ≤ ‖U ∗Aij‖2

F + ‖AijV ‖2
F .

Using the definition (4.5.6), we have

‖U ∗Aij‖2
F =

∥∥∥∥∥∥
∑

k∼Bj

di[k]uiē
∗
k

∥∥∥∥∥∥

2

F

= ‖ui‖2
2

∥∥∥∥∥∥
∑

k∼Bj

di[k]ēk

∥∥∥∥∥∥

2

2

≤ µ2
1

R

M
· W

Ω
,

and

‖AijV ‖2
F =

∥∥∥∥∥∥
∑

k∼Bj

di[k]eiv
∗
k

∥∥∥∥∥∥

2

F

= ‖ei‖2
2

∥∥∥∥∥∥
∑

k∼Bj

di[k]vk

∥∥∥∥∥∥

2

2

.

This implies that

‖PT (Aij)‖2
F ≤ µ2

1

R(W/M)

Ω
+

∥∥∥∥∥∥
∑

k∼Bj

di[k]vk

∥∥∥∥∥∥

2

2

. (4.5.9)

4.5.2 Golfing scheme for the random modulator

We start with partitioning the measurements indexed by the set

Γ = {(i, j)}1≤i≤M
1≤j≤Ω

into κ disjoint partitions {Γk}1≤k≤κ of size |Γk| = L/κ, such that
⋃
k Γk = Γ, i.e.,

κ|Γk| = MΩ. We will construct the dual certificate Y ∈ Range(A∗) iteratively using

Gross’s golfing scheme. Let Ak denote the operator corresponding to the samples

taken in the kth partition, i.e.,

A∗kAk =
∑

(i,j)∈Γk

Aij ⊗Aij.
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As will be clear later in the proof that we want the partitioned linear operator κA∗kAk
to be a close approximation of the I. For this purpose, each of the partition Γk is

chosen uniformly at random out of the set Γ. Suppose now that we form a new set

of partitions {Γ′k} defined as

Γ′k = {(i, j) ∈ {1, . . . ,M} × {1, . . . ,Ω} : δ(i,j) = 1}, (4.5.10)

where the sequence {δ(i,j)}1≤i≤M
1≤j≤Ω

are independent 0/1 Bernoulli random variables with

P
{
δ(i,j) = 1

}
=

1

κ
.

In the the proofs later, we will be interested in bounding events η(Γk) that involve sum

of independent random matrices indexed by the partitions {Γk}1≤k≤κ, for instance,

define

η(Γk) :=

∥∥∥∥∥∥
∑

(i,j)∈Γk

κAij ⊗Aij − I

∥∥∥∥∥∥
,

and we want to bound the probability P {η(Γk) > ε}. Uisng the fact that

P {η(Γk) > ε} ≤ 2 P {η(Γ′k) > ε} , (4.5.11)

which implies that probability of an event {η(Γk) > ε} over the set Γk can be bounded

by the probability of a similar event {η(Γ′k) > ε} over the set Γ′k. As a result, we will

now be concerned with only bounding the probability of events of interest over the

sets Γ′k. Thus, we redefine A∗kAk over Γ′k as

A∗KAk =
∑

(i,j)∈Γ′k

Aij ⊗Aij =
∑

(i,j)

δ(i,j)Aij ⊗Aij. (4.5.12)

The iterative construction of the dual certificate is:

Yk = Yk−1 − κA∗kAk (PT (Yk−1)−UV ∗) .

Projecting on the subspace T on both sides results in

PT (Yk) = PT (Yk−1)− κPTA∗kAk(PT (Yk−1)−UV ∗),
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where it is importatnt to see that Yk ∈ Range(A∗). Now let

Wk : = PT (Yk)−UV ∗, (4.5.13)

which gives

Wk = Wk−1 − κPTA∗kAkPT (Wk−1).

As a result,

‖Wk‖F ≤ ‖κPTA∗kAkPT − PT‖‖Wk−1‖F ,

and by Lemma 4.5.1 with Ω ≥ CβκR(µ2
1(W/M) + µ2

2) log2(WM), it follows that

‖Wκ‖F ≤
(

1

2

)κ
‖UV ∗‖F

= 2−κ
√
R ≤

√
Ω

9W
, when κ ≥ 0.5 log2

(
9WR

Ω

)
, (4.5.14)

which holds with probability 1 − O(κ(WM)−β). In view of the coherences of W0 =

−UV ∗ with ‖UV ∗‖2
F = R defined in (4.2.11), the coherence µ2

3,k is related to the

Frobenius norm of Wk as

max
1≤i≤M
1≤j≤Ω

∑

k∼Bj

〈Wk, eiē
∗
k〉2 = µ2

3,k‖Wk‖2
F

1

MΩ
. (4.5.15)

Note that we have replaced R in the definition (4.2.5) with ‖Wk‖2
F for proper nor-

malization. Lemma 4.5.3 shows that under appropriate conditions, the conclusion

µ2
3,k ≤ 1

2
µ2

3,k−1 holds with high probability. This implies that

µ2
3,κ ≤ µ2

3 (4.5.16)

is true and this fact will be used towards the end of this proof. The iterative dual

certificate

Y = Yκ = −
κ∑

k=1

κA∗kAk(Wk−1)
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satisfies (4.5.1). To show that ‖PT⊥(Yκ)‖ ≤ 1
2

holds given Lemma 4.5.2, and (4.5.16),

we make the following calculation

‖PT⊥(Yκ)‖ ≤
κ∑

k=1

‖PT⊥(κA∗kAk(Wk−1))‖ =
κ∑

k=1

‖PT⊥ (κA∗kAk(Wk−1)−Wk−1)‖

≤
κ∑

k=1

(κA∗kAk(Wk−1)−Wk−1) ‖ ≤
κ∑

k=1

2−k−1 < 1/2,

which holds given Ω ≥ CβκR(W/M)µ2
3 max(W/M, 1) log2(WM), the result holds

with probabiltiy at least 1−O(κ(WM)−β).

4.5.3 Lemmas for Theorem 4.2.1

We state here the key Lemmas required to prove sampling Theorem 4.2.1.

Lemma 4.5.1. Suppose Ω measurements are taken through the random demodulator

using the setup in (4.2.8). Let A∗kAk, defined in (4.5.12), be the kth partition of A∗A

indexed by Γk′, defined in (4.5.10). Then for all β > 1,

max
1≤k≤κ

‖κPTA∗kAkPT − PT‖ ≤
1

2

provided Ω ≥ CβκR(µ2
1(W/M)+µ2

2) log2(WM) with probability at least 1−O(κ(WM)−β).

Corollary 4. Suppose Ω measurements are taken through the random demodulator

using the setup in (4.2.8). Let A∗A be as defined in (4.5.7). Then for all β > 1,

‖PTA∗APT − PT‖ ≤
1

2

provided Ω ≥ CβR(µ2
1(W/M)+µ2

2) log2(WM) with probability at least 1−O((WM)−β).

Proof. Proof of the corollary follows from the proof of Lemma 4.5.1 without parti-

tioning, i.e., κ = 1.

Lemma 4.5.2. Suppose Ω entries are observed using the random demodulator, as in

(4.2.8). Let Wk−1 be a fixed M ×W matrix defined in (4.5.13). Then for all β > 1,

max
1≤k≤κ

‖(κA∗kAk − I) (Wk−1)‖ ≤ 2−k−1

with probability at least 1−O(κ(WM)−β) provided Ω ≥ Cβκµ2
3,k−1Rmax(W/M, 1) log3/2(WM).
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Lemma 4.5.3. Let µ2
3,k be the coherence of the iterates as defined in (4.5.15). Then

µ2
3,k ≤

1

2
µ2

3,k−1

holds when Ω ≥ CβκR(µ2
1(W/M) + µ2

2) log(WM) for β > 2 with probability at least

1−O((WM)1−β).

4.6 Proof of Lemmas for Theorem 4.2.1

4.6.1 Proof of Lemma 4.5.1

We want to bound the quantity

η(Γk) := ‖κPTA∗kAkPT − PT‖ =

∥∥∥∥∥∥
∑

(i,j)∈Γk

κPT (Aij)⊗ PT (Aij)− PT

∥∥∥∥∥∥
.

We are interested in the failure probability of the event F (Γk) := {η(Γk) > ζ}. From

(4.5.11), it is clear that

P {F (Γk)} ≤ 2 P {F (Γ′k)} ,

where the set Γ′k, as defined in (4.5.10), is the partition generated using the Bernoulli

model. Hence, it is enough to bound the operator norm
∥∥∥∥∥∥
∑

(i,j)∈Γ′k

κPT (Aij)⊗ PT (Aij)− PT

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

(i,j)

κδ(i,j)PT (Aij)⊗ PT (Aij)− PT

∥∥∥∥∥∥
.

Now the fact that the operator κPTA∗kAkPT does not deviate from its expected value

E(κPTA∗kAkPT ) = κPT E
∑

(i,j)∈Γ′k

Aij ⊗AijPT

= κPT
∑

(i,j)

E δ(i,j) E(Aij ⊗Aij)PT = PT EA∗APT = PT

in the spectral norm can be proven using the matrix Bernstein Inequality. To pro-

ceed define the operator Lij which maps Z to 〈PT (Aij),Z〉 PT (Aij), i.e., Lij =

PT (Aij)⊗PT (Aij). This operator is rank one, therefore, the operator norm ‖Lij‖ =

‖PT (Aij)‖2
F . Let

Zij = κδ(i,j)Lij − κE δ(i,j) ELij
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We also have

∑

(i,j)

κ2 E(Lij − ELij)2 =
∑

(i,j)

κ2[E(δ(i,j)L2
ij)− (E δ(i,j)Lij)2]

=
∑

i,j

κ2 E(δ(i,j) ‖PT (Aij)‖2
F Lij)−

∑

i,j

κ2(E δ(i,j)Lij)2.

Because EL2
ij, and (ELij)2 are symmetric, positive-semidefinite matrices, it follows

that

∥∥∥∥∥
M∑

i=1

Ω∑

j=1

E δ(i,j)(Lij − ELij)2

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

i,j

E δ(i,j) E ‖PT (Aij)‖2
F Lij

∥∥∥∥∥

=
1

κ

∥∥∥∥∥
∑

i,j

E ‖PT (Aij)‖2
F Lij

∥∥∥∥∥

Using the facts Lij = PT (Aij) ⊗ PT (Aij),
∑

ij ELij = PT , and expanding further

gives

∥∥∥∥∥E
∑

i,j

‖PT (Aij)‖2
F Lij

∥∥∥∥∥ ≤

∥∥∥∥∥∥
E


∑

i,j

µ2
1

R(W/M)

Ω
Lij +

∥∥∥∥∥∥
∑

k∼Bj

di[k]vk

∥∥∥∥∥∥

2

2

Lij



∥∥∥∥∥∥
.

Use the notation

ρ2
ij =

∥∥∥∥∥∥
∑

k∼Bj

di[k]vk

∥∥∥∥∥∥

2

2

,

then

∥∥∥∥∥E
∑

i,j

‖PT (Aij)‖2
F Lij

∥∥∥∥∥ ≤ µ2
1

R(W/M)

Ω

∥∥∥∥∥
∑

i,j

ELij
∥∥∥∥∥+

∥∥∥∥∥E
∑

i,j

ρ2
ijLij

∥∥∥∥∥

≤ µ2
1

R(W/M)

Ω
+

∥∥∥∥∥E
∑

i,j

ρ2
ijLij

∥∥∥∥∥ (4.6.1)

The second term in (4.6.1) can be simplified as

∥∥∥∥∥E
∑

i,j

ρ2
ijLij

∥∥∥∥∥ =

∥∥∥∥∥PT E
∑

i,j

(
ρ2
ij(Aij ⊗Aij)

)
PT
∥∥∥∥∥

≤
∥∥∥∥∥E
∑

i,j

(
ρ2
ij(Aij ⊗Aij)

)
∥∥∥∥∥ , (4.6.2)
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where the last line follows form the fact that ‖PT‖ ≤ 1. Using the definition of ρ2
ij,

and (4.5.8), it is easy to see that the W ×W submatrix at (α, β)-th location is given

by

{E
(
ρ2
ij(Aij ⊗Aij)

)
}(α,β) = ei[α]ei[β]


∑

k∼Bj

‖vk‖2
2

∑

`∼Bj

ē`ē
∗
` +

∑

k 6=k′∼Bj

2〈vk,vk′〉ēkē∗k′


 .

(4.6.3)

The following identity is very useful

〈Aij,Ai′j′〉 = 0,

which holds true when either i 6= i′, or/and j 6= j′. Given this fact, we have

‖
∑

i,j

Aij ⊗Aij‖ = max
ij
‖Aij ⊗Aij‖.

Using this fact, we can write
∥∥∥∥∥
∑

i,j

E
(
ρ2
ij(Aij ⊗Aij)

)
∥∥∥∥∥ = max

i,j

∥∥E
(
ρ2
ij(Aij ⊗Aij)

)∥∥ .

Using (4.6.3), we obtain

∥∥∥∥∥
∑

i,j

E
(
ρ2
ij(Aij ⊗Aij)

)
∥∥∥∥∥ ≤

∥∥∥∥∥∥
∑

k∼Bj

‖vk‖2
2

∑

`∼Bj

ē`ē
∗
`

∥∥∥∥∥∥
+ 2

∥∥∥∥∥∥
∑

k 6=k′∼Bj

〈vk,vk′〉ēkē∗k′

∥∥∥∥∥∥

≤
∑

k∼Bj

‖vk‖2
2

∥∥∥∥∥∥
∑

`∼Bj

ē`ē
∗
`

∥∥∥∥∥∥
+ 2‖vk‖2

2

∥∥∥∥∥∥
∑

k 6=k′∼Bj

ēkē
∗
k′

∥∥∥∥∥∥

=
∑

k∼Bj

‖vk‖2
2 + 2

W

Ω
‖vk‖2

2 ≤ 3µ2
2

R

Ω
, (4.6.4)

where the second ineqaulity follows from the application of Cauchy-Schwartz inequal-

ity in the second term of the R.H.S., the last equality is the result of the facts that
∥∥∥∥∥∥
∑

`∼Bj

ē`ē
∗
`

∥∥∥∥∥∥
= 1,

and ∥∥∥∥∥∥
∑

k 6=k′∼Bj

ēkē
∗
k′

∥∥∥∥∥∥
≤ W

Ω
,
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and the last inequality follows form the definition of the coherence in (4.2.10). Plug-

ging (4.6.4) in (4.6.1), we have the bound

∥∥∥∥∥E
∑

i,j

Z∗ijZij

∥∥∥∥∥ ≤ κ

∥∥∥∥∥E
∑

i,j

‖PT (Aij)‖2
F Lij

∥∥∥∥∥

≤ Cκ
R(µ2

1(W/M) + µ2
2)

Ω
. (4.6.5)

Finally, we calculate the orlicz norm, the last ingredient to obtain the Bernstein

bound. First, it is important to see that

‖Zij‖ = ‖Lij − ELij‖ ≤ 2‖Lij‖ = 2‖Lij‖F = 2‖PT (Aij)‖2
F ,

where the second-last equality follows form the fact that Lij is the rank-1 operator.

Using the last equation, and (4.5.9), we have

U1 := ‖Zij‖ψ1
≤ 2κ

∥∥∥∥∥∥
µ2

1R
(W/M)

Ω
+

R∑

r=1


∑

γ∼Bj

di[k]vkr




2∥∥∥∥∥∥
ψ1

≤ Cµ2
1κR

(W/M)

Ω
+ Cκ

∑

k∼Bj

‖vk‖2
2

≤ Cµ2
1κR

(W/M)

Ω
+ Cµ2

2κ
R

Ω
. (4.6.6)

Using the notation Λ = µ2
1(W/M) + µ2

2, we obtain

U1 log

(
MΩ · U2

1

σ2
Z

)
= CκR

Λ

Ω
log(κRMΛ).

Plugging (4.6.5), and (4.6.6), and using t = β log(WM) in the non-commutative

Bernstein’s Inequality in Proposition 2, we have

∥∥∥∥∥
M∑

i=1

Ω∑

j=1

Zij

∥∥∥∥∥ ≤ 2 max{
√
κR

Λ

Ω

√
β log(WM), κR

Λ

Ω
log(κRMΛ)(β log(WM))}

The claim follwis by taking t = β log(WM), and the fact that RMΛ ≤ WM , and

Ω ≥ C(µ2
1(W/M) + µ2

2)κRβ log2(WM) with probabiliy at least 1− (WM)−β.
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4.6.2 Proof of Lemma 4.5.2

We will use the Bernstein bound in Proposition 2 to prove this Lemma. We want to

bound

‖(κA∗kAk − I)(Wk−1)‖ =

∥∥∥∥∥∥
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉Aij − E
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉Aij

∥∥∥∥∥∥
,

which follows from

Wk−1 = E
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉Aij.

Using the reasoning similar to that in Lemma 4.5.1, it is clear that bounding the

following sum of random matrices over Γ′k matrices

∥∥∥∥∥∥
∑

(i,j)∈Γ′k

κ〈Aij,Wk−1〉Aij − E
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉Aij

∥∥∥∥∥∥

suffices. Define a zero-mean random variable as follows:

Zij = κδ(i,j)〈Aij,Wk−1〉Aij − κE δ(i,j)〈Aij,Wk−1〉Aij.

The first variance term in (2.5.3) is

∑

(i,j)

EZijZ
∗
ij =

∑

(i,j)

κ2 E δ(i,j)〈Aij,Wk−1〉2AijA
∗
ij

−
∑

i,j

κ2(E δ(i,j))
2 E(〈Aij,Wk−1〉Aij) E(〈Aij,Wk−1〉Aij)

∗,

where

〈Aij,Wk−1〉 =
∑

γ∼Bj

di[γ]Wk−1[i, γ].

The following can be easily verified and will be used in the proof of this Lemma
∥∥∥∥∥∥
∑

(i,j)

E δ(i,j)ZijZ
∗
ij

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

(i,j)

κ2 E δ(i,j) E〈Aij,Wk−1〉2AijA
∗
ij

∥∥∥∥∥∥

=

∥∥∥∥∥∥
∑

(i,j)

κE〈Aij,Wk−1〉2AijA
∗
ij

∥∥∥∥∥∥
.
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In the calculations below, we assemble the ingredients to calculate the variance. First

by (4.5.6), we have

〈Aij,Wk−1〉2AijA
∗
ij = 〈Aij,Wk−1〉2eie∗i

∑

γ,γ′∼Bj

di[k]di[k
′]ē∗kēk′

= 〈Aij,Wk−1〉2eie∗i
∑

γ∼Bj

di[k]2‖ēk‖2
2

=
W

Ω
〈Aij,Wk−1〉2eie∗i .

Taking summation over i, and j on both sides and using above relation gives us

W

Ω

∥∥∥∥∥∥
∑

(i,j)

E〈Aij,Wk−1〉2eie∗i

∥∥∥∥∥∥
≤
∥∥∥∥∥
M∑

i=1

eie
∗
i

∥∥∥∥∥ ·max
i

W

Ω

Ω∑

j=1

E〈Aij,Wk−1〉2

=
W

Ω
max
i

Ω∑

j=1

∑

γ∼Bj

W 2
k−1[i, γ].

This gives the first term in the variance (2.5.3)
∥∥∥∥∥∥
∑

(i,j)∈Γ′k

EZijZ
∗
ij

∥∥∥∥∥∥
≤ κ

W

Ω

Ω∑

j=1

∑

γ∼Bj

W 2
k−1[i, γ] = ‖Wk−1‖2

Fκ
(W/M)

Ω
µ2

3,k−1, (4.6.7)

where the last inequality follows from (4.2.9). The second variance term in (2.5.3) is

∑

(i,j)∈Γ′k

EZ∗ijZij =
∑

(i,j)

κ2 E δ(i,j) E〈Aij,Wk−1〉2A∗ijAij−

−
∑

i,j

E δ(i,j) E(〈Aij,Wk−1〉Aij)
∗ E(〈Aij,Wk−1〉Aij)

= κ
∑

i,j

E〈Aij,Wk−1〉2A∗ijAij − κ
∑

i,j

E(〈Aij,Wk−1〉Aij)
∗ E(〈Aij,Wk−1〉Aij),

which implies that
∥∥∥∥∥∥
∑

(i,j)

EZijZ
∗
ij

∥∥∥∥∥∥
≤ κ

∥∥∥∥∥∥
∑

(i,j)

E〈Aij,Wk−1〉2AijA
∗
ij

∥∥∥∥∥∥
.

We begin with

〈Aij,Wk−1〉2A∗ijAij = 〈Aij,Wk−1〉2‖ei‖2
2

∑

γ,γ′∼Bj

di[γ]di[γ
′]ēγē

∗
γ′ .
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The expectation of the operand on the right hand side gives

E〈Aij,Wk−1〉2A∗ijAij =

(∑

γ

di[γ]Wk−1[i, γ]

)2

 ∑

γ,γ′∼Bj

di[γ]di[γ
′]ēγē

∗
γ′




=
∑

γ∼Bj

W 2
k−1[i, γ]

∑

γ∼Bj

ēγē
∗
γ + 2

∑

γ,γ′∼Bj

Wk−1[i, γ]Wk−1[i, γ′]ēγē
∗
γ′ .

