
SHARED RESOURCE MANAGEMENT FOR EFFICIENT
HETEROGENEOUS COMPUTING

A Dissertation
Presented to

The Academic Faculty

by

Jaekyu Lee

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Computer Science

School of Computer Science
Georgia Institute of Technology

December 2013

Copyright © 2013 by Jaekyu Lee

SHARED RESOURCE MANAGEMENT FOR EFFICIENT
HETEROGENEOUS COMPUTING

Approved by:

Dr. Hyesoon Kim, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Richard W. Vuduc
School of Computational Science and
Engineering
Georgia Institute of Technology

Dr. Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Santosh Pande
School of Computer Science
Georgia Institute of Technology

Dr. Moinuddin K. Qureshi
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: July 11, 2013

To my wife Sijung and our soon-to-be-born son

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank God for allowing me to be in the right place with

the right people to complete my Ph.D. study.

I would like to express my deepest love and gratitude to my wife, Sijung. I

cannot imagine how my life as a Ph.D. student would have been without her. Her

dedication, encouragement, and endurance helpedme to complete everything that

I have achieved in recent years. Moreover, I thank my wife for sharing with me

every moment of the last 12 years. Also, we would like to welcome our soon-to-

be-born son. My parents, Hoo Geug Lee and Young Ran Park, and parents-in-law,

Jong Hae Ryu and Wey Sook Kang, are always supportive and I would like to

express my profound gratitude to my family.

I would like to thank my advisor, Dr. Hyesoon Kim. This dissertation and

myself as a computer architect could not have existedwithout her guidance. When

I started graduate school, I was not sure what I wanted to pursue. Then, Dr.

Kim gave me an opportunity to work with her. She taught me how to perform

academic research, how to write a strong paper, and how to express and present

my ideas. She always motivated me with her enthusiasm, guided me to the

right direction, and made me interact and collaborate with many other people.

Under her guidance, I was able to develop my skills and knowledge as a computer

architect.

I thank Dr. Sudhakar Yalamanchili, Dr. Richard Vuduc, Dr. Santosh Pande, and

Dr. Moinuddin Qureshi for serving on my dissertation committee and providing

me constructive and valuable comments to improve the dissertation. In particular,

I thank Dr. Vuduc for advising me on my early prefetching work and thank Dr.

iv

Yalamanchili for my recent on-chip network work.

Many former and current HPArch members contributed to this dissertation. In

particular, I thank:

• Nagesh Bangalore Lakshminarayana for sharing this long journey with me.

We started our graduate program at the same time and went through all the

same processes. We struggled and spent much time together on developing

MacSim simulator. I have learned much Linux-related knowledge from him

and have enjoyed discussions with him on our work.

• Minjang Kim for giving me advice on programming skills, the job search

process, and many other different issues.

• Sunpyo Hong for discussions on many work-related and non work-related

topics.

• Jaewoong Sim for intense technical discussions on various topics in recent

years.

• Joo Hwan Lee and Hyojong Kim for interacting with me in the late stage of

my study.

• Nimit Nigania for helping me on my first project during his internship at

Georgia Tech in 2009.

I want to express my sincere gratitude to Dr. Chang Joo Lee, Anwar Rohillah,

and Dr. Dong Hyuk Woo for their mentor-ship during my internship at Intel

Corporation in Austin, TX and Santa Clara, CA. They helped me on various

subjects not only duringmy internships but also duringmy job search. Interactions

with them helped me to decide on my direction after the school.

Finally, I am grateful to my friends who helped me directly or indirectly on my

dissertation. Conversations with them refreshed and energized me to continue my

work. I thank Ilhyeon and Seokjun for our trips in the U.S.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiii

I INTRODUCTION . 1

1.1 The Problem: Resource Sharing in Heterogeneous CMPs 1

1.2 The Solution: Heterogeneity-aware Shared Resource Management . 4

1.3 Thesis Statement . 7

1.4 Organization . 8

II MOTIVATIONS . 9

2.1 Interference Experienced by CPU Applications 9

2.2 Cache Sharing between CPUs and GPUs 10

2.3 Interference in the Network . 13

2.3.1 Importance of On-chip Network 13

2.3.2 Effectiveness of Previous Mechanisms in HCMPs 15

2.4 Motivation for Dynamic Frequency Regulating Mechanism 16

2.4.1 Performance Scalability by Frequency and MPKI 16

2.4.2 Effect of Core and Memory Frequency 18

2.4.3 Previous Resource Sharing Mechanisms 19

2.5 Motivation for Energy-Efficient Cache for GPU 20

III RELATEDWORK . 22

3.1 Related Work on Heterogeneous Architecture 22

3.1.1 Resource sharing mechanism 22

3.1.2 Task partitioning mechanism 23

3.2 Related Work on Cache Sharing . 23

vi

3.2.1 Dynamic cache partitioning 23

3.2.2 LLC policies by application level management 24

3.3 Related Work on On-chip Interconnection 25

3.3.1 NoC Research . 25

3.3.2 Virtual Channel Management Mechanism 27

3.3.3 Heterogeneous Interconnection Network 28

3.3.4 NoC Research for GPU Architectures 28

3.4 Related Work on DVFS . 29

3.5 Related Work on Low-Power Cache 30

IV AN EFFICIENT CACHE SHARING MECHANISM 32

4.1 Introduction . 32

4.2 The Problem: Cache Behavior of GPGPU Applications 34

4.3 Prior Last-Level Cache Management 36

4.3.1 Dynamic Cache Partitioning 36

4.3.2 Promotion-based Cache Management 38

4.3.3 Summary of Prior Work . 39

4.4 The Solution: TLP-Aware Cache Management Policy 40

4.4.1 Core Sampling . 40

4.4.2 Cache Block Lifetime Normalization 44

4.5 TAP Extensions . 46

4.5.1 TAP-UCP . 46

4.5.2 TAP-RRIP . 47

4.6 Evaluation Methodology . 50

4.6.1 Simulator . 50

4.6.2 Benchmarks . 50

4.6.3 Evaluation Metric . 51

4.7 Experimental Evaluation . 52

4.7.1 TAP-UCP Evaluation . 52

vii

4.7.2 TAP-RRIP Evaluation . 54

4.7.3 Streaming CPU Application 55

4.7.4 Multiple CPU Applications 56

4.7.5 Comparison to Static Partitioning 57

4.7.6 Cache Sensitivity Evaluation 58

4.7.7 Comparison to Other Mechanisms 59

4.8 Summary of This Chapter . 60

V ADAPATIVE VIRTUAL CHANNEL PARTITIONING 62

5.1 Introduction . 62

5.2 Problems and Design Space Exploration in NoCs 65

5.2.1 Routing Algorithm . 65

5.2.2 Resource Contention and Partitioning 65

5.2.3 Arbitration Policy . 66

5.2.4 Homogeneous or Heterogeneous Link Configuration 67

5.2.5 Placement . 67

5.3 Feedback-Directed Bandwidth Partitioning 69

5.3.1 Virtual Channel Partitioning 69

5.3.2 VCP with Different Mixture of Workloads - Adaptability . . 71

5.3.3 Feedback-Directed VCP Using Sampling 72

5.3.4 Hardware Changes and Overhead 76

5.3.5 Extension of VCP . 76

5.3.6 Discussions . 77

5.4 Evaluation Methodology . 78

5.4.1 Simulator . 78

5.4.2 Placement . 79

5.4.3 Benchmarks . 80

5.4.4 Evaluation Metric . 81

5.5 Evaluation Results . 83

viii

5.5.1 Static VCP Results . 83

5.5.2 Feedback-Directed VCP Results 85

5.5.3 Comparison with Different Injection Buffer Scheduling . . . 86

5.5.4 Comparison with VC Arbitration Policies 89

5.5.5 VCP Results with Three-Stage Pipeline Model 90

5.5.6 XY/YX Adaptive Routing . 91

5.5.7 Sensitivity of VCP . 93

5.5.8 Different Placement Results 94

5.5.9 Discussions . 95

5.6 Summary of This Chapter . 95

VI DYNAMIC FREQUENCY REGULATING MECHANISM 97

6.1 Introduction . 97

6.2 Dynamic Voltage and Frequency Scaling 100

6.2.1 Voltage and Frequency (VF) Domain 100

6.2.2 Target Architecture . 101

6.3 DyFR: Dynamic Frequency Regulating Mechanism 101

6.3.1 Step 1. Mitigating Interference Through GPU Throttling . . . 102

6.3.2 Step 2: CPU Throttling . 104

6.3.3 Step 3. Memory Throttling . 105

6.3.4 Central Control Logic . 106

6.3.5 DyFR: Putting It All Together 106

6.4 Evaluation Methodology . 109

6.4.1 Simulator . 109

6.4.2 Benchmarks and Workloads 110

6.4.3 Metric . 110

6.5 Results . 112

6.5.1 DyFR Evaluation Results . 112

6.5.2 Power-saving and High-Performance Modes 119

ix

6.5.3 DyFR Results with CPU-only CMPWorkloads 120

6.5.4 Comparison with Other Mechanisms 122

6.5.5 Sensitivity Results of DyFR 123

6.6 Summary of This Chapter . 124

VII GPU REGION-AWARE ENERGY-EFFICIENT CACHE 126

7.1 Introduction . 126

7.2 GPU Model . 128

7.2.1 Disciplined Memory Model in GPUs 128

7.2.2 Memory Objects and Kernel Arguments 129

7.3 GREEN Cache . 131

7.3.1 Disciplined Memory Model and GPU Hardware 131

7.3.2 Exploiting the Different Behavior of Memory Objects 132

7.3.3 Region-Aware Caching . 135

7.3.4 Region-Aware Cache Resizing 137

7.3.5 Putting It All Together - GREEN Cache 141

7.3.6 GREEN Cache with Multiple Applications 143

7.3.7 Discussions . 145

7.4 Evaluation Methodology . 147

7.4.1 Simulator . 147

7.4.2 GPU Power Model . 148

7.4.3 Benchmarks . 148

7.4.4 Evaluation Metric . 148

7.5 Evaluation Results . 150

7.5.1 Region-Aware Caching Results 150

7.5.2 Region-Aware Cache Resizing Results 153

7.5.3 Putting It All Together . 156

7.5.4 Multiple GPU Applications 157

7.6 Summary of This Chapter . 160

x

VIIICONCLUSION AND FUTURE RESEARCH DIRECTION 161

8.1 Conclusion . 161

8.2 Future Research Direction . 163

8.2.1 Future Work for TAP . 163

8.2.2 Future Work for VCP . 163

8.2.3 Future Work for DyFR . 164

8.2.4 Future Work for GREEN Cache 164

8.2.5 Coordinated Resource Sharing 165

REFERENCES . 166

xi

LIST OF TABLES

1 Comparison between CPU and GPU cores. 3

2 Application favored by mechanisms in heterogeneous workloads . . 39

3 Hardware complexity of the core sampling 43

4 TAP-RRIP policy decisions for the GPGPU application. 49

5 Evaluated system configurations. 50

6 TAP: CPU benchmarks classification 51

7 TAP: GPGPU benchmarks classification 51

8 TAP: Heterogeneous workloads . 52

9 The length of each period in VCP. 73

10 VCP: Processor configuration. 79

11 VCP: NoC configuration. 79

12 VCP: Benchmark characteristics . 82

13 VCP: Heterogeneous workloads. 82

14 DyFR results based on the workload 108

15 Processor configuration. 109

16 DyFR configuration. 110

17 Benchmark characteristics based on the frequency-scalability 111

18 Heterogeneous workloads. 111

19 GREEN Cache - putting it all together. 142

20 Evaluated GPU configurations. 147

21 Benchmark list. 149

22 List of mechanisms for multi-app experiments. 158

xii

LIST OF FIGURES

1 Heterogeneous chip multi-processors (HCMPs). 2

2 Slowdown of CPU applications caused by a GPU application. 10

3 Conventional cache behavior without TLP. 11

4 Unconventional cache behavior with TLP. 12

5 Latency distribution of packets in heterogeneous workloads 14

6 Router buffer occupancy of CPU and GPU packets 15

7 Speedup pattern of applications with frequency increase. 17

8 Performance of different core and memory frequency combinations . 18

9 GPGPU application types based on the cache behavior 35

10 The core sampling framework. 41

11 Memory access rate characteristics. 45

12 TAP-UCP speedup results. 53

13 TAP-RRIP speedup results. 55

14 Enhanced TAP mechanism (TAP-S) results. 56

15 Multiple CPU application results. 57

16 Static partitioning results. 58

17 Cache sensitivity results . 59

18 TAP comparison to other policies. 59

19 Diagram of Intel’s Ivy Bridge die with the ring network. 66

20 Placement examples in the ring network. 68

21 Packet arbitration in VCP . 70

22 Packet injection from the network interface. 71

23 Phases in a heterogeneous workload 74

24 Placement designs with the overlapped path. 80

25 Alternative placement designs. 81

26 Static VCP results. 84

xiii

27 Feedback-directed VCP results. 85

28 F-VCP s-curve. 86

29 Network latency changes with F-VCP. 86

30 F-VCP policy distribution. 87

31 Different injection buffer scheduling results. 88

32 Evaluation of virtual channel arbitration policies. 89

33 Evaluation of three-stage pipeline router model. 91

34 Adaptive XY/YX routing. 92

35 Adaptive XY/YX routing results. 92

36 F-VCP with different number of VCs. 93

37 F-VCP with different length of training period (base: 200K). 94

38 Different placement evaluations. 94

39 Speedup results with different GPU clock frequency. 102

40 DyFR evaluation results. 113

41 Speedup result of streamcluster. 114

42 DyFR results with Compute-Intensive GPU and CPU workloads. . . 116

43 DyFR results with Memory GPU and Compute CPU workloads. . . . 117

44 DyFR results with Compute GPU and Memory CPU workloads. . . . 117

45 DyFR results with Memory-intensive GPU and CPU workloads. . . . 118

46 Evaluation of power-saving and high-performance modes in DyFR. . 119

47 DyFR results with CPU-only workloads. 121

48 Comparison with other mechanisms. 122

49 DyFR period sensitivity results with min-max error bars. 124

50 Memory variable example in hotspot benchmark. 130

51 Cache hit rate across address space of hotspot. 133

52 Per-region training table example (b: bit, B: byte). 136

53 Cache behavior and bypassing decision. 137

54 Cache hit rate for each region in the hotspot benchmark 137

xiv

55 Average # sets that have dirty lines upon resizing. 140

56 The evaluation of RAC . 151

57 Training period sensitivity of RAC . 153

58 The evaluation of RACR . 155

59 GREEN cache - putting it all together. 157

60 Multiple application evaluations. 159

xv

CHAPTER I

INTRODUCTION

1.1 The Problem: Resource Sharing in Heterogeneous CMPs

The demand for more computational power never ends. Traditionally, growth in

computational power was carried out by ever-increasing clock frequency until the

power wall was hit. To circumvent this barrier, chip multiprocessors (CMPs) were

introduced and the number of cores keeps increasing. As the technology scales

and manufacturers can put more features in a single chip, the next performance

enhancement will be brought by heterogeneous architectures where a certain type

of architecture is more power efficient at a subset of tasks. GPU is one such

example that is more power efficient for tasks involving massive data and thread-

level parallelism. Incorporating a GPU architecture into CMPs is the next logical

step, and this architecture is becoming mainstream, as can be seen in a wide

spectrum of computing platforms from system-on-chip (SoC) architectures [107,

117] to desktop and low-end server processors, including Intel’s Sandy Bridge [52]

and Ivy Bridge [49], AMD’s accelerated processing units (APU) [5], and NVIDIA’s

Denver project [106]. In this architecture, GPUs are now integrated on top of the

conventional CMPs and their memory hierarchy. Figure 1 depicts an example

of such an architecture. In this figure, CPU and GPU cores share last-level

caches, on-chip interconnection network, and memory controllers. As a result, this

architecture creates new problems and challenges in system resource management

because of the sharing between heterogeneous cores. This problem does not exist

with discrete GPU systems [6, 105] since CPUs and GPUs have separate physical

memory space (cache and off-chip DRAM memory). However, in heterogeneous

1

CMPs (HCMPs), most system resources are shared between processors.

GPUs
(In-order

SIMD cores)

CPUs (Out-of-order cores, caches)

Shared Caches

Memory
Controllers

Interconnection Network (Ring, Mesh, Torus, …)

Figure 1: Heterogeneous chip multi-processors (HCMPs).

The resource sharing problem has existed since CMP was introduced. Conse-

quently, many researchers have proposed various resource sharingmechanisms on

last-level caches [57, 58, 118, 120, 148, 149], interconnection networks [24, 25, 40, 71],

and memory controllers [66, 67, 97, 98]. However, in HCMPs, shared resource

management is more challenging due to the different nature of CPU and GPU

cores. Typical features of modern high-performance CPU cores include multi-

wide superscalar and out-of-order cores. To reduce the penalty of the branch

instructions, novel and often power-intensive branch prediction mechanisms are

implemented. Large private caches (L1 and L2) as well as aggressive data

prefetching mechanisms [62, 99, 129] are often employed to avoid long-latency

accesses to off-chip memory. These cores are ideal for serial execution with a small

number of threads (1 to 4-way simultaneous multi-threading (SMT)), so they have

limited thread level parallelism (TLP).

On the other hand, GPUs use in-order cores and packmore processing elements

in each core because integrating more computing units on a given space improves

the performance of an overall GPU chip better than allocating a part of the

die space to a large cache. With multiple processing elements, each GPU core

runs under single-instruction multiple-data (SIMD) execution. As opposed to

conventional SIMD processors, multiple threads across cores execute the same

2

instruction with different data sets in GPU, which is called the single-instruction

multiple-thread (SIMT) model. When branch directions within a batch of threads1

diverge, the execution of each branch path is serialized. Currently, no branch

prediction mechanism exists to reduce the penalty of branch instructions. To

tolerate memory latencies, GPU cores utilize massive multi-threading. When a

thread is stalled due to the long-latency memory instruction, the execution is

switched to other available threads. Since GPU cores are designed to pay zero

context-switching overhead, this can happen on every instruction issued. To

support so many contexts, GPUs have a huge register file, for example a 256

KB register file in NVIDIA Kepler [105] and AMD’s GCN [6]. Additionally,

GPUs are afforded single-cycle access to massive register files. Due to the high

degree of TLP, GPUs coalesce memory requests to reduce memory traffic when

possible [109]. Some GPGPU applications have frequent scatter-gather memory

operations that hurt performance due to unaligned memory accesses. To mitigate

this costly operation, GPUs often have special hardware to support the scatter-

gather operation. Table 1 compares the different characteristics between CPU and

GPU cores.

Table 1: Comparison between CPU and GPU cores.

CPU GPU

Core out-of-order, superscalar in-order SIMD
Branch Predictor (BP) 2-level BP, perceptron [60] no BP
TLP 1-4 way SMT abundant
Memory Latency-limited Bandwidth-limited
Latency tolerance Caching, prefetching Caching, multi-threading
Miscellany Scatter-gather operation

These different characteristics of heterogeneous cores create different aspects of

resource sharing problems compared to homogeneous CMPs. First, a significant

1This term is called as a warp, wavefront, or EU thread in NVIDIA, AMD, or Intel GPU,
respectively.

3

interference problem occurs in HCMPs. GPUs can produce an excessive number

of memory requests at a given period with little processor stalls thanks to GPU’s

multi-threading capability with very cheap context switching. In addition, SIMD

execution of GPU cores often creates unaligned or uncoalesced accesses, which

results in multiple transactions from a single memory instruction. As a result,

this causes uneven sharing of system resources between cores, and CPUs are

unnecessarily penalized.

Moreover, high TLP in GPUs often obfuscates the performance metrics used

in the previous mechanisms for conventional CMPs. For example, the cache hit

ratio strongly correlates with the performance of CPUs. When the cache hit ratio

is improved by using a larger cache or a better cache insertion/replacement policy,

the performance of CPU applications improves as well in most cases. Therefore,

the cache hit ratio can be a good proxy for performance and many previous

mechanisms utilize it. However, this is not the case for GPGPU applications due

to the effect of TLP. Even though a GPU core suffers from many cache misses, the

core can tolerate extra off-chip memory latencies if it can hold enough threads for

continuous execution. Consequently, resource sharing mechanisms in HCMPs, to

be effective, should now consider the effect of TLP.

Therefore, in order to solve the resource sharing problem in HCMPs, this thesis

presents several efficient resource sharing mechanisms, including shared caches,

on-chip network, and dynamic frequency control mechanism, that are aware of

the heterogeneity of cores and exploit the different characteristics of CPUs and

GPUs for HCMPs.

4

1.2 The Solution: Heterogeneity-aware Shared Resource Manage-

ment

Among all shared resources, we consider two important resources in this thesis,

last-level cache (Chapters IV and VII) and on-chip interconnection network

(Chapter V), to tackle resource sharing problems in heterogeneous CMPs. In

addition, we present a dynamic frequency regulating mechanism (Chapter VI) that

controls the clock frequency of CPU, GPU cores, and thememory (on-chip network

and last-level caches) to simultaneously achieve performance improvements and

energy efficiency.

TLP-aware shared cache management As described in Section 1.1, cache metrics

used in previous mechanisms often mislead the performance behavior of a core or

an application due to the effect of TLP. Therefore, in order to see the performance

impact of a certain policy, we need to collect performance metrics directly from

cores to take into consideration the effect of TLP, instead of relying on indirect

and less accurate metrics, such as the cache hit ratio. To this end, a core sampling

mechanism is proposed. By exploiting the symmetric behavior across GPU

cores due to their single-program multiple-data (SPMD) execution model, we

can sample cores with different cache policies. If the performance variance of

sampled cores is not negligible by different cache policies, we can identify that

the cache policy can have a significant impact on performance. In addition, to

prevent a significant interference from GPGPU applications, a cache block lifetime

normalization mechanism is proposed. TAP consists of these two mechanisms and

we apply TAP to two previous cache mechanisms, utility-based cache partitioning

(UCP) [120] and re-reference interval prediction (RRIP) [58]. These extensions are

called TAP-UCP and TAP-RRIP, respectively.

5

Adaptive virtual channel partitioning for on-chip network In order to provide

the quality-of-service (QoS) for network packets, researchers have worked on

various aspects of on-chip networks, for example, how to arbitrate packets

in routers [24, 25] or how to control injections from source nodes [18, 40, 71].

However, these are not sufficient to resolve the network contention in HCMPs

because GPU packets now overflow not only in on-chip router buffers, but

also in the injection queues of shared routers (last-level cache tiles and memory

controllers). Unless a mechanism manages injection queues and router buffers

simultaneously, its effectiveness will be limited. Therefore, an adaptive virtual

channel partitioning (VCP) mechanism is proposed [73]. A router typically has

multiple virtual channels for each port. VCP partitions virtual channels to

CPUs and GPUs and controls injections from shared routers based on the VC

availability of a corresponding type. VCP utilizes dynamically allocated multiple-

queue (DAMQ) [134] for separate injection queues. To find the best partitioning

configuration, VCP samples the performance of an application with different

partitioning configurations and collects metrics directly from cores, instead of

using indirect metrics.

Dynamic frequency control mechanism for efficient resource sharing Although

previous mechanisms can be effective for resolving the resource contention

problem, they are not designed to improve energy efficiency unless combined

with a any power-saving technique. The proposed mechanism, a dynamic

frequency regulatingmechanism, tries to achieve performance improvement while

improving energy efficiency. In HCMPs, CPUs and GPUs have different operating

frequencies, i.e., there are separate voltage/frequency domains for different

components, and recent processors can dynamically control the frequency of cores

based on their utilization to reduce power consumption or improve performance

6

by taking power from idle cores. Different core frequencies can affect the

performance of individual cores as well as resource contention in the system,

thereby affecting system throughput. Based on the application type, in particular

memory-intensity, performance scalability and performance/power efficiency can

be varied. The proposed mechanism tries to find optimal operating frequencies

that consider the frequency-scalability of applications andmitigate the interference

for cores and memories while not exceeding the chip power budget.

Region-aware energy-efficient cache design for GPU In HCMPs, compared to

discrete GPU systems, much larger last-level caches are available to GPU cores

due to the GPU integration to CMPs, but the cache is not optimized for GPU

cores. Therefore, GPUs may not utilize the cache in an energy-efficient manner.

Therefore, we propose a GPU region-aware energy-efficient cache, or GREEN

cache. For more efficient parallel execution, GPUs inevitably use stricter and less

complex execution and memory models. Also, programmers are asked to provide

more information on a program to the device. For example, memory variables in

GPU kernels are allocated and mapped from the CPU host code. A programmer

should provide the size of the variable as well as other properties such as read-

only, write-only, or read-write. From such information, GPU hardware can

easily estimate the working set size of a kernel, so unnecessary leakage energy

consumption on caches can be reduced by turning-off some cache ways. Moreover,

each variable shows distinct cache behavior (for example cache hit ratio) from

other variables, while the cache behavior of all instructions that belong to the same

variable is near constant. We can exploit this characteristic to save dynamic cache

energies by selectively caching (or bypassing) since caching does not help improve

performance for a memory variable that does not have any cache hit. In addition,

by excluding the size of variables that are set to bypass, we can estimate the

7

working set sizemore precisely while preventing interference from those variables.

1.3 Thesis Statement

Efficient shared resource management can improve the performance of the

heterogeneous system by considering the heterogeneity of cores and isolating the

interference by GPUs.

1.4 Organization

The remainder of this document is organized as follows: Chapter II describes the

motivation of the thesis. Chapter III summarizes the related work. Chapter IV

presents an efficient cache sharing mechanism. Chapter V describes virtual

channel partitioning for on-chip interconnection network. Chapter VI proposes a

dynamic frequency regulating mechanism. Chapter VII describes a region-aware

energy-efficient cache mechanisms for GPUs. Finally, Chapter VIII concludes the

thesis and identifies future research directions.

8

CHAPTER II

MOTIVATIONS

Sharing system resources in CMPs causes inter-application interference problems.

To address these problems, many researchers have been working on this domain,

which can be categorized broadly into three topics: shared caches, interconnection

networks1, and memory controllers. Previous mechanisms show effectiveness in

CMPs, but they encounter different aspects of problems in HCMPs. This chapter

explains those problems and provides the motivation for this thesis.

2.1 Interference Experienced by CPU Applications

The inter-application interference problem has existed even in homogeneous

CMPs. However, the problem becomes more complicated and severe due to the

heterogeneity of cores. Since GPU cores are capable of running more threads

concurrently with SIMD executions, they will generate many more memory

requests than CPUs. Also, multi-threading capability enables GPUs to generate

continuous memory requests without processor stalls. Since CPU and GPU

requests have to compete in shared resources, resource contentions will occur

in shared caches, interconnection networks, and memory controllers. As a

result, more demanding GPGPU applications will significantly interfere with CPU

applications compared to homogeneous CMP workloads.

In order to see the interference of CPU applications in HCMPs, we con-

duct experiments with a single-threaded CPU application from SPEC 2006

(perlbench, bzip2, gcc, cactusADM, and leslie3d) along with a GPGPU application

1We interchangeably use the term on-chip interconnection network and the network on chip
(NoC) throughout the thesis.

9

(streamcluster, lbm, and spmv) that is running on six SIMD cores. Figure 2

shows the slowdown of CPU applications when they are running with a GPGPU

application, where slowdown is defined in Eq. (1).

0

0.2

0.4

0.6

perlbench bzip2 gcc cactusADM leslie3D

C
P

U
 S

lo
w

d
o

w
n

streamcluster lbm spmv

Figure 2: Slowdown of CPU applications caused by a GPU application (x-axis:

CPU benchmarks).

slowdown =
IPCwith gpu

IPCalone

(1)

A slowdown of 0.1 indicates that the IPC becomes only 10% compared to when

the CPU application is running alone, i.e., a 10 times slowdown. As shown in the

figure, we can observe that a significant performance degradation exists due to the

interference caused by the GPGPU application. Although we run only one single-

threaded CPU application in this experiment, we expect even more slowdown

when more CPU applications are running concurrently.

2.2 Cache Sharing between CPUs and GPUs

The baseline hardware cache uses the least recently used (LRU)-approximation

replacement policy. Consequently, the cache favors an application that has more

cache accesses regardless of cache utilization, i.e., howmany hits are serviced from

the cache for the application. To solve the contention problem in the cache, two

representative approaches exist: one is cache partitioning [120, 131, 132] and the

10

other is dynamic cache insertions [57,58,118,148,149]. Cache partitioning dedicates

a few cache ways to each application so that the cache space for an application

cannot be invaded by accesses from other applications. On the other hand,

dynamic cache insertions try to identify the best insertion position for applications.

By varying the insertion position for each application, they can prevent the cache

interference problem.

However, these previous mechanisms might not be effective if they do not

consider the different characteristics of GPU cores, in particular rich thread-level

parallelism. Figure 3 shows the cycles per instruction (CPI) and misses per kilo

instruction (MPKI) changes for conventional CPU applications as the cache size

increases. As shown in the figure, CPI strongly correlates to MPKI. In other words,

improvements in the cache hit ratio leads to performance improvements. CPU

applications are less tolerable to off-chip memory access penalties, so better cache

performance tends to yield better system performance.

MPKI

CPI

MPKI

CPI

Cache size Cache size

Figure 3: Conventional cache behavior without TLP.

On the other hand, some GPGPU applications show unconventional cache

behavior. For example, in Figure 4, even though MPKI decreases as the cache size

increases, it does not lead to better performance. Since TLP is so effective in this

case, off-chip access latencies can be tolerated.

Considering the interference caused by GPU cores and the effect of TLP in

11

MPKI

CPI

Cache size

Figure 4: Unconventional cache behavior with TLP.

GPUs, we summarize how previous mechanisms will behave when conventional

CPU applications share caches with GPU applications as follows:

• LRU cache - a new cache block is always inserted at the most recently used

(MRU) position. Upon a cache hit, the block is again moved to the MRU

position. The block will be replaced by the incoming block when it is in the

LRU position. As a result, an application with a higher number of cache

accesses will occupy more cache space, thereby being favored. In HCMPs,

cache accesses from GPU applications will be heavily favored under the LRU

cache.

• Dynamic cache partitioning mechanism - most cache partitioning mecha-

nisms are based on the cache related metric, such as the number of cache

hits. They give more cache space to applications that tend to have more cache

hits. In HCMPs, if a GPU application has a significantly larger number of hits

than a CPU application, then it will be highly favored over CPU applications,

regardless of how cache affects performance.

• Dynamic insertion policy - most previous mechanisms can identify stream-

ing (or thrashing) applications and isolate accesses from those applications

in the limited cache space. However, when both applications have a decent

12

cache hit ratio, similar to LRU cache, applications with more frequent

accesses will be favored, which is GPU applications.

As a result, previous mechanisms that are based on cache-related metrics, e.g.,

hit ratio, cannot identify the effect of TLP. Thus, we need a mechanism that collects

performance metrics directly from cores to identify the effect of TLP.

2.3 Interference in the Network

2.3.1 Importance of On-chip Network

All shared resources, such as last-level caches, interconnection networks, memory

controllers and DRAM memories, are important and can be a source of inter-

application interference. All these resources are closely related to each other.

For example, shared cache affects network pattern and the number of DRAM

accesses. Off-chip DRAM accesses consume a significant amount of time, and

different DRAM scheduling policies will affect cache hit ratio and network pattern.

Finally, how the on-chip network is coordinated will change cache and DRAM

access sequences. Among others, the on-chip interconnection network plays a very

significant role in the system by connecting all components and governing access

sequences in caches and DRAM controllers. Other than private cache accesses, all

communications are made through some kind of the on-chip network, so memory traffic

spends a significant amount of time in the network.

Figure 5 shows the latency distribution of packets of workloads that consist

of CPU applications and one memory-intensive GPU application.2 We estimate

latencies in the following categories.

• CACHE: cycles to access the LLC including delays in a queue.

• DRAM: cycles in DRAM controllers to access off-chip DRAM.

2W-HH andW-LH workloads in Table 13.

13

• NOC QUEUE: queuing delay in the injection buffer.

• NOC TRIP: traverse time to reach a destination after injected into the

network from the injection buffer.

0

100

200

300

400

500

600

L
a

te
n

cy
 (

cy
cl

e
s)

Workloads

DRAM CACHE

NOC_TRIP NOC_QUEUE

Figure 5: Latency distribution of packets in heterogeneous workloads (x-axis:

workloads).

Although the DRAM waiting time accounts for the majority of time in some

workloads, the NoC usually consumes most of the time, in particular due to

queuing delays in shared routers (LLCs and memory controllers). We can expect

that the time spent on the network will increase as the number of cores increases

because of increased hop counts and traffic, so the importance of the NoC remains

the same in the future.

When we compare the average queuing delays of CPU and GPU packets

in heterogeneous workloads, we observe CPU packets experience much longer

queuing delays than GPU packets. Figure 6 shows the router buffer occupancy of

CPU and GPU packets. As can be seen, GPU packets mostly occupy buffer space.

This will cause network interference problem and CPU packets will suffer from

the interference.

Consequently, we need a mechanism that isolates the network interference

caused by GPU cores in HCMPs.

14

0%

20%

40%

60%

80%

100%

Workloads

CPU GPU

Figure 6: Router buffer occupancy in heterogeneous workloads (x-axis: work-

loads).

2.3.2 Effectiveness of Previous Mechanisms in HCMPs

Many researchers have conducted research on various aspects of NoC. However,

there are a few reasons why previous proposals may be less effective in CPU-

GPU heterogeneous architectures compared to homogeneous systems due to the

existence of GPU cores. First, most mechanisms only consider arbitrations of

packets in a router. This is natural in homogeneous systems because we can

expect that a similar number of packets from each application exist in the injection

queues. However, due to bursty injections by GPUs, the occupancy of injection

queues in shared resources is likely to be skewed such that GPU packets occupy

most queue entries. Therefore, the effectiveness of previous mechanisms will be

limited. By having separate injection queues for a CPU andGPU or an out-of-order

packet scheduler, previous mechanisms can work better, but this will increase the

complexity of the scheduler. The scheduler now needs to decide which queue

(separate queues) or packet (out-of-order scheduler) to schedule and the decision

made by the scheduler should be incorporated with arbitration decisions.

However, even if the previous mechanisms consider separate injection queues,

the QoS for NoC needs to consider different characteristics of CPU and GPU

cores. Since GPU cores can execute more concurrently running threads, they

have higher thread-level parallelism (TLP) and their ability to tolerate latency is

15

different compared to CPU cores.

As a result, the different nature of cores makes it difficult to apply previous

mechanisms in HCMPs. Therefore, QoS mechanisms for heterogeneous architec-

tures need to have separate queues/out-of-order packet schedulers and to consider

the nature of GPU cores to be more effective.

2.4 Motivation for Dynamic Frequency Regulating Mechanism

2.4.1 Performance Scalability by Frequency and MPKI

Traditionally, performance improvements were carried by higher clock frequency

along with advanced microarchitecture features until the power wall became

the main limiter. However, higher frequency does not always guarantee

higher performance, i.e., applications have different performance scalability with

frequency increase. Based on the characteristics of the application, we may see

proportional performance improvements (linear scalability) as well as saturated

improvements (log scalability). Figure 7 shows an XY graph that correlates

speedup trend as the frequency of cores increases from 500 MHz to 4 GHz and

L2 MPKI (misses per kilo instructions) of CPU and GPU applications.

We pick L2 MPKI since it is one of the application characteristics and will

not dramatically change with frequency changes and interactions with other

applications. From the figure, we can easily observe that L2MPKI and the speedup

have a strong correlation in CPU and GPU applications, where applications with

high MPKI show very limited speedup results, while applications with low MPKI

show close to linear speedup. Therefore, we can form a simple relation between

MPKI and scalability as in Eq. (2). If MPKI is less than a certain threshold, we

expect very good scalability. Otherwise, we will observe marginal performance

improvement with frequency increase.

16

0

10

20

30

40

50

60

0 2 4 6 8 10

L
2

M
P

K
I

Speedup of 4GHz over 500MHz

(a) CPU applications

0

20

40

60

80

100

0 2 4 6 8 10

L
2

 M
P

K
I

Speedup of 4GHz over 500MHz

(b) GPU applications (L2 MPKI is per-core)

Figure 7: Speedup pattern of applications with frequency increase.

ifMPKI < θMPKI :Performance ∝ frequency

else :Performance ∝ log(frequency)

(2)

At the same time, L2MPKI can also be a good proxy for indicating the degree of

interference caused by an application. Typically, a network packet is created when

a cache miss needs to be serviced from remote places such as shared cache tiles

or off-chip memories. A higher MPKI in a given period indicates more memory

request injections to the shared resources. Moreover, operating clock frequency

is another factor to determine the number of total requests under a system that

is capable of performing DVFS. Although MPKI will be similar regardless of

frequency change, the number of total memory requests in a given period will be

proportional to the frequency unless the system bandwidth is saturated. Therefore,

we can formulate the number of memory requests and the interference as in Eq. (3).

17

interference = total req per time ∝ MPKI × frequency (3)

2.4.2 Effect of Core and Memory Frequency

In this section, we examine how different combinations of core and memory

system frequency affect system performance based on workloads with different

memory intensity. Figure 8 shows the results. Note that W1 and W2 consist of

four compute-intensive CPU applications and W3 and W4 consist of four memory-

intensive CPU applications. The detailed evaluation methodology can be found in

Section 6.4.

