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Kurzfassung

Diese Dissertation beschäftigt sich mit fortschrittlichen Techniken der Spektrumerkun-

dung (spectrum sensing) für kognitive Funkgeräte (cognitive radio). Untersucht wird

insbesondere das in der Spektrumerkundung häufig auftretende Problem geringer

Stichprobengrößen, zu dessen Bewältigung lokale und verteilte Resampling-Methoden

vorgeschlagen werden. Ein weiterer Schwerpunkt der Arbeit liegt auf dem Entwurf

sequenzieller Testverfahren, wenn entscheidende Parameter nur teilweise oder gar

nicht bekannt sind. Des Weiteren werden Verfahren zur kanalübergreifenden (multi-

band) Spektrumerkundung, zur Spektrumerkundung bei niedrigem Signal-zu-Rausch-

Abstand (SNR) und zur Fusion harter, lokaler Entscheidungen in verteilten Szenarien

entwickelt.

Die Annahme großer Stichprobengrößen erweist sich in der Spektrumerkundung dann

als problematisch, wenn die Teststatistik in der Praxis aus nur wenigen Beobach-

tung gewonnen wird. Der Grund hierfür ist, dass die asymptotische Verteilung

der Teststatistik unter der Nullhypothese bei kleinen Stichprobengrößen nicht der

tatsächlichen Verteilung entspricht. Entsprechend weicht die unter der asymptotis-

chen Verteilung berechnete Wahrscheinlichkeit für Fehlalarm und Fehldetektion deut-

lich von der beobachteten ab. Wir schlagen daher die Verwendung von Bootstrap-

ping vor, wobei die Verteilung der Testsstatistik durch Resampling der beobachteten

Daten geschätzt wird. Für die lokale Spektrumerkundung entwickeln wir den Boot-

strap Null-Resampling Test, welcher bessere Ergebnisse als der Bootstrap Pivot Test

und der asymptotische Test zeitigt. Für die verteilte Spektrumerkundung schlagen

wir eine auf Resampling basierende Variante der Chain-Varshney Fusionsregel vor.

Zur Schätzung der lokalen Detektionswahrscheinlichkeiten der Nutzer eines kognitiven

Systems wird eine Kombination aus unabhängigem Resampling und Resampling eines

gleitenden Blocks von Beobachtungen vorgeschlagen. Bei einer großen Anzahl von

verteilten Nutzern kann parametrisches Bootstrapping am zentralen Knoten (fusion

center) durchgeführt werden.

Der klassische Sequential Probability Ratio Test entscheidet zwischen zwei einfachen

Hypothesen. Realistisch gesehen treten in der Spektrumerkundung jedoch zusam-

mengesetzte Hypothesen auf, da viele Systemparameter nicht exakt bekannt sind.

In dieser Dissertation wird der Anwendungsbereich des Sequential Probability Ratio

Test auf zusammengesetzte Hypothesen ausgeweitet. Dazu werden die Entscheidungss-

chwellen mit Hilfe des parametrischen Bootstraps kontinuierlich angepasst. Im Gegen-

satz zu den meisten existierenden Verfahren, beruht der vorgeschlagene Test daher

nicht auf der Annahme, dass asymptotische Verteilungen vorliegen und minimiert so
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die Wahrscheinlichkeit von Fehlern, die durch ungenaue Parameterschätzungen entste-

hen. Dies gewährleistet eine verlässlichere Sprektrumerkundung bei gleichzeitiger Re-

duzierung der durchschnittlich benötigten Beobachten (average sample number, ASN).

Des Weiteren schlagen wir eine Methode zur Senkung des Rechenaufwands vor-welcher

notwendigerweise durch die Benutzung des Bootstraps entsteht-die für das Resam-

pling eine Konvex-Kombination der letzten K Bootstrap Verteilungen verwendet. Das

Verfahren erhöht den ASN-Wert nur unmaßgeblich und bietet zudem einen erhöhten

Schutz gegen Entscheidungsfehler. Motiviert ist diese Arbeit durch die Tatsache, dass

der Sequential Probability Ratio Test eine geringere Zeit zur Datenerfassung benötigt

als ein äquivalenter Test mit einer festen Anzahl von Beobachtungen. Eine möglichst

schnelle Entscheidungsfindung ist in der Spektrumerkundung wünschenswert, da sie

den Datendurchsatz in kognitiven Systemen steigert.

Im letzten Abschnitt werden drei Themen behandelt. Zuerst wird die

kanalübergreifende Spektrumerkundung untersucht und mehrere Testvarianten

vorgestellt. Für Tests mit einer feste Anzahl von Beobachtungen wird die Ver-

wendung des adaptiven Benjamini-Hochberg Verfahrens vorgeschlagen, da es eine

bessere Balance zwischen den systemweiten Wahrscheinlichkeiten für Fehlalarme und

Fehldetektionen bietet als das konventionelle Benjamini-Hochberg Verfahren. Für

sequenzielle Tests schlagen wir eine auf den geordneten Stoppzeiten der einzelnen

Tests beruhende Methode vor. Simulationsergebnisse zeigen, dass dieses Verfahren

einen geringen ASN-Wert erzielt als das Bonferroni-Verfahren. Ein weiteres Problem

in der Spektrumerkundung ist die Detektion eines Signals bei sehr geringem SNR.

Für diesen Fall leiten wir einen lokal optimalen Detektor für modulierte Signale in

Student-t verteiltem Rauschen her, dessen Zuverlässigkeit deutlich höher ist als die

des Energiedetektors. Schließlich erweitern wir das Verfahren zur Fusion harter (1-Bit)

Entscheidungen in der verteilten Spektrumerkundung um ein weiteres Bit, welches

die Verlässlichkeit der Entscheidung beschreibt. Die Entscheidungsschwellen werden

anschließend mit Hilfe geeignete Distanzmaße bestimmt. Durch die Verwendung

zusätzlicher Informationen (2-Bit) wird so eine höhere Performance erreicht als bei

Verfahren, welche nur harte Entscheidungen (1-Bit) zulassen.
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Abstract

In this thesis, advanced techniques for spectrum sensing in cognitive radio are ad-

dressed. The problem of small sample size in spectrum sensing is considered, and

resampling-based methods are developed for local and collaborative spectrum sensing.

A method to deal with unknown parameters in sequential testing for spectrum sensing

is proposed. Moreover, techniques are developed for multiband sensing, spectrum sens-

ing in low signal to noise ratio, and two-bits hard decision combining for collaborative

spectrum sensing.

The assumption of using large sample size in spectrum sensing often raises a problem

when the devised test statistic is implemented with a small sample size. This is because,

for small sample sizes, the asymptotic approximation for the distribution of the test

statistic under the null hypothesis fails to model the true distribution. Therefore, the

probability of false alarm or miss detection of the test statistic is poor. In this respect,

we propose to use bootstrap methods, where the distribution of the test statistic is

estimated by resampling the observed data. For local spectrum sensing, we propose

the null-resampling bootstrap test which exhibits better performances than the pivot

bootstrap test and the asymptotic test, as common approaches. For collaborative

spectrum sensing, a resampling-based Chair-Varshney fusion rule is developed. At

the cognitive radio user, a combination of independent resampling and moving-block

resampling is proposed to estimate the local probability of detection. At the fusion

center, the parametric bootstrap is applied when the number of cognitive radio users

is large.

The sequential probability ratio test (SPRT) is designed to test a simple hypothe-

sis against a simple alternative hypothesis. However, the more realistic scenario in

spectrum sensing is to deal with composite hypotheses, where the parameters are not

uniquely defined. In this thesis, we generalize the sequential probability ratio test to

cope with composite hypotheses, wherein the thresholds are updated in an adaptive

manner, using the parametric bootstrap. The resulting test avoids the asymptotic

assumption made in earlier works. The proposed bootstrap based sequential probabil-

ity ratio test minimizes decision errors due to errors induced by employing maximum

likelihood estimators in the generalized sequential probability ratio test. Hence, the

proposed method achieves the sensing objective. The average sample number (ASN)

of the proposed method is better than that of the conventional method which uses the

asymptotic assumption. Furthermore, we propose a mechanism to reduce the compu-

tational cost incurred by the bootstrap, using a convex combination of the latest K

bootstrap distributions. The reduction in the computational cost does not impose a



VI

significant increase on the ASN, while the protection against decision errors is even

better. This work is motivated by the fact that the sequential probability ratio test

produces a smaller sensing time than its counterpart of fixed sample size test. A smaller

sensing time is preferable to improve the throughput of the cognitive radio network.

Moreover, multiband spectrum sensing is addressed, more precisely by using multiple

testing procedures. In a context of a fixed sample size, an adaptive Benjamini-Hochberg

procedure is suggested to be used, since it produces a better balance between the fam-

ilywise error rate and the familywise miss detection, than the conventional Benjamini-

Hochberg. For the sequential probability ratio test, we devise a method based on

ordered stopping times. The results show that our method has smaller ASNs than the

Bonferroni procedure. Another issue in spectrum sensing is to detect a signal when

the signal to noise ratio is very low. In this case, we derive a locally optimum detector

that is based on the assumption that the underlying noise is Student’s t-distributed.

The resulting scheme outperforms the energy detector in all scenarios. Last but not

least, we extend the hard decision combining in collaborative spectrum sensing to in-

clude a quality information bit. In this case, the multiple thresholds are determined by

a distance measure criterion. The hard decision combining with quality information

performs better than the conventional hard decision combining.
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Chapter 1

Introduction

Current spectrum management techniques are based on the command-and-control

model. This can guarantee that the radio frequency spectrum will be exclusively allo-

cated to a set of users (primary users) of a licensed network who won the radio frequency

bidding and can use the spectra without any interference [1]. However, this approach

can cause inefficient spectrum usage, because measurement campaigns have shown that

most of the allocated spectra are under-utilized [2]. This fact has prompted the Federal

Communications Commission (FCC) to propose opening licensed spectrum bands to

unlicensed users. This has given birth to cognitive radio. The basic idea of cognitive

radio is to allow unlicensed or cognitive radio (CR) users to use certain frequency bands

that are not being used by primary users. In summary, the main functions of cognitive

radio are [3]:

• Spectrum sensing : Detecting the unused spectrum and sharing the spectrum with

other users without harmful interference.

• Spectrum management : Capturing the best available spectrum to meet user com-

munication requirements.

• Spectrum mobility : Maintaining seamless communication requirements during

transition to a better spectrum.

• Spectrum sharing : Providing a fair spectrum scheduling method among co-

existing cognitive radio users.

For an overview of the first IEEE wireless standard based on cognitive radio (IEEE

802.22), in which CR users are allowed to use licensed analog and digital television

bands, refer to [4,5]. Standardization activities in cognitive radio can be found in [6,7].

Cognitive radio is envisioned to be implemented, for example, in rural area networks,

smart grid networks, public safety networks, cellular networks and wireless medical

networks [8, 9].

Due to the complexity of cognitive radio, in this thesis we focus on the spectrum sensing

function, as one of primary requirements for the successful implementation of cognitive

radio. Note that what we mean here by cognitive radio, is the one that is featured with

the interweave network paradigm [10].1

1In general, network paradigms in cognitive radio can be divided into underlay, overlay and inter-
weave.
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1.1 Motivation, research challenges and objectives

Spectrum sensing plays a critical role in cognitive radio networks. Several dedicated

nodes, or possibly every CR user, need to be equipped with a spectrum sensor. It

is to monitor continuously the spectrum activities of primary users in order to find

a suitable spectrum band (spectrum holes) for cognitive access, and to avoid causing

harmful interferences to the primary users. Since the primary users have higher priority

of service than the CR users, spectrum sensing includes detection of possible collision

when a primary user becomes active in the spectrum momentarily occupied by a CR

user. Fig. 1.1 depicts a conceptual illustration of spectrum holes, in which different

colors indicate different frequency bands.

Figure 1.1: A conceptual illustration of spectrum holes over time and frequency. Within
a certain geographical area and at a certain time, some frequency bands are not used
by primary users.

Designing a detector for spectrum sensing in cognitive radio networks raises the fol-

lowing challenges:

• Short sensing time: Sensing time is defined as the time required by a detector

(the required sample size) to declare that a specific band is unoccupied (null

hypothesis) or occupied (alternative hypothesis). A short sensing time is a salient

feature of spectrum sensing since it has a strong relation with the throughput

that can be achieved by a cognitive radio network. However, this requirement

mostly contradicts the sensing accuracy requirement, which in turn affects the

overall throughput of the cognitive radio network and the resulting degree of

interferences to the primary network.
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Figure 1.2: The hidden terminal problem occurs when a CR user experiences shadowing
or lies outside coverage area of the transmitter of a primary user (licensed user).

• Interference problem: A cognitive radio network should be carefully designed

so as to have a smaller degree of interference than the allowable level in a pri-

mary network. In spectrum sensing, this is measured by the probability of miss

detection.

• The hidden terminal problem: It occurs when a CR user experiences shadowing

or lies outside the coverage area of the primary user transmitter, as depicted in

Fig. 1.2. The CR user in this condition could interfere with primary users. Thus,

each CR user needs to deploy a detector that has good sensing accuracy at a low

signal-to-noise ratio (SNR).

• Noise uncertainty and outliers : They occur in real world implementations and

degrade the performance of a detector since the underlying noise deviates from

the assumed model.

• Various signal types : The wideband feature of cognitive radio imposes a re-

quirement of spectrum sensing to cope with various signal types. This includes

different modulation schemes, data rates, transmission powers, etc., of primary

users.

• Limited resources : These should be considered especially when one implements

collaborative spectrum sensing algorithms. They include the number of collabo-

rative users, the control channel bandwidth, the quantization level, etc.

To tackle these challenges altogether is not a trivial task. The general objective of this

thesis is to develop and to implement efficient algorithms for spectrum sensing, which

address the first four challenges. In particular, we aim for spectrum sensing with a

short sensing time (a small sample size) to improve the agility of CR users.
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1.2 State-of-the-Art

The essence of spectrum sensing is a binary hypothesis testing problem [11] for the

presence or the absence of a primary user signal in a spectrum band. In general, there

are two schemes for spectrum sensing, i.e., local spectrum sensing and collaborative

(cooperative) spectrum sensing [1].

In local spectrum sensing, each CR user independently determines the presence or ab-

sence of a primary user, without any collaboration among them. This scheme, although

simple in terms of computation and implementation, is sensitive to the hidden terminal

problem. Several techniques that are based on classical detection have been proposed.

They include energy detection, matched-filter based detection, cyclostationary based

feature detection, covariance based detection, and eigenvalue based detection. In gen-

eral, energy detection or radiometry [12,13] is preferred because it is of low complexity

and does not require prior knowledge of the primary users’ signal. However, it lacks

robustness in noise power uncertainty, particularly in a low SNR [14]. Although a

matched-filter detector [11, 15] is attractive for its optimality, it requires prior knowl-

edge of primary users’ signal, such as pilot symbols, modulation types, synchroniza-

tion, etc., which in fact are not available to the CR users. Communication signals

which have periodic patterns due to symbol rate, cyclic prefix, channel code, or chip

rate, can be modeled as cyclostationary random process [16]. Therefore, a detector

can be constructed by knowing some cyclic parameters of a signal and exploiting its

cyclostationarity [17–20]. However, cyclostationary based feature detection has high

computational complexity which becomes a limitation for agility of CR users. In addi-

tion, the cyclic parameters are not always available to the CR users in most practical

scenarios. To circumvent the sensitivity of the energy detector to noise power uncer-

tainty, covariance based signal detection is proposed [21, 22]. This method exploits

the difference of statistical covariance matrices or autocorrelations of signal to noise.

In practice, it is based on the sample covariance matrix, and prior information about

statistics of the signal and the noise are not required. Another method to solve the

noise uncertainty problem is eigenvalue based detection [23,24], i.e., based on the ratio

of the maximum to the minimum eigenvalue of the covariance matrix of the received

signal at the CR user, and also the ratio of the average eigenvalue to the minimum

eigenvalue. Furthermore, local spectrum sensing with multiantenna receiver, to exploit

spatial diversity and hence to improve detection performances, also has been widely

studied in literature [24–31].

Collaborative spectrum sensing is developed to take advantage of spatial diversity of

CR users that are geographically distributed. The main goal is to tackle the issue of
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the hidden terminal problem due to shadowing or deep fading. It has been proven

that collaborative spectrum sensing provides a diversity gain in a severe wireless en-

vironment [10]. In this scheme, a CR user is equipped with a detector and shares

local sensing information with a fusion center. Accordingly, based on a fusion rule, the

fusion center combines the shared local sensing information to make a global decision

on the presence or absence of the primary user’s transmission. The shared information

can be soft or hard decisions made by CR users [32]. In soft-decision, each CR user

computes the test statistic based on its local observations and forwards it directly to a

common fusion center. In hard-decision, each CR user further processes the measured

statistic to make an individual binary decision before finally forwarding it to the fusion

center.

Various simpler techniques in soft decision combining (SDC) are employed in [12] and

[33]. The performances of equal gain combining (EGC), selection combining (SC),

and switch stay combining (SSC) are investigated for energy detector-based detection

under Rayleigh fading and log-normal shadowing. In [34], by assuming Gaussian signal

and noise, a simple fusion rule as a function of local SNRs of CR users is obtained.

The authors show that this optimal soft decision combining scheme outperforms the

EGC scheme. Meanwhile, to avoid a nonlinear operation produced by likelihood ratio

based fusion, [35] uses a sub-optimum variant of SDC. Once the fusion center receives

observations from CR users, the linear combining fusion rule is carried out, i.e., a

soft decision from a particular user is weighted to represent its contribution to the

global decision. By assuming very large sample sizes and using modified deflection

coefficient as the objective function in optimization, [35] and [36] arrive at the optimal

solutions for the weighting functions. For hard decision combining (HDC), some ad

hoc fusion rules can be used [32], such as AND, OR, and Majority/Voting rules. The

optimal fusion rules for Bayesian and Neyman-Pearson criteria have been derived in

[37]. Implementations of the ad hoc and the optimal fusion rules in spectrum sensing are

studied in [38] and the voting rule is explored in [39]. In addition, instead of assuming

perfect receptions of transmitted bit decisions at the fusion center, multiuser diversity

techniques are used in [40–42] to mitigate erroneous reporting channels between CR

users and the fusion center. In general, SDC schemes have better performances than the

corresponding HDCs. However, the HDC schemes require minimum bandwidth for the

reporting channels which is attractive in collaborative spectrum sensing with limited

resources. It is noteworthy that an ad hoc configuration is also possible. In this case,

there is no dedicated fusion center and sensing information are shared among CR users.

However, information dissemination to all CR users might lead to an unacceptable delay

[10].

Most of the literature above are spectrum sensing schemes with a fixed sensing time,
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i.e., the sample size is determined in advance to fulfill the requirement of the probability

of errors. Sensing time is one of the most critical issues in spectrum sensing. It should

be minimized to gain more transmission time for CR users and hence increase the

throughput of cognitive radio network. However, sensing-throughput trade-off occurs

in this case [43]. On the one hand, increasing the sensing time will increase the sensing

accuracy, which in turn partially increases the throughput and reduces the degree

of interference to the primary users. On the other hand, since the frame length is

fixed, increasing the sensing time will decrease the transmission time, which in turn

reduces the overall throughput of the cognitive radio network, and vice versa. To

solve the issue, the optimality of the sequential detector [44,45] in reducing the sample

size while maintaining probability of errors (false alarm and missed detection) is an

attractive choice. Therefore, in the cognitive radio context, the degree of interference is

fixed to an allowable value and CR users gain more time to transmit. This increases the

throughput of the cognitive radio network. Note that in sequential detection, sample

size is random and depends on the observations. In addition, sequential techniques

also can be used to conserve energy since the sample size is minimized [46].

The earliest version of sequential detection is the so-called sequential probability ratio

test (SPRT). It was pioneered by A. Wald in 1943 in a confidential report, which was

published in 1945 [45]. The classical work of Bussgang and Middleton [47] applies

the SPRT [44] to sequentially detect signals in noise. Subsequently, some analytical

results and modified versions of the SPRT also have been introduced [48–52]. Some

recent papers have studied the implementations of sequential techniques in spectrum

sensing, e.g. [53–57]. Introducing the SPRT to local spectrum sensing that is based on

cyclostationary feature of the received signals can be found in [53]. Sequential schemes

in collaborative spectrum sensing are more attractive since they reduce the amount

of data to be transmitted to the fusion center for identifying spectrum holes. In [54],

current local log-likelihood ratios (LLRs) of CR users are transmitted to the fusion

center where the SPRT is carried out. Should one of the two prespecified threshods

at the fusion center be crossed, the test is terminated. Otherwise, the CR users take

another sample and send their corresponding LLRs to the fusion center. In contrary,

[55] considers a scenario where the local LLRs of CR users are sent in serial manner,

i.e., one after another. They are combined sequentially at the fusion center to quickly

detect the presence or the absence of primary user’s signal. Sequential detection that

aims for maximizing the average total achievable rate of a multi-channel cognitive radio

systems under prescribed probability of missed detection is studied in [56]. The most

recent work on collaborative spectrum sensing based on sequential detection can be

found in [57]. Here, sequential tests are carried out at each CR user and the fusion

center. First, each CR user computes the decision statistic based on local observation
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and whenever it crosses predefined thresholds, the corresponding user sends quantized

information (one or several bits) to the fusion center. The fusion center that asyn-

chronously receives the bits from different CR users subsequently performs the SPRT

to reach a global decision. However, most of the works mentioned above consider the

case where the corresponding statistical parameters are known (simple hypotheses).

Sequential detection for composite hypotheses is rarely addressed in literature.

1.3 Research context and contributions

The main difference to all the above literature, is that in this thesis we use resampling

to develop the algorithms for spectrum sensing. It includes resampling in fixed sample

size testing and also in sequential testing, using the non-parametric and parametric

bootstrap. The reason of using bootstrap resampling is twofold. First, bootstrap

based testing is able to work properly with a small sample size, when the devised

asymptotic test fails. Second, bootstrap resampling is an appropriate choice to alleviate

the problem of intractable distribution of a statistic. These bootstrap properties are

explored to achieve the objective of developing spectrum sensing algorithms with a

short sensing time. We summarize the contributions of the thesis as follow.

In fixed sample size testing, we consider the problem of detecting a correlated signal

with a small sample size, when the underlying noise is uncorrelated.

• The bootstrap null resampling test: When the sample size is small, the asymp-

totic test often fails to work properly. The bootstrap pivot test, which is a

common approach that is based on a pivotal statistic, also does not perform well

in the scenario at hand. For this case, we propose to use the bootstrap null resam-

pling test that is not based on a pivotal statistic. The bootstrap null resampling

test outperforms the bootstrap pivot test.

• Resampling for Chair-Varshney fusion rule: In a changing wireless channel, be-

tween the transmitter of a primary user and the receiver of a cognitive radio user,

it is difficult to apply the Chair-Varshney fusion rule due to the requirement of

the fusion center to know each CR user performance indices (the probabilities

of false alarm and miss detection). In this respect, we use the bootstrap null

resampling for a local decision, and we estimate the local probability of detection

in each measurement by estimating the distribution of the test statistic under

the null hypothesis and the alternative hypothesis. This can be accomplished
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by performing independent resampling to generate the distribution under the

null hypothesis and moving-block bootstrap to generate the distribution under

the alternative hypothesis. In addition, the distribution of the fusion rule under

the null hypothesis, for global decision, is estimated by the parametric boot-

strap when the number of CR users is large, instead of using all possible binary

combinations. Thus, it significantly reduces the computational cost.

In sequential testing, we consider the problem of implementing sequential probability

ratio tests for composite hypotheses.

• Bootstrap based sequential probability ratio tests for composite hypotheses:

When we use the maximum likelihood estimator in the generalized sequential

probability ratio test to estimate the unknown parameters, the two constant

thresholds of the SPRT cannot be used directly. Instead, they should be updated

according to the current sample size in order to avoid excessive decision errors.

For this case, we develop a method to update the thresholds adaptively, using the

parametric bootstrap. The resulting scheme has smaller average sample numbers

(ASNs) than the scheme that is based on an asymptotic approach, while it still

preserves the decision errors below the nominal values.

• Bootstrap based sequential probability ratio tests with reduced computational

cost: We propose to use a convex combination of the latest distributions to reduce

computational costs induced by the bootstrap. The reduction of computational

costs does not significantly increase the ASN.

Apart from the bootstrap based approach, some works have been done during the

doctoral program. They include:

• Multiple testing for multiband spectrum sensing: Multiple testing procedures

can control decision errors on the system level (familywise). Therefore, they are

suitable to be applied in multiband spectrum sensing where a group of spectrum

bands are jointly detected. In a fixed sample size case, we propose to use an

adaptive Benjamini-Hochberg procedure, since it is more powerful than any other

multiple testing procedures. In a random sample size case, we devise a procedure

that is based on the ordered stopping times of sequential probability ratio tests.

• Locally optimum detector for heavy-tailed noise: A locally optimum detector

is derived where the underlying noise follows a Student’s t-distributions. The

approach is suitable for robust spectrum sensing where heavy-tailed noise occurs

in a low SNR region.
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• Hard decision combining with a quality information bit: Collaborative spectrum

sensing using hard decision in combination with quality information is developed

to improve the performance of the conventional HDC. An energy detector with a

preset and two optimum thresholds is employed at each CR user. In this scheme,

the fusion center performs the optimum Neyman-Pearson fusion rule.

1.4 Publications

The following publications have been produced during the period of doctoral candidacy.

Internationally refereed journal articles

• F.Y. Suratman and A.M. Zoubir, “Bootstrap based sequential probability ra-

tio tests for spectrum sensing in cognitive radio,” IEEE Transactions on Signal

Processing, submitted.

• F.Y. Suratman and A.M. Zoubir, “Resampling based spectrum sensing for small

sample sizes,” Digital Signal Processing, to be submitted.

Internationally refereed conference papers

• F.Y. Suratman and A.M. Zoubir, Multiple Testing for Sequential Probability

Ratio Tests with Application to Multiband Spectrum Sensing, in The IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),

May 2014, accepted.

• F.Y. Suratman and A.M. Zoubir, Bootstrap Based Sequential Probability Ratio

Tests, in The IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 6352-6356, Vancouver, Canada, May 2013.

• F.Y. Suratman, A. Tetz and A.M. Zoubir , Collaborative Spectrum Sensing Using

Sequential Detections: Soft Decision Vs. Hard Decision, in IEEE International

Conference on Information and Communication Technology, pp. 1-6, Bandung,

Indonesia, March 2013.

• F.Y. Suratman, and A.M. Zoubir, Effects of Model Errors on Multiple Antenna

Based Spectrum Sensing Using Sequential Detection, in The 1st International

Conference on Communications, Signal Processing and Their Applications (ICC-

SPA), Sharjah, UAE, Feb. 2013.
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• F.Y. Suratman, and A.M. Zoubir, Collaborative Spectrum Sensing in Cognitive

Radio Using Hard Decision Combining with Quality Information, in The IEEE

Workshop on Statistical Signal Processing (SSP), pp. 377-380, Nice, France, Jun.

2011.

• V. Pohl, F.Y. Suratman, A. M. Zoubir and H. Boche, Spectrum Sensing for

Cognitive Radio Architectures based on sub-Nyquist Sampling Schemes, in The

International ITG Workshop on Smart Antennas (WSA), pp. 1-8, Aachen, Ger-

many, Feb. 2011.

• F.Y. Suratman, Y. Chakhchoukh, and A.M. Zoubir, Locally Optimum Detection

in Heavy-Tailed Noise for Spectrum Sensing in Cognitive Radio, in The 2nd

International Workshop on Cognitive Information Processing (CIP), pp. 134-

139, Elba, Italy, Jun. 2010.

1.5 Thesis overview

The thesis outline is as follows:

Chapter 2 begins with a general problem formulation for spectrum sensing in cognitive

radio. The main part of the chapter is to introduce the basic theory for spectrum

sensing. The introduction is generally divided into two parts, namely, detection with

a fixed sample size and with a random sample size.