Next step is to take the operator norm, and summation over j on both sides. The

orthogonality of {ēγ}1≤γ≤W , and Bj ∩ Bj′ = φ implies that
∥∥∥∥∥

Ω∑

j=1

E〈Aij,Wk−1〉2A∗ijAij

∥∥∥∥∥ ≤

≤

∥∥∥∥∥∥

Ω∑

j=1

∑

γ∼Bj

W 2
k−1[i, γ]

∑

γ∼Bj

ēγē
∗
γ

∥∥∥∥∥∥
+ 2

∥∥∥∥∥∥

Ω∑

j=1

∑

γ,γ′∼Bj

Wk−1[i, γ]Wk−1[i, γ′]ēγē
∗
γ′

∥∥∥∥∥∥

≤ max
j

∥∥∥∥∥∥
∑

γ∼Bj

W 2
k−1[i, γ]

∑

γ∼Bj

ēγē
∗
γ

∥∥∥∥∥∥
+ 2 max

j

∥∥∥∥∥∥
∑

γ,γ′∼Bj

Wk−1[i, γ]Wk−1[i, γ′]ēγē
∗
γ′

∥∥∥∥∥∥

Now using the fact that
∥∥∥∥∥∥
∑

γ,γ′∼Bj

Wk−1[i, γ]Wk−1[i, γ′]ēγē
∗
γ′

∥∥∥∥∥∥
=
∑

γ∼Bj

W 2
k−1[i, γ]

Summing over i, we obtain the second variance
∥∥∥∥∥∥
∑

(i,j)∈Γ′k

EZ∗ijZij

∥∥∥∥∥∥
≤ 3κ

M∑

i=1

max
j

∑

γ∼Bj

W 2
k−1[i, γ]

= 3κ
M∑

i=1

‖Wk−1‖2
Fµ

2
3,k−1

1

MΩ
= 3κµ2

3,k−1

1

Ω
‖Wk−1‖2

F . (4.6.8)

Given (4.6.7), and (4.6.8), we can obtain the variance using (2.5.3). We now calculte

the ψ2 norm of matrix 〈Aij,Wk−1〉Aij − E〈Aij,Wk−1〉Aij. Since 〈Aij,Wk−1〉Aij is

a rank one matrix, this gives

‖〈Aij,Wk−1〉Aij − E〈Aij,Wk−1〉Aij‖ψ2 ≤ 2 ‖〈Aij,Wk−1〉Aij‖ψ2

≤ 2‖Aij‖‖〈Aij,Wk−1〉‖ψ2

= 2
W

Ω
‖〈Aij,Wk−1〉‖ψ2 .
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This gives the result

U2
2 = max

ij
‖〈Aij,Wk−1〉Aij − E〈Aij,Wk−1〉Aij‖ψ2

≤ Cκ
W

Ω
max
ij

∑

γ∼Bj

W 2
k−1[i, γ] = Cκ

(W/M)

Ω2
µ2

3,k−1‖Wk−1‖2
F , (4.6.9)

and hence

U2 log1/2

(
MΩ · U2

2

σ2
Z

)
≤
√
Cκµ2

3,k−1

W/M

Ω2
‖Wk−1‖F log1/2(WM).

The results in (4.6.7), (4.6.8), and (4.6.9) can be plugged in Proposition 2 to obtain

‖A∗kAk(Wk−1)−Wk−1‖F ≤

Cκ‖Wk−1‖F max





√
κµ2

3,k−1 max(W/M, 1)

Ω

√
β log(WM),

√

κ
µ2

3,k−1(W/M)

Ω2
β log3/2(WM)





(4.6.10)

with t = β log(WM), which holds with probability at least 1 − (WM)−β. Using

(4.5.14), it becomes clear that the right hand side can be controlled with high prob-

ability by selecting Ω ≥ Cβκµ2
3,k−1Rmax(W/M, 1) log(WM).

4.6.3 Proof of Lemma 4.5.3

Coherence of iterates Wk was defined earlier in (4.5.15). This Lemma is dedicated

to showing that the coherence of the iterates is bounded. We start with matrix Wk

and its coherences µ2
1,k and µ2

2,k. The iterates are related as

Wk = (κPTA∗kAkPT − PT )(Wk−1).

Since Wk ∈ T , we start with writing out

Wk = κPTA∗kAk(Wk−1)−Wk−1

=
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉PT (Aij)−Wk−1
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The coherence µ2
3,k of Wk is then

µ2
3,k =

MΩ

R
max

1≤m≤M
1≤ω≤Ω

∑

n∼Bω


 ∑

(i,j)∈Γk

κ〈Aij,Wk−1〉[PT (Aij)](m,n) − [Wk−1](m,n)




2

(4.6.11)

We sart with bounding the following quantity with high probability

ηmn(Γk) :=

∣∣∣∣∣∣
∑

(i,j)∈Γk

κ〈Aij,Wk−1〉[PT (Aij)](m,n) − [Wk−1](m,n)

∣∣∣∣∣∣
(4.6.12)

using the scalar Bernstein bound. Instead of bounding {ηmn(Γk) > ε}, we will bound

the event {ηmn(Γ′k) > ε}, where the set Γ′k is selected using Bernoulli model, i.e., we

will bound the following quantity

ηmn(Γ′k) :=

∣∣∣∣∣∣
∑

(i,j)∈Γk

κδ(i,j)〈Aij,Wk−1〉[PT (Aij)](m,n) − [Wk−1](m,n)

∣∣∣∣∣∣

Let

Zij = κδ(i,j)〈Aij,Wk−1〉[PT (Aij)](m,n) − [Wk−1](m,n). (4.6.13)

For this purpose, we need to calculate the variance

∑

(i,j)∈Γ′k

EZijZ
∗
ij ≤

∑

(i,j)

κ2 E δ(i,j)〈Aij,Wk−1〉2[PT (Aij)]
2
(m,n)

[PT (Aij)](m,n) = [UU ∗Aij](m,n) + [AijV V
∗](m,n) − [UU ∗AijV V

∗](m,n).

It follows that

[PT (Aij)]
2
(m,n) ≤ 3

(
[UU ∗Aij]

2
(m,n) + [AijV V

∗]2(m,n) + [UU ∗AijV V
∗]2(m,n)

)
.

(4.6.14)

Using Lemma 4.7.1, we now calculate the variance term by term. The first term in

the variance is

∑

(i,j)

E[UU ∗Aij]
2
(m,n)〈Aij,Wk−1〉2 ≤ 3

M∑

i=1

〈um,ui〉2 ·
Ω∑

j=1

∑

γ∼Bj

〈ēγ, ēn〉2 ·max
ij

∑

γ∼Bj

W 2
k−1[i, γ]

≤ 3‖um‖2
2 · µ2

3,k−1

R

MΩ
, (4.6.15)
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where the first inequality follows by the application of Lemma 4.7.2. For the second

inequality, we have used the the definition of coherence in (4.2.11), and the fact that

Ω∑

j=1

∑

γ∼Bj

〈ēγ, ēn〉2 = 1

for any given index (m,n). Using Lemma 4.7.1, and 4.7.2 again, we obtain

∑

(i,j)

E[AijV V
∗]2(m,n)〈Aij,Wk−1〉2 ≤ 3

∑

(i,j)


∑

γ∼Bj

W 2
k−1[i, γ] ·

∑

γ∼Bj

〈vγ,vn〉2

 〈em, ei〉2

= 3 max
ij

∑

γ∼Bj

W 2
k−1[i, γ] ·

Ω∑

j=1

∑

γ∼Bj

〈vγ,vn〉2 ·
M∑

i=1

〈em, ei〉2

≤ 3 max
ij

∑

γ∼Bj

W 2
k−1[i, γ]‖vn‖2

2 · ‖em‖2
2 ≤ 3µ2

3,k−1

R

MΩ
‖vn‖2

2. (4.6.16)

Similarly, the last variance term is

∑

(i,j)

E[UU ∗AijV V
∗]2(m,n)〈Aij,Wk−1〉2 ≤

≤ 3
M∑

i=1

〈un,ui〉2 ·
Ω∑

j=1

∑

γ∼Bj

〈vγ,vn〉2 ·max
ij

∑

γ∼Bj

W 2
k−1[i, γ]

≤ 3‖um‖2
2 · ‖vn‖2

2 · µ2
3,k−1

R

MΩ
. (4.6.17)

Using the fact that ‖vn‖2
2 ≤ 1, we see that (4.6.16) dominates (4.6.17). Putting

(4.6.15), (4.6.16), and (4.6.17) together, we have

σ2
Z =

∑

(i,j)

EZijZ
∗
ij ≤ Cκ(‖um‖2

2 + ‖vn‖2
2)µ2

3,k−1

R

MΩ
. (4.6.18)

Now, we need to calculate the Orlicz-1 norm maxij ‖Zij‖ψ1 . Using standard argumnets

in probability theory, see [99], we can show that

‖[UU ∗Aij](m,n)‖ψ2 ≤ C〈um,ui〉


∑

γ∼Bj

〈ēγ, ēn〉2



1/2

≤ C‖ui‖2‖um‖2

where the first inequality follows from the fact that for a fixed (m,n)

∑

γ∼Bj

〈ēγ, ēn〉2 ≤ 1,
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and that 〈um,ui〉 ≤ ‖ui‖2‖um‖2 ≤ ‖um‖2, as ‖ui‖2 ≤ 1. Also,

‖[AijV V
∗](m,n)‖ψ2 ≤ C〈em, ei〉


∑

γ∼Bj

〈vγ,vn〉2



1/2

≤ C‖vn‖2,

the second inequality follows from the identity

Ω∑

j=1

∑

γ∼Bj

〈vγ,vn〉2 = ‖vn‖2
2,

and that 〈em, ei〉 ≤ 1 for a fixed (m,n). Similaraly, we can show that

‖[UU ∗AijV V
∗](m,n)‖ψ2 ≤ C‖um‖2‖vn‖2.

In addition, as before, we have

‖〈Aij,Wk−1〉‖ψ2 ≤ C


∑

γ∼Bj

W 2
k−1[i, γ]




1/2

.

Using Lemma 4.7.3, Equation (4.6.13), (4.6.14), and the fact that δ(i,j) ≤ 1, we see

that ‖Zij‖ψ1 <∞, and

max
ij
‖Zij‖2

ψ1
≤ Cκ2 max

ij

(
‖[UU ∗Aij](m,n)‖2

ψ2
+ ‖[AijV V

∗](m,n)‖2
ψ2

)
‖〈Aij,Wk−1〉‖2

ψ2

≤ Cκ2 max
ij

(
‖un‖2

2 + ‖vm‖2
2

)
·
∑

γ∼Bj

W 2
k−1[i, γ]

≤ Cκ2

(
µ2

1

R

M
+ µ2

2

R

W

)
µ2

3,k−1

R

MΩ
.

Then the Orlicz term in the Bernstein bound is

U1 log

(
MΩ · U2

1

σ2
Z

)
≤ Cκ

R(µ2
1(W/M) + µ2

2)

Ω
µ2

3,k−1

R

MΩ
log(WM).

Clearly, the Orlicz bound dominates the variance bound. Select t = β log(WM) in

the Bernstein bound, which implies that

|ηmn(Γ′k)|2 ≤ Cβκ(‖um‖2
2 + ‖vn‖2

2)µ2
3,k−1

R

MΩ
log2(WM)

≤ Cβκ
R(µ2

1(W/M) + µ2
2)

Ω
µ2

3,k−1

R

MΩ
log2(WM)
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holds with probability at least 1 − (WM)−β. The second ineequality follwos fram

the definitions in (4.2.9), and (4.2.10). Using the bound on |ηmn(Γ′k)|2, we can find a

bound on the coherence of the iterates in (4.6.11), which is

µ2
3,k ≤ Cκ

∑

n∼Bω

(µ2
1

R

M
+ µ2

2

R

W
)µ2

3,k−1 log2(WM)

Select Ω ≥ CβκR(µ2
1(W/M) + µ2

2) log2(WM), we can arrange for a constant C such

that

µ2
3,k ≤

1

2
µ2

3,k−1 (4.6.19)

holds with probability at least 1− (WM)−β.

4.7 Auxiliary Lemmas for Theorem 4.2.1

Follwing Lemma will be useful in carying out several calculations in the proofs of the

above lemmas.

Lemma 4.7.1. Take Aij as defined in (4.5.6), and suppose U : M×R, and V : W×R

are orthogonal matrices with {ui}1≤i≤M , {vi}1≤i≤W as rows, respectively. Then

[UU ∗Aij]
2
(m,n) = 〈um,ui〉2


∑

γ∼Bj

di[γ]〈ēγ, ēn〉




2

, (4.7.1)

[V V ∗A∗ij]
2
(m,n) = 〈em, ei〉2


∑

γ∼Bj

di[γ]〈vγ,vn〉




2

, (4.7.2)

and

[UU ∗AijV V
∗]2(m,n) = 〈um,ui〉2


∑

γ∼Bj

di[γ]〈vγ,vn〉




2

. (4.7.3)

Proof. We will use the definition of Aij in (4.5.6). Begin with

[UU ∗Aij](m,n) = 〈UU ∗Aij, emē
∗
n〉 = e∗mUU

∗
∑

γ∼Bj

di[γ]eiē
∗
γēn

=
∑

γ∼Bj

di[γ]e∗mUuiē
∗
γēn =

∑

γ∼Bj

di[γ]e∗mUuiē
∗
γēn

= 〈um,ui〉
∑

γ∼Bj

di[γ]ē∗γēn,
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Second,

[AijV V
∗](m,n) = 〈AijV V

∗, emē
∗
n〉 =

∑

γ∼Bj

di[γ]e∗meiē
∗
γV V

∗ēn

= 〈em, ei〉
∑

γ∼Bj

di[γ]〈vγ,vn〉.

Finally,

[UU ∗AijV V
∗](m,n) = 〈UU ∗AijV V

∗, emē
∗
n〉

= e∗mUU
∗


∑

γ∼Bj

di[γ]eiē
∗
γ


V V ∗ēn

=
∑

γ∼Bj

di[γ]e∗mUuiv
∗
γV
∗ēn

= 〈um,ui〉


∑

γ∼Bj

di[γ]〈vγ,vn〉


 ,

Lemma 4.7.2. Take Aij as defined in (4.5.6), and let xk, and yk denote scalars or

vectors. Then

E


 ∑

γ,γ′∼Bj

di[γ]di[γ
′]xγx

∗
γ′




 ∑

γ,γ′∼Bj

di[γ]di[γ
′]yγy

∗
γ′


 =

=


∑

γ∼Bj

xkx
∗
k




∑

γ∼Bj

yγy
∗
γ


+ 2

∑

γ,γ′

xγx
∗
γ′yγy

∗
γ′ .

Proof. The proof of this Lemma is simple involves expanding and moving the expec-

tation inside. We will use the result of this Lemma in cases when xγ, yγ are both

scalars and when one of these is a vector and other is a scalar. Furthermore, when

both xγ, and yγ are scalars then the result can be simplified using Cauchy-Schwartz

inequality to yield

E


 ∑

γ,γ′∼Bj

di[γ]di[γ
′]xγx

∗
γ′




 ∑

γ,γ′∼Bj

di[γ]di[γ
′]yγy

∗
γ′


 ≤ 3

(∑

γ

x2
γ

)(∑

γ

y2
γ

)
.
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Lemma 4.7.3. Let X1, and X2 be two subgaussian random variables, i.e., ‖X1‖ψ2 <

∞, and ‖X2‖ψ2 < ∞. Then the product X1X2 is a sub exponential random variable

with

‖X1X2‖ψ1 ≤ c‖X1‖ψ2‖X2‖ψ2 .

Proof. For a subgaussian random variable, the tail behaviour is

P {|X| > t} ≤ e exp

(
−ct2
‖X‖2

ψ2

)
∀t > 0;

see, for example, [99]. We are interested in

P {|X1X2| > λ} ≤ P {|X1| > t}+ P {|X2| > λ/t}

≤ e · exp
(
−ct2/‖X1‖2

ψ2

)
+ e · exp

(
−cλ2/t2‖X2‖2

ψ2

)
.

Select t2 = λ‖X1‖ψ2/‖X2‖ψ2 , which gives

P {|X1X2| > λ} ≤ 2e · exp (−cλ/‖X1‖ψ2‖X2‖ψ2) .

Now Lemma 2.2.1 in [37] imples that a random variable Z which obeys P {|Z| > u} ≤

αe−βu. Then ‖Z‖ψ1 ≤ (1 + α)/β. Using this result, we obtain

‖X1X2‖ψ1 ≤ c‖X1‖ψ2‖X2‖ψ2 ,

which proves the result.

4.8 Proof of Theorem 4.2.2

In this section, we show that the nuclear norm penalized estimators give ideal perfor-

mance for the stable recovery of X0 in the presence of additive measurement noise.

We will consider the measurement model in (4.2.2), and the noise characteristics in

(4.2.15).

Proof. As will be clear later, the proof involves bounding the spectral norm:

‖Θ‖ = ‖A∗(y)− EA∗(y)‖ ≤ ‖(A∗A− I)(X0)‖+ ‖A∗(ξ)‖ (4.8.1)

143



The bound on ‖(A∗A−I)(X0)‖ can be obtained directly using Corollary 5, and the

quantity ‖A∗(ξ)‖ is controlled using Lemma 4.8.1. Given these two results, the proof

of Theorem 4.2.2 follows from the following main result in [53].

Theorem 4.8.1 (Oracle inequlaity in [53]). Let X̂ be the solution of the (4.2.14),

and X0 ∈ RM×W matrix of rank R. If λ ≥ 2‖Θ‖, then

‖X̂ −X0‖2
F ≤ min

{
2λ‖X0‖∗, 1.46λ2R

}
.

Corollary 5. Suppose Ω entries are observed using modulated multiplexing setup and

let Z be a fixed W ×M matrix with coherence µ2
3 as defined (4.2.11). Then for all

β > 0,

‖(A∗A− I) (Z)‖ ≤ C‖Z‖F
√
µ2

3 max(W/M, 1)

Ω

√
β log(WM)

with probability at least 1− (WM)−β provided Ω ≥ Cβ log2(WM).

Proof. The proof of the Corollry follows from Lemma 4.5.2 by selecting the number

of partitions κ = 1. The result in the statement of the corollary is obtained from the

bound in (4.6.10). In particular, the first term in the maximum in (4.6.10) dominates,

when we select Ω ≥ Cβ log2(WM). This proves the above corollary.

Lemma 4.8.1. Let Aij be independent as defined (4.5.6) and pairs (Aij, yij) be in-

dependent. For β > 1 and Ω ≥ C min(W/M, 1)β log2(WM), the following

‖A∗(ξ)‖ ≤ C‖ξ‖ψ2

√
max(W/M, 1)

Ω

√
β log(WM),

holds with probability at least 1− (WM)−β for a fixed constant C.

Using Lemma 4.5.1, and Lemma 4.8.1, we can bound (4.8.1), and obtain

λ ≥

√
Cβ{‖X0‖2

Fµ
2
3 max(W/M, 1) + ‖ξ‖2

ψ2
max(W/M, 1)} log(WM)

Ω

with probability at least 1 − O(WM)−β for a fixed constant C. Taking ‖X0‖F =

1 without loss of generality, and Ω ≥ Cβµ2
3 max(W/M, 1) log2(WM), which is in
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agreement with the assumptions on Ω in Corollary 5, and Lemma 4.8.1, we can

control the right hand side. This proves Theorem 4.2.2.

4.8.1 Proof of Lemma 4.8.1

The proof of this Lemma requires the use of matrix Bernstein’s inequality 2. As it is

required to bound the spectral norm of the sum A∗(ξ) =
∑

i,j ξijAij, we start with

the summands Zij = ξijAij. Because variables ξij are zero mean, it follows that

EZij = 0. The first quantity required is
∥∥∥∥∥
∑

i,j

EZijZ
∗
ij

∥∥∥∥∥ =

∥∥∥∥∥
∑

i,j

E ξ2
ij · EAijA

∗
ij

∥∥∥∥∥ ≤ max
1≤i≤M
1≤j≤Ω

E ξ2
ij

∥∥∥∥∥E
∑

i,j

AijA
∗
ij

∥∥∥∥∥ .

Using the definition of Aij in (4.5.6), we have
∥∥∥∥∥
∑

i,j

EZijZ
∗
ij

∥∥∥∥∥ ≤ max
1≤i≤M
1≤j≤Ω

E ξ2
ij

∥∥∥∥∥∥
∑

i,j

E
∑

k,k′∼Bj

di[k]di[k
′]eiē

∗
kēk′e

∗
i

∥∥∥∥∥∥

= max
1≤i≤M
1≤j≤Ω

E ξ2
ij

∥∥∥∥∥∥

Ω∑

j=1

∑

k∼Bj

M∑

i=1

eie
∗
i

∥∥∥∥∥∥

≤ W max
ij

E ξ2
ij =

(W/M)

Ω
‖ξ‖2

ψ2
, (4.8.2)

where the first equality follows from the independence of ξij and Aij and the last

equality follows from (4.2.15). The second quantity required to calculate the variance

(2.5.3) is ∥∥∥∥∥
∑

i,j

EZ∗ijZij

∥∥∥∥∥ =

∥∥∥∥∥
∑

i,j

E ξ2
ij · EA∗ijAij

∥∥∥∥∥

≤ max
ij

E ξ2
ij

∥∥∥∥∥
∑

i,j

EA∗ijAij

∥∥∥∥∥

=
‖ξ‖2

ψ2

MΩ
·

∥∥∥∥∥∥
∑

i,j

E
∑

k,k′∼Bj

di[k]di[k
′]ēke

∗
ieiē

∗
k′

∥∥∥∥∥∥

=
‖ξ‖2

ψ2

MΩ

∥∥∥∥∥∥

M∑

i=1

Ω∑

j=1

∑

k∼Bj

ēkē
∗
k

∥∥∥∥∥∥

=
‖ξ‖2

ψ2

Ω
(4.8.3)
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Combining (4.8.2) and (4.8.3) and using (2.5.3) gives

σZ = ‖ξ‖ψ2

√
max(W/M, 1)

Ω
.