0

0.5

1

1.5

1 1.5 2 1 1.5 2 1 1.5 2

Core 1.5 GHz Core 3 GHz Core 4 GHz

S
p

e
e

d
u

p
 W1 W2

(a) Compute-intensive workloads

0

0.5

1

1.5

1 1.5 2 1 1.5 2 1 1.5 2

Core 1.5 GHz Core 3 GHz Core 4 GHz

S
p

e
e

d
u

p
 W3 W4

(b) Memory-intensive workloads

Figure 8: Performance of different core and memory frequency combinations

(memory: 1, 1.5, 2GHz).

We can clearly see two trends from the figures: 1) Memory frequency does not

affect the performance of compute-intensive workloads and 2) core frequency does

not have a significant impact on the performance of memory-intensive workloads.

18

When the memory system is busy, the performance bottleneck occurs in the

memory, so cores will have more stall cycles by waiting until memory requests

are serviced. In this case, lowering the frequency of cores and increasing the

frequency of the memory system will yield significant performance improvements

while not consuming more energy. In the opposite case, when the memory system

is not busy, cores consume more cycles on computations rather than waiting for

the memory requests. As a result, faster cores with a slower memory system

will yield better performance. Ma et al. [88] have discussed this in the past for

CMP workloads, and they utilized the core and memory performance behaviors

to partition the power budget between the core and the memory.

2.4.3 Previous Resource Sharing Mechanisms

Previousmechanisms that aim to solve the resource contention problem have some

weaknesses. First, previous mechanisms have limited effectiveness on workloads

that consist of all compute-intensive applications. The basic intuition of shared

resource management is trying to reduce interference caused bymemory-intensive

applications and prioritize more critical applications. Therefore, they are effective

only when a significant resource contention or interference exists. However, with

compute-intensive workloads, they perform similarly to the baseline at best. Even,

we can observe performance degradation due to the overhead of mechanisms.

Second, previous mechanisms are not designed to optimize the power-

efficiency. They focus on improving performance or providing quality-of-service

to applications. To achieve the goal, they often introduce new hardware structures,

which consumes extra power. Overall energy consumption can be decreased,

which is driven by the performance improvement. For example, source throttling

has been considered to prevent inter-application interference problem. When a

core injects too many packets to the network in a given time, memory requests

19

from this core will be likely to interfere with other applications. One effective way

to solve this problem is limiting the number of packet injections to the network for

a period. Chang et al. [18] recently proposed a heterogeneous adaptive throttling

mechanism (HAT). They monitored the MPKI of each application and made

throttling decisions based on the monitored MPKI value. By utilizing application

awareness, HAT showed effectiveness. However, these source-throttling-based

mechanisms have limitations. When only source throttling is applied, it can

prevent interference, but core resources must idle when the core exceeds packets

more than its quota. In order to save energy, DVFS can be applied together with

power (or clock) gating idle components. However, improving performance of

an application is difficult with source throttling unless core clock frequency is

increased.

2.5 Motivation for Energy-Efficient Cache for GPU

Having a large cache is a conventional wisdom for reducing the speed gap between

faster cores and slower memory by placing data blocks closer to the processor.

The size of on-chip caches continues to increase, for example Intel’s latest Haswell

architecture [48] put up to 32 MB on-chip caches. On the other hand, GPUs

utilize the cache differently. In the discrete GPU system, caches are mainly used

to reduce bandwidth to the memory, rather than to decrease memory access

latencies. Therefore, cache size is much smaller than in CPUs. For example, the

first generation of NVIDIA’s GPGPU architecture [104] does not have hardware-

managed caches. The cache size increased to 768 KB in the next generation [103]

and to 1536 KB in the latest generation [105]. However, as GPUs are now integrated

into CMPs, large caches are now available to GPUs, where the cache is optimized

for CPUs, not for GPUs.

To utilize caches in a more energy-efficient manner for GPUs, we can exploit

20

the execution and programming models of GPUs. First, GPUs adopt the single-

program multiple-data (SPMD) execution model to better achieve parallelism.

Multiple processors execute the same code with different input data. Combined

with the massive multi-threading capability of GPUs, we can find very regular

behavior across cores, i.e., similar progress is observed among different cores. One

interesting behavior that we can observe due to the SPMD model is that cache

behavior, such as cache hit ratio, in adjacent memory space shows near constant

behavior, while distance memory regions show distinct behaviors. We can exploit

this behavior by selectively caching useful data blocks only to save dynamic cache

energies.

Second, programmers are asked to provide detailed information on the

program in a host code. One type of information is the size of each memory

variable in a kernel. Memory variables in a GPU kernel are persistent throughout

the kernel execution and the property of the variable (size and readability)

is dictated by the programmer and the modification (dynamic allocation and

deallocation) is very limited. Using this information, we can precisely estimate the

working set size of a GPU kernel, so that we can save leakage energies by turning

off unnecessary cache ways.

These two cache optimizations that exploit the execution and programming

models of GPUs can be a power-efficient method of utilizing large on-chip caches

for GPUs.

21

CHAPTER III

RELATEDWORK

This chapter discusses the related work.

3.1 Related Work on Heterogeneous Architecture

3.1.1 Resource sharing mechanism

In this section, we first discuss resource sharing mechanisms that specifically

target CPU-GPU heterogeneous architectures. Lee and Kim [72] studied the cache-

sharing behaviors in heterogeneous workloads and proposed TLP-aware cache

management schemes, which sample cores with different cache policies to see

the performance effects by caches. They also considered the interference problem

caused by GPU applications.

Yang et al. [152] proposed a pre-execution mechanism of GPGPU applications

on CPU cores. The proposed mechanism automatically extracts memory opera-

tions of the GPGPU kernel and dispatches these operations on the CPU when the

kernel is launched. Pre-execution from CPU cores brings data blocks of GPGPU

kernels in the shared cache, so most off-chip accesses from GPGPU applications

are hit in the cache.

Jeong et al. [59] considered quality-of-service (QoS) in a multi-processor

system-on-chip when off-chip bandwidth is shared between CPU and real-

time constrained graphics applications. The proposed mechanism adaptively

prioritizes CPU and GPU requests based on the progress made by graphics

applications. Ausavarungnirun et al. [9] proposed the staged memory scheduler

(SMS). Due tomassivememory accesses by GPU cores, the visibility of thememory

requests by the memory scheduler is very limited. SMS attacks this problemwith a

22

multiple-stage memory scheduler. In the first stage, requests from the same source

are inserted into the same queue and form a batch based on the row buffer locality.

Then, a batch scheduler in the second stage picks an application batch based on the

application characteristics and requirements. A scheduler in the final stage issues

a ready DRAM command.

3.1.2 Task partitioning mechanism

Many researchers have also focused on how to partition or schedule tasks between

heterogeneous cores [8, 34, 38, 56, 61, 82, 85, 115, 143]. As the heterogeneous archi-

tecture becomes the mainstream computing platform, frameworks such as Open

Computing Language (OpenCL) [111] have been proposed to simultaneously

utilize heterogeneous cores for the same program or kernel. Based on the task,

running the program on a certain type of core yields better performance, but

utilizing more types of cores is beneficial in terms of performance, power, and heat

dissipation. As a result, task partitioning becomes a very important yet complex

problem to tackle.

3.2 Related Work on Cache Sharing

3.2.1 Dynamic cache partitioning

Suh et al. [131, 132] first proposed dynamic cache partitioning schemes in chip

multi-processors that consider the cache utility (number of cache hits) using a set

of in-cache counters to estimate the cache-miss rate as a function of cache size.

However, since the utility information is acquired within a cache, information for

an application cannot be isolated from other applications’ intervention.

Utility-based cache partitioning (UCP) [120] addressed this problem by propos-

ing a utility monitor (UMON) that uses separate structures, including ATD

(auxiliary tag directory) and way counters. ATD maintains strict LRU-stack

per application. Upon hits in ATD, the corresponding way counters will be

23

incremented. The optimal partition for all applications is determined to maximize

the overall number of cache hits.

Kim et al. [65] considered the fairness problem from cache sharing such that

slowdown due to the cache sharing is uniform to all applications. Moretó et

al. [96] proposed MLP-aware cache partitioning, where the number of overlapped

misses will decide the priority of each cache miss, so misses with less MLP will

have a higher priority. IPC-based cache partitioning [133] considered performance

as the miss rate varies. Even though the cache-miss rate is strongly related to

performance, it does not always match the performance. However, since the

baseline performance model is again based on the miss rate and its penalty, it

cannot distinguish GPGPU-specific characteristics. Yu and Petrov [153] considered

bandwidth reduction through cache partitioning. Srikantaiah et al. proposed

the SHARP control architecture [128] to provide QoS while achieving good cache

space utilization. Based on the cache performance model, each application

estimates the cache requirement and central controllers collect this information and

coordinate requirements from all applications. Liu et al. [83] considered an off-chip

bandwidth partitioning mechanism on top of cache partitioning mechanisms.

3.2.2 LLC policies by application level management

TADIP [57] is a dynamic insertion policy (DIP) that dynamically identifies the

application characteristic and inserts single-use blocks (dead on fill) in the LRU

position to evict as early as possible. PIPP [150] pseudo partitions cache space to

each application by having a different insert position for each application, which

is determined using a utility monitor as in UCP. Upon hits, each block is promoted

toward the MRU by one position. PIPP also considers the streaming behavior of

an application. When an application shows streaming behavior, PIPP assigns only

one way and allows promotion with a very small probability (1/128).

24

Pseudo-LIFO [19] mechanisms are a new family of replacement policies based

on the fill stack rather than the recency stack of the LRU. The intuition of pseudo-

LIFO is that most hits are from the top of the fill stack and the remaining hits are

usually from the lower part of the stack. Pseudo-LIFO exploits this behavior by

replacing blocks in the upper part of the stack, which are likely to be unused.

Jaleel et al. proposed re-reference interval prediction (RRIP) [58]. Cache

replacement policies use somemethod of future reference prediction. For example,

LRU predicts that all caches hits and misses will be re-referenced near-immediate.

Dynamic insertion policies detect either a near-immediate or distance re-reference

pattern in runtime, but not both at the same time. If an application shows a mixed

pattern of temporal and non-temporal data, dynamic policies cannot hold near-

immediate blocks in the cache. RRIP solves the problem of this mixed pattern by

inserting incoming blocks in the not near-immediate position and promote blocks

toward the near-immediate position upon hits. RRIP also uses a dynamic insertion

policy to filter out non-temporal accesses. Wu et al. [149] proposed prefetch-aware

cache management, which is built on RRIP.

3.3 Related Work on On-chip Interconnection

3.3.1 NoC Research

There has been an extensive amount of work in the past [23, 30] for non-

on-chip networks. However, the time scales and the amount of resources

available in non-on-chip network environments are much higher than what is

permissible/acceptable in an NoC. Therefore, we limit our discussion only to NoC

work. A survey paper [14] and a keynote paper [90] laid out practical issues of

implementing NoC, their solutions in the literature, and open problems in detail.

In this section, we reiterate QoS mechanisms among others and add recent work.

Previous QoS mechanisms can be categorized based on two aspects. First,

25

based on whether a mechanism provides guaranteed services, we can categorize

mechanisms into best-effort service (BE) and guaranteed service mechanisms

(GS). While hard GS [15, 37, 42, 80, 93, 130, 135, 146] is favorable since it provides

predictable outcomes within the tight requirement such as real-time systems,

BE [35, 123] can better utilize system resources, thereby improving the system

throughput. As a result, many researchers considered hybrid NoC, which

combines GS and BE [13, 16, 28].

Second, based on how QoS is provided, we can categorize previous mechanisms

into 1) resource pre-allocation, 2) prioritization (arbitration), and 3) injection

control (source throttling). In resource pre-allocation (or reservation) mecha-

nisms [15, 36, 76, 79, 93], packets are assigned in different traffic classes based on

the importance, andNoC resources, including virtual circuits, channels, and buffer

space, are reserved for each class.

Priority-based mechanisms [13, 16, 24, 25, 43, 91] are similar to pre-allocation

mechanisms since they determine a different priority for each application or packet

(i.e., different class in pre-allocation) by estimating criticality from core/application-

specific behaviors, including cache misses per instruction and number of miss-

predecessor. However, they do not dedicate resources for a certain type and

instead rely on arbitrations in various places in the network. In [24, 25], priority

is calculated in the centralized logic and each router has the same priority

information for all applications. Arbiters of a router schedule packets based on the

priority. To prevent the starvation problem, multiple packets often form a batch so

that packets in old batches have higher priority than packets in newer batches.

On the other hand, injection (or congestion) control mechanisms [29, 101,

110, 140] try to balance the injections from processing nodes or applications by

injecting packets in the pre-defined rate or limiting packet injections. Globally

synchronized frame (GSF) allows a limited number of packet injections for each

26

source in one epoch (or frame) although GSF maintains future frames for handling

bursty injections [71]. Each VC is now mapped to a different frame, and router

arbiters prioritize packets in older frames. Therefore, GSF can guarantee minimum

bandwidth as well as network delay. Grot et al. [40] proposed a preemptive

virtual clock (PVC), which uses a virtual clock to track each flow’s bandwidth

consumption while using frames to reduce the history effect of the virtual clock.

PVC also uses the preemption of virtual channels for higher priority packets if

lower priority packets occupy the VC so that the priority inversion problem does

not occur. A recent proposal by Chang et al. [18] controls injections from each

application based on the MPKI (misses per kilo instructions) since MPKI can

identify the memory intensity of the application.

3.3.2 Virtual Channel Management Mechanism

In addition to NoC research in the previous section, we also discuss some of

the adaptive virtual channel management mechanisms. Virtual channel size

and organization can significantly affect the system performance and power

consumption [141]. As a result, researchers have tried to find an optimal VC

configuration in static or design time based on the characteristics of their target

applications and traffic patterns. Also, dynamic buffer management mechanisms

are proposed. Choi and Pinkston [21] proposed dynamic VC allocation based

on the traffic pattern using virtual channel DAMQs and DAMQs with recruit

registers, which are improved DAMQ [134]. Nicopolous et al. [100] proposed

ViChaR. The motivation of ViChaR is that the number of virtual channels and

the depth of the buffer (based on the size of packet) can significantly affect the

performance based on the traffic pattern. Thus, ViChaR optimizes the number

of VCs and the depth of the buffer based on the traffic load using a unified

buffer. Lai et al. [68] also tried a similar dynamic VC allocation mechanism,

27

but they considered congestion awareness. Evripidou et al. [31] proposed a VC

virtualization mechanism using VC renaming to support arbitrarily large number

of VCs. Trivinõ et al. [138] also considered a VC virtualization mechanism as well

as NoC resource partitioning mechanism.

3.3.3 Heterogeneous Interconnection Network

We can consider the heterogeneous network to cope with the heterogeneity of

cores, so we discuss previous work on heterogeneous on-chip networks in this

section.

Mishra et al. [95] proposed HeteroNoC, which asymmetrically allocates

resources (buffers and links) to exploit non-uniform demand on a mesh topology.

They used two types of routers, small and large, and placed more powerful large

routers to congested areas. Grot et al. [39] proposed Kilo-NOC, which isolates

shared resources into QoS-enabled regions to minimize the network complexity.

While proving QoS for shared resources, Kilo-NOC uses energy-efficient and

cost-effective routers for the rest of the network. Bakhoda et al. [10] proposed

a throughput-effective NoC for GPU architecture. Due to many cores with a

smaller number of memory controllers, a many-to-few traffic pattern is dominant

in GPUs. To optimize such traffic, they used a half router, which cannot change the

dimension of a packet, to reduce the complexity of the network while increasing

the injection bandwidth from the memory controllers to provide burst data read.

3.3.4 NoC Research for GPU Architectures

In this section, we discuss NoC research proposed for GPU architectures. Yuan et

al. [154] proposed a complexity-effective memory scheduler for GPU architectures.

NoC routers of the proposed mechanism reorder packets to increase row-buffer

locality in the memory controllers. As a result, a simple in-order memory

scheduler can perform similarly to a much more complex out-of-order scheduler.

28

Bakhoda et al. [10] proposed a throughput-effective NoC for GPU architectures.

Due to many cores with a smaller number of memory controllers, a many-to-few

traffic pattern is dominant in GPUs. To optimize such traffic, they used a half

router, which cannot change the dimension of a packet, to reduce the complexity of

the network while increasing the injection bandwidth from thememory controllers

to provide burst data read.

3.4 Related Work on DVFS

Most previous DVFS approaches tried to save power consumption by lowering

(or gating) the voltage of idle cores and then they increased the clock frequency of

other active cores to improve performance [86, 94, 144]. Modern processors [5, 52,

121, 145] are capable of performing this power optimization.

Li and Martı́nez [77] proposed power optimization for multi-threaded work-

loads in CMPs. The power optimization problem for multi-threaded applications

is in two dimensions: processor (number of cores) and DVFS level (frequency).

Since finding an optimal configuration under different performance requirements

for various applications is non-trivial, they tackled the problem by proposing

heuristics that try to reduce the search effort while yielding optimal power

savings.

Wang et al. [142] proposed a power budget partitioning mechanism for

OpenCL applications on a single-chip heterogeneous processor. They proposed a

run-time algorithm that determines optimal workload partitioning between CPU

and GPU cores, DVFS level, and optimal number of operating cores.

Ma and Wang proposed PGCapping [87], which decouples power-gating and

DVFS level while considering the aging of individual cores. By decoupling DVFS

and power-gating, the power management algorithm can be less complicated.

DVFS often causes a core aging problem when it is intensively applied to a specific

29

core. PGCapping tackles this problem by monitoring how DVFS was previously

applied to cores and trying to apply core power-gating accordingly.

While most approaches have focused on core DVFS only [7, 22, 55, 86, 92, 125,

144, 147], some proposals [32, 41, 74, 88, 126] partition the power budget between

cores and uncore (memory and NoC). Ma et al. [88] proposed DPPC, which

partitions chip power budget among cores and shared caches. Based on the

power-performance model and on-line model estimator, they tried to solve power

partitioning as a linear optimization using an on-chip LP solver implementation.

Lee et al. [74] analyzed different combinations of clock frequency and number

of operating cores to improve the throughput of GPUs within a power budget

via dynamic voltage/frequency and core scaling (DVFCS). They also considered

adjusting the frequency of the interconnection network based on the application

behavior. PEPON [126] is a two-level power budget distribution strategy. In

the first level, power is distributed to cores, NoC, and last-level caches based

on a regression-based performance model. Then, the power budget is further

distributed to individual cores and last-level caches. A performance per watt

model is used to assign power budget to individual cores and a utility-based

strategy is adopted for caches.

3.5 Related Work on Low-Power Cache

The idea of semantic-aware caching has been studied and even successfully

commercialized in various forms. The most common example is having a

separate cache for instruction and data, commonly found in the level 1 cache

of modern CPUs. On the other hand, a discrete GPU used to have graphics-

oriented special-purpose caches including z-cache and color cache. In terms of

academic research, Lee et al. proposed a separate cache for stack data and non-

stack data [69] to improve instruction-level parallelism of a superscalar processor.

30

Lee and Ballapuram proposed separate TLBs for stack, global static, and heap

data to improve the energy efficiency of a CPU [70]. Ballapuram and Lee also

exploited such semantic information to suppress snoop energy consumption in

a multi-core processor [11]. Cache bypassing [33, 63, 64, 139] is also widely

studied. In these mechanisms, cache blocks that are predicted to be dead on

arrival will not be inserted in caches. While not directly related to caching,

page-level prefetching [136] for CPU workloads can be considered as well to

exploit different characteristics of different regions although it may end up with

inaccurate prediction and may require higher overhead due to its fine-grained

tracking compared to our memory object-based approach. Note that, due to its

extremely high thread-level parallelism, a memory object in a GPGPU program is

typically far larger than a page.

Researchers have also proposed various ideas to dynamically resize a cache. To

name a few, Albonesi proposed selective cache ways to disable ways when a CPU

runs an application with a small memory footprint to save static energy [3]. To

maintain data consistency, the author explored two options: flushing the cache or

making all ways accessible for coherence requests. Powell et al. proposed Gated-

Vdd, in which the authors proposed to gate the supply voltage for unnecessary

sets of a cache [116]. Ranganathan et al. proposed reconfigurable caches

enabling/disabling ways in a set-associative cache and evaluated their proposals

with media workloads [122]. To maintain data consistency, they explored two

schemes, cache scrubbing and lazy transitioning. Dhodapkar and Smith proposed

detecting the change of programphases, estimating theworking set size of a phase,

and dynamically reconfiguring the underlying hardware cache [26]. Due to the

extreme dynamics of CPU workloads, the authors proposed a rather sophisticated

hardware mechanism to estimate the working size of a given application.

31

CHAPTER IV

AN EFFICIENT CACHE SHARING MECHANISM

4.1 Introduction

This chapter introduces an efficient way of sharing the last-level cache (LLC)

between CPUs and GPUs. The LLC is one of the most important shared

resources in chip multi-processors (CMP). Managing the LLC significantly affects

the performance of each application as well as the overall system throughput.

Under the recency-friendly LRU approximations, widely used in modern caches,

applications that have high cache demand acquire more cache space. The easiest

example of such an application is a streaming application. Even though a

streaming application does not require caching due to the lack of data reuse, data

from such an application will occupy the entire cache space under LRU when it

is running with a non-streaming application. Thus, the performance of a non-

streaming application running with a streaming application will be significantly

degraded.

To improve the overall performance by intelligently managing caches, re-

searchers have proposed a variety of LLC management mechanisms [19, 57,

58, 65, 120, 128, 150, 151]. These mechanisms try to solve the problem of LRU

by either (1) logically partitioning cache ways and dedicating fixed space to

each application [65, 120, 128, 151] or (2) filtering out adverse patterns within an

application [58, 150]. In logical partitioning mechanisms, the goal is to find the

optimal partition that maximizes the system throughput [120, 128, 151] or that

provides fairness between applications [65]. On the other hand, the other group

of cache mechanisms identifies the dominant pattern within an application and

32

avoids caching for non-temporal data. This can be done by inserting incoming

cache blocks into positions other than the most recently used (MRU) position to

enforce a shorter lifetime in the cache.

However, these mechanisms are not likely applicable to CPU-GPU heteroge-

neous architectures for two reasons. The first reason is that GPGPU applications

often tolerate memory latency with massive multi-threading. By having a huge

number of threads and continuing to switch to the next available threads, GPGPU

applications can hide some of the off-chip access latency. Even though recent GPUs

have employed hardware-managed caches [103], caching is merely a secondary

remedy. This means that caching becomes effective when the benefit of multi-

threading is limited, and increasing the cache hit rate even in memory-intensive

applications does not always improve performance in GPGPU applications. The

second reason is that CPU and GPGPU applications often have different degrees

of cache access frequency. Due to the massive number of threads, it is quite

common for GPGPU applications to access caches much more frequently than

CPUs do. Since previous cache mechanisms did not usually consider this effect,

many policies will favor applications with more frequent accesses or more cache

hits, regardless of performance.

To accommodate the unique characteristics of GPGPU applications running

on heterogeneous architectures, we need to consider (1) how to identify the

relationship between cache behavior and performance for GPGPU applications

even with their latency-hiding capability and (2) the difference in cache access

rate. Thus, we propose a thread-level parallelism (TLP)-aware cache management

policy (TAP). First, we propose core sampling that samples GPU cores with different

policies. For example, one GPU core uses the MRU insertion policy in the LLC and

another GPU core uses the LRU insertion. Performance metrics such as cycles per

instruction (CPI) from the cores are periodically compared by the core sampling

33

controller (CSC) to identify the cache friendliness1 of an application. If different

cache policies affect the performance of the GPGPU application significantly, the

performance variance between the sampled cores will be significant as well. The

second component of TAP is cache block lifetime normalization that considers the

different degrees in access rate among applications. It enforces a similar cache

lifetime to both CPU and GPGPU applications to prevent adverse effects from a

GPGPU application that generates excessive accesses.

Inspired by previously proposed utility-based cache partitioning (UCP) and

re-reference interval prediction (RRIP) mechanisms, we propose two new mecha-

nisms, TAP-UCP and TAP-RRIP, that consider GPGPU application characteristics

in heterogeneous workloads.

4.2 The Problem: Cache Behavior of GPGPU Applications

In this section, we explain the cache behavior of GPGPU applications. First, we

classify GPGPU applications based on how the cache affects their performance.

Figure 9 shows cycles per instruction (CPI) and misses per kilo instruction (MPKI)

variations for all application types as the size of the cache increases. Note that to

increase the size of the cache, we fix the number of cache sets (4096 sets) and adjust

the number of cache ways from one (256 KB) to 32 (8 MB).

Application types A, B, and C in Figure 9 (a), (b), and (c) can be observed in

both CPU and GPGPU applications. We summarize these types as follows:

• Type A has many computations and very few memory instructions. The

performance impact of those few memory instructions is negligible since

memory latencies can be overlapped by computations. Thus, the CPI of this

type is close to the ideal CPI, and MPKI is also very low.

1Cache friendlinessmeans that more caching improves the performance of an application.

34

0.00

0.05

0.10

0.15

0

1

2

3

1 4 7 1013161922252831

M
P

K
I

C
P

I

of cache ways

CPI
MPKI

0

50

100

150

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways

CPI

MPKI

0

20

40

60

80

0

1

2

3

4

5

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways

CPI

MPKI

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways

CPI

MPKI

0

10

20

30

0

1

2

3

4

1 4 7 10 13 16 19 22 25 28 31

M
P

K
I

C
P

I

of cache ways

CPI

MPKI

(a) Type A – Compute intensive (b) Type B – Large working set

(c) Type C – Cache-friendly (d) Type D – Cache-sensitive,
performance insensitive

(e) Type E – Memory intensive

Figure 9: Application types based on how the cache affects performance (Ideal

CPI is 2 in the baseline. We fix the number of cache sets (4096 sets) and vary the

number of cache ways from one (256KB) to 32 (8MB)).

• Thrashing applications are typical examples of type B. Because there is a lack

of data reuse or the working set size is significantly larger than the limited

cache size, CPI is high and MPKI is extremely high.

• Type C applications are typical cache-friendly benchmarks. For these bench-

marks, more caching improves the cache hit rate as well as performance.

However, Types D and E in Figure 9 (d) and (e) are unique to GPGPU

applications. These types have many cache misses, but multi-threading is so

35

effective that almost all memory latency can be tolerated. We summarize these types

as follows:

• Type D shows that MPKI is reduced as the cache size increases (cache-

sensitive), but there is little performance improvement (performance-insensitive).

In this type, multi-threading can effectively handle off-chip access latencies

even without any caches, so having larger caches shows little performance

improvement.

• Type E is very similar to type B. Due to the thrashing behavior, cache MPKI

is very high. However, unlike type B, the observed CPI is very close to the

ideal CPI of 2 since the thread-level parallelism (TLP) in type E can hide most

memory latencies.

Note that types C and D are almost identical except for the change in CPI. For

type C, larger caches are beneficial, but not for type D. Since these two types have

identical cache behavior, we cannot differentiate them by just checking the cache

behavior. Hence, our mechanisms aim to distinguish these two types by identifying

the relationship between cache behavior and performance.

4.3 Prior Last-Level Cache Management

Here we provide the background of previous cache mechanisms and explain why

they may not be effective for CPU and GPGPU heterogeneous workloads. These

mechanisms can be categorized into two groups, namely, dynamic cache partitioning

and promotion-based cache management.

4.3.1 Dynamic Cache Partitioning

Dynamic cache partitioning mechanisms achieve their goal (throughput, fairness,

bandwidth reduction, etc.) by strictly partitioning cache ways among applications.

Therefore, the interference between applications can be reduced by having

36

dedicated space for each application. Qureshi and Patt [120] proposed Utility-

based Cache Partitioning (UCP), which tries to find an optimal cache partition such

that the overall number of cache hits is maximized. UCP uses a set of shadow tags

and hit counters to estimate the number of cache hits in each cache way for each

application. Periodically, UCP runs a partitioning algorithm to calculate a new

optimal partition. In every iteration of the partitioning algorithm, an application

with the maximum number of hits will be chosen. The partitioning iterations

continue until all ways are allocated to applications.

To minimize the adverse effect from streaming applications, Xie and Loh [151]

proposed Thrasher Caging (TC). TC identifies thrashing applications by mon-

itoring cache access frequency and the number of misses and then enforces

streaming/thrashing applications to use a limited number of cache ways, called

the cage. Since the antagonistic effect is isolated in the cage, TC improves

performance with relatively simple thrasher classification logic.

These mechanisms are based on the assumption that high cache hit rate leads

to better performance. For example, UCP [120] finds the best partition across

applications that can maximize the number of overall cache hits. UCP works well

when cache performance is directly correlated to the core performance, which is

not always the case for GPGPU applications. They are often capable of hiding

memory latency with TLP (types D and E). UCP prioritizes GPGPU applications

when they have a greater number of cache hits. However, this will degrade the

performance of CPU applications, while there is no performance improvement

on GPGPU applications. Hence, we need a new mechanism to identify the

performance impact of the cache for GPGPU applications.

37

4.3.2 Promotion-based Cache Management

Promotion-based cache mechanisms do not strictly divide cache capacity among

applications. Instead, they insert incoming blocks into a non-MRU position and

promote blocks upon hits. Thus, non-temporal accesses are evicted in a short

amount of time and other accesses can reside for a longer time in the cache by

being promoted to the MRU position directly [58] or promoted toward the MRU

position by a single position [150].

For example, the goal of Re-Reference Interval Prediction (RRIP) [58] is to

be resistant to scan (non-temporal access) and thrashing (larger working set) by

enforcing a shorter lifetime for each block and relying on cache block promotion

upon hits.2 The conventional LRU algorithm maintains an LRU stack for each

cache set. An incoming block is inserted at the head of the stack (MRU), and the

tail block (LRU) is replaced. When there is a cache hit, the hitting block will be

moved to the MRU position. Thus, the lifetime of a cache block begins at the head

and continues until the cache block goes through all positions in the LRU stack,

which will be a waste of cache space.

On the other hand, RRIP inserts new blocks near the LRU position instead of

at the MRU position. Upon a hit, a block is moved to the MRU position. The

intuition of RRIP is to give less time for each block to stay in the cache and to

give more time only to blocks with frequent reuses. Thus, RRIP can keep an active

working set while minimizing the adverse effects of non-temporal accesses. RRIP

also uses dynamic insertion policies to further optimize the thrashing pattern using

set dueling [118].

Promotion-based cache mechanisms assume a similar number of active threads

in all applications, and thereby assume a similar order of cache access rates

2Note that we use a thread-aware DRRIP for our evaluations.

38

among applications. This is a reasonable assumption when there are only CPU

workloads. However, GPGPU applications have more frequent memory accesses

due to having an order-of-magnitude more threads within a core. Therefore, we

have to take this different degree of access rates into account to preventmost blocks

of CPU applications from being evicted by GPGPU applications even before the

first promotion is performed.

4.3.3 Summary of Prior Work

Table 2 summarizes how previous mechanisms work on heterogeneous workloads

consisting of one CPU application and each GPGPU application type. For types

A, B, D, and E, since performance is not significantly affected by the cache

behavior, having fewer ways for the GPGPU application would be most beneficial.

However, previous cache-oriented mechanisms favor certain applications based

on the number of cache hits or cache access rate, so the GPGPU application is

favored in many cases, which will degrade the performance of a CPU application.

Table 2: Application favored by mechanisms when running heterogeneous

workloads (1 CPU + each type of GPGPU application).

Workloads Favored application type
Ideal

GPGPU UCP RRIP TC

CPU+

Type A CPU CPU none CPU
Type B CPU ≈ or GPGPU CPU CPU
Type C GPGPU GPGPU CPU Fair share
Type D GPGPU GPGPU CPU CPU
Type E CPU ≈ or GPGPU CPU CPU

For type C GPGPU applications, due to excessive cache accesses and a decent

cache hit rate, both UCP and RRIP favor GPGPU applications. However, the ideal

partitioning will be formed based on the behavior of applications, and usually,

giving toomuch space to one application results in poor performance. On the other

hand, TC can isolate most GPGPU applications by identifying them as thrashing.

39

The Ideal column summarizes the ideal scenario of prioritization that maximizes

system throughput.

4.4 The Solution: TLP-Aware Cache Management Policy

This section proposes a thread-level parallelism-aware cache management policy

(TAP) that consists of two components: core sampling and cache block lifetime

normalization.

4.4.1 Core Sampling

As we discussed in Section 4.2, we need a new way to identify the cache-

to-performance effect for GPGPU applications. Thus, we propose a sampling

mechanism that applies a different policy to each core, called core sampling. The

intuition of core sampling is that most GPGPU applications show symmetric

behavior across cores on which they are running.3 In other words, each core

shows similar progress in terms of the number of retired instructions. Using this

characteristic, core sampling applies a different policy to each core and periodically

collects samples to see how the policies work. For example, to identify the

effect of cache on performance, core sampling enforces one core (Core-POL1)

to use the LRU insertion policy and another core (Core-POL2) to use the MRU

insertion policy. Once a period is over, the core sampling controller (CSC) collects

the performance metrics, such as the number of retired instructions, from each

core and compares them. If the CSC observes significant performance differences

between Core-POL1 and Core-POL2, we can conclude that the performance of this

application has been affected by the cache behavior. If the performance delta is

negligible, caching is not beneficial for this application. Based on this sampling

result, the CSC makes an appropriate decision in the LLC (cache insertion or

3There are some exceptional cases; pipelining parallel programming patterns do not show the
symmetric behavior.

40

partitioning) and other cores will follow this decision. Core sampling is similar

to set dueling [118]. The insight of set dueling is from Dynamic Set Sampling

(DSS) [119], which approximates the entire cache behavior by sampling a few

sets in the cache with a high probability. Similarly, the symmetry in GPGPU

applications makes the core sampling technique viable. Figure 10 shows the

framework of core sampling.

Core-Pol1: e.g. LRU insertion
Core-Pol2: e.g. MRU insertion

Performance Metric

Decision (Hint)
Core-Follower

Core-POL1

Core-Follower

Core-POL2

Core-Follower

Core-Follower

Core Sampling
Controller (CSC)

Last-Level Cache
Cache accesses

Figure 10: The core sampling framework.

Among multiple GPU cores, one core (Core-POL1) uses policy 1, another core

(Core-POL2) uses policy 2, and all others (Core-Followers) follow the decision in

the LLC made by the CSC. Inputs to the CSC are performance metrics from Core-

POL1 and Core-POL2.

Core Sampling with Cache Partitioning When core sampling is running on top

of cache partitioning, the effect of different policies for a GPGPU application is

limited to its dedicated space once the partition is set for each application. For

example, if a GPGPU application has only one way and CPU applications have the

rest of the ways, sampling policies affect only one way for the GPGPU application.

In this case, no difference exists between the MRU and LRU insertion policies.

Therefore, we set core sampling to enforce Core-POL1 to bypass the LLC with

cache partitioning.

41

Benchmark Classification by Core Sampling Based on the CPI variance be-

tween Core-POL1 and Core-POL2, we categorize the variance into two groups

using Thresholdα. If the CPI delta is less than Thresholdα, caching has little effect

on performance. Thus, types A, B, D, and E can be detected. If the CPI delta

is higher than Thresholdα, this indicates that an application is cache-friendly.

When an application has asymmetric behavior, core sampling may misidentify

this application as cache-friendly. However, we found that there are only a few

asymmetric benchmarks and the performance penalty of misidentifying these

benchmarks is negligible. Note that we set Thresholdα to 5% from empirical data.

Overhead of the core sampling The core sampling mechanism has following

overheads:

• Control logic: Since we assume the logic for cache partitioning or promotion-

based cache mechanisms already exists, core sampling only requires periodic

logging of performance metrics from two cores and the performance-delta

calculation between the two. Thus, the overhead of the control logic is almost

negligible.

• Storage overhead: The core sampling framework requires the following

additional structures. 1) One counter per core to count the number of retired

instructions during one period: Usually, most of today’s processors already

have this counter. 2) Two registers to indicate the ids of Core-POL1 and Core-

POL2: When a cache operation is performed to a cache line, the core id field

is checked. If the core id matches with Core-POL1, the LRU insertion policy

or LLC bypassing is used. If it matches with Core-POL2, the MRU insertion

policy is used. Otherwise, the underlying mechanism will be applied to

cache operations.

42

Table 3 summarizes the storage overhead of core sampling. Since core

sampling is applied on top of dynamic cache partitioning or promotion-based

cache mechanisms, such as UCP or RRIP, we assume that the underlying hardware

already supports necessary structures for them. Therefore, the overhead of core

sampling is fairly negligible.

Table 3: Hardware complexity of the core sampling (our baseline has 6 GPU cores

and 4 LLC tiles).

Hardware Purpose Overhead

20-bit counter per core Perf. metric 20 × 6 cores = 120 bits

2 5-bit registers
Ids of Core-POL1 10-bit × 4 LLC tiles
and Core-POL2 = 40 bits

Total 160 bits

Discussions on the core sampling We further discuss possible issues with the

core sampling.