Chapter 3 presents resampling based techniques for spectrum sensing. After the

asymptotic test is highlighted, it continues with the bootstrap pivot test and the boot-

strap null resampling test as the proposed approach for local spectrum sensing. In

collaborative spectrum sensing, resampling techniques for the Chair-Varshney fusion

rule is presented. We end this chapter with multiband spectrum sensing using multiple

testing procedures.

Chapter 4 extends the sequential probability ratio tests to composite hypothesis cases.

The chapter introduces the thresholding problem in the generalized sequential proba-

bility ratio test. Then, it leads to the bootstrap approach, where we discuss a technique

using the parametric bootstrap to solve the thresholding problem. Last, a method to

reduce the computational cost of the bootstrap is discussed.

Chapter 5 discusses various approaches for spectrum sensing. First, a multiple test-

ing procedure for sequential testing is introduced. The main application is multiband
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spectrum sensing. Second, a robust locally optimum detector is presented. It is de-

signed to detect a signal with low power in underlying heavy-tailed noise. Third, an

extension of the HDC in collaborative spectrum sensing is discussed. The idea is to

include a quality information bit in the transmitted data of a CR user to the fusion

center.

Finally, conclusions and an outlook are presented in Chapter 6.
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Chapter 2

Detection theory for spectrum sensing

This chapter is concerned with discussing the basic detection theory for spectrum

sensing. It serves as a necessary background to understand the work presented in

the following chapters. The general concept of binary hypothesis testing for spectrum

sensing is presented in Section 2.1. In Section 2.2, different approaches to derive a

detector for spectrum sensing with a fixed sample size are discussed. It includes the

likelihood ratio test, the generalized likelihood ratio test, and the bootstrap test. In

Section 2.3, the sequential probability ratio test is presented. The algorithm and the

performance measure of the sequential probability ratio test are briefly explained.

2.1 The binary hypothesis testing problem for

spectrum sensing

Spectrum sensing is a binary hypothesis testing problem, between a null hypothe-

sis H0, to represent that the primary user’s signal is absent (spectrum band unoc-

cupied), against an alternative H1, to represent the opposite (spectrum band occu-

pied). In general, the canonical spectrum sensing can be stated as follows. Let

xN = (x[1] x[2] · · · x[N ]) be a sequence of N <∞ samples of a signal. It then decides

whether the transmitted signal rN = (r[1] r[2] · · · r[N ]) is present in xN . Formally, it

can be written as

H0 : x[n] = w[n] (2.1a)

H1 : x[n] = r[n] +w[n], n = 1, 2, . . . , N, (2.1b)

where w[n] denotes the additive noise component. Here, x[n] can be a vector or a

scalar observation.

Now, if we assume that the data xN comes from a specific distribution, the parametric

model can be used. The sensor observes signals that follow the same family of distri-

butions which can be described using a finite number of parameters, each under H0

and H1. For a theoretical description, the joint density functions under H0 and H1 are

H0 : f0,N(xN ; θ0) (2.2a)

H1 : f1,N(xN ; θ1), (2.2b)
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where θ0 and θ1 are the parameters, which could be scalars or vectors, under H0 and

H1, respectively. The respective parameter spaces are denoted as Θ0,Θ1 ∈ Θ.

Suppose that we consider θi, i = 0, 1, consisting of m parameters, i.e., θi =

{θ1, θ2, . . . , θm}. If a hypothesis uniquely specifies each of the θk, k = 1, . . . , m, then it

is called simple. A hypothesis is composite when one or more of the θi are not uniquely

specified.

In some applications, we cannot rely on assumptions that the data are drawn from a

given probability distribution. In this respect, the non-parametric version of the binary

hypothesis testing problem is,

H0 : ψ ∈ Ψ0 (2.3a)

H1 : ψ ∈ Ψ1, (2.3b)

(2.3c)

here, ψ represents specific statistics quantifying the presence or the absence of the

desired signal, and Ψ0 and Ψ1 are the spaces under H0 and H1, respectively. Several

types of the nonparametric detector can be found in [58].

In a cognitive radio context, H0 represents the condition that the observed spectrum

band is unoccupied and hence CR users can establish a connection to exchange their

data. Meanwhile, H1 is to represent that the band is occupied by incumbent primary

users and CR users are not allowed to further establish a connection. The follow-

ing general performance indices are usually used in hypothesis testing, each of which

correspondens to some performance measure in cognitive radio.

• Probability of false alarm (Pf): the probability of deciding for H1 when H0 is

true. It indicates the probability of missing the opportunity to use an unoccupied

band.

• Probability of miss detection (Pm): the probability of deciding for H0 when H1

is true. It indicates the probability of causing interference to primary users.

• Sample size (N): the minimum sample size to fulfill the requirement on Pm and

Pf . It indicates the agility of CR users which in turn has an impact on the

throughput of the cognitive radio network and the level of interference to the

primary network.
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Note that Pf , Pm and N are all interrelated for measuring the overall performance of

a detector, particularly for spectrum sensing .

Considering the sample size, the design of the detector can be categorized into two main

approaches. The first is to fix the sample size in advance based on some criterion. It

will be referred to as fixed sample size detector. The second is to let the sample size be

random, depending on the current observation, namely sequential detector.

2.2 Fixed sample size detector

There are several different approaches to choosing the form of a detector in hypothesis

testing. Two of the more well-known criteria are the Bayes criterion and Neyman-

Pearson (NP) criterion. In this thesis, we are mainly concerned with the NP criterion.

It is not possible here to fully cover the concept of designing a detector based on the

the NP criterion and a sub-optimal approach that follows afterwards. The details can

be found, for example, in [11] and [59].

2.2.1 The Neyman-Pearson Criterion

Let xN denote observation data of a fixed size N and let T (xN) represent a test statistic

as a function of the data. A generic fixed sample size detector can be written as follows

T (xN)

{

> τ, accept H1

< τ, accept H0,
(2.4)

where τ is a threshold that separates two decision regions R0 (accept H0) and R1

(accept H1). The probabilities of false alarm Pf and miss detection Pm now can be

defined formally as

Pf = P0(T (xN) > τ)

Pm = P1(T (xN) < τ), (2.5)

here Pi(A) denotes the probability of event A under hypothesis Hi. Note that it is

not possible to reduce both error probabilities simultaneously. To have an optimal

detector, a typical approach is to hold one error probability fixed while minimizing the

other.
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The so-called NP criterion states that a detector is optimal if the test statistic T (xN)

and the threshold τ are chosen such that the probability of miss detection Pm is mini-

mized (the probability of detection Pd = 1−Pm is maximized) subject to the constraint

that the probability of false alarm Pf is equal to a fixed nominal value α [11]. For sim-

ple hypotheses testing (2.2), i.e., Θi = {θi}, i = 0, 1, the criterion is satisfied when

the test statistic is the likelihood ratio (LR),

T (xN) =
f1,N (xN ; θ1)

f0,N (xN ; θ0)
, (2.6)

and the threshold τ is found from

Pf =

∫

{xN :T (xN )>τ}

f0(xN ; θ0)dxN = α. (2.7)

The test statistic T (xN) in (2.6) is termed the LR since it indicates for each value of

xN the likelihood of H1 versus the likelihood of H0. Commonly, the test statistic is

expressed by taking the logarithm of the T (xN), namely the log-likelihood ratio test

(LLRT). The detector based on the NP criterion now becomes

ZN = ln
f1,N (xN ; θ1)

f0,N (xN ; θ0)

{

> ln τ, accept H1

< ln τ, accept H0.
(2.8)

Recall that the threshold τ is determined by the nominal value of the probability of

false alarm α in (2.7).

As an example, we use the model of complex Gaussian signal in complex Gaussian

noise. The competing hypotheses are

H0 : x[n] ∼ CN
(

0, σ2
0

)

,

H1 : x[n] ∼ CN
(

0, σ2
1

)

, (2.9)

where σ2
0 and σ2

1 are variances under hypothesis H0 and H1, respectively. Here, x[n]

and w[n] are scalar. Let the observations be identically independent distribution (iid).

Using (2.8), we obtain

ZN =
N
∑

n=1

ln
f1(x[n]; σ

2
1)

f0(x[n]; σ2
1)

=

(

1

σ2
0

− 1

σ2
1

) N
∑

n=1

|x[n]|2 +N ln
σ2
0

σ2
1

, (2.10)

which is the energy detector.

2.2.2 The generalized likelihood ratio test

Previously, we had assumed complete knowledge of the distributions under H0 and H1

(simple hypotheses) to design an optimal detector. However, the approach is impracti-

cal in most situations where one or more parameters of the distributions are unknown.
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For example in cognitive radio, a CR user might have no complete knowledge of the

power or the frequency of the transmitted signal from a primary user. Similarly, the

noise might be reasonably modeled as white Gaussian but with unknown variance.

Therefore, it is important to design good detectors when the distributions under H0

and H1 are incompletely known. In this situation, we have to rely on sub-optimum

methods.

One of the most well-known approaches for composite hypotheses testing is the gener-

alized likelihood ratio test (GLRT). The GLRT replaces any unknown parameters by

their maximum likelihood estimates (MLEs) [60]. In general, the GLRT has the form

T̂ (xN) =
f1(xN ; θ̂1)

f0(xN ; θ̂0)

{

> τ, accept H1

< τ, accept H0,
(2.11)

where θ̂1 is the MLE of θ1 assuming H1 is true, and θ̂0 is the MLE of θ0 assuming H0

is true. Formally,

θ̂i = argmax
θi∈Θi

ln (fi(xN ; θi)), i = 0, 1. (2.12)

The threshold τ , as in the simple hypotheses, is found from the nominal value of the

probability of false alarm α.

2.2.3 p-value and the bootstrap test

Two major problems can be encountered in hypothesis testing. The first one occurs

when the sample size is small and asymptotic methods do not apply. The second

possible problem is that the distribution of the test statistic cannot be determined

analytically. One can overcome both problems by using bootstrap techniques [61].

Suppose that T represent a test statistic of binary hypotheses. The basic idea of

hypothesis testing is to compare the observed value of a test statistic t with the distri-

bution that it would follow if the null hypothesis H0 was true. In general, we follow the

convention that large values of T are evidence against H0. It is common to measure

the level of evidence against H0 by using a p-value. Formally, it is defined as

p = P0(T ≥ t) = 1−G0(t), (2.13)

where G0(T ) is the cumulative distribution function of T under H0. For continues T ,

the p-value under H0 has a uniform distribution on [0, 1]. Therefore, the corresponding

random variable P has distribution

P0(P ≤ p) = p. (2.14)
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The interpretation of the p-value is then equivalent to following a procedure which

rejects H0 with error rate p [62].

Suppose that G0(T ) is known. We would calculate the p-value and reject H0 whenever

p < α. This is equivalent to rejecting H0 whenever t exceeds the critical value G
1−α
0 (T ),

which is the 1−α quantile of G0(T ). Unfortunately, in most practical scenarios G0(T )

is unknown and hence we commonly rely on an asymptotic approximation, when it

exists, for the distribution. However, this approach may or may not work well. As an

alternative, we could use a bootstrap test which depends on resampling the available

data to estimate the distributional information.

In a bootstrap test, we first generate Bs bootstrap data by resampling the observed data

with replacements, which could be carried out parametrically or non-parametrically

[63]. Each bootstrap data b, b = 1, · · · , Bs, is then used to compute a bootstrap test

statistic tb, by the same procedure used to calculate t from the observed data. The

bootstrap p-value p̂∗, which is an estimate of the p-value in (2.13), can then be written

as

p̂∗ = 1− Ĝ0(t) =
1 + #{tb ≥ t}

Bs + 1
, (2.15)

where Ĝ0(t) denotes the empirical distribution function (EDF) of tb [62]. Note that in

order to estimate the p-value using the bootstrap, resampling should be performed in

a way that reflects the null hypothesis, even when the underlying data is far from the

null [64]. This can be accomplished by some methods that we describe in Chapter 3.

2.3 The sequential probability ratio test

In fixed sample size detection, afterN samples are recorded one of two possible decisions

is taken: accept the null hypothesis H0 or accept the alternative hypothesis H1. In

some cases the evidence based on the N samples might strongly support one of the

two hypotheses. In other cases the evidence might be less convincing. Nevertheless,

the decision has to be made. In sequential tests a third possible course of action is

introduced to overcome the ambiguity, which is to take more observations. Therefore,

a sequential test typically continues observing until the evidence strongly favors one of

the two hypotheses. There are various stopping rules and decision rules that we can

use in sequential tests [65]. Here, we are only concerned with the so-called sequential

probability ratio test (SPRT) which was coined by A. Wald in 1945 [45].
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2.3.1 The algorithm

Let xN = (x[1] x[2] · · · x[N ]) be a sequence of i.i.d. observations of the signal recorded

up to the sample N . Here, x[n] is assumed to admit the distribution described by the

density function in (2.2) under each hypothesis. Suppose that the probability density

functions of the observation f0(x[n]; θ0) and f1(x[n]; θ1) are exactly known. The log-

likelihood ratio can then be written as

Z̄N =
f1,N (xN ; θ1)

f0,N (xN ; θ0)
=

N
∑

n=1

ln
f1(x[n]; θ1)

f0(x[n]; θ0)

= Z̄N−1 + z̄N , N = 1, 2, · · · (2.16)

where Z̄0 = 0 and

z̄N = ln
f1(x[N ]; θ1)

f0(x[N ]; θ0)
(2.17)

represents the increment at the time instance N . In Neyman-Pearson’s approach [60]

for testing a simple hypothesis H0 against a simple alternative H1, the sample size is

pre-specified to N = Nfix and a threshold τ is chosen based on the false alarm rate α

for either accepting H0 (Z̄N < τ) or accepting H1 (Z̄N ≥ τ). Meanwhile, the SPRT

introduces a third option in addition to accepting H0 for small Z̄N or accepting H1 for

large Z̄N , namely it continues observing the data for intermediate values of Z̄N . More

precisely, choose constants A and B where −∞ < B < 0 < A < +∞ and increase

N ← N + 1 to take more samples until the stopping time

Ns = min
N≥1
{N : Z̄N /∈ (B,A)}. (2.18)

It is obvious that the sample size is random, depending on the statistics of the obser-

vations. The test stops when either the upper threshold A or the lower threshold B is

crossed for the first time. In summary, the SPRT can be defined as

Z̄N = ln
f1,N(xN ; θ1)

f0,N(xN ; θ0)







≥ A, accept H1

≤ B, accept H0,
A < Z̄N < B, N ← N + 1.

(2.19)

Using Wald’s approximation [44], the two thresholds A and B can be found from

A ≈ ln
1− β

α
and B ≈ ln

β

1− α
, (2.20)

where α and β are the nominal probabilities of false alarm and miss detection, respec-

tively. By setting the thresholds according to (2.20), the actual probabilities of false
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alarm Pf and of miss detection Pm of the SPRT might not be exactly equal to α and

β, respectively. However, the two inequalities below are guaranteed [45]

Pf ≤
α

1− β
and Pm ≤

β

1− α
. (2.21)

In real applications the values of α and β are usually small, such that α ≈ α/(1 − β)

and β ≈ β/(1− α). Hence, from (2.21), the amount by which Pf may exceed α or Pm

may exceed β is very small and can be neglected for all practical purposes [44]. The

Algorithm 2.1 summarizes the implementation of the SPRT.

Algorithm 2.1 Implementation of the SPRT

Step 0) Initialize: N = 0, α and β to find the thresholds A and B from (2.20)

REPEAT
Step 1) Draw next sample N ← N + 1

Step 2) Calculate the increment z̄[N ] from (2.17)

Step 3) Update Z̄N by (2.16)

UNTIL Z̄N ≥ A or Z̄N ≤ B

Step 4) If Z̄N ≥ A, accept H1 and If Z̄N ≤ B, accept H0

Some conditions should hold in order to have a finite stopping time in the SPRT.

Suppose that the second moment of the increment (2.17) under each hypothesis is

Ei

[

(z̄)2
]

6= 0, i = 0, 1, (2.22)

where Ei [·] denotes the expected value under Hi.
1 With this condition, using the

Lemma 1 in [66], it is proven that the SPRT with a finite stopping time Ns is a certain

event, formally

Pi(Ns <∞) = 1, i = 0, 1, (2.23)

where Pi(A) represents the probability of event A under Hi.

2.3.2 Performance measures

Performances of the SPRT are described by the operating characteristic (OC) function

and the average sample number (ASN) function. The OC function is related to the

1We drop the subscript N of the increment in (2.17) to signify that the random variable z̄N is
distributed independently of N .
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decision errors and the ASN function signifies how fast the decision is made. Note that

throughout the thesis we use the term sample size instead of sample number. However,

in sequential testing, the term ASN is a more familiar term instead of average sample

size (ASS).

Let f(x[n]; θ) represent the underlying distribution where the true parameters θ ∈ Θ.

The OC function L(θ) is defined to be the probability of H0 acceptance under the

distribution f(x[n]; θ). Suppose that the increment z̄ under f(xN ; θ) is very small

compared to A− B. The OC function can be approximated by [45]

L(θ) ≈ etA − 1

etA − etB
, (2.24)

where t 6= 0 is a real number, which is the solution of the equation2

∫

x

[

f1(x; θ1)

f0(x; θ0)

]t

f(x; θ)dx = 1. (2.25)

The probability of miss detection Pm can be approximated by (2.24) when the under-

lying distribution f(x[n]; θ) = f1(x[n]; θ1). In this case, t = −1 and hence

L(θ1) ≈
e−A − 1

e−A − e−B
. (2.26)

Meanwhile, the probability of false alarm Pf can be approximated when the underlying

distribution f(x[n]; θ) = f0(x[n]; θ0). In this case, t = 1 and hence

Pf = 1− L(θ0) ≈
1− eB

eA − eB
. (2.27)

The thresholds A and B are found from (2.20).

The ASN function is the expected value of random stopping time Ns of the SPRT when

the underlying distribution is f(x[n]; θ), θ ∈ Θ. By using the same argument that the

increment z̄ under f(xN ; θ) is very small compared to A − B, the ASN function can

be approximated by [45]

EH[Ns] ≈
(1− etB)A+ (etA − 1)B

(etA − etB)EH[z̄]
. (2.28)

where EH [·] denotes the expected value under f(x[n]; θ). The ASN under H0 and H1

can be found from (2.28) by substituting t = 1 and t = −1, respectively.

2We drop the time index n to indicate that the solution is time independent.
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Chapter 3

Resampling based spectrum sensing for
small sample sizes

Spectrum sensing is mostly devised based on the assumption that the sample size is

large, by which the distribution of the test statistic can be approximated asymptoti-

cally. However, when we use a small sample size in the respective test statistic, the

resulting approximation of the distribution could depart significantly from the true

distribution. As a result, the performance of the spectrum sensing in terms of the

probability of false alarm or miss detection is poor. In such situations, we propose to

use the bootstrap. Unlike the asymptotic test, the bootstrap approach shows a proper

balance between the probability of false alarm and miss detection.

The application of the bootstrap to various signal processing techniques can be found

in [61, 67, 68] and references therein. Bootstrap-based detection methods have been

successfully implemented in [69–71]. Literature on the implementation of bootstrap in

spectrum sensing is scarce. In [72], the parametric bootstrap is used to generate the

distribution of the likelihood ratio test under the null hypothesis. In [73], the authors

suggest to use the bootstrap approach in multiantenna spectrum sensing that is based

on eigenvalue distributions. In all the above literature, the detection methods are

mainly devised from the appropriately constructed bootstrap confidence intervals [64],

e.g., bootstrap pivoting. However, this might not work in some scenarios, including

the one in this chapter. This is because, in a bootstrap based detection, there is a re-

quirement to generate the bootstrap distribution of test statistics under a specific null

hypothesis [74]. Thus, here we provide an alternative, where we use the null resam-

pling method in order to have a better bootstrap approximation for the distribution

under the null hypothesis. We also implement resampling methods in collaborative

spectrum sensing. We apply the non-parametric bootstrap to estimate the probability

of detection at each CR user and parametric bootstrap to estimate the distribution of

the fusion rule under the null hypothesis, when the number of CR users is large. Fur-

thermore, we study the implementation of the devised schemes to multiband spectrum

sensing using multiple testing procedures [75].

The system model is explained in Section 3.1, including the asymptotic test for ref-

erence. In Section 3.2, we begin with the pivot bootstrap test and continue with the

proposed null resampling test for local spectrum sensing. Resampling in collaborative

spectrum sensing is explained in detail in Section 3.3. We proceed with multiband
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spectrum sensing in Section 3.4. Simulation results are given in Section 3.5. Finally,

we conclude in Section 3.6.

3.1 System Model

We consider the canonical spectrum sensing model (2.1), but now we assume that the

received signal r[n], n = 1, · · · , N , is temporally correlated. Let us define the following

vectors of M consecutive samples

xM = (x[n] x[n− 1] · · · x[n−M + 1])T (3.1)

rM = (r[n] r[n− 1] · · · r[n−M + 1])T (3.2)

wM = (w[n] w[n− 1] · · · w[n−M + 1])T . (3.3)

It is easy to verify that

Rx = Rr +Rw (3.4)

where

Rx = E
[

xMxT
M

]

, Rr = E
[

rMrTM
]

, Rw = E
[

wMwT
M

]

(3.5)

are the covariance matrices of the corresponding signals and noise. Since we assume

that the noise is uncorrelated, i.e., Rw = σ2
wIM , Rx is a diagonal matrix when the

signal r[n] is absent. Otherwise, some of the off-diagonal elements of Rx are non-zeros.

Using this property, the authors in [22] propose to use the following statistic to detect

the signal

T =
1
M

∑M
i=1

∑M
j=1 |rij|

1
M

∑M
i=1 |rii|

. (3.6)

Here, rij denotes the element in the ith row and jth column of the matrix Rx. Cor-

respondingly, the binary hypotheses problem in this case can be rewritten as follows

H0 : T = 1 (3.7a)

H1 : T > 1. (3.7b)

In practice, the sample size is limited. Hence, the sample autocorrelation of the received

signal is used, i.e.,

r̂ij =
1

N

N−1
∑

n=0

x[n]x[n − |i− j|], |i− j| = 0, 1, · · · ,M − 1, (3.8)
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where N denotes the number of available samples and M < N is the smoothing factor

[22]. Therefore, the estimator of T is

T̂ =
1
M

∑M
i=1

∑M
j=1 |r̂ij|

1
M

∑M
i=1 |r̂ii|

. (3.9)

It is noteworthy that the signal here is real. The extension to the complex signal is

straightforward.

Using an asymptotic approximation, when N → ∞, the authors in [22] derive the

following threshold for the nominal probability of false alarm α,

τ =
1 + (M − 1)

√

2
Nπ

1−Q−1(α)
√

2
N

, (3.10)

where Q−1(·) is the inverse of Q-function of the standard normal cumulative distribu-

tion function.1 The advantage of using the test statistic (3.6) is that it does not need

any prior information about the signal, channel and the noise. The performance of

this approach is satisfying, as long as it receives a correlated signal and the underly-

ing noise is uncorrelated. However, the performance degrades significantly when the

sample size is not sufficiently large. This might be because the convergence rate to the

approximating distribution is very slow. In this case, we propose to use the bootstrap

to improve the performance when the sample size is small. In the sequel, we consider

sample sizes N ≤ 100.

3.2 The bootstrap test for local spectrum sensing

In general, resampling in bootstrap can be done in two ways, parametric or non-

parametric [61]. In the parametric setting, an explicit expression for the sampling

distribution of the data could be specified with a finite number of unknown parameters.

Meanwhile, no particular forms are specified for the distributions in the non-parametric

setting. The problem that we consider in this section conforms with the non-parametric

setting. Therefore, we mainly focus on the non-parametric bootstrap in the sequel. The

parametric case can be found, for example, in [62, 63].

1Q(x) is defined to be: Q(x) =
∫

∞

x 1/
√
2πe−t2/2dt.
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3.2.1 The pivot bootstrap test

The null hypothesis in (3.7) corresponds to a particular value of T , e.g., T0 = 1. Thus,

it is reasonable to use the equivalence between significance tests and confidence sets

[62]. This means that if the value T0 is outside a 1 − α confidence set for T , then T

differs from T0 with a p-value less than α. For the corresponding alternative hypothesis

in (3.7), the choice based on this equivalence would be the pivot bootstrap test, which

can be defined as

Tpiv =
T̂ − T0

Ŝe

=
T̂ − 1

Ŝe

, (3.11)

where T̂ denotes the estimator of T . Here, Ŝe is an estimator of the standard error of

T̂ , which can be calculated, for example, by using bootstrap or jackknife [63]. When

the resulting statistic is pivotal or approximate pivot, its sampling distribution should

not depend upon which distribution F generated the data (i.e., not depend on the

unknown value of T ), even when F departs from the null distribution F0. This pivotal

property allows us to construct the bootstrap replication of Tpiv using

T b
piv =

T̂ b − T̂

Ŝb
e

, (3.12)

T̂ b and Ŝb
e denote the bootstrap statistics which can be obtained by the same procedure

as T̂ and Ŝe, respectively. However, they use the bootstrap samples instead of the

observed data.

In this approach, we use a moving block bootstrap for resampling to approximately

maintain temporal dependencies that distinguish between signal present and absent.

The principle of the moving block bootstrap is to draw k M-tuples from F̂ , which is

an M-dimensional distribution formed by assigning probability mass 1/(N −M + 1)

to the overlapping blocks

BK1 ={x[1] x[2] · · · x[M ]}, BK2 = {x[2] x[3] · · · x[M + 1]},
· · · , BKN−M+1 = {x[N −M + 1] x[N −M + 2] · · · x[N ]},

and create the bootstrap data xb
N =

(

xb[1] xb[2] · · · xb[N ]
)

by concatenating the k M-

tuples, where M < N and k = ⌈N/M⌉. We refer to [76,77] for moving block bootstrap

in details. The principle of the pivot bootstrap test using the moving block bootstrap

is shown in Algorithm 3.1. We use a block size M in Algorithm 3.1 which is equal to

the smoothing factor M in (3.8).
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Algorithm 3.1 The pivot bootstrap test using the moving block bootstrap

Step 1) Draw N samples of the received signal xN = (x[1] x[2] . . . x[N ])

Step 2) Apply the moving block bootstrap to the data xN ,

F̂ → xb
N =

(

xb[1] xb[2] . . . xb[N ]
)

Step 3) Calculate T b
piv using (3.12):

→ T̂ b is calculated from (3.9) by using the bootstrap data xb
N

→ The moving block bootstrap is again applied to xb
N to obtain x∗bs

N and repeated Bs1

times

→ For each bs, bs = 1, . . . , Bs1, calculate T̂ bs. Ŝb
e can be obtained by [63]

Ŝb
e =

√

√

√

√

∑Bs1

bs=1

[

T̂ bs − T̂ (·)
]2

Bs1 − 1
, T̂ (·) =

Bs1
∑

bs=1

T̂ bs

Bs1
.

Repeat Step 2 and Step 3 for b = 1, 2, . . . , Bs.

Step 4) Calculate Tpiv using (3.11) and T̂ from (3.9), and then determine the p-value

p̂∗piv =
1 +#{T b

piv ≥ Tpiv}
Bs + 1

.

Step 5) If p̂∗piv < α, accept H1, otherwise accept H0.

3.2.2 The null-resampling bootstrap test

The fact that we need to calculate the estimate of the standard error Ŝe in Algorithm

3.1, increases the computational cost of the pivot bootstrap test by Bs1. In addition,

we show later in Subsection 3.2.3 that the pivoting test applied to the model in Section

3.1 does not perform well. This motivates the use of another approach, namely null-

resampling bootstrap test. The test has a smaller computational cost and has a better

performance than the pivoting test in the scenario at hand.