The final quantity required is the Orlicz norm of the summand matrices Zij, i.e.,

‖Zij‖2
ψ2

= ‖ξij‖2
ψ2
‖Aij‖2

≤ C
‖ξ‖2

ψ2

MΩ
· W

Ω
,

then

‖Zij‖ψ2 log1/2

(
MΩ · ‖Zij‖2

ψ2

σ2
Z

)
≤ C

√
‖ξ‖2

ψ2

W/M

Ω2
log1/2(WM).

Hence, we obtain using P = ΩM , and t = β log(WM) in the Bernstein’s bound

(2.5.4)

∥∥∥∥∥
∑

ij

ξijAij

∥∥∥∥∥ ≤ max

{
‖ξ‖ψ2

√
max(W/M, 1)

Ω

√
β log(WM), ‖ξ‖ψ2

√
W/M

Ω2
(β log3/2(WM))

}
.

Select Ω ≥ Cβmin(W/M, 1) log2(WM), then the first term dominates and the claim

in Lemma 4.8.1 follows.
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CHAPTER V

COMPRESSIVE MULTIPLEXERS FOR CORRELATED

SIGNALS

5.1 Introduction

In this chapter, we design two multiplexing architectures for the sub-Nyquist acquisi-

tion of the ensembles of correlated signals. The problem is illustrated in Figure 15 and

16: M signals, each of which is bandlimited to W/2 radians/sec, are outputs from

a sensor array. Since the signals are bandlimited, they can be captured completely

at MW samples per second. A conventional way of acquisition using a multiplexer

is to use M frequency modulators that assign the signals to disjoint frequency bands

before combining them. The resultant signal is then sampled at MW samples per

second using an analog-to-digital converter (ADC). Alternatively, the signals might

be time multiplexed onto a single output leading to an ADC sampling at rate MW .

We will show that if the signals are correlated, meaning that the ensemble can

be written as (or closely approximated by) distinct linear combinations of R � M

latent signals, then this net sampling rate can be reduced considerably by using

random modulators. We will precede the ADC in the multiplexers by some simple

analog computing devices, meaning that ultimately the ADC does not take samples of

the signals in the ensemble but instead takes more general linear measurements. The

multiplexed sampling architectures we propose are blind to the correlation structure

of the signals; i.e., this structure is discovered as the signals are reconstructed.

We recast the problem of recovering the signal ensemble as a low-rank recov-

ery problem [40]. Over the course of one second, we want to acquire an M × W
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matrix comprised of samples of the ensemble taken at the Nyquist rate. The pro-

posed sampling architectures produce a series of linear combinations of entries of

this matrix. The conditions (on the signals and the acquisition system) under which

this type of recovery is effective have undergone intensive study in the recent litera-

ture [19,27,41,44,52,76]. The main contribution of this chapter are as follows: first,

the design of practical multiplexers constructed from components that can be imple-

mented in hardware [2]; second, the statement and proof of sampling theorems that

characterize the sampling rate sufficient for the successful reconstruction of the signal

ensembles. As with most compressive sensing measurement systems, randomness will

play a crucial role in the operation of the sampling systems. Theorem 5.2.1, 5.2.2,

and 5.2.3 in Section 5.2.1, and Section 5.2.2 below can be interpreted as low-rank

recovery results from structured random measurements.

The compressive multiplexers presented in this chapter are variations of a simple

sampling architecture shown in Figure 27. The architecture follows a simple two

step approach. In the first step, the M input signals {xm(t)}1≤m≤M are modulated

using near orthogonal waveforms {dm(t)}1≤m≤M , alternating at rate Ω. In the second

step, the signals are added and then sampled uniformly at a rate Ω. We will refer

to this architecture as the modulating multiplexer (M-Mux). One of the main topics

considered in this chapter is to show that the M-Mux is an optimal sampling strategy

for an ensemble of correlated signals Xc(t):

Xc(t) = {xm(t) : xm(t) ≈
R∑

r=1

A[m, r]sr(t), 1 ≤ m ≤M},

where sr(t) are the latent building blocks in the composition of M signals xm(t), and

A[m, r] are entries of a matrix A. In particular, we show that we can reconstruct

the signal ensemble Xc(t) when we operate the ADC at rate Ω & RW log3(WM),

which is roughly the optimal sampling rate and improves upon the Nyquist rate MW ;

especially, in the case when R�M .

The chapter is organized as follows. In the remainder of this section, we describe
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Figure 27: The M-Mux for the efficient acquisition of correlated ensembles. Signals
{xm(t), }1≤m≤M in the ensemble Xc(t) are multiplied by independently generated
random binary waveform d1(t), d2(t), . . . , dM(t), respectively. The binary waveforms
alternate at rate Ω. After the modulation the signals are added and sampled at rate
Ω. The reconstruction algorithm uses the nuclear-norm minimization.

the signal model, and our main results followed by applications. Section 5.3 is devoted

to numerical simulations, illustrating our results. Finally, Sections 5.4,5.6, and 5.7

contains the proofs of the sampling theorems.

The signals model was introduced in Section 4.1.1. For the reasons that will be

clear later, we will be interested here in equally spaced samples of xm(t) at rate

Ω > W , and these samples will be placed as m-th row of an M × Ω matrix X0. We

can write

X0 = C0F̃ , (5.1.1)

where F̃ is a W ×Ω matrix formed by taking first W rows of the normalized discrete

Fourier matrix F with entries

F [ω, n] =
1√
W

e−j2πωn/W , 0 ≤ ω, n ≤ Ω− 1,

and C0 is an M ×W matrix whose rows contain Fourier series coefficients for the
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signals in Xc(t).

C0[m,ω] =





αm[ω] ω = 0, 1, . . . , (W − 1)/2

αm[ω −W ]∗ ω = (W + 1)/2, . . . ,W − 1

.

Matrix F is orthonormal, whileC0 inherits the correlation structure of the original

ensemble. Of course, knowing every entry in matrix C0 ∈ CM×W is the same as

knowing the entire signal ensemble.

We will consider the case in which C0 is exactly rank R and the case in which C0

is technically full rank, but which can be very closely approximated by a low-rank

matrix (i.e., the spectrum of singular values decays rapidly). We will also take into

account the contamination by the additive measurement noise in our analysis.

5.1.1 Related work

The M-Mux has been proposed previously in the literature [88] for the compressive

acquisition of multiple spectrally sparse signals. Using the notation of this chapter,

the main results suggest that if the Fourier spectrum of the input signals can be

approximated by active frequency components S � MW , then [80] shows that for

the successful reconstruction of the signal ensemble, the ADC is required to operate

at rate Ω ≈ S logqMW , where q > 1 is a small constant. A simple implementation

of the M-Mux using a passive averager is also discussed in [88]. Similar results have

also been shown to hold true for other compressive sampling architectures for the

acquisition of sparse signals based on the random modulator in the literature [67,96]

with implementation studied in multiple applications [49, 50, 56, 68, 71]. In contrast

to the the acquisition of sparse signals, this chapter considers the efficient acquisition

of correlated signals that are not assumed to be sparse rather the structure in the

signal ensemble is hidden in the relationship between the signals. As will be shown

later, this requires a new set of tools and approach that is completely different from

the sparse recovery framework.
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As will be shown in the sections below that the signal reconstruction problem

from the samples taken by the ADC in Figure 27 can be framed as a low-rank matrix

recovery problem from a multi-Toeplitz measurement ensemble. Our results show the

recovery of a low-rank matrix with rank R ≥ 1. In contrast, the results in [4] mainly

consider only a rank R = 1 recovery problem from a multi-Toeplitz measurement

ensemble. These results are studied in context of a very different application; namely,

the blind deconvolution. In particular, the results suggest that length-L vectors w

and x living in known “generic” subspaces of dimensions K and N , respectively, can

be successfully deconvolved when L & max(K,N) log3(KN). The other variations

of compressive multiplexer for correlated signals presented in this chapter involve

preprocessing in analog with random filters [97]. The random filters aim at dispersing

the input signal by convolving them with a long and diverse impulse response. A low-

rate ADC preceded by a convolution with a random waveform is an effective strategy

for the sub-Nyquist acquisition of a sparse signal [97]. Briefly, the results show that

a signal with S active components in a fixed basis can be acquired using a random

filter plus an ADC operating at a rate that scales linearly in S and logarithmically

in ambient dimension W [46, 48,97].

5.2 Main Results: Compressive Multiplexers and Sampling
Theorems

In this section, we present the compressive multiplexers, express the samples taken

by the ADC in discrete time as linear measurements of a low-rank matrix, and state

theorems dictating the sampling rate required for the reconstruction of the signal

ensemble.
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5.2.1 M-Mux: A compressive multiplexer for the time-dispersed corre-
lated signals

This section is devoted to model the samples taken by the ADC in the M-Mux,

shown in Figure 27, as discrete linear transformations of the discretized input signals.

The multiplexer contains M input channels with a modulator in each channel. The

modulator multiplies the input analog signal xm(t) with binary ±1 waveform dm(t)

alternating at rate Ω > W . In other words, modulator switches the sign of the analog

signal after every interval of width 1/Ω. Since the sampling operation commutes

with the addition, we can equivalently add the rate Ω samples of modulators outputs

{dm(t)xm(t)}1≤m≤M to produce the samples taken by the ADC. To this effect, write

the Ω samples ym of dm(t)xm(t) on [0, 1) as

ym = DmF̃
∗cm,

where cm is the W -vector containing the Fourier coefficients of xm(t), F̃ is the W ×Ω

matrix defined in (5.1.1), and Dm is an Ω × Ω diagonal matrix containing the Ω

samples d(m) = {d1[m], . . . , dΩ[m]} of dm(t) along the diagonal. The partial Fourier

matrix F̃ is the interpolation matrix that produces samples of the signals at a rate

greater than the Nyquist rate to cater for the fact that the switching is occurring at

rate Ω > W . We will choose a binary sequence that randomly generates dm(t), which

amounts to Dm being a random matrix of the following form:

Dm =




d1[m]

d2[m]

. . .

dΩ[m]




where dω[m] = ±1 with probability 1/2,

(5.2.1)

and the dω[m] are independent ∀(ω,m) ∈ {1, . . . ,Ω} × {1, . . . ,M}. Conceptually,

the modulator embeds xm(t) into a higher dimensional space — this allows us to

add several such embedded signals together and then “untangle” them using their
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structure. We use the superscript notation d(m) to specify vector [d1[m], . . . , dΩ[m]]T,

whereas the subscript notation dω is reserved to signify vector [dω[1], . . . , dω[M ]]T

later on in this manuscript.

The ADC takes Ω samples of
∑M

m=1 xm(t)dm(t) on [0, 1). We can write the vector

of samples y as

y =
M∑

m=1

DmF̃
∗cm = [D1F̃

∗,D2F̃
∗, · · · ,DM F̃

∗] · vec(C∗0)

= A(C0), (5.2.2)

where C0 is the M ×W matrix with c∗m as its rows; in addition, in the first equality,

vec(·) takes a matrix and returns a vector obtained by stacking its columns, and in

the second equality, A : CM×W → RΩ denotes the linear operator that performs

equivalent action on C0 to produce y.

Intuitively, the M-Mux is not an effective sampling strategy for the signals that

are sparse across time. Take an example of sparse-correlated signals in a given finite

window of time with a corresponding matrix of samples X0 of rank-1, such that it

contains only one non-zero column with degrees of freedom being M . Then the vector

of samples, produced by the ADC in the window of time under consideration, will be

at most one sparse. However, it is impossible to discover the M unknowns in X0 from

this one-sparse measurement vector. This intuition is supported by our theoretical

analysis for the M-Mux. As we will see later that the sampling performance of the

M-Mux depends on a mild incoherence condition, which quantifies the dispersion of

the input signal ensemble across time.

5.2.2 FM-Mux: A uniform compressive multiplexer for correlated signals

As mentioned in the previous section, the M-Mux is more effective for efficiently

acquiring correlated signals that are dispersed across time. In this section, we present

the filtering, and modulating multiplexer (FM-Mux) that is equally effective for any
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ensemble of correlated signals regardless of its initial energy distribution. To achieve

this, we add linear time-invariant (LTI) filters in each channel that force the signal

energy to be equally distributed. The FM-Mux is depicted in Figure 28.

The analog preprocessing on each of the input signal in the FM-Mux includes:

first, modulation with a ±1-binary waveform switching at rate Ω > W that disperses

the frequency spectrum of the signals over a larger bandwidth Ω; second, convolution

with a diverse waveform that diffuses signal across time; and third, addition of pre-

processed signals. The resultant signal is sampled by a uniform ADC at rate Ω. As
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Figure 28: The FM-Mux for the efficient acquisition of correlated signals. Each of
the input signal {xm(t)} is modulated separately with ±1-binary waveform {dm(t)}
alternating at rate Ω. Afterwards, the signals are convolved with diverse waveforms
using random LTI filters in each channel. The resultant signals are then combined
and sampled at a rate Ω using a single ADC.

before, the modulators in the FM-Mux take the input signals x1(t), . . . , xM(t) and

multiply them with d1(t), . . . , dM(t), respectively. Each of the dm(t) is an independent

and random binary ±1 waveform that is constant over a time interval of length 1/Ω,

where Ω > W and W is the bandwidth of the signals. The LTI filter in the m-

th channel takes the resultant signals xm(t)dm(t), which is bandlimited to Ω/2, and

convolves it with a fixed and known impulse response hm(t). We will disregard some

implementation issues by assuming for now that we have complete control over hm(t).

We write the action of the LTI filter hm(t) as an Ω×Ω circular matrix Hm (the first
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row of H consists of samples hm of hm(t)) operating on the Nyquist rate samples

DmF̃
∗cm in [0, 1) of xm(t)dm(t). The circulant matrix Hm is diagonalized by the

discrete Fourier transform:

Hm = F ∗ĤmF ,

where Ĥm is a diagonal matrix whose entries are ĥm =
√

ΩFhm. The vector ĥm is

a scaled version of the non-zero Fourier series coefficients of hm(t).

To generate the impulse response, we will use a random unit-magnitude sequence

in the Fourier domain [79,97]. In particular, we will take

Ĥm =




ĥm(0)

ĥm(1)

. . .

ĥm(Ω− 1)



,

where

ĥm(ω) =





±1,with prob. 1/2, ω = 0

ejθω , where θω ∼ Uniform([0, 2π]), 1 ≤ ω ≤ (Ω− 1)/2

ĥm(Ω− ω + 1)∗, (Ω + 1)/2 ≤ ω ≤ Ω− 1

.

These symmetry constraints are imposed so that hm (and hence, hm(t)) is real-valued.

Conceptually, convolution with hm(t) disperses a signal over time while maintaining

fixed energy (note that Hm is an orthonormal matrix).

In light of the discussion above, the Nyquist samples of (xm(t)dm(t)) ∗ hm(t) are

given by Ω-vector HmDmF̃
∗cm. Hence, the samples y in [0, 1) of the signal y(t) =

∑M
m=1(xm(t)dm(t)) ∗ hm(t) are

y =
M∑

m=1

HmDmF̃
∗cm

= [H1D1F̃
∗,H2D2F̃

∗, · · · ,HMDM F̃
∗] · vec(C∗0)

= B(C0) (5.2.3)
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where B : CM×W → RΩ denotes the equivalent linear transformation. That is, the

samples are obtained by linear combinations of the entries of the M×W low-rank C0.

The linear operator B is a random block-circulant matrix with columns modulated by

random signs, i.e., the randomness appears in a structured form. Low-rank matrix

recovery results from such structured random linear operators have not been con-

sidered before in the literature and require a considerably more involved analysis to

show the exact and stable recovery. One of the main contribution of this manuscript

is to show that the structured random B obeys the restricted isometry property for

all low-rank matrices.

It is worth mentioning here that we can swap filters and modulators in the com-

pressive multiplexer. In this case, it will be sufficient to use filters of bandwidth W

rather than the Ω bandwidth used in Figure 28. The theoretical analysis for the

multiplexer in Figure 29 is similar to the FM-Mux in Figure 28 and will not be shown

here.
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Figure 29: An equivalent FM-Mux obtained by reversing the order of filters and
modulators. The modulators operates exactly as before, however, the random filters
operate in a bandwidth W instead of operating in a larger bandwidth Ω as in the
previous FM-Mux architecture.

In contrast to the M-Mux, the FM-Mux is a equally effective for all correlated

signals irrespective of the initial energy distribution of the input signals. Intuitively,

this universality of the FM-Mux is the result of the convolution of the input signals
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with a diverse waveform, which disperses signal energy equally across time regard-

less of the initial distribution of signal energy. Thus, the samples observed by the

ADC are mostly non-zero and hence contribute useful information towards the signal

reconstruction.

5.2.3 Methodology for signal reconstruction

The samples y taken by the ADC in the M-Mux (5.2.2) and in the FM-Mux (5.2.3)

are different linear transformations A, and B, respectively, of the low-rank matrix

C0. The discussion in this subsection applies to both the linear operators A and

B. Therefore, we will use a common symbol T : CM×W → RΩ to signify the linear

operators A, and B. In other words, we are working with the measurements y

y = T (C0). (5.2.4)

We will first consider the case when the correlation structure A in (4.1.1) is known.

The matrix C0 in (5.1.1) inherits its low-rank structure from X0, and can be decom-

posed as

C0 = ACs,

where Cs ∈ CR×W coefficient matrix that contains the Fourier coefficients of the

signals {sr(t)}1≤r≤R as its columns. Define an operator TA : CW×R → RΩ obtained

by subsuming the known correlation structure A, i.e.,

TA = T ◦ ~A

= T




A[1, 1]I A[1, 2]I . . . A[1, R]I

A[2, 1]I A[2, 2]I . . . A[2, R]I

...
...

. . .
...

A[M, 1]I A[M, 2]I . . . A[M,R]I



,

where T is the Ω×MW matrix representation of linear operator T , ~A is the WM ×

WR matrix, and I denotes the W ×W identity matrix.
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This means that we can write the measurements y in (5.2.4) as

y = TA(Cs).

Since there is no low-dimensional structure on Cs, an optimal decoding strategy is

using the following least-squares program

min
C∈CR×W

‖y − TA(C)‖2
2. (5.2.5)

The solution C̃s to which is given by the following simple analytical form

C̃s = (T ∗ATA)−1T ∗A(y).

A simple argument can show that (T ∗ATA)−1 is well-conditioned when the sampling

rate Ω obeys

Ω & cRW logq(W ) (5.2.6)

for a constant c and a small number q ≥ 1. The sampling rate Ω in (5.2.6) is optimal

to within a constant and log factors. The estimate C̃ of the unknown is given by C0

is then C̃ = AC̃s.

In practice the correlation structure A is unknown. In this case the unknown M×

W matrix C0 cannot be recovered at an optimal sampling rate using the least-squares

approach above. Since rank (C0) ≤ R, the low-rank matrix recovery framework can be

used to reproduce the Shannon-Nyquist performance for the correlated signals using

limited number of samples. To solve for C0, we use the nuclear-norm minimization

program subject to affine constraints as below:

min ‖C‖∗ (5.2.7)

subject to y = T (C),

where ‖C‖∗ is the nuclear norm; the sum of the singular values of C. In a realistic

scenario, the measurements are contaminated

y = T (C0) + ξ,
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where ξ is the noise vector such that either ‖ξ‖2 ≤ δ, or ‖ξ‖ψ2 ≤ δ. To recover C0,

we solve the nuclear-norm minimization subject to quadratic constraints:

min ‖C‖∗ (5.2.8)

subject to ‖y − T (C)‖2 ≤ δ.

Using the available technology, the nuclear norm minimization can be solved efficiently

for medium-size matrices C. For this purpose, several first order gradient schemes

exist, and solvers have been implemented; see, for example, [9, 11].

An optimal sampler would recover C0 from y when we sample at a rate of

R(W+M−R), which is the degrees of freedom in the unknown-coefficient matrix C0.

It is known that if A is i.i.d. Gaussian, then we can obtain a stable recovery of matrix

C0 in noise when the measurements Ω exceed cR(W +M) for a fixed constant c [76].

In addition, it is also known that if we directly observe a randomly selected subset of

the entries of low-rank matrixC0 at random, then we can recoverC0 exactly when the

number of measurements roughly exceed cµ2
0R(W +M) logW , where µ2

0 is the coher-

ence of matrix C0; for details, see [19,44,75]. In contrast, the measurements in (5.2.2)

and in (5.2.3) are obtained as a result of structured-random operations. There are

no matrix recovery results from such specialized linear measurements. This chapter

develops low-rank matrix recovery results form such structured-random measurement

operations.