1. Worst-performing core and load imbalance - Core sampling may hurt the

performance of a sampled core, Core-POL1 or Core-POL2, if a poorly

performing policy is enforced during the entire execution. In set dueling,

a total of 32 sets will be sampled out of 4096 sets (64B cache line, 32-way

8MB cache). Only 0.78% of the entire cache sets are affected. Since we have

a much smaller number of cores than cache sets, the impact of having a

poorly performing core might be significant. Also, this core may cause a load

imbalance problem among cores. However, these problems can be solved by

periodically rotating sampled cores instead of fixing which cores to sample.

2. Synchronization - Most current GPUs cannot synchronize across cores, so

core sampling is not affected by synchronization. However, if future GPUs

support synchronization such as a barrier across cores, since all cores will

43

make the same progress regardless of the cache policy, core sampling cannot

detect performance variance between cores. In this case, we turn off core

sampling and all cores follow the policy of the underlying mechanism after

a few initial periods.

3. Handling multiple applications - So far, we assume that GPUs can run only

one application at a time. When a GPU core can execute more than one

kernel concurrently4, the following support is needed: (1) We need separate

counters for each application to keep track of performance metrics; (2)

Instead of Core-POL1 and Core-POL2 being physically fixed, the hardware

can choose which core to be Core-POL1 and Core-POL2 for each application,

so each application can have its own sampling information.

4.4.2 Cache Block Lifetime Normalization

GPGPU applications typically access caches much more frequently than CPU

applications. Even though memory-intensive CPU applications also exist, the

cache access rate cannot be as high as that of GPGPU applications due to a much

smaller number of threads in a CPU core. Also, since GPGPU applications can

maintain high throughput because of the abundant TLP in them, there will be

continuous cache accesses. However, memory-intensive CPU applications cannot

maintain such high throughput due to the limited TLP in them, which leads to less

frequent cache accesses. As a result, there is often an order of difference in cache

access frequencies between CPU and GPGPU applications. Figure 11 shows the

number of memory requests per 1000 cycles (RPKC) of applications whose RPKC

is in the top and bottom five, along with the median and average values from all

CPU and GPGPU applications, respectively. The top five CPU applications have

4NVIDIA’s Fermi now supports the concurrent execution of kernels, but each core can execute
only one kernel at a time.

44

over 60 RPKC, but the top five GPGPU applications have over 400 and two of them

have even more than 1000 RPKC. Hence, when CPU and GPGPU applications run

together, we have to take into account this difference in the degree of access rates.

25.0

0

20

40

60

80

100

R
e

q
.

P
e

r
K

il
o

 C
y

cl
e

s Bottom 5 Top 5

(a) CPU application

278.3

0

1000

2000

3000

R
e

q
.

P
e

r
K

il
o

 C
y

cl
e

s Bottom 5 Top 5

(b) GPGPU application

Figure 11: Memory access rate characteristics.

To solve this issue, we introduce cache block lifetime normalization. First, we

detect access rate differences by collecting the number of cache accesses from each

application. Periodically, we calculate the access ratio between applications. If the

ratio exceeds the threshold, Txs
5, this ratio value is stored in a 10-bit register, called

XSRATIO. When the ratio is lower than Txs, the value of XSRATIO will be set to

1. When the value of XSRATIO is greater than 1, TAP policies utilize the value of

the XSRATIO register to enforce similar cache residential time to CPU and GPGPU

applications. We detail how the XSRATIO register is used in the following sections.

5We set Txs to 10, which means a GPGPU application has 10 times more accesses than the CPU
application that has the highest cache access rate, via experimental results.

45

4.5 TAP Extensions

We also propose two new TAP mechanisms: TAP-UCP and TAP-RRIP in this

section.

4.5.1 TAP-UCP

TAP-UCP is based on UCP [120], a dynamic cache partitioning mechanism for

only CPU workloads. UCP periodically calculates an optimal partition to adapt

a run-time behavior of the system. For each application, UCP maintains an LRU

stack for each sampled set6 and a hit counter for each way in all the sampled sets

during a period. When a cache hit occurs in a certain position of an LRU stack,

the corresponding hit counter will be incremented. Once a period is over, the

partitioning algorithm iterates until all cache ways are allocated to applications. In

each iteration, UCP finds the marginal utility of each application using the number

of remaining ways to allocate and the hit counters of an application.7 Then, UCP

allocates one or more cache ways to the application that has the highest marginal

utility.

As explained in Section 4.3.1, UCP tends to favor GPGPU applications in

heterogeneous workloads. However, TAP-UCP gives more cache ways to CPU

applications when core sampling identifies that a GPGPU application achieves

little benefit from caching. Also, TAP-UCP adjusts the hit counters of a GPGPU

application when the GPGPU application has a much greater number of cache

accesses than CPU applications. To apply TAP in UCP, we need two modifications

in the UCP’s partitioning algorithm.

The first modification is that only one way is allocated for a GPGPU application

6UCP collects the information only from sampled sets to reduce the overhead of maintaining an
LRU stack for each set.

7Marginal utility is defined as the utility per unit cache resource in [120]. For more details, please
refer to Algorithm 1.

46

when caching has little benefit on it. To implement this, we add one register to each

cache, called the UCP-Mask. The CSC of core sampling sets the UCP-Mask register

when caching is not effective; otherwise the value of the UCP-Mask remains 0.

TAP-UCP checks the value of this register before performing the partitioning

algorithm. When the value of the UCP-Mask is set, only CPU applications are

considered for the cache way allocation.

The second modification is that when partitioning is performed, we first

divide the value of the GPGPU application’s hit counters by the value of the

XSRATIO register, which is periodically set by cache block lifetime normalization,

as described in Section 4.4.2. More details about the TAP-UCP partitioning

algorithm is described in Algorithm 1.

4.5.2 TAP-RRIP

First, we provide more details about the RRIP mechanism [58], which is the base

of TAP-RRIP. RRIP dynamically adapts between two competing cache insertion

policies, Static-RRIP (SRRIP) and Bimodal-RRIP (BRRIP), to filter out thrashing

patterns. RRIP represents the insertion position as the Re-Reference Prediction

Value (RRPV). With an n-bit register per cache block for the LRU counter, an RRPV

of 0 indicates an MRU position and an RRPV of 2n-1 represents an LRU position.

SRRIP always inserts the incoming blocks with an RRPV of 2n-2, which is the best

performing insertion position between 0 to 2n-1. On the other hand, BRRIP inserts

blocks with an RRPV of 2n-2 with a very small probability (5%) and for the rest,

which is the majority, it places blocks with an RRPV of 2n-1. RRIP dedicates few

sets of the cache to each of the competing policies. A saturating counter, called a

Policy Selector (PSEL), keeps track of which policy incurs fewer cache misses and

decides the winning policy. Other non-dedicated cache sets follow the decision

made by PSEL.

47

Algorithm 1 TAP-UCP algorithm (modified UCP)

1: balance = N
2: allocation[i] = 0 for each competing application i
3: if XSRATIO > 1 // TAP-UCP begin .
4: foreach way j in GPGPU application i do
5: way counteri[j] /= XSRATIO // TAP-UCP end .
6: while balance do:
7: foreach application i do:
8: // TAP-UCP begin .
9: if application i is GPGPU application and UCP-Mask == 1
10: continue
11: // TAP-UCP end .
12: alloc = allocations[i]
13: max mu[i] = get max mu(i, alloc, balance)
14: blocks req[i] = min blocks to get max mu[i] for i
15: winner = application with maximum value of max mu
16: allocations[winner] += blocks req[winner]
17: balance -= blocks req[winner]
18: return allocations
19:

20: // get the maximum marginal utility of an application
21: get max mu(app, alloc, balance):
22: max mu = 0
23: for (ii=1;ii<=balance;ii++) do:
24: mu = get mu value(p, alloc, alloc+ii)
25: if (mu > max mu) max mu = mu
26: return max mu
27:

28: // get a marginal utility
29: get mu value(app, a, b):
30: U = change in misses for application p when the number of blocks
31: assigned to it increases from a-way to b-way (a < b)
32: return U/(b-a)

48

To apply TAP to RRIP, we need to consider two problems: 1) manage the

case when a GPGPU application does not need more cache space and 2) prevent

the interference by a GPGPU application with much more frequent accesses.

When either or both problems exist, we enforce the BRRIP policy for the GPGPU

application since BRRIP generally enforces a shorter cache lifetime than SRRIP for

each block. Also, the hitting GPGPU block will not be promoted and GPGPU

blocks will be replaced first when both CPU and GPGPU blocks are replaceable.

In pseudo-LRU approximations including RRIP, multiple cache blocks can be in

LRU positions. In this case, TAP-RRIP chooses a GPGPU block over a CPU block

for the replacement.

In TAP-RRIP, we add an additional register, called the RRIP-Mask. The value

of the RRIP-Mask register is set to 1 when 1) core sampling decides caching is

not beneficial for the GPGPU application or 2) the value of the XSRATIO register

is greater than 1. When the value of the RRIP-Mask register is 1, regardless of the

policy decided by PSEL, the policy for the GPGPU application will be set to BRRIP.

Otherwise, the winning policy by PSEL will be applied. Table 4 summarizes the

policy decision of TAP-RRIP for the GPGPU application.

Table 4: TAP-RRIP policy decisions for the GPGPU application.

RRIP’s TAP Final
GPGPU type Note

decision (RRIP-Mask) Policy

SRRIP 0 SRRIP
Type C

Base
BRRIP 0 BRRIP RRIP
SRRIP 1 BRRIP Types Always
BRRIP 1 BRRIP A, B, D, E BRRIP

49

4.6 Evaluation Methodology

4.6.1 Simulator

We use MacSim simulator [45] for our simulations. As the frontend, we use

Pin [84] for the CPU workloads and GPUOcelot [27] for GPGPU workloads. For

all simulations, we repeat early terminated applications until all other applications

finish, which is a similar methodology used in [57, 58, 120, 150]. Table 5 shows the

evaluated system configuration. Our baseline CPU cores are similar to the CPU

cores in Intel’s Sandy Bridge [52], and we model GPU cores similarly to those in

NVIDIA’s Fermi [103]; each core is running in SIMD fashion with multi-threading

capability.

Table 5: Evaluated system configurations.

CPU

1-4 cores, 3.5GHz, 4-wide, out-or-order
gshare branch predictor
8-way 32KB L1 I/D (2-cycle), 64B line
8-way 256KB L2 (8-cycle), 64B line

GPU

6 cores, 1.5GHz, in-order, 2-wide 8-SIMD
No branch predictor (switch to the next ready thread)
8-way 32KB L1 D (2-cycle), 64B line
4-way 4KB L1 I (1-cycle), 64B line

L3 Cache 32-way 8MB (4 tiles, 20-cycle), 64B line
NoC 20-cycle fixed latency, at most 1 req/cycle

DRAM
4 controllers, 16 banks, 4 channels
DDR3-1333. 41.6GB/s Bandwidth, FR-FCFS

4.6.2 Benchmarks

Tables 6 and 7 show the type of CPU and GPGPU applications that we use

for our evaluations. We use 29 SPEC 2006 CPU benchmarks and 32 CUDA

GPU benchmarks from publicly available suites, including NVIDIA CUDA SDK,

Rodinia [20], Parboil [137], and ERCBench [17]. For CPUworkloads, Pinpoint [113]

was used to select a representative simulation region with the ref input set. Most

50

GPGPU applications are run until completion.

Table 6: CPU benchmarks classification.

Type Benchmarks (INT // FP)

Cache-friendly (10)
bzip2, gcc, mcf, omnetpp, astar //
leslie3d, soplex, lbm, wrf, sphinx3

Streaming / libquantum // bwaves, milc,
Large working set (6) zeusmp, cactusADM, GemsFDTD

Compute intensive(13)
perlbench, gobmk, hmmer, sjeng,
h264ref, xalancbmk // gamess, gromacs,
namd, dealII, povray, calculix, tonto

Table 7: GPGPU benchmarks classification.

Type Benchmarks (SDK // Rodinia // ERCBench // Parboil)

A (4) dxtc, fastwalsh, volumerender // cell // NA // NA

B (12)
bicubic, convsep, convtex, imagedenoise, mergesort
sobelfilter // hotspot, needle // sad // fft, mm, stencil

C (3) quasirandom, sobolqrng // raytracing // NA // NA
D (4) blackscholes, histogram, reduction // aes // NA // NA

E (9)
dct8x8, montecarlo, scalarprod // backprop, cfd, nn, bfs
// sha // lbm

Table 8 describes all workloads that we evaluate for heterogeneous simulation.

We thoroughly evaluate our mechanisms on an excessive number of heteroge-

neous workloads. We form these workloads by pseudo-randomly selecting one,

two, or four CPU benchmarks from cache-friendly and compute-intensive group

in Table 6 and one GPGPU benchmark from each type in Table 7. For Stream-CPU

workloads, in addition to streaming applications from SPEC2006 (Table 6), we add

five more streaming benchmarks from the Merge [81] benchmarks.

4.6.3 Evaluation Metric

We use the geometric mean (Eq. (4)) of the speedup of each application (Eq. (5)) as

the main evaluation metric.

51

Table 8: Heterogeneous workloads.

Type # CPU # GPGPU # of total workloads

1-CPU 1 1 152 workloads
2-CPU 2 1 150 workloads
4-CPU 4 1 75 workloads
Stream-CPU 1 1 25 workloads

speedup = geomean(speedup(0 to n−1)) (4)

speedupi =
IPCi

IPCbaseline
i

(5)

4.7 Experimental Evaluation

4.7.1 TAP-UCP Evaluation

Figure 12 shows the base UCP and TAP-UCP speedup results normalized to

the LRU replacement policy on all 1-CPU workloads (one CPU + one GPGPU).

Figure 12 (a) shows the performance results for each GPGPU application type.

For 1-CPU-A8, 1-CPU-B, and 1-CPU-E workloads, as explained in Table 2, since

these types of GPGPU applications do not have many cache hits, UCP can

successfully partition cache space toward being CPU-friendly. Therefore, the base

UCP performs well on these workloads and improves performance over LRU by

0%, 15%, and 12% for workloads 1-CPU-A, 1-CPU-B, and 1-CPU-E, respectively.

Note that since type A applications are computation-intensive, even LRU works

well.

For 1-CPU-C and 1-CPU-D, UCP is less effective than other types. For

1-CPU-C, we observe that the number of cache accesses and cache hits of

GPGPU applications is much higher than that of CPUs (at least an order).

As a result, UCP strongly favors the GPGPU application, so there is a severe

8CPU application with one type A GPGPU application. Same rule applies to other types.

52

0.90

1.00

1.10

1.20

1-CPU-A 1-CPU-B 1-CPU-C 1-CPU-D 1-CPU-E AVG
S

p
e

e
d

u
p

 o
v

e
r

L
R

U

UCP TAP-UCP

(a) UCP speedup results per type

0.8

1.3

1.8

2.3

1 51 101 151S
p

e
e

d
u

p
 o

v
e

r
L

R
U

Workloads (1 CPU + 1 GPGPU)

UCP TAP-UCP

(b) S-curve for TAP-UCP speedup results

Figure 12: TAP-UCP speedup results.

performance degradation in the CPU application. Therefore, UCP shows only a

3% improvement over LRU. However, by considering the different access rates

in two workloads, TAP-UCP successfully balances cache space between CPU and

GPGPU applications. TAP-UCP shows performance improvements of 14% and

17% compared to UCP and LRU, respectively, for 1-CPU-Cworkloads. For 1-CPU-

D, although larger caches are not beneficial for GPGPU applications since they

have more cache hits than CPU applications, UCP naturally favors the GPGPU

applications. However, the cache hit pattern of the GPGPU applications often

shows a strong locality near the MRU position, so UCP stops the allocation for

GPGPU applications after a few hot cache ways. As a result, UCP performs better

than LRU by 5% on average. The performance of TAP-UCP is 5% better than UCP

by detecting when more caching is not beneficial for GPGPU applications.

53

From the s-curve9 result in Figure 12 (b), TAP-UCP usually outperforms UCP

except in a few cases with type C GPGPU applications. When a CPU application

is running with a type C GPGPU application, giving very few ways to GPGPU

applications increases the bandwidth requirement significantly. As a result, the

average off-chip access latency increases, so the performance of all other memory-

intensive benchmarks is degraded severely. We see these cases only in seven

workloads out of 152. In our future work, we will monitor bandwidth increases

to prevent these negative cases. Overall, UCP performs 6% better than LRU,

and TAP-UCP improves UCP by 5% and LRU by 11% across 152 heterogeneous

workloads.

4.7.2 TAP-RRIP Evaluation

Figure 13 (a) presents the speedup results of RRIP and TAP-RRIP for each GPGPU

type. We use a thread-aware DRRIP, which is denoted as RRIP in the figures,

for evaluations with a 2-bit register for each cache block. Other configurations

are the same as in [58]. The base RRIP performs similarly to LRU. As explained

in Section 4.3.2, RRIP favors GPGPU applications because of its more frequent

cache accesses. Thus, GPGPU blocks occupy the majority of cache space. On the

other hand, TAP-RRIP tries to give less space to GPGPU blocks if core sampling

identifies that more caching is not beneficial.

Figure 13 (b) shows the s-curve for the performance on all 152 workloads.

Although RRIP does not show many cases with degradation, RRIP is not usually

effective and performs similarly to LRU. However, TAP-RRIP shows performance

improvement in more than half of the evaluated workloads. Two TAP-RRIP cases

show degradation of more than 5%. Again, this is the problem due to type C

GPGPU applications (too little space is given to the GPGPU application, so the

9For all s-curve figures from now on, we sort all results by the performance of the TAP
mechanisms in ascending order.

54

0.80

0.90

1.00

1.10

1.20

1.30

1-CPU-A 1-CPU-B 1-CPU-C 1-CPU-D 1-CPU-E AVG
S

p
e

e
d

u
p

 o
v

e
r

L
R

U

RRIP TAP-RRIP

(a) RRIP speedup results per type

0.5

1

1.5

2

2.5

1 51 101 151S
p

e
e

d
u

p
 o

v
e

r
L

R
U

Workloads (1 CPU + 1 GPGPU)

RRIP

TAP-RRIP

(b) S-curve for TAP-RRIP speedup results

Figure 13: TAP-RRIP speedup results.

bandwidth is saturated).

On average, the base RRIP performs better than LRU by 3% while TAP-RRIP

improves the performance of RRIP and LRU by 9% and 12%, respectively.

4.7.3 Streaming CPU Application

When a streaming CPU application is running with a GPGPU application, our TAP

mechanisms tend to unnecessarily penalize GPGPU applications even though the

streaming CPU application does not need any cache space. Since we have only

considered the adverse effect of GPGPU applications, the basic TAP mechanisms

cannot effectively handle this case. Thus, we add a streaming behavior detection

mechanism similar to [150, 151], which requires only a few counters. Then, we

minimize space usage by CPU applications once they are identified as streaming.

The enhanced TAP-UCPwill allocate only one way to a streaming CPU application

55

and the enhanced TAP-RRIP will reset the value of the RRIP-Mask register to

operate as the base RRIP, which works well for streaming CPU applications.

Figure 14 shows the performance results of the enhanced TAP mechanisms (TAP-

S) that consider the streaming behavior of CPU applications on the 25 Stream-CPU

workloads in Table 8.

0.90

0.95

1.00

1.05

S
p

e
e

d
u

p
 o

v
e

r
L

R
U

Figure 14: Enhanced TAP mechanism (TAP-S) results.

The basic TAP mechanisms degrade performance by 3% and 4% over LRU,

respectively. However, the TAP-S mechanisms solve the problem of basic

mechanisms and show a performance similar to LRU. Since all other previous

mechanisms, including LRU, can handle the streaming application correctly, the

TAP mechanisms cannot gain further benefit. Note that the TAP-S mechanisms do

not change the performance of other workloads.

4.7.4 Multiple CPU Applications

So far, we have evaluated the combinations of one CPU and one GPGPU

application. In this section, we evaluate multiple CPU applications running

with one GPGPU application (2-CPU and 4-CPU workloads in Table 8). As the

number of concurrently running applications increases, the interference by other

applications will also increase. Thus, the role of intelligent cache management

becomes more crucial. Figure 15 shows evaluations on 150 2-CPU and 75 4-CPU

workloads. TAP-UCP shows up to a 2.33 times and 1.93 times speedup on 2-CPU

56

and 4-CPUworkloads, respectively. TAP-UCP performs usually no worse than the

base UCP except in a few cases. In this case, two or four memory-intensive CPU

benchmarks are running with one type C GPGPU application. On average, TAP-

UCP improves the performance of LRU by 12.5% and 17.4% on 2-CPU and 4-CPU

workloads, respectively, while UCP improves by 7.6% and 6.1%.

1

1.05

1.1

1.15

1.2

1.25

1.3

2-CPU 4-CPU

S
p

e
e

d
u

p
 o

v
e

r
L

R
U

UCP RRIP

TAP-UCP TAP-RRIP

Figure 15: Multiple CPU application results.

TAP-RRIP shows up to a 2.3 times and 2.2 times speedup on 2-CPU and 4-

CPUworkloads, respectively. On average, RRIP improves the performance of LRU

by 4.5% and 5.6% on 2-CPU and 4-CPU workloads, respectively, while TAP-RRIP

improves even more, by 14.1% and 24.3%. From multi-CPU evaluations of the

TAP mechanisms, we conclude that our TAP mechanisms show good scalability

by intelligently handling inter-application interference.

4.7.5 Comparison to Static Partitioning

Instead of using dynamic cache partitioning, a cache architecture can be statically

partitioned between CPUs and GPUs, but statically partitioned caches cannot use

the resources efficiently. In other words, it cannot adapt to workload characteristics

at run-time. In this section, we evaluate a system that statically partitions the LLC

between the CPUs and GPUs evenly. All CPU cores (at most 4) share 16 ways of

the LLC regardless of the number of concurrently running CPU applications, and

the GPU cores (6 cores) share the rest of the 16 ways. Figure 16 shows the TAP

57

results compared to static partitioning.

1

1.1

1.2

1.3

1-CPU 2-CPU 4-CPU

S
p

e
e

d
u

p
 o

v
e

r
L

R
U

UCP RRIP TAP-UCP

TAP-RRIP Static

Figure 16: Static partitioning results.

For 1-CPUworkloads, static partitioning shows a 6.5% improvement over LRU,

while TAP-UCP and TAP-RRIP show 11% and 12% improvements. However, as

the number of concurrently running applications increases, static partitioning does

not show further improvement (7% over in both 2-CPU and 4-CPU workloads),

while the benefit of the TAP mechanisms continuously increases (TAP-UCP: 12%

and 19%, TAP-RRIP: 15% and 24% for 2-CPU and 4-CPUworkloads, respectively).

Moreover, static partitioning performs slightly worse than LRU in many cases (52

out of 152 in 1-CPU, 54 out of 150 in 2-CPU, and 28 out of 75 in 4-CPU workloads,

respectively), even though the average is 7% better than that of LRU. We conclude

that static partitioning on average performs better than LRU, but it cannot adapt

to workload characteristics, especially when the number of applications increases.

4.7.6 Cache Sensitivity Evaluation

Figure 17 shows the performance results with other cache configurations. We

vary the associativity and size of caches. As shown, our TAP mechanisms

constantly outperform their corresponding mechanisms, UCP and RRIP, in all

configurations. Therefore, we can conclude that our TAP mechanisms are robust

to cache configurations.

58

0.9

1.0

1.1

1.2

1.3

8M-8 8M-8 4M-16 8M-16 4M-32 16M-32
S

p
e

e
d

u
p

 o
v

e
r

L
R

U

UCP TAP-UCP RRIP TAP-RRIP

Figure 17: Cache sensitivity results (size-associativity).

4.7.7 Comparison to Other Mechanisms

In this section, we compare the TAP mechanisms with other cache mechanisms,

including TADIP [57], PIPP [150], and TC [151] along with UCP and RRIP. TADIP

is a dynamic insertion policy (DIP) that dynamically identifies the application

characteristic and inserts single-use blocks (dead on fill) in the LRU position

to evict as early as possible. PIPP [150] pseudo partitions cache space to each

application by having a different insert position for each application, which is

determined using a utility monitor as in UCP. Upon hits, each block is promoted

toward the MRU by one position. PIPP also considers the streaming behavior of

an application. When an application shows streaming behavior, PIPP assigns only

one way and allows promotion with a very small probability (1/128). Figure 18

shows the speedup results.

1

1.05

1.1

1.15

S
p

e
e

d
u

p
 o

v
e

r
L

R
U

Figure 18: TAP comparison to other policies.

59

As explained in Section 4.3.2, if cache space is not strictly partitioned, an

applications that has more frequent cache accesses is favored. As a result, TADIP

also favors GPGPU applications, thereby showing only 3% improvement over

LRU. On the other hand, PIPP can be effective by handling GPGPU applications as

streaming. Since most GPGPU applications are identified as streaming, PIPP can

be effective for types A, B, D, and EGPGPU applications. However, for type C, due

to the saturated bandwidth from off-chip accesses by GPGPU applications, PIPP is

not as effective as it is for other types. TC has similar benefits and problems as PIPP.

On average, PIPP and TC improve performance by 4% and 6%, respectively, over

LRU. Our TAP mechanisms outperform these previous mechanisms by exploiting

GPGPU-specific characteristics.

4.8 Summary of This Chapter

LLC management is an important problem in today’s chip multi-processors and

in future many-core-heterogeneous processors. Many researchers have proposed

various mechanisms for throughput, fairness, or bandwidth. However, none of the

previous mechanisms consider GPGPU-specific characteristics in heterogeneous

workloads such as underlying massive multi-threading and the different degree

of access rates between CPU and GPGPU applications. Therefore, when CPU

applications are running with a GPGPU application, the previous mechanisms

will not deliver the expected outcome and may even perform worse than the LRU

replacement policy. In order to identify the characteristics of a GPGPU application,

we propose core sampling, which is a simple yet effective technique to profile a

GPGPU application at run-time. By applying core sampling to UCP and RRIP

and considering the different degree of access rates, we propose the TAP-UCP and

TAP-RRIP mechanisms. We evaluate the TAP mechanisms on 152 heterogeneous

workloads and show that they improve the performance by 5% and 10% compared

60

to UCP and RRIP and 11% and 12% to LRU. In future work, we will consider

bandwidth effects in shared cache management on heterogeneous architectures.

61

CHAPTER V

ADAPATIVE VIRTUAL CHANNEL PARTITIONING

5.1 Introduction

An on-chip heterogeneous architecture that integrates GPU cores on top of conven-

tional CPU-only chip multiprocessors (CMP) has become a popular architecture

trend, as can be seen in Intel’s Sandy Bridge [52] and Ivy Bridge [49], AMD’s

accelerated processing units (APU) [5], and NVIDIA’s Denver project [106]. In

this architecture, various on-chip resources are shared between CPU and GPU

cores, such as last-level cache (LLC), on-chip interconnection networks, memory

controllers, and DRAMmemories.

The resource sharing problem has existed since CMP was introduced. In

CPU-GPU heterogeneous architectures, however, we expect more shared resource

contention, especially interference suffered by CPU applications from GPGPU

applications due to the different nature of CPU andGPU cores. CPU cores typically

employ 1- to 4-ways of simultaneous multi-threading and rely on larger caches to

tolerate memory access latencies. On the other hand, GPU cores operate with tens

of active threads to minimize the penalty of the off-chip memory latency. The high

degree of thread-level parallelism (TLP) in GPU cores leads to muchmore frequent

network injections, which only exacerbates the resource sharing problem.

We tackle the resource sharing problem in the on-chip network (NoC) in

this chapter. Sources of interference can be located in any shared resources,

from shared last-level caches (LLC) to memory controllers (MC). Nonetheless,

the NoC is one of the most important shared mediums because it connects all

components and all communication traverses through it. The management of

62

the NoC significantly affects the performance of each application as well as the

system throughput. The baseline on-chip routers are usually maintained under

the round-robin or oldest-first arbitration policies, so applications with higher

network demands will be favored. Consequently, GPGPU applications are favored

naturally and CPU applications will face unfair network resource utilization in

heterogeneous architectures.

To solve the resource sharing problem in the NoC, researchers have proposed

router arbitration policies [24, 25, 40, 71] in the homogeneous CMP domain. These

policies consider different application characteristics and prioritize critical packets

or applications. However, these mechanisms may not be used directly for

heterogeneous architectures because they do not consider the heterogeneity of

cores. GPU cores inject packets much more frequently than CPU cores because

they are capable of runningmany concurrent threadswith SIMD executions, which

leads to an unbalanced number of packets between the CPU and GPU in the

network. These characteristics of GPU cores increase the thread-level parallelism

(TLP) of cores, thereby making them more tolerant to latency and bandwidth than

CPU cores. Therefore, NoC mechanisms for heterogeneous architectures need to

consider different characteristics of GPU cores to be effective.

Here, we propose a virtual channel partitioning (VCP) mechanism, which

is simple yet effective, to attack resource sharing problems in the NoC for

heterogeneous systems. A router typically has multiple input and/or output

virtual channels (VC) that share physical links and thus bandwidth. By dedicating

a number of VCs to CPU and GPU applications, we can guarantee a minimum

service in the network to each type. Also, VCP naturally arbitrates packets that

pass through the router because VCP forces GPU packets to occupy only a part of

VCs, so CPU packets can occupy an available VC immediately after they arrive.

To provide CPU and GPU packets according to their VC availability, VCP requires

63

separate injection queues for CPU and GPU packets. Injection queues of shared

caches and memory controllers have both types of packets. If the shared queue

with a first-come first-serve (FCFS) scheduler is used for the injection, even if

available VCs of a certain type exist, packets cannot be injected until they arrive at

the head of the queue. VCP uses DAMQ-based injection queues [134] to maintain

separate queues so that VCP can supply packets to their corresponding partition

with low overhead.

However, VCPmay result in significant performance degradation for bandwidth-

limited GPGPU applications. Without partitioning, bandwidth-limited GPGPU

applications could have utilized more bandwidth, but their performance may be

degraded because of the reduced bandwidth with partitioning. Therefore, the

performance trade-off between CPU and GPGPU applications should be carefully

balanced. Moreover, how different partitioning configurations affect performance

varies by the workload characterization. Also, they behave differently even in

the same workload if different phases exist. Therefore, partitioning should cope

with the run-time behaviors of applications. This naturally leads us to study an

adaptive partitioning mechanism. For better adaptation, our proposed feedback-

directed VCP uses a sampling technique to dynamically compare different

partitioning configurations and enforces the best performing configuration.

We claim our contributions to be as follows:

1. We propose a feedback-directed virtual channel partitioning (VCP) mech-

anism that can arbitrate packets that pass through the local router while

providing a more balanced number of packets to the network.

2. VCP considers different characteristics of GPU cores by directly collecting

performance metrics from cores, while coarse-grain control of virtual

channels in VCP enables us to use very simple hardware.

64

3. VCP improves system performance by 15% across 39 heterogeneous work-

loads. More importantly, results show at most a 2.5% performance

degradation and only two workloads show negative speedup, while VCP

performs better than any static configurations.

The rest of this chapter is organized as follows. Section 5.2 explains the current

problems and design space explorations of NoC in heterogeneous architecture.

Section 5.3 introduces our proposal, VCP. We present the evaluation methodology

and results in Sections 5.4 and 5.5. Section 5.6 summarizes the chapter.

5.2 Problems and Design Space Exploration in NoCs

This section describes the potential problems in designing the on-chip interconnec-

tion network in a CPU-GPU heterogeneous architecture.

5.2.1 Routing Algorithm

NoC routers typically employ a simple static routing algorithm to minimize

latency and complexity. For example, x-y or shortest-distance algorithms are

widely used. However, this may result in link congestion in the heterogeneous

architecture. For example, Figure 19 shows a diagram of Intel’s Ivy Bridge with the

ring network. In the figure, the GPGPU packets are not likely to use the upper link

since the lower link offers the shortest distance from the GPU cores to the L3. The

lower link is also used between the L3 and thememory controllers. Therefore, only

CPU packets use the upper link, which is possibly under-utilized. While studies on

other algorithms show improved network performance, they are limited to traffic

generated by specialized or CPU-only applications [46, 47, 89].

5.2.2 Resource Contention and Partitioning

CPU and GPU packets compete to acquire resources in various places, especially

virtual and physical channels. When the resources are naively shared by both

65

Ring Network

Figure 19: Diagram of Intel’s Ivy Bridge die with the ring network.

kinds of cores, higher-demanding cores will acquire the most resources, which

are GPU cores. This is the same problem found in the LRU cache-replacement

policy in the shared cache. To solve this problem, many researchers have proposed

various static and dynamic cache partitioning mechanisms [120, 132]. Similarly,

partitioning mechanisms can be applied to on-chip virtual and physical channels.

Each port of a router has multiple virtual channels. We can partition these virtual

channels to each application. Similarly, if multiple physical channels exist, we

can dedicate some channels to CPU cores and the other channels to GPU cores. If

the interference exhibited by other applications is significant, resource partitioning

would prevent interference and improve performance. However, this can lead to

resource under-utilization if partitioning is not balanced with demand. Therefore,

partitioning should be carefully applied to on-chip network resources.

5.2.3 Arbitration Policy

Multiple arbiters exist in each router to coordinate packets from different ports.

In a CPU-GPU heterogeneous architecture, due to the different network demands,

arbitration between CPU andGPU packets is a non-trivial problem. At first glance,

statically giving higher priority to CPU applications appears to be a reasonable

solution since CPU applications are more latency sensitive. However, when CPU

66

and GPGPU applications are both bandwidth-intensive, CPUs may be robbed of

their fair share of the bandwidth. Therefore, the arbitration policy should also be

carefully applied.

5.2.4 Homogeneous or Heterogeneous Link Configuration

A homogeneous router configuration has the practical benefit of easier implemen-

tation. If all NoC routers are identical, each router module can be duplicated

with little or no individual adjustment. Since the requirements of CPU and GPU

cores are very different, routers may require higher bandwidth interconnection

in terms of the link width or larger buffers to effectively handle traffic from both

applications. However, this may result in under-utilization of resources in a certain

core. For example, if a wider link width is used, GPGPU applications may directly

benefit from more bandwidth capability, but CPU applications may not because

they do not require such a high bandwidth. Therefore, the utilization of CPU links

will be low. A heterogeneous link configuration may work better in this situation

but requires more complex implementation and may not perform as well in

some bandwidth-intense situations. However, a heterogeneous configuration will

require more design and implementation efforts compared to the homogeneous

network. We leave this discussion to future work since this is beyond the scope of

our study.

5.2.5 Placement

As explained in Section 5.2.1, any placement of these components – CPU, GPU, L3,

MC – may result in unbalanced utilization of on-chip interconnection resources

for some scenarios or under-utilization for all situations. Figure 20 shows four

possible examples of placement in the ring network. Among these examples, the

placement of memory controllers (Figure 20 (d)) in many-core CMPs is studied by

Abts et al. [2].

67

C0 C1 C2 G0 G1 G2

M1 M0 LLC LLC LLC LLC

(a) GPU-friendly placement

C0 C1 C2 G0 G1 G2

M1 LLC LLC LLC LLC M0

(c) Distributed MC placement

G0 G1 G2 C0 C1 C2

M1 M0 LLC LLC LLC LLC

(b) CPU-friendly placement

C0 G0 C1 G1 C2 G2

M1 M0 LLC LLC LLC LLC

(d) Interleaved placement

Figure 20: Placement examples in the ring network.

The first two examples are GPU- and CPU-friendly placements. Since all cache

misses from a core need to reach L3 caches first, the distance between a core and a

target L3 node may have a major impact on performance. Figure 20 (a) shows that

the distance between the GPU cores and the L3 caches is shorter than the distance

from the CPU cores. If there are more frequent accesses from the GPU cores to

the L3 caches, this placement results in better system performance. For the same

reason, Figure 20 (b) is more beneficial for CPU applications.

In another configuration, each memory controller is placed at the end of the

die in Figure 20 (c). If we can map the disjoint address range of the physical

memory for the two types of cores (by the operating system), we can balance the

link usage and the latency between each core to the L3 cache and traffic to the

memory controllers will be reduced. This setup could effectively divide the chip

into two halves, which would be the most beneficial when each half requires the

same amount of bandwidth, but would otherwise result in a major imbalance in

resource distribution.

Figure 20 (d) shows an interleaved placement, where CPU and GPU cores are

interleaved. The possible benefit of this design is that it can balance the traffic in

68

each direction from each application. In other designs, the traffic from each type of

application tends to head in the same direction due to the shortest-distance routing

algorithm. When too much traffic is headed in one direction, the application will

slow down.

Although some placements are not practical in an actual implementation, this

is beyond the scope of our study. We leave this discussion to future work.

5.3 Feedback-Directed Bandwidth Partitioning

In this section, we describe the details of our proposed mechanism: a feedback-

directed partitioning-based bandwidth control (VCP) for the NoC in heteroge-

neous architectures.

5.3.1 Virtual Channel Partitioning

To orchestrate bandwidth more effectively in heterogeneous systems, we propose

a virtual channel partitioning (VCP) mechanism. VCP dedicates a number of VCs

for CPU and GPU cores, similar to cache partitioning mechanisms. By splitting

VCs, VCP naturally arbitrates packets that pass through the router (i.e., the current

router is an intermediate node, not a destination). Since VCP forces GPU packets to

occupy only a part of VCs, CPU packets can occupy an available VC immediately

after they arrive. Therefore, CPU packets can be more prioritized compared to

unpartitioned VCs. Figure 21 shows the simplified VC arbitration. The VC arbiter

is able to identify the type of available VC and tries to select a packet with the same

type from input VCs.

