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Dorsolateral and medial prefrontal 
cortex mediate the influence of 
incidental priming on economic 
decision making in obesity
Filip Morys  1,2, Stefan Bode3,4 & Annette Horstmann  1,2,5

Obese individuals discount future rewards to a higher degree than lean individuals, which is generally 
considered disadvantageous. Moreover, their decisions are altered more easily by decision-irrelevant 
cues. Here, we investigated neural correlates of this phenomenon using functional MRI. We tested 30 
lean and 26 obese human subjects on a primed delay discounting paradigm using gustatory and visual 
cues of positive, neutral and negative valence to bias their intertemporal preferences. We hypothesised 
that activation differences in reward-related and behavioural control areas, and changes in connectivity 
between these areas, would reflect the effect of these cues. Here, obese subjects were more susceptible 
to priming with negative gustatory cues towards delayed choices as opposed to lean subjects. This 
was related to lower activity in the left dorsolateral prefrontal cortex during priming. Modulation 
of functional connectivity between the dlPFC and the ventromedial PFC by the behavioural priming 
effect correlated negatively with BMI. This might indicate that default goals of obese individuals were 
different from those of lean participants, as the dlPFC has been suggested to be involved in internal 
goal pursuit. The present results further our understanding of the role of the PFC in decision-making and 
might inform future weight-management approaches based on non-invasive brain stimulation.

One of the features most consistently shown to be associated with obesity measures is temporal impulsivity1,2, 
a subdomain of general impulsivity3,4. It can be measured with a delay discounting (DD) paradigm, which tests 
whether participants prefer smaller, immediate rewards to larger, delayed rewards. Obese individuals tend to 
choose impulsively on this paradigm, showing more choices for immediate rewards than lean individuals5,6.

Value-based decision-making, and DD in particular, engages the dorsolateral prefrontal cortex (dlPFC), ven-
tromedial prefrontal cortex (vmPFC), and striatum amongst others7–10. In healthy participants, choosing delayed 
rewards in DD has been shown to be related to activity in the dlPFC9,10. In addition, the subjective value of 
rewards in those tasks has been shown to be reflected within valuation regions11 of the vmPFC, the ventral stria-
tum, and the posterior cingulate cortex8,12–15. The value signals in the vmPFC are then thought to be modulated by 
the dlPFC depending on the context11,16. This is supported by findings that effective connectivity between vmPFC 
and dlPFC predicts individual discount rates17. Relatedly, the dlPFC activation and connectivity is altered in obese 
participants while viewing problematic stimuli11,18–20 – food pictures, gustatory or olfactory cues – and in tasks 
requiring cognitive control20–22. This difference is associated with lapses in exerting control over eating behaviour 
in tempting situations21,23,24, and might thus be associated with increased DD behaviour.

Research shows that DD behaviour is malleable and depends largely on the framing of the two monetary 
options, paying attention to the delay vs. the reward, time frames in which the options are available, or even 
framing options with decimal numbers vs. without them15,25. It can also be influenced by stress, mood, affective 
stimuli25 or incidental cues26–28 – cues not associated with the decision-making process at hand. It has been shown 
that cues of positive valence generally primed participants towards choosing more immediate options26,29, while 
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the opposite effect was shown for negative cues28. However, little is known about incidental priming in obesity. 
We are aware of only one study that addressed this issue30. Here, obese participants showed stronger priming than 
lean participants on the DD paradigm using visual stimuli of positive valence. This effect was mediated by sex, 
as obese men chose more immediate options, whereas obese women chose more delayed options. Negative cues 
were never tested in this context, and it also remains unclear whether positive cues would still have the same effect 
when both negative and positive cues are presented in the same paradigm.

In this study, we further explored the observation that obese participants are more susceptible to prim-
ing. We used a DD paradigm to investigate the influence of food stimuli on decision making in a general, 
food-independent context. The reason for this was that it is unknown from the current literature to which extent 
environmental food cues, which are thought to only exert an effect on dietary decisions, might generalise to other 
modalities, such as financial ones. Such an influence has been shown before for a variety of stimuli, ranging from 
brand logos to foods (e.g.26,30), and there is further evidence that the brain automatically extracts specific image 
features related to decision-making even when presented as an incidental, task-irrelevant background image 
(e.g.31,32). If, as suggested before30, obese individuals are indeed more susceptible to such primes and general-
isation effects, this would point to an even greater vulnerability to undesirable decision biases, but potentially 
also shed light on general distorted cognitive processes in obese individuals. Using food-related incidental cues 
allowed us to investigate whether and how these stimuli affect general, food-independent decision making pro-
cesses in obesity, which regularly occur in real-world environments. We therefore tested whether food cues can 
be used to alter disadvantageous decision making processes in obesity.

Using fMRI, we investigated a potential differential engagement of the dlPFC, striatum and vmPFC in lean 
and obese participants during DD decisions, and a potential modulation of decision-related brain activity when 
participants were exposed to incidental priming. We used visual (remote food prime) and gustatory (proximal 
food prime) cues of positive, negative and neutral valence. Based on a previous study, we expected that negative 
cues would elicit more priming towards delayed options, whereas positive cues would have an opposite effect28. 
Based on the assumption that remote cues signal potential food intake, i.e. availability of food, and proximal 
cues signal acute food intake, i.e. with direct consequences to the body, we expected stronger effects in the prox-
imal condition. Further, we hypothesised the priming effect to be larger in obese participants30, and that this 
enhanced effect would be expressed in changes of brain activity in the dlPFC, vmPFC (increased activity for 
delayed choices) and striatal areas (increased activity for immediate choices8,10,11). This hypothesis was also based 
on previous literature showing changes in the dlPFC and vmPFC activity in similar paradigms utilising incidental 
cues in DD paradigms26,28. Previous reports show differences between obese and lean participants in the dlPFC 
activity in a number of tasks20–22, which are related to changes in cognitive control. It is therefore reasonable to 
assume that increased DD in obesity is also related to altered function of the cognitive control system, meaning 
that it can be hypothesised that differences in discounting behaviour between obese and lean people should be 
reflected in differences in the activation profile of the dlPFC. Moreover, since the priming effect was hypothesized 
to change the subjective values of delayed rewards, we expected that it would be associated with changes in activ-
ity of and connectivity between valuation regions.