5.2.4 Sampling theorems for the M-Mux

Each entry y[ω] of the measurement vector y in (5.2.2) is

y[ω] = 〈C0,Aω〉 = Tr (C0A
∗
ω) , ω = 1, . . . ,Ω,

where 〈·, ·〉 is the trace inner product, and

Aω = dωf
∗
ω (5.2.9)
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is the M×W rank-1 matrix formed by the outer product of dω = [dω[1], . . . , dω[M ]]T,

and the columns fω of the partial Fourier matrix F̃ . The notation dω[m] was intro-

duced in (5.2.1). Let

C0 = UΣV ∗

be the svd of rank-R coefficient matrix C0, where U : M × R and V : W × R are

matrices of left and right singular vectors, respectively. The diagonal matrix Σ : R×R

contains the singular values of C0. The signal dispersion across time is quantified by

the coherence parameter defined as

µ2(V ) :=
Ω

R
max

1≤ω≤Ω
‖V ∗fω‖2

2. (5.2.10)

Summing both sides of (5.2.10) over ω, we obtain

Ω∑

ω=1

µ2(V ) ≥ Ω

R

Ω∑

ω=1

‖V ∗fω‖2
2 =

Ω

R
‖V ∗‖2

F ,

which implies that µ2(V ) ≥ 1. The coherence µ2(V ) achieves the lower bound when

‖V ∗fω‖2
2 =

R

Ω

for each ω ∈ {1, . . . ,Ω}. This happen, for instance, when the Ω-point Fourier trans-

form of the columns of V is equally distributed. In other words, the signals are well

dispersed across time. In addition, the upper bound is given by

µ2(V ) ≤ Ω

R
max

1≤ω≤Ω
‖V ∗‖2‖fω‖2

2 ≤
W

R
.

Using an argument similar to above, it can be seen that the coherence achieves the

upper bound for signals that are sparse across time. Thus, the coherence quantifies

the dispersion of signal energy across time. The following theorem guarantees the

exact recovery of the ensemble Xc(t) at a sub-Nyquist sampling rate.

Theorem 5.2.1. Let C0 ∈ CM×W be a matrix of rank R defined in (5.1.1). Assume

that the coherence µ2(V ) ≤ µ2
0. Suppose Ω measurements y of C0 are taken through
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the M-Mux setup (5.2.4). If

Ω ≥ Cβ
(
µ2

0M +W
)
R log3(WM)

for some β > 1, then the minimizer C̃ to the problem (5.2.7) is unique and equal to

C0 with probability at least 1−O(WM)1−β.

The sampling theorem above indicates that the time dispersed correlated signals

(µ2
0 ≈ O(1)) can be acquired at a sampling rate close (to within log factors and a

constant) to the optimal sampling rate R(W +M). This is a significant improvement

over the Nyquist rate WM especially when R � min(M,W ). The above result is

also important as it is a low-rank matrix recovery result from a linear transformation

A, which can be applied more efficiently compared to the dense, completely random

linear operators such as i.i.d. Gaussian linear operators.

In the real world, the samples are almost always contaminated with noise. We

observe

y = A(C0) + ξ (5.2.11)

with ξ being the Ω-vector accounting for the measurement noise. Conventionally,

the matrix Lasso in (5.2.8) is solved for the recovery of C0. While the matrix Lasso

performs well empirically in the noisy case, it has only been shown to obey weaker

theoretical stable recovery results so far. For the recovery of C0, we will consider a

simpler optimization program [53]:

C̃ = argminC
[
‖C‖2

F − 2〈y,A(C)〉+ λ‖C‖∗
]
, (5.2.12)

where λ > 0 is the regularization parameter. Although the above program; namely,

the KLT estimator, does not perform empirically as well as the matrix Lasso, but

its analysis proves that the nuclear norm penalized estimators obey near-optimal

noise recovery results. The KLT estimator can be thought of as a version of matrix

Lasso obtained after taking into account the knowledge of the distribution of A,
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and using the fact E ‖A(C)‖2
2 = ‖C‖2

F holds in our case. In other words, for non-

random operatorsA, the quadratic part of the KLT estimator reduces to the empirical

risk ‖y − A(C)‖2. It is worth mentioning that the KLT estimate reduces to a soft

thresholding

C̃ =
∑

i

(σi(A∗(y))− λ/2)+ui(A∗(y))vi(A∗(y)),

where x+ = max(x, 0), the vectors ui(A∗(y)), and vi(A∗(y)) are the left and right

singular vectors of A∗(y), respectively, with σi(A∗(y)) being the corresponding sin-

gular values. Our main stable recovery result treats the noise vector as a random

vector with statistics

max
1≤ω≤Ω

E exp(
|ξ[ω]|2
σ2

) < c, ∀1 ≤ ω ≤ Ω, (5.2.13)

where the components ξ[ω] are independent. It then follows that ‖ξ[ω]‖2
ψ2
≤ c‖ξ‖2

ψ2
/Ω.

The following theorem states the stable recovery results for the KLT estimate.

Theorem 5.2.2. Let C0 ∈ CM×W be an unknown rank-R matrix, and y, in (5.2.11),

be the measurements of C0 contaminated with the noise ξ with statistics in (5.2.13),

such that ‖ξ‖ψ2 ≤ δ. If Ω ≥ cβR(W + µ2
0M) log2(WM), for some β > 1, then the

solution C̃ to (5.2.12) obeys

‖C̃ −C0‖F ≤ 2δ. (5.2.14)

with probability at least 1− (WM)−β.

As an illustration, we compare the stable recovery result above with the result

in [27], which shows that under the conditions of Theorem 5.2.1, the solution C̃ of

(5.2.8) obeys

‖C̃ −C0‖F ≤ c
√

min(W,M)δ.

The above result is derived by only assuming that the noise ξ is bounded (i.e., ‖ξ‖2 ≤

δ) with no statistical assumptions; see Lemma 1 in [4] for the proof. In comparison,

the result in (5.2.14) is smaller by a factor of 1/
√

min(W,M).
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5.2.5 Sampling theorem for the FM-Mux

Again, we can express the measurements in (5.2.3) as a linear operator B : CM×W →

RΩ that maps the matrix of coefficients C0 to the samples y taken by the ADC

y = B(C0). (5.2.15)

We are interested in recovering C0 of rank (C0) ≤ R from under-determined set of

measurements y above that may, in addition, be contaminated with noise as follows:

y = B(C0) + ξ, (5.2.16)

where ξ is the noise vector with ‖ξ‖2 ≤ δ. Our main theoretical result for the FM-

Mux is based on showing that the linear operator B satisfies the restricted-isometry

property (RIP) for low-rank matrices. The matrix RIP [76] is defined below.

Definition 4. [76] A linear map B : CM×W → RΩ is said to satisfy the R-restricted

isometry property if for every integer 1 ≤ R ≤M , we have a smallest constant δR(B)

such that

(1− δR(B)) ‖C‖F ≤ ‖B(C)‖2 ≤ (1 + δR(B)) ‖C‖F

for all matrices of rank(C) ≤ R.

The matrix RIP for the linear operator B, defined in (5.2.15), is sufficient condition

to establish that the exact and stable recovery ofC0 of rank (C0) ≤ R can be obtained

by solving (5.2.7), and (5.2.8), respectively. Following theorem gives the matrix

RIP for the measurement operator B when the sampling rate Ω roughly exceeds the

optimal sampling rate of R(W +M).

Theorem 5.2.3. Fix δ ∈ (0, 1) then for every integer 1 ≤ R ≤ M the linear map

B : CM×W → RΩ satisfies the R-restricted isometry property with probability at least

1− exp(−c2(δ)Ω/ log4(ΩM))− exp(−cΩ), whenever Ω ≥ c1R(M +W ) log4(ΩM).
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In comparison to the sampling theorems for the M-Mux that provide the recovery

results for a given ensemble with coherence µ2(V ), Theorem 5.2.3 provides is a uniform

result, which asserts that the FM-Mux is universally efficient sampling strategy for

all ensembles of correlated signals regardless of the initial energy distribution.

The RIP not only guarantees exact recovery for the noiseless case (5.2.15) but

also guarantees the stable recovery in the case when the matrix C0 is not exactly

rank R but is a close approximation of a rank R matrix and the measurements are

contaminated with noise as in (5.2.16). The stable recovery results [41] assert that

given the matrix RIP, the solution C̃ to the optimization program in (5.2.8) satisfies

the following error bound

‖C̃ −C0‖F ≤ c∗
‖C0 −C0,R‖∗√

R
+ c∗∗δ,

where C0,R is the best rank-R approximation of C0. If we set δ = 0, then the

exact recovery for C0 of rank R also follows from the above result. In a nutshell,

the result illustrates that we can recover an ensemble of correlated signals Xc(t) by

analog preprocessing and sampling at a rate that scales linearly with R and is within

a constant and logarithmic factors of the optimal sampling rate.

5.2.6 Extension to a more general class of signals

The signal model considered so far establishes the sampling results for the correlated

signals that are also periodic across time. The results can be extended to encompass

general non-periodic signals. For that matter, we will use smoothing windowsW(t) to

divide the time scale into overlapping sections such that W(t− n/2) = 1, n ∈ N and

t ∈ R. That is, instead of reconstructing signals {xm(t)}m, we will be reconstructing

{xm(t) · W(t − n/2)}. To avoid nefarious high-frequency content due to windowing,

the window for a given section of time smoothly vanishes into the consecutive sections.

Since this makes the windows of two consecutive sections over lapping, we need to

sample consecutive signal sections separately. This technical problem can be handled
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with minor modifications in the sampling architectures. For instance, we might add

a parallel multiplexer, so that each of the consecutive sections of time are handled in-

dependently to avoid the sampling conflict in the over lapping sections. Furthermore,

to furnish the multiplexers with windowed ensemble {xm(t) ·W(t−n/2)}, we can use

a variable gain amplifier, calibrated to produce windowed signals, at the front end of

the multiplexers.

5.2.7 Application: Micro-sensor arrays

In many applications in array processing, wavefronts incident on a large number of

closely located antenna arrays generate signals that share a lot in common. In other

words, these signals may live in a subspace with dimension much smaller than the

total number of signals. This is especially true for micro sensor arrays with closely

located sensors. Micro-sensor arrays may be used in on-chip radars; in sensors in

robotics, for example, large number of closely located sensors in a robotic hand to

sense a touch; and in polytrodes, containing many closely located recording sites that

are used in some specific applications; for example, to study the brain tissues. We

will describe here an application in which the correlated signals arise in the recordings

from a polytrode array inserted in the brain tissue to study neurons.

Neuronal recordings in visual neurophysiology

Correlated signals arise in neuronal recordings from brain tissues in response to some

visual stimuli. The recorded information is helpful in understanding how visual stim-

ulus is encoded and processed by neurons. The recorded signals are also useful for

detecting the exact locations of neurons and the classifications of cell types. To record

the information from neurons in the cortical columns of brain, a tiny silicon electrode

array; namely, polytrode containing many closely located recording sites is inserted

in the brain of a specie (either cat or a monkey). Figure 30 shows the multi neuron

evoked responses—signals are highly correlated— recorded by electrode arrays in a
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real experiment conducted on a specie’s brain to understand the neuronal activity

in result of a visual stimuli. Figure 30 also shows the polytrode that contains fifty-

four recording sites. An electrode array may contain hundreds of recording sites that

Figure 30: Application in neuronal recordings from brain tissues. (a) A ploytrode
with fifty-four recording sites, shown as blue dots, arranged in two columns 50µm
apart. Polytrodes with dense recording sites provide detailed field recordings and
span roughly 1mm of the brain tissue [14]. (b) The signals recorded by sensors in a
real experiment. The data is taken from [1].

are recording as many correlated signals. The signals are multiplexed, continuously

sampled by ADCs, and streamed to a hard disk at a high quantization resolution.

Because the signals are highly correlated and their may be a large number of such

signals in such a batch of recordings, the data generated over the course of typical

experiment lasting over twenty four hours may reach Tera bytes. In particular, [63]

describes a data acquisition hardware for an electrode array containing 512-recording

sites. The 512-signals recorded are bandpass filtered, amplified, and then multiplexed

using 64:1 analog multiplexers onto eight channels. Each of the eight multiplexed sig-

nals is sampled at 1.28 mega Hertz, which corresponds to a sampling rate of 20 kilo

Hertz for each signal recorded at the electrode. All the samples are then digitized at

15 megabytes per second. It is clear that the sampling burden on the ADCs increases
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with increasing density of the recording sites, and so does the amount of the data

generated; especially, for experiments lasting over many hours. The signals can be

acquired more efficiently by taking into account the correlated signal structure that

exists in the ensemble. We can deploy the sampling architectures presented in this

chapter and hence, compressively acquire the signal ensembles to effectively use sam-

pling resources, and to minimize the amount of data generated over the course of an

experiment.

Another design consideration in polytrodes is that the number of electrodes on

a polytrode are limited by the number of conductors, carrying the signal from each

electrode, that can pass through the shank of the polytrode. If the multiplexing

can be performed at micro scale, then the signals can be combined before directing

these signals through the shank of the polytrode. Hence, the resultant number of

conductors reduce, which enables us to increase the density of recording sites for given

thickness of the shank of polytrode. Since the multiplexing architecture uses simple

modulators, it may be possible to built such modulators at micro scale. Additionally,

the reduction in the sampling rate reduces the power dissipation of the ADC, which

is an important factor in some acquisition devices.

5.3 Numerical Experiments

This section illustrates our theoretical results with numerical experiments. The ex-

periments demonstrate the sampling performance of the compressive multiplexers,

the effectiveness of the reconstruction algorithm in the presence of additive noise,

and the performance of the multiplexers on a data set obtained from an actual neural

experiment.

5.3.1 Sampling performance

The unknown-rank-R matrix C0 in all the experiments in subsections 5.3.1 and 5.3.2

is generated at random by the multiplication of a tall M×R and a fat R×W matrix,
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each with i.i.d. Gaussian entries. A random matrix C0 of coefficients corresponds

to a time-dispersed signal ensemble. Since the M-Mux and the FM-Mux perform

identically on such ensembles, we will simulate only the M-Mux in all the experiments

in this section. The successful reconstruction occurs when

Relative error =
‖C̃ −C0‖F
‖C0‖F

≤ 10−3.

In this subsection, we will evaluate the sampling performance using the indicators

that include the sampling efficiency η := R(W + M − R)/Ω, the compression factor

γ := Ω/(WM), and the oversampling factor Ω/R(W + M − R). The success rate in

all the subsequent experiments in this subsection is computed over 100 iterations with

different random instances of C0 in each iteration. In the first set of experiments,

we take M = 100 signals, each bandlimited to W/2 = 512Hz. The phase transition

in Figure 31(a) relates the sampling efficiency with the compression factor. The

shade represents the empirical probability of success. It is clear that the efficiency

is high and improves further with increasing sampling rate. The phase transition

in Figure 31(b) depicts the trend of the sampling rate for the successful recovery

against the increasing rank. Interestingly, the sampling efficiency increases with the

increasing values of R. Under the same conditions, the plot in Figure 32(a) depicts

the relationship between the lowest sampling rate Ω, required for the 99% success

rate, and the number R of independent signals. For clarity, the vertical axis shows

the values of the compression factor instead of showing the plane sampling rate. It is

evident that the sampling rate scales linearly with R and is actually with in a small

constant of the optimal sampling rate.

In the final experiment, we take M = 20α,W = 200α, and R = 15. The blue

line in Figure 32(b) illustrates the effect of varying the number of signals, and their

bandwidth (by varying α) on the minimum sampling rate required using the M-Mux

for the successful reconstruction, while keeping fixed number R of independent signals.

For reference, the red line plots the corresponding Nyquist rate for each value of α.
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Figure 31: Empirical probability of success for the compressive signal acquisition
using the simulated M-Mux. In these experiments, we take an ensemble with 100
signals, each bandlimited to 512Hz. The shade shows the probability of success. (a)
Success rate as a function of the compression factor and the sampling efficiency. (b)
Success rate as a function of number of independent signals and the oversampling.

The graph Ω depends linearly on α, while Nyquist rate, of course, scales with α2.

That is, the gap between Ω and the Nyquist rate widens very rapidly with increasing

M and W . The graph also shows that the sampling efficiency does not decrease much

with the increasing M and W . Hence, the sampling efficiency only depends on R.

5.3.2 Recovery in the presence of noise

This section simulates the setup when the samples taken by the multiplexers are

contaminated with additive noise ξ ∼ N (0, σ2I) as in (5.2.11). For the signal recon-

struction, we solve the optimization program in (5.2.8) with δ = (Ω +
√

Ω)1/2σ; a

natural choice as ‖ξ‖2 ≤ δ holds with high probability. In all of the experiments in

this section, we select M = 100, W = 1024, and R = 15. In the first set of exper-

iments shown in Figure 33, we solve the optimization program in (5.2.8) for the re-

construction of the signals. Figure 33(a) shows the signal-to-noise ratio (SNR) in dBs

(10 log10(‖C0‖2
F/‖ξ‖2

2)) versus the relative error in dBs (10 log10((relative error)2)).

Each data point is generated by averaging over ten iterations, each time with in-

dependently generated matrices C0, and the noise vector ξ. The graph shows that
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Figure 32: (a) Sampling as a function of number of independent signals. The simu-
lated M-Mux takes an ensemble of 100 signals, each bandlimited to 512Hz. The discs
mark the lowest sampling rate for the signal reconstruction with empirical success
rate of 99%. For clarity, the vertical axis lists the values of the scaled sampling rate
Ω/(WM). The The red line is the linear least squares fit of the data points. (b)
Sampling rate as a function of M , and W . The simulated M-Mux takes an ensemble
of M = 20α signals, each bandlimited to W/2 = 100αHz with number of underlying
independent signals fixed at R = 15. The discs mark the lowest sampling rate for
the signal reconstruction with empirical success rate of 99%. The red line shows the
corresponding Nyquist rate.

the error increases gracefully with decreasing SNR. Figure 33(b) depicts the decay of

relative error with increasing sampling rate. The second set of experiments in this

section, shown in Figure 34, depict the comparison between the performance of the

matrix Lasso in (5.2.8), and the one step thresholding estimator in (5.2.12). The first

plot compares the two techniques for at an SNR = 40dB; it is clear that the matrix

Lasso outperforms the KLT estimator by big margin. The second plot shows that

the reconstruction results are at least comparable in the presence of large (SNR =

6dB, 10dB) noise. The results suggest that although the KLT estimator gives optimal

recovery results in theory, but it does not perform well in practice.

5.3.3 Neuronal experiment

In this subsection, we evaluate the performance of the M-Mux on the data set obtained

from an actual neural experiment [1] described in Section 5.2.7. We take neural signals
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Figure 33: Recovery using matix Lasso in the presence of noise. The input ensemble
to the simulated M-Mux consists of 100 signals, each bandlimited to 512Hz with
number R = 15 of latent independent signals.(a) The SNR in dB versus the relative
error in dB. The sampling rate is fixed and is given by the parameter η = 0.29. (b)
Relative error as a function of the sampling rate. The SNR is fixed at 40dB.

recorded by two polytrodes containing a total of 108 recording sites. The signals

recorded at each site are required to be sampled at 100,000 samples per second. That

is, the Nyquist sampling rate for the acquisition of entire ensemble is 10.8 million

samples per second. As mentioned earlier, the signals recorded from such micro senor

arrays are correlated, in particular, the 108× 1000 matrix of samples over a window

of 10ms can be approximated by a rank R = 22 matrix (to within a relative error

of 0.018). The result in Figure 5.3.3 shows that we can reliably acquire the recorded

ensemble for this application using the M-Mux at a smaller rate compared to the

Nyquist rate. The compression factor is expected to drop further as the number of

recording sites continue to increase.

5.4 Proof of Theorem 5.2.1

Let

C0 = UΣV ∗ (5.4.1)

be the SVD of C0 and let T be the linear space spanned by rank-one matrices of

the form ury
∗ and xv∗r , 1 ≤ r ≤ R, where x and y are arbitrary. The orthogonal
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Figure 34: Comparison of the effectiveness of the matrix Lasso in (5.2.8) with KLT
estimator in (5.2.12) for the signal reconstruction in the presence of noise. The input
ensemble to the simulated M-Mux consists of 100 signals, each bandlimited to 512Hz
with number R = 15 of latent independent signals.(a) Relative error in dB versus
Oversampling; the red, and blue lines depict the performance of matrix Lasso, and
the KLT estimator, respectively. The SNR is fixed at 40dB. (b) Relative error versus
the Oversampling; the red, and blue lines depict the performance of matrix Lasso,
and the KLT estimator, respectively. The plots are for the SNR of 6dB, and 10dB.

projection of PT onto T is defined as

PT (Z) = UU ∗Z +ZV V ∗ −UU ∗ZV V ∗, (5.4.2)

and orthogonal projection PT⊥ onto the orthogonal complement T⊥ of T is then

PT⊥(Z) = (I − PT )(Z) = (IM −UU ∗)(Z)(IW − V V ∗),

where Id denotes the d× d identity matrix. It follows form the definition of PT that

PT (Aω) = (UU ∗dω)f ∗ω + dω(V V ∗fω)∗ − (UU ∗dω)(V V ∗fω)∗.

Using (5.2.9), we have

‖PT (Aω)‖2
F = 〈PT (Aω),Aω〉

= 〈UU ∗dωf ∗ω,dωf ∗ω〉+ 〈dωf ∗ωV V ∗,dωf ∗ω〉 − 〈UU ∗dωf ∗ωV V ∗,dωf ∗ω〉

= ‖fω‖2
2‖U ∗dω‖2

2 + ‖V ∗fω‖2
2‖dω‖2

2 − ‖U ∗dω‖2
2‖V ∗fω‖2

2

≤ W

Ω
‖U ∗dω‖2

2 +M‖V ∗fω‖2
2, (5.4.3)
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Figure 35: The performance of the M-Mux in an actual neural experiment. Compres-
sion factor as a function of the relative error. An ensemble of 108 signals, recorded
using polytrodes, and each required to be sampled at 100KHz, is acquired using the
M-Mux. Even by cutting the sampling rate in half the ensemble can be acquired with
97% accuracy.

where the last inequality follows from the fact that ‖U ∗dω‖2
2‖V ∗fω‖2

2 ≥ 0, and that

‖dω‖2
2 = M , ‖fω‖2

2 = W
Ω

. Standard results in duality theory for semidefinite pro-

gramming assert that the sufficient conditions for the uniqueness of the minimizer of

(5.2.7) are as follows:

• The linear operator A is injective on the subspace T

• ∃Y ∈ Range(A∗), such that

‖PT (Y )−UV ∗‖F ≤
1

2
√

2γ
, ‖PT⊥(Y )‖ ≤ 1

2
, (5.4.4)

where γ := ‖A‖. The above conditions are also referred to as inexact duality [19,27].