To feed CPU and GPU packets based on the corresponding VC availability,

VCP requires separate injection queues for CPU and GPU packets in the network

interface. Even though dedicated VCs exist for CPU packets by VCP, until a

CPU packet arrives at the head of the injection queue, none of the CPU packets

can be injected into the NoC under the FCFS scheduling. Under the VCP, a

69

Input VCs

VC 0

VC 1

VC 2

VC 3

VC 0

VC 1

VC 2

VC 3

CPU

GPU

GPU

GPU

Router i Router j

VC Arbiter Input VCs

CPU VCs

GPU VCs

Arbiter sends packets only to corresponding type of VCs

Figure 21: Packet arbitration in VCP

packet can be sent to a router if an available CPU VC exists. To reduce the

overhead of having two separate queues, VCP uses dynamically-allocated multi-

queue (DAMQ) buffers [134]. DAMQ buffers can maintain separate virtual linked

lists for each type of packet with very low overhead, so that the header packet of

each type can easily be selected. Therefore, the injection scheduler only needs to

check the availability of each VC type and send the corresponding type of VC from

its queue, so the scheduler is as simple as the baseline FCFS policy. Figure 22 shows

the injection queue and the scheduler of the network interface. DAMQ enables a

physically shared, but virtually separate, queue for CPU and GPU packets. The

packet scheduler is simple FCFS, but it needs to check the availability of each type

of VC, thereby sending a corresponding type of packet.

In this way, VCP can effectively arbitrate packets based on the partitioning

configuration, while a more balanced number of packets is provided to the

network from the injection queue. Moreover, VCP manages VCs in a very coarse-

grain (CPU or GPU partition) manner, which makes the hardware very simple

regardless of the number of cores.

5.3.1.1 Where to apply VCP?

Virtual channel partitioning does not have to apply routers that have only CPU or

GPU packets since VCP aims to coordinate routers where CPU and GPU packets

70

Packet scheduler

Network Interface

Router

H
ead

T
ail

CPU
queue

GPU
queue

VC 0 VC 1 VC 2 VC 3 VC 0 VC 1 VC 2 VC 3

CPU VCs GPU VCs

DAMQ

1. Check availability of each type of VC
2. Send a corresponding type packet

T
ail

H
ead

DAMQ

Figure 22: Packet injection from the network interface.

compete. However, in this case, we have to design routers with/without VCP, so

design cost may increase. An alternative is for all routers to have enabled VCP

by default, but VCP can be disabled by monitoring the number of CPU and GPU

packets in a router.

5.3.2 VCP with Different Mixture of Workloads - Adaptability

VCP can have N different partitioning configurations, where N is the number

of VCs per port in a router. For example, if a router has six VCs per port, six

partitioning configurations are possible: no-partitioning, 1:5 (1 CPUVC and 5GPU

VCs), 2:4, 3:3, 4:2, and 5:1. Since 0:6 or 6:0 configurations will only accept one

type of packet, we exclude these configurations. Although VCP can effectively

partition on-chip network bandwidth, the exact behavior will be affected by the

partitioning configuration as well as by the mixture of workloads running on

the heterogeneous system. For example, when CPU applications are running

with non-network-intensive GPGPU applications, CPUswill not experience severe

interference. Without partitioning, CPUs utilize more network bandwidth, but

partitioning will decrease the bandwidth and degrade the performance of CPU

applications. Therefore, partitioning should not be used in this case. On the other

71

hand, with network-intensive GPGPU applications, partitioning must be applied

to prevent interference. However, the best performing configuration (for example,

2:2 vs. 1:3 with 4 VCs) can be different for different workloads. To be effective

with this type of workload, the performance trade-off between CPU and GPGPU

applications should be carefully balanced. Also, the behavior will be affected by

the run-time phase as well. Therefore, VCP needs to identify the best performing

configuration and adapt run-time behavior.

5.3.3 Feedback-Directed VCP Using Sampling

To estimate the best performing partitioning configuration on heterogeneous

workloads, we use a sampling technique for VCP, which we call a feedback-

directed VCP (F-VCP), as opposed to static VCP (S-VCP). We sample different

VC partitioning configurations across periods and compare the performance of

different configurations. F-VCP has the following sampling periods:

• Initial warm-up: To stabilize performance metrics, we idle and disable VCP

during this period.

• Training period: To see the performance effect of each configuration, we

maintain a configuration for a period. Therefore, the training period consists

of N sub-periods with N different configurations. For example, T1 uses the

baseline unpartitioned configuration. T2 can be a 1CPU-3GPU partitioning

configuration. Once a period is over, we collect the number of retired

instructions from 1) all CPU applications and 2) a GPGPU application and

calculate the speedup over the unpartitioned baseline (T1) as in Eq. (6) by

taking geometric mean of Eq. (7) and Eq. (8).

• Main period: Once the training period is over, if the speedups of all

configurations are less than 1, which means partitioning hurts performance,

72

partitioning will be disabled for the main period. Otherwise, we choose the

best performing configuration and apply it for the main period. Once a main

period is over, T1 of the training period will begin.

speedupi = geomean(speedupiCPU , speedup
i
GPU) (6)

speedupiCPU =
#inst retirediALL CPU

#inst retired
base(nopartition)
ALL CPU

(7)

speedupiGPU =
#inst retirediGPU

#inst retired
base(nopartition)
GPU

(8)

We set period lengths as in Table 9 from empirical data. With four VCs in the

baseline, we test three partitioning configurations (unpartitioned, 1:3, and 2:2), so

the training period resumes every 4.6 M cycles.

Table 9: The length of each period in VCP.

Length of initial period 500K cycles
Length of each training period 200K cycles
Length of main period 4M cycles

5.3.3.1 Central Decision Logic

To collect performance metrics from cores, VCP requires a central decision logic

(CDL), which is located at the central node of the mesh. We use a similar approach

in previous work [24, 25]. When a training period is over, CDL broadcasts to all

cores amessage that includes the configuration for the next period. Cores maintain

the previous policy until they receive themessage from CDL. Once they receive the

message, they change the policy and send a performance metric during the last

period to CDL. Once CDL collects messages from all cores, it will store the results.

After all training periods are over, CDL decides the best configuration based on

Eq. (6) and sends the decision to all routers. These processes may take up to a few

73

hundred cycles. Since the length of periods is much longer, the overhead is not so

significant.

5.3.3.2 Why sampling works

This sampling mechanism can be viable since both CPU and GPGPU applications

have shown a similar periodic progress in terms of the number of retired

instructions. This is because 1) the GPGPU application is running in a single-

program multiple-data (SPMD) manner. Although each thread has a different

behavior at a time, this phase behavior becomes blurred by the other hundreds

of concurrently running threads and 2) each CPU application has its own phase

behavior. However, if we treat all CPU applications as a whole, the phase behavior

of each application becomes faint as well. Figure 23 shows a phase example of a

heterogeneous workload.

0

50000

100000

150000

200000

250000

300000

350000

400000

R

e
ti

re
d

 I
n

st
.

/
P

e
ri

o
d

Time

CPU1 CPU2 CPU3
CPU4 Sum CPUs GPU

Figure 23: Phases in a heterogeneous workload (Sum: sum of CPU retired

instructions).

The GPGPU application (GPU line) shows similar progress across the entire

duration. Although CPU applications show some fluctuations, the sum of all

CPU applications (Sum line) maintains a similar progress for a sufficient time, so

that our sampling mechanism can successfully differentiate the effect of different

partitioning configurations.

74

5.3.3.3 Drawbacks and Improvements of Sampling

Sampling may have the following weaknesses: 1) effect of training period length

and 2) running non-optimal configurations during training periods.

First, for each training period, our F-VCP requires the collection of performance

information as well as network injection information from cores. If the training

period is too short, the overhead of communicating information will be too high.

Also, we cannot acquire precise performance information due to a performance

variation during a short period. On the other hand, if the period is too long, we

lose opportunities for improving performance of the system since F-VCP cannot

adapt well to run-time behavior changes. To find the optimal period length, we

have to identify the phase behavior and adjust the period length accordingly.

Second, during the training period, F-VCP will use N-1 non-optimal configura-

tions, whereN is the total number of configurations. However, N is very small in F-

VCP since on-chip routers usually have very limited buffer space (only 4 to 6 VCs).

Even if many VCs exist, since we observe that the overall system performance is

linearly increasing, decreasing, or has the peak in the middle across consecutive

configurations, we can employ existing on-line training techniques to reduce the

overhead of having many non-optimal configurations. Moreover, we can linearly

lengthen the main period if the same configuration is chosen consecutively after the

training periods. If two consecutive decisions are different, thenwe reset the length

of the main period to the original length.

In order to reduce the overhead of sampling, we can also consider on-demand

sampling. As explained in Section 5.3.3.2, the performance of the system may

show similar progress across periods. Once we find an optimal partitioning

configuration through the sampling periods, we can maintain this policy until the

performance of the system changes (improves or degrades). Performance changes

are due to the run-time phase change and indicate that the current configuration

75

might not be optimal. However, this approach also has a drawback since it

may cause a shorter main period and more communications when frequent phase

changes exist.

5.3.4 Hardware Changes and Overhead

Our VCP requires the following hardware changes.

• Router arbiters should store VC partitioning configuration, which requires

only a few bits, and be able to check the type of packets (CPU and GPU).

Also, an arbitration algorithm needs to be changed such that dedicated VCs

enforce that only the packet with the same type can acquire them. The arbiter

with these changes is less complex than that of previous mechanisms since it

only needs to match the type of packet with a VC.

• We have discussed the need for DAMQ [134] in Section 5.3.1. The overhead

of DAMQ is known to be insignificant.

• We have discussed the central decision logic in Section 5.3.3.1.

As a result, our VCP does not require significant changes to the baseline routers

and the overhead is almost negligible.

5.3.5 Extension of VCP

VCP can be combined with other NoC mechanisms. Since the goal of VCP is

to avoid significant interference by GPU cores, VCP only differentiates CPU or

GPU packets. If we want to further differentiate individual applications, other

mechanisms can be applied on top of VCP. For example, Aergia [25] can set a

different priority for each packet. Within the same VC partition (CPU or GPU),

the arbiter can schedule packets based on their priority. We evaluate this VCP

extension in Section 5.5.4.

76

VCP can also coordinate with cache management schemes, such as TAP [72],

which tries to find the best cache partitioning configuration between the CPU and

GPU in heterogeneous architectures. Our VCP and TAP aim to solve a similar

problem. Also, caches and NoCs are not independent and affect each other

significantly. Therefore, combining VCP and TAP will yield even better results.

However, managing one will affect the other, so combining two and studying their

interactions are not trivial, which is beyond the scope of our work.

5.3.6 Discussions

In this section, we discuss possible issues with VCP.

• Deadlock will not occur in VCP since CPU and GPU packets will occupy

at least one VC and we use the oldest-first policy between the same type of

packets.

• If applications always show unpredictable phase changes, sampling may

misidentify the best performing configuration. Although we detect some

workloads with phase changes, our observation is that if partitioning has

a significant impact, it can overcome errors. Thus, the negative effective of

dramatic phase changes is not so severe.

• No problem will occur during the transition period because the VC arbiter

defines the allowed type and always searches all input VCs and matches the

type.

• Although we consider only two types of heterogeneous cores (CPU and

GPU) throughout this chapter, more complex heterogeneous systems exist.

For example, most SoC (system-on-chip) architectures, including smart-

phones and tablets, have CPUs, GPUs, DSPs, and multiple modems and

all these components share the same system resources. Future multi- and

77

many-core systems may also have several different types of accelerators. In

this case, we may need to add more VC types other than CPU and GPU VCs.

However, considering the limited number of VCs, we may need to reduce

the number of different VC types. We can achieve this by 1) forcing different

types of processors to use the same type of VC or 2) letting some processors

utilize any type of VCs. This decision should be made by identifying the

characteristics of processors and applications running on them, but we do

not discuss this further since this is beyond the scope of our work.

• Packets that carry performance metric information (from cores) and decision

information (from CDL) are treated as special packets and they can utilize

any VC types.

5.4 Evaluation Methodology

5.4.1 Simulator

We use MacSim [45], a trace-driven and cycle-level heterogeneous architecture

simulator, for evaluations. For all evaluations, we repeat early terminated

applications until all applications have finished at least once. This is to model the

resource contention uniformly across the duration of simulation, which is similar

to the work in [58, 72, 120, 150]. Table 10 shows the processor configuration. To

model a next-generation heterogeneous architecture, we model our baseline CPU

similarly to Intel’s Sandy Bridge [52], with high-end GPU cores that are similar to

the SM (streaming multiprocessor) of NVIDIA Fermi [103].

Table 11 shows the NoC configuration. Although we use a conservative five-

stage pipeline model, we include the VCP result with a three-stage pipeline router

model in Section 5.5.5. Also, the routers do not use any pipeline bypassing

mechanisms, which can reduce latencies by skipping some pipeline stages when

switches/links are idle. However, when operating in the regions where congestion

78

Table 10: Processor configuration.

CPU

4 cores, 3.5GHz, 4-wide, out-of-order (OOO)
gshare branch predictor
8-way, 32KB L1 D/I cache, 2-cycle
8-way 256KB L2 cache, 8-cycle

GPU
6 cores, 1.5GHz, in-order, 2-way 16 SIMD width
8-way, 32KB L1 D (2 cycle), 4-way 4KB L1 I (1 cycle)
16KB s/w managed cache

L3 Cache 4 tiles (each tile: 32-way, 2MB), 64B line, LRU
Memory DDR3-1333, 2 MCs (each 8 banks, 2 channels)
Controller 41.6GB/s BW, 2KB row buffer, FR-FCFS scheduler

dominates latency, bypassing provides minimal benefit. As explained, queuing

delay, not trip delay, is dominant in our evaluated workloads, so the baseline

router model performs similarly to the bypassing router.

Table 11: NoC configuration.

Frequency 1 GHz
Topology 4x4 2D Mesh
Pipeline 4-stage (IB, RC, VCA, SA/ST)

VCs
4 per port, each VC can hold 5 flits
* a packet can have at most 5 flits

ports 5 per router
Link 128 bits (16 B) with 1-cycle latency
Routing X-Y
Flow control credit-based
Placement Base in Figure 25

5.4.2 Placement

In this section, we discuss the placement of components in the heterogeneous

architecture. Several different methods to place CPU/GPU cores, LLC tiles, and

memory controllers can exist. For example, Abts et al. [2] discussed how to place

memory controllers in a homogeneous mesh network. However, the placement

of cores and other components is not discussed to the best of our knowledge.

79

Although identifying the best placement for a heterogeneous architecture is

beyond the scope of our study, instead, we discuss the basic placement ideas and

reasoning for our designs.

First, placement must be carefully designed. For example, Figure 24 shows two

designs where paths to memory routers (LLCs andMCs) are overlapped fromCPU

and GPU cores. The assumption here is that all communications between CPU and

GPU cores are made only through caches. In these examples, intermediate nodes

may suffer frommuch through traffic due to the overlapped path, which may lead

to significant system performance degradations.

G G G G

G G C C

C C L L

M M L L

C: CPU

G: GPU

L: LLC tile

M: Memory controller

CPU-Friendly (CPU-F) GPU-Friendly (GPU-F)

C C C C

G G G G

G G L L

M M L L

Figure 24: Placement designs with the overlapped path.

Figure 25 shows alternative designs that do not have overlapped path. In all

three alternatives, CPU and GPU cores have distinct routes to the memory routers

while the placement of LLC tiles and memory controllers varies. The shaded

area shows all routers that may have both CPU and GPU packets. Among these

placements, we use Baseline (Base) placement in Figure 25 and we evaluate other

placements in Figures 24 and 25 in Section 5.5.8.

5.4.3 Benchmarks

We use SPEC 2006 CPU benchmarks and CUDAGPGPU benchmarks fromNvidia

CUDA SDK, Rodinia [20], Parboil [137], and ERCBench [17]. For the CPU

workloads, Pinpoint [113] was used to select a representative simulation region

80

C C M M

C C L L

G G L L

G G G G

Alternative (ALT) Baseline (Base)

C C C C

L L L L

M M G G

G G G G

C C C C

L L L L

M G G M

G G G G

Interleaved MC (MC)

L L L L

M M G G

L L L L

M G G M

C C M M

C C L L

G G L L

Figure 25: Alternative placement designs (shaded area shows routers that may

have both CPU and GPU packets).

with the reference input set. Most GPGPU applications run until completion.

Tables 12 shows the CPU and GPGPU benchmarks used for evaluations. We

categorize benchmarks into two groups (High and Low network-intensive) based

on the packets per kilo cycles (PKC). We use this metric since PKC clearly shows

the network intensity of an application. To distinguish low and high groups, we

use PKC of 20 and 100 for CPU and GPU applications, respectively.

Table 13 shows evaluated heterogeneous workloads. For all workloads, we run

four CPU applications on four CPU cores along with one GPGPU application on

six GPU cores. We categorize CPU workloads based on the number of high-type

CPU applications (out of four). We choose each application pseudo-randomly.

5.4.4 Evaluation Metric

We use a speedup metric defined in Eq. (9). First, we compute the speedup of each

application with a configuration over the baseline unpartitioned configuration

(Eq. (11) for CPU and Eq. (12) for GPGPU). Then, we calculate the average speedup

of all CPU applications (Eq. (10)). Finally, we take the average of Eq. (10) and

Eq. (12).

81

Table 12: Benchmark characteristics based on the network-intensity (PKC is

measured for an entire application. i.e., sum of core PKC).

High (PKC > 20) Low (PKC < 20)
Bench PKC Bench PKC

CPU

GemsFDTD 58 povray 1
wrf 63 gamess 2

bwaves 69 namd 3
cactusADM 73 sjeng 4

milc 74 gobmk 6
leslie3d 84 tonto 10
lbm 90 perlbench 12

High (PKC > 100) Low (PKC < 100)
Bench PKC Bench PKC

GPU

nearest-neighbor 166 Dxtc 0.4
stencil 241 VolumeRender 3.0

ScalarProd 253 cell 5.3
bfs 304 raytracing 5.9
cfd 331 AES 26

Reduction 417
BlackScholes 437
SobolQRNG 452

speedup = geomean(speedupCPU , speedupGPU) (9)

speedupCPU = geomean(speedupi, where 0 ≤ i ≤ 3) (10)

speedupi = IPCi/IPC
baseline(nopartition)
i (11)

speedupGPU = IPCGPU/IPC
baseline(nopartition)
GPU (12)

Although we use a geometric speedup metric throughout this chapter, our

Table 13: Heterogeneous workloads.

High type CPU GPU type # Reference

W-LL no more than 1 Low 10 5.5.1 only
W-HL more than 2 Low 13

Entire Section 5.5W-LH no more than 1 High 13
W-HH more than 2 High 13

82

mechanism is not limited by a specific metric. Since our target heterogeneous

architecture is an emerging architecture, how to evaluate this architecture is

debatable. Regardless, our VCP can easily adapt to any desirable metrics by

replacing Eq. (6) and Eq. (9).

5.5 Evaluation Results

5.5.1 Static VCP Results

First, we show in Figure 26 the VCP results with static configurations (S-VCP)

for different workloads to show how VCP affects performance (detailed results

of 10 workloads and the average of all configurations). No significant difference

exists across all configurations in W-LL workloads. Since CPU and GPGPU

applications are not network-limited, performance is hardly affected by different

configurations. For this reason, we excludeW-LLworkloads in further evaluations.

For W-HL workloads, since CPU applications can utilize network bandwidth

well without partitioning, VCP rather degrades the performance of CPU applica-

tions when only a small number of VCs are dedicated for them (1:3 configuration)1,

while the performance of the GPGPU application is not improved at all. As a

result, the overall performance is degraded. On average, 1:3, 2:2, and 3:1 static

partitioning show 15%, 2%, and 1% degradations, respectively. On the other

hand, for W-LH workloads, although CPU applications are not network-limited,

they experience moderate interference. As a result, dedicating one VC to CPU

applications will be sufficient, but too many VCs will degrade the performance of

GPGPUs severely. The 1:3 configuration shows an 8.5% improvement, while the

2:2 and 3:1 configurations show 9% and 30% degradations, respectively.

W-HH workloads show very complex behavior. The 2:2 and 1:3 configurations

mostly show a benefit, but the always-winning configuration does not exist.

1We use #CPU-VC:#GPU-VC notation for static configurations. For example, 1:3 indicates one
CPU VC and three GPU VCs.

83

0

1

2

3
S

p
e

e
d

u
p

CPU GPU GMEAN

(a) W-LL workload

0

1

2

3

S
p

e
e

d
u

p

CPU GPU GMEAN

(b) W-HL workload (first 10 bars with 1:3 configuration)

0
0.5
1

1.5
2

2.5
3

S
p

e
e

d
u

p
 CPU GPU GMEAN

(c) W-LH workload (first 10 bars with 2:2 configuration)

0
0.5

1
1.5

2
2.5

3

S
p

e
e

d
u

p
 CPU GPU GMEAN

6.2 6.7 5.3

(d) W-HH workload (first 10 bars with 2:2 configuration)

Figure 26: Static VCP results.

84

Based on the workloads, the performance variance of the two configurations is

significant. Dedicating more VCs for CPU applications will improve performance

significantly, but giving more ways diminishes return. Meanwhile, the GPGPU

application suffers severe degradation. We have to balance VC partitioning based

on the workloads. Overall, 1:3 and 2:2 improve 25%, while 3:1 degrades 13%. The

2:2 configuration shows much better CPU performance, but the performance of

GPGPU application is significantly degraded.

5.5.2 Feedback-Directed VCP Results

Figure 27 shows the feedback-directed VCP (F-VCP) result along with static

configuration results. As we give more VCs to CPU applications (1:3 to 3:1),

the performance benefits of CPU applications diminishes, while performance

degradation of the GPGPU application becomes more significant. F-VCP can

identify the best static configuration with different workloads, so it can improve

CPU applications significantly (46% improvement) while hurting GPGPU very

little (9% degradation). F-VCP improves system performance by 15% on average,

while the best static configuration (1:3) shows a 9% improvement.

1.09
1.15

0.0

0.5

1.0

1.5

2.0

CPU Speedup GPU Speedup GMEAN

S
p

e
e

d
u

p

VC4 (1:3) VC4 (2:2)

VC4 (3:1) F-VCP

Figure 27: Feedback-directed VCP results.

We show the s-curve of F-VCP in Figure 28 for detailed analysis.2 F-VCPmostly

shows better results than the best of all static configurations. Moreover, across 39

workloads, the maximum performance degradation over the baseline is only 2.5%

2We sort workloads by the performance of F-VCP in ascending order.

85

and only two workloads result in more than a 1% degradation.

0.5

1

1.5

2

S
p

e
e

d
u

p

Workloads (W-HL, W-LH, and W-HH)

VC4 (1:3) VC4 (2:2)

VC4 (3:1) F-VCP

Figure 28: F-VCP s-curve (workloads are sorted by the performance of F-VCP in

ascending order).

Also, to show how F-VCP works, we show the average packet latency changes

in Figure 29. We can observe that traverse time is almost the same, but the queuing

delay of CPU packets decreases significantly, while that of GPU packets increases.

0

50

100

Base F-VCP Base F-VCP Base F-VCP

CPU latency GPU latency AVG latency

N
e

tw
o

rk
 L

a
te

n
cy

QUEUE

TRIP

Figure 29: Network latency changes with F-VCP.

Figure 30 shows a policy distribution histogram for each workload. Although

F-VCP constantly chooses one configuration in some workloads, many workloads

show that F-VCP adapts well to application phase changes if they exist.

5.5.3 Comparison with Different Injection Buffer Scheduling

As mentioned, an unbalanced number of packets between the CPU and GPU exist

in the injection bufferwhen CPU andGPU applications share the network. In order

to solve this unbalance problem, we can consider effective packet scheduling,

which can be made through out-of-order scheduling. In the in-order injection

buffer, a packet should wait until all previous packets get serviced. On the other

86

0%

20%

40%

60%

80%

100%

< W - LH > < W - HL > < W - HH >

P
o

li
cy

 D
is

tr
ib

u
ti

o
n

Workloads

2:2

1:3

UN

Figure 30: F-VCP policy distribution (UN: unpartitioned).

hand, out-of-order scheduling can prioritize one packet over others. Thus, in this

section, we evaluate several packet scheduling policies applied to the injection

buffer. In addition, we also evaluate the DAMQ-based injection queue that

virtually has separate queues for CPU and GPU packets, and F-VCP.

We evaluate several packet scheduling policies applied to the injection buffer

without VC partitioning. Also, we apply ATLAS [66], one of the state-of-the-art

memory schedulers, to the packet scheduler. Since ATLAS prioritizes applications

that attained the least service during previous periods, ATLAS fitswell to prioritize

CPU packets that usually attain fewer services than GPU packets in heterogeneous

workloads. We summarize all evaluated polices as follows:

• Baseline - first-come first-serve policy

• CPU-first - CPU packets always have higher priority than GPU packets

(batching is used for preventing starvation).

• GPU-first - GPU packets always have higher priority.

• ATLAS-A - ATLAS with application granularity.

• ATLAS-C - Similar to ATLAS-A, but we distinguish only two groups:

GPGPU or CPU applications.

87

• MPI - Based on the private cache miss-per-instruction (MPI), we prioritize

applications that have lower MPI.

• DAMQ - CPU and GPU packets have virtually separate queues using

DAMQ. Scheduling between queues is round-robin.

Figure 31 shows the results. When out-of-order scheduling is applied to

the shared injection buffer (other than DAMQ and F-VCP), CPU packets can be

prioritized at a moment, but packet occupancy is still very unbalanced with

the shared buffer. This limits the benefit of injection buffer scheduling. All

evaluated policies show negligible benefits, but only the CPU-first policy shows a

2% improvement. On the other hand, by having separate queues with round-robin

scheduling between them, we can mitigate the occupancy unbalance problem. As

a result, DAMQ can improve performance by 8%. However, DAMQ cannot outperform

F-VCP since the effect of coordination in the injection buffer is limited in virtual

channels of routers.

0.8

0.9

1

1.1

1.2

S
p

e
e

d
u

p

Figure 31: Different injection buffer scheduling results.

From the observations made in this section, we can draw the conclusion

that separate queues are favorable to better performance in heterogeneous

architectures, but the VC arbitration should be considered at the same time to be

more effective, as in VCP.

88

5.5.4 Comparison with VC Arbitration Policies

In this section, we compare F-VCP with previous VC arbitration mechanisms,

application-aware prioritization (denoted as STC) [24] and Aergia [25] along with

two static policies, CPU-first and GPU-first.

STC computes the network demand of applications at intervals by looking

at a number of metrics such as private cache misses per instruction, average

outstanding L1 misses in MSHRs, and average stall cycles per packet. This

produces a ranking of applications, and all packets of one application are

prioritized over another, resulting in a coarse granularity of control. To prevent

application starvation, a batching framework is implemented that prioritizes all

packets of one time quantum over another, regardless of source application. Aergia

predicts the available latency (slack) of any packet by the number of outstanding

L1misses and prioritizes low-slack (critical) packets over packets with higher slack

when they are within the same batching interval. Static policies always give a

higher priority to certain types of packets (either CPU or GPU) and form batches

to prevent the starvation problem. Moreover, we apply STC and Aergia to the

DAMQ-based injection buffer (DAMQ+S and DAMQ+A) and F-VCP (F-VCP+S

and F-VCP+A). Figure 32 shows the results.

1.01 1.01 1.01
1.07

1.11 1.12 1.15
1.18 1.19

0.9

1

1.1

1.2

1.3

S
p

e
e

d
u

p

0.1

Figure 32: Evaluation of virtual channel arbitration policies.

As explained in Section 2.3.2, NoCmechanisms for heterogeneous architectures

should have separate injection queues for CPU and GPU packets. As a result, STC,

89

Aergia, and CPU-first policies without separate injection queues show around

a 1% improvement on average. In a few workloads, Aergia shows up to a

1.55x speedup. These workloads have relatively high CPU-to-GPU packet ratio,

so Aergia also can be effective. However, Aergia degrades the performance of

almost half of the workloads (10% degradation at most). This is because fine-grain

prioritization prevents some CPU applications from being prioritized, but Aergia

mostly degrades GPGPU performance by not prioritizing them.

When STC and Aergia are applied along with separate injection queues (DAMQ+S

and DAMQ+A), they can be more effective. Since separate injection queues provide

a more balanced number of packets between CPU and GPU applications, router

arbiters see a similar number of packets, and are thereby effective. STC and Aergia

provide 4% and 5% additional performance improvements on top of DAMQ.

On the other hand, our F-VCP successfully manages on-chip routers with

almost no degradation cases. Moreover, as discussed in Section 5.3.5, VCP can

be extended using previous VC arbitration mechanisms, such as STC and Aergia.

We also evaluate these extensions, which are denoted F-VCP+S and F-VCP+A for

STC and Aergia, respectively. Even though F-VCP already improves performance

by 15%, STC and Aergia provide additional improvements of 3% and 4% by

arbitrating packets in finer granularity.

5.5.5 VCP Results with Three-Stage Pipeline Model

As described in Section 5.4.1, we use a conservative five-stage pipeline model in

all evaluations so far. This may incur extra latencies in the network. However, as

claimed, a shorter-latency router model can improve performance, but it cannot

entirely resolve the resource contention problem since the dominant delay occurs

in the injection queues. In order to confirm that VCP works well with a faster

router design, we re-evaluate the same set of experiments as in Section 5.5.4 with

90

a three-stage pipeline model. Figure 33 shows results.

1.03 1.05 1.06
1.09

1.13 1.13
1.19 1.21 1.23

0.9

1

1.1

1.2

1.3

S
p

e
e

d
u

p

Figure 33: Evaluation of three-stage pipeline router model (normalized to the

router model with five-stage pipeline).

Across 39 heterogeneous workloads, the three-stage pipeline model improves

performance by 3% over the five-stage pipeline router. Interestingly, the benefit

of the shorter-latency router model provides performance improvements of all

configurations by 2% to 3%. Moreover, VCP yields an additional 16% performance

improvement over the three-stage pipeline model. From this experiment, we can

confirm that 1) the shorter-latency router model can improve the performance of

the network as well as the system, 2) the network congestion still exists even with

a shorter-latency model, and 3) VCP is still an effective solution.

5.5.6 XY/YX Adaptive Routing

In order to optimize the baseline network, we can consider adaptive routing as

well. For example, in our baseline placement (Base in Figure 25), althoughmemory

routers (L3 and memory controllers) are shared, there are distinct routes from

CPU and GPU cores to memory routers. When we use static XY routing only

(Figure 34 left), packets must traverse within the shared memory routers. Instead,

to reduce the contention in the memory routers, we can use XY/YX adaptive

routing (Figure 34 right). When a core sends a request packet, it uses XY routing.

When the packet is returned with data, it now uses YX routing. As a result, we

can reduce the traversal within the memory routers. Figure 35 shows the result of

91

XY/YX adaptive routing along with VCP.

XY routing

C C C C

L L L L

M M G G

G G G G

L L L L

M M G G

XY/YX routing

C C C C

L L L L

M M G G

G G G G

L L L L

M M G G

XY

XY

XY

YX

Figure 34: Adaptive XY/YX routing.

As expected, XY/YX routing significantly improves performance by 10%. This

is because XY/YX routing reduces the network congestion while improving the

network utilization. We can also observe that VCP is still effective and gives an

additional 13% performance improvements by mitigating network contentions to

the memory routers.3

1.1

1.23

0.9

1

1.1

1.2

1.3

XY/YX XY/YX+VCP

S
p

e
e

d
u

p

Figure 35: Adaptive XY/YX routing results.

3Please note that this optimization is specific to our baseline placement and may not be effective
on other configurations.

92

5.5.7 Sensitivity of VCP

In this section, we evaluate F-VCP with different configurations. Figure 36 shows

the F-VCP results with a different number of VCs.4 In each bar, we compare F-

VCP with the baseline router with the same number of VCs (i.e., VC6-F-VCP with

VC6). F-VCP performs well with more VCs, but the benefit decreases in VC8 and

we expect diminishing improvement with more VCs. Generally, a higher number

of VCs perform better by reducing the congestion, so the benefit of F-VCP can also

decrease. However, the space for the buffer is limited in on-chip routers, so the

number of VCs also has limitations. As a result, we expect that F-VCP will work

well within this limitation.

1.15 1.16

1.10

1

1.05

1.1

1.15

1.2

VC4 VC6 VC8

S
p

e
e

d
u

p

Figure 36: F-VCP with different number of VCs.

We briefly discussed in Section 5.3.3 how different lengths of training periods

will affect F-VCP. We perform experiments with different lengths of training

periods. Figure 37 shows the results.5 Generally, different lengths of training

periods would notmatter on average, but the 800K configuration shows significant

variances (from 0.53 to 1.28 speedup). A lengthy period can help reduce the

overhead of sampling, but it may fail to adapt run-time behavior.

4We fix other configurations the same. Each VC has four buffer entries, so the number of total
buffer entries is 4 * # VCs.

5We fix the length of the main period 20 times that of the training period.

93

0.4

0.6

0.8

1

1.2

25k 50k 100k 200k 400k 800k

S
p

e
e

d
u

p
 o

v
e

r
2

0
0

K

Training Period Length

Figure 37: F-VCP with different length of training period (base: 200K).

5.5.8 Different Placement Results

As discussed in Section 5.4.2, we evaluate different placements in this section.

Figure 38 shows the results of placements in Figures 24 and 25. All results are

normalized to the baseline (Base) placement in Figure 25.

1.00 1.03 1.04
0.99

1.07

1.15 1.15 1.18
1.15

1.20

0.8

1

1.2

1.4

Base CPU-F GPU-F ALT MC

S
p

e
e

d
u

p

Base

F-VCP

Figure 38: Different placement evaluations.

Even though the designs in Figure 24 have the overlapped paths to the

memory routers between CPU and GPU cores, CPU-Friendly and GPU-Friendly

designs show 3% and 4% improvements over the baseline, respectively. The trip

latency can increase, but dominant delays occur from the injection buffer. By

having a shorter distance from memory to CPU (CPU-Friendly) or GPU (GPU-

Friendly), queuing delays decrease. On the other hand, the design that distributes

memory controllers shows the overall best performance (7%). As discussed

in [2], distributing congestion near memory controllers is a key reason for the

improvements. With all different placement designs, VCP constantly shows higher

than 11% improvement across all alternative designs. From this experiment, we

94

conclude that different placement affects the performance and VCP can control

network bandwidth effectively when network congestion exists regardless of the

placement.

5.5.9 Discussions

We discuss F-VCP with other possible configurations that we do not show in this

section.

1. Although we do not evaluate larger meshes with more cores, we expect that

F-VCP will still be effective. As the size of the network increases, queuing

delays can be reduced due to more diverse paths, but it can increase overall

traffic from more cores. As long as network congestion exists, F-VCP can

successfully arbitrate between CPU and GPU packets.

2. We have treated CPU and GPGPU applications with equal weight so far.

When a user or a system wants to have a different weight for CPUs and

GPUs, F-VCP requires a very minor change. It only requires changing the

feedbackmetric, which is defined in Eq. (6). Changes in the rest of the system

are not necessary.

5.6 Summary of This Chapter

How the NoC for heterogeneous architectures is handled has significant impor-

tance. Due to the heterogeneity of CPU and GPU cores, more specifically much

higher network injections, CPU applications often suffer from severe interference.

Previous mechanisms proposed for homogeneous CMPs have limitations to solve

the network resource sharing problem in this architecture. In this work, we

propose feedback-directed virtual channel partitioning (F-VCP). On-chip network

bandwidth can be controlled by the proposed VCP, which arbitrates packets that

pass through the router while providing a more balanced number of packets to

95

the NoC using DAMQ-based separate injection queues. Across 39 heterogeneous

workloads, our VCP shows a 15% improvement compared to the unpartitioned

router. We perform thorough evaluations with many different configurations and

VCP shows robustness. For future work, we will develop a performance model

with on-chip bandwidth partitioning to improve the sampling-based technique in

VCP.

96

CHAPTER VI

DYNAMIC FREQUENCY REGULATING MECHANISM

This chapter proposes a dynamic clock frequency regulating mechanism called

DyFR that aims to solve resource contention problem while considering the

scalability characteristic of applications. DyFR uses a DVFS technique to reduce

the clock frequency of interference-causing application and to improve the

performance of application when linear speedup is expected with the frequency

increase.

6.1 Introduction

As the technology scales, more features can be implemented on the chip. As a

result, in recent processors, we can easily find that a heterogeneous mixture of

processing units is packed together on the same chip. For example, recent system-

on-chip (SoC) architectures, such as smartphones and tablets, include CPUs, GPUs,

DSPs, and other units in the same chip. Recent desktop processors [5, 49, 106]

integrate on-chip GPUs along with CPU chip multiprocessors (CMP). This trend

is inevitable since general-purpose processors cannot perform well on all kinds of

workloads. With the technology scaling, we expect more diverse accelerators can

be integrated in future processors.

