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Abstract

The course of an infection with the human immunodeficiency virus type 1 (HIV-1) is
characterised by three phases: primary infection, chronic infection and acquired immun-
odeficiency syndrome (AIDS). These stages are defined based on levels of the number of
CD4-positive T-helper cells (CD4+). This characteristic three-staged classification is also
reflected in the course of the viral divergence and in the emergence of viral diversity.
It is known that the V3 loop, a region encoded in the HIV envelope gene, is important for
T cell infection. The CD4 receptor of the cells is used as primary receptor for viral cell
entry, and the CCR5 or CXCR4 are the most important co-receptors that are necessary for
cell entry. In about half of all patients, HIV switches from CCR5 towards CXCR4 usage
during the late stage of infection, which hints at the onset of AIDS. Since the co-receptor
tropism is determined by the V3 loop sequence, an understanding of the mechanisms of
its evolution and of the circumstances leading to the co-receptor switch is of high interest.
In the first part of the present work, we analysed longitudinal patient data, compris-
ing information on CD4+ cell count, viral load, medication, coinfections and V3 loop
sequences. We examined the correlations among the clinical and evolutionary data as well
as the co-receptor usage over time, guided by different questions: Is the course of disease
one-directional? Can successful drug therapy influence co-receptor usage? What are the
genetic differences between CCR5- and CXCR4-tropic viruses?
Due to the weak statistical support of our data, we only found few indications that
successful HAART therapy influences the course of disease and the direction of the co-
receptor switch. We hypothesise that successful therapy can pause or roll back the course
of infection, enabling the CD4+ cells to recover to high levels of immune pressure. A
suppression of the viral load further can displace X4-tropic viral variants in the viral
population in favour of R5-tropic variants.
In the second part of this work, we derived a fitness function to approximate the replication
capacity of R5 and X4-tropic viruses. Based on a set of V3 loop sequences gathered from
the Los Alamos HIV data base, the fitness function is composed of two components: the
main fitness term describes the amino acid preferences found in the R5 and the X4 consen-
sus sequence, and the additional epistatic term describes the effects of double mutations.
While the impact of the main and epistatic fitness contribution can be influenced by a
weighting parameter, an additional parameter controls the importance of available CCR5
and CXCR4 positive target cells. The fitness function enabled us to observe the differences
of the underlying R5 and X4 fitness landscapes.
A comparison of the sequence data set showed that the R5-tropic viral sequences were
highly conserved, in contrast to the X4 sequences. Network analyses confirmed the higher
sequence variability of the X4 sequences, which we found to be distributed over a larger
sequence space. Interestingly, our analyses revealed that the most weakly conserved se-
quence positions of the X4 data set were very sensible to mutations. Upon an alteration of
the most weakly conserved nt positions, the X4 sequences showed an increased probability
to acquire stop condons and to loose their replicative capacity.
The last part of the work describes an in silico approach of the V3 loop evolution based
on the R5 and X4 fitness function. Simulations enable us to mimic the sequence evolution
in silico, and to monitor the course of the viral diversity and divergence as well as the
mean fitness of the simulated viral population over time.
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First results indicated that our simulation is able to imitate the evolutionary course of
the viral diversity and divergence of an HIV infection. In our simulations, the sequence
evolution followed a chemically sensible course. Amino acids that differed from the favoured
chemical properties were first replaced by amino acids belonging to the favourable chemical
class and finally converged into the dominant amino acid in the specific sequence position.
The present project was designed to prepare the ground for deeper insights into the evolu-
tionary dynamics of the HIV V3 loop. Our work enabled us to gain broader knowledge of
the properties of R5- and X4-tropic viral sequences.
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Zusammenfassung