The operator norm ‖A‖ can be bounded with high probability using the matrix

Chernoff bound [93]. In particular, it can be shown– using an argument similar to

Lemma 1 of [4]– that for some β > 1

γ ≤
√
M log(M2ΩW ) (5.4.5)

with probability at least 1−O((WM)−β).
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5.4.1 Golfing scheme for the modulated multiplexing

To prove the bounds in (5.4.4), we will use the standard golfing scheme [44]. We start

with portioning Ω into κ disjoint partitions {Γk}1≤k≤κ, each of size |Γk| = ∆, such

that Ω = ∆κ. We take Γk = {k + (j − 1)κ : j ∈ {1, . . . ,∆}}. As will be shown later,

we will be interested in knowing how closely the quantity EA∗kAk(W ) approximates

W . Suppose the measurements indexed by the set Γk are provided by linear operator

Ak, that is,

Ak(W ) = {Tr (fωd
∗
ωW )}ω∈Γk . (5.4.6)

This means

A∗kAk(W ) =
∑

ω∈Γk

dωd
∗
ωWfωf

∗
ω,

which implies that

EA∗kAk(W ) =
∑

ω∈Γk

Wfωf
∗
ω =

1

κ
W .

The last equality follows from the fact

Edωd
∗
ω = IM ,

∑

ω∈Γk

fωf
∗
ω =

1

κ
I,

as fω are the columns of partial Fourier matrix F̃ obtained by selecting the first

W rows of the DFT matrix, as defined in (5.1.1). In contrast to the signals with

first W active frequency components, we can extend the golfing argument to signals

with W active frequency components located anywhere in the set {1, . . . ,Ω}; for

details, see the golfing scheme in [4]. In other words, the MMux works equally well

for the bandlimited signals regardless of the location of the active band in the total

bandwidth Ω.

We begin by iteratively constructing the dual certificate Y ∈ Range(A∗) as fol-

lows. Let Y0 = 0, and setup the iteration

Yk = Yk−1 + κA∗kAk (UV ∗ − PT (Yk−1)) Note that Yk ∈ Range(A∗), (5.4.7)
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from which it follows that

PT (Yk) = PT (Yk−1) + κPT (A∗kAk)PT (UV ∗ − PT (Yk−1)) ;

furthermore, define

Wk : = PT (Yk)−UV ∗, (5.4.8)

which gives an equivalent iteration

Wk = Wk−1 − κPTA∗kAkPT (Wk−1)

= (PT − κPTA∗kAkPT ) (Wk−1). (5.4.9)

Now the Frobenius norm of the iterates Wk is

‖Wk‖F ≤ max
1≤k≤κ

‖PT − κPTA∗kAkPT‖‖Wk−1‖F ,

which by the repeated application of Lemma 5.4.1 gives the Frobenius norm of the

final iterate

‖Wk‖F ≤
(

1

2

)k
‖UV ∗‖F = 2−k

√
R, (5.4.10)

which, by Lemma 5.4.1, holds when Ω ≥ cβκR(µ2
0M+W ) log2(WM) with probability

at least 1−O(κ(WM)−β). Hence, the final iterate obeys

‖Wκ‖F ≤
1

2
√

2γ
, when κ ≥ 0.5 log2(8γ2R)

with probability at least 1−O(κ(WM)−β). This proves the first bound in (5.4.4). In

light of (5.2.10), the coherence of kth iterate Wk denoted by µ2
k is

µ2
k =

Ω

R
max
ω∈Γk
‖Wkfω‖2

2. (5.4.11)

It will be shown in Lemma 5.4.3 that µ2
k ≤ 0.5µ2

k−1, which implies that

µ2
k ≤ µ2

0, ∀k ∈ {1, . . . , κ} (5.4.12)
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holds with probability at least 1−O(Ω(WM)−β). The final iterate Yκ = −∑κ
k=1 κA∗kAkWk−1

of the iteration (5.4.7) will be our choice of the dual certificate. We will now show

that Yκ obeys the conditions (5.4.4).

‖PT⊥(Yκ)‖ ≤
κ∑

k=1

‖PT⊥(κA∗kAkWk−1)‖ =
κ∑

k=1

‖PT⊥(κA∗kAkWk−1 −Wk−1)‖

≤
κ∑

k=1

‖(κA∗kAk − I)Wk−1‖F ≤
κ∑

k=1

max
1≤k≤κ

‖(κA∗kAk − I)Wk−1‖F

≤
κ∑

k=1

2−k−1 <
1

2
,

where the third inequality holds with probability at least 1−O(κ(WM)−β) when

Ω ≥ cβκRmax(µ2
0M,W ) log2(WM),

which is implied by Lemma 5.4.2, and Equation (5.4.12). Combining all these results

and the probabilities gives us the conclusion of Theorem 5.2.1 with probaility at least

1 − O(Ω(WM)−β). Since the sampling architectures are only interesting when the

sampling rate is sub-Nyquist, i.e., Ω ≤ WM , we can simplify the success probability

to 1−O((WM)1−β)

5.4.2 Main lemmas

Lemma 5.4.1. Let Ak be as defined in (5.4.6), and κ be the number of partitions

used in the golfing scheme; see Section 5.4.1. Then for all β > 1,

max
1≤k≤κ

‖κPTA∗kAkPT − PT‖ ≤
1

2

provided Ω ≥ cβκR(µ2
0M +W ) log2(WM) with probability at least 1−O(κ(WM)−β).

Lemma 5.4.2. Let µ2
k−1, as in (5.4.11) be the coherence of the iterate Wk−1, defined

in (5.4.8). Then for all β > 1

max
1≤k≤κ

‖κA∗kAk(Wk−1)−Wk−1‖ ≤ 2−k−1

with probability at least 1−O(κ(WM)−β) provided Ω ≥ cβκmax(W,µ2
k−1M) log2(WM),

where κ is the total partitions used in the golfing scheme.
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Lemma 5.4.3. Let Wk, and µ2
k be as in (5.4.8), and (5.4.11). If Ω ≥ cκβR(µ2

0M +

W ) log2(WM), then

µ2
k ≤

1

2
µ2
k−1

holds for all k ∈ {1, . . . , κ} with probability at least 1 − O(Ω(WM)−β). The number

κ is the total partitions used in golfing in Section 5.4.1.

5.5 Proof of Main Lemmas Required to Prove Theorem
5.2.1

5.5.1 Proof of Lemma 5.4.1

In this section, we are concerned with bounding the centered random process

κPTA∗kAkPT − PT = κPTA∗kAkPT − EκPT (A∗kAk)PT

= κ
∑

ω∈Γk

(PT (Aω)⊗ PT (Aω)− EPT (Aω)⊗ PT (Aω)),

where we have used the fact

κEPTA∗kAkPT = κPT E(A∗kAk)PT = PT

The last equality follows from the fact that

E(A∗kAk) =
1

κ
I.

Now define Lω, which maps C to 〈PT (Aω),C〉PT (Aω). This operator is rank-1 with

operator norm ‖Lω‖ = ‖PT (Aω)‖2
F , and we are interested in bounding the operator

norm

‖κPTA∗kAkPT − PT‖ = κ
∑

ω∈Γk

(Lω − ELω)

For this purpose, we will use matrix Bernstein’s bound in Proposition 2. Since Lω is

symmetric, we only need to calculate the following for variance

κ2‖
∑

ω∈Γk

EL2
ω − (ELω)2‖ ≤ κ2‖

∑

ω∈Γk

EL2
ω‖ = κ2‖E

∑

ω∈Γk

‖PT (Aω)‖2
FLω‖, (5.5.1)
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where the inequality follows from the fact that EL2
ω, and (ELω)2 are symmetric

positive-semidefinite (PSD) matrices, and for PSD matrices A, and B, we have ‖A−

B‖ ≤ max{‖A‖, ‖B‖}. Plugging in the definition of Lω and using (5.4.3), we have

∥∥∥∥∥E
∑

ω∈Γk

‖PT (Aω)‖2
FLω

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

ω∈Γk

E

{(
W

Ω
‖U ∗dω‖2

2 +M‖V ∗fω‖2
2

)
Lω
}∥∥∥∥∥

≤ W

Ω

∥∥∥∥∥E
∑

ω∈Γk

‖U ∗dω‖2
2Lω

∥∥∥∥∥+M‖V ∗fω‖2
2

∥∥∥∥∥
∑

ω∈Γk

ELω
∥∥∥∥∥

≤ W

Ω

∥∥∥∥∥E
∑

ω∈Γk

‖U ∗dω‖2
2Lω

∥∥∥∥∥+ µ2
0R
M

Ω

∥∥∥∥∥
∑

ω∈Γk

ELω
∥∥∥∥∥ . (5.5.2)

The last inequality follows form the definition of the coherence (5.2.10). Before pro-

ceeding further, we write out the tensor Aω ⊗Aω in the matrix form:

dωf
∗
ω ⊗ dωf ∗ω =




dω[1]dω[1]fωf
∗
ω dω[1]dω[2]fωf

∗
ω · · · dω[1]dω[M ]fωf

∗
ω

dω[2]dω[1]fωf
∗
ω dω[2]dω[2]fωf

∗
ω · · · dω[2]dω[M ]fωf

∗
ω

...
...

. . .
...

dω[M ]dω[1]fωf
∗
ω dω[M ]dω[2]fωf

∗
ω · · · dω[M ]dω[M ]fωf

∗
ω




= {dω[α]dω[β]fωf
∗
ω}(α,β).

We will use ūα to denote the αth row of the matrix U , and δx is the indicator function

when the condition x is true. Using these notations, we can simplify the following

quantity of interest

‖E ‖U ∗dω‖2
2(PT (Aω)⊗ PT (Aω))‖ ≤ ‖PT‖‖E ‖U ∗dω‖2

2(Aω ⊗Aω)‖‖PT‖

≤ ‖E ‖U ∗dω‖2
2{dω[α]dω[β]fωf

∗
ω}α,β‖

=
∥∥{‖U‖2

Ffωf
∗
ωδ(α=β) + 2〈ūα, ūβ〉fωf ∗ωδ(α 6=β)}(α,β)

∥∥ ,

where second inequality follows form the fact that ‖PT‖ ≤ 1 and the third equality

follows by expanding and taking expectation on each entry of the matrix. Summing
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over ω ∈ Γk gives

∥∥∥∥∥E
∑

ω∈Γk

‖U ∗dω‖2
2PT (Aω)⊗ PT (Aω)

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

ω∈Γk

{‖U‖2
Ffωf

∗
ωδ(α=β) + 2〈ūα, ūβ〉fωf ∗ωδ(α 6=β)}(α,β)

∥∥∥∥∥

=

∥∥∥∥∥{‖U‖
2
F

∑

ω∈Γk

fωf
∗
ωδ(α=β) + 2〈ūα, ūβ〉

∑

ω∈Γk

fωf
∗
ωδ(α 6=β)}(α,β)

∥∥∥∥∥

=

∥∥∥∥{‖U‖2
F

1

κ
IW δ(α=β)}(α,β) + {2〈ūα, ūβ〉

1

κ
IW δ(α 6=β)}(α,β)

∥∥∥∥ .

Now, it follows by simple linear algebra

∥∥∥∥∥E
∑

ω∈Γk

‖U ∗dω‖2
FPT (Aω)⊗ PT (Aω)

∥∥∥∥∥ ≤
1

κ
(‖U‖2

F + 2‖UU ∗‖) ≤ R + 2

κ
.

Plugging the above result, together with (5.5.2) in (5.5.1), we obtain

σ2
Z = κ2

∥∥∥∥∥
∑

ω∈Γk

E[(Lω − ELω)2]

∥∥∥∥∥ ≤ cκR
µ2

0M +W

Ω
. (5.5.3)

Using the Definition 3, and the fact that Lω, and ELω are positive semidefinite

matrices, it follows

κ‖Lω − E[Lω]‖ψ1 ≤ κmax{‖Lω‖ψ1 , ‖ELω‖ψ1} (5.5.4)

As shown earlier, we have ‖Lω‖ = ‖PT (Aω)‖2
F , and also it is easy to show that

‖ELω‖ = W/Ω. Using it together with Definition 3, and (5.4.3), we obtain the

Orlicz-1 norm

κ‖Lω‖ψ1 ≤ µ2
0κR

M

Ω
+ κ

W

Ω

∥∥∥∥∥∥

R∑

r=1

(
M∑

m=1

dω[m]U [m, r]

)2
∥∥∥∥∥∥
ψ1

≤ µ2
0κR

M

Ω
+ κ

W

Ω

R∑

r=1

∥∥∥∥∥∥

(
M∑

m=1

dω[m]U [m, r]

)2
∥∥∥∥∥∥
ψ1

It can easily be shown that random variable:

Y =
M∑

m=1

dω[m]U [m, r]
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is subgaussian, which implies that Y 2 is a sub-exponential random variable; see

Lemma 2.5.3. In addition, by the independence of {dω[m]}1≤m≤M and using Lemma

2.5.2, we have

R∑

r=1

∥∥∥∥∥

(
M∑

m=1

dω[m]U [m, r]

)∥∥∥∥∥

2

ψ2

≤ c
R∑

r=1

M∑

m=1

‖dω[m]U [m, r]‖2
ψ2
≤ cR.

Hence,

κ‖Lω‖ψ1 ≤ µ2
0κR

M

Ω
+ cRκ

W

Ω
,

which dominates the maximum in (5.5.4), and thus κ‖Lω−E[Lω]‖ is sub-exponential;

hence, α = 1 in (2.5.4). Let Λ = µ2
0M +W , and as defined earlier that |Γk| = ∆, and

κ = Ω/∆. Then

U1 log

( |Γk|U2
1

σ2
Z

)
≤ cκR

Λ

Ω
log(RΛ) (5.5.5)

Plugging (5.5.3), and (5.5.5) in (2.5.4), we have

‖κPTA∗kAkPT − PT‖ ≤ cmax

{√
κRΛβ log(WM)

Ω
,
κRΛ

Ω
log(RΛ)β log(WM)

}
.

The result of the Lemma 5.4.1 follows by taking Ω ≥ cβκRΛ log(WM) log(RΛ),

t = β log(WM), and using the union bound over κ indpendent partitions.

5.5.2 Proof of Lemma 5.4.2

We are interested in controlling the operator norm of

κA∗kAk(Wk−1)−Wk−1 =
∑

ω∈Γk

κ(〈Wk−1,Aω〉Aω − E〈Wk−1,Aω〉Aω). (5.5.6)

To control the operator norm of the sum of random matrices

Zω = κ(〈Wk−1,Aω〉Aω − E〈Wk−1,Aω〉Aω)

on the r.h.s. of (5.5.6), we will again refer to Proposition 2. We begin by evaluating

the first variance term
∥∥∥∥∥
∑

ω∈Γk

EZωZ
∗
ω

∥∥∥∥∥ ≤ κ2

∥∥∥∥∥
∑

ω∈Γk

E |〈Wk−1,Aω〉|2AωA
∗
ω

∥∥∥∥∥ = κ2‖fω‖2

∥∥∥∥∥
∑

ω∈Γk

E |〈Wk−1,Aω〉|2dωd∗ω

∥∥∥∥∥ ,
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where last equality follows form (5.2.9). Lemma 5.5.1 shows that

E |〈Wk−1,Aω〉|2dωd∗ω 4 3‖Wk−1fω‖2
2IM .

Summation over ω ∈ Γk gives

∑

ω∈Γk

E |〈Wk−1,Aω〉|2dωd∗ω 4
3

κ
‖Wk−1‖2

FIM ,

which implies that ∥∥∥∥∥
∑

ω∈Γk

EZ∗ωZω

∥∥∥∥∥ ≤ 3κ
W

Ω
‖Wk−1‖2

F . (5.5.7)

The second variance term needs

∥∥∥∥∥
∑

ω∈Γk

EZωZ
∗
ω

∥∥∥∥∥ ≤ κ2

∥∥∥∥∥
∑

ω∈Γk

E |〈Wk−1,Aω〉|2AωA
∗
ω

∥∥∥∥∥ ≤Mκ2‖
∑

ω∈Γk

fωf
∗
ω‖max

ω
E |〈Wk−1,Aω〉|2.

It is easy to see

E |〈Wk−1,Aω〉|2 = ‖Wk−1fω‖2
2,

and
∑

ω∈Γk
fωf

∗
ω = (1/κ)IW , which gives

∥∥∥∥∥∥
∑

ω∈Γp

EZωZ
∗
ω

∥∥∥∥∥∥
≤ µ2

k−1κ
M

Ω
‖Wk−1‖2

F , (5.5.8)

which follows by (5.2.10). Plugging (5.5.7), and (5.5.8) in (2.5.3), we obtain

σZ = max

{√
µ2
k−1κ

M

Ω
‖Wk−1‖F ,

√
3κ
W

Ω
‖Wk−1‖F

}
, (5.5.9)

The fact that Zω are subgaussian can be proven by showing that ‖Zω‖ψ2 <∞. First,

note that

‖Zω‖ψ2 ≤ 2‖κ〈Wk−1,Aω〉Aω‖ψ2 .

Second, the operator norm of the matrix under consideration is

‖〈Wk−1,Aω〉Aω‖ ≤
√
WM

Ω
|〈Wk−1,Aω〉|.
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Using the Definition 3, we obtain

‖Zω‖ψ2 ≤ 2κ

√
WM

Ω
‖〈Wk−1,Aω〉‖ψ2 .

Let w∗m denote the rows of the M ×W matrix Wk−1. We can write

〈Wk−1,Aω〉 =
M∑

m=1

dω[m]w∗mfω,

and using the independence of dω[m] with Lemma 2.5.2, we see that

‖〈Wk−1,Aω〉‖2
ψ2
≤ c

M∑

m=1

‖w∗mfω‖2
ψ2
≤ µ2

k−1

Ω
‖Wk−1‖2

F .

Hence, U2 in Proposition 2.5.4 is

U2 = ‖Zω‖ψ2 ≤ c

(
κ2µ2

k−1‖Wk−1‖2
F

WM

Ω2

)1/2

,

and using κ = Ω/∆, and Λmin = min(µ2
k−1M,W ), we have

U2 log1/2

( |Γk|U2
2

σ2
Z

)
≤ c

√
κ2µ2

k−1WM

Ω
‖Wk−1‖F log1/2(Λmin). (5.5.10)

Suppose Λmax = max(µ2
k−1M,W ), using (5.5.9), and (5.5.10) in (2.5.4) with t =

β log(WM), we have

‖κA∗kAk(Wk−1)−Wk−1‖ ≤

c‖Wk−1‖F
√
βκ log(WM)

Ω
max

{
√

Λmax,

√
βκµ2

k−1WM log(Λmin) log(WM)

Ω

}
.

(5.5.11)

Using (5.4.10), we can select Ω ≥ cβκRmax(W,µ2
k−1M) log2(WM) with appro-

priate constant c to ensure the desired bound. The result holds with probability

1−O(κ(WM)−β), which follows by using the value of t specified above and then by

the union bound over κ independent partitions.
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5.5.3 Proof of Lemma 5.4.3

Let Wk be as defined in (5.4.9), and em be the length-M standard basis vector with

1 in the mth location. The coherence in (5.4.11) can equivalently be written using

trace inner product as

µ2
k =

Ω

R
max
ω∈Γk

M∑

m=1

〈Wk, emf
∗
ω〉2, (5.5.12)

which using iterate relation in (5.4.9) gives

µ2
k =

Ω

R
max

1≤ω≤Ω

M∑

m=1

〈(κPTA∗kAkPT − PT )Wk−1, emf
∗
ω〉2.

In the rest of the proof, we will be concerned with bounding the summands

〈(κPTA∗kAkPT − PT )Wk−1, emf
∗
ω〉,

which can be expanded as

〈(κPTA∗kAkPT − PT )Wk−1, emf
∗
ω〉 =

∑

ν∈Γk

κ〈PT (Aν), emf
∗
ω〉〈Wk−1,Aν〉 − 〈Wk−1, emf

∗
ω〉

=
∑

ν∈Γk

κ〈PT (Aν), emf
∗
ω〉〈Wk−1,Aν〉 − Eκ〈PT (Aν), emf

∗
ω〉〈Wk−1,Aν〉.

To control the deviation of the above sum, we will use the scalar Bernstein inequality.

Let

Zν = κ(〈PT (Aν), emf
∗
ω〉〈Wk−1,Aν〉 − E〈PT (Aν), emf

∗
ω〉〈Wk−1,Aν〉).

The variance
∑

ν∈Γk
EZνZ

∗
ν is upper bounded by

∑

ν∈Γk

EZνZ
∗
ν ≤ κ2

∑

ν∈Γk

E〈PT (Aν), emf
∗
ω〉〈PT (Aν), emf

∗
ω〉∗〈Wk−1,Aν〉〈Wk−1,Aν〉∗

= κ2
∑

ν∈Γk

E |〈PT (Aν), emf
∗
ω〉|2|〈Wk−1,Aν〉|2 (5.5.13)
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Let ū∗m denote the mth row of the matrix U . The term 〈PTAν , emf
∗
ω〉 can be ex-

panded using (5.4.2) as follows:

〈PT (Aν), emf
∗
ω〉 = Tr (PT (Aν)fωe

∗
m)

= 〈UU ∗dνf ∗ν , emf ∗ω〉+ 〈dνf ∗νV V ∗, emf ∗ω〉 − 〈UU ∗dνf ∗νV V ∗, emf ∗ω〉

= 〈ūm,U ∗dν〉(f ∗νfω) + 〈V ∗fν ,V ∗fω〉dν [m]− 〈ūm,U ∗dν〉〈V ∗fν ,V ∗fω〉

(5.5.14)

Let Y1 = 〈ūm,U ∗dν〉(f ∗νfω), Y2 = 〈V ∗fν ,V ∗fω〉dν [m], and Y3 = 〈ūm,U ∗dν〉〈V ∗fν ,V ∗fω〉.