In this architecture, many system resources are shared among different

processing units, for example shared last-level cache, on-chip interconnect

network, memory controllers, and DRAM memories. This sharing provides

cost-effective implementation and efficient communications among processing

elements. However, due to the sharing, the resource contention problem occurs

97

between cores and applications. Although this problem has existed since the CMP

was introduced, as reported in [72], a heterogeneous mixture of cores exerts more

pressure on shared resource management. In particular, applications running on

GPU cores severely interfere with CPU applications in this architecture.

A rich body of literature exists on previous mechanisms targeting a variety

of shared resources to address the resource sharing problem, for example last-

level shared cache [58,120], on-chip interconnection network [24,25], and memory

controllers [66, 67]. These mechanisms try to minimize the inter-application

interference and prioritize more critical cores or applications based on their

characteristics. These mechanisms show effectiveness, but they may not be

optimal in terms of the power aspect. When resource contention of a system

is severe, although quality-of-service (QoS) and fairness can be improved by

previous mechanisms, some cores may suffer from processor stalls while waiting

for previous memory requests to be serviced. In this case, operating cores more

slowly than the base clock frequency does not affect the performance of the core or

system throughput but does reduce power consumption. In addition, the benefit of

previous mechanisms is limited when no resource contention exists in the system,

i.e., a workload consists of all compute-intensive applications.

To overcome the weakness of previous mechanisms, thereby improving

performance and power efficiency simultaneously, we utilize dynamic voltage and

frequency scaling (DVFS) to solve the resource sharing problem, as opposed to

previous approaches. DVFS is a well-known power control technique. DVFS-

based mechanisms try to save power by decreasing the voltage/frequency of idle

components and improve performance of active components using increased fre-

quency [4, 53]. Also, recent proposals try to identify the optimal number of active

cores and clock frequency of cores in CMPs and GPUs [74, 77]. These mechanisms

try to maximize system throughput within the power budget by considering the

98

performance-power model of individual cores or applications, but they do not

consider the resource contention problem. On the other hand, our approach tries to

mitigate interference by decreasing clock frequency of interference-causing cores

or applications. Unless the network and memory bandwidth are saturated, the

number of memory requests from a core is proportional to the clock frequency.

At the same time, we also consider the power partitioning between cores

and the memory (interconnection network and shared last-level caches) while

considering the frequency scalability of applications. Based on the memory

intensity and clock frequency, the power and energy efficiency of an application

can vary. For example, higher frequency does not always improve performance

since the performance bottleneck may be in the relatively slow memory system

and cores cannot make progress even with higher frequency while waiting for

memory requests to be serviced. On the other hand, most compute-intensive

applications show linear scalability with regard to frequency increases and

memory performance does not affect the system throughput much.

To this end, we propose DyFR , dynamic frequency regulating mechanism.

We observe that the degree of interference can be measured by monitoring cache

misses per time (MPT), while the scalability of an application can be determined

by misses per kilo instructions (MPKI). MPKI is a property of application, but

MPT is a function of MPKI and the operating clock frequency of a core. The

main algorithm of DyFR initially tries to isolate the interference caused by GPU

applications by lowering the voltage and clock frequency of GPU cores. Then,

based on the scalability of CPU applications, the clock frequency of individual

CPU cores is dynamically adjusted as well. After evaluating the current power

budget of all cores, we adjust different DVFS level to the memory based on the

importance of memory.

We claim our contributions to be as follows:

99

1. We propose a DVFS technique, called DyFR , to tackle the resource sharing

problem in heterogeneous architectures.

2. DyFR considers the property of application and the degree of interference

caused by the application.

3. DyFR improves the system throughput by 14 % while reducing energy

consumption by 23%

The remainder of this chapter is organized as follows. Section 6.2 discusses

the motivation for a DVFS mechanism to solve the resource sharing problem, and

Section 6.3 describes DyFR. The evaluation methodology and results are presented

in Sections 6.4 and 6.5. Section 6.6 concludes this chapter.

6.2 Dynamic Voltage and Frequency Scaling

DVFS (dynamic voltage and frequency scaling) is a well-known and commonly

used power technique to adjust the frequency of a core or a system [55]. Most

processors employ a variant of the DVFS technique to improve performance or

save power. To name a few, Intel Turbo Boost [53] and AMD Turbo CORE [4]

increase the core clock frequency to improve performance by taking power from

idle cores. In recent proposals [74, 77], researchers have proposed dynamic

voltage/frequency and core scaling (DVFCS), which try to combine DVFS with

dynamic core sampling (DCS) that tries to identify the optimal number of

operating cores.

6.2.1 Voltage and Frequency (VF) Domain

For efficient power management, recent processors have a separate voltage and

frequency (VF) domains (or power planes) for different processing cores. For

example, Intel’s Sandy Bridge has three different VF domains [124]: 1) CPU cores,

100

ring, and L3 caches, 2) GPU cores, and 3) system agent (PCI-e, display, and

memory controllers). In addition, each core has embedded power gates so that

it can be turned off individually. Each component has the power management

agent (PMA) to collect power and temperature information and control the

power of the individual component. The packet control unit (PCU) that locates

in the system agent communicates with PMAs and optimizes various power-

management functions.

6.2.2 Target Architecture

In our target architecture, we assume that there are three VF domains: 1)

CPU cores, 2) GPU cores, 3) interconnection network/L3 caches, and memory

controllers. CPU cores can run in different frequency, but all GPU cores will run

in the same frequency. Note that we intend to use multi-program workloads and

assume a busy system that enables the same number of cores as applications. As a

result, DCS is not applicable.

6.3 DyFR: Dynamic Frequency Regulating Mechanism

In this section, we describe the proposed mechanism called DyFR (dynamic

frequency regulating). The main goal of DyFR is to mitigate inter-application

interference. At the same time, DyFR also considers how clock frequency changes

affect the performance of applications. To achieve these goals, DyFR performs

clock frequency throttling of CPU, GPU, and memory systems synchronously.

DyFR tries to find an optimal frequency combination of each component by

applying three steps: 1) GPU throttling, 2) CPU throttling, and 3) memory

throttling. We detail these steps in the following sections.

101

6.3.1 Step 1. Mitigating Interference Through GPU Throttling

The first step of DyFR is GPU throttling. GPU cores are capable of running many

threads and maintaining a high throughput using massive multi-threading. As

a result, GPU applications severely interfere with CPU applications, as reported

in [72]. The interference can be identified by monitoring the misses per time (MPT)

metric. If the MPT of a GPU application exceeds the threshold, interference is

highly likely to exist. Consequently, GPU throttling will be applied. However,

the level of interference experienced by CPU applications is different based on the

characteristics of concurrently running GPU applications. For example, Figure 39

shows the speedup results (Eq. (17)) of two different workloads (the same CPU

workloads with different GPU application) with GPU cores running on 0.5 GHz

and 1.5 GHz frequencies.

0

0.2

0.4

0.6

0.8

1

CPU-1 CPU-2 CPU-3 CPU-4 GPU-1

S
p

e
e

d
u

p

(a
lo

n
e

/m
u

lt
) 1.5 GHz 0.5 GHz

(a) soplex, leslie3d, libquantum, GemsFDTD, blackscholes

0

0.2

0.4

0.6

0.8

1

CPU-1 CPU-2 CPU-3 CPU-4 GPU-1

S
p

e
e

d
u

p

(a
lo

n
e

/m
u

lt
)

1.5 GHz 0.5 GHz

(b) soplex, leslie3d, libquantum, GemsFDTD, gaussian

Figure 39: Speedup results with different GPU clock frequency.

Although blackscholes and gaussian benchmarks are fairly memory-intensive

102

applications, as shown in Table 17, we can clearly see that the slowdown of CPU

applications is significantly different when GPU cores operate with 1.5 GHz clock

frequency. For the workload with the blackscholes GPU application (Figure 39

(a)), the speedup of CPU applications is between 0.2 and 0.3, i.e., a 3.3x to 5x

slowdown. However, with the gaussian application, we can observe less severe

slowdown for CPU applications.

In order to mitigate the interference, lowering the clock frequency of GPU cores

can be an alternative solution. Compared to 1.5 GHz, operating GPU cores with a

0.5 GHz clock frequency improves the performance of CPU applications due to the

reduced interference. However, we can also observe the performance degradation

of the GPU application. When we measure the speedup of the system (Eq. (17))

in 0.5 GHz over 1.5 GHz for these two workloads, there is a 20% improvement for

blackscholes, but a 27% degradation for gaussian. Consequently, GPU throttling

must be carefully applied based on the characteristics of GPU applications. In

particular, we have to compare 1) CPU application performance improvements

due to the reduced interference and 2) GPU application performance degradation.

Interestingly, we discover that the benefit of CPU applications can be inferred

from the performance degradation of GPU application. Less degradation by the

GPU application indicates that the application ismorememory-intensive andmore

severe interference exists with the GPU application. Therefore, when we observe a

significant performance degradation by GPU applications after lowering the clock

frequency, we have to stop decreasing the frequency of GPU cores.

To check the performance variation of GPU applications, we can compare the

performance metric of the GPU application across two periods. Due to the single-

program multiple-data (SPMD) execution model of GPUs, we can observe similar

progress by the GPU application throughout the execution periods. When we

apply two different frequencies over periods, we can compare the performance

103

of the two periods. If we observe near-linear performance degradation with the

frequency decrease (when Eq. (13) is greater than threshold), we stop decreasing

the frequency of the GPU cores.

power perf efficiency =
∆perf

∆power
(13)

In this way, GPU throttling considers and mitigates the interference caused by

the GPU application. However, if GPU throttling identifies that the interference

caused by the GPU application is not severe, it then considers the frequency

scalability. Based on the monitored MPKI value, the frequency of CPU cores is

adjusted accordingly. This approach is similar to CPU throttling, which is detailed

in the following section.

6.3.2 Step 2: CPU Throttling

The second step of DyFR is CPU throttling, which can be independently applied as

GPU throttling. CPU throttling is applied solely based on the scalability property

of CPU applications. As explained in Section 2.4.1 the MPKI metric is a property

of applications (i.e., different clock frequency will not significantly affect the MPKI

of applications) and can be a good proxy for identifying the scalability. Therefore,

we increase or decrease the frequency of CPU cores based on the MPKI of the

application. The intuition of CPU throttling comes from power/performance

efficiency of the application, which is defined in Eq. (13). Based on the monitored

MPKI during the last period, if MPKI is less than the threshold, we increase the

clock frequency. This is because we expect linear performance improvements

while maintaining similar power efficiency. If MPKI is greater than threshold,

we decrease the clock frequency. In this case, power-efficiency can be greatly

improved since we maintain similar performance with less power budget.

104

6.3.3 Step 3. Memory Throttling

After we apply GPU and CPU throttling, we can measure how much of the

power budget remains for the memory. Then, the frequency of the memory

system (last-level caches, on-chip networks, and memory controllers) can be

determined automatically. The intuition of memory throttling is described in

Section 2.4.2. If cores consume more power budget based on their scalability, this

indicates that the workload consists of many compute-intensive applications, so

the importance of the memory is low. Therefore, lower memory frequency will

not harm the system throughput, while the system can operate within the power

budget. In the opposite case, if cores consume less power, this indicates that many

memory-intensive applications are currently running and we can improve system

throughput by increasing the frequency of the memory. When more power budget

is available to the memory, we have two different options based on how we utilize

it:

1. power-savingmode: if less power consumption is more favorable, for example

embedded systems, we can keep the base frequency. We can save more

power while maintaining similar performance.

2. high-performancemode: When the performance is more important, we can use

this extra power to improve memory performance, which eventually leads to

better system performance.

Note that we assume the mode can be controlled by the system or user and we

evaluate both modes separately.

Since memory throttling is applied after core throttling, the chip power budget

never exceeds the given power budget under DyFR. At the same time, since core

throttling captures the workload characteristics well, DyFR can achieve better

performance with the improved energy efficiency.

105

6.3.4 Central Control Logic

As described in Section 6.2.1, DyFR requires a central control logic (CCL) similar

to package control unit (PCU) in Intel’s Sandy Bridge [124] to control the power

budget for each component. Although CPU and GPU throttling can be applied

locally, we have to measure the available power budget for the memory. Thus,

each core, in particular the power management unit (PMU), sends its decision to

the CCL. Then, CCL calculates the remaining budget and regulates the operating

frequency of the memory system. Note that we assume the CCL is located in the

central location of our baseline mesh network.

6.3.5 DyFR: Putting It All Together

This section describes the entire DyFR, which combines core and memory

throttling mechanisms. Algorithm 2 shows the algorithm of DyFR. As explained,

GPU throttling (line 3:8) will be applied first and then CPU throttling (line 11:19) is

applied. Based on the remaining power budget, memory throttling is performed

accordingly (line 21:22).

We summarize in Table 14 how DyFR works based on the workload. If

the workload is none of the above cases, the detailed decision is based on the

characteristics of each application and memory throttling may or may not be

applied based on the remaining power budget. We present in Section 6.5.1.1

detailed case studies based on the workload.

6.3.5.1 Overhead Analysis

In order to cope with the dynamic behavior, Algorithm 2 is performed periodically.

A shorter period can better adapt to run-time behavior, but the overhead becomes

significant. Two types of overhead exist with DyFR.

1. First, when the DVFS level of a component is changed, operations of the

106

Algorithm 2 DyFR algorithm.

1: // cpu_budget + gpu_budget + mem_budget = 1

2:

3: // GPU throttling

4: if MPT(GPU) TMPT
GPU:

5: if MPKI(GPU) TMPKI-H
GPU && freq(GPU) MIN fGPU:

6: freq(GPU) -= 300 MHz

7: else if MPKIGPU TMPKI-L
GPU && freq(GPU) MAX fGPU:

8: freq(GPU) += 300 MHz

9: total_saving = (1.5 - freq(GPU))/1.5 * gpu_budget

10:

11: // CPU throttling

12: for (int ii = 0; ii num_cpu_core; ++ii):

13: if MPT(CPUi) TMPT
CPU:

14: if MPKI(GPU) TMPKI-H
GPU && freq(GPU) MIN fGPU:

15: freq(CPUi) -= 500 MHz

16: else if MPKI(CPUi) TMPKI-L
CPU && freq(CPUi) MAX fCPU:

17: freq(CPUi) += 500 MHz

18: total_saving += (1 - freq(CPUi)/3.0) * cpu_budget

/ num_cpu_core

19:

20: // Memory throttling

21: freq(MEM) = (int)(1.5 * (1+total_saving)/0.3) * 0.3

component during the transition period are halted. Modern processors have

a phase lock loop (PLL) to control the clock signal. Since the output clock

is jittering during the PLL lock time, all operations are halted during this

period. PLL lock time typically lasts tens of microseconds in a digital PLL [12,

75]. Note that the penalty of the DVFS mechanism is well discussed in [112].

2. The second overhead comes from the communication cost between cores and

the CCL. Since we use memory throttling to balance the power budget across

the system, some information is collected from cores to the CCL, which in

turn sends to the memory. Although most systems have this overhead, too

frequent collection of information will incur a significant communication

overhead in particular the size of network increases. We set the length of

107

Table 14: DyFR results based on the workload (Comp: compute-intensive, Mem:

memory-intensive).

Workload Freq. Change Note
GPU CPU GPU CPU MEM

Comp Comp + + -
Comp Mem + - =
Mem Comp - + =
Mem Mem - - = Power-saving
Mem Mem - - + High-performance

period as in Table 16 from the empirical data. We also show the period

sensitivity result in Section 6.5.5.

When it comes to the hardware overhead (storage, combinatorial logic), DyFR

needs to utilize a few performance counters such as the number of retired

instructions and cache misses. Since these performance counters are already

included in current processors, DyFR does not incur extra overhead.

6.3.5.2 Discussions

We discuss possible issues or improvements of DyFR in this section.

• As explained, two steps (GPU and CPU throttling) of DyFR are performed

locally and memory throttling is performed in CCL. This approach can be

compared with an all-global decision, i.e., all cores send their performance

metric to CCL and CCL makes an appropriate decision and sends the

decision back to cores and the memory. This can reduce the functionality of

the power management agent (PMA) since it is delegated to CCL. Moreover,

this can reduce the design cost of PMA. However, when we compare the

outcome of the two approaches, we expect similar performance benefits and

the all-global approach has slightly higher communication overhead.

108

6.4 Evaluation Methodology

6.4.1 Simulator

We use MacSim [45], a trace-driven, cycle-level heterogeneous architecture

simulator, for evaluations. For all evaluations, when an application completes

its execution, we re-execute the application until all applications have finished

at least once to model uniform system-level resource contention throughout the

simulation, which is similar to the work in [72, 120, 150]. We try to model a next

generation heterogeneous architecture that consists of high performance CPU and

GPU cores. CPU cores are out-of-order and superscalar with large caches and

branch predictor. GPU cores run under massive multi-threading and wide SIMD

execution units. Table 15 shows the system configuration.

Table 15: Processor configuration.

CPU

4 cores, 3GHz, 4-wide, out-of-order (OOO)
gshare branch predictor
8-way, 32KB L1 D/I cache, 2-cycle
8-way 256KB L2 cache, 8-cycle

GPU
6 cores, 1.5GHz, in-order, 2-way 16 SIMD width
8-way, 32KB L1 D (2 cycle), 4-way 4KB L1 I (1 cycle)
16KB s/w managed cache

L3 Cache 1.5GHz, 4 tiles (each tile: 32-way, 2MB), 64B line, LRU

NoC
1.5GHz, 4x4 2D Mesh, 3-stage pipeline
x-y routing, 16B link width, 1-cycle latency
4 VCs per port, each VC can hold 5 flits

Memory DDR3-1600, 2 MCs (each 8 banks, 2 channels)
Controller 41.6GB/s BW, 2KB row buffer, FR-FCFS scheduler

Table 16 shows the configuration used in DyFR. We set the minimum and

maximum CPU and memory clock frequencies based on the assumed power

distribution. Due to the lack of public data regarding the power distribution data,

we statically assign 30%, 30%, and 40% for CPU cores, GPU cores, and the memory

(last-level cache and NoC without DRAMmemory power), respectively.

109

Table 16: DyFR configuration.

Configuration Value

Period length 100 us
TMPT 2500
TL 10
TH 5
CPU freq. 1.5 - 4 GHz (500 MHz unit)
GPU freq. 600 MHz - 2.1 GHz (300 MHz unit)
L3/NoC freq. 600 MHz - 2.1 GHz (300 MHz unit)
PLL lock time 10 us

6.4.2 Benchmarks and Workloads

We use a part of SPEC 2006 CPU benchmarks and GPU benchmarks from various

suites [20, 102, 137]. For CPU workloads, Pinpoint [113] was used to select a

representative simulation region with the ref input set. Most GPGPU applications

are run until completion. Then, we categorize benchmarks into two groups, linear-

scalable and log-scalable, based on the MPKI value. Table 17 lists all benchmarks

used in evaluations.

Then, we form heterogeneous workloads by pseudo-randomly choosing

benchmarks from each group. Table 18 shows all types of workloads.

6.4.3 Metric

IPC (instruction per cycle) or CPI (cycle per instruction) is a common metric to

measure the performance of an application. However, since our proposal aims to

dynamically change the frequency configuration, one cycle indicates a different

time unit. As a result, we use the execution time metric. Using this metric,

we calculate the performance of the heterogeneous system. For heterogeneous

configuration c, we first calculate the performance of CPU applications (Eq. (14))

and GPU applications (Eq. (15)). For the performance of the configuration c, we

measure the geometric mean of CPU and GPU performance (Eq. (16)). Finally,

the speedup of a configuration over the baseline configuration (without DyFR) is

110

Table 17: Benchmark characteristics based on the frequency-scalability (MPKI for

GPU applications is measured for one core).

Log (MPKI > 10) Linear (MPKI < 5)
Bench MPKI Bench MPKI

CPU

gcc 42.0 gobmk 0.96
mcf 108.2 sjeng 0.4

libquantum 33.9 gamess 0.08
bwaves 19.0 povray 0.47
milc 19.1 xalancbmk 1.78

leslie3d 19.0 h264ref 1.31
GemsFDTD 13.6

lbm 34.2
soplex 55.8

Log (MPKI > 20) Linear (MPKI < 5)
Bench MPKI Bench MPKI

GPU

backprop 14.22 cell 1.06
cfd 61.5 lavaMD 1.79
lbm 63.3 leukocyte 0.76
spmv 60.0 tpacf 0.03

gaussian 45.6 mri-q 0.19
blackscholes 22.4 cutcp 0.31
streamcluster 35.1

calculated using Eq. (17).

Table 18: Heterogeneous workloads.

Log type CPU GPU type

W-LL no more than 1 Linear 10
W-HL more than 2 Linear 13
W-LH no more than 1 Log 13
W-HH more than 2 Log 13

111

Perf c
CPU =

n−1
∑

cid=0

exe timealonecid /exe timeccid (14)

Perf c
GPU = exe timealoneGPU /exe timecGPU (15)

Perf c
sys = geomean(Perf c

CPU , Perf c
GPU) (16)

Speedupc = Perf c
sys/Perf base

sys (17)

Other metrics can be used such as the weighted speedup [127]. However, if

we treat the GPU application the same as one CPU application, where the GPU

application is running on multiple GPU cores and the CPU application that is

running on a single CPU core, always penalizing the GPU applicationwill yield the

best outcome. For instance, if we can get 50% performance improvement for each

CPU application while degrading the performance of the GPU application by 50%,

the weighted speedup will be improved significantly, but the system throughput

will be dramatically reduced. As a result, we calculate the performance of CPU

cores (using the weighted speedup metric) and GPU cores (speedup) separately,

then take the geometric mean of the two. How to evaluate the heterogeneous

system is debatable, but we do not discuss it in this chapter.

6.5 Results

6.5.1 DyFR Evaluation Results

We evaluate DyFR in this section. As described in an earlier section, DyFR aims to

improve the performance and energy efficiency simultaneously through a DVFS

technique by considering the characteristics of each application. Figure 40 shows

the result of DyFR with heterogeneous workloads in Table 18. We analyze the

result from three aspects: 1) performance of CPU and GPU applications with their

geometric mean, 2) power distribution across CPU, GPU cores, and the memory,

and 3) energy reduction.

112

0.8

1

1.2

1.4

1.6

W-HH W-LH W-HL W-LL

S
p

e
e

d
u

p

CPU GPU GMEAN

(a) Performance (speedup)

0

20

40

60

80

100

P
o

w
e

r
D

is
t.

CPU GPU MEM

(b) Power distribution

0

10

20

30

40

E
n

e
rg

y
 R

e
d

tn
 (

%
)

(c) Energy reduction (%)

Figure 40: DyFR evaluation results.

Figure 40 (a) shows the performance result of DyFR. If memory-intensive

applications exist in a workload (i.e., W-HH, W-LH, and W-HL workloads), DyFR

decreases the clock frequency of memory-intensive applications through CPU and

GPU throttling. We find that the performance of some CPU or GPU applications

are degraded (below one), but degradation is marginal (no greater than 15%)

compared to the benefit of its counterpart. As a result, overall speedup (Eq. (17))

for all 16 workloads is never below one and DyFR improves performance by 14%

113

on average.

We observe one interesting case in W6 that consists of gobmk, sjeng, gamess,

povray, and streamcluster benchmarks. Since all CPU applications are compute-

intensive, performance improvement of CPU applications is expected, but we can

observe a 27% performance improvement for the GPU application as well even

though DyFR lowers the clock frequency of GPU cores. We can confirm the

behavior of streamcluster from its speedup result. As Figure 41 shows, increasing

frequency does not help improve performance. We study streamcluster further

and discover that thread-level parallelism is very limited and MPKI is so high

that it cannot tolerate long memory access latency. Consequently, performance

improvement by higher frequency is not expected.

0

0.2

0.4

0.6

0.8

1

1.2

0.5

GHz

1.0

GHz

1.5

GHz

2.0

GHz

2.5

GHz

3.0

GHz

3.5

GHz

4.0

GHz

S
p

e
e

d
u

p
 o

v
e

r

0
.5

 G
H

z

Figure 41: Speedup result of streamcluster.

To see how the power budget is distributed to the CPU, GPU, and memory,

Figure 40 (b) shows the power distribution. We can observe a clear trend

across different workloads. Less power will be allocated to memory-intensive

applications since lowering the clock frequency will not degrade performance

much. Moreover, it can also reduce the interference caused by memory-intensive

GPU application. On the other hand, more power budget will be given to

compute-intensive applications because we expect linear speedup with regard

to the frequency increase. Based on the workload characteristics, the available

power budget to the memory is automatically determined. For example, W1

114

workload consists of four memory-intensive CPU and one memory-intensive GPU

applications. Consequently, the frequency of all cores is lowered and more power

budget is available to the memory. On the other hand, W16 is composed of all

compute-intensive applications. Thus, DyFR increases the frequency of all cores

close to the maximum frequency configuration and a very small portion of budget

is available to the memory.

We also analyze the energy consumption by DyFR. With better performance

and less power consumption by DyFR, energy efficiency is greatly improved.

Across all workloads, we observe no less than 10% energy reduction, while the

highest reduction is close to 35%. Overall, DyFR decreases energy consumption

by 23%.

From these results, we can conclude that DyFR can achieve both performance

and energy efficiency improvements for various kinds of workloads without

incurring negative effects.

6.5.1.1 Case Study

For deeper understanding, we present detailed case studies for different workload

combinations in Table 18.

Case Study 1: compute-intensive GPU and compute-intensive CPU The first

case study is the workload that consists of compute-intensive GPU and CPU

applications. These applications have low MPKI (all benchmarks are in the linear

group in Table 17) and show good performance scalability with regard to clock

frequency. In this case, DyFR tries to increase the operating frequency of all

cores while lowering that of the memory. Figure 42 shows performance, power

distribution, and energy reduction results.

Figure 42 (a) shows that the performance of both CPU and GPU applications

is significantly improved due to the increased clock frequency. The increased

115

1.16

1.37
1.26

0

0.5

1

1.5

C G A

S
p

e
e

d
u

p

(a) Performance

0

20

40

60

80

100

P
o

w
e

r
D

is
t.

M

G

C

(b) Power Distribution

0

10

20

30

40

E
n

e
rg

y
 R

e
d

tn
.

(c) Energy

Figure 42: Compute-Intensive GPU and CPU workloads (gobmk + sjeng +

gamess + povray / mri-q, In (a), C: CPU, G: GPU, A: geometric mean. In (b)

M: memory, G: GPU, C: CPU).

power consumption by cores can be offset by the decreased frequency in the

memory, as shown in Figure 42 (b), while the slower memory does not affect

performance much. Performance improvement with the power consumption

reduces the energy consumption of this workload by 30%, as shown in Figure 42

(c).

Case Study 2: memory-intensive GPU and compute-intensive CPU The second

case is when the memory-intensive GPU application is running with compute-

intensive CPU applications. In this case, GPU throttling is first applied to reduce

the interference. Then, the frequency of CPU applications will be increased based

on theirMPKI. Since the change in thememory does not affect system performance

much, it remains in the base frequency. Figure 43 shows the result.

Although the GPU application is running very low clock frequency by GPU

throttling, its performance is degraded by only 8%, while DyFR improves the

performance of CPU applications by 50% (Figure 43 (a)). We can also check how

DyFR works from its power distribution: CPUs are running higher than their base

frequency, GPUs are running lower than their base, and memory is running on

its base frequency (Figure 43 (b)), which leads to overall less power consumption.

116

1.50

0.92

1.17

0

0.5

1

1.5

2

C G A

S
p

e
e

d
u

p

0

5

10

15

20

25

E
n

e
rg

y
 R

e
d

tn
.

0

20

40

60

80

100

P
o

w
e

r
D

is
t.

M

G

C

(a) Performance (b) Power Distribution (c) Energy

Figure 43: Memory-Intensive GPU and Compute-Intensive CPU workloads (h264

+ sjeng + povray + gamess / lbm).

Figure 43 (c) shows a 21% energy reduction by DyFR in this workload.

Case Study 3: Compute-Intensive GPU and Memory-Intensive CPU With

compute-intensive GPU and memory-intensive CPU applications, we can observe

the opposite result from the previous case study. CPU cores are throttled down

while GPU cores are throttled up. Although the memory frequency has been

lowered, it depends on the workload characteristics. Figure 44 shows the result.

0.88

1.38

1.10

0

0.5

1

1.5

C G A

S
p

e
e

d
u

p

0

5

10

15

20

E
n

e
rg

y
 R

e
d

tn
.

0

20

40

60

80

100

P
o

w
e

r
D

is
t.

M

G

C

(a) Performance (b) Power Distribution (c) Energy

Figure 44: Compute-Intensive GPU and Memory-Intensive CPU workloads

(gobmk + gcc + leslie3d + bwaves / lavaMD).

CPU throttling on memory-intensive CPU applications results in a 12%

performance degradation, but the GPU application gains a 38% performance

improvement. As a result, system performance is improved by 10% as shown

117

in Figure 44 (a). CPU cores consume less power, but GPU cores consume more

power. We also see that there is a slight power reduction in memory (Figure 44

(b)). Consequently, there is a 15.5% energy savings (Figure 44 (c)).

Case Study 4: Memory-Intensive GPU and Memory-Intensive CPU The last

case study is when both GPU and CPU applications are memory-intensive. In

general, the core clock frequency is less important with this workload, but that

of the memory is much more important. Therefore, the clock frequency of both

CPU and GPU cores will be lowered while we have two modes (power-saving and

high-performance) for the memory, as explained in Section 6.3.3. Figure 45 shows

the results for both modes.

0

0.5

1

1.5

2

2.5

3

C G A

S
p

e
e

d
u

p

S P

0

10

20

30

40

50

60

S P

E
n

e
rg

y
 R

e
d

tn
.

0

20

40

60

80

100

S P

P
o

w
e

r
D

is
t.

M

G

C

(a) Performance (b) Power Distribution (c) Energy

Figure 45: Memory-intensive GPU and Memory-intensive CPU workloads (milc +

gcc + libquantum + lbm / blackscholes, S: power saving, P: high-performance).

In the power-savingmode (denoted by S), we can see that CPU and GPU power

consumption is decreased due to the lowered clock frequency, while memory

power consumption remains similar (Figure 45 (b)). However, there is a significant

performance improvement for CPU applications with a small GPU performance

degradation (Figure 45 (a)). This is due to the reduced interference caused by the

GPU application. As a result, DyFR yields 16% performance improvement with

more than a 30% energy reduction.

118

On the other hand, in the high-performance mode (denoted by P), we can

observe a huge performance improvement by 53% because the power given to

the memory is increased by 18%. As a result, the high-performance mode reduces

energy consumption further by 48% in this case study.

6.5.2 Power-saving and High-Performance Modes

In this section, we evaluate twoDyFRmodes, power-saving and high-performance,

which are described in Section 6.3.3. When we have more power budget available

to the memory, we have two options: 1) maintain the same memory frequency

to save power or 2) increase voltage/frequency for better performance. Which

mode is more preferable is based on the system requirements. Figure 46 shows the

performance improvement and energy reduction results. Note that we only show

W1-W8 workloads since other workloads have less power budget due to increased

frequency in cores, as shown in Figure 40 (b).

0.8

1

1.2

1.4

W1 W2 W3 W4 W5 W6 W7 W8 AVG

S
p

e
e

d
u

p

Power-saving

High-performance

(a) Performance (speedup)

0

10

20

30

40

W1 W2 W3 W4 W5 W6 W7 W8 AVG

E
n

e
rg

y
 R

e
d

tn
. (

%
) Power-saving

High-performance

(b) Energy reduction (%)

Figure 46: Evaluation of power-saving and high-performance modes in DyFR.

119

We can observe that the high-performance mode always yields better perfor-

mance than the power-saving mode. The benefit over power-saving mode is up to

37% and 6.8% on average. How much benefit a workload can get is proportional

to the increased power budget for the memory (maximum available power budget

is 100 - stacked bar in Figure 40 (b)).

However, we can also see that high-performance mode consumes more energy

except in the W2 workload due to its huge performance gain. The energy

consumption is increased by 3% without W2 and by 1% on average. This is a rather

expected outcome since power increase does not always lead to proportional

performance improvements. However, when we measure other energy efficiency

metrics, such as EDP (energy-delay product) or ED2P (energy-delay square

product), the high-performance mode shows better efficiency since they put more

importance on the performance. Nonetheless, the energy consumption metric is

directly related to the battery life in SoC devices, so we have to carefully decide

which metric to use.

6.5.3 DyFR Results with CPU-only CMPWorkloads

Although HCMPs can execute CPU and GPU applications together, it is also

important that DyFR is able to cope well with CPU-only CMP workloads. Thus,

we perform a DyFR experiment with CMP workloads in this section. Figure 47

shows the performance, power distribution, and energy reduction results. Note

that we assume the power budget for CPU cores is 45% and the remaining 55% is

for the memory.

Our first observation with the CPU-only workload is that severe inter-

application interference does not exist as in the heterogeneous workload since

we model the network and memory bandwidth to be sufficient to handle

the heterogeneous workload. Consequently, decreasing the clock frequency

120

8.5

0

10

20

30

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 AVG
P

e
rf

.
Im

p
rv

.
(%

)

(a) Performance improvement (%)

0

20

40

60

80

100

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

P
o

w
e

r
.

D
is

t.

MEM

CPU

(b) Power distribution

18.1

0

10

20

30

40

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 AVG

E
n

e
rg

y
 R

e
d

tn
. (

%
)

(c) Energy reduction (%)

Figure 47: DyFR results with CPU-only workloads (from left to right, the memory-

intensity of the workload increases).

of a memory-intensive application does not improve the performance of other

applications. We also observe that the effectiveness of DyFR is higher with a

workload with more compute-intensity (bars in the left side) applications. For

example in C1 to C4workloads, we observe a significant performance improvement

with near 30% energy reductions. This is because frequency increase leads to

proportional performance improvements for compute-intensive applications, but

the increase in the memory frequency cannot match the benefit of core throttling.

On average, DyFR improves the performance of 10 CMP workloads by 8.5% while

121

reducing the energy consumption by 18.1%. Thus, we can conclude that DyFR

works well with CMP workloads.

6.5.4 Comparison with Other Mechanisms

Since the goal and target architecture of DyFR are different with other DVFS-

based mechanisms, it is hard to directly compare DyFR with them. Instead, we

compare it with mechanisms that are proposed to solve the interference problem

in the heterogeneous architecture. In this section, we compare DyFR with TAP

(TLP-aware cache management schemes) and adaptive VCP (virtual channel par-

titioning). TAP [72] is a cache sharing mechanism in heterogeneous architectures

to exploit the unique characteristic of GPU applications, in particular abundant

thread-level parallelism (TLP). The authors applied their TAP mechanism and

extended two previous mechanisms, UCP [120] and RRIP [58], which are called

TAP-UCP and TAP-RRIP. VCP [73] is a resource partitioning mechanism applied

to NoC in heterogeneous architectures. Each router generally has multiple virtual

channels that are shared by applications for input ports. VCP partitions virtual

channels to CPU and GPU cores so that the interference caused by GPU cores is

isolated. Figure 48 shows the result for memory-intensive workloads (W1-W8) and

all workloads (W1-W16).

0

5

10

15

TAP-UCP TAP-RRIP VCP DyFR

P
e

rf
.

Im
p

rv
.

(%
)

W1-8 W1-16

Figure 48: Comparison with other mechanisms.

As explained in Section 2.4.3, the benefit of previous mechanisms is inevitably

122

limited when no severe resource contention exists. If applications well utilize

the shared resources without the interference, no previous resource sharing

mechanisms can be effective. However, DyFR does not have such limitations.

Consequently, DyFR consistently outperforms other mechanisms. In particular,

the overall benefits including all workloads (W1-W16) of other mechanisms decrease

since their benefit is no more than 1% on compute-intensive workloads.

In terms of energy efficiency, since no other power-saving technique is applied

to TAP and VCP, energy efficiency is solely based on performance. However, as

shown in Figure 40 (c), DyFR yields a great energy efficiency improvement due

to the combination of performance improvement and power savings through core

and memory throttling. From this experiment, we can conclude that DyFR can be

a good solution for the resource contention to improve performance and energy

efficiency simultaneously in heterogeneous architecture.

An interesting follow-up question is whether TAP and VCP can be combined

with DyFR. However, from our initial experiment, it is not a trivial task to combine

them for several reasons. First, all mechanisms should be synchronized. TAP and

VCP rely on a kind of sampling mechanism to collect performance metrics to see

the effect of a configuration. If DyFR changes the configuration in the middle of

the sampling period, sampling is likely to fail. Second, the outcome of DyFR will

affect the degree of interference in the shared resources and the effectiveness of

their metrics. As a result, we leave this to the future work.

6.5.5 Sensitivity Results of DyFR

We discussed the effect of sampling period length in Section 6.3.5. To see the effect,

we perform period sensitivity experiments. Figure 49 shows the performance with

error bars and energy reduction results. We vary the length of period from 25 us

to 1.6 ms.

123

1.07 1.11 1.13 1.14 1.14 1.14 1.13

0

5

10

15

20

25

0.6

0.8

1

1.2

1.4

1.6

25 us 50 us 100 us 200 us 400 us 800 us 1.6 ms

E
n

e
rg

y
 R

e
d

tn
. (

%
)

S
p

e
e

d
u

p

Figure 49: DyFR period sensitivity results with min-max error bars.