The construction of the bootstrap hypothesis test can be different to the construction of

the confidence interval due to the requirement of generating the bootstrap distribution

of test statistics under a specific null hypothesis. In Algorithm 3.1, we perform resam-

pling from the EDF F̂ according to the moving block bootstrap, since it is suggested to

be used in the confidence interval estimation for dependent data [61]. Now, however, we

must resample data from a distribution, say F̂0, which constitutes the relevant null hy-

pothesis H0, namely null resampling distribution [62]. According to (3.7), the relevant
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F̂0 here is the distribution that yields (approximately) T = 1. This can be obtained by

resampling the observed data xN independently since it then removes temporal depen-

dencies among samples. Therefore, F̂0 is formed by assigning equal probabilities 1/N

to each sample value x[n], n = 1, . . . , N , and independently resampling the data with

replacements to produce bootstrap data xb
N =

(

xb[1] xb[2] . . . xb[N ]
)

, b = 1, . . . , Bs.

In this way, we only need to replicate T̂ by using the bootstrap data to estimate

G0(T ) in (2.13), and there is no need to estimate Ŝe. Thus, it is simpler and it has

lower computational cost than the pivot bootstrap test. The implementation of the

null-resampling bootstrap test is shown in Algorithm 3.2.

Algorithm 3.2 The null-resampling bootstrap test

Step 1) DrawN samples of the received signal xN = (x[1] x[2] . . . x[N ]) and calculate
T̂ using (3.9)

Step 2) Apply the null-resampling to the observed data

F̂0 → xb
N =

(

xb[1] xb[2] . . . xb[N ]
)

Step 3) Calculate T̂ b in (3.9) using the bootstrap data xb
N

Repeat Step 2 and Step 3 for b = 1, 2, . . . , Bs.

Step 4) Calculate the p-value

p̂∗null =
1 +#{T̂ b ≥ T̂}

Bs + 1
.

Step 5) If p̂∗null < α, accept H1, otherwise accept H0.

3.2.3 Approximate distributions of the test statistics

In this section, we analyze the resulting approximated distributions in the asymptotic

test, the pivot bootstrap test and the null-resampling bootstrap test. The aim is to show

how close the approximate distribution of the respective test is to the true distribution

under H0, which is then used to explain the decision errors that might be committed

by the test statistic. We specifically point out the reason why the asymptotic test

and the pivot bootstrap test fail to perform well. To corroborate the analysis in this

section, experimental results will be shown in Section 3.5.
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First, let us rewrite the binary hypotheses testing (3.7) into an equivalent form

H0 : Ti =
1

T
= 1 (3.13a)

H1 : 0 < Ti =
1

T
< 1, (3.13b)

where T is from (3.6). Suppose that we have an observed value of the test statistic t̃,

the p-value in this case is

p = P0(Ti ≤ t̃) = G0(t̃). (3.14)

Note that the inequality is in reverse compared to (2.13), due to (3.13).

According to [22], the estimator of Ti under H0, denoted as T̂i, is approximately Gaus-

sian distributed when N is finite and large, i.e.

T̂i
.∼ N

(

µT̂i
, σ2

T̂i

)

(3.15)

where the mean and the variance are

µT̂i
=

1

1 + (M − 1)

√

2

πN

, σ2
T̂i
=









√

2

N

1 + (M − 1)

√

2

πN









2

. (3.16)

Therefore, the two parameters only depend on smoothing factor M and sample size N .

The pivot bootstrap test.

The equivalent test statistic of (3.11) is

Ti,piv =
T̂i − T0

Ŝi,e

=
T̂i − 1

Ŝi,e

. (3.17)

and the bootstrap replication of Ti,piv is

T b
i,piv =

T̂i
b − T̂i

Ŝb
i,e

. (3.18)

Note that Ŝi,e = σT̂i
. The distributions of Ti,piv and T b

i,piv under H0 are

Ti,piv
.∼ N

(

µTi,piv
, 1
)

, µTi,piv
= −

1− µT̂i

σT̂i

= −M − 1√
π

, (3.19)

and

T b
i,piv

.∼ N (0, 1) . (3.20)
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Accordingly, we conclude that, first, the variances are stabilized, and so that the vari-

ance stabilization such as in [78] is not an issue.2 Second, the distribution of Ti,piv is

the same as the distribution of T b
i,piv, but shifted

M − 1√
π

to the left. If we repeat the

test with size α many times, the test tends to have small values of Ti,piv, and hence has

a significant number of the resulting p-values that are smaller than α. In this respect,

the rejection of H0 is very high. This also means that the distribution of the p-values

is not uniform, but they are mostly concentrated on small values. Using (3.19) and

(3.20), the relation between the actual value of the probability of false alarm Pf and

the nominal value α could be approximated by

Pf ≈ 1−
[

Q
(

Q−1(1− α) +
M − 1√

π

)]

. (3.21)

For example, when M = 5, we will have the curve as depicted in Fig. 3.1. It shows that

Pf is considerably larger than α. It is noteworthy that even the relation between Pf

and α seems to depend only on M according to (3.21), the sample size N still affects

the relation. This can be confirmed by (3.16). If we were to have Pf ≈ α using this

method, then it needs a very large N . When N is very large, N →∞, then the mean

value µT̂i
→ 1 and Ti,piv

.∼ N (0, 1).3 Unfortunately, this would take N ≫ 100, since

Pf is still much larger than α when N = 100, as shown by simulation in the sequel.

In this situation, the bootstrap approach is not an appropriate option. However, this

does not mean that the bootstrap approach performs poorly for very large N . But, if

we consider the trade-off between performance and computational cost, the asymptotic

test might offer advantages over the bootstrap approach.

The asymptotic test.

For the asymptotic test, the true distribution of T̂i under H0, which is unknown,

is approximated by the Gaussian distribution (3.15). Then, the threshold can be

determined for the preset value of the probability of false alarm α.4 The performance

of the asymptotic test can be explained by comparing its density function with the

true density function of the test statistic T̂i, as shown in Fig. 3.2. Since we do not

know the true density function, it is generated by Monte Carlo runs. The figure

shows that the true values of the test statistic have smaller spreads than the assumed

asymptotic Gaussian distribution, particularly for small N . In terms of the p-value, if

the test statistic with size α is evaluated many times under H0, when α is preset to

2According to [22], when N is large, the distribution of T̂i under H1 is also approximately Gaussian
with a certain mean and variance, depending on the SNR and the degree of correlation. However, the
standardized statistics Ti,piv and T b

i,piv, both approximately have variances equal to 1.
3In this case, even though the variance T̂i is close to 0, the variance of Ti,piv is still close to 1.
4Suppose that the threshold for the preset α, found using the distribution (3.15), is denoted as τi.

The threshold in (3.10) is basically τ = 1/τi. Thus, the performance of the asymptotic test using the
statistic (3.13) is equal to the performance of the asymptotic test using the statistic (3.6).
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Figure 3.1: The curve between the actual value of the probability of false alarm Pf and
the nominal value α, using Equation (3.21) with M = 5.

be sufficiently small, it would have a significant number of resulting p-values that are

larger than α. In this case, the acceptance rate of H0 under H0 would be considerably

high. For a reasonable value of α that is used in spectrum sensing, i.e., 0.01 ≤ α ≤ 0.2,

and for N ≤ 100, we have confirmed that Pf is always significantly smaller than α.

Even for a large sample size N = 1000 as shown in the figure, the lower tail of the

asymptotic distribution still differs significantly from the true distribution. This might

be advantageous at some point since we have smaller values than the target values,

but, it would lead to a significantly reduced power of test (large probability of miss

detection), which is inadmissible in spectrum sensing. Note that when α is preset to be

sufficiently large, the result would be different and we might have a significant number

of p-values that are smaller than α.5 However this case is not relevant in practice.

The null-resampling bootstrap test.

It is always a good idea to look at the bootstrap data graphically in order to see how

close the bootstrap statistics are to the true statistics, by which we can estimate how

good the performance of the bootstrap approach would be. In Fig. 3.2, it shows that

the bootstrap approximated density functions are close to the true density functions

of the test statistic T̂i, in particular for N = 50 and 100. In this case, we will have the

distribution of the p-value to be approximately uniform, and so the actual probability

of false alarm will be close to the nominal value, Pf ≈ α. For N = 20, the lower

5It is noteworthy that this dependency on α does not happen in the bootstrap pivot test. This is
because the true distribution (the distribution of Ti,piv) under H0, differs in mean from the bootstrap
approximate distribution (the distribution of T b

i,piv). Meanwhile, in the asymptotic test with a small
N , the difference is dominated by their variances.



32 Chapter 3: Resampling based spectrum sensing for small sample sizes

0.2 0.4 0.6 0.8 1
0

2

4

6
N=20

P
ro

b.
 d

en
si

ty
0.2 0.4 0.6 0.8 1
0

2

4

6
N=50

0.4 0.6 0.8 1
0

2

4

6
N=100

P
ro

b.
 d

en
si

ty

Statistic value
0.8 0.9 1

0

5

10

N=1000

Statistic value

Figure 3.2: Density functions of the test statistic underH0, i.e., the true density (dotted
line), the approximated density functions using the null-resampling bootstrap (dashed
line) and the asymptotic normal density from (3.15) (solid line). The true densities
were generated by 5 × 104 Monte Carlo runs of T̂i, and the bootstrap approximated
densities were generated by 5 × 104 bootstrap replications T̂ b

i . The smoothing factor
was set to M = 5, with different values of sample size N .
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Figure 3.3: The true density functions of the test statistic under H0 (dotted line) and
the approximated density functions using the null-resampling bootstrap (dashed line).
The bootstrap approximated densities were generated when the observations are under
H1 with the SNRs = 0 dB and 10 dB. The true densities were generated by 5 × 104

Monte Carlo runs of T̂i, and the bootstrap approximated densities were generated by
5×104 bootstrap replications T̂ b

i . The smoothing factor was set to M = 5, with sample
sizes N = 20 and 100.
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tail of the bootstrap density is noticeably different from the true density. This makes

Pf < α, but the difference is still acceptable and not as large as in the asymptotic test.

To corroborate the result, in Fig. 3.3 we compare the true density functions under H0

with the approximated density functions using the null-resampling bootstrap when the

observations are under H1, with SNR = 0 dB and SNR = 10 dB. Here, we assume

that the correlated observations under H1 are due to the channel time dispersion (see

Section 3.5 for details). In general, the figure shows that the bootstrap approximated

density functions are in close agreement with the true density functions, irrespective to

the SNR of the observations. This can be explained as follows. Suppose that a CR user

receives a correlated signal from a primary user with power σ2
r and that noise power

at the receiver is σ2
w. When independent resampling is applied to the combined signal,

since we apply the null-resampling bootstrap test, the bootstrap data can be seen as

data from uncorrelated noise with power σ2
r + σ2

w. For this case, the covariance matrix

of the bootstrap data will be approximately a diagonal matrix. Then, referring to (3.6),

the resulting bootstrap replications of the test statistic will be T̂ b
i ≈ 1, regardless of

the signal power. Therefore, if we replicate the bootstrap data Bs times, the empirical

distribution of T̂ b can be used to approximate the true distribution of T̂i under H0,

even if the observations come from H1 with various powers.

In this part, we mainly focus on the probability of false alarm. However, the closeness

of Pf to α also affects the probability of miss detection Pm. When we have a test

that has Pf ≪ α, the power of the test will be small (Pm will be large), and vice-

versa. Hence, since we have a small sample size N , the aim is to make Pf as close as

possible to α, which then results in acceptable Pm for the specified N . This only can

be accomplished by the null-resampling bootstrap test, as we explained above.

3.3 Resampling based collaborative spectrum sens-

ing

It is well known that collaborative spectrum sensing provides a solution for the hidden

terminal problem, because it is unlikely that all channels between the primary trans-

mitter and the CR users would undergo deep faded simultaneously when the distances

between CR users are sufficiently large. In addition, collaborative spectrum sensing

improves the detection performance and reduces the detection time [10]. Here, we con-

sider the collaborative spectrum sensing with resampling for small sample sizes. From

this point on, we will use the abbreviation CSS to represent collaborative spectrum

sensing. Note that we only consider the bootstrap null-resampling test as the local

detector in sequel.
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Consider the case where L CR users observe a spectrum band, each with an observation

length N . The signal model for each user can then be written as

H0 : xl[n] = wl[n], (3.22a)

H1 : xl[n] =
J−1
∑

j=1

hl[j]s[n− j] +wl[n], (3.22b)

where the channel coefficients hl[j], l = 1, . . . , L, j = 1, . . . , J, are independent. Each

CR user implements the null-resampling bootstrap test as the local detector, which has

been described in Subsection 3.2.2. The implementation of an adhoc fusion rule such

as OR, AND, and MAJORITY rule [32], is straightforward and there is no difference

to non-resampling based detections. Each CR user decides in favor of H0 or H1 and

forwards the decision bit to the fusion center (FC) where the respective fusion rule is

executed.

Now, suppose that the Chair-Varshney fusion rule is used at the FC. The test statistic

at the FC reads [32]

Tfc =

L
∑

l=1

[

ul ln
P l
d

P l
f

+ (1− ul) ln
1− P l

d

1− P l
f

]

, (3.23)

where ul ∈ {0, 1} is the decision bit of the user l. Here, ul = 0 and ul = 1 denote

the CR user to favor H0 and H1, respectively. P l
d and P l

f represent its probability

of detection and the probability of false alarm, respectively. Therefore, the local per-

formance measures, P l
d and P l

f , of each user should be known at the FC. Note that

to determine the threshold in the local detector using the Neyman-Pearson approach,

the probability of false alarm is set to a nominal value α. This prior information, i.e.,

P l
f = α, can be used at the FC.6 However, P l

d, l = 1, . . . , L are not easily obtained

since each of which depends on the received signal at the CR user. More precisely, it

depends on the channel condition which includes the distance of the CR user to the

primary transmitter. In this case, Gl
1(T ), the distribution of the local test statistic for

the CR user l under H1, varies. Accordingly, estimating Gl
1(T ) as a way to estimate

P l
d is necessary to be conducted at the CR user. Here, we provide such method to be

able to implement the Chair-Varshney fusion rule in a situation where the channels

between the primary transmitter and the CR users change.

6The requirement to have P l
f = α could be closely approximated by the null-resampling bootstrap

test, as we have explained in Subsection 3.2.3.
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Figure 3.4: Histograms of 500 bootstrap replications of the test statistics T̂ b
l when the

true hypothesis is H0 (noise only) and H1 (for different values of SNR). Dashed-dotted
lines represent the estimates for the distribution under H0 and solid lines represent the
estimates for the distribution under H1. The simulation setup to generate the figure is
explained in Section 3.5.

3.3.1 Procedures at a CR user

Consider that the CR user l observes the data xl,N = (xl[1] xl[2] . . . xl[N ]) and hence

the observed test statistic T̂l is obtained. The resampling-based CSS is derived based

on the following observations. Suppose that T̂l is small. This can happen either under

F l
0, the distribution of the data under H0 for the CR user l, or F l

1, the distribution

under H1. As explained in Subsection 3.2.2, the null-resampling can be implemented

to estimate Gl
0(Tl), the distribution of the test statistic under H0 for the CR user l,

no matter from which distribution the data comes from. Meanwhile, assuming the

data originates from F l
1, the moving block bootstrap can be implemented to estimate

Gl
1(Tl) since it maintains temporal dependencies of the data. The fact that the data

is originally from F l
0 would not necessarily matter since this case is similar to the data

originating from F l
1 with a very small SNR. Therefore, the EDF Ĝl

0(T̂l) produced by the

null-resampling and the EDF Ĝl
1(T̂l) produced by the moving block bootstrap would

be sufficiently separated. This would be more pronounced when the data is originally

from F l
1. The larger the SNR, the larger the separation between the two EDFs, as

illustrated by the histograms in Fig. 3.4.

Suppose that the two EDFs Ĝl
0(T̂l) and Ĝl

1(T̂l) have been obtained and the probability

of false alarm for the CR user l is selected to be P l
f = αl, l = 1, 2, . . . , L. The CR

user l produces a local decision bit ul based on the p-value as shown in Algorithm 3.2.



36 Chapter 3: Resampling based spectrum sensing for small sample sizes

Now, to estimate the probability of detection of the local detector, first, the threshold

is calculated using

τl = Ĝ
(1−α)l
0 (T̂l), (3.24)

which is the 1−α quantile of Ĝl
0(T̂l). Practically, it is the (Bs +1− k)th largest value

of T̂ 0b
l , b = 1, . . . , Bs, where k = ⌊(Bs + 1)α⌋ and T̂ 0b

l denotes the replication of T̂

using the null-resampling at the CR user l. Recall that Bs is the number of bootstrap

replications. Then, the probability of detection P l
d is estimated by

P̂ l
d =

1 +#{T̂ 1b
l1 ≥ τl}

Bs + 1
, (3.25)

where T̂ 1b
l , b = 1, . . . , Bs, are the replications of T̂ using the moving block bootstrap

at the CR user l. Afterwards, the decision bit ul and the estimate of the probability of

detection P̂ l
d are transmitted to the FC. Note that the FC can use the prior information

P l
f = αl and no need to be transmitted when it is assumed to be constant. It is possible

to use a random threshold at the CR user, e.g., by randomly selecting αl from a pre-

specified set Sα. However, this will increase the bandwidth requirement of the reporting

channel since the selected αl should also be transmitted to the FC, along with ul and

P̂ l
d. The algorithm of the local detector for the resampling-based CSS is shown in

Algorithm 3.3.

3.3.2 Fusion rule at the FC

Let us assume that the FC already knows ul, αl, and P̂ l
d, l = 1, . . . , L, of all CR users

that joint the CSS. Let u = (u1 u2 . . . uL) represent a vector of decision bits from L

CR users. Here, we assume that the decision bits are independent. The test statistic

(3.23) at the FC should now read

Tfc(u) =
L
∑

l=1

[

ul ln
P̂ l
d

αl
+ (1− ul) ln

1− P̂ l
d

1− αl

]

. (3.26)

Note that we need to have G0(Tfc(u)), the distribution of Tfc(u) under H0, to make

a global decision at the FC. However, since now P̂ l
d, l = 1, . . . , L, are assumed to

change from one measurement to another, we have to generate the distribution function

for each measurement. In this case, either all possible binary combinations can be

considered or the parametric bootstrap can be used.

For L CR users in the CSS, there are 2L possible values of u, i.e., uk =
(

uk
1 uk

2 . . . uk
L

)

, k = 1, 2, . . . , 2L. Consequently, based on (3.26), Tfc(u) could also



3.3 Resampling based collaborative spectrum sensing 37

Algorithm 3.3 The decision and the estimation of the probability of detection at the
CR user

Step 1) Draw N samples of the received signal xl,N = (xl[1] xl[2] . . . xl[N ]) and

calculate T̂ using (3.9)

Step 2) Apply the null-resampling to the observed data

F̂0 → x0b
l,N =

(

x0b
l [1] x

0b
l [2] . . . x0b

l [N ]
)

Step 3) Apply the moving block bootstrap to the observed data

F̂1 → x1b
l,N =

(

x1b
l [1] x

1b
l [2] . . . x1b

l [N ]
)

Step 4) Calculate T̂ 0b
l using the bootstrap data x0b

N and T̂ 1b
l using the bootstrap data

x1b
N

Repeat Step 2 to Step 4 for b = 1, 2, . . . , Bs.

Step 5) Determine the decision bit by calculating the p-value

p̂∗ =
1 +#{T̂ 0b

l ≥ T̂}
Bs + 1

,

and if p̂∗ < α, accept H1 (ul = 1), otherwise accept H0 (ul = 0).

Step 6) Estimate the local probability of detection by first sorting T̂ 0b
l , b = 1, . . . , Bs

T̂ 0b
l,(1) ≤ T̂ 0b

l,(2) ≤ . . . ≤ T̂ 0b
l,(Bs)

and the threshold τl = T̂ 0b
l,(Bs+1−k), where k = ⌊(Bs + 1)α⌋. The estimate of the local

probability of detection is then found from (3.25).

Step 7) Transmit ul and P̂ l
d to the FC.

have a value drawn from a finite set STfc
= {Tfc(u

1) Tfc(u
2) . . . Tfc(u

2L)}, each of

which has a probability of appearance under H0 equal to

P0(Tfc(u
k)) =

L
∏

l=1

[

uk
l P0(u

k
l = 1) + (1− uk

l )P0(u
k
l = 0)

]

=

L
∏

l=1

[

uk
l P̂

l
f + (1− uk

l )(1− P̂ l
f)
]

, uk
l ∈ {0, 1}. (3.27)

Thus, the distribution function of Tfc(u) under H0 can be written as

G0(Tfc(u)) =
2L
∑

k=1

g0(Tfc(u
k))1{Tfc(uk)≤Tfc(u)}, (3.28)

where 1{·} is the indicator function and g0(·) denotes the probability mass function of
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Algorithm 3.4 The global decision at the fusion center

Step 1) Receive the decision bit ul and the local probability of detection P̂ l
d from L

CR users.

Step 2) Calculate the observed test statistic T̂fc(u) using (3.26).

If 2L ≤ Bs, continue with Step 3a to Step 5a, otherwise, continue with Step 3b to
Step 5b.

————

Step 3a) Calculate Tk,FC(u
k) and the corresponding probability P0(Tk,FC(u

k)) from
(3.26) and (3.27), for all possible values of uk, k = 1, . . . , 2L.

Step 4a) Obtain the distribution function G0(Tfc(u)) in (3.28).

Step 5a) Calculate the p-value p̂ using (3.30), and if p̂ < α, accept H1 as a global
decision, otherwise accept H0.

————

Step 3b) Generate parametrically the bootstrap data using the parameters in 3.31 for
the vector of decision bit

F̂0,{αl,l=1,...,L} → ub =
(

ub
1 ub

2 · · · ub
L

)

,

Step 4b) Calculate Tfc(u
b) from (3.26).

Repeat Step 3b and Step 4b for b = 1, 2, · · · , Bs.

Step 5b) Calculate the p-value p̂∗ using (3.32), and if p̂∗ < α, accept H1 as a global
decision, otherwise accept H0.

Tfc(u) under H0, i.e.,

g0(Tfc(u)) =

2L
∑

k=1

P0(Tfc(u
k))δ(Tfc(u)− Tfc(u

k)), (3.29)

here δ(·) is the Kronecker delta function. For the observed test statistic T̂fc(u), the

p-value can then be calculated by

p̂ = 1−G0(T̂fc(u)) =

2L
∑

k=1

P0(Tk,FC)1{Tfc(uk)>T̂fc(u)}
. (3.30)

If p̂ < α, then accept H1 as a global decision, otherwise accept H0. Here, α denotes a

nominal value of the global probability of false alarm.

The complexity of the algorithm to yield a global decision using all possible binary

combinations depends on the number of CR users L. For example, when L = 10, it
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requires 210 = 1024 combinations and exponentially increases as L increases. In this

case, to reduce the complexity when L is large, we can use the parametric bootstrap to

generate Ĝ0(Tfc(u
b)), the EDF under H0, instead of using all possible combinations.

This is possible because the decision bit under H0 from each CR user can be simulated

as Bernoulli trials with probabilities

P0(ul = 0) = 1− αl, P0(ul = 1) = αl, l = 1, . . . , L. (3.31)

Therefore, the bootstrap data for the vector of decision bits ub =
(

ub
1 ub

2 . . . ub
L

)

,

b = 1, . . . , Bs, can be generated parametrically. Accordingly, the bootstrap test statistic

Tfc(u
b), b = 1, . . . , Bs, can be calculated from (3.26) and Ĝ0(Tfc(u

b)) is obtained. For

the observed test statistic T̂fc(u), the p-value is therefore

p̂∗ = 1− Ĝ
(
0T̂fc(u)) =

1 + #{Tfc(u
b) ≥ T̂fc(u)}

Bs + 1
, (3.32)

and then the global decision is made. In brief, when the number of CR users L results

in a number of combinations 2L ≤ Bs, then use the all binary combinations to produce

G0(Tfc(u)), otherwise switch to the parametric bootstrap to have Ĝ
(
0Tfc(u

b)). The

implementation at the FC for the resampling-based CSS is shown in Algorithm 3.4.

3.4 Multiple hypothesis testing for multiband spec-

trum sensing

Multiple hypothesis testing refers to the testing of more than one hypothesis at a time

[79]. It is intended to solve the multiplicity effect by making the individual tests more

conservative to arrive at rejecting Hk hypothesis. The procedure to conduct multiple

hypothesis tests is often called multiple comparison procedure (MCP) or multiple test

procedure (MTP) [80]. We prefer to use MTP in sequel. We begin with the definition

of some measures in MTP that will be repeatedly referred to, in this section and also in

Section 5.1. Afterwards, we detail the implementation of MTPs in spectrum sensing.

3.4.1 Performance measures in MTP

Consider a situation where we have K > 1 pairs of null and alternative hypotheses to

be tested jointly, i.e. H0,k vs H1,k, k = 1, . . . , K. Let us assume that K0 out of K are

true null hypotheses. Numbers of correct and false decisions are represented in Table
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Table 3.1: Number of correct and false decisions for testing K null hypotheses

Declared H0 Declared H1 Total
True H0 U V K0

True H1 T S K −K0

K − R R K

3.1. Note that U, V, S, T and R are random variables, where R is observable and the

others are unobservable.

Suppose that now we are more interested in a measure of errors for the family instead of

the individual tests. A common measure of errors in classical MTP is called familywise

error rate (FWE). It is defined as the probability of committing any type I error or

false alarm in families of comparisons, formally

FWE = P0(V ≥ 1). (3.33)

There are two kinds of FWE. The FWEC, is calculated under the complete null hy-

potheses (all H0,k are true), and the FWEP, is calculated under a partial null hypothe-

ses (some subsets of nulls, say H0,j1, . . . ,H0,jk, are true). An MTP is said to control

the FWE in the weak sense if FWEC ≤ α, and it controls it in the strong sense if

FWEP ≤ α regardless of which subsets of null hypotheses is true [81]. A simple ex-

ample for the MTP that is devised to control the FWE is the Bonferroni procedure,

in which each hypothesis k, k = 1, . . . , K, is tested at level α/K, and it guarantees to

have FWE ≤ α. Another procedure is proposed by Holm [82], which is to improve the

power of the Benferroni procedure. However, FWE-based procedures are still conser-

vative and generally lead to a significant reduction in the power of test. To resolve this

issue, Benjamini and Hochberg propose to use another measure [83], namely false dis-

covery rate (FDR). It is defined as the expected value of the proportion of the rejected

null hypotheses which are erroneously rejected, formally

FDR = E

[

V

V + S

]

= E

[

V

R

]

. (3.34)

To evaluate the performance, the following additional measures are used. We define

familywise miss detection (FWM). It refers to the probability of committing any type

II error or miss detection in families of comparisons, formally

FWM = P1(T ≥ 1). (3.35)

Following [84], the false alarm ratio (FAR) is defined as the expected value of the ratio

of the number of false alarms and the number of true null hypotheses, i.e.,

FAR = E

[

V

K0

]

. (3.36)
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and the missing ratio (MR) is defined as the expected value of the ratio of the number

of miss detections and the number of true alternative hypotheses, i.e.,

MR = E

[

T

K −K0

]

. (3.37)

The implementation of MTP to source enumeration can be found in [85] and to the

identification of optimal sensor position in [86]. It also has been implemented in dis-

tributed detections and wireless sensor networks, such as in [87–91]. In the following

subsection, we elaborate on the implementation of MTP in spectrum sensing.

3.4.2 The implementation of MTP in multiband spectrum
sensing

We assume that the primary network operates over a wide frequency bandwidth which

is divided into K nonoverlapping subbands, such as in multicarrier-based system.

Whenever possible, a primary user can be assigned to use Kp subbands simultaneously,

where 1 ≤ Kp ≤ K. Now, the binary hypothesis testing problem for the subband k, is

Hk,0 : xk[n] = wk[n], (3.38a)

Hk,1 : xk[n] = rk[n] +wk[n], k = 1, . . . , K, n = 1, . . . , N. (3.38b)

Suppose that within a particular time interval K0 subbands might not be used by the

primary users are available for cognitive access. Let us assume that the CR network

supports some CR users to use several unoccupied subbands simultaneously. The

number of subbands Kc assigned to a specific CR user is, say, based on priority. Here,

1 ≤ Kc ≤ K0 and 0 ≤ K0 ≤ K. Therefore, we need an overall view of the performance,

e.g. false alarm and miss detection for each possible value of Kc. In particular, it is

convenient if we have control over the type I error (false alarm) for all possible values of

Kc to increase the throughput, while we can minimize the type II error (miss detection)

for the subbands that are occupied, to suppress the interferences to the primary users.