Using this notation and combining (5.5.13), (5.5.14), and expanding the square, it is

clear that

∑

ν∈Γk

EZνZ
∗
ν ≤ κ2 E

∑

ν∈Γk

3(|Y1|2 + |Y2|2 + |Y3|2)|〈Wk−1,Aν〉|2. (5.5.15)

Therefore, the term required to calculate the variance are the following: first,

∑

ν∈Γk

E |Y1|2|〈Wk−1,Aν〉|2 ≤ ū∗mU ∗max
ν

E(〈Wk−1,Aν〉2dνd∗ν)Uūm · f ∗ω
∑

ν∈Γp

(fνf
∗
ν )fω,

and the result of Lemma 5.5.1 shows that

E(|〈Wk−1,Aν〉|2dνd∗ν) 4 3‖Wk−1fν‖2
2IM .

Thus,

∑

ν∈Γk

E |Y1|2|〈Wk−1,Aν〉|2 ≤ 3ū∗mU
∗Uūm ‖Wk−1fν‖2

2 ·
1

κ
‖fω‖2

2 ≤ 3‖ūm‖2
2µ

2
k−1

WR

κΩ2
;

(5.5.16)

second,

∑

ν∈Γk

|Y2|2 = f ∗ωV V
∗
∑

ν∈Γk

(fνf
∗
ν )V V ∗fω =

1

κ
‖V ∗fω‖2

2 ≤ µ2
0

R

κΩ
;

and hence

E
∑

ν∈Γk

|Y2|2|〈Wk−1,Aν〉|2 ≤ max
ν

E |〈Wk−1,Aν〉|2 ·
∑

ν∈Γk

|Y2|2 ≤ µ2
0µ

2
k−1

R2

κΩ2
; (5.5.17)
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third, since |Y3|2 = |Y1|2|Y2|2/|f ∗νfω|2, we can combine the first two terms to obtain

E
∑

ν∈Γk

|Y3|2|〈Wk−1,Aν〉|2 ≤ 3‖ūm‖2
2µ

2
0µ

2
k−1

R2

κΩ2
. (5.5.18)

Plugging (5.5.16),(5.5.17), and (5.5.18) in (5.5.15),

σ2
Z =

∑

ν∈Γk

EZνZ
∗
ν ≤ 3κ

(
µ2

0µ
2
k−1

R2

Ω2
+ 3 ‖ūm‖2

2 µ
2
k−1

WR

Ω2
+ 3 ‖ūm‖2

2 µ
2
0µ

2
k−1

R2

Ω2

)

= 3κ

(
4µ2

0µ
2
k−1

R2

Ω2
+ 3 ‖ūm‖2

2 µ
2
k−1

WR

Ω2

)
,

where the last inequality follws by using the fact that ‖ūm‖2 ≤ 1. Using t =

β log(WM), we obtain the first quantity in the maximum in (2.5.4)

σ2
Zβ log(WM) ≤ 3κ

(
4µ2

0µ
2
k−1

R2

Ω2
+ 3 ‖ūm‖2

2 µ
2
k−1

WR

Ω2

)
β log(WM). (5.5.19)

Now, we will show that the variable

Zν = (Y1 + Y2 − Y3)〈Wk−1,Aν〉

is a subexponential random variable. It is easy to show that

‖Y1‖2
ψ2
≤ c‖ūm‖2

2(f ∗νfω)2 ≤ c‖ūm‖2
2

W 2

Ω2
,

‖Y2‖2
ψ2
≤ c〈V ∗fν ,V ∗fω〉2 ≤ cµ4

0

R2

Ω2
,

and

‖Y3‖2
ψ2
≤ c‖ūm‖2

2〈V ∗fν ,V ∗fω〉2 ≤ c‖ūm‖2
2µ

4
0

R2

Ω2
.

Then the fact ‖Y1 + Y2 − Y3‖ψ2 ≤ ‖Y1‖ψ2 + ‖Y2‖ψ2 + ‖Y3‖ψ2 implies that the sum

Y1 + Y2 − Y3 is also a subgaussian. Using another standard calculation, it can be

shown that

‖〈Wk−1,Aν〉‖2
ψ2
≤ c‖Wk−1fν‖2

2 ≤ cµ2
k−1

R

Ω
.

It is shown in Lemma 2.5.4 that product X of two subgaussian random variables X1,

and X2 is subexponential and ‖X‖ψ1 ≤ c‖X1‖ψ2‖X2‖ψ2 . This fact now implies that
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Zν is a subexponential random variable with Orlicz-1 norm

‖Zν‖2
ψ1
≤ κ2µ4

0µ
2
k−1

R3

Ω3
+ 3κ2µ2

k−1

W 2R

Ω3
‖ūm‖2

2 + 3‖ūm‖2
2κ

2µ4
0µ

2
k−1

R3

Ω3

≤ 4κ2µ4
0µ

2
k−1

R3

Ω3
+ 3κ2µ2

k−1

W 2R

Ω3
‖ūm‖2

2,

where the last inequality follows from ‖ūm‖2
2 ≤ 1. Choosing t = β log(WM), as

before, gives the second quantity in the maximum in (2.5.4)

U2
1 log2

(
|Γk|

U2
1

σ2
Z

)
β2 log2(WM) ≤ κ2µ2

k−1

4µ4
0R

3 + 3‖ūm‖2
2W

2R

Ω3
β2 log4(WM).

(5.5.20)

Using Bernstein bound, it follows that |〈Wk, emf
∗
ω〉| is dominated by the maximum

of (5.5.19), and (5.5.20) with probability at least 1− (WM)−β. Using this bound in

(5.5.12), and using the fact that
∑M

m=1 ‖ūm‖2
2 = R, we obtain the following bound

on µ2
k with probability (using the union bound) at least 1−O(|Γk|(WM)−β)

µ2
k ≤ cµ2

k−1 max

{
3κ

4µ2
0MR + 3µ2

k−1WR

Ω
β log(WM), κ2 4µ4

0MR2 + 3W 2R

Ω2
β2 log4(WM)

}
.

Now taking Ω ≥ cβκR(µ2
0M+W ) log2(WM) gives us the desired bound on the coher-

ence µ2
k for a fixed value of k with probability 1−O(|Γk|(WM)−β). Using union bound

over κ independent partitions, the failure probability becomes 1−O(Ω(WM)−β).

Lemma 5.5.1. Let dω ∈ {−1, 1}M denote the binary length-M random vectors as

defined in (5.2.9). Then

E |〈C,Aω〉|2dωd∗ω 4 3‖Cfω‖2
2IM

Proof. Let {c∗m}1≤m≤M denote the rows of the matrix C ∈ CM×W , {X}(α,β) denote

the (α, β)th entry of X, and Aω as defined in (5.2.9). Then we can write

{E(|〈C,Aω〉|2dωd∗ω)}(α,β) = E

∣∣∣∣∣
M∑

m=1

dω[m]c∗mfω

∣∣∣∣∣

2

{dωd∗ω}(α,β)

=
M∑

m=1

|c∗αfω|2δ(α=β) + 2〈c∗αfω, c∗βfω〉δα6=β,
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where δ(α=β) is 1 when α = β and is 0 otherwise. Similarly δα 6=β is 1 when α 6= β and

is 0 otherwise. This implies that

E(|〈C,Aω〉|2dωd∗ω) = ‖Cfω‖2
2 IM + 2Cfωf

∗
ωC
∗ − 2diag(Cfωf

∗
ωC
∗)

≺ ‖Cfω‖2
2 IM + 2Cfωf

∗
ωC
∗ 4 3‖Cfω‖2

2IM

where the first inequality follows from the fact that diag(Cfωf
∗
ωC
∗) is a positive-

semidefinite matrix, and the last inequality is valid because for a vector x, we have

‖x‖2
2 I < xx∗.

5.6 Proof of Theorem 5.2.2

Given the contaminated measurements, as in (5.2.11), and the linear operator A∗,

which is the adjoint A, defined in (5.2.2), we have

‖A∗(y)− EA∗(y)‖ ≤ ‖(A∗A− I)(C0)‖+ ‖A∗(ξ)‖

= θ1 + θ2 (5.6.1)

The result of Theorem 5.2.2 can be considered as the corollary of the following result

in [53].

Theorem 5.6.1. [53] Let C̃ ∈ CM×W be the estimate of rank-R matrix C0, defind

in (5.1.1), from the measurements y in (5.2.11) using the estimator in (5.2.12). If

λ ≥ 2‖A∗y‖, then

‖C̃ −C0‖2
F ≤ min{2λ‖C0‖∗, 1.5λ2R} (5.6.2)

To prove Theorem 5.2.2, we only need to compute a bound on the operator norm

in (5.6.1). The bound on θ1 in (5.6.1) is provided by the following corollary of Lemma

5.4.2. With out loss of generality, we will assume that ‖C0‖F = 1.

Corollary 6. Let µ2
0, defined in (5.2.10), be the coherence of rank-R matrix C0 in

(5.1.1). Then for all β ≥ 1

‖A∗A(C0)−C0‖2 ≤ c

√
βmax(µ2

0M,W ) log(WM)

Ω
‖C0‖F
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with probability at least 1− (WM)−β provided Ω ≥ cβmin(µ2
0M,W ) log2(WM).

The proof of the corollary follows from Lemma 5.4.2. In particular, the corollary

is a direct result of the bound (5.5.11) by taking k = 1. The first term in (5.5.11)

dominates when Ω ≥ cβmin(µ2
0M,W ) log2(WM).

The upper bound on θ2 follows from the following Lemma.

Lemma 5.6.1. Let A∗ : RΩ → CM×W be the adjoint of the linear operator A defined

in (5.2.2), and ξ be the noise random variable with statistics given in (5.2.13), and

‖ξ‖ψ2 ≤ δ. Then for β ≥ 1, the conclusion:

‖A∗(ξ)‖2 ≤ c‖ξ‖ψ2

√
βmax(W,M) log(WM)

Ω

holds with probability at least 1− (WM)−β, when Ω ≥ cβmin(W,M) log2(WM).

Combining the above bounds with (5.6.1) gives

‖A∗(y)− EA∗(y)‖ ≤ c

√
β{max(W,µ2

0M) + ‖ξ‖2
ψ2

max(W,M)} log(WM)

Ω
(5.6.3)

with high probability. The second term is meaningful in the minimum in (5.6.2) in

Theorem 5.6.1 when we select the sampling rate Ω large enough that makes λ2 � 1.

Theorem 5.6.1, and (5.6.3) assert that

‖C̃ −C0‖2
F ≤ c‖ξ‖ψ2 ≤ cδ,

when Ω ≥ cβRmax(W,µ2
0M) log2(WM), which does not violate the upper bounds

on Ω in Corollary 6, and Lemma 5.6.1. This proves Theorem 5.2.2.

5.6.1 Proof of Lemma 5.6.1

We will use the orlicz version of the matrix Bernstein’s inequality 2.

Proof. We are interested in bounding A∗(ξ) =
∑Ω

ω=1 ξ[ω]Aω. Let Zω = ξ[ω]Aω. It is

clear that EZω = 0, which follows by the independence of ξ[ω], and Aω, and by the
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fact that E ξ[ω] = 0. To use the Bernstein bound, we need to calculate the variance

(2.5.3). We begin with

‖
Ω∑

ω=1

EZωZ
∗
ω‖ =

∥∥∥∥∥E
Ω∑

ω=1

ξ[ω]2fωd
∗
ωdωf

∗
ω

∥∥∥∥∥ =

∥∥∥∥∥E
Ω∑

ω=1

ξ[ω]2‖dω‖2
2fωf

∗
ω

∥∥∥∥∥

= M max
ω

E ξ[ω]2

∥∥∥∥∥
Ω∑

ω=1

fωf
∗
ω

∥∥∥∥∥ ≤M max
ω
‖ξ[ω]‖2

ψ2
= c

M

Ω
‖ξ‖2

ψ2

Similarly,

∥∥∥∥∥
Ω∑

ω=1

EZ∗ωZω

∥∥∥∥∥ =

∥∥∥∥∥
Ω∑

ω=1

E ξ[ω]2f ∗ω E(dωd
∗
ω)fω

∥∥∥∥∥ ≤ max
ω
‖ξ‖2

ψ2

Ω∑

ω=1

‖fω‖2
2 = c

W

Ω
‖ξ‖2

ψ2

Then, we obtain

σ2
Z = c‖ξ‖2

ψ2

max(W,M)

Ω
.

Since ‖Zω‖ = |ξ[ω]|‖Aω‖ ≤ |ξ[ω]|(WM)/Ω, we have

‖Zω‖ψ2 ≤ c‖ξ‖ψ2

√
WM

Ω2
.

Thus,

U2 log1/2

(
ΩU2

2

σ2
Z

)
≤ c‖ξ‖ψ2

√
WM

Ω2
log1/2(WM).

Now using t = β log(WM), we obtain

‖A∗(ξ)‖ ≤ c‖ξ‖ψ2 max





√
βmax(W,M) log(WM)

Ω
,

√

β2
WM log3(WM)

Ω2





with probability at least 1 − (WM)−β. The first term in the minimum dominates

when Ω ≥ cβmin(W,M) log2(WM). This proves the Lemma.

5.7 Proof of Theorem 5.2.3

In this section, we will establish the matrix RIP for the operator B defined in (5.2.3).

The first step in this direction is given by the following lemma that gives the concen-

tration result of operator B for a fixed matrix C.
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Lemma 5.7.1. Let B : CM×W → RΩ be as in (5.2.3). Then for any C ∈ CM×W the

random variable ‖B(C)‖2
2 is strongly concentrated about its expected value, i.e.,

P
{
|‖B(C)‖2

2 − ‖C‖2
F | ≤ ε‖C‖2

F

}
≥ 1− 2e−c0ε

2Ω/ log4(ΩM).

Proof of this Lemma is given in Section 5.7.1. Using now standard covering

number argument, we can convert the above concentration result for a fixed matrix

to a matrix-RIP result for all rank-R matrices C. We will briefly give here the

covering argument for completeness; see, for details, [18].

We start by defining the set C of all low-rank matrices of dimensions M ×W

C = {C ∈ CM×W : rank (C) ≤ R, ‖C‖F = 1}.

Choose a δ-net; namely, QR ⊂ C such that for every C ∈ C, there exists Q ∈ QR,

which satisfies

‖C −Q‖F ≤ δ.

The cardinality of set QR [18, 76] is

|QR| ≤
(c6

δ

)(W+M)R

.

Using Lemma 5.7.1 for any Q ∈ QR with ε = δ/2, we obtain

P
{
|‖B(Q)‖2

2 − ‖Q‖2
F | > δ/2

}
≤ 2e−c0(δ/2)2Ω/ log4(WΩ).

Now union bound over the finite set of points in QR gives

P

{
max
Q∈QR

|‖B(Q)‖2
2 − ‖Q‖2

F | > δ/2

}
≤ 2|QR|e−c0(δ/2)2Ω/ log4(MΩ)

≤ 2
(c6

δ

)(W+M)R

e−c0(δ/2)2Ω/ log4(MΩ)

= 2e(W+M)R log(c6/δ)−c0(δ/2)2Ω/ log4(MΩ).

Choose (W +M)R ≤ c1Ω/ log4(MΩ) for a constant c1 > 0, and let

c2 = c0(δ/2)2 − c1 log(c6/δ).
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We can make c2 > 0 by taking small enough c1, which implies

P
{
|‖B(Q)‖2

2 − ‖Q‖2
F | > δ/2

}
≤ e−c2(δ)Ω/ log4(MΩ),

i.e., ∀Q ∈ QR
(1− δ/2) ‖Q‖2

F ≤ ‖B(Q)‖2
2 ≤ (1 + δ/2)‖Q‖2

F

holds with probability ≥ 1−2e−c2(δ)Ω/ log4(MΩ). Now using exactly the same approach

as in Section 3.2 of [18], we can extend this statement from ∀Q ∈ QR to all C ∈ C,

and obtain the conclusion:

(1− δ)‖C‖F ≤ ‖B(C)‖2 ≤ (1 + δ)‖C‖F .

This proves Theorem 5.2.3.

5.7.1 Proof of Lemma 5.7.1

The measurements in (5.2.3) can be expressed as

y = B(C0) = ΦD · vec(C0F̃ ), (5.7.1)

where Φ = [H1, · · · ,HM ] is a block-toeplitz matrix, and D : ΩM × ΩM is the

diagonal matrix formed by cascading smaller diagonal matrices {Dm}1≤m≤M along

the diagonal. To prove Lemma 5.7.1, we invoke two results: first, matrix Φ satisfies

restricted isometry property for k-sparse vectors, see [80]; second, ΦD satisfies con-

centration inequality, see [54]. The restricted-isometry property for sparse vectors is

defined as below.

Definition 5. A matrix Φ : RΩM → RΩ is said to satisfy the restricted k-isometry

property if for an integer 1 ≤ k ≤ ΩM there is a smallest constant εk(Φ) such that

(1− εk(Φ)) ‖x‖2 ≤ ‖Φx‖2 ≤ (1 + εk(Φ)) ‖x‖2

for all k-sparse vectors x ∈ RΩM .
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The block-toeplitz matrix

Φ =
[
F ∗Ĥ1F ,F

∗Ĥ2F , · · · ,F ∗ĤMF
]

(5.7.2)

obeys the RIP for k-sparse vectors, which is given by following theorem.

Theorem 5.7.1 (k-sparse RIP for Φ; see [80]). Fix a ε ∈ (0, 1) then the matrix

Φ : RMΩ → RΩ satisfies the k-restricted isometry property given above for εk(A) ≤ ε

with probability at least 1 − exp(−cΩ) when k ≤ c4ε
2Ω/ log4MΩ. The constant c

above depends mildly upon length of the vector x.

Given the RIP of Φ, we can apply the following result [54] to show that the matrix

ΦD satisfies concentration for any fixed x ∈ RMΩ.

Lemma 5.7.2 (Concetration inequality for B; see [54]). Fix ε > 0 and suppose that

there is a constant c4 such that for all k-sparse vectors and Ω measurements with

k ≤ c4ε
2Ω/ log4(MΩ), the matrix Φ ∈ RΩ×MΩ has restricted isometry property of

order k and isometry constant ε. Fix x ∈ RMΩ and let D ∈ RMΩ×MΩ contain along

its diagonal a Rademacher sequence, i.e., uniformly distributed {−1, 1}MΩ. Then for

a constant c5 such that for all Ω, ΦD satisfies the concentration inequality, which

can be written here as

P
{
|‖ΦD vec(CF̃ )‖2

2 − ‖ vec(CF̃ )‖2
2| ≥ ε‖ vec(CF̃ )‖2

2

}
≤ 2 exp(−c5k)

≤ 2 exp(−c0ε
2Ω log−4(MΩ)),

where 0 < ε < 1 and c0 = c4c5.

Using the fact that ‖ vec(CF̃ )‖2
2 = ‖CF̃ ‖2

F = ‖C‖2
F , and by the definition of B,

we have the result

Pr
(
|‖B(C)‖2

2 − ‖C‖2
F | ≥ ε‖C‖2

F

)
≤ 2 exp(−c0ε

2Ω log−4(MΩ)).
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CHAPTER VI

SAMPLING ARCHITECTURES WITH LEAST-SQUARES

DECODING

In comparison to the nuclear-norm minimization, we can also solve a simpler least-

squares program for the recovery of an unknown low-rank matrix. However, to use

least squares as a decoding strategy, the measurements are required to be the samples

of the row and the column space of the unknown low-rank matrix X0. The row, and

column measurements; namely, Y1, and Y2 are matrices whose rows, and columns

can be thought of as samples drawn at random from the row, and column space of

X0, respectively. That is, each row of Y1 (each column of Y2) can be expressed as a

linear combination of the rows (columns) of X0. Hence, the matrices Y1 and Y2 can

be expressed as

Row measurements: Y1 = Φ1X0 (6.0.3)

Column measurements: Y2 = X0Φ
∗
2, (6.0.4)

where Φ1 : ∆×M , and Φ2 : Ω×W will be referred to as the measurement matrices.

The measurement matrices will be random with various distributions. The measure-

ments Y1, and Y2 produce an orthonormal basis for the row and the column space

of X0. As we will see later, the knowledge of the row and the column space of the

unknown X0 allows us to use a convenient least-squares program for LRMR.

The randomness in the measurement matrices Φ1, and Φ2 plays a central role in

the successful reconstruction [47]. To see this, consider a simple example: Suppose,

we seek a basis for the column space of a matrix X0 of exact rank R. Form a vector

yi = X0φi, i = 1, . . . , R,
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where φi is a random vector. Intuitively, the vector yi is a random sample of the

column space of X0. Repeat this process R times, each time with a new choice of

a random vector φi to obtain a set of samples {yi : i = 1, . . . , R} of the column

space of X0. Since the vectors {φi : i = 1, . . . , R} are independent, it is improbable

that these vectors will fall into the null space of X0. This implies that the vectors

{yi : i = 1, . . . , R} are also independent and span the column space of X0, and hence

the basis of column space can be obtained from these samples. Exact same reasoning

applies to the construction of the basis of the row space of X0.