All configurations show performance improvement (7% to 14%) with a

significant energy reduction (18% to 23%), but we can see the performance variance

as well. Since we set the PLL lock time as 10 us (Table 16), the penalty in

shorter period configurations (50 us and 100 us) is significant. As a result, we

can observe some workloads with significant performance degradation with these

configurations. However, the overall performance improvement is still 7% and

11% for 50 us and 100 us, respectively. This is because PLL lock occurs when

voltage/frequency is changed. In other words, once the frequency configuration

reaches an optimal point, there will be infrequent PLL lock times, so not much

penalty will be incurred. From the result, longer period configuration is more

preferable, but the system will be running for a longer time under non-optimal

configurations. Adapting the length of the period can be an improvement to DyFR.

In the earlier period, we can begin with a shorter period to reach the optimal

configuration quickly; then we gradually increase the length of the period. In

this way, we can minimize the penalty of DVFS level change and improve the

effectiveness.

6.6 Summary of This Chapter

In this chapter, we proposed DyFR, which dynamically controls the clock

frequency of the CPU, GPU cores, and the memory (L3 and NoC). Computing

124

on heterogeneous architectures will be more prevalent in coming years due to

their performance and power efficiency, but shared resource management is still

challenging. DyFR consists of three steps: GPU throttling tries to mitigate the

interference caused by GPU applications; CPU throttling considers the scalability

of individual applications with respect to the frequency changes; and memory

throttling balances the power budget not to exceed the chip-wise power budget.

We also examined the two different modes, power-saving and high-performance,

based on system requirements. We showed that DyFR is a viable solution

to successfully reduce interference while improving performance and energy

efficiency. Across 16 heterogeneous workloads, DyFR shows a 14% performance

improvement, with a 23% energy reduction on average.

125

CHAPTER VII

GPU REGION-AWARE ENERGY-EFFICIENT CACHE

7.1 Introduction

As heterogeneous computing becomes the mainstream computing paradigm

across a wide computing spectrum from a smartphone application processor

to a low-end server processor, many system components are being integrated

into a main CPU die and programming language, such as OpenCL [111], is

being developed to utilize heterogeneous processors. Not surprisingly, such an

unprecedented integration provides novel, interesting research opportunities and

challenges for computer architects. Among those opportunities, one of the most

interesting problems, we believe, is how GPUs can utilize a large on-chip cache

(e.g., 128MB L4 cache in Intel’s Haswell products) energy efficiently. Note that

OpenCL enables an application to be running on CPU-only, GPU-only, or both

types of cores, but we focus on running an OpenCL application on only GPUs in

this paper.

In the past, a discrete GPU did not have much cache implemented, mainly

because integrating more GPU cores, i.e., computing units, on a given space

improves the performance of an overall GPU chip better than allocating a part

of the die space to a large cache. As a result, a conventional, discrete GPU had

a few, small, dedicated, special-purpose caches for different graphics pipeline

stages, including texture, color, and z-caches. These dedicated caches worked well

by exploiting different levels of locality across different graphics operations. In

other words, for some operations that do not have much locality, a corresponding

architectural block reads data directly from off-chip DRAM. Otherwise, data is

126

brought from the dedicated, special-purpose cache for other operations that have

a certain level of locality. However, in the integrated platform where a CPU

and its associated cache hierarchy are integrated with a GPU, a large, general-

purpose shared cache, primarily designed for improving the average performance

of various, general-purpose CPU applications, is avilable to the GPU thanks to the

integration, which might be sub-optimal for an integrated GPU.

In this work, we explore how GPGPU applications can energy efficiently

exploit the large on-chip cache. We specifically study how cache hit rate varies

across an address space of GPGPU workloads, analyze why we observe these

behaviors, and determine howwe can exploit these characteristics with a very cost

effective hardware solution to maximize the benefit of an on-chip cache without

consuming unnecessary energy. These optimization opportunities were limited in

the conventional CPU environment due to its extreme freedom of memory manip-

ulation, but we found that the uniqueness of the OpenCL programming model1,

in particular, a disciplined memory model, which follows the rules/agreements

faithfully, allows us to perform semantic-aware optimizations easily and correctly.

As a showcase to demonstrate the benefit of our findings, we propose a

programming model/architecture collaborative optimization scheme called GPU

Region-aware Energy-Efficient Non-inclusive cache hierarchy, or GREEN cache.

In particular, we apply our findings to well-known low-energy cache techniques,

selective caching, and dynamic cache resizing. Region-aware caching (RAC)

selectively caches a subset ofmemory objects2 used by aGPGPUkernel, and region-

aware cache resizing (RACR) turns off a subset of a large on-chip cache if the GPGPU

kernel turns out not to utilize the entire cache capacity. This demonstrates that

our findings are very practical and cost-effective for implementation with existing

1CUDA programming model has a similar memory model as OpenCL.
2In this work, we define a region as a linear memory space allocated for a memory object of a

GPU kernel, which is mapped from the host code.

127

systems.

The contributions of our work include the following:

1) We first analyze how cache hit rate varies across different regions in the address

space of a GPGPU workload.

2) We then demonstrate how well this memory behavior correlates with the

OpenCL semantic information, in particular different memory objects.

3) We propose two cache optimization techniques, region-aware caching and

region-aware cache resizing, to show the benefit of our findings.

4) Finally, we propose a few extensions of the GREEN cache so that it can cope

with existing cache partitioning schemes to support concurrent GPU kernel

executions.

The rest of this chapter is organized as follows: Section 7.2 explains the

baseline GPU architecture and its programming model to help readers understand

our proposal easily. Section 7.3 proposes the GREEN cache, demonstrating the

motivational data and detailing the proposals. Section 7.4 explains the simulation

methodology, simulated machine configurations, and the evaluated workload.

Section 7.5 shows the simulation results. Section 7.6 concludes the chapter.

7.2 GPU Model

In this section, we describe the execution, programming, and memory models of

GPUs.

7.2.1 Disciplined Memory Model in GPUs

A CPU typically offloads a large chunk of computation to the GPU to improve

the performance or energy efficiency of a certain kernel. Due to this offload

computation model, running existing legacy CPU applications without any

modification is not beneficial. Instead, a GPU program is typically written in

a GPU-specific programming model such as OpenCL [111]. Interestingly, these

128

programming models ask programmers to provide more information about a

specific memory region than a legacy CPU programming model. For example,

unlike a CPU programming model in which any legitimate memory location

was accessible from a function, OpenCL restricts a kernel function from freely

accessing memory space other than linear memory space that is explicitly passed

through its input arguments. This is partly because a CPU and a GPU do not fully

share their memory space. For example, a discrete GPU and a CPU clearly have

their own dedicated memory, e.g., GDDR memory on a discrete GPU card and

DDR system memory. Moreover, historically, a graphics kernel allocated separate

memory objects into different regions, e.g., one memory object for each texture,

which naturally evolved into the disciplined memory model of the current GPU

programming model. For these reasons, a GPU programming model 1) requires

programmers to explicitly express the properties of memory objects that a kernel

will use and 2) follows the disciplined memory model.

7.2.2 Memory Objects and Kernel Arguments

An example of the disciplined GPU memory model is shown in Figure 50 (a),

which is a snippet of the OpenCL kernel definition in hotspot from Rodinia

suite [20]. As shown in the figure, hotspot c kernel takes 13 arguments: the first

three arguments are pass-by-pointer arguments and the other 10 arguments are

pass-by-value arguments. Among these arguments, we focus on the first three

pointer arguments. These pointers are actually pointers to amemory object created

by an OpenCL API function, clCreateBuffer. Then, they are explicitly mapped to

a kernel through another OpenCL API function, clSetKernelArg, as part of host

code. An example host code that creates a memory object and maps the object

into a kernel for the first argument, power, is shown in Figure 50 (b). In this code,

clCreateBuffer allocates a contiguous memory space with the size defined in line

129

number 3 (third argument) and marks this memory object as a read-only region.

Furthermore, in line number 6, a programmer explicitly declares that a pointer

to this memory object will be given to hotspot c as the first argument, power, by

explicitly declaring the argument index 0 (the second argument of clSetKernelArg).

1: __kernel void hotspot_c (
2: global float *power,
3: global float *temp_src,
4: global float *temp_dst,
5: int iteration, int grid_cols, int grid_rows, int border_cols,
6: int border_rows, float Cap, float Rx, float Ry,
7: float Rz, float step)

(a) Kernel definition

1: cl_mem MatrixPower = clCreateBuffer(context,
2: CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR,
3: sizeof(float) * size, FilesavingPower, &error);
4: ...
5: ...
6: clSetKernelArg(kernel, 0, sizeof(cl_mem), (void*)&MatrixPower);

(b) Memory objects created by host code

Figure 50: Memory variable example in hotspot benchmark.

In reality, this information is passed to the GPU hardware through the OpenCL

library and GPU device driver, and a GPU core recognizes each region by looking

up the region ID encoded in a memory instruction. For example, in Intel’s GPU,

each memory (Send) instruction has an immediate field for the region ID [51],

which is an index to the address (or region) binding table [50].

In this example, while each memory object looks similar to a memory array

in the conventional c/c++ programming language, a GPU kernel code can

manipulate each object in a very restricted manner. Unlike memory variables in a

conventional CPU programming model, which can be dynamically allocated and

deallocated frequently, each memory object is persistent throughout a GPU kernel

execution. Furthermore, as opposed to having many small function calls that can

freely access the entire heap memory space in a CPU programming model, an

130

OpenCL programmingmodel requires programmers to access their data structures

in a very disciplined way and even recommends programmers access memory in

a coalesced manner within the memory object.

7.3 GREEN Cache

7.3.1 Disciplined Memory Model and GPU Hardware

As explained in the previous section, OpenCL has very unique properties, such

as explicit information on each memory object and a very disciplined memory

model within a GPU kernel. The reason a GPU programming model prefers a

memory object, i.e., a linear memory space, and why a coalesced access pattern

within the memory object is important are highly correlated with the fundamental

characteristics of a GPU as follows:

1) Coalesced access patterns allow GPU hardware to fetch a cache line once

and to fully consume the cache line. For example, a scalar code that reads a 4B

float array within a loop of 16 iterations will fetch the same cache line (64B) 16

times because the cache datapath width is fixed to 64B. On the other hand, a 16-

way SIMD hardware can fetch a cache line once to perform one SIMD instruction

while fully utilizing cache bandwidth and saving energy significantly in the cache.

2) Due to hardware overhead, GPU hardware cannot afford many ports in its

L1 cache. As a result, non-coalesced access patterns (or scatter-gather patterns) will

end up accessing the single- or dual-ported cache multiple times to fulfill a single

SIMD load operation. In other words, such serialization will severely degrade

performance and efficiency, not to mention poorly utilizing cache bandwidth.

3) Coalesced access within a warp is very likely to be achieved by the code that

accesses memory space with a linear indexing function of a thread ID. This pattern

will make sure that memory address space accessed across neighboring warps is

also well-coalesced across a linear memory region. This feature is very helpful

131

for the back-end memory controller to maximize the DRAM row buffer locality

because the memory controller can collect many requests that are mapped to the

same DRAM row buffer from many warps and serve these requests by opening

a DRAM row only once. Such a pattern improves DRAM bus protocol efficiency,

utilizes the DRAM internal bandwidth effectively, and minimizes the over-fetch

inefficiency of a DRAM row, which is a by-product of cost-optimized DRAM array

design.

7.3.2 Exploiting the Different Behavior of Memory Objects

For the aforementioned reasons, OpenCL has very unique semantic information,

which, we believe, provides us very novel, interesting opportunities to perform

cross-layer optimization across a programming model and hardware. Among the

potential opportunities, in this work, we focus on energy-efficiently utilizing on-

chip cache by exploiting the semantic information.

To demonstrate these opportunities, we first profiled how cache hit rate varies

across the address space of a GPU kernel. Thememory behavior is well captured in

Figure 51, which shows the cache hit rate of each virtual page address of hotspot.

In this figure, we profiled every single memory request, whether it generates a

cache hit or miss either in the L1 or L2 cache, and incremented a corresponding

performance counter for a virtual page that the address of this request belongs to.

The cache hit rate varies significantly across address space, while the cache hit rate

stays almost constant within a neighboring address. More interestingly, we found

that the region of the neighboring address space is well correlated with that of each

memory object, as shown in the top of the figure. For example, the L2 cache hit rate

of memory object 1 is close to 60% while that of memory object 2 is close to 40%.3

Initially, we were excited to find this behavior, but at the same time, we

3Table 21 shows the memory variable information of all evaluated benchmarks, such as the
input size and the number of variables for a kernel.

132

0

0.2

0.4

0.6

0.8

1

H
it

 R
a

ti
o

X-axis: Page number (ID) in ascending order

L1

L2

Figure 51: Cache hit rate across address space of hotspot.

wondered why we failed to exploit this behavior in the past since this kind of

behavior must exist in the conventional CPU model, as data parallel kernels are a

subset of various CPU workloads. Consequently, we seek to answer why it was

difficult for us to exploit such a property in the CPU environment but why it is

easier in the GPU environment. After studying the properties of GPU kernels, we

realized that this behavior can be better exploited, especially in the GPU context,

for the following uniqueness of the GPU execution model compared to the CPU

execution model:

1) Threads spawned from the same GPU kernel execute the same set of code

due to its single-program multiple-data (SPMD) execution model. Consequently,

we have a large degree of similarity across different threads. In other words, a

kernel offloaded to a GPU will have a very stable, repeated compute pattern until

the kernel finishes its computation, which opens up an easy learning opportunity.

Also, due to the explicit kernel boundary, we can detect the change of program

phases very easily.

2) Moreover, GPU kernels generally have more predictable locality than CPU

applications since GPGPU programs are heavily optimized to store the data in the

scratch-pad memory, which is usually specified at the beginning of kernel execution

for each thread to increase the locality behavior. This leads to highly predictable

locality behavior in the L2 cache as well.

133

3) On the contrary, the CPU workload clearly has a wide variety of character-

istics due to the general-purpose nature of CPUs. Thus, applying optimization

techniques for such a niche opportunity, e.g., an application with well-managed

memory access pattern, does not always work for all types of CPU workloads

and potentially comes with huge hardware overhead to guarantee efficient, but

correct, execution. If we were to exploit the well-managed memory behavior in

a CPU environment, we would be able to track it in a page granularity, but this

fine-grained tracking will require high hardware overhead (per-page entry) while

having a marginal benefit (savings gained only within a page for each entry).

4) Unlike the CPUworkload, a GPU kernel has very high data-level parallelism.

This is why it can benefit from the GPU despite the relatively high kernel

offloading overhead from a CPU to a GPU. Due to the high data-level parallelism,

an offloaded GPU kernel traverses larger data structures in a given period than

CPU functions. Thus, we can exploit this property in a GPU programming model

much more effectively with cost-effective hardware than in a CPU programming

model.

5) As described in Sections 7.2.1 and 7.2.2, the existing OpenCL programming

model already provides sufficient, guaranteed semantic information, unlike a CPU

model in which a function can access the entire heap space freely.

Based on these observations, we envisioned that we could perform interesting

optimization by treating different memory objects or regions differently. We

believe that we have various opportunities to exploit the semantic information

about different memory regions, but, in this work, we particularly focus on how

to efficiently use an on-chip cache space. In particular, we propose GPU Region-

aware Energy-Efficient Non-inclusive cache4, or GREEN cache, as an example of

4Currently, caches in discrete GPUs and integrated GPUs are non-inclusive between the L1 and
L2 hierarchy.

134

utilizing the unique GPU semantic information. In the rest of this section, we

propose techniques to improve the energy efficiency of a large on-chip cache for

GPUs.

7.3.3 Region-Aware Caching

The first optimization technique we propose is selective caching. The rationale

behind this optimization is that, as shown in the previous section, the cache hit

rates of different regions of memory differ significantly. Clearly, caching is very

helpful for the group ofmemory regions with a decent cache hit rate, while caching

for the group of memory regions that do not have cache hits just consumes energy

and evicts useful data. For example, as shown in Figure 51, we can exploit locality

in the L2 cache very well for all memory objects, but all regions do not have many

L1 hits, so the L1 cache can be a good target to save energy in this case.

Thus, instead of blindly caching all data, we want to selectively cache data

to save dynamic energy. We call this optimization region-aware caching (RAC). To

achieve this, first, we need to monitor the cache behavior of each region either

by 1) compiler static analysis or 2) dynamic hardware training. Conventional

compiler-based static-time profiling might be a cheaper solution, but it has limited

knowledge of the runtime behavior. Furthermore, a compiled binary can be

used over multiple iterations with different sizes of inputs. As is widely known,

depending on the size of the data structure and the size of a cache memory, the

effectiveness of caching varies greatly. Therefore, we use hardware-based training.

This training mechanism can be performed with a very cost-effective table, an

example of which is shown in Figure 52. The table consists of six fields: region

ID, number of cache accesses, number of L1 and L2 hits, and L1 and L2 bypass

decisions. For each region, we train the table for L1 and L2 cache hits. Note that,

unlike other hardware approaches, our approach is extremely cost effective thanks

135

to very detailed, accurate semantic information given by the programming model

of OpenCL, where this information includes not only the region ID and the starting

address of the region but also the size of a region and whether it is a read-only,

write-only, or read-write region. This semantically guaranteed information makes

it impossible for the hardware to become confused between different memory

regions, which makes this solution free of functional incorrectness.

Region

ID (4b)

Accesses

(4B)

L1 Hit

(4B)

L2 Hit

(4B)

L1 bypss

(1b)

L2 bypass

(1b)

0 158,210 32,021 45 0 1

1 221,520 52,013 3,790 0 0

Figure 52: Per-region training table example (b: bit, B: byte).

Using this table-based training, RAC operates as follows: 1) RAC monitors

L1/L2 cache hit rates during a training period5 and determines in which region

to bypass a cache (L1 and/or L2) based on monitored behavior. 2) Given this

information, when a memory request is about to be issued to the cache hierarchy,

the request can be tagged with two-bit bypass fields (whether to bypass L1 and/or

L2 caches) so that the underlying cache hierarchy can utilize this information.

This process is repeated for every new kernel invocation because 1) each kernel may

operate on a different set of data and 2) they may have distinct behaviors.

It is worthwhile to note that these training results are much more accurate and

stable in GPU architectures than in CPU architectures. While different kernels

in a GPGPU program may have different behaviors, each GPU kernel runs in an

SPMDmanner, so a kernel usually does not show significant phase changes within

a kernel. As a result, cache behavior information acquired during the training

period will be similar throughout the execution of the kernel. Figure 54 shows an

5We set the length of the training period to 100,000 cycles based on empirical data. We show
sensitivity data in Section 7.5.1.1.

136

Core

L1

L2

Case 1. L1/L2 Hit

No bypass

Core

L1

L2

Case 2. L1 Hit

L2 bypass

Core

L1

L2

Case 3. L2 Hit

L1 bypass

Core

L1

L2

Case 4. No Hit

L1/L2 bypass

Figure 53: Cache behavior and bypassing decision.

example of the hotspot benchmark with the L1 and L2 cache hit rate of each region

throughout the simulation duration. After the initial training period (shaded

region in the figure), each region shows a near-constant hit rate. Therefore, the

trained information can be a good proxy of the entire kernel execution and we do

not need further training. Also note that the virtual-to-physical address translation

is done through the existing binding table as described in Section 7.2.2. During

translation, memory requests can be marked with caching hints using information

from the region table, carrying hints throughout cache hierarchy.

0

20

40

60

80

C
a

ch
e

 H
it

 R
a

te

Execution Duration

R0_L1

R0_L2

R1_L1

R1_L2

R2_L1

R2_L2

Training
Period

Figure 54: Cache hit rate for each region in the hotspot benchmark (R0 L1: L1

cache hit rate of region 0. The shaded region indicates the training period).

7.3.4 Region-Aware Cache Resizing

In addition to region-aware caching, which exploited the different cache hit rate of

different memory regions, we also propose exploiting the existing knowledge of

137

the size of each memory region. As explained in Section 7.2.2, the size information

is provided by the OpenCL library, which can directly update a hardware register

dedicated for the memory regions. Based on this information, hardware can easily

detect the sum of the size of all regions, which can be a proxy for the working set

size for a given kernel. Once we know the working set size, we can determine

how many ways of a given set-associative cache should be active for this kernel. If the

working set size is smaller than the cache capacity, we can turn off a subset of

the cache to save leakage energy. We call this policy region-aware cache resizing

(RACR). In particular, we call the proposal of naı̈vely applying cache resizing to the

L2 cache RACR-Naı̈ve, compared to a more intelligent policy that we discuss later

in this section. Equation (19) shows how RACR-Naı̈ve calculates a new effective

associativity, assocnaive, which is at least one and cannot be greater than the original

associativity.

total region size =

N
∑

i=1

size(regioni) (18)

assocnaive =

⌈

total region size

L2 size
× L2 assoc

⌉

(19)

, where N is the number of regions

Note that previous proposals for turning off some ways of a cache based on

prediction for CPU workload may incur various side-effects such as performance

loss and/or higher energy consumption, especially upon incorrect prediction,

whereas our approach can easily estimate the working set size for a GPU kernel

since the programming model provides all region information. By utilizing this

direct information, it is very unlikely that our approach will get confused between

different regions or incorrectly predict the working set size.

On top of this, we can further reduce the leakage energy by using a more

intelligent policy, excluding the sum of the size of bypassed regions proposed

138

in the previous section, as in Eq. (20). We call this policy RACR-Bypass. Unlike

RACR-Naı̈ve, which cannot turn off a subset of a cache when the working set

size is larger than the cache capacity, RACR-Bypass mitigates this limitation by

exploiting the outcome of RAC. In particular, once a region is marked as a bypass

region, we exclude the size of the region when we estimate the working set size of

a given kernel. As a result, the size of an effective working set of the kernel will be

smaller than the mere sum of the size of all regions. Equation 22 shows how we

calculate a new effective associativity, assocbypass, with the support of RAC.

bypass region size =
M
∑

i=1

size(region to bypassi) (20)

new size = total region size− bypass region size (21)

assocbypass =

⌈

new size

L2 size
× L2 assoc

⌉

(22)

, where M is the number of regions to bypass

Oneweakness of RACR-Bypass compared to RACR-Naı̈ve is that, while RACR-

Naı̈ve can be immediately applied upon kernel launch, RACR-Bypass relies on

information learned during the training period; thus, RACR-Bypass may be

applied for a shorter time than RACR-Naı̈ve. To overcome this weakness, we

propose RACR, which combines RACR-Naı̈ve and RACR-Bypass. In RACR, we

apply RACR-Naı̈ve immediately upon kernel launch, monitor the cache behavior

during the training period, and then apply RACR-Bypass once training is done.

Unfortunately, similar to other low-power proposals on disabling a subset of a

cache [3, 122], our scheme also needs to address potential data consistency issues

upon changing the size of an active cache. Previous studies usually employed

two approaches: 1) flushing the entire cache or dirty lines or 2) performing a lazy

eviction. The first approach, flushing, can achieve cache resizing more quickly, but

it requires bursty write-backs and other cache operations are stopped during this

139

period. On the other hand, a lazy eviction does not have the same problems, but

a transition period can be much longer and the opportunity for power savings can

be reduced.

In this work, we employ the flush-based approach for more energy savings

sincewe expect that notmany cache lines are in the dirty state for GPU applications

from their programming model. The rationale behind this reasoning is that many

GPGPU applications are already optimized to minimize the number of costly off-

chip accesses. As a result, they highly utilize local and scratch-pad memory for

temporary writes and then store the final result of all computations to the memory

nearly at the end of kernel execution. To examine this hypothesis, we performed

experiments to measure the average number of cache sets that contain dirty lines

when RACR is applied. Figure 55 shows results. As expected, except for three

benchmarks, only a few sets contain dirty lines. The number of sets that contain

dirty lines accounts only for 0.59% of the total number of cache sets across 32

benchmarks. As a result, the total number of flushed cache lines is very small,

so the length of a transition period can be very short.

14.8

2.2
0.5 0.1 0.02 0.02 0.59

0

5

10

15

20

SP DX BFS RE MT S1 AVG

A
V

G
 #

 D
ir

ty
 S

e
t

Figure 55: Average # sets that have dirty lines upon resizing.

Although flush-based cache resizing does not incur significant overhead, we

still need to walk through all cache sets to check for the existence of dirty lines,

which consumes extra energy and time. We can reduce this overhead by using a

signature from a cost-effective bit vector. When a newwrite operation is performed

140

or an eviction occurs, we update this bit vector by ORing the dirty bits of all the

ways of the accessed set. Upon cache resizing, we can query this bit vector to see

if a certain cache set includes dirty lines. Since the bit vector is updated whenever

a line becomes dirty or evicted, we can precisely detect sets that do not have any

dirty lines. Once we identify whether a set includes any dirty block, then we walk

through all blocks of the set to write-back the data. Compared to walking through

the entire cache, this approach can be more effective while guaranteeing correct

execution. Moreover, due to its small size, e.g., 4k bit for a 16-way set-associative

4MB cache with 64B lines, a banked bit vector can be implemented with very

low hardware cost, which can further accelerate the lookup process upon resizing

thanks to parallel lookup offered by the multi-banked bit vector structure.

7.3.5 Putting It All Together - GREEN Cache

In this section, we provide a summary of the GREEN cache and discuss the

benefits and overhead. Table 19 describes mechanisms that consist of the GREEN

cache. The biggest strength of the GREEN cache comes with collaborative interaction

between a programming model and hardware-based training. Since the GREEN cache

entrusts complex hardware training to semantic information of the OpenCL

programmingmodel, we can avoid complicated hardware logic, while information

directly acquired from the programming model is precise, freely given, and

independent to program/input/hardware changes. Therefore, this cooperative

approach has a huge advantage over software-only or hardware-only approaches.

7.3.5.1 Benefits of GREEN Cache

The benefit of the GREEN cache is twofold. First, by saving power consumption

in caches, we can use this saved power to improve the performance of the GPU

cores. For example, Intel’s Turbo Boost [53] enables cores to run at higher than the

base frequency when higher performance is needed and when chip power budget

141

Table 19: GREEN Cache - putting it all together.

RAC
To save dynamic cache energies
- Per-region cache behavior training (# accesses, hits)
- Bypass L1/L2 caches based on the behavior.

RACR-Naı̈ve

To save leakage cache energies
- Calculate the working set size using Eq. (18).
- Disable a few cache ways based on Eq. (19).
- Resizing applies when a new kernel is launched.

RACR-Bypass
To save leakage cache energies
- Resizing applies after a training of RAC is over.
- Recalculate the effective working as in Eq. (22).

is left unused due to other idle cores. Similarly, the GREEN cache can enable a

higher operating frequency of cores.

Second, the GREEN cache can be effective even when both CPUs and GPUs

are active in the heterogeneous architecture. Lee and Kim [72] recently reported

that massive cache accesses from GPU cores can easily break the cache locality of

CPU applications when the last-level cache is shared by CPUs and GPUs. The

GREEN cache can be combined with the previous mechanism by analyzing the

effective working set size of a GPU application so that the interference caused by

GPU cores can be minimized.

7.3.5.2 Overhead of GREEN Cache

We analyze possible overhead of the GREEN cache in this section. First, RAC does

not incur significant hardware or training overhead. Since the GPU device driver

provides the region information to the hardware, extra logic for collecting per-

region information is not necessary. In addition, the number of regions is usually

small (less than five in Table 21), so total hardware overhead will be less than 125B

since region information requires around 100 bits. Regarding the region training,

most processors already have the capability to count architectural events such as

the number of cache hits and misses, so we can largely reuse the existing circuit

142

and store the outcome in a table indexed with the region ID.

Second, RACR-Naı̈ve and RACR-Bypass do not require any extra hardware. In

RACR-Naı̈ve, theworking set size can be estimated using information provided by

the device driver, and RACR-Bypass acquires bypassed region information from

the RAC mechanism. However, to reduce the overhead of flushing cache lines

upon resizing, RACR uses the 4k bit-vector.

Finally, the selective caching in the GREEN cache may affect the cache

coherence protocol, which is complicated and error-prone. Fortunately, it turns

out that we do not have any side-effect on cache coherence by using region-aware

caching. Regardless of cache bypassing, all memory requests need to access a

tag directory first to check for the existence of the same line. Furthermore, most

modern processors, including CPUs and GPUs, natively support different caching

operators for cache affinity [54, 108]. As a result, our proposal can benefit from

these existing cache control designs.

7.3.6 GREEN Cache with Multiple Applications

While the discussion so far has been limited to building an energy-efficient cache

hierarchy for a GPU kernel, in this section we expand the discussion to GPUs

with multiple kernels or applications. Recent GPUs [105] can support concurrent

execution of multiple kernels on the same device. In this case, the L2 cache will

be shared by multiple applications or kernels. This is analogous to sharing the

last-level cache across different CPU applications. To prevent inter-application

interferences for CPU workloads, many cache partitioning or replacement/inser-

tion policies have been proposed in the past [57, 58, 118, 120]. These mechanisms

aim to improve the cache hit rate, thereby improving performance. To reduce

energy while benefiting from previous performance-oriented mechanisms, here

we propose to integrate the GREEN cache in these mechanisms. Moreover, we

143

found various advanced ways to utilize the GREEN cache, which we explain

below.

GREEN cache (RAC + RACR) First, we can apply the GREEN cache to the

multiple-kernel environment. Since we collect per-region cache information in

the core, RAC will not be affected by the existence of other kernels. However,

for RACR, the aggregated working set should now account for the working set of

all kernels, so the cache resizing controller should aggregate information from all

GPU cores and determine how many cache ways should be active.

GREEN cache + Dynamic cache partitioning Moreover, we can utilize the

information collected by the GREEN cache to partition cache space between

kernels. The partitioning strategy can be different in two cases:

1) When the aggregatedworking set size is smaller than the L2 size, the number

of cache ways for each application will be set by Eq. (22), and we can disable a few

ways if available. Each application should acquire at least one cache way.

2)When the aggregatedworking set size is greater than the L2 size, we partition

the cache ways proportionally to the working set size of each application. We first

calculate the total region size from all kernels, excluding bypassed regions, as in

Eq. (23), which is derived from Eq. (21). Then, we set the number of cache ways for

each application based on Eq. (24). Each application will have at least one cache

way, and the sum of all allocated cache ways from kernels cannot be greater than

the L2 associativity.

total size =
N
∑

i

new sizei (23)

num wayi =

⌈

L2 assoc×
new sizei
total size

⌉

(24)

, where N is the number of kernels

144

RAC + Previous mechanisms We can integrate RAC in previous mechanisms to

save dynamic energy since RAC is orthogonal to the underlying cache mechanism.

Clearly, cache accesses that always miss in the caches will not affect the behavior of

the underlying cache mechanisms. As a result, we can benefit from performance-

oriented prior proposals while saving dynamic cache energy. However, we cannot

directly apply any RACR mechanisms since cache resizing will significantly affect

the behavior of the underlying cache mechanism. In particular, in this work, we

integrate RAC in utility-based cache partitioning (UCP) [120], a dynamic cache

partitioning mechanism that uses an auxiliary tag directory to track cache hit

information, and re-reference interval prediction (RRIP) [58], a dynamic cache

insertion policy that uses a set dueling technique to identify the best insertion

position.

7.3.7 Discussions

In this section, we discuss a few interesting issues with GREEN cache.

Applicability to future programming model While GREEN cache can be an

energy-efficient solution with the current OpenCLmodel, the next question would

be whether our proposal will be useful in the future, especially when a future GPU

programming model can be more flexible and easy to program. For example,

CUDA starts to support a more flexible programming model such as pointer

support.

While we believe that an advanced programming model can improve the

programmability of a GPU, we also strongly believe that such a relaxed access

pattern should be used only when really needed since the fundamental nature of

a GPU, SIMDness, prefers the coalesced access pattern in a linear memory region.

As explained in Section 7.3.1, too frequent uncoalesced accesses within a warp

will generate lots of scatter-gather patterns, which will be serialized due to the

145

limited port counts throughout the entire cache andmemory hierarchy. As a result,

the relaxed access pattern will significantly waste cache/memory bandwidth and

degrade performance and energy efficiency. In other words, for applications with

many irregular memory accesses, we cannot run them efficiently on a GPU, and it

is better to run them on a general-purpose CPU.

On the other hand, a future programing model may not force programmers

to use an explicit API such as clCreateBuffer. Even in this case, our proposal

demonstrates that such semantic information or hint is very useful in optimizing

cache hierarchy; thus wemay still want tomaintain such information in an alterna-

tive form such as pragmas to enjoy the benefit of programming model/hardware

collaborative optimization.

Input size One might wonder why cache resizing can be effective given that the

typical input size is greater than the cache size. While the input size itself is larger

than the cache capacity, we observed that not all these input data are brought

to the on-chip cache at the same time. In particular, we found that a hardware

scheduling policy of existing GPUs has an interesting, positive impact on cache

efficiency as follows: Many work-items (or CUDA threads) are grouped into a unit

called a workgroup (or CUDA thread block), one or more of which are assigned

to one compute unit. Only after a workgroup finishes its entire kernel execution,

next available workgroup is dispatched to the compute unit. Due to this unique

scheduling, the cache needs to be as large as a working set for workgroups that can

be executed in parallel at the same time on a given GPU hardware, not the entire

input set. Moreover, as far as many memory regions being set to bypass, RACR-

Bypass can be effective since the size of all these variables will not be counted.

Cache set sampling Cache set sampling [119, 120] can be an alternative way of

estimating the working set size. Cache set sampling maintains a true LRU stack

146

and counters for each position for the stack to estimate cache hit pattern from a

few sampled sets. Then, based on how many cache hits occur in how many cache

ways from the most recently used (MRU) position, it can decide the number of

ways to be active. This approach has advantages and disadvantages over RACR

approach. Since it monitors the actual run-time behavior, it can more precisely

estimate the real working set size, while RACR estimates the maximum working

set size. However, it has run-time overhead for maintaining a stack and counters

per cache accesses in sampled sets. In sum, cache sampling can be more precise,

but it has more overhead than RACR.

Virtual memory We assumed that GPUs use a future fully shared virtual

memory system in the heterogeneous architecture. We believe that our proposal

works well in a fully shared virtual memory space, as our “region” is identified

and tagged during the virtual-to-physical address translation.

7.4 Evaluation Methodology

7.4.1 Simulator

We evaluate the GREEN cache by extending MacSim simulator [45]. Also, we

model a GPU core that is similar to a modern GPU core. Detailed configurations

of our baseline design are shown in Table 20. Note that we conservatively model

a small, 4MB L2 cache, while a state-of-the-art integrated GPU in Intel’s Haswell

products has a 128 MB L4 cache [48].

Table 20: Evaluated GPU configurations.

GPU Core 1.2 GHz, 12 cores, in-order, 32 SIMD width

Cache
4-way 32KB L1 cache with 64B lines (write-back)
16-way 4MB L2 cache with 64B lines (write-back)
Shared memory, texture memory, constant cache

DRAM 1600 MHz, 4 memory controllers

147

7.4.2 GPU Power Model

In addition to functional and timing models, we need a power model to show

the benefit of the proposal. For this reason, we have developed a GPU power

model using Energy Introspector [1], which is based on McPAT [78], and extend

MacSim with this model. We faithfully considered all possible GPU architectural

components and performed very detailed parameter space explorations and

validations by comparing it with real graphics cards. We also attempted to validate

leakage by selectively turning on a small subset of GPU cores and varying the

frequency. We did our best to correlate power numbers against the measured data

on real hardware.

7.4.3 Benchmarks

To quantify the performance and power results of the proposals, we use a total

of 32 benchmarks from NVIDIA SDK, Rodinia [20], and Parboil [137] suites. To

help readers understand the property of these applications, we listed in Table 21

the number of regions, summation of all region sizes, number of misses per

thousand SIMD instructions (MPKI), and both full and abbreviated names for each

benchmark.

7.4.4 Evaluation Metric

In this section, to help readers to understand the simulation results clearly, we

clarify some metrics used in the result. First, cache access is defined in Eq. (25).

The number of cache accesses, which is highly correlated with the dynamic cache

energy consumption, consists of two types: access and insertion. One cache

hit requires one access, but one cache miss requires two accesses: one access

(miss access) to check the existence of a cache line and the other to fill a cache line

148

Table 21: Benchmark list.

Benchmark Abr.
Avg. Region size

MPKI
#

per kernel (MB) Region

backprop BP 6.88 15.8 3
bfs BFS 37.19 10.0 4
cfd CFD 29.26 165.8 4

hotspot HS 3.00 11.5 3
lud LUD 0.25 3.5 1

pathfinder PF 38.53 40.6 3
srad-v1 S1 7.02 73.0 10
srad-v2 S2 96.00 69.2 6

streamcluster SC 66.82 220.0 5

cutcp CC 38.34 0.22 2
lbm LBM 370.3 391.6 2
mri-q MQ 3.36 0.58 5
sad SAD 8.59 26.65 3

sgemm SG 3.36 6.6 3
spmv SP 29.49 209.6 5
stencil ST 128 53.2 2

blackscholes BS 76.29 134.5 5
fdtd3d FD 128.00 44.5 2

mersennetwister MT 91.63 51.3 2
montecarlo MC 1.05 0.43 2
sobolqrng SQ 38.16 76.8 2

binomialoptions BO 8.09 0.16 2
convolutionseparable CS 108.00 86.7 2
convolutiontexture CT 38.69 45.8 2

dxtc DX 1.13 0.07 3
eigenvalues EV 0.10 0.01 10

fastwalshtransform FW 64.00 177.8 1
histogram HI 72.00 54.1 2
mergesort MS 96.50 21.6 6

quasirandomgenerator QG 12.00 18.3 1
radixsort RS 16.03 118.5 6
reduction RE 64.00 307.8 2

149

(miss fill) from the lower-level cache or off-chip memory.6

cache access = hit +miss access+miss fill (25)

Second, we define active cache size as shown in Eq. (27). Average active cache

size is same as the average cache usage, which is a good proxy for the leakage

power of a cache. To calculate this metric, we first measure ratioi as in Eq. (26), the

normalized execution time in which only iways (out of N total ways) are enabled.