Eine Infektion mit dem humanen Immundefizienz-Virus (HIV) verläuft in drei charak-
teristischen Krankheitsphasen. Die Phasen können einerseits an Hand der Anzahl der
CD4-Zellen unterschieden werden, andererseits kann eine Unterscheidung auf der Grund-
lage der viralen Diversität und Divergenz statt finden.
Für die Infektion der Wirtszellen durch das Virus ist die V3-Region, ein Abschnitt, der
im Hüllprotein von HIV kodiert ist, von zentraler Bedeutung. Nach der Bindung von
HIV an den CD4-Rezeptor der Zielzellen erfolgt eine Bindung der V3-Region an einen
zellulären Korezeptor, welches in den meisten Fällen ein CCR5- bzw. CXCR4-Rezeptor
ist. Im Verlauf der Infektion kann man bei etwa der Hälfte aller Patienten einen Wechsel
des benutzten Korezeptors beobachten. Dieser findet im allgemeinen in einer späten
Krankheitsphase statt und kündigt ein rasches Fortschreiten der Infektion an. Bisher ist es
nicht gelungen, die Hintergründe und Mechanismen, welche zu diesem Korezeptor-Wechsel
führen, komplett aufzuklären.
Die vorliegende Arbeit untersucht die Sequenzevolution von HIV-1 mit besonderem Au-
genmerk auf die Unterschiede zwischen R5-trophen und X4-trophen Viren. Der erste Teil
beruht auf Daten von HIV-1-infizierten Patienten, die über mehrere Jahre beobachtet wur-
den. Basierend auf Publikationen aus der Zeit der beginnenden HIV-Forschung verglichen
wir die Daten von akuellen Patienten mit den früheren Beobachtungen, um Unterschiede
im Verlauf der Infektion zu untersuchen zwischen nahezu untherapierten Patienten und
Patienten, die mit moderner Kombinationstherapie behandelt wurden. Wir fanden dabei
erste Hinweise, dass die grundsätzlichen Beobachtungen der frühen Studien auch für Patien-
ten mit modernen Therapieansätzen Bestand haben, wobei die Daten einen Unterschied
im zeitlichen Verlauf der Infektion zwischen HAART-therapierten und therapie-näıven Pa-
tientengruppen andeuten. Unsere Untersuchungen lassen die Vermutung zu, dass aktuelle
Therapien den Krankheitsverlauf verlangsamen und für begrenzte Zeit sogar stoppen oder
zurück setzen können. Diese Hypothese konnte im Rahmen der vorliegenden Arbeit auf
Grund der unzureichenden Datenlage allerdings nicht bestẗigt werden.
Im zweiten Teil der Arbeit untersuchten wir die Unterschiede zwischen den R5-trophen und
X4-trophen Viren an einem umfangreichen frei verfügbaren Sequenzdatensatz. Nach der
Klassifizierung der Sequenzen in R5- und X4-trophe Varianten untersuchten wir zunächst
die Unterschiede der R5 und X4 Konsensussequenz. Wir konnten frühere Ergebnisse
bestätigen, nach denen die R5-trophen Viren stärker konserviert sind, und nach denen
bei X4-trophen Viren eine Dominanz von positiv geladenen Aminosäuren in den Korezep-
tor bestimmenden Sequenzpositionen 11 und 25 vorliegt. Auf Basis des R5- und des
X4-Datensatzes entwickelten wir zwei unabhängige Fitnessfunktionen, die die Replika-
tionsfähigkeit der R5- beziehungsweise der X4-trophen Viren mathematisch beschreiben.
Die Fitnessfunktionen bestehen jeweils aus zwei Beiträgen. Der erste Fitnessterm beschreibt
die Fitness der Aminosäureabfolge der V3-Region der HIV-1 Sequenz, wohingegen der
zweite Teil die Auswirkung von epistatischen Wechselwirkungen von Paaren von Sequenz-
mutationen auf die replikative Fitness berechnet.
Auf der Grundlage dieser Fitnessfunktionen waren wir in der Lage, die Fitnesslandschaften
der R5- und X4-trophen Viren zu vergleichen. Wir stellten dabei fest, dass sich die stark
konservierten Sequenzen der R5-trophen Viren in direkter Nachbarschaft im Sequenzraum
befinden, während sich die Sequenzen der X4-trophen Viren über einen größeren Bereich
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des Sequenzraumes erstrecken. Unsere Ergebnisse stimmten mit den Beobachtungen
anderer Forschungsgruppen überein.
Die beiden Fitnessfunktionen bildeten das Herz einer sequenzbasierten Simulation der
Evolution der V3-Region, die wir im dritten Teil dieser Arbeit beschreiben. Wir kon-
nten zeigen, dass unsere Simulation die Evolution von zufälligen Sequenzen hin zur R5-
bzw. zur X4-Konsensussequenz ermöglicht. Darüber hinaus folgen die Simulationen
chemisch sinnvollen Pfaden. Wir konnten beobachten, dass sich anfänglich nicht op-
timierte, mutierte Sequenzpositionen zunächst in Richtung der korrekten chemischen
Gruppe (z.B. positiv geladene Aminosäure) und in folgenden Replikationen weiter zur
korrekten Konsensusaminosäure entwickelten. Unsere Simulationen ermöglichen daher
Modelluntersuchungen der Evolution von artifiziellen Sequenzen der V3-Region, die nicht
den Restriktionen einer groß angelegten Patientenstudie unterliegen.
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1. Motivation