Materials and Methods
Participants. 56 healthy lean and obese participants aged 18–35 years took part in our experiment (29 men in 
total, subsample 1: 30 lean, mean BMI = 22.14 kg/m2, SD 1.81; subsample 2: 26 obese, mean BMI = 34.32 kg/m2,  
SD 3.37; group differences in BMI: t(54) = −16.499, p = 0.019; lean: mean age = 25.83 years, SD = 3.14, obese: 
mean age = 27.42, SD = 4.16, group differences in age: t(54) = −1.627, p = 0.110, see Supplementary Table S1, 
and supplementary section Participants for more details on demographics and recruitment procedures). BMI 
criteria for inclusion in the lean group: 18–25 kg/m2, obese group: BMI above 30 kg/m2. Participants met the fol-
lowing a priori inclusion criteria: no history of neurological/psychological diseases, no drug, cigarette or alcohol 
addiction, no hypertension or diabetes, no MRI-related contraindications. The full fMRI sample was reduced 
to 51 participants due to technical problems during the fMRI session (for exclusions see section Data analyses). 
Volunteers were compensated for taking part in the experiment with 7 Euro/hour for behavioural sessions and 8 
Euro/hour for MRI sessions. The study was conducted according to the Declaration of Helsinki and approved by 
the Ethics Committee at the University of Leipzig. All participants gave their written informed consent prior to 
their participation in the study.

Procedures overview. Behavioural task. We invited participants to the experiment twice: first, to a behav-
ioural session, second, to the MRI session. The second session was conducted not later than 7 days after the 
first session. The behavioural session consisted of an introduction to the experiment, a set of questionnaires 
(see supplementary materials section Questionnaires for details on questionnaires used) and a computerised 
DD task. During the task, we offered participants two hypothetical monetary options, one smaller but immedi-
ately available reward (SIR) and one larger, delayed (available after a variable delay of 1, 2, 4, 6, 9 or 12 months) 
reward (LDR). The task was closely aligned to the procedures described in Simmank and colleagues’ study30. The 
two-step procedure included a ‘dynamic adjustment task’ and a ‘random choice task’. This session provided us 
with estimates of individual indifference points (IPs), which indicate the point of statistical indifference between 
immediate and delayed options. In other words, the IPs were defined as the ratio of SIR to LDR for a given delay 
where the subjective value (SV) of LDR was equal to the value of SIR. In the ‘dynamic adjustment task’, the IPs 
were calculated using a staircase procedure, where participants were offered different immediate and delayed 
rewards. This was done until two consistent IPs were obtained for each of the delays. Further, the ‘random choice 
task’, in which combinations of the previous task were administered again in a random order, was used to validate 
parameters obtained in the ‘dynamic adjustment task’. The obtained IPs were then used to define individualized 
difficulty parameters for the fMRI session. This parameter defines a ratio of SIR to LDR and was obtained by 
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multiplying the IPs by one of twelve values (0.10, 0.15, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.85, 1.90), 
thus returning twelve individual difficulty parameters, which were used to create the choice pairs. This was done 
in order to account for individual baseline differences in delay discounting and to ensure that the probability of 
choosing the LDR was similar for each participant in neutral conditions, making the combinations comparable 
between participants (the success of this approach was indicated by lack of group differences in probability of 
choosing the LDR in the neutral priming conditions). The difficulty parameter values indicate difficulty of inter-
temporal choice, with values close to 1 corresponding to more difficult choices (where SIR and LDR have similar 
subjective values), and values largely different from 1 corresponding to easier choices (SIR and LDR having dif-
ferent subjective values).

fMRI task. The fMRI part of the experiment consisted of ‘primed delay discounting’ trials and ‘perception 
only’ trials mixed and presented in a random order (Fig. 1). Gustatory trials were presented alternating with 
visual trials, hence one condition was never directly repeated. The total number of trials per experiment was 
384. Participants indicated their choices by pressing buttons on single button boxes that were placed in each of 
their hands. This part of the MRI experiment lasted approximately 54 minutes and was divided into four blocks 
with breaks in between. After completing the experiment, participants evaluated the priming stimuli (described 
below) on a visual analogue scale from 0–100 (negative-positive). To make the hypothetical choices more realistic, 
we offered participants a 1/6 chance of winning one of the rewards they chose during the ‘primed delay discount-
ing’ trials. The reward was chosen at random, and the monetary amount was either added to the participants’ 

Figure 1. Overview on the experimental paradigm. (a) Delay Discounting (DD) and (b) Perception (P) trial 
outline. Each trial consisted of a priming period (500 ms), task screen (3500 ms), response screen (2000 ms) and 
a jittered intertrial interval (1000-3000-5000 ms, logarithmic distribution). During the priming period, a picture 
(visual conditions)33 or a fixation cross (gustatory conditions) was presented on the screen. In the gustatory 
conditions, taste liquids were delivered to participants simultaneously, for 500 ms. The task screen consisted 
of a fixation cross and the two hypothetical rewards presented above and beneath it (random placement). 
For the response screen, the fixation cross turned green and the rewards appeared on its left and right sides 
(random placement). Not presenting the choice options as mapped to left and right buttons during the initial 
presentation phase allowed preventing any early motor preparation processes from occurring, which would 
have confounded the neural signals reflecting decision making. Visual stimulation during the intertrial interval 
consisted of a fixation cross. (c) list of priming stimuli used in our experiment.
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reimbursement (immediate choice), or transferred to their bank account after a delay (2 months) corresponding 
to their choice.

Primed delay discounting trials: Before making each DD decision, we presented participants with one of six 
different food-related stimuli (DD conditions, Fig. 1). We used visual and gustatory stimuli of positive, negative 
and neutral valence, thus introducing 6 different DD conditions (gustatory positive – Gpos, gustatory neutral – 
Gneu, gustatory negative – Gneg, visual positive – Vpos, visual neutral, Vneu, visual negative – Vneg). Positive and 
negative food pictures were acquired from the FRIDa database33 (see Figs S1 for stimuli used). We chose positive 
and negative food pictures according to their ratings and content, creating six pairs of valence-matched images 
with the same content (e.g. positive bread – negative bread, Table S2). To create neutral visual prime stimuli, the 
valenced pictures were divided into a matrix of 53 × 53 100-pixel squares and subsequently randomly scrambled. 
This step was performed to preserve the colour composition of visual stimuli at the same time erasing their con-
tent. The gustatory stimuli were apple juice (positive), salty tea (negative) and neutral taste solution (neutral34, 
see supplementary materials section Administration of gustatory stimuli for details on stimuli administration). 
A visual trial was always followed by a gustatory trial, and vice versa. To reduce the duration of the experiment 
we used only one temporal delay for all trials (2 months) in combination with 12 pairs of SIR and LDR (corre-
sponding to 12 levels of difficulty). Each of the pairs was repeated four times per condition in a random order 
(participants did not notice the repetition). Thus, the number of trials in the DD conditions was 288.