In this case, MTP should be implemented in multiband spectrum sensing to provide

control over the decision errors at the system level, not only per subband.

3.4.2.1 Controlling FDR, an appropriate choice for multiband spectrum
sensing

Testing each subband individually at level αk = α, k = 1, . . . , K, will produce multi-

plicity effect. Assuming independent test statistics and K0 unoccupied subbands, the
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resulting probability of false alarm due to the multiplicity can be written as

FWE = P0(V > 1) = 1− (1− α)K0. (3.39)

Therefore, the larger K0, the larger the FWE. A simple way to have control over the

false alarm for each value of K0 is to control the FWE in the strong sense. However,

it then reduces the power of test significantly. More precisely, it increases the degree

of interferences to the primary users, as a consequence of restrictively controlling the

false alarm. In particular, primary users that use Kp > 1, receive larger aggregate

interferences for the larger Kp.
7 In these situations, full protection resulting from

controlling FWE is too restrictive. On the other hand, multiplicity control by testing

individually is too permissive. Thus, handling appropriately the tradeoff between the

two is pivotal.

Compared to the FWE controlling procedure, the FDR has the two following properties

[83]. First, if all null hypotheses are true, K0 = K, the FDR is equivalent to the FWE.

Therefore, controlling the FDR in this case also means controlling the FWE in the

weak sense. Second, if K0 < K, the FDR is smaller than or equal to the FWE. Thus,

any procedures devised to control the FWE also controls the FDR, but not in reverse.

These indicate that the FDR controlling procedure is more advantageous than the

FWE controlling procedure to be implemented in spectrum sensing, since the former

has a better tradeoff than the latter. More precisely, the FDR controlling procedure

provides relaxed restriction on the FWE and thus gains more power than the FWE

controlling procedure.

The FDR controlling procedure has been used in [84] and [93] for spectrum sensing to

jointly detect the K subbands and evaluate the performance in the system level. How-

ever, we want to emphasize here that the use of FAR and MR as the system measures

could be misleading. This is because when we test each hypothesis k individually at

nominal value αk = α, k = 1, . . . , K, then it is automatically guaranteed that FAR ≤ α

[94] (see Fig. 3.11 for the simulation results).8 In addition, for a target FAR ≤ α, jointly

testing with MTP results in a higher MR than that of testing individually.

3.4.2.2 The procedures

We propose to use the adaptive Benjamini-Hochberg procedure [94], hereafter A-BHP,

for multiband spectrum sensing. It is based on the FDR which is the extension of the

7Aggregate interference is also used in [92]. It is one of the constraints for the opportunistic rate
optimization problem in multiband spectrum sensing.

8FAR in [94] is referred to as the effective per comparison error rate.
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Algorithm 3.5 The Benjamini-Hochberg procedure

Step 1) Calculate the p-values of p1, p2, . . . , pK for the subbands k = 1, 2, . . . , K,
using Algorithm 3.2 or 3.4.

Step 2) Rank the p-values in ascending order, p1∗ ≤ p2∗ ≤ p3∗ ≤ · · · ≤ pK∗ for the
corresponding hypotheses H0,1∗ ,H0,2∗ ,H0,3∗ , . . . ,H0,K∗.

Step 3) Calculate k∗
max = max{1 ≤ k ≤ K : pk∗ ≤

kα∗

K
}.

Step 4) If such k∗
max exists, reject the null hypotheses H0,1∗ ,H0,2∗ , . . . ,H0,k∗max

(the corresponding subbands are declared occupied). Otherwise, reject nothing (all
subbands are unoccupied).

original work, i.e., the Benjamini-Hochberg procedure (BHP) [83], to gain more power.

For convenience, we first elaborate on the BHP briefly and then the A-BHP will follow.

Suppose that the the binary hypothesis (3.38) for the subband k, k = 1, . . . , K, is

tested either using Algorithm 3.2, for the local spectrum sensing, or using Algorithm

3.4, for the collaborative spectrum sensing. Let p1, p2, . . . , pK denote the resulting

p-values corresponding to the respective null hypotheses H0,1,H0,2, . . . ,H0,K .
9 For

independent test statistics and for any configuration of alternative hypotheses, the BHP

shown in Algorithm 3.5 controls the FDR at α∗. As mentioned previously, in terms of

power the BHP is better than MTPs based on the FWE controlling procedure, such

as simple Bonferroni or Holm’s sequentially rejective method. However, when not all

null hypotheses are true (not all subbands unoccupied), K0 < K, the BHP controls the

FDR at a level which is too low. To solve this issue, the A-BHP estimates the current

configuration of the tested hypotheses, and then the joint test adapts accordingly.

Using this procedures, the power of the test is further improved, so the interferences

to the primary users is reduced.

The A-BHP basically combines two steps. The first is to estimate K0, and the second

is to apply the BHP according to the estimate. In order to estimate K0, the A-BHP

relies on the following observation. Suppose that the test statistics are independent

and all null hypotheses are true, K0 = K. Since the p-values pk, k = 1, . . . , K, are

uniformly distributed over [0, 1], the ordered set of p-values, denoted as p1∗ ≤ p2∗ ≤
p3∗ ≤ · · · ≤ pK∗, behave as an ordered snapshot from the uniform distribution. Hence,

the expected value

E [pk∗ ] ≈
k

K + 1
, k = 1, . . . , K. (3.40)

9The p-values are from Step 4 for the local spectrum sensing, or from Step 5a or 5b for the
collaborative spectrum sensing.
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Algorithm 3.6 The adaptive Benjamini-Hochberg procedure (A-BHP)

Step 1) Calculate the p-values of p1, p2, . . . , pK for the subbands k = 1, 2, . . . , K,
using Algorithm 3.2 or 3.4.

Step 2) Rank the p-values in ascending order, p1∗ ≤ p2∗ ≤ p3∗ ≤ · · · ≤ pK∗ for the
corresponding hypotheses H0,1∗ ,H0,2∗ ,H0,3∗ , . . . ,H0,K∗.

Step 3) Compare the ordered p-values using the condition pk∗ ≥
kα∗

K
, ∀k = 1, . . . , K.

If all satisfy it, reject no hypothesis (all subbands declared unoccupied) and stop.
Otherwise, continue to the next step

Step 4) Start with k = 1, calculate the slope using (3.41) sequentially, until the first
Ŝk+1 < Ŝk. K̂0 can be found from (3.42).

Step 5) From the largest p-value pK∗ to the smallest value, compare the condition

pk∗ >
kα∗

K̂0

, until the first k = kf violates the condition.

Step 6) Reject all hypotheses H0,1∗ ,H0,2∗ , . . . ,H0,k∗
f
(the corresponding subbands

are declared occupied), and do not reject the rest (the corresponding subbands are
declared unoccupied).

Briefly, the plot of pk∗ versus k should show linearity along a line with slope S =

1/(K+1) which connects the origin and the point (K+1, 1). However, when K0 < K,

the p-values corresponding to alternative hypotheses tend to be smaller and concentrate

on the left side of the plot. Therefore, using the line with slope Ŝ that fits a suitable

number of the largest p-values (that supposedly contributed from K0 null hypotheses

only), the estimate of K0 can be calculated. To determine the suitable number of the

largest p-values, the lowest slope estimator

Ŝk = (1− pk∗)/(K + 1− k) (3.41)

is calculated sequentially starting from k = 1 towards larger k as long as Ŝk+1 ≥ Ŝk,

and otherwise stop. The estimated number of true null hypotheses is thus

K̂0 = min
[

(1/Ŝk+1), K
]

. (3.42)

Afterwards, the BHP procedure is applied using the estimate value K̂0. The complete

A-BHP is shown in Algorithm 3.6. For rigorous arguments and proofs, refer to [83,94].
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3.5 Simulation results

Numerical experiments were conducted to evaluate the performances of the proposed

methods in local, collaborative, and multiband spectrum sensing. For the local spec-

trum sensing, we consider the sample sizes N = 20, 50, 100, and for collaborative

spectrum sensing we fix N = 100. For all simulations, the smoothing factor is fixed

to M = 5. The number of bootstrap replications is set to Bs = 499 for all cases.

Note that we have confirmed that to use larger Bs for bootstrapping does not improve

the performance significantly. For the pivot bootstrap test in local spectrum sensing,

the number of second bootstrap replications to estimate Ŝe is set to Bs1 = 25.10 To

generate results, we use 5× 103 Monte Carlo runs.

Here, we assume that the noise w[n] follows an i.i.d. Gaussian distribution N (0, σ2
w),

where we set the noise power to σ2
w = 1.11 However, we do not lose generality, since

the test based on (3.6) under H0 does not depend on the noise power. The signal

transmitted by a primary user s[n] also follows an i.i.d. Gaussian distribution. We

consider the channel to be a multipath fading channel, and hence the signal arrives at

a CR user as

r[n] =

J−1
∑

j=1

h[j]s[n− j], (3.43)

where h[j], j = 1, . . . , J − 1, denotes the discrete-time channel impulse response be-

tween the primary transmitter and a CR user’s receiver and J is the number of resolv-

able paths. The coefficients h[j], j = 1, . . . , J − 1, are assumed to be constant during

the period of an observation and we set J = 10. However, they indeed change between

measurements and each follows an i.i.d. Gaussian distribution with average power path

gain (in dB relative to the first path) as follow

[0 − 0.5 − 1 − 3 − 7 − 10 − 10 − 10 − 20 − 20]. (3.44)

In this case, the received signal r[n] is temporally correlated due to the channel im-

pulse response. It is noteworthy that the mechanism that produces correlations on the

received signal is irrelevant to the performance of the tests. The received signal could

be temporally correlated due to various reasons, such as oversampling, channel time

dispersion (as we simulate here), or correlations in the original signal itself.

10To estimate the standard error of an estimator, the larger the number of replications the better.
However, Bs1 = 25 still gives a good performance [63].

11Note that from the beginning we do not assume the signal and noise to follow a specific distribution.
Therefore, the tests can still be used, even for cases which depart from our assumptions here.
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3.5.1 Local spectrum sensing

Here, the performances of the null-resampling bootstrap test, as the proposed method,

is compared with the bootstrap pivot test and the asymptotic test [22]. In general, the

objectives are to verify how close the actual probability of false alarm of a test is to

the nominal value, and to evaluate the power of the tests (probability of detection) for

various SNR values. At the same time, we strengthen the arguments that we mention

in Section 3.2.3.

Fig. 3.5 and 3.6 show that the bootstrap null-resampling test has a better performance

than the bootstrap pivot test and the asymptotic test, in terms of maximizing the

probability of detection, subject to a nominal value of the probability of false alarm.

The actual probability of false alarm of the bootstrap pivot test is too large for the

respective nominal value and it fails to meet the objective Pf ≤ α. For example, for

a nominal α = 0.05 and 0.1, it yields Pf ≈ 0.6 and 0.7, respectively. The false alarm

decreases as the sample size increases, but it is still far from the nominal value. A

common consequence of having a larger probability of false alarm is to have a better

probability of detection. This can be seen in Fig. 3.6, where the probability of detection

of the bootstrap pivot test is better for all SNRs. However, the condition is not

desired for the spectrum sensing. This is because the pivot bootstrap test results in a

better protection against interference to the primary network, but misses out on many

opportunities to use unoccupied bands, which in turn heavily reduces the throughput

of the CR network. Note that the curves for the pivot bootstrap test in Fig. 3.5 are

similar to the approximation curve from (3.21) that is depicted in Fig. 3.1.

Meanwhile, Fig. 3.5 shows that the asymptotic test is the opposite of the bootstrap

pivot test. The actual probability of false alarm is far below the nominal value, es-

pecially for small sample sizes. It gets closer to the nominal value as the sample size

increases. However, even for N = 100, the gap is still considerably large, as large

as 0.1 (10%) for α > 0.1. This indicates that the underlying distribution of the test

statistic, under H0, slowly converges to the assumed asymptotic distribution as the

sample size N increases. In contrast, the null-resampling bootstrap test could main-

tain the actual probability of false alarm close to the nominal value, especially for

N = 50 and N = 100. Consequently, the resulting probability of detection of the

null-resampling bootstrap test is larger than the asymptotic test. This is shown in

Fig. 3.6. For N = 100, the gap is approximately 7% − 15% over the SNR range and

more pronounced for smaller sample sizes. In this case, the asymptotic test is prac-

tically too conservative in protecting the probability of false alarm. It is noteworthy

that the simulation results supports the arguments in Subsection 3.2.3.
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Figure 3.5: Actual probability of false alarm Pf vs. nominal value α for the asymptotic
approach (Asym), the null-resampling bootstrap test (Null), and the bootstrap pivot
test (Pivot) with different sample sizes N .
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(a) Nominal prob. of false alarm α = 0.05
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Figure 3.6: Probability of detection Pd vs. SNR (dB) for the asymptotic approach
(Asym), the null-resampling bootstrap test (Null), and the bootstrap pivot test (Pivot)
with different sample sizes N .

In summary, the simulation results have shown that the null-resampling test gives

a better estimate of the true distribution G0 of the test statistic under H0 than the

bootstrap pivot test and the asymptotic test. The fact that the probability of detection

is relatively small for small SNRs is merely a consequence of using small sample sizes.

Fortunately, the performance can be improved by a collaborative spectrum sensing

scheme which is to be elaborated in the next section.
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Figure 3.7: Probability of detection Pd vs. SNR (dB) for various number of CR users.

3.5.2 Collaborative spectrum sensing

In this part, performances of collaborative spectrum sensing are shown for numbers of

CR users L = 2, 4, 8 and 16. The objectives are to quantify the improvement on the

probability of detection (or miss detection) due to collaboratively detecting a primary

user’s signal, instead of locally detecting, and to evaluate the Chair-Varshney fusion

rule using the bootstrap approach in comparison to the Chair-Varshney fusion rule

using all binary combinations. Note that the received signal component at each CR

user follows (3.43). The average path gain of all CR users follow (3.44), and the channel

coefficients are independent between CR users.

Fig. 3.7 depicts the probability of detection as a function of SNR for various number

of CR users. It shows that the SNR gain of the collaborative spectrum sensing is

significant. For example, for target probability of detection Pd ≥ 0.8, the local spectrum

sensing can only achieve this when the SNR ≥ 10 dB. Meanwhile, the target can be

achieved at the SNR ≥ −5 dB when 16 CR users detect collaboratively. The SNR gain

is approximately 15 dB in this case. To corroborate, Fig. 3.8 shows the complementary

receiver operating characteristic (ROC) of collaborative spectrum sensing with 4, 8

and 16 CR users, for different values of SNR. In the figure, the probability of miss

detection Pm for some curves remains constant for different nominal values of the global

probability of false alarm αfc, particularly for fewer CR users. This is due to discrete

observations at the FC. Note that, to solve this issue, we cannot apply randomized test,

as suggested in [95]. This is because the distributions of the test statistics change from

one measurement to another, as we aim to anticipate the varying channels (varying
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Figure 3.8: Complementary ROC, probability of miss detection Pm vs. nominal values
of the global probability of false alarm αfc, for different numbers of CR users and SNRs.

average SNR of the received signal) between a primary transmitter and a CR user’s

receiver.

The discrete observations also have an implication on the actual value of the global

probability of false alarm Pf , as follows. To generate the curves in Fig. 3.7 and Fig. 3.8,

each CR user was set to have αl = 0.05, l = 1, . . . , L and the nominal value of the

global probability of false alarm was set to αfc = 0.1. The actual value Pf deviates

from the nominal value. They are 0.08, 0.15, 0.27 and 0.38 for 2, 4, 8 and 16 CR users,

respectively. This is inevitable because the distribution of the test statistic at the FC

under H0 is discrete. Therefore, the distribution of the p-value is not uniform [62]. In

our case, it is concentrated on low and high values as shown in the histograms of Fig

3.9.a. It can be extracted from the figure and from (2.14) that

Pf = P0(P ≤ 0.1) > 0.1, (3.45)
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Figure 3.9: Distributions of p-value under H0 for the resampling Chair-Varshney fusion
rule (discrete) and the equal combining fusion rule (continue), for 2, 4, 8 and 16 CR
users.
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Figure 3.10: Complementary ROC, probability of miss detection Pm vs. nominal values
of the global probability of false alarm αfc, when the distributions of Chair-Varshney
fusion rule underH0 are generated by the all combinations (solid line) and the bootstrap
approach (dashed line), for 10, 11, 12 and 16 CR users. The upper and the lower curves
are for SNR= −5 dB and SNR= 0 dB, respectively.

for number of CR users L > 2. In contrast, when the observations at the FC is contin-

uous the distribution of the p-value is approximately uniform as depicted in Fig.3.9.b.

To generate the p-value distributions in Fig.3.9.b, we use equal gain combining fusion
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rule at the FC. Formally,

Tegc =
L
∑

l=1

T̂l, (3.46)

where T̂l is the test statistic (3.9) from the CR user l. To get a p-value, Ĝ0(Tegc), the

EDF of Tegc, is generated using the bootstrap replications of T̂l, l = 1, . . . , L. In this

case, each CR user applies null-resampling to the observed data and then calculates the

bootstrap replications T̂ b
l , b = 1, . . . , Bs. The results are transmitted to the FC to be

combined and yield bootstrap replications T b
egc, b = 1, . . . , Bs. Therefore, the p-value

can be calculated as usual. The resulting actual probability of false alarm in this setup

is thus Pf = P0(P ≤ 0.1) < 0.1, as can be extracted from the figure. More precisely,

the probabilities of false alarm are approximately 0.08, 0.08, 0.07 and 0.07 for 2, 4, 8

and 16 CR users, respectively. In terms of false alarm rate, this setup is attractive.

However, it consumes a much higher bandwidth for the reporting channels than the

resampling Chair-Varshney fusion rule. This is because each bootstrap replication

should be transmitted to the FC from each CR user.12 Note that the simulation setups

for the two schemes to generate the p-value distributions are the same. Hence, we

believe that the proposed resampling Chair-Varshney fusion rule is more appropriate

to be used in collaborative spectrum sensing.

Fig. 3.10 shows the complementary ROC curves for the Chair-Varshney fusion rule

where the distributions under H0 are generated based on the all binary combinations

and the bootstrap approach. The two curves in each subfigure are almost identical.

Therefore, the bootstrap approach significantly reduces the computational cost without

causing significant degradations in performance. For example, when the number of CR

users is 16, there will be 65536 combinations, while in the bootstrap approach we only

use Bs = 499 combinations. This corroborates the convincing results of the proposed

resampling based collaborative spectrum sensing.

3.5.3 Multiband spectrum sensing

Performances of multiband spectrum sensing using Adaptive Benjamini-Hochberg pro-

cedure (A-BHP) are shown in this part. We compare the A-HBP with the conventional

12This scheme could also be conducted by allowing CR user to forward their sampled data to the
FC without any processing. Then, the FC will calculate the bootstrap replications on behalf of the
CR users. This might save the bandwidth if the sample size N taken by each user is smaller than the
number of bootstrap replications Bs, like in our case. However, the bandwidth is still much higher
compared to the resampling Chair-Varshney fusion rule.
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Figure 3.11: FAR and MR vs. K0 for the local spectrum sensing using Holm’s approach
(Holm), Benjamini-Hochberg (BHP), adaptive Benjamini-Hochberg (A-BHP), and the
individual testing procedure (Indv).

Benjamini-Hochberg procedure (BHP) and Holm procedure (HP). Local spectrum sens-

ing is used in Fig. 3.11 and 3.12. In this case, we set the total number of subbands

to K = 8. The number of unoccupied subbands varies from K0 = 0 to 8. Note that

for each K0, the unoccupied subbands were selected randomly from K subbands. The

performance improvement by collaborative spectrum sensing is shown in Fig.3.13. In

all simulations, the signals in occupied subbands received by each CR user are assumed

to have the same SNRs. In addition, we use the nominal value FDR = 0.1.

As explained previously, when we use FAR and MR as the system measures, such as

in [84] and [93], the results could be misleading. With these measures, the individual

testing (without MTP) yields better results than the one with an MTP. This is because

the FAR and MR only indicate performances per subband, not familywise. In general,

the individual testing has lower MRs than the schemes with an MTP, while it still

preserves FAR ≤ 0.1. This condition is shown in Fig. 3.11. However, the results, and

hence the conclusions, are different if we use familywise measures, such as FDR, FWE

and FWM.

In multiband spectrum sensing, even though we use FDR as the design criteria for

BHP and A-BHP, the use of FWE and FWM as system measures is more meaning-

ful. Fig. 3.12.a. shows that the three MTPs fulfill the requirement to have the actual

FDR ≤ 0.1. It is obvious from Fig 3.12.b. that the HP controls the FWE in the strong

sense, while the BHP and A-BHP control the FWE in the weak sense. In this respect,

for the HP, regardless of how many available subbands might be opportunistically used

by a CR user, the probability of missing an opportunity to use the respective subbands
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(a) False discovery rate (FDR)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K
0

F
W

E

 

 
Holm
BHP
A−BHP
Indv

(b) Familywise error rate (FWE)
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(c) Familywise miss detection rate (FWM)

Figure 3.12: Familywise measures FDR, FWE and FWM vs. K0 for the local spec-
trum sensing using Holm’s approach (Holm), Benjamini-Hochberg (BHP), adaptive
Benjamini-Hochberg (A-BHP), and the individual testing procedure (Indv).

is no larger than α = 0.1. This condition does not hold for the BHP and A-BHP. How-

ever, strongly controlling the FWE has a consequence to increase the FWM as shown in

Fig. 3.12.c., where the HP performs the worst. Meanwhile, the procedure to test each

subband individually performs the best in terms of the FWM, but the worst in terms

of the FWE. The case is different with the A-BHP, which has a better tradeoff between

the FWE and the FWM, than the other procedures. When the number of unoccupied

subbands K0 increases, the A-BHP pays more attention to the unoccupied subbands.

As a result, its FWE is better than individually testing and slightly different from the

BHP and the HP. Meanwhile, when the number of occupied subbands increases (K0

decreases), the A-BHP relaxes the FWE to gain power, that decreases the FWM. More

precisely, A-BHP slightly reduces the throughput of the CR network compared to BHP

and HP, when the majority of subbands are unoccupied. However, it provides better
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protection to the primary network against receive interferences, when the majority of

subbands are occupied. Based on this fact, the A-BHP is more attractive to be imple-

mented in multiband spectrum sensing than the other MTPs, including the individual

testing.

Fig. 3.13 shows the performances of local spectrum sensing and collaborative spectrum

sensing using 4 CR users. Each CR user was set to have a nominal value of false

alarm αl = 0.1. Here, we assume that the probability of each subband being occupied

by a primary user is equal, i.e., P (Hk,1) = P1, k = 1, . . . , K. We consider equal

SNRs for occupied subbands, precisely, SNR = −10 dB and SNR = 10 dB, and the

subbands are considered to be busy (P1 = 0.8), mildly busy (P1 = 0.5) and sparse

(P1 = 0.2). The number of subbands varies from K = 2 to K = 16. The advantage of

using collaborative spectrum sensing in multiband cases is not perceivable at low SNR.

However, it is more pronounced when the SNR increases. When the SNR = 10 dB, the

collaborative spectrum sensing for K = 16 suppresses the interferences to the primary

network by approximately 70% (FWM decreases from ≈ 0.8 to 0.1), 55% and 60%

for mildly occupied, sparse and busy subbands, respectively. In terms of the FWE,

the collaborative spectrum sensing has performances comparable to the local spectrum

sensing when the occupancies are sparse and busy. The collaborative spectrum sensing

will miss up to 15% more opportunities to use unoccupied subbands compared to the

local spectrum sensing, when the subbands are mildly occupied. However, overall,

the gain that we obtain by using collaborative spectrum sensing for multiband cases

outweighs the losses.

In fixed sample size cases, as we consider in this chapter, we only have control over

the type I error, not both with the type II error. Thus, we focus on improving the test

power to suppress the interferences. It would be convenient, if we have control over the

two types of error. Thus, we can set the probability of missing unoccupied subbands,

and we can limit the interferences to the primary network at the same time. This case

will be considered in Chapter 5.1, where we develop a multiple testing procedure for

sequential testing.

3.6 Conclusion

In this chapter, we address the problem of spectrum sensing with a small sample size.

It includes local spectrum sensing and collaborative spectrum sensing. In addition, we

apply the two schemes to multiband spectrum sensing, where controlling the familywise

decision errors is more important than controlling single band decision errors. More
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(a) Sparse, SNR = −10 dB
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(b) Sparse, SNR = 10 dB
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(c) Mild, SNR = −10 dB
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(d) Mild, SNR = 10 dB
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(e) Busy, SNR = −10 dB
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Figure 3.13: FWE and FWM vs. K for the local spectrum sensing and the collaborative
spectrum sensing using 4 CR users. The subbands are busy (P1 = 0.8), mildly busy
(P1 = 0.5) and sparse (P1 = 0.2).
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precisely, we considered correlated primary user’s signal in uncorrelated noise. In local

spectrum sensing, we propose to use the null-resampling bootstrap test. The simu-

lations results show that the null-resampling bootstrap test has better performances

than the pivot bootstrap test and the asymptotic test. The actual probabilities of false

alarm of the null-resampling bootstrap test are close to the nominal values. The actual

probabilities of false alarm of the asymptotic test are too conservative and hence result

in a smaller power than the null-resampling bootstrap test. This means that the prob-

ability of causing interference to the primary network is considerably high. In contrary,

the pivot bootstrap test has too high false alarm rates. This indicates that the CR net-

work misses to many opportunities to use unoccupied spectrum bands. In this case, the

null-resampling bootstrap test provides a better balance between the probabilities of

false alarm and miss detection. For collaborative spectrum sensing, we propose to use

the Chair-Varshney fusion rule. In each CR user, the distribution of the test statistic

under the null hypothesis is estimated by independent bootstrap resampling, and the

distribution of the test statistic under alternative hypothesis is estimated by moving-

block bootstrap resampling. At the fusion center, the distribution of the fusion rule

under null hypothesis is estimated by the parametric bootstrap when the number of CR

users is large. The simulation results show that the Chair-Varshney fusion rule using

the parametric bootstrap is comparable to the one that uses all binary combinations

of CR users. At the end, we apply the local and the collaborative sensing to multi-

band cases. We highlight the advantages of using the adaptive Benjamini-Hochberg

for jointly testing multiple subbands, instead of the original Benjamini-Hochberg and

Holm’s procedure. The simulation results confirm the advantages.
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Chapter 4

Bootstrap based sequential tests for
spectrum sensing

In Section 2.3, we present the SPRT for testing a simple hypothesis against a simple

alternative. However, the simple hypothesis approach is not suitable in most practical

scenarios, such as spectrum sensing. Unknown parameters might exist which enforce

the use of non-exact distributions. Therefore, extending the SPRT to composite hy-

potheses is necessary, as presented in this chapter.

Some studies on sequential detection for composite hypotheses have focused on asymp-

totic optimality [96,97]. In this setup, the probability of false alarm and the probability

of miss detection are assumed to converge to zero or, equivalently, the constant thresh-

olds are assumed to go to infinity. This work, to some extend, is based on the framework

used in [54]. However, the authors in [54] mainly focus on an asymptotic bound on

the error term of the log-likelihood ratio, such that the threshold margin for the upper

and the lower threshold, which is a function of the sample size, can be replaced by

some positive constant. Eventually, constant thresholds are used in this earlier work.

The present work differs from the previous work in several aspects. Here, the SPRT is

extended to cope with composite hypotheses by combining the generalized SPRT and

the parametric bootstrap to obtain its thresholds. The thresholds are not assumed to

be constant but are updated for each new sample. Therefore, the proposed procedure

has smaller sample sizes than asymptotic methods. In addition, our method avoids ex-

haustive simulations to determine the thresholds under worst case assumptions, such

as in [54]. A method which significantly reduces the computational costs caused by the

bootstrap is also proposed. The resulting test has performance comparable to the test

which is without complexity reductions.