1.1. Motivation

In May 1983, the Science magazine published an article by Luc Montagnier and Françoise
Barré-Sinoussi [9] describing a new virus isolated from the blood of a Caucasian patient
with signs and symptoms of the acquired immune deficiency syndrome (AIDS). The
virus, that was first termed human T-cell leukemia virus II (HTLV-II) and later named
lymphadenopathy associated virus (LAV), today is known as human immunodeficiency
virus (HIV). The discovery of the virus was granted with the Nobel Prize in Physiology or
Medicine in 2008.
Since the discovery of HIV, the virus caused a global pandemic, with 33.4 million people
worldwide living with an HIV infection [84]. Despite more than 30 years of research, HIV
is still of major concern for public health. Neither a vaccine nor a curative therapy for
HIV-infected patients exists and there are a number of open questions that hinder the
development of therapy schemes.
The goal of the present work is to gain insight into the progression of the infection and
to understand the factors that drive the dynamics of the viral evolution. We put special
emphasise on the co-receptor tropism, since a change in cell tropism of the virus is observed
in about 50 % of all patients [35] and is associated with a disease progression and a worse
prognosis for the patients.
In our work, we combine biological approaches with in silico methods to seek new knowl-
edge to support the ongoing combat against HIV.

1.1.1. Relevance of the work

According to the World Health Organisation, 2.2 million adults and 330,000 children
acquired a new HIV infection in 2011, while 1.7 million people died from AIDS. At the
end of the year, 34.0 million people worldwide were living with the virus [84].
HIV-infected patients are in constant need of HIV therapy to control the viral load. In
highly active antiretroviral therapy (HAART), at least three drugs from different drug
classes are combined to avoid or delay the occurrence of resistance mutations of the fast
evolving virus.
Due to intensive research, an increasing number of anti-HIV drugs is available that enable
therapy changes to cope with the occurrence of resistance mutations. The drugs belong to
different classes, depending on the mode of action: nucleosidic and non- nucleosidic reverse
transcriptase inhibitors (NRTI, NNRTI), protease inhibitors (PI), integrase inhibitors
(II) and entry inhibitors. The drug Maraviroc [49, 67], a CCR5 co-receptor blocker and
member of the drug class of entry-inhibitors, is one of the latest anti-HIV drugs.
Though the problem of resistance mutations became less severe due to the increasing
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1. Motivation

number of effective drugs, the frequent uptake of drugs often leads to a number of side
effects, especially in long term therapy.
Therefore, new approaches to avoid infections have been developed, for example post-
exposure prophylaxis (PEP) and pre-exposure prophylaxis (PrEP). First evidence for the
success of PEP was described by Cardo et al. in 1997 [19], finding a 81% reduction of HIV
seroconversion in health care workers after percutaneous exposure to the virus. Two years
later, Guay et al. [66] reported a 47% reduction of PEP in mother to child transmission.
In a review of Okwundu et al. [112], PrEP was described to reduce the incidence of HIV
by 44% [63] to 62 % [148].
Despite these promising first reports, the clinical effectiveness of PEP and PrEP to avoid
HIV infections is compromised. On the one hand, some trials were not able to show a
protective effect in large scale use, and on the other hand the outcome of the therapy
heavily depends on the compliance of the (uninfected) people taking the drugs.
Further preventive strategies, including gene therapy methods and approaches to elicit
HIV-specific antibodies, so far were not effective.
In contrast, two recent publications reported success in a functional cure or functional
healing of HIV-infected patients. At the 20th Conference of Retroviruses and Opportunistic
Infections in March 2013, a group of researchers [116] presented a case of a newborn who
was infected by mother to child transmission. The baby was treated with ART starting
30 hours after birth. Despite ART discontinuation at the age of 18 months, the plasma
viral load of the child remained below the detection limit until the age of 26 month. Using
ultra-sensitive methods, only a few single copies of HIV RNA could be detected. The
study is still ongoing.
A few days after these exciting news, researchers from the Institut Pasteur [131] published
the data of 14 HIV-infected patients with long-term virological remission after early
initiated ART, so-called post-treatment controllers. During therapy of these patients, ART
was initiated early post infection and continued for approximately three years. When the
therapy was interrupted after that time, the patients were able to control the infection for
at least 89 month without anti-HIV therapy. The study is still ongoing.
Despite these promising reports, a vaccine or a curative therapy for most of the 34.0
million HIV-infected people worldwide is still lacking and ongoing HIV research is of high
demand.