Based on this metric, we calculate active cache size by calculating the weighted

average as in Eq. (27).

ratioi =
cycles with i ways

total simulation cycles
(26)

active cache size =

N
∑

i=1

ratioi × i

N
× 100 (27)

, where N is the number of cache ways

7.5 Evaluation Results

7.5.1 Region-Aware Caching Results

In this section, we evaluate RAC from various aspects: performance, the number

of cache accesses, and energy consumption. Before explaining the result, we first

want to clarify that some benchmarks (BFS, HS, LUD, PF, SAD, MC, BO, DX, EV, and FW)

do not show any difference with RAC because these applications have a decent

cache hit rate in both L1 and L2 caches. As a result, no region or memory object

is selected to bypass any cache hierarchy. Note that we do not show the result

of these benchmarks in detail due to space constraints, but we do include these

results when we calculate the average.

6We found that energy consumptions of cache read and write are very similar from the output
of Cacti [44].

150

First, we analyze the number of cache accesses, which is defined in Eq. (25).

Figure 56 (a) shows that we can remove a significant number of unnecessary cache

accesses across a wide range of applications. For example, we can save almost

all the dynamic energy of L1 and L2 caches in SQ. Although its working set size

is huge (38.16 MB in Table 21), RAC identifies that no region has a high hit rate

and removes unnecessary energy consumption on cache lookups and insertions.

On average, RAC reduces L1 and L2 accesses, thereby reducing dynamic energy

consumption, by 55% and 44%, respectively, across 32 benchmarks.

-20

0

20

40

60

80

100

B
P

C
F
D S
1

S
2

S
C

C
C

L
B
M

M
Q

S
G S
P

S
T

B
S

F
D

M
T

S
Q

C
S

C
T

F
W H
I

M
S

Q
G R
S

R
E

A
V
G

A
L
LC

a
ch

e
 a

cc
e

ss
 r

e
d

tn
.

(%
) L1 L2

(a) Cache access reduction (%) defined in Eq. (25)

-10

0

10

20

30

B
P

C
F

D S
1

S
2

S
C

C
C

L
B

M

M
Q

S
G S
P

S
T

B
S

F
D

M
T

S
Q C
S

C
T

F
W H

I

M
S

Q
G R
S

R
E

A
V

G

A
L

L

Power saving ED^2P reduction

(b) Total system energy savings (%) and ED2P reduction (%)

Figure 56: The evaluation of RAC (AVG: the average of 23 benchmarks shown in

the figure, ALL: all 32 benchmarks).

However, if RAC degrades performance or increases the number of off-chip

accesses, the energy efficiency of a system may decrease. Therefore, RAC should

not lead to these side-effects. To understand whether RAC incurs any negative

effect, we measured the overall performance and the number of off-chip accesses.

151

We found that only four out of 32 benchmarks (LBM, SG, CS, and FW) show greater

than a 2% performance degradation. Among them, RAC increased the number of

off-chip accesses when a GPU runs LBM or CS. As a result, their performance was

also degraded. However, we found that the performance degradation for the other

two benchmarks was not caused by the increased number of off-chip accesses but

rather was caused by the altered memory access pattern, which led to more bank

conflicts in caches and bank/row conflicts in DRAM memory. Note that although

the number of off-chip accesses in the MQ benchmark is significantly increased by

39.6%, the absolute number of off-chip accesses is much smaller than that of L1

and L2 cache accesses (MPKI of MQ in Table 21 is very small). Thus, it does not

affect the overall energy consumption and performance.

Figure 56 (b) shows the overall system energy savings and energy-delay2

product (ED2P) reduction by RAC. Note that this result includes the energy

consumption of all components including proposed mechanisms and off-chip

accesses. Although we found some benchmarks with performance degradation,

only SG shows increased energy consumption and ED2P. On average, RAC shows

a 4.8% of total energy savings and a 4.5% ED2P reduction. In particular, the S1

benchmark shows the most benefits of 16.9% and 28.4% total energy savings and

ED2P reduction, respectively.

7.5.1.1 Training Period Sensitivity of RAC

Another question that we were interested in was how long we should train the

mechanism. The length of the training period in RAC may have a significant

impact on performance and energy consumption. If the training period is too

short and an application requires a fairly long time to warm up the cache, training

with limited information can lead to a wrong decision. As a consequence of the

wrong decision, RAC may increase the number of off-chip accesses, resulting in

152

degraded performance and increased energy consumption. On the contrary, if the

training period is too long, RAC could capture the right cache behavior, but it may

lose more opportunity to save energy. Due to these motivations, we performed

a sensitivity study in this section. The results of the sensitivity study are well

captured in Figure 57.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Performance Off-chip access L1 access L2 access

N
o

rm
a

li
z

e
d

 t
o

 t
h

e

b
a

s
e

li
n

e

10k 50k 100k 200k

Figure 57: Training period sensitivity of RAC .

This result clearly shows the following trends: 1) When we have a training

period that is too short (10,000 cycles), misprediction is more likely to happen.

As a result, we can observe that the number of off-chip accesses has significantly

increased, which leads to a performance degradation; 2) When we have a training

period that is too long (200,000 cycles), we lose opportunities for dynamic cache

energy savings. From this study, we concluded that the training period of 100,000

cycles is reasonable considering these trade-offs.

7.5.2 Region-Aware Cache Resizing Results

We evaluate RACR in this section. As explained in Section 7.3.4, we have two

types of RACR technique: RACR-Naı̈ve and RACR-Bypass. RACR-Naı̈ve can be

effective only if the original working set size of an application is less than the L2

cache size, but RACR-Bypass provides additional leakage energy savings on top

of the dynamic energy savings provided by RAC. If many regions have not shown

cache-friendly behavior and the aggregated working set size is less than the L2

153

cache size, we can further reduce the leakage energy of the L2 cache. RACR results

are shown in Figure 58. Note that some benchmarks, BP, PF, S2, SC, CC, SAD, SG,

SC, FD, BO, and CT, do not benefit from RACR-Naı̈ve or RACR-Bypass since these

applications have a working size greater than the L2 size and RAC cannot reduce

a working set size smaller than the cache size. We do not show the result of these

benchmarks due to space constraints, but we do account for these applications for

the average numbers.

First, we analyze the effectiveness of RACR. Figure 58 (a) shows the normalized

active cache size. Because we normalized active cache size to a fully enabled cache

as in Eq. (27), the result will be onewhen there is no benefit to using RACR and zero

when all cache ways are turned off. In general, energy savings by RACR-Bypass

are more effective than by RACR-Naı̈ve. Interestingly, we found four applications,

HS, LUD, MC, and EV, with better benefits using RACR-Naı̈ve than RACR-Bypass.

We analyzed these cases and made the following observation: These applications

consist of multiple short kernels. Unfortunately, the training period for RACR-

Bypass is similar or longer than the entire kernel execution time. Consequently,

the amount of time that these applications run under RACR-Bypass is very short,

thereby limiting the benefit of RACR-Bypass. On the other hand, because RACR-

Naı̈ve is applied from the beginning of the kernel execution, RACR-Naı̈ve ends

up saving more leakage energy. In addition, RACR, which combines RACR-Naı̈ve

and RACR-Bypass, turns out to be effective in 21 benchmarks and saves leakage

energy in the L2 cache by 38% on average for all 32 benchmarks.

We also examined whether cache resizing ends up degrading overall per-

formance. We found that none of the applications shows greater than a 5%

performance degradation, and only four benchmarks (BFS, S1, CS, and FW) suffer

from more than 2% performance degradation. It turns out that the performance

degradation was caused by the increased conflict cache misses. For example, if

154

0

0.2

0.4

0.6

0.8

1

1.2

B
F

S

C
F

D

H
S

L
U

D S
1

L
B

M

M
Q S
P

B
S

M
T

M
C

S
Q C
S

D
X

E
V

F
W H

I

M
S

Q
G R
S

R
E

A
V

G

A
L

L

N
o

rm
a

li
z

e
d

 a
ct

iv
e

ca
ch

e
 s

iz
e

RACR-Naïve RACR-Bypass RACR

(a) Normalized active cache size defined in Eq. (27)

0

5

10

15

B
F
S

C
F
D

H
S

L
U
D S
1

L
B
M

M
Q S
P

B
S

M
T

M
C

S
Q C
S

D
X

E
V

F
W H
I

M
S

Q
G R
S

R
E

A
V
G

A
L
L

E
n

e
rg

y
 s

a
v

in
g

s
(%

) RACR-Naïve

RACR-Bypass

RACR

(b) Total system energy savings (%)

-5

0

5

10

15

20

B
F

S

C
F

D

H
S

L
U

D S
1

L
B

M

M
Q S
P

B
S

M
T

M
C

S
Q C
S

D
X

E
V

F
W H

I

M
S

Q
G R
S

R
E

A
V

G

A
L

L

E
D

^
2

P
 r

e
d

u
ct

io
n

 (
%

) RACR-Naïve

RACR-Bypass

RACR

(c) ED2P reduction (%)

Figure 58: The evaluation of RACR (AVG: the average of 21 benchmarks shown

in the figure, ALL: all 32 benchmarks).

155

an application utilizes only a few hot cache sets, the reduced associativity will

increase the number of conflict misses. However, note that these benchmarks do

not increase energy consumption due to greater leakage energy savings, as shown

in Figure 58 (b). As a result, the ED2P result in Figure 58 (c) for these benchmarks

is decreased by at most 4%, while other benchmarks do not show negative cases.

Overall, RACR can save a total of 3% system energy and improve ED2P by 2.6%

on average across 32 benchmarks.

7.5.3 Putting It All Together

In this section, we now show the result of the GREEN cache, which combines

RAC and RACR, and evaluate the benefit of the GREEN cache using the following

metrics:

• L1 dynamic power savings (L1 Dyn) in % by RAC

• L2 dynamic power savings (L2 Dyn) in % by RAC

• L2 leakage power savings (L2 Leak) in % by RACR

• Total cache (Cache) and system (Total) power savings in % by the GREEN

cache

• Performance improvements (Perf) and # off-chip accesses increased (Off-

chip) in % by the GREEN cache

Note that we apply the dynamic cache resizing mechanism only in the

L2 cache as explained, so the mechanism does not reduce L1 leakage energy.

Figure 59 shows the result. Across a wide range of applications (total 32 GPGPU

applications), the GREEN cache shows a huge benefit in each energy-savings

category while not hurting performance and not incurring extra off-chip accesses.

On average, the GREEN cache can save 56% of L1 dynamic energy (L1 Dyn),

156

39% of L2 dynamic energy (L2 Dyn), and 50% of L2 leakage energy (L2 Leak),

which eventually leads to a 29.5% (Cache) and 8.5% (Energy) energy savings in

caches and total system, respectively. Meanwhile, we observe a 0.6% performance

degradation (Perf.) and 0.4% extra off-chip accesses (Off-chip).

55.8

39.4

50.4

29.5

8.5

-0.6

0.4

-10

0

10

20

30

40

50

60

L1 Dyn L2 Dyn L2 Leak Cache Energy Perf. Off-chip

Figure 59: GREEN cache - putting it all together.

7.5.4 Multiple GPU Applications

In this section, we evaluate the extensions of the GREEN cache that support GPUs

with multiple applications (Section 7.3.6). For evaluations, we use 20 pairs of GPU

applications where each pair was randomly chosen, and we use the weighted

speedup metric [127] as defined in Eq. (28). For clarity, we list all evaluated

mechanisms with their abbreviated names in Table 22.

wspeedup =
N
∑

i

IPCshared
i

IPCalone
i

(28)

, where N is the number of applications

We first show the average performance improvements of these 20 workload

pairs with different mechanisms in Figure 60 (a). Interestingly, overall per-

formance turns out to be insensitive to cache partitioning schemes. Clearly,

this is very different from observations made by cache partitioning studies

for CPU workloads, but we realize that these results are consistent with the

157

Table 22: List of mechanisms for multi-app experiments.

Abr. Mechanism Ref.

Base Baseline LRU cache
8:8 8:8 static cache partitioning
UCP Utility-based cache partitioning [120]
RRIP Re-reference interval prediction [58]

GREEN Original GREEN cache Sec. 7.3
GPAR GREEN cache with dynamic cache partitioning Sec. 7.3.6
U R UCP with RAC Sec. 7.3.6
R R RRIP with RAC Sec. 7.3.6

previous observations from Figure 58: We can resize the cache without affecting

performance much. As long as the cache can provide enough capacity for those

cache-friendly regions, the GPGPU workload is less sensitive to the underlying

cache mechanism. However, we found that UCP and RRIP show 11% and 7%

maximum performance improvement, respectively, in a few cases although the

average performance improvements are less than 1%. With the RAC-integrated

mechanisms (U R and R R), these extensions show a similar maximum and

average benefits with their counterpart. On the other hand, GREEN and GPAR

show slightly less overall and maximum improvements than other mechanisms.

Regarding the number of off-chip access changes, overall changes in all

mechanisms are negligible, but we found that some cases reduce the off-chip traffic

by more than 20% compared to the baseline. Although changes in performance

and the number of off-chip accesses are negligible, the dynamic and static cache

energy savings from the GREEN cache is significant, as shown in Figure 60 (b).

Previous mechanisms can save dynamic energy only if they can reduce the number

of cache misses and off-chip accesses, while extensions of the GREEN cache can

save energy by selectively caching memory accesses. As shown, static partitioning

(8:8), UCP, and RRIP do not lead to significant energy savings. On the contrary,

all GREEN extensions show a significant (around a 50%) dynamic energy savings.

158

-1

-0.5

0

0.5

1

1.5

8:8 UCP RRIP GREEN GPAR U_R R_R

P
e

rf
.

Im
p

rv
.

(%
) Perf. Off-chip

(a) Performance improvements (Weighted speedup in %) and
off-chip access decrease (%) compared to Base

-10

0

10

20

30

40

50

60

8:8 UCP RRIP GREEN GPAR U_R R_R

E
n

e
rg

y
 s

a
v

in
g

s
(%

)

Dynamic

Static

(b) Cache energy saving (%) compared to Base

Figure 60: Multiple application evaluations.

However, the GREEN cache shows less effectiveness for the static energy savings

due to the increase in aggregated working set size frommultiple applications. This

is an obvious limitation of RACR-Naı̈ve, but may not be for RACR-Bypass since it

can be effective if many memory regions are set to bypass due to unfruitful cache

activities. In summary, as shown in Figure 60 (b), GREEN and GPAR, which use

RACR, show 12.7% and 9.8% average static cache energy savings, respectively,

across 20 workload pairs.

From this experiment, we conclude that the GREEN cache can be an energy-

efficient solution even in multiple-application environment. Furthermore, we

found that the GREEN cache works synergistically with previously proposed,

performance-oriented cache partitioning methods.

159

7.6 Summary of This Chapter

In this chapter, we propose utilizing existing semantic information of the OpenCL

programming model for building an energy-efficient cache hierarchy, especially

in the heterogeneous architecture where CPUs and GPUs share a large on-chip

cache. To demonstrate good opportunities for the cross-layer optimization, we

first profiled GPGPU applications and found that cache hit rate stays almost

constant within a neighboring region of memory while it widely varies across

different regions of memory. Then, we found that different levels of cache hit

rates highly correlate with different memory objects of the GPGPU application.

Based on these findings, we proposed two techniques: region-aware caching (RAC)

and region-aware cache resizing (RACR). RAC selectively caches a subset of memory

objects, and RACR disables a subset of a set-associative cache so that it is just

large enough to hold the aggregate working set of cache-friendly memory regions.

With these dynamic and leakage energy saving techniques, we found that our

proposal, the GREEN cache, can save 56% and 39% of dynamic energy in the

L1 and L2 caches, respectively, and 50% of leakage energy in the L2 cache with

practically no performance degradation. We also proposed several extensions of

the GREEN cache for GPUs with multiple applications, and these extensions show

effectiveness.

160

CHAPTER VIII

CONCLUSION AND FUTURE RESEARCH DIRECTION

8.1 Conclusion

The need for better performance, and power/energy efficient computing brought

the advent of heterogeneous chip-multiprocessors (HCMPs) and they become the

mainstream computing platform. However, due to the heterogeneity of cores in

HCMPs, different aspects of resource sharing problems appeared, in particular the

effect of thread-level parallelism and significant interference caused by GPU cores.

In order to tackle the problem, we present four resource sharing mechanisms: (1)

thread-level parallelism-aware cache management, (2) adaptive virtual channel

partitioning, (3) dynamic frequency regulating mechanism, and (4) region-aware

energy-efficient GPU cache mechanism, that exploit the different characteristics of

CPU and GPU cores.

• Chapter IV presents a cache-sharing mechanism called TLP-aware cache

management policy (TAP). Due to the abundant thread-level parallelism

(TLP) of GPU cores, cache relatedmetrics, such asmisses per kilo instructions

(MPKI), can often be misleading. Also, due to the excessive cache accesses

from GPU applications, CPU applications are often unnecessarily penalized.

In order to identify the effect of TLP on caches, a core sampling technique

is proposed. Moreover, cache block lifetime normalization is also proposed

to consider the different degree of cache accesses to isolate the interference

caused by GPUs. These two TAP mechanisms are applied to two previous

mechanisms, utility-based cache partitioning (UCP) and re-reference interval

prediction (RRIP).

161

• Chapter V describes adaptive virtual channel partitioning for the on-chip

interconnection network. We observe that memory requests consume a

significant amount of time in the network, in particular in the injection

queues. In order to solve the network contention problem, we apply a

resource partitioning technique to the virtual channels of the router. Routers

usually have multiple virtual channels and all cores (or applications) share

the VCs in routers attached to the memory system (caches and memory

controllers). Under VCP, multiple VCs are partitioned to CPU and GPU

cores, so that packets can only use the corresponding type of VC to isolate

the interference. In addition, we claim that separate injection queues for CPU

and GPU cores should be used and DAMQ is used to implement them. VCP

enables simple and cheap packet arbitrations in a router while supplying a

more balanced number of packets from CPU and GPU cores to the network.

• Chapter VI describes a dynamic frequency regulating mechanism (DyFR).

The DVFS technique is typically employed to save power or optimize

performance within a power budget. On the contrary, DyFR uses the DVFS

technique to mitigate the inter-application interference caused by memory-

intensive applications. In addition, DyFR also considers the frequency-

scalability of applications. Based on the interference and application

characteristics, core clock frequencies are dynamically adjusted. Then, the

memory clock frequency is automatically controlled based on the available

power budget. We introduce two different DyFR modes: power-saving

and high-performance based on how the remaining power for the memory

should be utilized. DyFR overcomes the limitations of previous mechanisms:

1) when resource contention does not exist and 2) when core resources

waste power and energy due to idling. DyFR achieves both performance

improvement and energy efficiency.

162

• Chapter VII proposes a GREEN (GPU region-aware energy-efficient non-

inclusive) cache to effectively utilize a large shared last-level cache by GPU

cores in HCMPs. Conventional discrete GPU systems have only a small

capacity of last-level caches, but much larger caches are now available for the

GPU since GPU cores are integrated into the HCMPs. The last-level caches

in this architecture are not optimized for GPU applications, so the energy-

efficiency of caches used by GPU cores can be decreased. Consequently, we

propose two mechanisms: RAC (region-aware caching) and RACR (region-

aware cache resizing), to save static and dynamic cache energies. The

intuition of GREEN cache is that the GPUs employ disciplined programming

and memory models for achieving better parallel performance, so it allows

us to perform semantic-aware optimizations easily.

8.2 Future Research Direction

8.2.1 Future Work for TAP

In Chapter 4, we consider only the workload that consists of one GPU application

and multiple multi-programmed CPU workloads. However, more diverse

workloads can be running on HCMPs, for example OpenCL [111] like applications

that utilize both CPU and GPU cores, GPU applications with multi-threaded CPU

applications, and multiple GPU applications running on GPU cores. Since it is

important that TAP can adapt well to various workloads, we will discover other

behaviors in different workloads in future work.

8.2.2 Future Work for VCP

As discussed in Sections 5.3.3.3 and 5.3.6, sampling-based mechanisms can

provide a simple and cheap solution, but they also have some drawbacks. A

better solution could be to rely on a statistical or analytical model-based approach.

There is a rich body of work on previous mechanisms that model traffic patterns

163

using statistical models. If we can combine the traffic model with the GPU

performance model, we can completely remove the sampling and acquire more

benefits. However, modeling such behavior for the heterogeneous architecture is

not trivial and we have to construct a different performance model for the CPU,

GPU, and the network.

In addition, as shown in Sections 5.5.4 (different router arbitration policies)

and 5.5.6 (adaptive routing mechanism), VCP can be combined with other

NoC mechanisms because it is orthogonal to others. We can consider adaptive

routing mechanisms, packet arbitrations, source throttling, congestion control

mechanisms, and many others to combine with VCP to be more effective.

8.2.3 Future Work for DyFR

Temperature is also very important factor that affects power. Each component has

thermal headroom and the frequencywill be throttled downwhen the temperature

exceeds the headroom. Higher voltage/frequency increases the temperature and

higher temperature in turn increases power consumption. A recent proposal by

Paul et al. [114] considers both thermal and performance coupling. In HCMPs, the

heat dissipation is exchanged between cores since they share the same die. As a

result, even if one type does not consume much power, its voltage/frequency can

be scaled down due to the heat dissipation by other cores. Consequently, DyFR

will consider the thermal effect in future work to be more accurate.

8.2.4 Future Work for GREEN Cache

In Chapter 7, we consider only how to utilize the shared last-level cache in an

energy-efficient manner for GPU cores. Moreover, we can apply the semantic-

aware caching mechanisms to partition cache space between CPU and GPU

applications, similar to the TAP mechanism. Once we identify the required cache

amount for the GPU using region-aware caching schemes, we can apply other

164

cache partitioning mechanisms such as UCP to partition cache space between CPU

applications. Since the semantic information can be easily given to the hardware

without extra cost, this approach can be a very inexpensive yet effective solution

for sharing the last-level cache between CPU and GPU cores.

8.2.5 Coordinated Resource Sharing

The eventual goal of this thesis is to design a coordinated system that combines

cache sharing (TAP), interconnection network (VCP), and frequency regulating

(DyFR) mechanisms. TAP and VCP are applied to different shared resources,

while DyFR controls the frequency of all components in HCMP. At a glance, these

mechanisms seem to be orthogonal to each other, but this is not true. First, the

cache and on-chip network are connected, so the behavior of one component

will affect that of the other component. For example, having better shared cache

management can reduce the number of cache misses, which in turn reduces the

number of network packets. Also, based on how packets are scheduled/traversed

from the network, cache sharing behavior will be affected as well. Second,

synchronization is necessary for all mechanisms. A sampling technique is used in

both TAP and VCP mechanisms and they rely on it to collect performance metrics

to determine the effect of a configuration. If voltage/frequency change is applied

in the middle of the sampling period, the outcome of sampling will be inaccurate.

As a result, sampling is likely to fail. Also, shared resource contention and inter-

application interference within them are affected by DyFR.

These reasons inspire the need for a coordinated (or synchronized) framework

for efficient resource sharing in heterogeneous chip multiprocessors that can

effectively consolidate the benefit of all proposed mechanisms.

165

REFERENCES

[1] “Energy Introspector,” Georgia Tech. http://manifold.gatech.edu/

projects/energy-introspector/.

[2] ABTS, D., JERGER, N. D. E., KIM, J., GIBSON, D., and LIPASTI, M. H.,
“Achieving predictable performance through better memory controller
placement in many-core cmps.,” in Proc. of the 31st annual Int’l. Symp. on
Computer Architecture, ISCA-31, (New York, NY, USA), pp. 451–461, ACM,
2009.

[3] ALBONESI, D., “Selective cache ways: On-demand cache resource allo-
cation,” in Proc. of the 32nd Int’l. Symp. on Microarchitecture, MICRO-32,
(Washington, DC, USA), pp. 248–259, IEEE Computer Society, 1999.

[4] AMD, “Phenom II key architectural features.”
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/

phenom-ii-key-architectural-features.aspx.

[5] AMD, “Fusion.” http://sites.amd.com/us/fusion/apu/Pages/fusion.

aspx, 2011.

[6] AMD, “Graphics Core Next (GCN).” http://www.amd.com/us/products/

technologies/gcn/Pages/gcn-architecture.aspx, 2012.

[7] ANNAVARAM, M., GROCHOWSKI, E., and SHEN, J., “Mitigating amdahl’s
law through epi throttling,” in Proc. of the 27th annual Int’l. Symp. on Computer
Architecture, ISCA-27, (Washington, DC, USA), pp. 298–309, IEEE Computer
Society, 2005.

[8] AUGONNET, C., CLET-ORTEGA, J., THIBAULT, S., and NAMYST, R., “Data-
aware task scheduling on multi-accelerator based platforms,” in Proc. of the
2010 IEEE 16th Int’l Conf. on Parallel and Distributed Systems, ICPADS’10,
(Washington, DC, USA), pp. 291–298, IEEE Computer Society, 2010.

[9] AUSAVARUNGNIRUN, R., LOH, G., CHANG, K., SUBRAMANIAN, L., and
MUTLU, O., “Staged memory scheduling: Achieving high performance and
scalability in heterogeneous systems,” in Proc. of the 34th annual Int’l. Symp.
on Computer Architecture, ISCA-34, (Piscataway, NJ, USA), pp. 416–427, IEEE
Press, 2012.

[10] BAKHODA, A., KIM, J., and AAMODT, T. M., “Throughput-effective on-
chip networks for manycore accelerators.,” in Proc. of the 43rd Int’l. Symp.
on Microarchitecture, MICRO-43, (Washington, DC, USA), pp. 421–432, IEEE
Computer Society, 2010.

166

http://manifold.gatech.edu/projects/energy-introspector/
http://manifold.gatech.edu/projects/energy-introspector/
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-key-architectural-features.aspx
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-key-architectural-features.aspx
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
http://www.amd.com/us/products/technologies/gcn/Pages/gcn-architecture.aspx
http://www.amd.com/us/products/technologies/gcn/Pages/gcn-architecture.aspx

[11] BALLAPURAM, C. S., SHARIF, A., and LEE, H.-H. S., “Exploiting access
semantics and program behavior to reduce snoop power in chip mul-
tiprocessors,” in Proc. of the 13th Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-XIII, (New York, NY,
USA), pp. 60–69, ACM, 2008.

[12] BASHIR, A., LI, J., IVATURY, K., KHAN, N., GALA, N., FAMILIA, N., and
MOHAMMED, Z., “Fast lock scheme for phase-locked loops,” in Proc. of
IEEE Custom Integrated Circuits Conference, CICC’09, (Washington, DC, USA),
pp. 319–322, IEEE Computer Society, 2009.

[13] BEIGNÉ, E., CLERMIDY, F., VIVET, P., CLOUARD, A., and RENAUDIN,
M., “An asynchronous noc architecture providing low latency service and
its multi-level design framework,” in Proc. of the 11th IEEE Int’l Symp.
on Asynchronous Circuits and Systems, ASYNC’05, (Washington, DC, USA),
pp. 54–63, IEEE Computer Society, 2005.

[14] BJERREGAARD, T. and MAHADEVAN, S., “A survey of research and practices
of network-on-chip,” ACM Computing Surveys, vol. 38, June 2006.

[15] BJERREGAARD, T. and SPARSØ, J., “A router architecture for connection-
oriented service guarantees in the mango clockless network-on-chip,” in
Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’05, (Washington, DC, USA), pp. 1226–1231, IEEE Computer Society,
2005.

[16] BOLOTIN, E., CIDON, I., GINOSAR, R., and KOLODNY, A., “Qnoc: Qos
architecture and design process for network on chip,” Journal of Systems
Architecture (JSA), vol. 50, no. 2–3, pp. 105–128, 2004.

[17] CHANG, D. W., JENKINS, C. D., GARCIA, P. C., GILANI, S. Z., AGUILERA,
P., NAGARAJAN, A., ANDERSON, M. J., KENNY, M. A., BAUER, S. M.,
SCHULTE, M. J., and COMPTON, K., “Ercbench: An open-source benchmark
suite for embedded and reconfigurable computing.,” in 20th Int’l Conf. on
Field Programmable Logic and Applications, FPL’10, (Washington, DC, USA),
pp. 408–413, IEEE Computer Society, 2010.

[18] CHANG, K. K.-W., AUSAVARUNGNIRUN, R., FALLIN, C., and MUTLU, O.,
“Hat: Heterogeneous adaptive throttling for on-chip networks,” in Proc. of
the 24th Int’l Symp. on Computer Architecture and High Performance, SBAC-
PAD’12, (Washington, DC, USA), pp. 1–10, IEEE Computer Society, 2012.

[19] CHAUDHURI, M., “Pseudo-LIFO: the foundation of a new family of
replacement policies for last-level caches,” in Proc. of the 42nd Int’l. Symp.
on Microarchitecture, MICRO-42, (New York, NY, USA), pp. 401–412, ACM,
2009.

167

[20] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W., LEE, S.-
H., and SKADRON, K., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. of the 2010 IEEE Int’l. Symp. on Workload Characterization,
IISWC’10, (Washington, DC, USA), pp. 44–54, IEEE, 2009.

[21] CHOI, Y. and PINKSTON, T. M., “Evaluation of queue designs for true
fully adaptive routers,” Journal of Parallel and Distributed Computing (JPDC),
vol. 64, no. 5, pp. 606–616, 2004.

[22] COCHRAN, R., HANKENDI, C., COSKUN, A. K., and REDA, S., “Pack & cap:
adaptive dvfs and thread packing under power caps,” in Proc. of the 44th
Int’l. Symp. on Microarchitecture, MICRO-44, (New York, NY, USA), pp. 175–
185, ACM, 2011.

[23] DALLY, W. and TOWLES, B., Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[24] DAS, R., MUTLU, O., MOSCIBRODA, T., and DAS, C. R., “Application-aware
prioritization mechanisms for on-chip networks,” in Proc. of the 42nd Int’l.
Symp. on Microarchitecture, MICRO-42, (New York, NY, USA), pp. 280–291,
ACM, 2009.

[25] DAS, R., MUTLU, O., MOSCIBRODA, T., and DAS, C. R., “Aérgia: exploiting
packet latency slack in on-chip networks,” in Proc. of the 32nd annual Int’l.
Symp. on Computer Architecture, ISCA-32, (New York, NY, USA), pp. 106–116,
ACM, 2010.

[26] DHODAPKAR, A. S. and SMITH, J. E., “Managing multi-configuration
hardware via dynamic working set analysis,” in Proc. of the 24th annual Int’l.
Symp. on Computer Architecture, ISCA-24, (Washington, DC, USA), pp. 233–
244, IEEE Computer Society, 2002.

[27] DIAMOS, G., KERR, A., YALAMANCHILI, S., and CLARK, N., “Ocelot:
A dynamic compiler for bulk-synchronous applications in heterogeneous
systems,” in Proc. of the 19th Int’l. Conf. on Parallel Architectures and
Compilation Techniques, PACT’10, (New York, NY, USA), ACM, 2010.

[28] DOBKIN, R. R., VISHNYAKOV, V., FRIEDMAN, E., and GINOSAR, R., “An
asynchronous router for multiple service levels networks on chip,” in Proc.
of the 11th IEEE Int’l Symp. on Asynchronous Circuits and Systems, ASYNC’05,
(Washington, DC, USA), pp. 44–53, IEEE Computer Society, 2005.

[29] DUATO, J., JOHNSON, I., FLICH, J., NAVEN, F., JAVIER, G. P., and FRINÓS,
T. N., “A new scalable and cost-effective congestion management strategy
for lossless multistage interconnection networks,” in Proc. of the 11st Int’l.
Symp. on High Performance Computer Architecture, HPCA-11, (Washington,
DC, USA), pp. 108–119, IEEE Computer Society, 2005.

168

[30] DUATO, J., YALAMANCHILI, S., and NI, L., Interconnection Networks: An
Engineering Approach. Los Alamitos, CA, USA: IEEE Computer Society Press,
1st ed., 1997.

[31] EVRIPIDOU, M., NICOPOULOS, C., SOTERIOU, V., and KIM, J., “Virtualizing
virtual channels for increased network-on-chip robustness and upgradeabil-
ity.,” in Proc. of IEEE Computer Society Annual Symp. on VLSI, ISVLSI’2012,
(Los Alamitos, CA, USA), pp. 21–26, IEEE Computer Society, 2012.

[32] FELTER, W., RAJAMANI, K., KELLER, T., and RUSU, C., “A performance-
conserving approach for reducing peak power consumption in server
systems,” in Proc. of the 19th Annual Int’l Conf. on Supercomputing, (New York,
NY, USA), pp. 293–302, ACM, 2005.

[33] GAUR, J., CHAUDHURI, M., and SUBRAMONEY, S., “Bypass and insertion
algorithms for exclusive last-level caches,” in Proc. of the 33rd annual Int’l.
Symp. on Computer Architecture, ISCA-33, (New York, NY, USA), pp. 81–92,
ACM, 2011.

[34] GHIASI, S., KELLER, T., and RAWSON, F., “Scheduling for heterogeneous
processors in server systems,” in Proc. of the 2nd Conf. on Computing Frontiers,
CF’05, (New York, NY, USA), pp. 199–210, ACM, 2005.

[35] GOOSSENS, K., WIELAGE, P., PEETERS, A., and VAN MEERBERGEN, J.,
“Networks on silicon: Combining best-effort and guaranteed services,” in
Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’02, (Washington, DC, USA), pp. 423–425, IEEE Computer Society,
2002.

[36] GOOSSENS, K., DIELISSEN, J., GANGWAL, O. P., PESTANA, S. G., RAD-
ULESCU, A., and RIJPKEMA, E., “A design flow for application-specific
networks on chip with guaranteed performance to accelerate soc design and
verification,” in Proc. of Design, Automation, and Test in Europe Conference and
Exhibition, DATE’05, (Washington, DC, USA), pp. 1182–1187, IEEE Computer
Society, 2005.

[37] GOOSSENS, K., DIELISSEN, J., and RADULESCU, A., “æthereal network on
chip: Concepts, architectures, and implementations,” IEEE Design and Test,
vol. 22, pp. 414–421, Sept. 2005.

[38] GREWE, D., WANG, Z., and O’BOYLE, M., “Portable mapping of data
parallel programs to opencl for heterogeneous systems,” in Proc. of the 2013
Int’l. Symp. on Code Generation and Optimization, CGO-10, (Los Alamitos, CA,
USA), pp. 1–10, IEEE Computer Society, 2013.

[39] GROT, B., HESTNESS, J., KECKLER, S. W., and MUTLU, O., “Kilo-noc:
a heterogeneous network-on-chip architecture for scalability and service

169

guarantees.,” in Proc. of the 33rd annual Int’l. Symp. on Computer Architecture,
ISCA-33, (New York, NY, USA), pp. 401–412, ACM, 2011.

[40] GROT, B., KECKLER, S. W., and MUTLU, O., “Preemptive virtual clock: a
flexible, efficient, and cost-effective qos scheme for networks-on-chip.,” in
Proc. of the 42nd Int’l. Symp. on Microarchitecture, MICRO-42, (New York, NY,
USA), pp. 268–279, ACM, 2009.

[41] HANSON, H., FELTER, W., HUANG, W., LEFURGY, C., RAJAMANI, K.,
RAWSON, F., and SILVA, G., “Processor-memory power shifting for multi-
core systems,” in Fourth Workshop on Energy-Efficient Design, WEED 2012, in
conjunction with ISCA., 2012.

[42] HANSSON, A., SUBBURAMAN, M., and GOOSSENS, K., “aelite: a flit-
synchronous network on chip with composable and predictable services,”
in Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’09, (3001 Leuven, Belgium, Belgium), pp. 250–255, European Design
and Automation Association, 2009.

[43] HARMANCI, M., ESCUDERO, N., LEBLEBICI, Y., and IENNE, P., “Quanti-
tative modelling and comparison of communication schemes to guarantee
quality-of-service in networks-on-chip,” in Proc. of 2005 IEEE Int’l Symp. on
Circuits and Systems, ISCAS 2005, vol. 2, (Piscataway, NJ, USA), pp. 1782–
1785, IEEE Press, 2005.

[44] HP LABS, “CACTI: An integrated cache and memory access time, cycle
time, area, leakage, and dynamic power model.” http://www.hpl.hp.com/

research/cacti/.

[45] HPARCH RESEARCH GROUP, “MacSim.” http://code.google.com/p/

macsim/, 2012.

[46] HU, J. and MARCULESCU, R., “Exploiting the routing flexibility for
energy/performance aware mapping of regular noc architectures.,” in Proc.
of Design, Automation, and Test in Europe Conference and Exhibition, DATE’03,
(Washington, DC, USA), pp. 688–693, IEEE Computer Society, 2003.