The sensing objective is explained in Section 4.1. The problem formulation and a

detailed discussion of the generalized SPRT are given in 4.2. Section 4.3 begins with a

brief review of the conventional method to do thresholding for the generalized SPRT.

Subsequently, our proposed method using the parametric bootstrap is explained in

detail and a scheme for reducing the computational cost induced by the bootstrap is

presented. An example and simulation results are given in Section 4.4. Finally, we

conclude in Section 4.5.
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4.1 Preliminaries

As mentioned in Section 2.1, the spectrum sensing accuracy in cognitive radio is mea-

sured by the probability of detection errors, i.e. probabilities of false alarm and miss

detection. To distinguish between the nominal and the actual values, we use α and

β to denote the nominal values of the probabilities of false alarm and miss detection,

respectively, whereas Pf and Pm are the corresponding actual values.

Sensing time is one of the most critical issue in cognitive radio. In general, the time

frame of a CR user is divided into two periods of time, sensing time and transmis-

sion time. The sensing time should be minimized in order to gain more transmission

time and hence an increased throughput of cognitive radio network. However, sensing-

throughput trade-off occurs in this case [43]. On the one hand, reducing the sensing

time increases the transmission time which in turn increases the overall throughput of

the cognitive radio network. On the other hand, reducing the sensing time decreases

the sensing accuracy, which in turn partially decreases the throughput (Pf increases)

and increases the degree of interference to the primary network (Pm increases).1 Note

that increasing the sensing time is the opposite. Therefore, the sensing objective is to

guarantee a certain degree of interference and a certain percentage of missed transmis-

sion opportunities, i.e.

Pf ≤ α and Pm ≤ β, (4.1)

while using as few samples as possible. In this case, the degree of interference to the

primary network is fixed to an allowable value and CR users gain more transmission

time to increase the throughput of the cognitive radio network.

4.2 The generalized sequential probability ratio

test

To begin, suppose that a CR user receives a signal which is distributed according to

(2.2) under each hypothesis. Suppose that the sequence of observations xN is indepen-

1Note that it can as well be the other way around: the faster the sensing time is, the shorter it
takes the CR users to release the frequency band after being re-occupied by the primary users. Hence,
the effect that a change in the sensing time has on the degree of interference needs to be investigated
case by case.



4.2 The generalized sequential probability ratio test 59

Figure 4.1: An early termination that leads to a wrong decision (miss detection) due
to the difference between the log-likelihood ratio (LLR) when the parameters are es-
timated and when the parameters are known. The difference happens due to the
estimation error.

dent and identically distributed (i.i.d.). The joint density functions of xN are

H0 : f0,N (xN ; θ0) =
N
∏

n=1

f0(x[n]; θ0), θ0 ∈ Θ0 (4.2a)

H1 : f1,N (xN ; θ1) =

N
∏

n=1

f1(x[n]; θ1), θ1 ∈ Θ1, . (4.2b)

Here, the parameters θ0 and θ1 are unknown underH0 andH1, respectively. Therefore,

it is necessary to replace the unknown parameters by their estimates. Similar to the

case of a fixed sample size detector in Section 2.2.2, the generalized log-likelihood ratio

(GLLR) can then be written as

ẐN = ln

(

f1,N(xN ; θ̂
(N)

1 )

f0,N(xN ; θ̂
(N)

0 )

)

(4.3)

where

θ̂
(N)

i = argmax
θi∈Θi

ln (fi,N(xN ; θi)) (4.4)

is the maximum likelihood estimator (MLE) of θi assuming that hypothesis Hi, i = 0, 1,

is true. As a consequence of using the estimates of the unknown parameters, the two

thresholds of the SPRT (2.20) cannot be used directly in this setup. A threshold

modification is required to compensate the estimation errors introduced by the MLEs.

Otherwise, the actual probability of false alarm Pf or miss detection Pm increases

(depending on the underlying distribution), and hence the sensing objective (4.1) is

violated. The situation is illustrated in Fig. 4.1, where the two thresholds of the simple

hypotheses SPRT are employed unaltered and the test commits a miss detection due

to an estimation error on the log-likelihood ratio.

Theoretically, the estimation error is statistically large for small N and vice versa. To

reflect this condition, an appropriate method is needed to set the thresholds adaptively
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based on N . In this way, the thresholds should be large to tolerate large estimation

errors when N small and get tighter as N increases. Let AN and BN denote the

new time dependent upper and lower thresholds. The generalized SPRT for composite

hypotheses can now be defined as

ẐN







≥ AN , accept H1

≤ BN , accept H0,

AN < ẐN < BN , N ← N + 1.

(4.5)

The authors in [54] suggest that AN and BN are functions of the sample size N with

the following equations

AN = A +∆0
N , BN = B −∆1

N , (4.6)

where A and B are determined from (2.20), and ∆i
N ≥ 0, i = 0, 1, is the modified value

for the threshold at the stage N under Hi. Note that ∆0
N and ∆1

N are used to prevent

terminations that lead to wrong decisions due to estimation errors under H0 and H1,

respectively. Thus, the sensing objective (4.1) is finally preserved.

Before we proceed, we briefly elaborate the convergence behavior of the MLEs θ̂
(N)

0 and

θ̂
(N)

1 under both hypotheses. Recall that by assuming some regularity conditions on the

family of distributions, the MLE is asymptotically efficient and consistent [98]. When

θ̂
(N)

i is evaluated under Hj characterized by the distribution fj(xN ; θj), as N →∞, it

converges in probability to [54]

θ̄i = argmin
ˇθi∈Θi

KL(fj(x[n]; θj)||fi(x[n]; θ̌i)), i, j = 0, 1, (4.7)

where KL(fj ||fi) is Kullback-Leibler (KL) distance between distributions fj and fi.

Note that when θ̂
(N)

i is evaluated under Hi, i.e. i = j, it converges in probability to a

true value θi. In this case the KL distance is equal to zero since θ̄i = θj(= θi). To

summarize, under each hypothesis,

H0 : θ̂
(N)

0
P−→ θ0 θ̂

(N)

1
P−→ θ̄1, θ0 ∈ Θ0, θ̄1 ∈ Θ1 (4.8a)

H1 : θ̂
(N)

0
P−→ θ̄0 θ̂

(N)

1
P−→ θ1, θ̄0 ∈ Θ0, θ1 ∈ Θ1, (4.8b)

here
P−→ denotes convergence in probability as N → ∞ (see Appendix 4.6.1 for the

details). Throughout the paper, we make the following assumptions:

AS1) The parameter spaces Θ0 and Θ1 are assumed to be known and completely

specified and the solution of (4.7) is unique for each value of θj ∈ Θj, j = 0, 1.

Consequently, θ̄i under Hj where i 6= j can be computed offline (see Section 4.4

for example).
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AS2) The expected value of

ln

(

f1(x[n]; θ̄1)

f0(x[n]; θ0)

)

(4.9)

under H0 is negative and finite, and the expected value of

ln

(

f1(x[n]; θ1)

f0(x[n]; θ̄0)

)

(4.10)

under H1 is positive and finite.

Now, by using (4.8) the log-likelihood ratio in (4.3) under each hypothesis can be

re-written as follows,

H0 : ẐN = ln

(

f1,N(xN ; θ̄1)

f0,N(xN ; θ0)

)

+ ln

(

f1,N(xN ; θ̂
(N)

1 )

f1,N(xN ; θ̄1)

f0,N(xN ; θ0)

f0,N(xN ; θ̂
(N)

0 )

)

= Z̄0
N +∆Z0

N (4.11a)

H1 : ẐN = ln

(

f1,N(xN ; θ1)

f0,N(xN ; θ̄0)

)

+ ln

(

f1,N(xN ; θ̂
(N)

1 )

f1,N(xN ; θ1)

f0,N(xN ; θ̄0)

f0,N(xN ; θ̂
(N)

0 )

)

= Z̄1
N +∆Z1

N , (4.11b)

where ∆Z i
N is the error term under Hi, i = 0, 1, due to the estimation errors. Virtually,

ẐN can be considered as an estimate of the log-likelihood ratio Z̄ i
N under hypothesis

Hi, i = 0, 1. By inspecting equation (4.11) and using the convergence properties of

the MLEs in (4.8), ẐN approaches Z̄ i
N as N increases. Note that Z̄ i

N is the SPRT in

(2.19) under hypothesis Hi between θ = θi and θ = θ̄j, j 6= i. In this respect, the

generalized SPRT has thresholds AN and BN that should approach the thresholds A

and B of the SPRT. In particular, equations (4.6) are adequate for the thresholds since

∆i
N coincides with ∆Z i

N as N increases. Therefore, the relation between ∆i
N and ∆Z i

N

in the generalized SPRT needs to be formalized (see Section 4.3).

Note that equation (4.11) enables us to relate the actual probabilities of false alarm

and miss detection of the generalized SPRT to those of the SPRT. Assume that the

generalized SPRT terminates at stopping time N = Ns, the probability of false alarm

Pf and miss detection Pm can then be represented by

Pf = P0(ẐNs
≥ ANs

)

= P0(ẐNs
≥ ANs

, Z̄0
Ns
≥ A) + P0(ẐNs

≥ ANs
, Z̄0

Ns
< A)

≤ P0(Z̄
0
Ns
≥ A) + P0(ẐNs

≥ ANs
, Z̄0

Ns
< A), (4.12a)

Pm = P1(ẐNs
≤ BNs

)

= P1(ẐNs
≤ BNs

, Z̄1
Ns
≤ B) + P1(ẐNs

≤ BNs
, Z̄1

Ns
> B)

≤ P1(Z̄
1
Ns
≤ B) + P1(ẐNs

≤ BNs
, Z̄1

Ns
> B). (4.12b)
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By inspection of the right hand side of the inequalities (4.12a) and (4.12b) we see that

the first terms are essentially the probabilities of false alarm and miss detection of the

SPRT. Correspondingly, they are upper bounded by the nominal values α and β, as

explained in Section 2.3. Furthermore, suppose that we can choose AN and BN such

that the second terms are also limited by some small values,

P0(ẐNs
≥ ANs

, Z̄0
Ns

< A) ≤ ε0 (4.13a)

P1(ẐNs
≤ BNs

, Z̄1
Ns

> B) ≤ ε1, (4.13b)

where 0 < ε0, ε1 < 1. The inequalities in (4.12) now become

Pf ≤ α + ε0 and Pm ≤ β + ε1. (4.14)

This implies that to achieve the sensing objective (4.1) for the generalized SPRT, we

have to choose AN and BN so as the probability of the event in (4.13) under each

hypothesis is close to zero.

4.3 Thresholding for the generalized sequential

probability ratio test

In Section 4.2, we discuss the generalized SPRT and in particular emphasize the need

to modify the thresholds in order to achieve the sensing objective. In this section, we

propose methods to accomplish this goal using the bootstrap. Note that we specifi-

cally aim for moderate values of the decision errors, which are typical for spectrum

sensing in cognitive radio. In particular, we consider probabilities of false alarm and

miss detection not less than 1%.2 We highlight this aim since we conjecture that the

generalized SPRT has asymptotic optimum properties without the need to modify the

thresholds [97],3 more precisely when min{eA, e−B} → ∞ as max{α, β} → 0. However,

this condition does not apply for moderate values of α and β. Hence, the threshold

modifications are indispensable in this case. This will also be shown by our simulation

results in the next section.

To modify the thresholds, we use equation (4.6) as the basis. Next, we formalize the

relation between the modified value of the threshold ∆i
N and the error term in the

2Spectrum sensing demands a detector which can work properly under very low signal to noise
ratio (SNR). For example, it requires Pf , Pm = 0.1 at SNR ≈ −20 dB in the IEEE 802.22 standard
[99]. For Pf , Pm ≪ 10−1, the sample size will be very large.

3We rely on this reference to make the statement since the basic ideas are similar, although the
concerns are not the same. To the best of our knowledge, a formal proof for the asymptotic properties
of the generalized SPRT as we investigate here has not yet been done in literature.
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generalized SPRT ∆Z i
N . Let the left hand side of equations (4.13) be expressed as

functions of N instead of Ns. The two inequalities below are confirmed,

P0(ẐN ≥ AN , Z̄
0
N < A) ≤ P0(|ẐN − Z̄0

N | ≥ AN − A)

= P0(|∆Z0
N | ≥ ∆0

N) (4.15a)

P1(ẐN ≤ BN , Z̄
1
N > B) ≤ P1(|ẐN − Z̄1

N | ≥ B − BN)

= P1(|∆Z1
N | ≥ ∆1

N). (4.15b)

Theoretically, the probabilities on the right hand side cannot be set equal to zero to

achieve the sensing objective. However, we can choose a sufficiently small tolerance

value that determines ∆i
N , once the distribution of the random variable |∆Z i

N | under
hypothesis Hi is specified for each stage N . Unfortunately, to derive a closed-form

expression for the distribution of |∆Z i
N | appears to be non-trivial or even intractable

for most cases, particularly when N is small. This is because |∆Z i
N | is the error term

of the log-likelihood ratio which depends on the true parameters and their sequentially

estimated values. To point out the difference between our approach to solving this issue

and the existing method, we start with a review of the latter. In brief, the existing

method relies on asymptotic assumptions, while the proposed methods use bootstrap

techniques to deal with analytically intractable expressions.

4.3.1 The existing method

The authors in [54] prove that when the modified values of the thresholds in (4.6) are

set according to

∆0
N =

√

E0[(∆Z0
N)

2]

ǫ
, ∆1

N =

√

E1[(∆Z1
N)

2]

ǫ
(4.16)

for any 0 < ǫ < 1, where Ei[(·)2] denotes the second moment under Hi, it then follows

that

Pf ≤ α+ ǫ and Pm ≤ β + ǫ. (4.17)

To circumvent the difficulties in calculating the second moment of ∆Z i
N the authors

rely on asymptotic approaches. More precisely, it is shown that the second moment

of ∆Z i
N under Hi, i = 0, 1, is upper bounded by a constant for N → ∞. Thus, as N

increases, it is legitimate to replace the modified values that originally depend on N

by positive constants, i.e. ∆0
N = CA and ∆1

N = CB, to form the thresholds

AN = A+ CA, BN = B − CB. (4.18)
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Recall that A and B are the SPRT thresholds found from (2.20). In summary, CA and

CB in (4.18) can be chosen such that the sensing objective of (4.1) is fulfilled with a

smallest possible ASN. However, a systematic way to select proper values for CA and

CB is unknown and hence it can only rely on exhaustive Monte-Carlo simulations. In

addition, CA and CB may vary with the parameters being considered in the model, e.g.

the worst case condition for signal to noise ratio (SNR). Different values of α and β

result in different CA and CB. This condition is exacerbated for cooperative spectrum

sensing, since it demands flexibility in terms of frequent parameters changes among the

cooperating CR users. Therefore, an alternative method for determining the thresholds

needs to be developed.

4.3.2 The bootstrap based sequential probability ratio test

(B-SPRT)

In principle, the bootstrap replaces any unknown parameters with estimates and re-uses

data to provide a way to approximate distributional information, using the observed

samples as a basis. Therefore, the application of the bootstrap to the case considered

here is well suited. We use the parametric bootstrap since we have a well-defined prob-

ability model for data in (4.2). The only difference from the nonparametric bootstrap

is that the samples are drawn from a parametric estimate of the population rather than

the nonparametric estimate [63].

Now, suppose that the probability is preset by a sufficiently small tolerance value ǫi

under hypothesis Hi, i = 0, 1, namely

P0(|∆Z0
N | ≥ ∆0

N) = ǫ0, P1(|∆Z1
N | ≥ ∆1

N) = ǫ1. (4.19)

Since the distributions are unknown, we estimate them using ideal bootstrap4 distri-

butions

P ∗
0 (|∆Z0b

N | ≥ ∆0∗
N ) = ǫ0, P ∗

1 (|∆Z1b
N | ≥ ∆1∗

N ) = ǫ1, (4.20)

where ∆i∗
N is an ideal bootstrap estimate of ∆i

N . In the implementation, we do not

calculate the conditional probabilities (4.20), instead we generate Bs bootstrap repli-

cations of |∆Z ib
N |, i = 0, 1 to form empirical distributions. Therefore, ∆̂i

N is obtained as

a bootstrap estimate of ∆i
N by which the thresholds AN and BN in (4.6) are completely

determined. The detailed explanations are as follows.

4Here, we use the terms ideal bootstrap estimate ∆i∗
N and bootstrap estimate ∆̂i

N . The ideal
bootstrap estimate is the limit of the bootstrap estimate as the number of bootstrap replications Bs

goes to infinity [63], i.e. in our case ∆i∗
N = lim

Bs→∞

∆̂i
N .
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We initially observe the signal up to the sample N = NI . The actual hypothesis test

only starts after this period.5 This is to avoid very large estimation errors due to

very small sample sizes. In addition, initial samples are also important to produce

a reliable historical data set in our proposed method for reducing the computational

cost of the bootstrap (See Section 4.3.3). Even though, the sequential test begins at

N = NI + 1, NI is indeed included in the overall sample size of the sequential test.

To avoid confusion between the data obtained by the sampling process and the data

generated by the bootstrap mechanism, we use the term ’data’ for the former and

’bootstrap replication’ or ’bootstrap data’ for the latter.

Suppose that we are at the stage N − 1 of the sequential test. The following steps

for calculating the thresholds need to be performed using recorded data xN−1 =

(x[1] x[2] · · · x[N − 1]). Let Fθ be the distribution of the observations, parameter-

ized by θ. Bs bootstrap replications, each of size N , are generated from parametric

estimates of the population F̂ ˆθ
(N−1)

i

by assuming Hi is true, i.e. for b = 1, · · · , Bs,

H0 : F̂ ˆθ
(N−1)

0

→ x0b
N = (x[1]0b · · ·x[N ]0b) (4.21a)

H1 : F̂ ˆθ
(N−1)

1

→ x1b
N = (x[1]1b · · ·x[N ]1b), (4.21b)

where F̂ ˆθ
(N−1)

i

is parameterized by θ̂
(N−1)

i , i = 0, 1, which are the MLEs of θi. Note that

we generate the bootstrap replications forH0 andH1 to get the upper threshold AN and

the lower threshold BN , respectively. Furthermore, the replications of the log-likelihood

ratios ẐN and Z̄N of (4.11) are computed for all bootstrap data b = 1, · · · , Bs. Let the

log-likelihood ratios be given by Ẑ ib
N and Z̄ ib

N , respectively, under hypothesis Hi. Under

each assumed hypothesis we obtain

H0 : Ẑ
0b
N = ln

(

f1,N(x
0b
N ; θ̂

(N)0b

1 )

f0,N(x0b
N ; θ̂

(N)0b

0 )

)

, Z̄0b
N = ln

(

f1,N (x
0b
N ; θ̄1)

f0,N(x0b
N ; θ̂

(N−1)

0 )

)

, (4.22a)

H1 : Ẑ
1b
N = ln

(

f1,N(x
1b
N ; θ̂

(N)1b

1 )

f0,N(x1b
N ; θ̂

(N)1b

0 )

)

, Z̄1b
N = ln

(

f1,N(x
1b
N ; θ̂

(N−1)

1 )

f0,N (x1b
N ; θ̄0)

)

, (4.22b)

for b = 1, 2, · · · , Bs, where θ̂
(N)ib

0 and θ̂
(N)ib

1 are the MLEs based on the bootstrap data

xib
N , i = 0, 1, from (4.21). Up to this point, we have

H0 : |∆Z0b
N | = |Ẑ0b

N − Z̄0b
N | (4.23a)

H1 : |∆Z1b
N | = |Ẑ1b

N − Z̄1b
N |, (4.23b)

for b = 1, 2, · · · , Bs. Here, we replace the unknown parameters as follows

5In all our simulations, we choose NI = 20.
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• The SPRT Z̄0b
N is given by Z̄0

N in (4.11) with the unknown parameter θ0 replaced

by its estimate θ̂
(N−1)

0 .

• Z̄1b
N is given by Z̄1

N with the unknown parameter θ1 replaced by its estimate

θ̂
(N−1)

1 .

• θ̄0 and θ̄1 are calculated offline using (4.7) as mentioned in Section 4.2.

The resulting values in (4.23) are then ranked in increasing order to obtain

H0 : |∆Z01∗

N | ≤ |∆Z02∗

N | ≤ · · · ≤ |∆Z
0B∗

s

N | (4.24a)

H1 : |∆Z11∗

N | ≤ |∆Z12∗

N | ≤ · · · ≤ |∆Z
1B∗

s

N |, (4.24b)

from which the distributions in (4.19) are estimated by

#(|∆Z0b∗
N | ≥ ∆̂0

N |H0)

Bs

= ǫ0,
#(|∆Z1b∗

N | ≥ ∆̂1
N |H1)

Bs

= ǫ1 (4.25)

where #(·|Hi) indicates cardinality under hypothesis Hi. Therefore, ∆̂0
N and ∆̂1

N

are the estimates of ∆0
N and ∆1

N in (4.19), respectively, which are chosen such that

(4.25) fulfilled. At this point, the modified thresholds AN and BN from (4.6) can be

determined, i.e.

AN = A + ∆̂0
N , BN = B − ∆̂1

N . (4.26)

In summary, the thresholds for the N -th stage are calculated at the stage (N−1) based
on the data observed thus far. Hence, upon receiving the Nth sample, the log-likelihood

ratio ẐN is computed and directly compared to the calculated thresholds (AN , BN).

The algorithm of the bootstrap based sequential probability ratio test (B-SPRT) is

summarized in Algorithm 4.1.

The way this method uses the bootstrap distribution is similar to the problem of finding

confidence intervals of an estimator, more precisely the percentile interval method [63].

Conditioned on a particular sequence of data xN = (x[1] x[2] . . . x[N ]), |∆ZN | =
|ẐN − Z̄N | is the true value which is unknown and needs to be estimated at the stage

N . The bootstrap data is generated based on the observed samples and the bootstrap

statistics |∆Z ib
N |, i = 0, 1, are computed accordingly to produce the bootstrap empirical

distributions. Then, the endpoints of the confidence interval (the lower and the upper

limits) are calculated from the distributions for a pre-specified confidence level. In our

case, the lower limit is equal to zero so we only need to determine the upper limit which

is ∆̂0
N or ∆̂1

N , depending on the assumed hypothesis. Suppose that the tolerance values

ǫ0 and ǫ1 in (4.25) have been given. We can state that: By using the proposed method,
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Algorithm 4.1 Bootstrap based SPRT

Step 1) Initialize α, β, A and B from (2.20), Bs, ǫ0, ǫ1

Step 2) Draw N = NI samples and obtain initial MLEs θ̂
(N)

1 and θ̂
(N)

0 from (4.4)

REPEAT

Step 3) Update the thresholds using the bootstrap:

→ Generate Bs bootstrap replications from (4.21)

→ For i = 0, 1, b = 1, · · · , Bs, compute |∆Z ib
N+1| from (4.23)

→ Rank in increasing order as (4.24)

→ Calculate ∆̂i
N+1, i = 0, 1 from (4.25) and update the thresholds by (4.26)

Step 4) Draw next sample N ← N + 1 and obtain the MLEs θ̂
(N)

1 and θ̂
(N)

0

Step 5) Calculate the test statistic ẐN from (4.5)

UNTIL ẐN ≥ AN or ẐN ≤ BN

Step 6) If ẐN ≥ AN , accept H1 and if ẐN ≤ BN , accept H0

should the data xN originate from H0, then |∆ZN | will be in the interval [0, ∆̂0
N) with

(1−ǫ0)×100% confidence, otherwise, should it originate fromH1, then |∆ZN | will be in
the interval [0, ∆̂1

N) with (1− ǫ1)× 100% confidence. Note that the percentile method

to determine the endpoint of the confidence interval via the bootstrap is first-order

accurate [63].6 The accuracy can be improved to second-order accurate by choosing

other methods such as bias-corrected and accelerated (BCa) [100] and bootstrap-t

interval [63] methods. However, these methods have higher computational demands

than the percentile method since they generally require iterated bootstrap re-sampling.

In addition, our simulations using the percentile method, which is much simpler than

the other methods, show satisfactory results.

4.3.3 B-SPRT with reduced computational cost

The B-SPRT algorithm explained in Subsection 4.3.2 is computationally expensive

since Bs bootstrap replications for each hypothesis need to be generated at each stage

N . Inspired by the work of [101], we propose a B-SPRT with reduced computational

6Let η be a real-valued parameter of interest for which we want to have a confidence interval.
Consider a single endpoint η̂[α] with one-side coverage α, i.e. P (η ≤ η̂[α]) ≈ α. An approximate
confidence point η̂[α] is first-order accurate if P (η ≤ η̂[α]) = α + O(1/

√
N) and second-order ac-

curate if P (η ≤ η̂[α]) = α + O(1/N). This means that first-order accurate and the second-order
accurate methods have errors in matching P (η ≤ η̂[α]) = α that go to zero with rate 1/

√
N and 1/N ,

respectively.
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cost in this subsection. For simplicity, we refer to the B-SPRT in Subsection 4.3.2 as

B-SPRT-1 and use B-SPRT-2 for the one with reduced computational cost.

In B-SPRT-1, the bootstrap distributions of |∆ZN | at stage N is constructed using Bs

bootstrap replications at stage (N − 1), based on the observed data up to this stage.

For simplicity, let F i∗
N represent the ideal cumulative bootstrap distribution at stage N

under hypothesis Hi, i = 0, 1. In B-SPRT-2, we propose to use a convex combination of

the latest K > 1 bootstrap distributions to reduce computational cost. Suppose that

F̌ i∗
N denotes the convex combination of the distributions at stage N under hypothesis

Hi, i = 0, 1. It can be written as

F̌ i∗
N =

K−1
∑

k=0

wkF
i∗
N−k,

K−1
∑

k=0

wk = 1, (4.27)

where wk ≥ 0 is the weight for the distribution at the stage N−k. The ideal bootstrap

estimates ∆i∗
N at stage N can then be found from

F̌ 0∗
N (∆0∗

N ) = 1− ǫ0, F̌ 1∗
N (∆1∗

N ) = 1− ǫ1. (4.28)

Therefore, we only need to generate a fraction of the bootstrap replications needed by

B-SPRT-1 for each stage N .

Suppose that we use equal weights wk = 1/K, k = 0, · · · , K − 1, in the convex com-

bination. We only need Bk = Bs/K new bootstrap replications instead of Bs in each

stage to get an empirical distribution function. In this case, the two set replications in

(4.23) become

H0 : |∆Z01
N−K+1|, · · · , |∆Z0Bk

N−K+1|, · · · , |∆Z01
N |, · · · , |∆Z0Bk

N |, (4.29a)

H1 : |∆Z11
N−K+1|, · · · , |∆Z1Bk

N−K+1|, · · · , |∆Z11
N |, · · · , |∆Z1Bk

N |. (4.29b)

Each time a data sample is recorded, Bk bootstrap replications are generated and

replace the oldest data, i.e. (|∆Z i1
N−K+1|, . . . , |∆Z iBk

N−K+1|), i = 0, 1, so the overall num-

ber of bootstrap replications at each stage is still equal to Bs. It is clear that the

computational cost of the B-SPRT-2 is lower than that of the B-SPRT-1 by a fac-

tor 1/K. The rest of the algorithm is similar to the BSPRT-1 in Algorithm 4.1.

Note that, however, at the initial stage N = NI , we need to generate Bs bootstrap

replications to construct historical data sets which are not yet available. Another

possible scheme to reduce the computational cost is to update the thresholds only at

N = NI + lK, K > 1, l = 1, 2, . . . . The idea is indeed similar, namely to reduce the

computational cost by lowering the refresh rate of the bootstrap data.

We end this subsection with a theorem regarding the stopping time of B-SPRT (B-

SPRT-1 and B-SPRT-2).



4.3 Thresholding for the generalized sequential probability ratio test 69

Theorem 1: Suppose that the assumption AS2 holds. The stopping time NB
s of the

B-SPRT is finite under hypothesis H0 and H1, i.e.

Pi(N
B
s <∞) = 1, i = 0, 1 (4.30)

Proof: See Appendix 4.6.2.