In general, if the matrix X0 is not exactly rank R but is rather compressible, that

is, the spectrum of the singular values of X0 decays rapidly after first R significant

singular values, then we can write such a matrix X0 = Z + ξ, where Z is a rank-R

matrix under consideration and ξ accounts for the perturbation. Now we take the

samples of the range space of X0, and we observe

yi = X0φi = Zφi + ξφi, i = 1, . . . , R + κ,

where κ is the amount of oversampling. We are interested in the column space of

Z; instead, the samples {yi} observed are deviated outside of the column space of Z

because of the perturbation ξ. Intuitively, we oversample to make sure that we cover

as much of the column space of X0 as possible. As will be clear from theoretical

results presented later that a small amount of oversampling, κ = 5, 10, suffices for

many practical situations; for details, see [47].

We estimate the column and row spaces of X0 by computing the svd of Y1 and

Y2, then truncating them to R terms. We factor

Y1 ≈ U1Σ1V
∗

1

Y2 ≈ U2Σ2V
∗

2 , (6.0.5)

where U1 : ∆ × R, Σ1 : R × R, V1 : W × R, U2 : M × R, Σ2 : R × R, V2 : Ω × R.

We will use U2 as an orthobasis for the column space of our estimate and V1 as an
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orthobasis for the row space of our estimate; we will take the estimate X̃ of unknown

matrix X0 as

X̃ = U2AV
∗

1 , (6.0.6)

for some R × R matrix A. We will choose A so that Φ1X̃ and X̃Φ∗2 are as close to

Y1 and Y2, respectively, as possible. That is, we take

Ã = argminA ‖U2AV
∗

1 Φ∗2 − Y2‖2
F + ‖Φ1U2AV

∗
1 − Y1‖2

F

= argminA ‖AV ∗1 Φ∗2 −U ∗2Y2‖2
F + ‖Φ1U2A− Y1V1‖2

F . (6.0.7)

Using Lemma 6.0.3, we know that Ã must obey the normal equations

U ∗2 Φ∗1Φ1U2Ã+ ÃV ∗1 Φ∗2Φ2V1 = U ∗2 Φ∗1Y1V1 +U ∗2Y2Φ2V1

or

HÃ+ ÃG = F ,

where H = U ∗2 Φ∗1Φ1U2, G = V ∗1 Φ∗2Φ2V1, and F = U ∗2 Φ∗1Y1V1 + U ∗2Y2Φ2V1. We

can write this R2 × R2 system of equations in vectorized form (columns stacked on

one another) as

Kã = f ,

where ã = vec(Ã), f = vec(F ), and

K =




H

H

. . .

H




+




G1,1I G2,1I . . . GR,1I

G1,2I G2,2I . . . GR,2I

...
...

. . .
...

G1,RI G2,RI . . . GR,RI



.

So we take ã = K−1f , and unstack the columns to get Ã.

Instead of using the least-squares program in (6.0.7), we can solve a simpler version

[101]:

Ã = argminA ‖U2AV
∗

1 Φ∗2 − Y2‖2
F , (6.0.8)
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which gives almost the same performance as the least-squares program in (6.0.7); for

details, see [101]. The corresponding normal equations for the least-squares program

(6.0.8) are

U ∗2 Φ∗1Φ1U2Ã = U ∗2 Φ∗1Y1V1.

This gives a simple analytical form of the estimate Ã

Ã = (U ∗2 Φ∗1Φ1U2)−1U ∗2 Φ∗1Y1V1.

The theoretical results presented later will show that the inverse (U ∗2 Φ∗1Φ1U2)−1 is

well defined. The lemma below derives the normal equations for the least-squares

program in (6.0.7).

Lemma 6.0.3. Consider the following optimization program

min
A
‖PA− Y ‖2

F + ‖AQ∗ −Z‖2
F ,

where A : R×R, P : ∆×R, Y : ∆×R, Q : Ω×R, Z : R×Ω. The solution to the

above optimization program satisfies the normal equations:

P ∗PA+AQ∗Q = P ∗Y +ZQ.

Proof. The minimizer A to the least-squares program above satisfies

∇A‖PA− Y ‖2
F +∇A‖AQ∗ −Z‖2

F = 0.

We know that

∇A‖PA− Y ‖2
F = ∇A‖PA‖2

F − 2∇A Tr (Y ∗PA)

= 2P ∗PA− 2P ∗Y ,

and

∇A‖AQ∗ −Z‖2
F = ∇A‖AQ∗‖2

F − 2∇A Tr (Z∗AQ∗)

= 2AQ∗Q− 2ZQ,
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and so the corresponding normal equations are

P ∗PA+AQ∗Q = P ∗Y +ZQ.

6.1 Compressive Acquisition with Least-squares Decoding

We will present here two compressive sampling architectures for the acquisition of

multiple signals lying in a subspace. These architectures process the signals in analog

in a way that allows us to use the least-squares program for the reconstruction of the

signal ensemble. In this section, we will introduce each of the sampling architecture

and model the samples taken by the ADCs as a linear transformation of a low-rank

matrix.

6.1.1 Architecture 1

The sampling architecture shown on the left in Figure 36 takes input signal ensem-

ble Xc(t) = {xm(t)}1≤m≤M containing M signals. The signals in the ensemble are

assumed to be lying in a subspace, i.e.,

Xc(t) := {xm(t) : xm(t) ≈
R∑

r=1

A[m, r]sr(t), 1 ≤ m ≤M},

where A[m, r] are the entries of an unknown M ×R matrix A, and sr(t) are the un-

derlying independent signals. In addition, each signal in the ensemble is bandlimited

to W/2. The signal model is explained in detail in Chapter 4. We will use the same

analog components to build the architectures that were introduced in Chapter 4.

Let X0 be the matrix that contains as its rows the Nyquist rate samples of the

signals xm(t) in t ∈ [0, 1). We can write

X0 = C0F , (6.1.1)

where F is a W ×W normalized discrete Fourier matrix with entries

F [ω, n] =
1√
W
e−j2πωn/W , 0 ≤ ω, n ≤ W − 1,
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Figure 36: Sampling architectures for multiple signals lying in a subspace: M sig-
nals, bandlimited to W/2 are preprocessed in analog using an analog vector-matrix
multiplier (AVMM) to produce ∆ signals, each of which is then sampled at W sam-
ples per second. In addition, each of the M input signals is sampled randomly using
a non-uniform sampling (nus) ADC at an average rate Ω samples per second. The
analog preprocessing is designed to perform row and column operations on matrix
of samples X0 so that we can use the least-squares program for decoding. The net
sampling rate is ΩM + ∆W samples per second.
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Figure 37: Sampling architecture for multiple signals lying in a subspace: M signals,
bandlimited to W/2 are preprocessed in analog using an analog vector-matrix mul-
tiplier (AVMM) to produce ∆ signals, each of which is then sampled at W samples
per second. In addition, each of the M input signal is processed by a modulator, and
a low-pass filter. The resultant signal is then sampled uniformly at a rate Ω samples
per second. The analog preprocessing is designed to perform the row and the column
operation on X0 so that a simple least-squares program can be used for decoding.
The net sampling rate is ΩM + ∆W samples per second.
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and C0 is a M × W matrix whose rows contain Fourier series coefficients for the

signals in Xc(t);for details, see Section 4.1.1. The unknown matrix X0 is of rank-R

by construction. The analog preprocessing basically aims at obtaining the row and

the column space of X0. Firstly, the signals are processed by an AVMM that takes

random linear combinations of M input signals to produce ∆ output signals. The

resultant ∆ signals are then sampled uniformly at rate W . In discrete time, the action

of the AVMM, and the uniform ADCs can be represented as the left multiplication

of a Gaussian matrix Φ1 : ∆ × M with the matrix of samples X0. Hence, the

measurements

Y1 = Φ1X0, (6.1.2)

can be viewed as the row measurements of the matrix of samples X0. These mea-

surements will later be utilized in the least-squares program for matrix recovery.

Secondly, the M input signals in the ensemble Xc(t) are sampled individually using

non-uniformly sampling (nus) ADCs. The nus ADCs operate randomly at an aver-

age rate Ω. In a time window t ∈ [0, 1), all of the nus ADCs take the input signals

{xm(t)}1≤m≤M and return the samples

{xm(tk),∀m|tk ∈ Γ ⊂ {0, 1/W, . . . , 1− 1/W}},

where the set Γ is chosen uniformly at random such that |Γ| = Ω. It is important to

see that all of the nus-ADCs go on-and-off together. Hence, if we place the samples

of each of the nus ADCs as the columns of the matrix Y2, then the measurements Y2

can be expressed as

Y2 = X0Φ
∗
2, (6.1.3)

where

Φ2 :=

√
W

Ω
RΓ : Ω×W

is a matrix that restricts a length-W vector of samples xm in each channel to the Ω
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coordinates, which correspond to the samples selected. Since the nus ADCs go on-

and-off together, therefore, in the above formulation, the matrix Φ∗2 selects an entire

row of the matrix of samples X0 at random. Thus, the measurements Y2 : M × Ω

can be viewed as the column-space measurements of the unknown low-rank matrix

X0. Putting it all together, the ADCs are sampling at a rate ∆W + MΩ to obtain

the column and the row measurements Y1 and Y2.

Since the nus ADCs are operating at a sub-Nyquist rate, the successful recon-

struction hinges on the fact that partial information gathered by the nus ADCs gives

us a global information about the signal ensemble. This is not true when the signal

ensemble is sparse across time. As in such a situation, many samples of the row space

of X0 end up being zero vectors, which do not tell us anything about the row space

of the matrix X0. To avoid this scenario, we will then have to sample at a higher

rate till we observe enough samples to achieve a reliable estimate of the row space.

Hence, the sampling architecture is more effective for the signals that are dispersed

across time. This intuition is supported by our theoretical results, and the sufficient

sampling rate for the successful reconstruction of the ensemble is dependent on the

dispersion of the signal energy across time. The dispersion is quantified by a signal

parameter called coherence. Let

X0 = UΣV ∗

be the singular value decomposition of the matrix X0. Then the coherence µ2
0 is

defined as

µ2
0 =

W

R
max

1≤k≤W
‖V ∗ek‖2

2,

where it can easily be shown that 1 ≤ µ2
0 ≤ W

R
. In particular, the parameter µ2

0

achieves the upper bound, when the right singular vectors contain the standard basis

vectors. In contrast, the coherence µ2
0 achieves the lower bound when the entries in the

right singular vectors are of the same magnitude. Since the signals are bandlimited,
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this means that µ2
0 is small when the signal are dispersed across time.

Given the measurement set Y1, and Y2, the following theorem provides sufficient

sampling rate for the successful reconstruction of the signal ensmbel Xc(t).

Theorem 6.1.1. Let Y1 : ∆ ×M , and Y2 : W × Ω be as in (6.1.2), and (6.1.3),

respectively. Then the unknown matrix X0 can be recovered exactly using the least-

squares program in (6.0.7) with probability at least 1−O(W−β), when

∆ ≥ R + Cβ logW, Ω ≥ Cβµ2
0R logW,

and hence the number of samples per second ∆W +MΩ obey the bound

∆W +MΩ & CβR(W + µ2
0M) logW,

where Cβ is a constant that depends on β.

Thus, we can reconstruct the ensemble Xc(t) by sampling at a rate that is within

a constant and log factors of the optimal sampling rate R(W +M).

We will now consider a more realistic case, when the X0 is not exactly of rank-

R but is rather compressible, i.e., the spectrum of the singular values consists of R

most significant singular values and rest of the singular values decay rapidly. Given

the measurements Y1, and Y2 of such an X0, the following theorem gives the signal

reconstruction result using the least-squares program as a decoding strategy.

Theorem 6.1.2. Let Y1 : ∆ ×M , and Y2 : W × Ω be as in (6.1.2), and (6.1.3),

respectively. Then the solution X̃ of the least-squares program in (6.0.7) obeys

‖X̃ −X0‖F ≤ C

(
1 + C

√
R

β logW
+

√
W

Ω

)(∑

j>R

σ2
j

)1/2

with probability at least 1−O(W−β) when

∆ ≥ R + Cβ logW, Ω ≥ Cβµ2
0R logW
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and hence the sampling rate is

∆W +MΩ & CβR(W + µ2
0M) logW,

where Cβ is a constant that depends on β.

We can also force the coherence µ2
0 to be small by adding some analog preprocess-

ing in the form of random LTI filters in each channel. The LTI filters are represented

using W×W circulant matrixH as defined in (4.1.5), (4.1.6), and (4.1.7). We will use

filters with the same impulse response hc(t) in each channel. Now we are concerned

with a new matrix

Xp = X0H ,

where H is a random orthogonal matrix, and Xp stands for matrix of samples of the

analog preprocessed ensemble. Since X0 = UΣV ∗, the svd of Xp is then

Xp = UΣV ∗p ,

where the matrix of right singular vectors Vp = HV is in some sense a random

orthogonal matrix, and the following lemma shows that Vp is incoherent with high

probability.

Lemma 6.1.1. Fix a matrix V ∈ CW×R of the right singular vectors. Create a

random orthonormal matrix H ∈ RW×W . Then

max
1≤j≤W

‖V ∗p ej‖2
2 ≤ Cβmax (R, logW )/W

with a probability exceeding 1−O(W−β).

The column measurements are now

Y2 = XpΦ
∗
2,

where Φ2 is the same column-sensing matrix as before. The sampling theorems for

this new sampling architecture can easily be derived from Theorem 6.1.1, and 6.1.2
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for the case when Xp is exactly rank-R, and when it is compressible, respectively. In

this case, the sufficient sampling rate for the successful reconstruction of the signal

ensemble scales with an additional log factor logW , when R > logW , otherwise, we

pay two additional log factors in the sampling rate.

6.1.2 Architecture 2

The second proposed architecture for the efficient sampling of multiple signals lying

in a subspace is shown in Figure 37. For the column measurements, we use a block

of modulator, low-pass filter, and a uniform ADC in each channel. Each of the M

input signals xm(t), 1 ≤ m ≤M is multiplied by a random binary waveform d(t),∀m

alternating at rate W . That is, the output after the modulation in the m-th channel

is

ym(t) = xm(t) · d(t), m = 1, · · · ,M, and t ∈ [0, 1).

The ym(t) are then low-pass filtered using an integrator, which integrates ym(t) over

an interval of width 1/Ω and the result is then sampled at rate Ω using an ADC. The

samples taken by the ADC in the m-th channel are

ym[n] =

∫ n/Ω

(n−1)/Ω

ym(t)dt, n = 1, · · · ,Ω.

The integration operation commutes with the modulation process; hence, we can

equivalently integrate the signals xm(t), 1 ≤ m ≤M over the interval of width 1/W ,

and treat them as samples X1 ∈ RM×W of the ensemble Xc(t). The entries X1[m,n]

of the matrix X1 are

X1[m,n] =

∫ n/W

(n−1)/W

xm(t)dt,

=
∑

|ω|≤W/2

C[m,ω]

[
eι2πω/W − 1

ι2πω

]
e−ι2πωn/W ,

where the bracketed term representing the low-pass filter

L̃[ω] =

[
eι2πω/W − 1

ι2πω

]
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is evaluated in the window ω = 0,±1, . . . ,±(W/2−1),W/2. We will use an equivalent

evaluation L[ω] of L̃[ω] in the window ω = 1, . . . ,W . The Fourier coefficients of

C0[m,ω] of X0 defined in (4.1.2) are related to the Fourier coefficients C0[m,ω] of X0

C1[m,ω] = C0[m,ω]L[ω] ω = 1, · · · ,W, (6.1.4)

and in time domain

X1 = C0LF , (6.1.5)

where L is a W ×W diagonal matrix containing L[ω] as its diagonal entries, F is the

W ×W DFT matrix, and C1 is the coefficients matrix with entries defined in (6.1.4).

Since C1 inherits its low-rank structure from C0; therefore, X1 is also a low-rank

matrix of rank R. As a result, in the rest of this write up, we will be concerned with

recovering the rank R matrix X1. Since L is well-conditioned, the recovery of X1

implies the recovery of X0.

In light of (4.1.3), the W equally-spaced samples of d(t)xm(t) are Dxm, where xm

contains the W uniformly-spaced samples of xm(t), and D, as in (4.1.4), is a random

diagonal matrix containing random binary signs d[n] along the diagonal. The samples

ym ∈ RΩ in t ∈ [0, 1) taken by the ADC in the m-th branch are

ym = PDxm, 1 ≤ m ≤M,

where xm ∈ RW are the rows of X0 defined in (6.1.5); D is W ×W random diagonal

matrix defined in (4.1.4), and corresponds to the modulator in the m-th branch; and

P : Ω×W is the matrix that represents the action of the integrator (used as a low-

pass filter; for more details, see [96]) that contains ones in locations (α, β) ∈ (j,Bj),

for j = 1, · · · ,Ω, where

Bj = {(j − 1)W/Ω + 1 : jW/Ω} 1 ≤ j ≤ Ω,

where we are assuming for simplicity that Ω is a factor of W . Since the action

of the integrator commutes with the action of the modulator, the operation of the
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integrator can be simply represented as a block-diagonal matrix P operating on the

modulated entries of the rows of X1, which contains the samples of the integrated

signals. Putting it all together, the samples acquired by the ADCs can be written as

Y2 = C0LFΦ∗2 = X1Φ
∗
2, (6.1.6)

where the column-measurement matrix is Φ2 = PD.

As before, the AVMM takes the random linear combinations of the M input

signals to produce ∆ output signals. Each of the ∆ resultant signals is then sampled

uniformly at rate W . The row measurements are

Ỹ1 = Φ1X0 = Φ1C0F ,

where Φ1 : ∆ ×M is a Gaussian matrix. From Ỹ1, we can obtain the row measure-

ments of X1 as

Y1 = Ỹ1F
∗LF = Φ1X1. (6.1.7)

The ADC in each branch samples the signal energy integrated over intervals of

length 1/Ω. If the input signals are sparse across time, then most samples of the

column space of X1 in Y2 might be zero vectors, which donot contribute any use-

ful information towards the reconstruction of the signal ensemble from the limited

measurements observed. Intuitively, the sampling architecture is more effective for

signals distributed across time. This observation is supported by our theoretical

analysis. Our results again depend on the coherence parameter µ2
0

µ2
0 =

W

R
max

1≤k≤W
‖V ∗ek‖2

2

that quantifies the dispersion of signal energy across time, where V is the matrix of

right singular vectors of X1 = UΣV ∗.

Theorem 6.1.3. Let Y1 : ∆×M , and Y2 : W ×Ω be as in (6.1.7), and (6.1.6). Then

the unknown matrix X1 can be recovered exactly using the least-squares program in
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(6.0.7) with probability at at least 1−O(W−β), when

∆ ≥ R + Cβ logW, Ω ≥ Cβµ2
0 log2W,

and hence the number of samples obey

∆W +MΩ & CβR(W + µ2
0M) log2W

for a fixed constant Cβ that depends on β.

In the case, when X1 is not exactly rank-R, but is a compressible matrix, well

approximated by a rank-R matrix, we have the following signal reconstruction result.

Theorem 6.1.4. Let Y1 : ∆×M , and Y2 : W ×Ω be as in (6.1.7), and (6.1.6). Then

the solution X̃ of the least-squares program in (6.0.7) obeys

‖X̃ −X1‖F ≤ C

(
1 + C

√
R

β logW
+

√
W

Ω

)(∑

j>R

σ2
j

)1/2

,

with probability at least 1−O(W−β) when

∆ ≥ R + Cβ logW, Ω ≥ Cβµ2
0R log2W,

and hence the sampling rate obeys

∆W +MΩ & CβR(W + µ2
0M) log2W,

where Cβ is a constant that depends on β.

Using the same strategy as before, we can add random LTI filters in each branch

and force the signal energy to be equally distributed across time regardless of the

initial energy distribution. Using Lemma 6.1.1, together with Theorem 6.1.3, and

6.1.4, it is clear that for the architecture shown in Figure 37(b), we just need to pay

just an additional log factor in the sufficient sampling to obtain same reconstruction

results.
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6.2 Theory

6.2.1 Proof of Theorem 6.1.1, and 6.1.2

Since for an X0 with rank exactly R, only first R singular values σ1, . . . , σR are

non-zero. Using this fact, the exact recovery result in Theorem 6.1.1 follows from

Theorem 6.1.2. Therefore, we will only be concerned with the proof of Theorem

6.1.2. Suppose PY1 = V1V
∗

1 , PY2 = U2U
∗
2 , where V1, and U2 are matrices of the right

and left singular vectors (see (6.0.5))of Y1, and Y2, defined in (6.1.2), and (6.1.3),

respectively. Then the proof follows from the following two Theorems in [47].

Theorem 6.2.1 (Theorem 10.7 in [47]). Suppose that X0 is a real M ×W matrix

with singular values σ1 ≥ σ2 ≥ σ3 ≥ · · · . Choose a target rank R ≥ 2, and ∆ ≥

R+Cβ logW , with β ≥ 1, and ∆ ≤ min(M,W ). Draw a ∆×M standard Gaussian

matrix Φ2, and construct the sample matrix Y1 = Φ1X0. Then

‖X0(I − PY1)‖F ≤
(

1 + C

√
R

β logW

)(∑

j>R

σ2
j

)1/2

with probability at least 1−O(W−β).