[47] HU, J. and MARCULESCU, R., “DyAD: smart routing for networks-on-
chip.,” in Proc. of the 41st annual Design Automation Conference, DAC’04, (New
York, NY, USA), pp. 260–263, ACM, 2004.

[48] INTEL, “Haswell.”
http://www.intel.com/content/www/us/en/processors/core/

4th-gen-core-processor-family.html.

[49] INTEL, “Ivy Bridge.”
http://www.intel.com/content/www/us/en/silicon-innovations/

intel-22nm-technology.html.

170

http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/
http://code.google.com/p/macsim/
http://code.google.com/p/macsim/
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-processor-family.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-22nm-technology.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-22nm-technology.html

[50] INTEL, “OpenSource HD Graphics Programmer’s Reference Manual Vol-
ume 4 Part 1,” https://01.org/linuxgraphics/sites/default/files/

documentation/ivb ihd os vol4 part1.pdf.

[51] INTEL, “OpenSource HD Graphics Programmer’s Reference Manual Vol-
ume 4 Part 3,” https://01.org/linuxgraphics/sites/default/files/

documentation/ivb ihd os vol4 part3.pdf.

[52] INTEL, “Sandy Bridge.”
http://software.intel.com/en-us/articles/sandy-bridge/.

[53] INTEL, “Turbo boost tecnhology.”
http://www.intel.com/content/www/us/en/architecture-and-technology/

turbo-boost/turbo-boost-technology.html.

[54] INTEL, Intel 64 and IA-32 Architectures Software Developer’s Manual, 2012.

[55] ISCI, C., BUYUKTOSUNOGLU, A., CHER, C.-Y., BOSE, P., and MARTONOSI,
M., “An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in Proc. of the 39th Int’l.
Symp. on Microarchitecture, MICRO-39, (Washington, DC, USA), pp. 347–358,
IEEE Computer Society, 2006.

[56] JABLIN, T. B., PRABHU, P., JABLIN, J. A., JOHNSON, N. P., BEARD, S. R.,
and AUGUST, D. I., “Automatic cpu-gpu communication management and
optimization,” in Proc. of the ACM SIGPLAN 2011 Conf. on Programming
Language Design and Implementation, (New York, NY, USA), pp. 142–151,
ACM, 2011.

[57] JALEEL, A., HASENPLAUGH, W., QURESHI, M., SEBOT, J., STEELY, JR., S.,
and EMER, J., “Adaptive insertion policies for managing shared caches,” in
Proc. of the 17th Int’l. Conf. on Parallel Architectures and Compilation Techniques,
PACT’08, (New York, NY, USA), pp. 208–219, ACM, 2008.

[58] JALEEL, A., THEOBALD, K. B., STEELY, JR., S. C., and EMER, J., “High per-
formance cache replacement using re-reference interval prediction (RRIP),”
in Proc. of the 32nd annual Int’l. Symp. on Computer Architecture, ISCA-32, (New
York, NY, USA), pp. 60–71, ACM, 2010.

[59] JEONG, M. K., EREZ, M., SUDANTHI, C., and PAVER, N., “A qos-aware
memory controller for dynamically balancing gpu and cpu bandwidth use in
an mpsoc,” in Proc. of the 49th annual Design Automation Conference, DAC’12,
(New York, NY, USA), pp. 850–855, ACM, 2012.

[60] JIMÉNEZ, D. A. and LIN, C., “Dynamic branch prediction with per-
ceptrons,” in Proc. of the 7th Int’l. Symp. on High Performance Computer
Architecture, HPCA-7, (Washington, DC, USA), pp. 197–206, IEEE Computer
Society, 2001.

171

https://01.org/linuxgraphics/sites/default/files/documentation/ivb_ihd_os_vol4_part1.pdf
https://01.org/linuxgraphics/sites/default/files/documentation/ivb_ihd_os_vol4_part1.pdf
https://01.org/linuxgraphics/sites/default/files/documentation/ivb_ihd_os_vol4_part3.pdf
https://01.org/linuxgraphics/sites/default/files/documentation/ivb_ihd_os_vol4_part3.pdf
http://software.intel.com/en-us/articles/sandy-bridge/
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

[61] JIMÉNEZ, V. J., VILANOVA, L., GELADO, I., GIL, M., FURSIN, G., and
NAVARRO, N., “Predictive runtime code scheduling for heterogeneous
architectures,” in Proc. of the 4th Int’l Conf. on High Perf. Embedded Architecture
and cCompilers, HiPEAC’09, (Berlin, Heidelberg), pp. 19–33, Springer-Verlag,
2009.

[62] J.NESBIT, K. and E.SMITH, J., “Data cache prefetching using a global
history buffer,” in Proc. of the 10th Int’l. Symp. on High Performance Computer
Architecture, HPCA-10, (Washington, DC, USA), pp. 96–105, IEEE Computer
Society, 2004.

[63] JOHNSON, T. L. and MEI W. HWU, W., “Run-time adaptive cache hierarchy
management via reference analysis.,” in Proc. of the 19th annual Int’l. Symp.
on Computer Architecture, ISCA-19, (New York, NY, USA), pp. 315–326, ACM,
1997.

[64] KHARBUTLI, M. and SOLIHIN, Y., “Counter-based cache replacement and
bypassing algorithms.,” IEEE Trans. Computers, vol. 57, no. 4, pp. 433–447,
2008.

[65] KIM, S., CHANDRA, D., and SOLIHIN, Y., “Fair cache sharing and partition-
ing in a chip multiprocessor architecture,” in Proc. of the 13rd Int’l. Conf. on
Parallel Architectures and Compilation Techniques, PACT’04, (Washington, DC,
USA), pp. 111–122, IEEE Computer Society, 2004.

[66] KIM, Y., HAN, D., MUTLU, O., and HARCHOL-BALTER, M., “ATLAS: A
scalable and high-performance scheduling algorithm for multiple memory
controllers,” in Proc. of the 16th Int’l. Symp. on High Performance Computer
Architecture, HPCA-16, (Washington, DC, USA), pp. 1–12, IEEE Computer
Society, 2010.

[67] KIM, Y., PAPAMICHAEL, M., MUTLU, O., and HARCHOL-BALTER, M.,
“Thread cluster memory scheduling: Exploiting differences in memory
access behavior,” in Proc. of the 43rd Int’l. Symp. on Microarchitecture, MICRO-
43, (Washington, DC, USA), pp. 65–76, IEEE, 2010.

[68] LAI, M., WANG, Z., GAO, L., LU, H., and DAI, K., “A dynamically-allocated
virtual channel architecture with congestion awareness for on-chip routers,”
in Proc. of the 45th annual Design Automation Conference, DAC’08, (New York,
NY, USA), pp. 630–633, ACM, 2008.

[69] LEE, H. and TYSON, G., “Region-based caching: an energy-delay efficient
memory architecture for embedded processors,” in Proc. of the 2000 Int’l Con.f
on Compilers, architecture, and synthesis for embedded systems, CASES’00, (New
York, NY, USA), pp. 120–127, ACM, 2000.

[70] LEE, H.-H. S. and BALLAPURAM, C. S., “Energy efficient d-tlb and data
cache using semantic-aware multilateral partitioning,” in Proc. of the 2003

172

Int’l Symp. on Low Power Electronics and Design, ISLPED’03, (New York, NY,
USA), pp. 306–311, ACM, 2003.

[71] LEE, J. W., NG, M. C., and ASANOVIC, K., “Globally-synchronized frames
for guaranteed quality-of-service in on-chip networks,” in Proc. of the 30th
annual Int’l. Symp. on Computer Architecture, ISCA-30, (Washington, DC,
USA), pp. 89–100, IEEE Computer Society, 2008.

[72] LEE, J. and KIM, H., “TAP: A TLP-aware cache management policy for a
CPU-GPU heterogeneous architecture.,” in Proc. of the 18th Int’l. Symp. on
High Performance Computer Architecture, HPCA-18, (Washington, DC, USA),
pp. 91–102, IEEE Computer Society, 2012.

[73] LEE, J., LI, S., KIM, H., and YALAMANCHILI, S., “Adaptive virtual
channel partitioning for network-on-chip in heterogeneous architecture,”
ACM Trans. Design Autom. Electr. Syst. (TODAES), vol. 1, no. PrePrints, 2013.

[74] LEE, J., SATHISHA, V., SCHULTE, M., COMPTON, K., and KIM, N. S.,
“Improving throughput of power-constrained gpus using dynamic volt-
age/frequency and core scaling,” in Proc. of the 20th Int’l. Conf. on Parallel
Architectures and Compilation Techniques, PACT’11, (Washington, DC, USA),
pp. 111–120, IEEE Computer Society, 2011.

[75] LEE, S. and SAKURAI, T., “Run-time voltage hopping for low-power real-
time systems,” in Proc. of the 37th annual Design Automation Conference,
DAC’00, (New York, NY, USA), pp. 806–809, ACM, 2000.

[76] LEUNG, L.-F. and TSUI, C.-Y., “Optimal link scheduling on improving best-
effort and guaranteed services performance in network-on-chip systems,” in
Proc. of the 43rd annual Design Automation Conference, DAC’06, (New York,
NY, USA), pp. 833–838, ACM, 2006.

[77] LI, J. and MARTÍNEZ, J. F., “Dynamic power-performance adaptation of
parallel computation on chip multiprocessors,” in Proc. of the 12nd Int’l.
Symp. on High Performance Computer Architecture, HPCA-12, (Washington,
DC, USA), pp. 77–87, IEEE Computer Society, 2006.

[78] LI, S., AHN, J. H., STRONG, R. D., BROCKMAN, J. B., TULLSEN, D. M.,
and JOUPPI, N. P., “Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. of the 42nd
Int’l. Symp. on Microarchitecture, MICRO-42, pp. 469–480, ACM, 2009.

[79] LIANG, J., LAFFELY, A., SRINIVASAN, S., and TESSIER, R., “An architecture
and compiler for scalable on-chip communication,” IEEE Trans. VLSI System
(TVLSI), vol. 12, no. 7, pp. 711–726, 2004.

[80] LIANG, J., SWAMINATHAN, S., and TESSIER, R., “asoc: A scalable, single-
chip communications architecture,” in Proc. of the 9th Int’l. Conf. on Parallel

173

Architectures and Compilation Techniques, PACT’00, (Washington, DC, USA),
pp. 37–46, IEEE Computer Society, 2000.

[81] LINDERMAN, M. D., COLLINS, J. D., WANG, H., and MENG, T. H., “Merge:
a programming model for heterogeneous multi-core systems,” in Proc. of
the 13th Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-XIII, (New York, NY, USA), pp. 287–296, ACM,
2008.

[82] LIU, C., LI, J., HUANG, W., RUBIO, J., SPEIGHT, E., and LIN, X., “Power-
efficient time-sensitive mapping in heterogeneous systems,” in Proc. of the
21st Int’l. Conf. on Parallel Architectures and Compilation Techniques, PACT’12,
(New York, NY, USA), pp. 23–32, ACM, 2012.

[83] LIU, F., JIANG, X., and SOLIHIN, Y., “Understanding how off-chip
memory bandwidth partitioning in chip multiprocessors affects system
performance,” in Proc. of the 16th Int’l. Symp. on High Performance Computer
Architecture, HPCA-16, (Washington, DC, USA), pp. 1 –12, IEEE Computer
Society, 2010.

[84] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A., LOWNEY,
G., WALLACE, S., REDDI, V. J., and HAZELWOOD, K., “Pin: building
customized program analysis tools with dynamic instrumentation,” in Proc.
of the ACM SIGPLAN 2005 Conf. on Programming Language Design and
Implementation, (New York, NY, USA), pp. 190–200, ACM, 2005. http://www.
pintool.org.

[85] LUK, C.-K., HONG, S., and KIM, H., “Qilin: exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping,” in Proc. of the 42nd
Int’l. Symp. onMicroarchitecture, MICRO-42, (New York, NY, USA), pp. 45–55,
ACM, 2009.

[86] MA, K., LI, X., CHEN, M., andWANG, X., “Scalable power control for many-
core architectures running multi-threaded applications,” in Proc. of the 33rd
annual Int’l. Symp. on Computer Architecture, ISCA-33, (New York, NY, USA),
pp. 449–460, ACM, 2011.

[87] MA, K. and WANG, X., “Pgcapping: exploiting power gating for power
capping and core lifetime balancing in cmps,” in Proc. of the 21st Int’l. Conf.
on Parallel Architectures and Compilation Techniques, PACT’12, (New York, NY,
USA), pp. 13–22, ACM, 2012.

[88] MA, K., WANG, X., and WANG, Y., “DPPC: Dynamic power partitioning
and capping in chip multiprocessors,” in Proc. of the 2011 IEEE 29th Int’l Conf.
on Computer Design, ICCD 2011, (Washington, DC, USA), pp. 39–44, IEEE
Computer Society, 2011.

174

http://www.pintool.org
http://www.pintool.org

[89] MA, S., JERGER, N. D. E., and WANG, Z., “Dbar: an efficient routing
algorithm to support multiple concurrent applications in networks-on-
chip.,” in Proc. of the 33rd annual Int’l. Symp. on Computer Architecture, ISCA-
33, (New York, NY, USA), pp. 413–424, ACM, 2011.

[90] MARCULESCU, R., OGRAS, U., PEH, L.-S., JERGER, N., and HOSKOTE, Y.,
“Outstanding research problems in noc design: System, microarchitecture,
and circuit perspectives,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 28, no. 1, pp. 3–21, 2009.

[91] MARESCAUX, T. and CORPORAAL, H., “Introducing the supergt network-
on-chip; supergt qos: more than just gt,” in Proc. of the 44th annual Design
Automation Conference, DAC’07, (New York, NY, USA), pp. 116–121, ACM,
2007.

[92] MENG, K., JOSEPH, R., DICK, R. P., and SHANG, L., “Multi-optimization
power management for chip multiprocessors,” in Proc. of the 17th Int’l. Conf.
on Parallel Architectures and Compilation Techniques, PACT’08, (New York, NY,
USA), pp. 177–186, ACM, 2008.

[93] MILLBERG, M., NILSSON, E., THID, R., and JANTSCH, A., “Guaranteed
bandwidth using looped containers in temporally disjoint networks within
the nostrum network on chip,” in Proc. of Design, Automation, and Test in
Europe Conference and Exhibition, DATE’04, (Washington, DC, USA), pp. 890–
895, IEEE Computer Society, 2004.

[94] MISHRA, A. K., SRIKANTAIAH, S., KANDEMIR, M., and DAS, C. R.,
“Cpm in cmps: Coordinated power management in chip-multiprocessors,”
in Proc. of the 2010 ACM/IEEE Int’l. Conf. for High Performance Computing,
Networking, Storage and Analysis, SC’10, (Washington, DC, USA), pp. 1–12,
IEEE Computer Society, 2010.

[95] MISHRA, A. K., VIJAYKRISHNAN, N., and DAS, C. R., “A case for
heterogeneous on-chip interconnects for CMPs,” in Proc. of the 33rd annual
Int’l. Symp. on Computer Architecture, ISCA-33, (New York, NY, USA),
pp. 389–400, ACM, 2011.

[96] MORETÓ, M., CAZORLA, F. J., RAMÍREZ, A., and VALERO, M., “MLP-
aware dynamic cache partitioning.,” in Proc. of the Int’l Conf. on High-
Performance Embedded Architectures and Compilers, HiPEAC’08, vol. 4917,
(Berlin, Heidelberg), pp. 337–352, Springer-Verlag, 2008.

[97] MUTLU, O. and MOSCIBRODA, T., “Stall-time fair memory access schedul-
ing for chip multiprocessors,” in Proc. of the 40th Int’l. Symp. on Microarchi-
tecture, MICRO-40, (Washington, DC, USA), pp. 146–160, IEEE Computer
Society, 2007.

175

[98] MUTLU, O. and MOSCIBRODA, T., “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram systems,” in Proc.
of the 30th annual Int’l. Symp. on Computer Architecture, ISCA-30, (Washington,
DC, USA), pp. 63–74, IEEE Computer Society, 2008.

[99] NESBIT, K. J., DHODAPKAR, A. S., and SMITH, J. E., “AC/DC: An adaptive
data cache prefetcher,” in Proc. of the 13rd Int’l. Conf. on Parallel Architectures
and Compilation Techniques, PACT’04, (Washington, DC, USA), pp. 135–145,
IEEE Computer Society, 2004.

[100] NICOPOULOS, C. A., PARK, D., KIM, J., VIJAYKRISHNAN, N., YOUSIF, M. S.,
and DAS, C. R., “Vichar: A dynamic virtual channel regulator for network-
on-chip routers,” in Proc. of the 39th Int’l. Symp. on Microarchitecture, MICRO-
39, (Washington, DC, USA), pp. 333–346, IEEE Computer Society, 2006.

[101] NILSSON, E., MILLBERG, M., ÖBERG, J., and JANTSCH, A., “Load
distribution with the proximity congestion awareness in a network on chip,”
in Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’03, (Washington, DC, USA), pp. 11126–11127, IEEE Computer Society,
2003.

[102] NVIDIA, “CUDA SDK 4.2.”
https://developer.nvidia.com/cuda-toolkit-42-archive.

[103] NVIDIA, “Fermi: Nvidia’s next generation cuda compute architecture.”
http://www.nvidia.com/fermi.

[104] NVIDIA, “Geforce 8800 graphics processors.”
http://www.nvidia.com/page/geforce 8800.html.

[105] NVIDIA, “Kepler compute architecture.”
http://www.nvidia.com/object/nvidia-kepler.html.

[106] NVIDIA, “Project denver.” http://blogs.nvidia.com/2011/01/

project-denver-processor-to-usher-in-new-era-of-computing/.

[107] NVIDIA, “Tegra APX Application Processors.”
http://www.nvidia.com/object/product tegra apx us.html.

[108] NVIDIA, PTX: Parallel Thread Execution ISA Version 2.3, 2011.

[109] NVIDIA Corporation, CUDA Programming Guide, V4.0.

[110] OGRAS, U. Y. and MARCULESCU, R., “Analysis and optimization of
prediction-based flow control in networks-on-chip,” ACM Trans. Design
Autom. Electr. Syst. (TODAES), vol. 13, no. 1, 2008.

[111] OPENCL, “The open standard for parallel programming of heterogeneous
systems.” http://www.khronos.org/opencl.

176

https://developer.nvidia.com/cuda-toolkit-42-archive
http://www.nvidia.com/fermi
http://www.nvidia.com/page/geforce_8800.html
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://www.nvidia.com/object/product_tegra_apx_us.html
http://www.khronos.org/opencl

[112] PARK, J., SHIN, D., CHANG, N., and PEDRAM, M., “Accurate modeling
and calculation of delay and energy overheads of dynamic voltage scaling in
modern high-performance microprocessors,” in Proc. of the 2010 Int’l Symp.
on Low Power Electronics and Design, ISPLED’10, (New York, NY, USA),
pp. 419–424, ACM, 2010.

[113] PATIL, H., COHN, R., CHARNEY, M., KAPOOR, R., SUN, A., and
KARUNANIDHI, A., “Pinpointing representative portions of large in-
tel®itanium®programs with dynamic instrumentation,” in Proc. of the 37th
Int’l. Symp. on Microarchitecture, MICRO-37, (Washington, DC, USA), pp. 81–
92, IEEE Computer Society, 2004.

[114] PAUL, I., MANNE, S., ARORA, M., BIRCHER, W. L., and YALAMANCHILI, S.,
“Cooperative boosting: Needy versus greedy power management,” in Proc.
of the 35th annual Int’l. Symp. on Computer Architecture, ISCA-35, (New York,
NY, USA), pp. 1–12, ACM, 2013.

[115] PHOTHILIMTHANA, P. M., ANSEL, J., RAGAN-KELLEY, J., and AMARAS-
INGHE, S., “Portable performance on heterogeneous architectures,” in Proc.
of the 18th Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems, ASPLOS-XVIII, (New York, NY, USA), pp. 431–444, ACM,
2013.

[116] POWELL, M., YANG, S.-H., FALSAFI, B., ROY, K., and VIJAYKUMAR, T. N.,
“Gated-vdd: a circuit technique to reduce leakage in deep-submicron cache
memories,” in Proc. of the 2000 Int’l Symp. on Low Power Electronics and Design,
ISPLED’00, (New York, NY, USA), pp. 90–95, ACM, 2000.

[117] QUALCOMM, “Snapdragon s4 mobile processors.” https://developer.

qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf.

[118] QURESHI, M. K., JALEEL, A., PATT, Y. N., STEELY, S. C., and EMER, J.,
“Adaptive insertion policies for high performance caching,” in Proc. of the
29th annual Int’l. Symp. on Computer Architecture, ISCA-29, (New York, NY,
USA), pp. 381–391, ACM, 2007.

[119] QURESHI, M. K., LYNCH, D. N., MUTLU, O., and PATT, Y. N., “A case for
MLP-aware cache replacement,” in Proc. of the 28th annual Int’l. Symp. on
Computer Architecture, ISCA-28, (Washington, DC, USA), pp. 167–178, IEEE
Computer Society, 2006.

[120] QURESHI, M. K. and PATT, Y. N., “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. of the 39th Int’l. Symp. on Microarchitecture, MICRO-39,
(Washington, DC, USA), pp. 423–432, IEEE Computer Society, 2006.

[121] RAJAMANI, K., RAWSON, F., WARE, M., HANSON, H., CARTER, J.,
ROSEDAHL, T., GEISSLER, A., SILVA, G., and HUA, H., “Power-performance

177

https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf
https://developer.qualcomm.com/download/qusnapdragons4whitepaperfnlrev6.pdf

management on an ibm power7 server,” in Proc. of the 2010 Int’l Symp. on Low
Power Electronics and Design, ISPLED’10, (New York, NY, USA), pp. 201–206,
ACM, 2010.

[122] RANGANATHAN, P., ADVE, S., and JOUPPI, N. P., “Reconfigurable caches
and their application to media processing,” in Proc. of the 22nd annual Int’l.
Symp. on Computer Architecture, ISCA-22, (New York, NY, USA), pp. 214–224,
ACM, 2000.

[123] RIJPKEMA, E., GOOSSENS, K. G. W., RADULESCU, A., DIELISSEN, J., VAN

MEERBERGEN, J., WIELAGE, P., and WATERLANDER, E., “Trade offs in
the design of a router with both guaranteed and best-effort services for
networks on chip,” in Proc. of Design, Automation, and Test in Europe Conference
and Exhibition, DATE’03, (Washington, DC, USA), pp. 10350–10355, IEEE
Computer Society, 2003.

[124] ROTEM, E., NAVEH, A., ANANTHAKRISHNAN, A., WEISSMANN, E., and
RAJWAN, D., “Power-management architecture of the intel microarchitec-
ture code-named sandy bridge,” IEEE Micro, vol. 32, pp. 20–27, Mar. 2012.

[125] SASAKI, H., IMAMURA, S., and INOUE, K., “Coordinated power-
performance optimization in manycores,” in Proc. of the 22nd Int’l. Conf. on
Parallel Architectures and Compilation Techniques, PACT’13, (Washington, DC,
USA), pp. 1–12, IEEE Computer Society, 2013.

[126] SHARIFI, A., MISHRA, A. K., SRIKANTAIAH, S., KANDEMIR, M., and DAS,
C. R., “Pepon: performance-aware hierarchical power budgeting for noc
based multicores,” in Proc. of the 21st Int’l. Conf. on Parallel Architectures and
Compilation Techniques, PACT’12, (New York, NY, USA), pp. 65–74, ACM,
2012.

[127] SNAVELY, A. and TULLSEN, D. M., “Symbiotic jobscheduling for a si-
multaneous multithreaded processor,” in Proc. of the 9th Int’l. conference
on Architectural support for programming languages and operating systems,
ASPLOS-IV, (New York, NY, USA), pp. 234–244, ACM, 2000.

[128] SRIKANTAIAH, S., KANDEMIR, M., and WANG, Q., “Sharp control: Con-
trolled shared cache management in chip multiprocessors,” in Proc. of the
42nd Int’l. Symp. on Microarchitecture, MICRO-42, (New York, NY, USA),
pp. 517 –528, ACM, 2009.

[129] SRINATH, S., MUTLU, O., KIM, H., and PATT, Y. N., “Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers,” in Proc. of the 13rd Int’l. Symp. on High Performance
Computer Architecture, HPCA-13, (Washington, DC, USA), pp. 63–74, IEEE
Computer Society, 2007.

178

[130] STEFAN, R., MOLNOS, A., and GOOSSENS, K., “daelite: A tdm noc
supporting qos, multicast, and fast connection set-up,” IEEE Transactions on
Computers (TC), vol. 99, no. PrePrints, 2012.

[131] SUH, G. E., RUDOLPH, L., and DEVADAS, S., “Dynamic partitioning of
shared cachememory,” Journal of Supercomputing, vol. 28, pp. 7–26, Apr. 2004.

[132] SUH, G., DEVADAS, S., and RUDOLPH, L., “A new memory monitoring
scheme for memory-aware scheduling and partitioning,” in Proc. of the 8th
Int’l. Symp. on High Performance Computer Architecture, HPCA-8, (Washington,
DC, USA), pp. 117–128, IEEE Computer Society, 2002.

[133] SUO, G., YANG, X., LIU, G., WU, J., ZENG, K., ZHANG, B., and LIN,
Y., “IPC-based cache partitioning: An IPC-oriented dynamic shared cache
partitioning mechanism,” in Proc. of the Int’l Conf. on Convergence and Hybrid
Information Technology, ICHIT’08, (Washington, DC, USA), pp. 399–406, IEEE
Computer Society, 2008.

[134] TAMIR, Y. and FRAZIER, G. L., “Dynamically-Allocated Multi-Queue
buffers for VLSI communication switches.,” IEEE Trans. on Computers (TC),
vol. 41, no. 6, pp. 725–737, 1992.

[135] TAYLOR, M. B., KIM, J., MILLER, J., WENTZLAFF, D., GHODRAT, F.,
GREENWALD, B., HOFFMAN, H., JOHNSON, P., LEE, J.-W., LEE, W., MA,
A., SARAF, A., SENESKI, M., SHNIDMAN, N., STRUMPEN, V., FRANK,
M., AMARASINGHE, S., and AGARWAL, A., “The raw microprocessor: A
computational fabric for software circuits and general-purpose programs,”
IEEE Micro, vol. 22, pp. 25–35, Mar. 2002.

[136] TEMAM, O. and JEGOU, Y., “Using virtual lines to enhance locality
exploitation,” in Proc. of the 8th Int’l Conf. on Supercomputing, ICS-8, (New
York, NY, USA), pp. 344–352, ACM, 1994.

[137] THE IMPACT RESEARCH GROUP, UIUC, “Parboil benchmark suite.”
http://impact.crhc.illinois.edu/parboil.php.

[138] TRIVINÕ, F., SÁNCHEZ, J. L., ALFARO, F. J., and FLICH, J., “Exploring
noc virtualization alternatives in cmps,” in Proc. of the 2012 20th Euromicro
Int’l Conf. on Parallel, Distributed and Network-based Processing, PDP’12,
(Washington, DC, USA), pp. 473–482, IEEE Computer Society, 2012.

[139] TYSON, G., FARRENS, M., MATTHEWS, J., and PLESZKUN, A. R., “A
modified approach to data cache management,” in Proc. of the 28th Int’l.
Symp. on Microarchitecture, MICRO-28, (Los Alamitos, CA, USA), pp. 93–103,
IEEE Computer Society Press, 1995.

[140] VAN DEN BRAND, J. W., CIORDAS, C., GOOSSENS, K., and BASTEN, T.,
“Congestion-controlled best-effort communication for networks-on-chip,”

179

http://impact.crhc.illinois.edu/parboil.php

in Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’07, (San Jose, CA, USA), pp. 948–953, EDA Consortium, 2007.

[141] VARATKAR, G. andMARCULESCU, R., “Traffic analysis for on-chip networks
design of multimedia applications,” in Proc. of the 39th annual Design
Automation Conference, DAC’02, (New York, NY, USA), pp. 795–800, ACM,
2002.

[142] WANG, H., SATHISH, V., SINGH, R., SCHULTE, M. J., and KIM, N. S.,
“Workload and power budget partitioning for single-chip heterogeneous
processors,” in Proc. of the 21st Int’l. Conf. on Parallel Architectures and
Compilation Techniques, PACT’12, (New York, NY, USA), pp. 401–410, ACM,
2012.

[143] WANG, J., RUBIN, N., WU, H., and YALAMANCHILI, S., “Accelerating
simulation of agent-based models on heterogeneous architectures,” in Proc.
of the 6th Workshop on General Purpose Processor Using Graphics Processing
Units, GPGPU-6, (New York, NY, USA), pp. 108–119, ACM, 2013.

[144] WANG, Y., MA, K., andWANG, X., “Temperature-constrained power control
for chip multiprocessors with online model estimation,” in Proc. of the 31st
annual Int’l. Symp. on Computer Architecture, ISCA-31, (New York, NY, USA),
pp. 314–324, ACM, 2009.

[145] WARE, M. S., RAJAMANI, K., FLOYD, M. S., BROCK, B., RUBIO, J. C., III, F.
L. R., and CARTER, J. B., “Architecting for power management: The power7
approach,” in Proc. of the 16th Int’l. Symp. on High Performance Computer
Architecture, HPCA-16, (Washington, DC, USA), pp. 1–11, IEEE Computer
Society, 2010.

[146] WEBER, W.-D., CHOU, J., SWARBRICK, I., and WINGARD, D., “A quality-
of-service mechanism for interconnection networks in system-on-chips,”
in Proc. of Design, Automation, and Test in Europe Conference and Exhibition,
DATE’05, (Washington, DC, USA), pp. 1232–1237, IEEE Computer Society,
2005.

[147] WINTER, J. A., ALBONESI, D. H., and SHOEMAKER, C. A., “Scalable thread
scheduling and global power management for heterogeneous many-core
architectures,” in Proc. of the 19th Int’l. Conf. on Parallel Architectures and
Compilation Techniques, PACT’10, (New York, NY, USA), pp. 29–40, ACM,
2010.

[148] WU, C.-J., JALEEL, A., HASENPLAUGH, W., MARTONOSI, M., STEELY,
JR., S. C., and EMER, J., “Ship: signature-based hit predictor for high
performance caching,” in Proc. of the 44th Int’l. Symp. on Microarchitecture,
MICRO-44, (New York, NY, USA), pp. 430–441, ACM, 2011.

180

[149] WU, C.-J., JALEEL, A., MARTONOSI, M., STEELY, JR., S. C., and EMER,
J., “Pacman: prefetch-aware cache management for high performance
caching,” in Proc. of the 44th Int’l. Symp. on Microarchitecture, MICRO-44,
(New York, NY, USA), pp. 442–453, ACM, 2011.

[150] XIE, Y. and LOH, G. H., “PIPP: promotion/insertion pseudo-partitioning of
multi-core shared caches,” in Proc. of the 31st annual Int’l. Symp. on Computer
Architecture, ISCA-31, (New York, NY, USA), pp. 174–183, ACM, 2009.

[151] XIE, Y. and LOH, G. H., “Scalable shared-cache management by containing
thrashing workloads.,” in Proc. of the Int’l Conf. on High-Performance Embedded
Architectures and Compilers, HiPEAC’10, vol. 5952, (Berlin, Heidelberg),
pp. 262–276, Springer-Verlag, 2010.

[152] YANG, Y., XIANG, P., MANTOR, M., and ZHOU, H., “CPU-assisted GPGPU
on fused CPU-GPU architectures,” in Proc. of the 18th Int’l. Symp. on
High Performance Computer Architecture, HPCA-18, (Washington, DC, USA),
pp. 103–114, IEEE Computer Society, 2012.

[153] YU, C. and PETROV, P., “Off-chipmemory bandwidthminimization through
cache partitioning for multi-core platforms,” in Proc. of the 47th annual Design
Automation Conference, DAC’10, (New York, NY, USA), pp. 132–137, ACM,
2010.

[154] YUAN, G. L., BAKHODA, A., and AAMODT, T. M., “Complexity effective
memory access scheduling for many-core accelerator architectures,” in Proc.
of the 42nd Int’l. Symp. onMicroarchitecture, MICRO-42, (New York, NY, USA),
pp. 34–44, ACM, 2009.

181

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1 — Introduction
	The Problem: Resource Sharing in Heterogeneous CMPs
	The Solution: Heterogeneity-aware Shared Resource Management
	Thesis Statement
	Organization

	Chapter 2 — Motivations
	Interference Experienced by CPU Applications
	Cache Sharing between CPUs and GPUs
	Interference in the Network
	Importance of On-chip Network
	Effectiveness of Previous Mechanisms in HCMPs

	Motivation for Dynamic Frequency Regulating Mechanism
	Performance Scalability by Frequency and MPKI
	Effect of Core and Memory Frequency
	Previous Resource Sharing Mechanisms

	Motivation for Energy-Efficient Cache for GPU

	Chapter 3 — Related Work
	Related Work on Heterogeneous Architecture
	Resource sharing mechanism
	Task partitioning mechanism

	Related Work on Cache Sharing
	Dynamic cache partitioning
	LLC policies by application level management

	Related Work on On-chip Interconnection
	NoC Research
	Virtual Channel Management Mechanism
	Heterogeneous Interconnection Network
	NoC Research for GPU Architectures

	Related Work on DVFS
	Related Work on Low-Power Cache

	Chapter 4 — An Efficient Cache Sharing Mechanism
	Introduction
	The Problem: Cache Behavior of GPGPU Applications
	Prior Last-Level Cache Management
	Dynamic Cache Partitioning
	Promotion-based Cache Management
	Summary of Prior Work

	The Solution: TLP-Aware Cache Management Policy
	Core Sampling
	Cache Block Lifetime Normalization

	TAP Extensions
	TAP-UCP
	TAP-RRIP

	Evaluation Methodology
	Simulator
	Benchmarks
	Evaluation Metric

	Experimental Evaluation
	TAP-UCP Evaluation
	TAP-RRIP Evaluation
	Streaming CPU Application
	Multiple CPU Applications
	Comparison to Static Partitioning
	Cache Sensitivity Evaluation
	Comparison to Other Mechanisms

	Summary of This Chapter

	Chapter 5 — Adapative Virtual Channel Partitioning
	Introduction
	Problems and Design Space Exploration in NoCs
	Routing Algorithm
	Resource Contention and Partitioning
	Arbitration Policy
	Homogeneous or Heterogeneous Link Configuration
	Placement

	Feedback-Directed Bandwidth Partitioning
	Virtual Channel Partitioning
	Where to apply VCP?

	VCP with Different Mixture of Workloads - Adaptability
	Feedback-Directed VCP Using Sampling
	Central Decision Logic
	Why sampling works
	Drawbacks and Improvements of Sampling

	Hardware Changes and Overhead
	Extension of VCP
	Discussions

	Evaluation Methodology
	Simulator
	Placement
	Benchmarks
	Evaluation Metric

	Evaluation Results
	Static VCP Results
	Feedback-Directed VCP Results
	Comparison with Different Injection Buffer Scheduling
	Comparison with VC Arbitration Policies
	VCP Results with Three-Stage Pipeline Model
	XY/YX Adaptive Routing
	Sensitivity of VCP
	Different Placement Results
	Discussions

	Summary of This Chapter

	Chapter 6 — Dynamic Frequency Regulating Mechanism
	Introduction
	Dynamic Voltage and Frequency Scaling
	Voltage and Frequency (VF) Domain
	Target Architecture

	DyFR: Dynamic Frequency Regulating Mechanism
	Step 1. Mitigating Interference Through GPU Throttling
	Step 2: CPU Throttling
	Step 3. Memory Throttling
	Central Control Logic
	DyFR: Putting It All Together
	Overhead Analysis
	Discussions

	Evaluation Methodology
	Simulator
	Benchmarks and Workloads
	Metric

	Results
	DyFR Evaluation Results
	Case Study

	Power-saving and High-Performance Modes
	DyFR Results with CPU-only CMP Workloads
	Comparison with Other Mechanisms
	Sensitivity Results of DyFR

	Summary of This Chapter

	Chapter 7 — GPU Region-aware Energy-Efficient Cache
	Introduction
	GPU Model
	Disciplined Memory Model in GPUs
	Memory Objects and Kernel Arguments

	GREEN Cache
	Disciplined Memory Model and GPU Hardware
	Exploiting the Different Behavior of Memory Objects
	Region-Aware Caching
	Region-Aware Cache Resizing
	Putting It All Together - GREEN Cache
	Benefits of GREEN Cache
	Overhead of GREEN Cache

	GREEN Cache with Multiple Applications
	Discussions

	Evaluation Methodology
	Simulator
	GPU Power Model
	Benchmarks
	Evaluation Metric

	Evaluation Results
	Region-Aware Caching Results
	Training Period Sensitivity of RAC

	Region-Aware Cache Resizing Results
	Putting It All Together
	Multiple GPU Applications

	Summary of This Chapter

	Chapter 8 — Conclusion and Future Research Direction
	Conclusion
	Future Research Direction
	Future Work for TAP
	Future Work for VCP
	Future Work for DyFR
	Future Work for GREEN Cache
	Coordinated Resource Sharing

	References