4.3.4 Some remarks on the B-SPRT

Until today, it is not clear how to optimally apply the bootstrap in sequential testing.

This subsection serves to highlight the differences between the B-SPRT and a similar

method suggested in [101]. This is also to argue that if we implement the bootstrapping

as in the B-SPRT, the computational cost is reduced significantly. At the end, we

highlight the tolerance values ǫ0 and ǫ1 for the B-SPRT.

In contrast to our method, the approach given in [101] bootstraps the statistic ẐN

itself. Suppose that we are at the stage N − 1. The thresholds AN and BN are then

found from

H0 : P
∗
0

(

max
NI+1≤N≤NTr

Ẑ0b
N ≥ AN

)

≤ α (4.31a)

H1 : P
∗
1

(

max
NI+1≤N≤NTr

Ẑ1b
N ≤ BN

)

≤ β, (4.31b)

for b = 1, . . . , Bs, where Ẑ ib
N , i = 0, 1, are the log-likelihood ratios from (4.22). Here,

NTr
is the truncated sample size which is chosen to be sufficiently large (NTr

≫ NI)

so as to guarantee the probability that the stopping time Ns is higher than NTr
is

sufficiently small under each hypothesis, formally Pi(Ns > NTr
) = ǫ, i = 0, 1.7 Note

that NTr
should be determined under the worst case scenario. Therefore, this method

demands a very high computational cost since Bs bootstrap data, each with size NTr
,

need to be generated at each stage, i.e. for b = 1, . . . , Bs,

H0 : F̂ ˆθ
(N−1)

0

→ x0b
NTr

= (x[1]0b · · ·x[NTr
]0b) (4.32a)

H1 : F̂ ˆθ
(N−1)

1

→ x1b
NTr

= (x[1]1b · · ·x[NTr
]1b). (4.32b)

To reduce the computational costs of this method, one might consider to use bootstrap

data of size N at each stage, similar to the B-SPRT. Unfortunately, this is not possible

7Conventional, non-generalized SPRTs are often truncated to avoid very large sample sizes in case
of parameter mismatches (see the detail, for example in [48, 49]).



70 Chapter 4: Bootstrap based sequential tests for spectrum sensing

for the following reason. To begin, it is worth to emphasize that the expression (4.31)

uses the nominal values of the probabilities of false alarm α and miss detection β,

since the log-likelihood ratio ẐN is the statistic to be replicated by the bootstrap. A

sequential test with the nominal values α and β cannot be interpreted as a sequence of

tests conducted at each stage N , each with associated nominal values αN = α and βN =

β, N = 1, 2, . . . . Instead, the nominal values α and β are associated with the sequential

test performed until the random stopping time Ns is reached. The calculations of Ẑ ib
N

should replicate the original test, i.e. be performed for NI + 1 ≤ N ≤ NTr
for each b,

which guarantees that the test has stopped before NTr
-th sample with high probability.

Only in this way can the distribution of the maximum values in (4.31) be estimated

accurately. Generating bootstrap data of size N at each stage, however, is insufficient

and leads to violations of the sensing objective.

To circumvent these difficulties, we first introduce the SPRT Z̄ i
N whose performance

is guarantee to fulfill the sensing objective (4.1). Secondly, we estimate the deviation

of the generalized SPRT ẐN from the Z̄ i
N , represented by the statistic |∆Z i

N |. Now,

we rely on the statistic |∆Z i
N | instead of ẐN to update the thresholds. Note that the

distribution of the statistic |∆Z i
N | with associated tolerance values ǫi to update the

threshold, depends only on the log-likelihood ratios computed at stage N . We only

require bootstrap data of size N according to (4.21). The approach indeed imposes ad-

ditional cost since we have to compute Z̄ i
N , i = 0, 1. However, the complexity reduction

that we gain by reducing the size of the bootstrap data is higher than the additional

cost of computing Z̄ i
N .

So far, we have shown that the estimation errors are reflected in the differences between

the log-likelihood ratios of the generalized SPRT ẐN and the SPRT Z̄ i
N . The main

idea of the B-SPRT is to avoid premature terminations of the generalized SPRT due

to the estimation errors. But, it is supposed to terminate for the correct reason, i.e.

enough data have been collected to make a decision as reliable as that of an SPRT

unaffected by estimation errors. This is accomplished by estimating two modified

values for the thresholds ∆i
N , i = 0, 1, such that the probability that the absolute

difference between the log-likelihood ratios of the generalized SPRT and the SPRT at

each stage N is higher than the modified value ∆i
N is not more than the tolerance value

ǫi under assumed hypothesis Hi. Briefly, the procedure prohibits termination when the

estimation errors are still considerably large and delays it to a time when enough data

have been observed to guarantee that the test makes the same decision as an SPRT

with known parameters. Accordingly, the increases of the actual probabilities of false

alarm Pf and miss detection Pm due to the estimation errors can be minimized and

the sensing objective is approximately preserved. We want to emphasize here that the

pre-specified tolerance values ǫ0 and ǫ1 in (4.25) do not correspond to the increases
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of Pf and Pm, which are due to the estimation errors. However, we make sure that

these increases are small by choosing sufficiently small tolerance values. An analytic

expression for the relation between the two is difficult to derive, though, even in an

asymptotic sense.

Note that the selection of the tolerance values ǫ0 and ǫ1 also affects the number of

replications Bs required for the bootstrap according to (4.25). The smaller the tolerance

values, the larger the number of bootstrap replications that we need to estimate the

tail of the distributions. In this case, we believe that choosing tolerance values ǫ0 =

ǫ1 = 0.01 and Bs = 500 is sufficient.

4.4 Example

To evaluate the performance of the proposed algorithms, the signal r[n] and the noise

w[n] in (2.1) are assumed to follow a zero mean circularly symmetric complex Gaussian

distribution. Therefore, the composite hypotheses that need to be tested are

H0 : x[n] ∼ CN
(

0, σ2
0

)

, 0 < σ2
0 ≤ σ2

0max
(4.33a)

H1 : x[n] ∼ CN
(

0, σ2
1

)

, σ2
1min
≤ σ2

1 <∞, (4.33b)

where σ2
1min

> σ2
0max

, σ2
0 and σ2

1 are the unknown parameters. Here, x[n] and w[n] are

scalar. The MLEs for σ2
0 and σ2

1 are given by

σ̂
2(N)
0 = min

{

1

N

N
∑

n=1

|x[n]|2, σ2
0max

}

, (4.34a)

σ̂
2(N)
1 = max

{

1

N

N
∑

n=1

|x[n]|2, σ2
1min

}

. (4.34b)

According to (4.8), the two estimators under each hypothesis Hi

H0 : σ̂
2(N)
0

P−→ σ2
0, σ̂

2(N)
1

P−→ θ̄1 = σ2
1min

(4.35a)

H1 : σ̂
2(N)
0

P−→ θ̄0 = σ2
0max

, σ̂
2(N)
1

P−→ σ2
1, (4.35b)

as N → ∞. Here, θ̄1 = σ2
1min

and θ̄0 = σ2
0max

are found from (4.7). The log-likelihood

ratio from (4.3) becomes

ẐN =

N
∑

n=1

ln

(

f1(x[n]; σ̂
2(N)
1 )

f0(x[n]; σ̂
2(N)
1 )

)

=

(

1

σ̂
2(N)
0

− 1

σ̂
2(N)
1

)

N
∑

n=1

|x[n]|2 +N ln
σ̂
2(N)
0

σ̂
2(N)
1

. (4.36)
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In this case, the log-likelihood ratios to generate bootstrap replications according to

(4.3) are

H0 : Ẑ
0b
N =

N
∑

n=1

ln

(

f1(x[n]
0b; σ̂

2(N)0b
1 )

f0(x[n]0b; σ̂
2(N)0b
0 )

)

,

Z̄0b
N =

N
∑

n=1

ln

(

f1(x[n]
0b; σ2

1min
)

f0(x[n]0b; σ̂
2(N−1)
0 )

)

, (4.37a)

H1 : Ẑ
1b
N =

N
∑

n=1

ln

(

f1(x[n]
1b; σ̂

2(N)1b
1 )

f0(x[n]1b; σ̂
2(N)1b
0 )

)

,

Z̄1b
N =

N
∑

n=1

ln

(

f1(x[n]
1b; σ̂

2(N−1)
1 )

f0(x[n]1b; σ2
0max

)

)

, (4.37b)

where σ̂
2(N)ib
1 and σ̂

2(N)ib
0 are the MLEs evaluated using the bootstrap data xib

N =

(x[1]ib . . .x[N ]ib), i = 0, 1, b = 1, . . . , Bs. For all simulations, we choose σ2
0max

= 1 and

σ2
1min

= 1.1. Thus, in terms of SNR the worst case scenario is 10 log10

(

σ2
1min

−σ2
0max

σ2
0max

)

=

−10 dB. It happens when σ2 lies at the boundary of the parameter space, i.e. either

at σ2
1 = 1.1 under H1 or at σ2

0 = 1 under H0.

We pre-specify the initial sample sizes to be NI = 20 for the B-SPRT, so the sequential

test begins at N = 21. The tolerance values are set to ǫ0 = ǫ1 = 0.01 and the

number of bootstrap replications is Bs = 500. Hence, ∆̂i
N is the 496th largest of the

ordered |∆Z ib∗

N |, b = 1, . . . , Bs. For the bootstrap method with reduced computational

cost (BSPRT-2), the number of bootstrap replications is initially set to Bs = 500 at

NI to provide a historical data set in the first place and continue with Bk bootstrap

replications for N > NI . We use equal weights wk = 1/K and evaluate the performance

for K = 4 (Bk = 500/4 = 125), 20 (Bk = 25), and 100 (Bk = 5). We evaluate the

performance under nominal probabilities of false alarm and miss detection α = β

ranging from 0.01 to 0.1. The simulation results were generated using 5× 103 Monte-

Carlo runs. The performance measures that we use are the actual probability of false

alarm Pf , the actual probability of miss detection Pm and the ASN.

To get tighter stopping conditions for B-SPRT-1 and B-SPRT-2, an adjustment for

|∆Z ib
N |, i = 0, 1, during the bootstrapping is necessary. The idea is to not update the

thresholds, i.e. to set |∆Z ib
N | = 0, whenever the corresponding Z̄ ib

N for every sequence

xib
N = (x[1]ib . . .x[N ]ib), b = 1, . . . , Bs has terminated, except for a sequence x0b

N =

(x[1]0b . . .x[N ]0b) which produces Z̄0b
N ≤ B and Ẑ0b

N > B under H0 and for a sequence

x1b
N = (x[1]1b . . .x[N ]1b) which produces Z̄1b

N ≥ A and Ẑ1b
N < A under H1. This is

because we want to make the probability of having the B-SPRT-1 or the B-SPRT-2 to

terminate with the same decision as the corresponding SPRT as high as possible.
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Table 4.1: Constant values CA and CB of the MT-SPRT and the approximated mini-
mum value Nmin of the FSND

α = β CA CB Nmin

0.01 1.1 1.3 2387
0.025 1.0 1.3 1694
0.05 1.0 1.2 1193
0.075 0.8 1.2 914
0.1 0.8 1.2 724

4.4.1 Benchmarks

We compare the proposed method to the conventional one (Section 4.3.1) which we will

refer to as MT-SPRT in the sequel. The constant values CA and CB for the thresholds

of the MT-SPRT in (4.18) are depicted in Table 4.1 for each α = β. These constants

were found by exhaustive simulations under the worst case scenario (SNR = −10 dB).

The tests were conducted for 2× 103 Monte-Carlo runs under hypotheses H0 and H1.

The thresholds AN and BN were chosen as constants CA and CB, respectively, were

determined via grid search over values ≥ 0.1 with step size 0.1. As optimum values

for CA and CB, we picked those which fulfill the sensing objective while minimizing

max{ASN0,ASN1} as suggested in [54]. Here, ASNi denotes the average sample num-

ber under hypothesis Hi.

We also compare the B-SPRT-1 and B-SPRT-2 to the corresponding best fixed sample

size detector (FSND). For the FSND, the log-likelihood ratio in (4.36) is used as the

test statistic. Based on Neyman-Pearson’s approach, a threshold τ which separates the

two decision regions is selected according to the nominal value of the probability of false

alarm α. For this detector type, the minimum required sample size Nmin is determined

in advance and cannot be changed over the unknown σ2 values in the parameter spaces.

Hence, it should be calculated in order to fulfill the sensing objective under the worst

case scenario, i.e. σ2
0 = σ2

0max
and σ2

1 = σ2
1min

. The minimum sample size can be

obtained by

Nmin ≈







Q−1(β)
(

σ2
1min

σ2
0max

− 1
)

+Q−1(α)
(

1− σ2
0max

σ2
1min

)

σ2
1min

σ2
0max

+
σ2
0max

σ2
1min

− 2






, (4.38)

where Q−1(·) is the inverse Q-function of the standard normal cumulative distribution

function. Table 4.1 shows Nmin for each α = β.
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Figure 4.2: Performance improvement of B-SPRT-1 in terms of Pf and Pm compared
to the generalized SPRT using constant thresholds A and B for α = β = 0.1 and 0.05.

4.4.2 Simulation results

First, we concentrate on the proposed method B-SPRT-1. The B-SPRT-2 will be

discussed afterwards. To quantify the improvement of the B-SPRT-1 in terms of Pf

and Pm, we compare it to the generalized SPRT whose two thresholds are held constant

(CT-SPRT), i.e. AN = A and BN = A. This is also to show the effectiveness of the B-

SPRT-1 in avoiding decision errors due to the estimation errors. The result is depicted

in Fig. 4.2, which shows the improvement of the B-SPRT-1 over the CT-SPRT for

all permitted σ2 values under each hypothesis. The improvement is more pronounced

when σ2 is close to the boundaries of the parameter spaces (low SNR region). For

nominal values α = β = 0.1, when σ2 = 1 the true error probabilities are reduced

from Pf ≈ 0.15 for the CT-SPRT to ≈ 0.08 for the B-SPRT-1 and when σ2 = 1.1, Pm

reduces from ≈ 0.25 to ≈ 0.1. Likewise, for α = β = 0.05, the error probabilities go

down from Pf ≈ 0.09 and Pm ≈ 0.16 for CT-SPRT to ≈ 0.04 and ≈ 0.05 for the B-

SPRT-1. Pf and Pm of both detectors decrease as σ2 departs from the boundaries. In

summary, choosing the thresholds as functions of the sample size using the parametric

bootstrap leads to convincing results in sequential detection for composite hypotheses,

meaning that the sensing objectives are preserved.

Fig. 4.3 shows the actual error probabilities Pf and Pm as functions of the nominal

probabilities (α = β) under σ2 = 1 (H0) and σ2 = 1.1 (H1) for the CT-SPRT, the

B-SPRT-1 and the MT-SPRT. For all nominal values α = β, MT-SPRT and B-SPRT-

1 perform comparably well in preserving the sensing objective. However, satisfactory
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Figure 4.3: Performance comparisons in terms of Pf and Pm for CT-SPRT, B-SPRT-1
and MT-SPRT, as functions of nominal values α = β, evaluated at σ2 = 1 (under H0)
and σ2 = 1.1 (under H1).

results in terms of Pf and Pm are not the only concern of sequential tests. Fig. 4.4

shows a comparison of MT-SPRT and B-SPRT-1 in terms of the ASN for low SNR

(top sub-figure) and high SNR (bottom sub-figure). From the top sub-figure we can

see that the proposed method B-SPRT-1 outperforms the conventional MT-SPRT over

all nominal values of α = β under each hypothesis. The improvement ranges from

≈ 130 to 200 samples under H0 and ≈ 70 to 150 samples under H1. On the other

hand, the MT-SPRT is better than the B-SPRT-1 for high SNR as shown in Fig. 4.4

(bottom sub-figure). Here, the margin ranges from ≈ 10 to 14 samples under H0 and

H1. A possible explanation for this behavior is the fact that the B-SPRT-1 starts only

after some initial samples NI = 20 have been taken. This eliminates the possibility

that it terminates at stopping times Ns ≤ 20. At high SNR, the probability that a test

terminates before NI = 20 is much higher than at low SNR, since the average increment

of the log-likelihood ratio increases with the SNR. Meanwhile, the MT-SPRT is not

affected by this problem since it starts the sequential test with the first sample.

We have already stressed the fact that the average of the estimation errors is larger for

a smaller number of samples N and vice versa. Hence, the smaller the sample size, the

larger the second order moment of the error term |∆Z i
N |. This relation is reflected in

the empirical distribution of |∆Z ib
N |, which is obtained from Bs bootstrap replications.

It has a smaller second order moment if all bootstrap replications are generated from

the current N − 1 samples, than if a convex combination of the latest K bootstrap

distributions is used. The larger K (smaller Bk) is, the more old data are incorporated

in the distribution, i.e., the refresh rate of the data is proportional to 1/K. On average,
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Figure 4.4: The ASNs of B-SPRT-1 and MT-SPRT when σ2 lies at the boundaries of
parameter spaces (top sub-figure) and far from the boundaries (bottom sub-figure).

this yields a larger estimate for the modified threshold value ∆̂i
N , i = 0, 1. Thus, the

thresholds AN and BN of B-SPRT-2 with larger K > 1 take longer to converge than the

B-SPRT-1. This is displayed in Fig. 4.5, in which the thresholds have been averaged

over 500 Monte-Carlo runs. In all sub-figures, the differences are hardly noticeable,

except for the B-SPRT-2 with Bk = 5. However, when σ2 departs from the boundaries

of parameter spaces (higher SNR), their thresholds are close to each other and their

convergence rates are of course faster.

The conditions on the thresholds have implications on the performance of the B-SPRT-

1 and B-SPRT-2 as shown in Fig. 4.6 and 4.7. In Fig. 4.6, the B-SPRT-1 and B-SPRT-2

approximately achieve the sensing objective. In general, it shows that the B-SPRT-

2 which has looser thresholds than B-SPRT-1 has better protection against decision

errors, particularly for large K (Bk = 5). However, this also implies that the ASN of

the B-SPRT-2 is larger than that of the B-SPRT-1 as depicted in Fig. 4.7. The largest

margin between the B-SPRT-1 and the B-SPRT-2 can be observed for Bk = 5 and

α = β = 0.1, namely ≈ 40 samples at σ2 = 1 (H0) and ≈ 45 samples at σ2 = 1.1 (H1).

For σ2 further away from the boundaries, i.e. at σ2 = 0.6 (H0) and σ2 = 1.8 (H1), the

ASNs are approximately the same. This is because at high SNR the average increment

of the log-likelihood ratio is much larger than the threshold differences between the

tests. These results indicate that the performance of the B-SPRT-2, which offers a

significant reduction in computational costs, is still comparable to that of the B-SPRT-

1. Note that for the same reason as discussed before, the B-SPRT-2 has smaller ASNs

than the MT-SPRT for low SNR even for the largest K (in this case Bk = 5), as can

be extracted from Fig. 4.4 and 4.7. Again, the opposite is true for high SNR.
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Figure 4.5: The thresholds for B-SPRT-1 (solid line) and B-SPRT-2 with K = 4/Bk =
125 (dashdot), K = 20/Bk = 125 (dashed), K = 100/Bk = 5 (dotted) as functions
of sample size N . The constant thresholds A and B for the SPRT are also plotted
(dotted with + sign). The top sub-figures are for σ2 at the boundaries and the bottom
sub-figures for σ2 away from the boundaries. All the thresholds are for nominal error
probabilities α = β = 0.1.
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Figure 4.6: Performance comparisons in terms of Pf and Pm for B-SPRT-1 and B-
SPRT-2 with various values of Bk at σ2 = 1 (H0) and σ2 = 1.1 (H1).

Fig. 4.8 and 4.9 show the relative efficiencies of the B-SPRT-1 and B-SPRT-2 with

Bk = 5 for various values of σ2 under H0 and H1, respectively. Here, the relative

efficiency is defined as the ratio between the ASN of the B-SPRT and the minimum

sample size (Nmin) required by the FSND to fulfill the same sensing objective, i.e. Pf ≤
α and Pm ≤ β. Table 4.1 shows the values of Nmin for different nominal probabilities
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Figure 4.7: Performance comparisons on the ASN for B-SPRT-1 and B-SPRT-2 with
various values of Bk and σ2. The left sub-figure is under H0 and the right under H1.
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Figure 4.8: Relative efficiencies of B-SPRT-1 and B-SPRT-2 with Bk = 5 under H0 for
various values of σ2.

α = β. In general, Fig. 4.8 and 4.9 show the superiority of the B-SPRT over the fixed

sample size detectors for all cases considered.

The increase in computational cost due to the bootstrap in sequential detection is

inevitable. However, we provide a solution to reduce the cost significantly. In addition,

in an era of exponentially declining computational costs, bootstrap-based methods,

such as the one presented, are becoming a bargain and more attractive. Based on the

results presented in the section, the proposed method is a promising technique. It is
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Figure 4.9: Relative efficiencies of B-SPRT-1 and B-SPRT-2 with Bk = 5 under H1 for
various values of σ2.

suitable for situations where time is critical, such as in spectrum sensing for cognitive

radio, and offers a viable solution to the problem of sensing-throughput trade-off [43].

4.5 Conclusion

In this chapter, we present the implementation of the parametric bootstrap in sequen-

tial detection for composite hypothesis testing. The bootstrap is used to update the

thresholds in adaptive manner according to the current observations. It improves the

probabilities of false alarm and miss detection of the generalized sequential probability

ratio test by minimizing decision errors due to erroneous estimators. Simulation re-

sults have shown that the proposed method has smaller ASNs than the conventional,

meanwhile their actual probabilities of false alarm and miss detection are comparable.

In addition, we propose a mechanism to reduce computational costs incurred by the

bootstrap. The results show that the reduction in computational cost does not signif-

icantly affect the performance of the boostrap based sequential probability ratio test,

in terms of the ASN. The margin is even unnoticeable for high SNR. The superiority

of the proposed method to the fixed sample size test is also shown. Hence, it is an

attractive candidate to be implemented in spectrum sensing for cognitive radio where

the delay constraint is a critical issue.
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4.6 Appendix

4.6.1 Clarification of expressions (4.7) and (4.8)

Let the received signal x[n] under hypothesis H0 admit the distribution

f0(x[n]; θ0). Assume the minimum Kullback-Leibler distance between f0(x[n]; θ0) and

f1(x[n]; θ̌1), θ̌1 ∈ Θ1, is achieved when θ̌1 = θ̄1. The expression (4.4) for the maximum

likelihood estimators of θ0 and θ1 under H0 can be rewritten as

θ̂
(N)

0 = argmax
ˇθ0∈Θ0

1

N

N
∑

n=1

ln

(

f0(x[n]; θ̌0)

f0(x[n]; θ0)

)

(4.39a)

θ̂
(N)

1 = argmax
ˇθ1∈Θ1

1

N

N
∑

n=1

ln

(

f1(x[n]; θ̌1)

f1(x[n]; θ̄1)

)

. (4.39b)

Then, by the weak law of large numbers [98], as N →∞

1

N

N
∑

n=1

ln

(

f0(x[n]; θ̌0)

f0(x[n]; θ0)

)

P−→ −KL
(

f0(x[n]; θ0)||f0(x[n]; θ̌0)
)

(4.40)

for the term in equation (4.39a), and

1

N

N
∑

n=1

ln

(

f1(x[n]; θ̌1)

f1(x[n]; θ̄1)

)

P−→
{

KL
(

f0(x[n]; θ0)||f1(x[n]; θ̄1)
)

−KL
(

f0(x[n]; θ0)||f1(x[n]; θ̌1)
)}

(4.41)

for the term in equation (4.39b). Therefore, we have

θ̂
(N)

0
P−→ argmin

ˇθ0∈Θ0

KL
(

f0(x[n]; θ0)||f0(x[n]; θ̌0)
)

= θ0, (4.42a)

θ̂
(N)

1
P−→ argmin

ˇθ1∈Θ1

KL
(

f0(x[n]; θ0)||f1(x[n]; θ̌1)
)

= θ̄1, (4.42b)

from combining (4.39a) with (4.40) and (4.39b) with (4.41), respectively. By similar ar-

guments, the MLEs under hypthesis H1, corresponding to the distribution f1(x[n]; θ1),

it can be shown that

θ̂
(N)

0
P−→ argmin

ˇθ0∈Θ0

KL
(

f1(x[n]; θ1)||f0(x[n]; θ̌0)
)

= θ̄0, (4.43a)

θ̂
(N)

1
P−→ argmin

ˇθ1∈Θ1

KL
(

f1(x[n]; θ1)||f1(x[n]; θ̌1)
)

= θ1. (4.43b)
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To put (4.42a) to (4.43b) in a compact form: When the θ̂
(N)

i is evaluated under Hj

with x[n] distributed according to fj(x[n]; θj), then it converges in probability to

θ̄i = argmin
ˇθi∈Θi

KL(fj(x[n]; θj)||fi(x[n]; θ̌i)). (4.44)

for i, j = 0, 1. This proves (4.7) and (4.8).

4.6.2 Proof of Theorem 1

For N → ∞, the estimated parameters converge according to (4.8). Therefore, the

sequence of the log-likelihood ratio ẐN in (4.11) under each hypothesis, as N → ∞
can be approximated by

H0 : ẐN ≈ ẐN−1 + z̄0N , H1 : ẐN ≈ ẐN−1 + z̄1N (4.45)

where z̄iN denotes the increment under hypothesis Hi, i.e.,

H0 : z̄
0
N = ln

(

f1(x[N ]; θ̄1)

f0(x[N ]; θ0)

)

, (4.46a)

H1 : z̄
1
N = ln

(

f1(x[N ]; θ1)

f0(x[N ]; θ̄0)

)

. (4.46b)

Let us drop the index N to indicate that the random variable z̄iN is distributed inde-

pendently of N . The expected values of the increment z̄0 and z̄1 is given by

H0 : E0

[

z̄0
]

= −KL(f0(x; θ0)||f1(x; θ̄1)), (4.47a)

H1 : E1

[

z̄1
]

= KL(f1(x; θ1)||f0(x; θ̄0)), (4.47b)

are finite based on the assumption AS2. Up to this point, the requirements for a finite

stopping time for constant threholds stated by Lemma 1 in [66], namely

H0 : E0

[

(

z̄0
)2
]

6= 0, H1 : E1

[

(

z̄1
)2
]

6= 0 (4.48)

are fulfilled, i.e., implied by (4.47). However, this fact does not immediately guarantee

that the test will terminate with a finite stopping time Ns since the thresholds now are

functions of the sample size N .

Recall that the B-SPRT observes data up to NI and the sequential test is performed

afterwards. First, let us consider B-SPRT-2 with K = ∞ (Bk = 0) and refer to

this test as B-SPRT-CT. Choosing Bk = 0 means observing the data up to NI and

then constructing the two thresholds using the parametric bootstrap once and for all.
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The sequential test is then performed using the resulting thresholds for all N with no

update. As a result, the B-SPRT-CT has looser stopping conditions than the B-SPRT-

1 and the B-SPRT-2 with 1 < K < ∞. Note that the B-SPRT-1 is B-SPRT-2 with

K = 1. Hence, when the stopping time of the B-SPRT-CT is guaranteed to be finite,

the stopping times of the B-SPRT-1 and B-SPRT-2 are guaranteed to be finite as well.

In this respect, the only task left is to show that the constant thresholds constructed

by B-SPRT-CT are bounded for large NI .