Perception only trials: To control for perception-related activity in priming-related brain activity, we intro-
duced six analogous ‘perception only’ conditions with the same priming stimuli as in the DD conditions. Here, 
instead of the hypothetical rewards and a delay, participants were shown letters X or x and were asked to press a 
button corresponding to the side on which the capital letter X appeared (P conditions, Fig. 1). Each P condition 
was repeated 16 times, which amounted to 96 trials.

Neuroimaging. The neuroimaging data were acquired using a 3 T Siemens PRISMA scanner with 
a 32-channel head coil. 1520 T2* images were collected using an EPI sequence (TE = 22 ms, FA = 90o, 
TR = 2110 ms, 40 slices, voxel size: 3 × 3 × 3 mm) over a time of 54 minutes. Each image was acquired in an 
ascending fashion. For 31 participants, whose anatomical images were not available in the Institute’s database, 
we acquired high-resolution MPRAGE images (TE = 2.98 ms, FA = 9o, TR = 2300 ms, TI = 900 ms, voxel size: 
1 × 1 × 1 mm). There were 25 participants whose anatomical images were available through the Institute’s data-
base. For those participants the time between anatomical image acquisition and the current experiment was: 3 
years for 2 participants, 2 years for 8 participants, 1 year for 8 participants, and images were acquired the same 
year as the current experiment for 7 further participants. This sample of 25 participants included 18 lean and 7 
obese individuals.

Data analyses. Sample sizes. The full sample size for analysis of behavioural, baseline delay discounting 
and questionnaire data was n = 56. The final fMRI sample for analysis of perceptual-related, choice value-related 
and task-related choice-independent brain activity was n = 51. For behavioural and fMRI priming analyses and 
task-related choice-dependent fMRI analyses we had to exclude participants who chose either exclusively imme-
diate or delayed rewards (post hoc exclusion criterion), and outliers concerning the cumulative priming effect for 
each of the four non-neutral priming conditions. The outliers were a priori defined as values lying more than 1.5 
interquartile range above/below Tukey’s hinges (H1 and H2). This resulted in a final sample size of n = 36 partic-
ipants (19 lean, 17 obese).

Behavioural data. Behavioural data were analysed using SPSS 22 (IBM, Armonk, New York, United States, sta-
tistical analysis of behavioural data) and MATLAB 2012b (The MathWorks, Inc., Natick, Massachusetts, United 
States, modelling of delay discounting data using quasi-hyperbolic model). To investigate between-group differ-
ences in the ratings of the priming stimuli, we used an ANOVA with weight status as a between subject variable. 
To test for rating differences between stimuli of different modalities and valences, we used a repeated measures 
ANOVA with modality and valence as within subject factors. Baseline and primed delay discounting data were 
plotted using ggplot2 toolbox for R in RStudio35–37.

Delay discounting data modelling. Following Simmank and colleagues30, who tested different discounting mod-
els for a similar task, we assumed that the delay discounting behaviour is represented by a quasi-hyperbolic model 
defined by:

α = βδ ,T

where alpha is the subjective value of a delayed reward, beta is a delay-independent bias towards immediate 
rewards, delta is a delay-dependent discount factor, and tau is the delay38. Simmank and colleagues have used a 
similar sample of lean and obese participants and, to our knowledge, are the only ones to have specifically com-
pared the fit of hyperbolical and quasi-hyperbolical models to the delay discounting data. Therefore, we decided 
to follow their recommendations and use the quasi-hyperbolic model as well. For the behavioural part of the 
experiment, choices in each individual trial were entered into the model and beta and delta parameters were 
calculated (for details see ‘Estimation of Discount Function’ section in Simmank et al.30). We investigated group 
differences in the DD parameters using a general linear model. We included weight status and sex as fixed factors, 
and the obtained professional degree as a covariate in the model (due to significant between-group differences). 
We decided to use sex as a factor because an earlier study showed sex-dependent differences in DD between obese 
and lean participants6.
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Primed delay discounting data modelling. In order to obtain a trial-by-trial measure of the priming effect, we 
calculated the probability of choosing the delayed reward during each trial by fitting a generalized linear model 
with a logit link function to the data. Here the 12 difficulty parameter values represented a predictor variable, and 
the dependent variable was denoted by the actual probability of choosing the LDR extracted from the data. We 
then extracted individual probabilities of choosing LDR for each difficulty parameter from the model. To obtain 
a comparable measure of the priming effect, we subtracted the probabilities for neutral conditions from the pos-
itive and negative conditions within respective modalities, thus obtaining four separate measures, one for each 
non-neutral priming condition.

To investigate whether probabilities of choosing the LDR were different for each difficulty parameter, we 
entered the priming effect values for all difficulty parameters into a repeated-measures general linear model as a 
within subject, dependent factor. This was done separately for each of the four non-neutral priming conditions.

Further, we aimed to establish whether the priming effect for different conditions, independent of difficulty 
parameter, was different from 0 and different between groups. For this, we calculated a cumulative priming effect 
for each condition by adding all the individual probabilities of choosing the LDR. We then used a one-sample 
t-test to investigate whether the cumulative priming effect in each condition was different from zero. This would 
indicate a significant change of probability of choosing the LDR from a neutral condition to the correspond-
ing positive or negative priming conditions. We used a two-sample t-test to investigate whether there were any 
between-group differences between priming conditions. Previous studies showed quadratic associations of 
responsivity to reward and the physiology of the reward system with BMI20,39–42. We therefore tested whether the 
cumulative priming effect was related to BMI2.

Following our findings on the behavioural level and to mimic our neuroimaging analysis (GLM 6), we decided 
to investigate whether BMI and BMI2 influence difficulty parameter-dependent priming in the Gneg condition. 
To this end we entered priming effect values for all difficulty parameters into a repeated-measures general linear 
model as a within-subject, dependent factor, and BMI and BMI2 as covariates43.