Theorem 6.2.2 (Theorem 11.2 in [47]). Fix an M × W matrix X0 with singular

values σ1 ≥ σ2 ≥ σ3 ≥ . . .. Draw an Ω×W matrix RΓ such that

Φ2 =

√
W

Ω
RΓ,

where

Cβµ2
0R logW ≤ Ω ≤ W.

Construct the sample matrix Y2 = X0Φ
∗
2. Then

‖(I − PY2)X0‖F ≤
√

1 + 7W/Ω ·
(∑

j≥R

σ2
j

)1/2

with failure probability at least 1−O(W−β).

Proof follows by combining above two theorems with the result in Theorem 6.2.4.
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6.2.2 Proof of Theorem 6.1.3, and 6.1.4

Theorem 6.1.4 implies the exact recovery result in Theorem 6.1.3, when we choose

X0 to be exactly rank-R. Therefore, we only consider proving Theorem 6.1.4 in this

section. We will use Theorem 6.2.4 to bound the recovery error of the solution X̃

obtained as a result of the samples taken by the Architecture 2. In Architecture 2, the

row-sensing matrix Φ1 is i.i.d. Gaussian, as for Architecture 1, but the column-sensing

matrix Φ2 : Ω×W :

Φ2 = PD,

is different form the Architecture 1. Suppose, the svd of the row and the column

measurements Y1 and Y2, respectively, truncated to R singular values is given by

(6.0.5). Then, following theorem is in order for the column measurements. Let us

now define several quantities useful to state the next result in [47]. We define the svd

of matrix X1

X1 = U




Σa

Σb



[
(V a)∗ (V b)∗

]
,

where V a : R×min(M,W ), and V b : (W −R)×min(M,W ) are the matrices of right

singular vectors corresponding to singular values in Σa, and Σb. Thus, the matrix

of right singular vectors V is the concatenation of V a, and V b, i.e., V = [V a V b].

Using this notation, we have

Φ2V = Φ2[V a V b]. (6.2.1)

The error bound depends on the properties of Φ2V
a and Φ2V

b. Suppose PY2 =

U2U
∗
2 , where U2 is a matrix of the left singular vectors (see (6.0.5))of Y2, defined in

(6.1.6). Now we state here the result in [47].

Theorem 6.2.3 (Theorem 9.1 in [47]). Let X1 be a M ×W matrix with singular

value decomposition X1 = UΣV ∗. Choose a target rank R ≥ 2. Draw a random
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matrix

Φ2 = PD,

and construct the sample matrix Y2 = X1Φ
∗
2. Partition Φ2V as specified above, and

define Φ2V
a and Φ2V

b. Assuming Φ2V
a has full-column rank, the approximation

error satisfies

‖(I − PY2)X1‖2
F ≤ ‖Σb‖2

F + ‖Σb(Φ2V
b)(Φ2V

a)†‖2
F .

The above theorem gives us the following result

‖(I − PY2)X1‖F ≤ ‖Σb‖F [1 + ‖(Φ2V
a)†‖2.‖Φ2V

b‖2]1/2.

Using Lemma 6.2.3, we have

‖(Φ2V
a)†‖2 ≤ 1

(
1/
√

2
)2 = 2.

Also,

‖Φ2V
b‖ = ‖Φ2V

b‖ ≤ ‖V b‖‖PD‖ =

√
W

Ω
,

which means that

‖(I − PY2)X1‖F ≤
√

1 + 2
W

Ω

(∑

j>R

σ2
j

)1/2

.

Combining the above bound with Theorem 6.2.1, and Theorem 6.2.4, we obtain the

result in Theorem 6.1.4.

6.2.3 The row- and column-sensing matrices preserve geometry

Our first set of lemmas suggest that the all of the row, and column sensing matrices

that arise in the discrete formulation of the proposed sampling schemes preserve the

geometry of the subspace under consideration.

Lemma 6.2.1 (Gaussian matrix Φ1 preserves geometry; Proposition 10.4 in [47]).

Fix a M × R orthonormal matrix U , and draw a ∆ ×M Gaussian matrix Φ1. For
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a positive parameter β, select the sample size

∆ ≥ R + Cβ logW

with β ≥ 1. Then,

σR(Φ1U) ≥ C

√
R + β logW

β logW

with probability at least 1−O(W−β).

Lemma 6.2.2 (The random sampling matrix Φ2 =
√

W
Ω
RΓ preserves geometry;Theorem

3.1 in [94]). Fix a W ×R orthonormal matrix V , and draw an W ×Ω SRFT matrix

Φ2. For a positive parameter β, select the sample size

Cβµ2
0R logW ≤ Ω ≤ W.

Then,

0.707 ≤ σR(Φ2V ) and σ1(Φ2V ) ≤ 1.25

with probability at least 1−O(W−β) for β > 1.

We will extend the results above, and will show that the matrix Φ2 = PD that

arises in the column sensing of X1 in Architecture 2 also preserves the geometry.

Lemma 6.2.3 (The modulate, filter, and integrate matrix Φ2 = PD preserves geom-

etry). Let V be a W ×R matrix with orthonormal columns. Let µ2
0 be the coherence

of matrix V . For a positive parameter β, select the sample size

Ω ≥ Cβµ2
0R log2W.

Create a matrix Φ2 of size Ω×W as defined before. Then

0.707 ≤ σR(Φ2V ), σ1(Φ2V ) ≤ 1.25,

with probability at least 1−O(W−β) for β > 1.
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Proof. The column sensing matrix Φ2 is

Φ2 = PD =
Ω∑

ω=1

∑

k∼Bω

d[k]eωē
∗
k,

where {eω}1≤ω≤Ω, and {ēk}1≤k≤W are the standard basis vectors of length Ω, and

W , respectively. Also {d[k]}1≤k≤W are independent binary random variables. Let

{v̄ω}1≤ω≤W denote the rows of V . Then, we can write

Φ2V =
Ω∑

ω=1

∑

k∼Bω

d[k]eωv̄
∗
k,

which means

(Φ2V )∗(Φ2V ) =
Ω∑

ω,ω′=1

∑

k,k′∼Bω

d[k]d[k′]〈eω, eω′〉v̄k′v̄∗k

=
Ω∑

ω=1

∑

k,k′∼Bω

d[k]d[k′]v̄k′v̄
∗
k,

where the last equality follows from the fact that 〈eω, eω′〉 = 1 only when ω = ω′. Let

Zω =
∑

k,k′∼Bω

d[k]d[k′]v̄k′v̄
∗
k; (6.2.2)

note that EZω =
∑

k∼Bω v̄k′v̄
∗
k. To bound the eigenvalues of the following sum of

independent random matrices:

Ω∑

ω=1

Zω =
Ω∑

ω=1

∑

k,k′∼Bω

d[k]d[k′]v̄k′v̄
∗
k,

we will use the matrix Bernstein’s Inequality. The variance is
∥∥∥∥∥

Ω∑

ω=1

EZωZ
∗
ω

∥∥∥∥∥ ≤
∥∥∥∥∥
∑

k∼Bω

v̄kv̄
∗
k

∥∥∥∥∥

∥∥∥∥∥
Ω∑

ω=1

∑

j∼Bω

v̄jv̄
∗
j

∥∥∥∥∥+ 2
∑

k∼Bω

‖v̄∗k‖2
2

∥∥∥∥∥
Ω∑

ω=1

∑

k′∼Bω

v̄k′v̄
∗
k′

∥∥∥∥∥

≤ 3
∑

k∼Bω

‖v̄∗k‖2
2

≤ 3µ2
0

R

Ω

where the first inequality follows from Lemma 6.2.4, and the second inequality is the

result of the fact that
Ω∑

ω=1

∑

k∼Bω

v̄kv̄
∗
k = V ∗V = I,
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and ∥∥∥∥∥
∑

k∼Bω

v̄kv̄
∗
k

∥∥∥∥∥ ≤
∑

k∼Bω

‖v̄k‖2
2,

which results from triangle inequality and that the summands are rank-1 matrices.

To calculate the Orlicz-1 norm of Zω, we begin with writing

Zω = zωz
∗
ω.

First, we show that zω is a subgaussian vector, i.e., ‖zω‖ψ2 <∞. The Orlicz-2 norm

of the vector zω is

∥∥∥∥∥
∑

k∼Bω

d[k]v̄k

∥∥∥∥∥

2

ψ2

≤ C
∑

k∼Bω

‖d[k]v̄k‖2
ψ2

= C
∑

k∼Bω

‖v̄k‖2
2 ≤ Cµ2

0

R

Ω
,

where the inequality follows from the independence of {d[k]}k∼Bω . Since zω is sub-

gaussian, it follows from ‖Zω‖ = ‖zω‖2
2 that Zω = zωz

∗
ω is subexponential, and

‖Zω‖ψ1 ≤ ‖zω‖2
ψ2

. Hence,

‖Zω‖ψ1 ≤ ‖zω‖2
ψ2
≤ Cµ2

0

R

Ω
.

Now use the Bernstein bound, and select t = β logR, we obtain

‖(Φ2V )∗(Φ2V )− I‖ ≤ max

{√
3µ2

0

R

Ω

√
β logW,µ2

0

R

Ω
β log(µ2

0R) logW

}
.

Select Ω ≥ Cβµ2
0R log2W , which gives

‖(Φ2V )∗(Φ2V )− I‖ ≤ 0.5,

which further means

0.5 ≤ λmin((Φ2V )∗(Φ2V )) ≤ λmax((Φ2V )∗(Φ2V )) ≤ 1.5

holds with probability at least 1−O(W−β).
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We used the following lemma in the proof of Lemma 6.2.3.

Lemma 6.2.4. Let Zω be the matrix as defined in (6.2.2). Then

EZωZ
∗
ω =

(∑

k∼Bω

v̄kv̄
∗
k

)(∑

j∼Bω

v̄jv̄
∗
j

)∗
+ 2

∑

k∼Bω

‖v̄∗k‖2
2 ·
∑

k′∼Bω

v̄k′v̄
∗
k′ .

Proof.

EZωZ
∗
ω = E

( ∑

k,k′∼Bω

d[k]d[k′]v̄k′v̄
∗
k

)( ∑

j,j′∼Bω

d[j]d[j′]v̄j′v̄
∗
j

)∗
.

The expectation is non-zero when k = k′, j = j′, or k = j, k′ = j′, or k = j′, k′ = j.

In each of these cases the expectation is bounded by the same upper bound. First,

consider the case k = k′, j = j′

EZωZ
∗
ω =

(∑

k∼Bω

v̄kv̄
∗
k

)(∑

j∼Bω

v̄jv̄
∗
j

)∗
;

second, the case k = j, k′ = j′

EZωZ
∗
ω =

∑

k,k′∼Bω

(v̄k′v̄
∗
k)(v̄k′v̄

∗
k)
∗

=
∑

k∼Bω

‖v̄∗k‖2
2 ·
∑

k′∼Bω

v̄k′v̄
∗
k′ ;

third, the case k = j, k′ = j′ is exactly the same as the second case. Adding all three

cases, the result in the lemma follows.

6.2.4 Analysis of the matrix least squares

In this section, we establish that the solution X̃ to the least-squares program (6.0.7)

obeys

Theorem 6.2.4. Let Y1, and Y2 be the row- and column-space measurements, as in

(6.0.3), (6.0.4), respectively, of an unknown matrix X = UΣV ∗. Suppose, the pseudo

inverses (Φ1U)†, and (Φ2V )† are well defined. Then the solution X̃ = U2AV
∗

1 , as

in (6.0.6) of the least-squares program (6.0.7) obeys the following main result.

‖X̃ −X‖F ≤ 3‖(I − PY2)X‖F + ‖X(I − PY1)‖F .
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Proof of this theorem follows the template of the proof in [101], which establishes

a similar result for a least-squares program (6.0.8). The combination of following

three lemmas establishes the above theorem.

Lemma 6.2.5. Suppose Q1,P1 : M × R, and Q2,P2 : W × R. Then under the

conditions of Lemma 6.2.1, 6.2.2, 6.2.3, there exist Θ1 : M × ∆, and Θ2 : W × Ω

such that

Θ1Φ1Q1 = Q1, Θ2Φ2Q2 = Q2

Θ1Φ1P1 = P1, Θ2Φ2P2 = P2,

and

‖Θ1‖ ≤ 0.5, ‖Θ2‖ ≤ 0.5.

Proof. Let U : M × J1,V : W × J2 be the matrices whose columns form the or-

thonormal basis of the subspaces spanned by the columns of [Q1;P1], and [Q2;P2],

respectively, where [A;B] is the matrix formed by concatenating the matrices A, and

B. This implies that J1, J2 ≤ 2R. Using the results of lemmas, we have

σmin(Φ1V ) ≥ 1√
2
, σmin(Φ2U) ≥ 1√

2

holds with high probability. This means

Θ1 := U ((Φ1U)∗(Φ1U))−1 (Φ1U)∗, Θ2 := V ((Φ2V )∗(Φ2V ))−1 (Φ2V )∗

are well defined. It follows from above that

Θ1Φ1U = U , Θ2Φ2V = V ,

which directly gives the first part of the lemma. The second part follows from the

definition of Θ1, and Θ2.
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Lemma 6.2.6. Given the set of matrices defined earlier in Lemma 6.2.5; suppose

now, a matrix A : R×R minimizes the quantity

‖Φ1Q1A−Φ1P1‖+ ‖AQ∗2Φ∗2 − P ∗2 Φ∗2‖,

and Y : R×R minimizes the quantity

‖Q1Y − P1‖+ ‖Y Q∗2 − P ∗2 ‖.

Then,

‖Φ1Q1A−Φ1P1‖+ ‖AQ∗2Φ∗2 − P ∗2 Φ∗2‖ ≤ ‖Q1Y − P1‖+ ‖Y Q∗2 − P ∗2 ‖

holds with high probability.

Proof. Using Lemma 6.2.5, we have that

‖Q1A− P1‖+ ‖AQ∗2 − P ∗2 ‖ = ‖Θ1Φ1Q1A−Θ1Φ1P1‖+ ‖AQ∗2Φ∗2Θ∗2 − P ∗2 Φ∗2Θ
∗
2‖

≤ 0.5‖Φ1Q1A−Φ1P1‖+ 0.5‖AQ∗2Φ∗2 − P ∗2 Φ∗2‖

≤ 0.5‖Φ1Q1Y −Φ1P1‖+ 0.5‖Y Q∗2Φ∗2 − P ∗2 Φ∗2‖,

where the second inequality follows because A minimizes the right hand side. It

follows form the fact that A minimizes the first inequality. We can find matrices

G1 : J1 ×R, and G2 : R× J2 such that

Q1Y = UG1, Y Q∗2 = G2V
∗,

and matrices C1 : J1 ×R, and C2 : R× J2 such that

P1 = UC1, P ∗2 = C2V
∗

hold. This gives

‖Φ1Q1Y −Φ1P1‖+ ‖Y Q∗2Φ∗2 − P ∗2 Φ∗2‖ = ‖Φ1UG1 −Φ1UC1‖+ ‖G2V
∗Φ∗2 −C2V

∗Φ∗2‖

≤ 2‖G1 −C1‖+ 2‖G2 −C2‖

= 2‖Q1Y − P1‖+ 2‖Y Q∗2 − P ∗2 ‖.
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Lemma 6.2.7. Using the same notation for matrices as introduced in Lemma 6.2.5.

If matrix A : R×R minimizes the quantity

‖Φ1Q1A−Φ1P1‖+ ‖AQ∗2Φ∗2 − P ∗2 Φ∗2‖,

then

‖X̃ −X‖ ≤ 3‖(I −U2U
∗
2 )X‖+ ‖X(I − V1V

∗
1 )‖.

Proof. It follows from the triangle inequality that

‖U2AV
∗

1 −X‖ ≤ ‖U2AV
∗

1 −XV1V
∗

1 ‖+ ‖U2AV
∗

1 −U2U
∗
2X‖+

+ ‖U2AV
∗

1 −XV1V
∗

1 ‖+ ‖U2U
∗
2X −X‖

≤ 2‖U2AV
∗

1 −XV1V
∗

1 ‖+ ‖U2AV
∗

1 −U2U
∗
2X‖+ ‖U2U

∗
2X −X‖

= 2‖U2A−XV1‖+ ‖AV ∗1 −U ∗2X‖+ ‖U2U
∗
2X −X‖.

Since A = U ∗2XV1 minimizes the above expression, the result of Lemma 6.2.6 implies

‖U2AV
∗

1 −X‖F ≤ 2‖U2U
∗
2XV1 −XV1‖+ ‖U ∗2XV1V

∗
1 −U ∗2X‖+ ‖U2U

∗
2X −X‖

≤ 2‖U2U
∗
2X −X‖+ ‖XV1V

∗
1 −X‖+ ‖U2U

∗
2X −X‖

≤ 3‖U2U
∗
2X −X‖+ ‖XV1V

∗
1 −X‖.

Since V1, and U2 are orthobases for the row and the column space of Y1, and Y2, as

in (6.0.5), then the orthogonal projection PY1 on the row space of Y1 is PY1 = V1V
∗

1 ,

and the orthogonal projection PY2 on the column space of Y2 is PY2 = U2U
∗
2 . Hence,

we have

‖X̃ −X‖F ≤ 3‖(I − PY2)(X)‖F + ‖(X)(I − PY1)‖F ,

which proves the claim.
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CHAPTER VII

FUTURE WORK

The research results in this thesis open interesting future research directions that are

outlined very briefly in the paragraphs below.

7.1 Multi-channel blind deconvolution

Our novel approach to address the blind deconvolution problem in Chapter 3 may

provide an new perspective to tackle the related problems such as the blind source

separation, dictionary learning and the multiple channel estimation. An important re-

search direction with a lot of room for new results is the multi-channel blind deconvo-

lution methods. We are currently working on the extension of our blind deconvolution

method to the case when instead of observing a single convolution y(t) = w(t)∗x(t),

we are observing a sum of many convolutions y(t) = w1(t) ∗ x1(t) + · · · + wK(t) ∗

xK(t)—this sort of observation model arises in the important MIMO communications

as shown in Figure 2(b). In this case, the deconvolution task is even more challenging

as we not only want to deconvolve the unknown signals but also want to separate the

convolved signals by observing only their sum.

7.2 Multiple channel estimation

Another interesting version of multi-channel blind deconvolution problem and a sub-

ject of ongoing research is that suppose we observe y1(t) = s(t) ∗ h1(t), y2(t) =

s(t)∗h2(t), · · · , yK(t) = s(t)∗hK(t); convolutions of K linear time-invariant channels

h1(t), h2(t), · · · , hK(t) with a common noise source s(t), and our goal is to recover the

impulse responses of the channels without the knowledge of the source signal s(t).

The problem is depicted in Figure 2(a). The problem can be framed as a low-rank
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matrix recovery problem from a limited number of measurements. One application

of this problem arises in under water communications.

Rx
x1(t)

x2(t)

xK(t)

h1(t)

h2(t)

hK(t)

y(t) = x1(t) ¤ h1(t) + ¢ ¢ ¢+xK(t) ¤ hK(t)

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AA 

y(t)

Rx1

Rx2

RxKs(t)

noise source

h2(t)

hK(t)

s(t) ¤ h1(t)

s(t) ¤ h2(t)

s(t) ¤ hK(t)

h1(t)

(a) (b)

Figure 38: Multi-channel blind deconvolution. (a) Multiple channels driven by a
single noise source. We observe the convolution of the unknown noise with each
of the unknown channel and want to recover all the unknown channel responses
h1(t), · · · , hK(t). (b) MISO and MIMO communications in unknown channels. We
observe at the receiver the sum of the convolutions of different transmitted messages
x1(t), · · · , xK(t) with channels h1(t), · · · , hK(t).

7.3 Parallel MRI

Blind deconvolution arises naturally in image deblurring applications. An important

scope of research in this direction exists in parallel magnetic resonance imaging (MRI),

where we observe a series of convolutions of an unknown image of an organ with several

unknown blur kernels of magnetic coils. The recovery problem of original image from

multiple convolutions can be framed as a rank-1 matrix recovery problem. Hence,

this problem is actually an extension of our blind deconvolution method.

7.4 Solving systems of bilinear equations

The methodology adopted to convert the non-linear problem of blind deconvolution

into a rank-1 matrix recovery problem is referred to as ’lifting’. In general, the

exact same strategy can be employed to solve the systems of bilinear, and quadratic

equations, i.e., we can convert the problem of solving bilinear equations into a linear
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rank-1 matrix recovery problem. The reason is simple: taking the outer product of

w and x produces a rank-1 matrix that contains all the different combinations of the

entries of w multiplied with the entries in x:

wx∗ =




w[1]x[1] w[1]x[2] · · · w[1]x[L]

w[2]x[1] w[2]x[2] · · · w[2]x[L]

...
...

...

w[L]x[1] w[L]x[2] · · · w[L]x[L]



.

Then any bilinear equation can be written as a linear combination of the entries in

this matrix, and any system of equations can be written as a linear operator acting

on this matrix. Our work on blind deconvolution provides one set of conditions under

which the recovery is successful using lifting. The problem may also be solvable under

other more general set of conditions on the subspaces and the unknown signals being

convolved, which will result in a general framework under which we can solve systems

of bilinear equations using lifting.

7.5 Sampling architectures for sparse and correlated sig-
nals

A rigorous stable recovery analysis in the presence of noise, for the sampling architec-

tures presented in Chapter 6, is an open problem and requires further investigation.

Our discussion and results relating to the sampling architectures focus on signals that

are correlated. Another interesting signal structure is sparse and correlated signals

that arise in some other interesting applications. Designing implementable sampling

architectures for the efficient acquisition of sparse and correlated signals, and the

derivation of corresponding sampling theorems for each sampling architecture are

other open research problems in this direction.
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