Applying Markov’s inequality to the random variable |∆Z i
N |, i = 0, 1, we obtain

H0 : P0

(

|∆Z0
N | ≥ c0

)

≤
√

E0 [|∆Z0
N |2]

c0
(4.49a)

H1 : P1

(

|∆Z1
N | ≥ c1

)

≤
√

E1 [|∆Z1
N |2]

c1
. (4.49b)

where c0, c1 > 0. For the left hand side of the inequalities, we put the pre-specified

values ǫ0 and ǫ1 according to (4.19). At stage NI , we have

H0 :c0 ≤

√

E0

[

|∆Z0
NI
|2
]

ǫ0
, (4.50a)

H1 :c1 ≤

√

E1

[

|∆Z1
NI
|2
]

ǫ1
. (4.50b)

Therefore, to have bounded thresholds for the B-SPRT-CT as NI →∞, i.e., bounded

c0 and c1, the second moments Ei

[

|∆Z0
NI
|2
]

, i = 0, 1, have to be bounded. This has

already been shown by the authors of [54] so that we have

Ei

[

|∆Z i
NI
|2
]

= O (1) , i = 0, 1. (4.51)

The fact that the above arguments are given by referring to the population distributions

instead of the bootstrap distributions, does not invalidate the arguments if we refer to

the bootstrap domain. It is only for the sake of convenience.

4.6.3 The derivation of (4.38)

Suppose that we have a simple hypothesis against a simple alternative described by

the model in (2.9). Under H0, the test statistic (2.10) can be rewritten as

ZN =
N
∑

n=1

[(

1− σ2
0

σ2
1

)

y[n] + log
σ2
0

σ2
1

]

, (4.52)
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where y[n] =
(

|x[n]|

σ2
0

)2

is exponentially distributed with the expected value µ = 1 and

variance σ2
e = 1. Let us rewrite (4.52) further to be

ZN =
√
N

(

1− σ2
0

σ2
1

)

{

√
N

[

N
∑

n=1

1

N
y[n]− 1

]

+
√
N

}

+
N
∑

n=1

log
σ2
0

σ2
1

. (4.53)

Using the central limit theorem, as N →∞, the term

√
N

[

N
∑

n=1

1

N
y[n]− 1

]

D−→ y ∼ N (0, 1), (4.54)

where
D−→ denotes convergence in distribution. Therefore, when N →∞

ZN
.∼ N

(

N

(

1− σ2
0

σ2
1

)

+
N
∑

n=1

log
σ2
0

σ2
1

, N

(

1− σ2
0

σ2
1

)2
)

, (4.55)

where
.∼ denotes approximately distributed. The probability of false alarm can now

be determined from

Pf = P0(ZN > τ ′)

≈ Q









τ ′ −N
(

1− σ2
0

σ2
1

)

−N log
σ2
0

σ2
1

√

N
(

1− σ2
0

σ2
1

)2









, (4.56)

where Q(·) is the Q-function of the standard normal distribution. The threshold τ ′ is

then

τ ′ ≈ Q−1(Pf)

√

N

(

1− σ2
0

σ2
1

)2

+N

(

1− σ2
0

σ2
1

)

+N log
σ2
0

σ2
1

. (4.57)

Using similar arguments, under H1

ZN
.∼ N

(

N

(

σ2
1

σ2
0

− 1

)

+

N
∑

n=1

log
σ2
0

σ2
1

, N

(

σ2
1

σ2
0

− 1

)2
)

. (4.58)

Therefore, the probability of miss detection is

Pm = P1(Z̄N < τ ′)

≈ Q









N
(

σ2
1

σ2
0
− 1
)

+N log
σ2
0

σ2
1
− τ ′

√

N
(

1− σ2
0

σ2
1

)2









. (4.59)
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Substituting (4.57) into (4.59) and after some arrangements, the minimum sample size

Nmin required to fulfill Pf = α and Pm = β is

Nmin ≈





Q−1(β)
(

σ2
1

σ2
0
− 1
)

+Q−1(α)
(

1− σ2
0

σ2
1

)

σ2
1

σ2
0
+

σ2
0

σ2
1
− 2



 . (4.60)
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Chapter 5

Miscellaneous works

In this chapter, three other selected works that have been done during the PhD project

are presented. All the works do not use bootstrap as an approach for detection. In Sec-

tion 5.1, we propose a sequential multiple testing procedure. This work is motivated by

an application in multiband spectrum sensing for cognitive radio, in which a primary

user or a cognitive radio user can use several bands at a time. The proposed procedure

simultaneously controls the false alarm and miss detection rate not only for a single

band, but also for the system (familywise). The common method to individually tests

the hypotheses fails to achieve this. In Section 5.2, we provide a scheme to improve

spectrum sensing performances at low SNR using locally optimum detection. It is de-

rived based on the assumption that the underlying noise is Student’s t-distributed. The

resulting scheme outperforms energy detection in all scenarios. In addition, it is more

robust to outliers than the conventional scheme which is derived based on Gaussian

noise assumption. Next, we describe collaborative spectrum sensing using hard deci-

sion in combination with quality information in Section 5.3. This scheme necessitates

to determine three thresholds at the local detector. One threshold is determined by a

pre-specified local probability of false alarm, and the other two thresholds are found us-

ing distance measure criteria. The results show that the proposed scheme outperforms

conventional hard decision combining. We also evaluate the scheme under imperfect

reporting channels, modeled as binary symmetric channels with varying binary error

probabilities.

5.1 Multiple testing for sequential probability ratio

tests

Multiband spectrum sensing is less well studied than single band (narrow-band) spec-

trum sensing [46]. To mention a few references, multiband spectrum sensing can be

found in [35, 92, 102]. In Section 3.4, we discuss the implementation of MTPs for

multiband spectrum sensing. The motivation behind the use of MTPs in multiband

spectrum sensing is the capability of MTPs to provide control over decision errors not

only per single band but also for the overall system. The results show a better tradeoff

between type I errors and type II errors at the system level, compared to individual
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testing procedures. In Section 3.4 and references therein, MTPs are used in the con-

text of a fixed sample size. In this part, we propose an MTP for sequential detection,

more precisely for sequential probability ratio tests (SPRT), where the sample size is

random. Again we make use of the additional degree of freedom in sequential testing to

control not only the FWE, but also the FWM. To the best of our knowledge, the study

of MTP for the SPRT is scarce. Note that with an MTP for the SPRT we do not mean

sequential multihypothesis testing, such as in [103–105] and the like. At least, three

points mark the differences between the implementation of an MTP in fixed sample

size cases (FSN) and in the SPRT we propose here. First, unlike FSN, the p-value [62]

as the level of evidence is difficult to get in the SPRT since the number of samples N

changes. However, we can use random stopping times (random sample sizes) instead.

The smallest stopping time can be considered to be equivalent to the smallest p-value.

Simply said, an MTP in FSN works based on the ordered p-values, while in the SPRT

it works based on the ordered stopping times. Second, ordering p-values in FSN is

done after all tests finished, while ordering stopping times in the SPRT is done while

the SPRTs are still in progress (successively one test after another, depending on the

one that finished earlier). Third, the main objective in MTP for FSN is to maximize

the power, while in the SPRT context, the aim is to minimize the ASN.

5.1.1 Formulation and method

The model that we use here is similar to the model in Section 3.4.2. We assume that

the primary network operates over a wide frequency bandwidth which is divided into

K nonoverlapping subbands, and a primary user can be assigned to use a number

of subbands Kp simultaneously, where 1 ≤ Kp ≤ K. The binary hypothesis testing

problem for spectrum sensing of the subband k is

Hk,0 : fk,0(xk[n]; θk,0)

Hk,1 : fk,1(xk[n]; θk,1), k = 1, . . . , K. (5.1)

where xk[n] denotes a scalar or a vector observation, and fk,i(·) is the density function

of the subband k under hypothesis Hi, i = 0, 1. θk,0 and θk,1 are the parameters

for the subband k which could be scalars or vectors, under the respective hypotheses.

Here, we assume that the observations are identically independent distributed (i.i.d.)

within subbands and also independent accross subbands. Suppose that K0 out of

K are available for cognitive access within particular time intervals. Moreover, we

consider the case where the CR network also supports some CR users to use several

unoccupied subbands simultaneously. The number of subbands Kc, 1 ≤ Kc ≤ K0,

assigned to a specific CR user is, say, based on priority and currently active CR users.
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To accommodate the use of multiple subbands by the primary and the CR users,

we need an overall view on the performance of spectrum sensing, e.g., false alarm

and miss detection not only per subband, but for 1 ≤ Kc ≤ K0 and 1 ≤ Kp ≤
(K −K0), respectively. Note that K0 could span from 0 (all subbands occupied) to K

(all subbands unoccupied).

For the sake of clarity, we give an illustration. Suppose that each subband is indi-

vidually tested with nominal probabilities of false alarm αk = α and miss detection

βk = β, k = 1, . . . , K. Let us assume that there are K0 = 5 unoccupied subbands and

two active CR users, that is one with high priority (can use 1 ≤ Kc ≤ 4 subbands)

and the other with low priority (Kc = 1). The low priority user could have a subband

to use, while the high priority user might defer to use all four unoccupied subbands

simultaneously, and thus uses lower Kc, due to the higher false alarm rate caused by

the multiplicity effect (the actual probability of false alarm for the four subbands =

1− (1−α)4). With the same argument, any primary user that uses a higher number of

subbands Kp simultaneously will experience a higher aggregate interference level due

to a higher probability of miss detection. In this case, an MTP should be implemented

in multiband spectrum sensing to jointly detect the subbands and to provide control

over the decision errors at the system level.

Some performance measures for multiband spectrum sensing have been mentioned in

Section 3.4.1. However, since we do sequential detection, other important measures

are the average sample number over all subbands that are under H0, denoted as ASN0,

and over all subbands that are under H1, denoted as ASN1. They are defined formally

as

ASN0 = E0

[

∑K0

i=1Ns,i

K0

]

, ASN1 = E1

[

∑K−K0

l=1 Ns,l

K −K0

]

, (5.2)

where Ns,i denotes the stopping time of the subband Si. Note that a false discovery

rate controlling procedure is now commonly used in the fixed sample size case to get

more powerful tests, as we explain in Section 3.4.2.1. However, the use of the FDR

in MTP for the SPRT is unclear due to the capability of the SPRT to simultaneously

control the probabilities of false alarm and miss detection.

Let xk,N = (xk[1] xk[2] · · · xk[N ]) be a sequence of i.i.d. observations of a signal

recorded up to the sample N at subband Sk. Here, xk[n] is assumed to admit the

distribution described by the density function in (5.1) under each hypothesis. The

sequential probability ratio test (SPRT), according to (2.18), is

Z̄k,N =







≥ A, accept Hk,1

≤ B, accept Hk,0,
A < Z̄k,N < B, N ← N + 1.

(5.3)
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where Zk,N =
∑N

n=1 log
fk,1(xk[n]; θk,1)

fk,0(xk[n]; θk,0)
, k = 1, 2, . . . , K. For the implementation, we

use the thresholds [45]

A ≈ log
1

α′
, B ≈ log β ′, (5.4)

to have actual probabilities of false alarm Pf,k ≤ α′ and miss detection Pm,k ≤ β ′ in the

subband Sk, where α
′ and β ′ denote the respective nominal values of the probabilities of

false alarm and miss detection per subband basis. Note that we use the same thresholds

for all subbands. We further assume that the SPRTs start simultaneously in all K

subbands whenever the sensing period starts, and the SPRT running in each subband

fulfills the condition of having a finite random stopping time Ns,k, k = 1, . . . , K [66].

The objective is to have

FWE ≤ α, FWM ≤ β, (5.5)

with ASN0 and ASN1 as small as possible, by jointly testing all K subbands.

Simple Bonferroni procedure (SBF) for the SPRT. For K hypotheses (sub-

bands), the simplest way of conducting an MTP is to follow the simple Bonferroni

procedure [81], like in the fixed sample size case. More precisely, we test each sub-

band individually at the level αk = α/K and βk = β/K, ∀k ∈ {1, . . . , K} and set the

thresholds accordingly using (5.4). Thus, it will guarantee to fulfill the sensing objec-

tive (5.5). However, this approach is too conservative in protecting decision errors and

hence it results in large ASN0 and ASN1 for the SPRT. To solve this issue, we propose

a stepwise procedure that will be explained in the sequel.

Stepwise procedure (SWP) for the SPRT. Inspired by the work of Holm [82]

that uses the ordered p-values for the fixed sample size case, the SWP is based on

the ordered stopping times Ns,(1) ≤ Ns,(2) ≤ · · · ≤ Ns,(K) corresponding to subbands

S(1), S(2), . . . , S(K). The procedure in the SPRT is more involved since we have two

thresholds to consider and we perform ordering while the sample size N is increasing.

In principle, we start the SPRT in each subband with the largest value of the threshold

A and the lowest value of the threshold B. The largest A and the lowest B depend on

the nominal values of the FWE and FWM and the number of subbands K. Whenever

one or more SPRTs stop and favor H1 (the subbands are declared occupied), update A

with a smaller value to conduct the SPRT in the other subbands, and simultaneously,

whenever one or more SPRTs stop and favor H0 (the subbands are declared unoccu-

pied), update B with a larger value to conduct the SPRT in the other subbands. In

addition, after any SPRT stops we proceed with a procedure to find the other SPRTs
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that have crossed the respective smaller value of A or larger value of B in the past.

If any, declare the respective subbands as occupied or unoccupied and repeat the pro-

cedure with the next smaller A or larger B. Otherwise, the SPRTs proceed for the

rest of subbands. The whole process continues until all subbands have been declared

occupied or unoccupied.

Suppose that the nominal values of the FWE and FWM are α and β, respectively. The

detail of the SWP is as follows:

Step 1). Initialize the sample size N = 0, variables I1 = 0 and I0 = 0, and a set of

terminated subbands ST = ∅. The two sets of thresholds

ΛA ={log(1/α), log(2/α), . . . , log((K − I1)/α)}
ΛB ={log(β), log(β/2), . . . , log(β/(K − I0))}, (5.6)

correspond to the FWE and FWM of Benferroni’s method for the number of subbands

1, 2, . . . , K. The size of the sets ΛA and ΛB will be shrinking while in progress, which

depends on the variables I1 and I0. I1 indicates the number of subbands which have

been declared occupied and I0 indicates the number of subbands which have been de-

clared unoccupied.

Step 2). For all subbands Sk /∈ ST , take a sample N ← N + 1, calculate

and then compare Zk,N according to (5.3) where A = max {λA : λA ∈ ΛA} and

B = min {λB : λB ∈ ΛB}. If one of the two thresholds is crossed in any sub-

band, continue with Step 3, otherwise repeat Step 2. Note that, at each stage

N , Zk,N is also inspected by the processor in the subband k for whether it has

crossed the upper thresholds {log(1/α), . . . , log((K − I1 − 1)/α)} or the lower thresh-

olds {log(β), . . . , log(β/(K − I0 − 1))}. The results are stored, say, in a memory

uk =
[

uk,1, uk,2, . . . , uk,(K−1)

]

, where uk,l is set to 1 if Zk,N ≥ log(l/α) or set to 0

if Zk,N ≤ log(β/l), otherwise keep uk,l empty.

Step 3). If the SPRTs in a subset of subbands S1 = {S(1), . . . , S(L1)} stop, due to

the respective Z(k),N ≥ A, the subbands S(1), . . . , S(L1) are declared occupied, and the

variable I1 ← I1+L1 is updated. Simultaneously, if the SPRTs in a subset of subbands

S0 = {S1∗ , . . . , SL∗

0
}, where S0∩S1 = ∅, stop, due to the respective Zk∗,N ≤ B, the sub-

bands S1∗ , . . . , SL∗

0
are declared unoccupied, and the variable I0 ← I1 + L0 is updated.

The set of terminated subbands should also be updated, i.e., ST = {ST , S1, S0}.1 If

not all subbands have been declared occupied or unoccupied, the decisions for the rest

1Note that the possibility to have the total number of terminations L1 + L0 > 1 is small when
the SNRs (more precisely, the increments) are small, since under this condition, the variance of the
stopping time at each subband is large and thus the SPRTs most likely will not stop at the same time
(either S0 or S1 is most probably an empty set). However, when the SNRs are high, the possibility is
larger, since the variance of stopping time in each subband is small.
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of the subbands depend on the results of the following procedure, which inspects the

memory uk, ∀Sk /∈ ST . Initially, set index variables i0 = 1 and i1 = 1,

(a) If none of Sk /∈ ST has uk,(K−I1−i1) = 1 or uk,(K−I1−i1) = 0, update the sets ΛA and

ΛB in (5.6) and repeat Step 2.

(b) Otherwise, if uk,(K−I1−i1) = 1 in a subset of subbands S′
1 = {S1′ , . . . , Sl′1

}, the

subbands S1′ , . . . , Sl′1
are declared occupied, update the variable i1 ← i1 + l1.

Similarly, if uk,(K−I1−i0) = 0 in a subset of subbands S′
0 = {S ′

1∗ , . . . , S
′
l0∗
} where

S′
0 ∩ S′

1 = ∅, the subbands S ′
1∗ , . . . , S

′
l∗0
are declared unoccupied, and then update

the variable i0 ← i0 + l0. The set of terminated subbands should also be updated,

i.e., ST = {ST ,S
′
1,S

′
0}. As long as S′

0∪S′
1 6= ∅, continue from the beginning of (b).

Otherwise, if not all subbands have been declared occupied or unoccupied, update

the variables I1 ← I1 + i1 − 1 and I0 ← I0 + i0 − 1 and accordingly the sets ΛA

and ΛB in (5.6), then repeat Step 2.

Note that we only update the upper threshold A (not A and B) whenever one or

more SPRTs stop and favor H1. The opposite holds, when favoring H0. This can

be explained as follows. Suppose that an SPRT at the subband Sk stops and favors

Hk,1 with the thresholds A = log(K/α) and B = log(β/K). In this case, when Hk,0

has been rejected, using the nominal value of the probability of false alarm α′ = α/K

(A = log(K/α)), we should believe that Hk,0 is false (Hk,1 is true). Therefore, there are

only K−1 null hypotheses which might be still true, implying the critical value now to

be α′ = α/(K − 1) (update the upper threshold to A = log((K − 1)/α)). However, for

the lower threshold B, we should believe that there are still K alternative hypotheses

which might be true (including the one that has been declared true), since we have

no evidence that any of Hk,1 has been rejected. This implies the nominal value for

the probability of miss detection is still β ′ = β/K (the lower threshold is maintained

at B = log(β/K)). The same argument applies when an SPRT at the subband Sk

stops and favors Hk,0. If we were to update both thresholds each time an SPRT stops,

regardless of which hypothesis is rejected, then the objective (5.5) will not be achieved.

5.1.2 Simulation results

As an example, we assume that a CR user receives complex Gaussian signals in each

subband, i.e

Hk,0 : xk[n] ∼ CN
(

0, σ2
k,0

)

,

Hk,1 : xk[n] ∼ CN
(

0, σ2
k,1

)

, k = 1, 2, . . . , K. (5.7)
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The log-likelihood ratio Zk,N can then be calculated from (5.3) to perform spectrum

sensing in K subbands. For all simulations we assume that the noise power σ2
k,0 =

1, k = 1, . . . , K, where σ2
k,1 depends on the SNR in each subband, which is defined as

SNRk = 10 log10((σ
2
k,1−σ2

k,0)/σ
2
k,0). The nominal values of the FWE and FWM are set

to α = β = 0.1. All the results are generated using 104 Monte Carlo runs.
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Figure 5.1: FWE and FWM vs. K0 for individually testing without MTP (Indv), the
SBF, and the proposed SWP.

Fig. 5.1 shows the FWE and FWM for the SBF and the SWP. The number of subbands

that are jointly tested is K = 8 and the number of unoccupied subbands K0 varies

from 0 to 8. Note that K0 unoccupied subbands were randomly selected from the

K subbands in each Monte Carlo run. Here, the occupied subbands have the same

SNR= −10 dB. The results when all subbands are individually tested without MTP

at the nominal values α′ = β ′ = 0.1, are also shown. In general, Fig. 5.1 indicates that

the SBF and SWP control the FWE and the FWM in the strong sense. More precisely,

regardless of how many available subbands might be opportunistically used by a CR

user, the probability of missing an opportunity to use the respective subbands is no

larger than α = 0.1, and regardless of how many subbands are used by a primary user,

the probability of the respective primary user to receive interferences is no larger than

β = 0.1. However, full protection resulting from the SBF is too restrictive, particularly

for the FWE when K0 is large and for the FWM when K0 is small. Meanwhile, lack of

multiplicity control by testing individually is too permissive, hence reducing the overall

throughput of the CR network (due to higher FWE for higher numbers of unoccupied

subbands) and increasing the interferences to the primary users (due to higher FWM for

higher number of occupied subbands), especially for the primary users that use several

subbands at a time. The proposed procedure SWP handles the problem appropriately.
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Table 5.1: ASN0 and ASN1 for the SBF and the SWP as a function of K0.

K0

0 2 4 6 8

ASN0
SBF - 980 977 977 978

SWP - 928 910 861 779

ASN1
SBF 934 935 934 932 -

SWP 743 820 864 888 -

It pulls the FWE and the FWM closer to the nominal values while still preserving

the objective (5.5). As a result, the SWP has smaller ASNs than the SBF, as shown

in Table 5.1. By using the SWP, the gain that we obtain on ASN1 is larger when

the subbands are busier (mostly occupied), and the gain is larger for ASN0 when the

subbands are sparser (mostly unoccupied).

2 4 8 16 32
100

500

1000

5000

K

∆ T

 

 

Sparse (P
1
=0.2)

Mild (P
1
=0.5)

Busy (P
1
=0.8)

Figure 5.2: The gap ∆T between the total ASN of the SBF and the SWP vs. K, when
the subbands occupancies are busy, mild and sparse.

According to (5.2), ASN0 and ASN1 represent the average sample numbers per subband

basis. The total average sample number can be defined as

ASNT =E

[

K
∑

i=1

Ns,i

]

= E

[

K0
∑

i=1

Ns,i +

K−K0
∑

l=1

Ns,l

]

≈K {(1− P1)ASN0 + P1ASN1} , (5.8)

where we have assumed that the probability of each subband being occupied by a

primary user is equal, i.e., P (Hk,1) = P1, k = 1, . . . , K. In Fig. 5.2, we plot the gap
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∆T = ASNT (SBF) − ASNT (SWP), between the total ASN of the SBF and the SWP

against the number of subbands K, in which the occupied subbands have the same

SNR= −10 dB. We evaluate the performance when the channel occupancy is considered

to be busy (P1 = 0.8), mildly busy (P1 = 0.5) and sparse (P1 = 0.2). It can be remarked

that the gap is larger when either K subbands are busy or sparse. The reasoning is as

follows. When the subbands are busy, the alternative hypotheses dominate the MTP.

In this case, the probability that the SWP updates the upper threshold A down to

the lowest value in each realization is high, and hence the probability that SPRTs stop

with smaller sample sizes is also high. The same case applies when the subbands are

sparse, namely the null hypotheses dominate the MTP. In this case, the probability

that the SWP updates the lower threshold B up to the largest value in each realization

is high, and hence the probability of SPRTs to stop with smaller sample sizes is also

high. However, this does not apply when the subbands are mildly busy since, then

the null hypotheses and the alternative hypotheses are competing. In this case, all

SPRTs will mostly have stopped immediately after reaching the [K/2] smallest of the

thresholds A and the [K/2] largest of the thresholds B. Therefore, the ASN of the

SWP of mildly occupied subbands is higher than that of busy and sparse subbands.

This explains the smaller gap when the subbands are mildly occupied.

5.2 Locally optimum detection in heavy-tailed

noise for spectrum sensing

Generally, energy detection or radiometry is preferred for its low complexity. However,

it lacks robustness in noise power uncertainty, especially in a low SNR regime [14,106].

In contrast, locally optimum detection (LOD) is designed to behave optimality in a low

SNR regime [60,107]. Hence, implementing LOD in spectrum sensing is well motivated.

In this work, we propose a robust version of the LOD derived in [108] in terms of dealing

with heavy-tailed noise and outliers. We shall refer to the proposed LOD as Robust

Locally Optimum Detection (RLOD). Note that the LOD in [108] is derived based on a

Gaussian noise assumption. Meanwhile, the RLOD is derived based on the assumption

that the noise is Student’s t-distributed. This is motivated by the fact that the latter

distribution is very suitable for modeling heavy-tailed noise and the presence of large

outliers that can cause noise uncertainty in a low SNR regime.
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5.2.1 Formulation and method

We assume several frequency bands, each of which can be occupied by a primary user.

Every potential CR user can use a block of N samples to perform spectrum sensing in

a certain band or several bands independently. The channel is assumed to be flat over

each frequency band. The received signal in each band can be written as:

x[n] = θejφs[n] +w[n], n = 0, 1, . . . , N − 1 (5.9)

where φ is a channel phase shift, uniformly distributed over (−π, π], and considered

constant during each sensing period. Here, x[n] is a scalar observation. The signal

constellation is represented by s[n] which is drawn with equal probabilities from the

M-ary symbols (s0, s1, s2, ..., sM−1), whereas w[n] denotes the noise. The problem of

detecting weak (low SNR) primary signals in spectrum sensing, based on a received

signal x[n], can be formulated as

H0 : θ = 0 (5.10a)

H1 : θ > 0. (5.10b)

Let xN = (x[1] x[2] · · · x[N ]) be a finite sequence of N i.i.d. observations of a signal.

We can write the joint pdf of the observations as

fN(xN ; θ) =

N
∏

n=1

f(x[n]; θ). (5.11)

Since w[n] is assumed to follow a Student’s t-distribution with ν degrees of freedom

and the M-ary symbols sm, m = 0, ...,M − 1 are transmitted with equal probability,

f(x[n]; θ) is given by

f(x[n]; θ) =
1

M

M−1
∑

m=0

1

2πσ

(

1 +
|x[n]− θejφsm|2

νσ2

)−( ν+2
2

)

. (5.12)

Based on [107], the test statistic of a locally optimum detector for the null hypothesis

H0 versus the alternative hypothesis H1 is obtained as the ratio

T (xN) =
f
(i)
N (xN ; θ)|θ=0

f(xN ; 0)
, (5.13)

where f (i)(xN ; θ) is the first non zero i-th derivative of the joint pdf of the observation

vector xN under H1 and f(xN ; 0) is the joint pdf of the observation vector xN under

H0. The first derivative f
(1)(x[n]; θ) is equal to zero under the assumption of symmetric
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signal constellations, such as BPSK, QPSK, QAM and etc. Therefore, we compute the

second derivative of (5.11) and stop, since f (2)(x[n]; θ) is different from zero at θ = 0.

Finally, after substituting the results and assuming BPSK, the test statistic (5.13)

becomes

T (xN) =
∑

n

{

(ν + 4)

2ν

R[(x∗[n])2ej2φ] + |x[n]|2

σ2
(

1 +
|x[n]|2
νσ2

)2
− 1

1 +
|x[n]|2
νσ2

}

, (5.14)

where R[z] and z∗ are the real part and complex conjugate of a complex number z,

respectively. This is an important expression which depends on the choice of ν and

thus takes different forms for different distributions. When ν = 1, we obtain the

test statistic for Cauchy distributed noise. When ν → ∞, T (xN) reduces to the test

statistic derived for the Gaussian case in [108]:

T1(xN) = R

[

ej2φ

(

1

N

N−1
∑

n=0

(x∗[n])2

)]

+
1

N

N−1
∑

n=0

|x[n]|2.

By further assuming that the channel phase shift φ can be estimated using the phase

of pseudo-variance multiplication of the received signal x[n], and that s[n] has higher

signal constellations size than BPSK, the test statistic above reduces to the energy

detector [108]:

T2(xN) =
1

N

N−1
∑

n=0

|x[n]|2.

Since it is very difficult to find a closed form expression for the distribution of the test

statistic under H0 and H1, we will determine the probability of false alarm Pf and miss

detection Pm via simulations. In the following section, we present simulation results

for the performances of our proposed RLOD, the classical LOD based on the Gaussian

noise assumption and the energy detector. They are evaluated for Gaussian distributed

noise, Student’s t-distributed noise, and contaminated Gaussian noise.

5.2.2 Simulation results

For all simulations, we assumed that a primary user transmits BPSK signals. The

signals experience a large attenuation and a phase shift which is distributed uniformly

over (−π, π]. Thus, the CR user has to detect a signal in a low SNR regime. The pdf

of the test statistic under H0 and H1 was obtained via 104 Monte Carlo runs for each

condition. Most of the simulations have been done under the assumption that allows
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Figure 5.3: Receiver operating characteristics for Gaussian (conventional) LOD, energy
detector, and RLOD with various degree of freedom ν, under Gaussian noise.

for a minimum signal strength θmin, which produces an SNR of -10 dB. For the case

of heavy-tailed noise or outliers, the actual SNR will be lower than the assumed SNR.