Neuroimaging data analysis. We used FSL 5.0.8 (The University of Oxford, Oxford, United Kingdom), SPM 12 
(Wellcome Department of Cognitive Neurology, London, United Kingdom) and MATLAB R2012b to pre-process 
and statistically analyse the functional imaging data. Brain figures were plotted using Nilearn. Anatomical struc-
tures corresponding to peak voxels were identified using the xjView toolbox (http://www.alivelearn.net/xjview). 
To enable further pre-processing steps, structural images were skull-stripped using FSL’s brain extraction tool44 
and SPM12 segmentation tool. Functional data were motion corrected using McFLIRT45, slice-timed, and 
smoothed with a 6 mm FWHM Gaussian Kernel, and normalised to MNI space using FSL. To remove motion 
and physiological noise-related artefacts, we used an automatized independent component analysis approach 
(ICA-AROMA)46. Prior to statistical analysis on an individual level, the data were high-pass filtered with a filter 
of 128 s. Each step of the pre-processing pipeline was quality checked (visual inspection of the data).

Analysis of BOLD response. A two-level group random effects analysis was performed using SPM12. Single 
subject regressors were entered into a univariate general linear model and convolved with a double-gamma 
hemodynamic function. Individual contrast files were then entered into a second level analysis (GLM1: flexible 
factorial model, remaining GLMs: one- or two-sample t-tests). In this step, BMI, age and sex were entered as 
covariates-of-no-interest, in order to control for variance in those variables. Additionally, for analysis of priming 
effects in the Gneg condition, we added BMI2 as a covariate of interest (see results section Primed delay discount-
ing). Unless stated otherwise, presented results were thresholded at a whole-brain voxel level with an a priori 
threshold of p < 0.005 and corrected for multiple comparisons on a cluster level with p < 0.05 (family-wise error, 
FWE). The FWE p-value was Bonferroni corrected for the number of GLMs used in the study, resulting in an 
effective p-value threshold of 0.007. In addition to using these conventional thresholds, we also tested whether 
our results survive a more stringent whole-brain voxel level threshold of p < 0.001 (using an FWE correction at 
p < 0.007). Wherever applicable, the information that results were still significant when using this threshold is 
stated in the text and in corresponding Tables.

First, we modelled brain activity related to perception and priming-independent choice (see supplementary 
materials GLM 1, GLM 2 and GLM 3 sections for details of those analyses) in order to replicate findings already 
reported in the literature. GLM 4 and GLM 5 were the models of main interest, as they investigated how brain 
activity is related to priming effects that we observed on the behavioural level. GLM 6 and GLM 7 were parts of a 
post-hoc analysis to elucidate mechanisms behind the main effects.

Including all regressors of interest in one GLM would have required including more than 200 regressors. 
Hence, some of the analyses needed to be separated into different models. Moreover, this approach allowed us 
to maximise statistical power for our analyses, as some analyses (without finer distinctions between conditions) 
could be conducted within the full fMRI sample (51 participants, GLM 1 and GLM 2), instead of with the priming 
sample (36 participants, GLMs 3–7).

GLM 4: Priming related changes in brain activity: We investigated whether behavioural priming effects were 
reflected in changes in brain activity. Here, we entered 14 regressors into the first level analysis: 12 reflecting 12 
different priming conditions (see task description above for details), irrespective of the delayed or immediate 
choice, and 2 regressors reflecting the response phase and the priming phase (independent of the condition). 
This analysis was used to investigate how brain activity in the Gneg condition differed from the other conditions, 
since we only found significant behavioural effects in this condition. This was based on a priori assumptions that 
we would only investigate brain activity differences in conditions for which behavioural effects were significant.

GLM 5: Trial-by-trial priming effect modulation of brain activity: To investigate whether brain activity was 
modulated by the trial-by-trial priming-effect (the probability of choosing the LDR in a priming condition minus 
the probability of choosing the LDR in a respective neutral condition) in the Gneg condition, we entered the 

http://www.alivelearn.net/xjview
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priming effect as a parametric modulator of a regressor containing all DD trials within this condition (unlike 
GLM 4). As described above, this regressor was obtained by modelling difficulty parameter-dependent probabil-
ities of choosing delayed rewards for each individual trial. Additionally, we entered 13 other regressors – 11 for 
each of the remaining conditions (in which no significant priming effect was found), and two other regressors 
representing the priming phase and the response phase (independent of the condition). The contrast of interest 
was the parametric regressor.

GLM 6: Psychophysiological interaction (PPI) analysis: In order to better understand the mechanisms under-
lying the observed priming effect, we performed a PPI analysis. This analysis describes how contributions of 
different brain areas to each other change within a psychological context47. Since those interactions are assumed 
to occur on a neural level, not on the hemodynamic level, PPI involves steps such as deconvolution of the BOLD 
signal, calculating interaction term with the psychological variable, and reconvolution of this interaction with 
the hemodynamic response function. Here, we tested whether the dlPFC (hypothesised and identified in GLM 
4, see Results) would change its connectivity with other brain regions depending on the trial-by-trial probabil-
ity of choosing the LDR that we entered as a parametric modulation into the model. For this analysis, we used 
peak voxel coordinates from the GLM 4 contrast of the gustatory negative conditions versus other conditions 
(as this condition revealed the strongest results, see below), and defined a 6 mm radius sphere around it as a 
volume of interest. We then created a separate GLM, which consisted of 16 regressors: time course of the VOI 
(physiological factor), values of parametric modulation (trial-wise probability of choosing the delayed reward; 
psychological factor), the PPI term, and 13 remaining regressors representing 11 priming conditions (without 
Gneg) and response and priming phases of the experiment (independent of condition). This was done according 
to recommendations by O’Reilly and colleagues48. In comparison to the GLM 5, GLM 6 includes three additional 
regressors specific for the PPI analysis, and no regressor representing the Gneg condition. The second level con-
trasts of interest included the PPI interaction regressor, and the BMI regressor. The first contrast represented 
functional connectivity differences related to the priming effect, while the second represented correlation of BMI 
with connectivity differences dependent on the priming effect.

GLM 7: PPI analysis: group differences in Gneg condition: In this model we aimed to investigate general group 
differences in connectivity between gustatory negative and gustatory neutral conditions independent of choice 
difficulty (based on behavioural group differences). To do that, we used the same seed regions as in the GLM 6 
analysis and created three PPI regressors: time course of the VOI, main effect regressor (Gneg > Gneu, psychological 
factor), and the PPI term. Similarly to GLM 6, we added 10 regressors to the model representing the remaining 
priming conditions and 2 representing response and priming phases of the experiment. Here, contrast of interest 
was the group difference between PPI interaction regressor, representing connectivity differences between the 
Gneg and Gneu conditions.