For the first four figures, we have used sample size N = 1000.

Fig. 5.3 shows the receiver operating characteristic (ROC) for Gaussian noise. It can

be seen that the best performance is obtained for ν = 100 and that the proposed

detector performs equally well as the detection under the Gaussian assumption. This

is to be expected, since the classical LOD is a special case of the proposed RLOD.

The performance decreases with decreasing ν. The worst results are obtained with the

energy detector. In fact, the RLOD outperforms the energy detector for any degrees

of freedom ν in the Gaussian case.

Fig. 5.4.a shows the results obtained with noise following a Student’s t-distribution

with a small degree of freedom (ν = 2). It is obvious that the best performance is

obtained for the proposed test with ν = 2 (no mismatch between the assumption

and the truth). The performance of the RLOD decreases with increasing ν. The

results when the generated noise follows Student’s t-distribution with a large degree

of freedom ν = 100 is depicted in Fig. 5.4.b. The performance of the RLOD decreases

with decreasing ν.

Suppose now that we have a signal with outliers which is modeled by a Gaussian

mixture model [107], where the outliers follow a Gaussian with a larger variance. In

this case, the noise is generated from (1 − ǫ)N (0, σ2) + ǫN (0, κσ2). The results for

κ = 10 and contamination ǫ = 10% are depicted in Fig. 5.5. It can be noticed that
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(a) Degree of freedom ν = 2
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(b) Degrees of freedom ν = 100

Figure 5.4: Receiver operating characteristic for RLOD under Student’s t-distributed
noise with ν = 2 and ν = 100 degrees of freedom.
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Figure 5.5: Receiver operating characteristics for Gaussian (conventional) LOD, energy
detector, and RLOD with various degrees of freedom ν, under Gaussian mixture model
with κ = 10 and ǫ = 10%.

the test statistic derived from the Student’s t-distribution with 2 and 10 degrees of

freedom give a clear increase in robustness, compared to the conventional test.

In cognitive radio, the aim is to keep the quality of service (QoS) of the primary

network to a certain level in terms of the degree of interference. From a CR user’s

perspective, maintaining the degree of interference in a primary network based on a

QoS requirement can be interpreted as maintaining the probability of miss detection

Pm to a nominal value. Hence, to evaluate the performance we fix Pm at a certain
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Figure 5.6: Probability of false alarm Pf for Gaussian (conventional) LOD, energy
detector, and RLOD with ν = 2 degree of freedom, as a function of sample size N
without noise contamination.
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Figure 5.7: Probability of false alarm Pf for Gaussian (conventional) LOD, energy
detector, and RLOD with ν = 2 degree of freedom, as a function of sample size N
under Gaussian mixture model with κ = 10 and ǫ = 10%.

level and compute Pf . Figs. 5.6 and 5.7 depict the curves of the probability of false

alarm Pf with respect to the sensing time (sample size N). Fig. 5.6 illustrates the

results when the signal does not contain outliers (ǫ = 0). Fig. 5.7 is obtained with 10%

contaminated data generated from the Gaussian mixture with κ = 10. In both figures,

the probability of miss detection is fixed to Pm = 0.05 and ν = 2 for the RLOD test.

Fig. 5.6 shows that without noise contamination the performance of the RLOD is better
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than the performance of the energy detector and only slightly worse than that of the

optimum Gaussian LOD. When the signal contains outliers, the RLOD has the best

behavior which is shown in Fig. 5.7. For a value of N = 1000, Pf ≈ 0.5 for the RLOD,

while in the absence of outliers it is ≈ 0.45. This shows that the RLOD as decreased in

performance in the presence of 10 % outliers. However, this decrease is limited when

compared to the Gaussian LOD test or the energy detector which are not robust. For

the energy detector, Pf increases from ≈ 0.55 to 0.9 in the presence of outliers and

from ≈ 0.32 to 0.83 for the Gaussain LOD.

5.3 Collaborative spectrum sensing using HDC

with quality information bit

Collaborative spectrum sensing has the main goal to tackle the issue of the hidden

terminal problem. To this end, it takes advantage of spatial diversity in order to

increase the global probability of detection, especially in a harsh wireless environment,

by allowing collaboration between CR users. In a parallel scheme, each CR user is

equipped with a detector and forwards local sensing information to a fusion center

(FC) which finally makes a global decision about the existence of a primary user’s

signal according to a fusion rule, such as the soft decision combining (SDC) or the

hard decision combining (HDC) rule [32].

Note that the HDC requires a minimum channel bandwidth between each CR user and

the FC, but has poorer performance than the SDC, as shown in [34]. In this work we

extend the HDC in the cognitive radio context by means of quality information, so as

to improve the performance in terms of the probability of miss detection. We detail

how quality information bits can be derived and incorporated into the fusion rule.

5.3.1 Formulation and method

Let L denote the number of CR users that sense a certain frequency band collabo-

ratively and forward their decision results to an FC. Each CR user employs energy

detection with N samples for the local decision. The n-th scalar sample of the l-th CR

user, 1 ≤ n ≤ N , 1 ≤ l ≤ L, can be expressed by xl(n) and the detection problem

formulated as follows

H0 : xl[n] = wl[n] (5.15a)

H1 : xl[n] = hls[n] +wl[n], (5.15b)



100 Chapter 5: Miscellaneous works

where s[n] is the primary user’s signal which is assumed to be deterministic and un-

known, wl[n] is white Gaussian noise and hl is the scalar channel gain between the

primary user and the l-th CR user. The received signal energy Yl at the l-th CR user

follows a central chi-square distribution under H0 and a non-central chi-square distri-

bution under H1 [12], each with N degrees of freedom and non-centrality parameter

Nγ, where γ is the SNR at the CR user. The SNR is defined as γ =
P

N0W
with P

being the power of the primary user’s signal, N0 and W are the one-sided noise power

spectral density and bandpass filter bandwidth, respectively. Hence, the probability of

false alarm with local decision threshold τl, can be written as follows [12, 33]

Pf = P (Yl > τl|H0) =
Γ(N/2, τl/2)

Γ(N/2)
, GN/2(τl), (5.16)

where Γ denotes the upper incomplete gamma function [109]. When hl varies due to

fading or shadowing, the probability of detection Pd should be averaged over fading

statistics. In this case, it can be written as [12],

Pd =

∫

γ

QN/2(
√
Nx,

√

G−1
N/2(Pf))fγ(x)dx , fl(Pf). (5.17)

Here, fγ(x) is the pdf of the SNR under fading and QN/2 is the generalized Marcum

Q-function. Meanwhile, Pf remains the same in the presence or absence of fading,

since it is independent of γ. For a closed-form expression of Pd under different fading

statistics, refer to [12]. Basically, (5.17) is the receiver operating characteristics (ROC)

of the energy detector for fading channels.

Consider the case where each CR user not only transmits a decision bit, but along with

it a quality information bit, indicating the degree of confidence that the CR user has

in its decision [95]. Fig. 5.8 illustrates how the decision bit ul and the quality bit cl of

the l-th CR user are defined. We assume that ul = 0 and 1 indicate no primary user’s

signal detected and primary user’s signal detected, respectively. When the measured

energy Yl falls into the region within a strip (τlL,τlU), defined as the ”no confidence”

region, then the bit cl = 0 is transmitted along with the decision bit. Otherwise, when

Yl falls in the confidence regions (Yl < τlL or Yl > τlU), cl = 1 is transmitted.

As Fig. 5.8 shows, we are supposed to determine three thresholds, the middle threshold

τl, the lower threshold τlL, and the upper threshold τlU . The middle threshold τl is

pre-specified by the local probability of false alarm of the l-th CR user P l
f using the

inverse function of (5.16). The method to obtain the other two optimum thresholds

is explained in the following. Let D = (d1, d1, ..., dL) denote the observation vector at

the combining node which consists of local decisions dl = (ul, cl), and let P kl
ij be the
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Figure 5.8: Illustration for the measured energy pdf p(Yl|Hk) of the CR user under
hypothesis H0 and H1, and the definition of the decision and quality information bits
for each region.

joint probability distribution of each region when ul = i and cl = j under hypothesis

Hk for the l-th CR user,

P kl
ij = P (ul = i, cl = j|Hk) i, j, k = 0, 1. (5.18)

The optimum decision rule based on the Neyman-Pearson criterion at the combining

node is given by [32]:

T (D) = log
P (D|H1)

P (D|H0)







> τ0, u0 = 1
< τ0, u0 = 0,
= τ0, randomization,

(5.19)

where u0 is the global decision and τ0 is the decision threshold determined by the preset

global probability of false alarm α. It is necessary to include a randomization step,

where u0 = 1 with probability ω and u0 = 0 with probability 1 − ω, since the pdf of

T (D) is discrete under H0 and H1. Assuming independence between CR users and

using the notation in (5.18), the test statistic can be written as

T (D) = log
P (D|H1)

P (D|H0)
=

n01
∑

l=1

log
P 1l
01

P 0l
01

+

n00
∑

l=1

log
P 1l
00

P 0l
00

+

n10
∑

l=1

log
P 1l
10

P 0l
10

+

n11
∑

l=1

log
P 1l
11

P 0l
11

=
L
∑

l=1

wl (5.20)

where wl = log
P 1l
ij

P 0l
ij

, nij is the number of CR users which decide dl = (ul = i, cl = j),

and n01 + n00 + n10 + n11 = L. Therefore, the test statistic is a weighted sum of local

decisions, which are functions of the partition {P kl
ij }Nl=1 determined by the threshold

τlL,τl and τlU at each CR user.

In order to find optimum sub-partitioning {P kl
ij }Ll=1, which in turn is used to find the op-

timum threshold, we follow the steps in [110], in which J-Divergence is employed as the
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objective function for optimization. J-Divergence is a member of the Ali-Silvey class

of distance measures, which define the distance between two probability distributions

[111]. In our case, it can be written as

J = EH1 [T (D)]−EH0 [T (D)]

=
N
∑

l=1

(EH1 [wl]−EH0 [wl]) =
L
∑

l=1

Jl, (5.21)

where EHk
[·] denotes expectation under hypotheses Hk. It is obvious from (5.21) that

sub-partitioning each local decision region of a CR user is independent of those of

others. From (5.20) and (5.21), the J-Divergence contributed by the lth CR user Jl

can be expressed as

Jl = (P 1l
01 − P 0l

01) log
P 1l
01

P 0l
01

+ (P 1l
00 − P 0l

00) log
P 1l
00

P 0l
00

+(P 1l
10 − P 0l

10) log
P 1l
10

P 0l
10

+ (P 1l
11 − P 0l

11) log
P 1l
11

P 0l
11

. (5.22)

Using several relations that can be derived from Fig. 5.8 and the definition of (5.18),

differentiating Jl with respect to P 0l
11 and P 0l

00, and setting both resulting equations to

zero, leads to the following equations

f ′
l (P

0l
11) =

P l
d − fl(P

0l
11)

P l
f − P 0l

11

− fl(P
0l
11)

P 0l
11

+ log

{

(
P l
d − fl(P

0l
11)

P l
f − P 0l

11

)(
P 0l
11

fl(P 0l
11)

)

}

− P l
f − P 0l

11

P l
d − fl(P 0l

11)
+

P 0l
11

fl(P 0l
11)

+ log

{

(
P l
d − fl(P

0l
11)

P l
f − P 0l

11

)(
P 0l
11

fl(P 0l
11)

)

} (5.23)

f ′
l (P

′
f) =

1− fl(P
′
f)

1− P l
f − P 0l

00

−
fl(P

′
f )− P l

d

P 0l
00

+ log

{

(
1− fl(P

′
f)

1− P l
f − P 0l

00

)(
P 0l
00

fl(P ′
f)− P l

d

)

}

− P l
f − P 0l

11

P l
d − fl(P ′

f)
+

P 0l
11

fl(P
′
f )

+ log

{

(
P l
d − fl(P

′
f)

P l
f − P 0l

11

)(
P 0l
11

fl(P
′
f)
)

} (5.24)

where P ′
f = P l

f + P 0l
00, P

l
d and P l

f are the probabilities of detection and false alarm of

the l-th CR user, and fl(·) is the ROC given in (5.17). Since P l
f is pre-specified and

P l
d can be obtained from (5.17), we can have an optimum sub-partitioning of P 0l

11 by

solving (5.23) numerically. Therefore, we can obtain τlU from (5.16). Obtaining τlL

can be accomplished by first solving (5.24) numerically in order to get P 0l
00.

Referring to (5.23) and (5.24), f ′
l (·) needs to be determined, which is basically the

derivative with respect to Pf of the ROC in (5.17). By using the chain rule and inverse



5.3 Collaborative spectrum sensing using HDC with quality information bit 103

−10 −8 −6 −4 −2 0 2 4 6 8 10

10
−2

10
−1

10
0

SNR (dB)

P m

 

 

1 user
3 users (conventional)
3 users (proposed)
5 users (conventional)
5 users (proposed)
8 users (conventional)
8 users (proposed)

Figure 5.9: Probabilities of miss detection Pm of HDC 1-bit (conventional) and HDC
2-bits (proposed) as a function of SNRs for various number of users.

function rule on the derivative, f ′
l (·) under fading can be expressed by

f ′
l (Pf ) = dPd/dPf =

∫

γ

2N− 1
2

{√

NxG−1
N/2(Pf)

}N/2−1
×

Γ(N/2)e(−
N
2
x)IN

2
−1

(√

2NxG−1
N/2(Pf)

)

fγ(x)dx (5.25)

where IN
2
−1(·) is the (N2 − 1)-th order modified Bessel function of the first kind, Γ(·) is

the Gamma function and G−1
N/2(Pf) is the inverse of the incomplete Gamma function

of (5.16) [109].

5.3.2 Simulation results

We use the probability of miss detection Pm as a performance measure, since it is more

relevant than the probability of detection Pd in a cognitive radio context, because it

indicates the degree of interferences to primary users. In Fig. 5.9 and 5.10, the reporting

channels are assumed to be perfect. Note that the HDC 1-bit is the optimal scheme

according to [32].

Fig. 5.9 and 5.10 show that the HDC scheme with quality information bits (HDC 2-

bit) outperforms the HDC 1-bit scheme. For a targeted Pm = 10%, with a number

of users varying from 2 to 8, the SNR gain that could be achieved by incorporating

quality information bits ranges from 1 dB to 2 dB. Meanwhile, Fig. 5.10 shows that for
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Figure 5.10: Performance of 2 collaborating users using HDC 1-bit and 2-bits in terms
of probability of miss detection Pm as a function of SNRs, compared to 1 user.
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Figure 5.11: Performance of the HDC 2-bits under imperfect reporting channel. The
probability of miss detection Pm is plotted against bit error probability Pe for various
users and SNRs.

2 collaborating users, spatial diversity cannot be exploited by the HDC 1-bit scheme,

indicated by the overlap of both curves. This has been proven in [95], which states

that in a configuration of L similar detectors, a better performance than a single user,

can only be achieved for L > 2. This is no longer true for the HDC 2-bit.

The assumption that the reporting channel between each collaborating user and the

FC is perfect may not be valid in practice. It could be subjected to propagation
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effects, collisions and interference, which cause the transmitted information from each

collaborating user to be erroneous at the FC. These errors surely will cause performance

loss. In order to quantify the effect of imperfect reporting channels on the performance

of our scheme, we assume the channels to be binary symmetric channels, with equal

bit error probabilities (BEP). Using the Hamming distance hl,j [112], between 2-bit

sequences (dl, dj), the joint distribution at the FC P kl
ij,fc for hypothesis Hk can be

written as

P kl
ij,fc =

4
∑

j=1

P
hl,j
e (1− Pe)

2−hl,jP kl
ij (5.26)

where Pe is the BEP and P kl
ij is from (5.18).

Fig. 5.11 depicts the performance of our scheme under imperfect reporting channels for

a different number of users and an average SNR. We assume the BEP to be equal for

all channels and vary it from Pe = 0 (not showing in the figure), which is equal to the

perfect channel, to 0.4. The performances do not change significantly for Pe ≤ 10−3

compared to the performance in the perfect channel case. They depart noticeably

starting from Pe = 10−2, and they get worse when Pe increases above 0.4. This suggests

that in the design of the fusion rule at the FC, the imperfect channel effect should be

taken into account.

5.4 Conclusion

The multiple testing procedure has been implemented in sequential probability ratio

tests. The results show that the proposed method fulfills the objective to have control

over the decision errors at the system level which is required in a scenario where the

primary and the cognitive radio networks provide their users accesses to several bands

at a time. The total ASN of the proposed method is significantly smaller than that of

the simple Bonferroni procedure. Therefore, the proposed method is a promising tech-

nique to increase the overall throughput of cognitive radio networks without causing

harmful interferences to the primary networks.

Extensive simulations lead to the conclusion that the RLOD that we propose, out-

performs the energy detector in a low SNR region in all cases, even in the Gaussian

noise case. Our simulation results also show that the proposed detector is more ro-

bust to outliers than the energy detector or the Gaussian LOD. This makes it a better

candidate for being implemented in spectrum sensing for cognitive radio.
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A new scheme that incorporates quality information into the HDC 1-bit scheme has

been presented. In summary, for all considered numbers of users and SNR ranges, the

performance in terms of the probability of miss detection improves compared to the

conventional HDC 1-bit scheme. We also have considered the performance when facing

imperfect channels. Under binary symmetric channels, it is suggested to incorporate

the channel effect into the design of the fusion rule when Pe > 10−3. As a disadvantage,

the scheme requires the fusion center to know the local detector performance indices

to implement the optimum likelihood ratio based fusion rule.
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Chapter 6

Conclusions and outlook

In this thesis, advanced techniques for spectrum sensing with short sensing times have

been developed. These techniques comprise bootstrap based local and collaborative

test with a fixed sample size, and bootstrap based sequential probability ratio tests.

Moreover, we developed methods for multiband spectrum sensing, locally optimum

detection and two bits collaborative spectrum sensing. In this part, we draw conclusions

in Section 6.1, and outline directions for future works in Section 6.2.

6.1 Conclusions

In the beginning, we considered the case where the primary user signal is temporally

correlated and the noise is uncorrelated. We highlighted the drawback of using the

asymptotic test when the sample size is small. Moreover, we showed that the common

approach of using the bootstrap pivoting test also failed to achieve satisfactory perfor-

mance. Thus, we developed an alternative method that is based on a null resampling

approach. Unlike the bootstrap pivoting test, simulation results show that the actual

probability of false alarm of the bootstrap null resampling test is close to the nomi-

nal value. This means that the proposed method yields better estimates of the true

distribution of the test statistic under the null hypothesis than the bootstrap pivoting

test. The former has a smaller computational cost. Furthermore, we extended the re-

sampling based approach to collaborative spectrum sensing using the Chair-Varshney

fusion rule, where the local probability of detection is estimated in each measurement.

When the number of CR users is large, the parametric bootstrap is used to estimate the

distribution of the fusion rule under the null hypothesis. As a result, the computational

cost is significantly reduced. The simulation results demonstrate that the performance

of collaborative spectrum sensing using the parametric bootstrap does not significantly

differ from the one that uses all possible binary combinations.

We tackled further the issue of implementing the sequential probability ratio test un-

der composite hypotheses. When the constant thresholds for the sequential probability

ratio test are used, the generalized sequential probability ratio test for composite hy-

potheses produces large decision errors, particularly for low SNR. This is because many

terminations occur due to maximum likelihood estimator at earlier stages, when the
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number of samples is still small. In order to alleviate the problem, we developed

techniques that can update the thresholds according to the sample size. This is ac-

complished by estimating the distribution of the error terms in the likelihood ratios,

using the parametric bootstrap. Simulations have been conducted and the results in-

dicate that the decision errors are reduced, and thus the sensing objective is preserved.

Furthermore, the proposed method has smaller ASNs than the conventional method,

whose thresholds are found by Monte Carlo simulations. In addition, we highlighted

the advantage in terms of computational cost of using the proposed approach, instead

of using a method that has been suggested in the literature. In general, additional com-

putational costs due to the bootstrap are inevitable. However, we provided a solution

by combining the K latest bootstrap distributions, by which the computational cost

is reduced by a factor as large as a hundred. Simulation results show that the ASN of

the bootstrap based sequential probability ratio test with reduced computational cost

is still comparable to the one without a computational cost reduction scheme.

In the last part, we considered various problems in spectrum sensing. First, we used

multiple testing procedures for multiband spectrum sensing. For fixed sample size cases,

we suggested to use an adaptive Benjamini-Hochberg procedure, since it provides a

better compromise between the familywise error rate and the familywise miss detection

than the original Benjamini-Hochberg procedure. In the context of sequential testing,

we developed a stepwise procedure that based on the ordered stopping times of the

sequential probability ratio tests. Simulation results show that the devised procedure

maintains the actual values of decision errors close to the nominal values, regardless of

the number of subbands occupied by a primary user, and regardless of the number of

subbands that might be opportunistically used by a CR user. The ASN of the stepwise

procedure is smaller than that of the Bonferroni procedure. Second, the problem of

detecting low SNR signal in the presence of outliers has been addressed. For this

case, we developed a robust locally optimum detector, which was derived based on

the assumption that the noise is Student’s t-distributed. We carried out simulations

and the results show that the robust locally optimum detector outperforms the energy

detector, and performs even better than the locally optimum detector that is based on

a Gaussian noise assumption, when outliers are present. Third, we sought to improve

the performance of hard decision combining in collaborative spectrum sensing. In the

derived scheme, each CR user transmits not only a decision bit, but also a quality

information bit which indicates a degree of confidence in the decision that the CR user

has made. Each CR user has three thresholds, one of which is pre-specified and the

other two are determined by means of the J-Divergence. The performance improves

significantly, as shown by simulations.
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6.2 Outlook

We identify at least three possible works that can be conducted in the future. They

include:

• Resampling based spectrum sensing for correlated signals: The problem of de-

tecting correlated signals in uncorrelated noise has been treated in this thesis.

However, interference from a source that has a degree of temporal correlations

might appear at the receiver of a spectrum sensor. Consequently, the assumption

that we used in this thesis does not hold anymore. More precisely, we also have

correlated observations under the null hypothesis. Should we know the degree of

correlation of the respective interferer, the challenge would be to construct a null

resampling method under this condition. However, the case is more challenging

if the degree of correlation of the respective interferer is unknown. In addition,

for multiband spectrum sensing, we have assumed that the observations between

subbands are independent, under the null and the alternative hypotheses. How-

ever, the approach must be different if we assume that the observations between

subbands are dependent. As a next stage, investigating resampling-based multi-

ple testing procedure for dependent observations seems relevant.

• Bootstrap based sequential probability ratio tests: In this thesis, the modifica-

tions of the two thresholds are treated independently. The upper threshold is

modified to control the probability of false alarm using the parametric bootstrap

assuming the data is generated under the null hypothesis. In fact, the modifica-

tion also affects the required sample size to correctly decide, whether or not the

data originate from the alternative hypothesis. The same considerations apply to

the lower threshold. Therefore, joint optimization to modify the two thresholds

by bootstrapping could be an appropriate choice in the future work.

• Multiple testing procedure for multiband spectrum sensing using sequential test-

ing: In sequential testing, we developed a stepwise procedure that is based on

a heuristic approach. An analytical approach such as using optimization theory

is possible. From our perspective, some questions are still open: What is the

optimum way to conduct MTP in the SPRT? What is the role of FDR and some

other measures in MTP for sequential testing? Is it possible to use these measures

to further reduce the sample size and, if so, how? Answering these questions for

the analytical approach will be a challange.
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List of Acronyms

A-BHP Adaptive Benjamini-Hochberg procedure

AS Assumption

ASN Average sample number

BHP Benjamini-Hochberg procedure

B-SPRT Bootstrap based sequential probability ratio test

BPSK Binary Phase Shift Keying

CR Cognitive radio

CSS Collaborative spectrum sensing

EDF Empirical distribution function

EGC Equal gain combining

FAR False alarm ratio

FC Fusion center

FCC Federal communications commission

FDR False discovery rate

FSN Fixed sample number

FWE Familywise error rate

FWM Familywise miss detection

GLRT Generalized likelihood ratio test

HDC Hard decision combining

HP Holm procedure

i.i.d. independent and identically distributed

KL Kullback-Leibler

LLR Likelihood ratio

LLRT Log-likelihood ratio test
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LOD Locally optimum detector

MCP Multiple comparison procedure

MLE Maximum likelihood estimator

MR Missing ratio

MTP Multiple testing procedure

NP Neyman-Pearson

OC Operating characteristic

pdf Probability density function

QAM Quadrature amplitude modulation

QoS Quality of service

QPSK Quadrature phase shift keying

RLOD Robust locally optimum detector

SBF Simple Bonferroni procedure

SC Selection combining

SDC Soft decision combining

SNR Signal-to-noise ratio

SPRT Sequential probability ratio test

SSC Switch stay combining

SWP Stepwise procedure
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List of Symbols

1{·} the indicator function

A Constant upper threshold in the SPRT

AN Adaptive upper threshold in the generalized SPRT

B Constant lower threshold in the SPRT

BN Adaptive lower threshold in the generalized SPRT

Bs Number of bootstrap replications

CA Constant modified value for the threshold A

CB Constant modified value for the threshold B

CN (0, σ2) Zero mean circularly symmetric complex Gaussian distribution

Ei[·] Expected value under hypothesis Hi

fi,N pdf under hypothesis Hi for the observation with N sample number

Fθ Distribution of the observations parameterized by θ

F̂i Empirical distribution of an observation under Hi

g0(·) pmf under H0

Gi(T ) True distribution function of T under Hi

Ĝi(T ) Empirical distribution function of T under Hi

h Channel coefficient

H0 Null hypothesis

H1 Alternative hypothesis

Hk,i Hypothesis Hi for the subband k

IM M ×M identity matrix

K Total number of subbands

K0 Number of unoccupied subbands

K̂0 Estimated number of unoccupied subbands

KL(fj ||fi) Kullback-Leibler distance between fj and fi

L Number of users

L(θ) The OC function

M Smoothing factor

N Sample number or stage in sequential testing

NI Initial number of samples

Ns Stopping time

p p-value

p̂ Estimates of a p-value
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Pi(A) Probability of event A under hypothesis Hi

Pd Probability of detection

Pf Actual probability of false alarm

Pm Actual probability of miss detection

Q(·) Q-function

r Autocorrelation

r̂ Sample autocorrelation

r Received signal component

rN Received signal component with N sample number

Ri Decision region to accept Hi

R Covariance matrix

Sk Subband k

ST A set of terminated subbands

Ŝe Estimates of the standard error of a test statistic

Ŝk Lowest slope estimator

T Test statistic

T b
l Bootstrap replication of a test statistic for the user l

u Vector of decision bits

x A scalar or vector observation

xN An observation with N sample number

w A noise component n

z̄N increment at time instance N

ZN Log-likelihood ratio in a fixed sample number testing

Z̄N Log-likelihood ratio in the SPRT

ẐN Log-likelihood ratio in the generalized SPRT

α Nominal value of the probability of false alarm

β Nominal value of the probability of miss detection

δ(·) Kronecker delta function

∆i
N Modified value of the threshold at stage N under Hi

∆Z i
N the error term of LLR under Hi

ǫ0 Tolerance value of the probability of false alarm

ǫ1 Tolerance value of the probability of miss detection

η Real-valued parameter

Γ(·) Gamma function

ΛA A set of upper thresholds
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ΛB A set of lower thresholds

ν Degree of freedom for Student’s t-distribution

φ Unknown channel phase shift

ψ Specific parameters or statistics quantifying the existence of the desired signal

Ψi Spaces under hypothesis Hi

σ2
i Variances under hypothesis Hi

σ2
w Noise power

θi True parameter under hypothesis Hi

Θi Parameter spaces for hypothesis Hi

θ̂i Maximum likelihood estimator of θi assuming Hi is true

τ threshold
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