Results
Income and education. Lean participants had higher academic education than obese participants. 
Moreover, obese participants tended to earn more than lean participants. Differences in income might influence 
delay discounting behaviour, however, in a way where participants earning more money should have lower delay 
discounting49. In our sample, however, obese participants earned more and were steeper discounters.

Priming stimuli ratings and questionnaire correlations. In short, we found group differences in 
ratings of stimuli only in the visual negative conditions (less negative ratings for obese individuals; Table S4). 
Further, we found rating differences for valence and modality for both groups pooled (Table S5) – negative stim-
uli were rated as most negative and positive as most positive, and visual stimuli were generally rated lower than 
gustatory. Regarding questionnaire measures, we found significant group differences in the Cognitive Restraint 
subscale of the Three Factor Eating Questionnaire, and no significant correlations between delay discounting 
parameters and questionnaire measures (Table S6).

Baseline delay discounting differences. Here we analysed group differences in baseline delay discount-
ing. The results show group differences in the delay-independent parameter (F(1, 51) = 4.140, p = 0.047), and 
a group by sex interaction for the delay-dependent parameter (F(1, 51) = 5.736, p = 0.020, see supplementary 
materials section Baseline delay discounting and group differences, Fig. S2, and Table S7 for more details on the 
results).

Primed delay discounting. We showed that the priming effect depends on choice difficulty in the Gneg 
condition only (main effect of group within the Gneg condition: F(11, 19) = 2.222, p = 0.048; Table 1). This result 
points to the fact that choice difficulty (difference between SIR and LDR) is a factor influencing priming effects 
within the Gneg condition. Moreover, the cumulative effect of priming was different from zero only for the obese 
group in the Gneg condition (t(16) = 2.263, p = 0.038; Table 2, Fig. 2). This indicates that the obese group was 
primed towards more delayed choices during this condition relative to Gneu condition. Further, there was a sig-
nificant difference in the priming effect in the Gneg condition between the lean and obese groups (t(34) = 2.080, 
p = 0.045; Table 2). Following up on this, we tested for a direct relationship between BMI and the cumulative 
priming effect in the Gneg condition. We additionally tested for a quadratic relationship between the priming 
effect and BMI. Indeed, there was a quadratic relationship between BMI and the cumulative priming effect 
(R2 = 0.208, p = 0.021, see supplementary Figs S6 for details on the distribution and correlation). Due to this, 
we added BMI2 as a covariate in the fMRI analyses involving priming effects in the Gneg condition (GLM4–7). 
Additionally, to mimic our neuroimaging analysis, we performed a post hoc repeated measures ANOVA with diffi-
culty parameter-dependent priming effect values within the gustatory negative conditions as dependent variables 
and BMI and BMI2 as covariates. This analysis showed that BMI and BMI2 are significant predictors of choice 
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difficulty-dependent priming in the full sample, including both lean and obese participants, in the Gneg condition 
(BMI: F(11, 23) = 3.035, p = 0.012, BMI2: F(11, 23) = 4.254, p = 0.002).

Neuroimaging results. Perceptual, task-related and choice value-related brain activity. Results from GLM1 –  
GLM3 concerning perception-related brain activity, choice-value related brain activity and task-related brain 
activity can be found in supplementary materials in corresponding sections, Figs S3–S5, and Tables S8–S10. In 
short, we found gustatory-related brain activity in the bilateral Rolandic operculum, bilateral insula and medial 
frontal gyrus, and visual-related brain activity in the bilateral fusiform gyri. DD trials, as opposed to P trials 
elicited activity in the frontal, occipital and parietal regions, while immediate choices were related to increased 
activity in the middle frontal gyrus, medial frontal gyrus, cerebellum and cingulate gyrus. Choice value during 
the task was tracked by the medial frontal gyrus.

Priming-related brain changes. This analysis was aimed at investigating how brain activity differed during prim-
ing. Since the behavioural differences were found only for the Gneg condition and in the obese group, we only 
investigated group differences in this condition. Using a two sample t-test we found that brain activity (DD tri-
als > P trials) in the left superior frontal gyrus was lower for obese than for lean participants in the Gneg condition 
in relation to all other conditions (Table 3, Fig. 3). Specifically, we computed single subject contrasts by assigning 
a positive weight to the Gneg condition and negative weights to other conditions. Here, our findings imply a role 
for this region in mediating the priming effect.

Trial-by-trial priming effect modulation of brain activity. In this analysis we investigated whether brain activity 
in the gustatory negative condition was parametrically modulated by the priming effect. For this analysis we did 
not find any statistically significant results.

Priming-related PPI connectivity changes. While the general analysis for trial-by-trial priming effects was not 
significant, another possibility was that not the average activation but functional connectivity of priming related 
regions was modulated by the priming effect. We further hypothesised that such connectivity changes might 
additionally be modulated by BMI. This logic is in line with our behavioural results, where priming effect in 
the Gneg condition is related to different BMI values (see section 3.4). Our PPI analysis confirmed this hypoth-
esis and showed a negative correlation of BMI with connectivity modulated by the trial-wise priming effect 
between the left superior frontal gyrus (as the seed region) and regions of the left middle and superior frontal 
gyri, precuneus and medial frontal gyrus (Table 4, Fig. 4, Supplementary Figs S7–S12). Clusters surviving a more 
stringent voxel-wise threshold of 0.001 are denoted in Table 4. These results imply that for the Gneg condition 
higher BMI and higher priming effects were related to lower connectivity between left superior frontal gyrus 
and these regions. They are also in line with our behavioural results showing that BMI is a predictor of difficulty 
parameter-dependent priming effect.

We observed no general group differences in PPI analysis of Gneg and Gneu conditions (GLM 7).
Figures depicting contrast estimates and 95% confidence intervals for peak voxels in each fMRI analysis can 

be found in supplementary Fig. S13.

Discussion
In this study we investigated whether 1) obese participants showed higher delay discounting than lean partici-
pants, and 2) whether they were more susceptible to incidental priming on the delay discounting paradigm than 
lean individuals. In a second step, we investigated the neural correlates of any significant behavioural effects. 
We hypothesised that participants with obesity would show higher DD and higher susceptibility to priming. 
We further hypothesised that this higher susceptibility to priming would be reflected in differences in valuation 
(vmPFC), cognitive control (dlPFC), and reward related (striatum) brain regions. We showed higher baseline 
delay discounting for obese compared to lean individuals independent of delay. Moreover, group differences in 
delay-dependent discounting differed by sex. We also demonstrated a higher susceptibility to incidental priming 
on the delay-discounting task in obese participants (albeit only for one group of negative stimuli). Thus, our 
findings are in line with the most important findings regarding intertemporal decision-making in obese individ-
uals2,6,30,50. In addition, the negative gustatory priming condition (contrasted against all other conditions) was 
associated with modulation of brain activity in the left dorsolateral prefrontal cortex (dlPFC), where we observed 
a lower activity for lean compared to obese participants. The priming effect was also indirectly related to dlPFC’s 
connectivity to the medial prefrontal cortex (mPFC).

Condition F value p value Partial η2

Gustatory positive F (11, 19) = 1.648 0.146 0.420

Gustatory negative F (11, 19) = 2.222 0.048 0.494

Visual positive F (11, 19) = 1.065 0.425 0.319

Visual negative F (11, 19) = 1.188 0.344 0.343

Gustatory negative with BMI 
and BMI2 as covariates

BMI: F (11, 23) = 3.035 
BMI2: F (11, 23) = 4.254

BMI: p = 0.012  
BMI2: p = 0.002

BMI: 0.592  
BMI2: 0.670

Table 1. Multivariate statistics showing differences in priming effect depending on the difficulty parameter 
(N = 36).
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Here, we replicated previous results showing higher delay discounting in obese compared to lean participants 
(for a meta-analysis and review see:1,2). We showed this for males and females by using a delay-independent dis-
counting parameter. For a delay-dependent parameter, resembling the widely used k parameter of the hyperbolic 
discounting model, we found a significant interaction between weight status and sex. This differential effect of sex 
is in line with some previous studies showing changed DD only for females5,6, and in contrast to others1,4,30,51–53. 
Here, we used a quasi-hyperbolic delay discounting model which is different to most of the previous studies. It is 
conceivable that differences in parameter estimations between these models explain why others mostly did not 
find sex differences in their studies. Differences between individuals might also contribute to these finer differ-
ences in effects. There is no homogenous population of “obese individuals”, and hence fluctuations in variables 
not measured here, such as impulsivity, genotype or obesity duration, might have contributed to discrepancies in 

Condition

Lean

t(18) 
value p value

Effect 
size |d|

Obese

t (16) 
value p value

Effect 
size |d|

Lean vs. Obese

Mean
Standard 
deviation Mean

Standard 
deviation t(34) value P value

Effect 
size |d|

Gustatory positive −0.21 0.76 −1.186 0.251 0.276 0.08 0.47 0.730 0.476 0.170 −1.357 0.184 0.453

Gustatory negative −0.13 0.63 −0.921 0.369 0.206 0.25 0.46 2.263 0.038 0.544 −2.080 0.045 0.683

Visual positive 0.09 0.62 0.635 0.534 0.145 0.01 0.66 0.119 0.907 0.015 0.333 0.741 0.125

Visual negative −0.03 0.61 −0.205 0.840 0.049 −0.09 0.52 −0.205 0.493 0.173 0.314 0.755 0.105

Table 2. Cumulative effect of priming (independent of difficulty parameter, N = 36). One-sample t-test against 
zero and two sample t-test for group comparison. The cumulative effect of priming was different from zero 
within the gustatory negative condition for the obese group. Obese participants showed more delayed choices 
than lean participants in the Gneg condition.

Figure 2. Condition dependent priming effects plotted separately for lean and obese group (N = 36). We found 
that the cumulative priming effect in the gustatory negative condition was significantly different from zero 
in the obese group (p = 0.038), which means that here participants chose more delayed options than in the 
gustatory neutral condition; additionally, we observed group differences in the gustatory negative condition 
(p = 0.045), indicating that obese individuals were primed more towards delayed choices than lean individuals. 
The bold horizontal line represents sample’s median, horizontal lines below and above represent 1st and 3rd 
quartiles, and the whiskers represent minimum and maximum data points.

Figure 3. Brain region where brain activity during gustatory negative priming is higher for lean than for obese 
participants. L – left, R – right. T-values are plotted on a standard brain (N = 36, cluster defining threshold 
0.005, pFWE = 0.007).
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results between studies. However, given the diversity of findings so far, a systematic investigation focused on sex 
with large sample sizes would constitute a valuable future research program.

Taken together, our behavioural results provide evidence that obese participants were more impulsive in their 
financial decisions than their lean counterparts, but when primed by a negative food-related gustatory stimulus, 
this effect reversed. Simmank and colleagues30 interpreted their findings as evidence that obese individuals would 
be, more than others, biased in their general decision-making by different types of tempting, positive stimuli. As 
the decisions were not related to food, and the priming stimuli not related to the financial decisions, this could 
indeed point toward a general impulse control deficit in decision systems. Our results add to this view as we again 
show an effect of incidental stimuli on decisions in obese individuals, but this time reversed: While negatively 
valenced gustatory stimuli could be expected to delay the desire to consume food, these stimuli again had a trans-
fer effect to delaying the desire to receive monetary rewards. Hence, our findings complement previous reports 
by showing that effects of incidental cues on decision-making might generalise, even for aversive stimuli. It is 
interesting to note that the positive gustatory priming, even though not significant, elicited a similar group dif-
ference pattern to the gustatory negative priming. However, this difference was mainly driven by the lean group, 
which showed a (non-significant) effect in the opposite direction towards more impatient choices, as expected 
from previous literature showing similar priming effects for a variety of positive cues26,28,29. However, since these 
findings did not reach significance in our study, this remains an observation that requires further investigation.

Incidental cues have previously been shown to effectively influence decision making processes in the context 
of delay discounting26–28. Our results are in line with the general findings by Simmank et al.30. Unexpectedly, 
however, in our experiment this phenomenon occurred in the gustatory negative condition only, in which obese 
participants showed stronger priming effects towards delayed choices. The direction of the effect is in line with the 
results of Luo et al.28. Simmank and colleagues30, on the other hand, showed a more diverse profile of obesity-sex 
interactions for a variety of visual stimuli. However, there were several important differences between these stud-
ies. First, Simmank and colleagues30 did not use gustatory stimuli, hence our results are not in conflict with their 
findings. Second, food-related cues were the only theme of all visual and gustatory stimuli in the present study 
while in the previous study a variety of positive visual stimuli, including social images, status symbols, and only 
a subset of food-related images, was used. This might have created strong framing and expectation effects. Third, 
in order to include all necessary control conditions and to maximise the number of delay discounting trials, we 

Contrast Region of the peak voxel
Cluster size 
[voxels]

Coordinates 
(MNI)

Peak z 
score

Peak t 
score

Obese < lean for Gneg condition 
versus all other conditions Superior frontal gyrus L 738 −20 28 38 3.70 4.21

Table 3. Brain region associated with priming effects in the gustatory negative condition (N = 36). R – right, 
L – left.

Contrast Region of the peak voxel
Cluster size 
[voxels] Coordinates (MNI)

Peak z 
score

Peak t 
score

BMI correlation with 
connectivity modulated by 
the trial-wise priming effect

Middle frontal gyrus L* 4023 −24 22 44 4.50 5.40

Cerebellum R 1315 42 −76 −32 4.14 4.85

Occipital lobe L* 5580 −36 −66 −2 4.08 4.74

Medial frontal gyrus L* 939 −6 40 −14 3.97 4.57

Postcentral gyrus L 688 −54 −22 56 3.89 4.46

Table 4. Brain regions whose connectivity with the left superior frontal gyrus correlates negatively with BMI 
and is modulated by the trial-wise priming effect within the gustatory negative condition (N = 36). R – right, L – 
left; * denotes clusters surviving 0.001 voxel-wise threshold and further FWE correction (0.007).

Figure 4. Brain regions where PPI connectivity with the dlPFC modulated by the trial-wise priming effect 
correlated negatively with BMI. L – left, R – right. Black shape depicts the seed region. T-values are plotted on a 
standard brain (N = 36, cluster defining threshold 0.005, pFWE = 0.007).
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used only one temporal delay of two months, while Simmank and colleagues30 used several delays. This might 
have enabled participants to form expectations in our study and, in consequence, form rather stable indifference 
points. The resulting rather consistent choice patterns work against any potential priming effects. Supporting this 
conclusion, it should be noted that several participants, who had to be excluded from the analyses, exclusively 
chose delayed or immediate options in at least one condition, even though we initially tailored choice options to 
individual indifference points. Finally, a possible explanation for observing priming effects only in the gustatory 
negative condition is that our design was not optimised to detect priming effects and that only the strongest 
primes could impact on behaviour. Therefore, it is important to note that even under these suboptimal circum-
stances, obese participants were primed by gustatory negative cues. Although subjective valence assessments were 
not statistically different, these cues had nominally the most negative values for obese participants, which might 
offer an explanation for why this particular condition elicited effects on delay discounting behaviour. Another 
difference to previous work30 could be that our positive stimuli were not perceived as positive as intended. We 
did not find brain regions responding more strongly to positive than to negative stimuli, and the positive stimuli 
were also rated as being closer to neutral than the negative stimuli. The absence of effects for the positive stimuli 
should therefore be interpreted with care.

We further investigated how the behavioural priming effect in the gustatory negative condition was reflected in 
brain activity. Firstly, in the parametric modulation analysis of the Gneg condition by priming effect we found no 
significant results. The effects of Gneg condition on a trial-by-trial basis were very small, and our analysis might not 
have been sensitive enough to detect changes in brain activity related to these behavioural effects. It is also conceiv-
able that trial-by-trial effect on the neural level was only reflected in connectivity changes, not in changes of brain 
activity. Further, generally during priming with negative gustatory stimuli, activity in the left dlPFC was significantly 
lower for obese than for lean participants. A very similar region of the dlPFC has previously been found to be related 
to perceptual decision-making54–56, suggesting a key role in integrating information relevant to make a decision, or 
in providing the cognitive resources required for making difficult decisions. These findings are in accord with our 
assumption that dlPFC is an important region for processing decision-relevant information for DD, and potentially 
for integrating the information contributed by the primes, and/or for modulating cognitive control in our task. 
Further, activity in the lateral prefrontal cortex (lPFC) has been shown to be related to more difficult choices, but 
also to choosing delayed rewards and exerting context-dependent control over behaviour11,16,57–60. However, oppos-
ing activation patterns61–64 or no activation patterns7,8 have also been reported. A theory posed by Weber et al. offers 
a possible explanation for these discrepancies65. They suggested that differences in reward discounting might be 
related to the query theory, which posits that individual preferences, also in value-based decision making, are deter-
mined by sequentially answering a number of internal queries regarding choice and order thereof66–68. Put simply, 
factors such as the order of reward evaluation, shift of attention to the reward’s magnitude or delay, and internal 
goals (answers to internal queries) influence delay discounting rates25,65. Applied to our results, this would mean that 
obese and lean participants might have differed concerning their initial internal goals, and therefore made different 
choices. It follows that neural mechanisms of maintaining these goals could then produce different response pat-
terns. Different implicit goals of participants might explain differential engagement of the dlPFC in reward-related 
decision making. Therefore, the dlPFC might not only act as an inhibitory brain structure, constantly promoting 
less impulsive decision-making, but it could also promote more impulsive decision-making, provided that this is 
congruent with internal goals. In our study, obese compared to lean participants generally gravitated towards more 
immediate rewards, which could reflect intrinsic differences in internal goal structures. In consequence, priming 
towards delayed options in obese individuals was related to the observed decrease in dlPFC activity.

The results of our connectivity analysis point to a mechanism for how this goal-dependent activity of the 
dlPFC could influence behaviour. In our behavioural analysis we showed that BMI influenced the choice 
difficulty-dependent priming effect. We showed a similar effect in our PPI connectivity analysis. This indicated 
that during the gustatory negative condition connectivity of the dlPFC with the vmPFC, posterior cingulate 
cortex and parietal cortex was modulated by the trial-by-trial choice difficulty-dependent priming effect which, 
in turn, correlated negatively with BMI. These regions are discussed to be part of the default mode network 
(DMN)69. The DMN has previously been shown to be engaged in delay discounting. More specifically, in lean 
samples, activity within these brain structures has been shown to increase with choices of delayed rewards8,10,70,71. 
The vmPFC has also been shown to track trial-by-trial subjective value of chosen rewards (e.g.)8, an effect corrob-
orated by our results. Thus, a modulation of the connectivity between the aforementioned brain regions might be 
necessary to alter decision-making processes. Indeed, two studies investigating neural correlates of primed inter-
temporal choices showed that the mPFC was directly related to the effects of priming with incidental cues26,28. 
Hare and colleagues further showed that dlPFC increased its connectivity to the vmPFC at the time of intertem-
poral choice, especially in trials in which participants chose LDRs17. Surprisingly, our findings suggest an oppo-
site pattern for participants with higher BMI. This, however, might again be expected if one assumes that dlPFC 
activity depends on current individual goals. The increased connectivity in obese participants suggests that, by 
default, the dlPFC inhibits brain regions related to delayed choices and thus promotes immediate choices in obese 
individuals. During priming with negative gustatory cues, the brain regions promoting delayed choices may be 
disinhibited by means of inhibiting the dlPFC. However, it is important to note that the present PPI analysis 
does not include any information about the directionality of the connectivity effects between any of those brain 
regions. Therefore, this interpretation is speculative and warrants replication using different studies, methodology 
and analyses (e.g., using non-invasive brain stimulation approach).

Some potential limitations of the present study should be mentioned. Firstly, the proportion of excluded par-
ticipants, in particular for some of the neuroimaging analyses, was relatively large. Some of these exclusions were 
necessary as we aimed to establish individual indifference points in the DD task, and for this choosing different 
options (as opposed to settling for one option only early in the experiment, as some participants did) was neces-
sary. As in many other decision tasks, this task feature always comes with the risk that participants do not behave 
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as expected. “Correcting” their behaviour by using additional instructions would bias the results and render them 
non-interpretable and had to be avoided by all means. Hence, while we recommend using an online adjustment 
of indifference points using a staircase function as a potential strategy for future studies, for our study excluding 
participants was the only option. We note that as a consequence, our sample size was lower than initially hoped, 
which is a limitation of this study and has to be taken into account when interpreting the results. Second, we did 
not explicitly test reliability of the DD parameters here (which can be a problem with DD tasks)25. However, pre-
vious work using a highly similar task in a comparable sample found very high re-test reliability for much longer 
time periods between sessions than here30, suggesting that this was not an issue for our study. Further, behav-
ioural results in the priming section of our study were obtained by performing four independent tests. Correcting 
p-values for multiple testing (Bonferroni correction) results in nonsignificant findings. However, our overall sam-
ple size used in the priming analysis is sufficient, as we conclude from previous reports26,28, thus suggesting that 
the results are not just due to type I error. Generally, the behavioural effects we aimed to investigate in our study 
are quite small. Given the presence of the aforementioned limitations and the fact that we used a very ambitious 
design, the fact that we were still able to find a behavioural effect in one of the conditions (before correcting for 
multiple comparisons) is encouraging. Finding a neural correlate of this effect (with correction for multiple com-
parisons – which in the case of neural data is conducted for a multitude of tests and therefore extremely strict) 
provides a second step of validation for this finding.

Our neuroimaging results have been thresholded on a voxel-level of 0.005, and corrected for multiple com-
parisons on the cluster-level. Further, most of the results have survived a more stringent voxel-wise threshold of 
0.001. Clusters found in remaining analyses, related to priming, but also to reward-valuation, are highly congru-
ent with current literature. The vmPFC, which we found to correlate with trial-by-trail choice value, has been 
widely implicated in reflecting values of potential rewards8. Further, we hypothesised that the dlPFC and its con-
nectivity to other brain areas would be related to priming. Thus, while we are aware of studies showing that the 
voxel-wise threshold of 0.005 might result in a higher rate of false positives72, we believe that the presented results 
are not merely due to type I error. It should be noted that there is also a problem with the probability of false neg-
ative results that is notoriously difficult to address in fMRI studies that rely on very specific groups of participants 
with natural sample size limitations, due to availability of participants (such as obese but otherwise healthy peo-
ple)73. One suggested solution to this issue is to apply more liberal thresholding techniques, but also to incorporate 
strong a priori hypotheses concerning the location of relevant regions74 to guarantee sound and rigorous statistical 
testing. Altogether, we believe that our results show true effects, both on the behavioural and neuroimaging levels. 
We note, however, that independent replications would be desirable to confirm and expand on our results.

Our results have broader implications for impulse control in obesity as they show that decision making pro-
cesses, beyond dietary decisions, are more easily influenced by food-related cues in obese individuals as compared to 
individuals without obesity. Importantly, observing such susceptibility to environmental cues on economic choices 
suggests that food cues may influence general decision making processes in obesity. Economic decisions are a sub-
stantial part of everyday life, ranging from smaller purchase decisions to decisions with potentially long-term conse-
quences, e.g., whether to overspend and to accumulate debt, which is an increasing problem in our society. Priming 
susceptibility is especially important in light of today’s obesogenic environment, where food cues are ubiquitous, 
and might strongly influence all kinds of decisions in susceptible individuals. For example, food advertisements 
have been shown to trigger motivation to eat in obese participants75. We contribute to already existing literature 
on priming and delay discounting, which suggests that positive primes change behaviours towards less beneficial 
routines (i.e. less rational choices), while negative primes are said to have an opposite effect26–30. While it might be 
premature to draw strong conclusions from the limited number of studies showing enhanced priming effects in obe-
sity about which primes have the strongest effects, our study nevertheless confirms the view that there is a general 
enhanced susceptibility to environmental cues in obese participants. This finding has implications for systematically 
targeting obese individuals (or potentially even individuals who might be at risk) with specifically designed cues. 
For example, a previous study using health warnings showed that negatively framed graphic warnings promoted 
higher self-control in dietary decisions compared to all other warning messages, including positive messages76. In 
addition, the same cues designed to prevent unhealthy eating behaviour were also demonstrated to lead to altered 
brain signals associated with self-control when subsequently processing food items77. At this stage, it is impor-
tant to further understand how eating behaviour can be altered to address the obesity epidemic, and our study 
might inspire research into alternative cueing interventions in the future. However, our findings should also not be 
over-interpreted, as we neither know the specific drivers for the observed effects nor whether the effects would occur 
in all possible context situations. Potentially, the results of our study are also a basis for further brain stimulation 
studies investigating the role of the dlPFC and its connections in obesity. In light of our imaging findings, we show 
that current intentions of participants (e.g., dieting, stronger desire for immediate gratification) should always be 
taken into consideration when conducting studies concerning decision-making and cognitive control.

Availability of Materials and Data
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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