1.1.2. Aim of the Project

The project was designed to reveal new insights into the evolution of HIV-1 within its
host. An important aspect that guided our analyses is the central question about the
occurrence of the co-receptor switch: Is the switch from CCR5- towards CXCR4-tropic
viruses a cause or a consequence of the disease progression towards AIDS?
We examined the interrelations of clinical and evolutionary parameters from longitudinal
data of HIV-infected patients. This enabled us to study more general evolutionary patterns
in patients under antiretroviral therapy and to compare our findings to the one-directional
evolution of mainly therapy naive patients described in the past [51, 138].
This biological view was supplemented by in silico studies of viral sequences of the V3 loop
region of the HIV envelope protein. We derived a fitness function to describe the replicative
fitness of the V3 loop and to study the fitness landscape of CCR5- and CXCR4-tropic HI
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viruses. Based on the fitness function we furthermore developed a phylodynamic model to
simulate the viral evolution in silico.
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2.1. Structure of the project

The present project addresses the properties of the HIV evolution and the co-receptor
tropism by three associated approaches. Part one of this work is based on a clinical study
observing the course of an HIV-1 infection over time. In part two, we developed a fitness
function to describe the replicative fitness of the V3 loop, and to study the topology of
the corresponding fitness landscape. The fitness function is the heart of the simulations
that are presented in part three of this work.
In the following lines we give a short summary of the three parts of the project.

2.1.1. Project I: Correlation between clinical and evolutionary

parameters of patients under HAART

In the early days of HIV research, most patients were treated with single antiretroviral
drugs or did not receive any HIV specific therapy. The illustration of the clinical course of
an HIV-1 infection of Pantaleo et al. and the description of the evolutionary course of
the disease of Shankarappa date back to these early times, and the studies relied on data
of untreated patients or patients with HIV mono-therapy. The early therapies did only
slightly influence the course of infection and were only successful for short periods of time
due to quickly upcoming drug-resistance mutations.
In recent HIV-1 therapy, antiretroviral drugs from different drug classes with different
modes of action are combined into a highly active antiretroviral therapy, coined HAART.
The combination therapies mainly comprise non-nucleosidic (NNRTI) and nucleosidic
(NRTI) reverse transcriptase inhibitors, integrase (II) and protease (PI) inhibitors, and
most recently co-receptor blockers. Due to the different modes of action and the different
target sites of the drugs, combination therapy avoids drug-resistance mutations over long
periods of time. Successful HAART therapy is defined as almost complete suppression of
plasma viremia, with a level viral load below the limit of detection. In contrast to early
therapy forms, recent HAART influences the course of the disease remarkably.
In the first part of the project, we ask whether the well-known illustrations of Pantaleo
et al. [64] and Shankarappa [138] et al. introduced in the early 1990th are still suitable
to describe the course of the infection of recent patients. We hypothesise that successful
HAART therapy slows down or pauses the progression of the disease. In consequence,
we expect the one-directional course of the disease described by Pantaleo et al. and
Shankarappa to be turned into a bi-directional course. The success of the administered
therapy could be reflected as a delay or eventually as a roll-back of the infection by stepping
forward and backwards in the disease progression.
To address this question, we analysed correlations between clinical and evolutionary data
of HIV-1-infected patients undergoing long-term HAART treatment. The analysis of the
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longitudinal clinical and evolutionary data set is described in detail in the first part of this
work.

2.1.2. Project II: Fitness function of HIV-1 V3 loop

In the second part of the project, we addressed the genetic differences between viral R5 and
X4 populations and analysed deviations in the underlying fitness landscapes by utilising
network theory. We selected a data set of eighty thousand HIV-1 V3 loop sequences from
the Los Alamos HIV data base [100]. After data analyses and an in silico co-receptor
prediction of the sequences, we discriminated a set of CCR5-tropic (R5) and a set of
CXCR4-tropic (X4) V3 loop sequences.
Based on these two data sets, we derived a fitness function to describe the replicative
fitness of the V3 loop sequence of HIV-1. We used the newly established fitness function
to evaluate networks of V3 loop sequences and to analyse the fitness landscapes that are
described by the fitness function.
We hypothesised that R5 sequences are favoured early in HIV infection due to a worse
immune recognition, while the X4 sequences outnumber R5 strains in the late phase, as a
consequence of the decreased immune pressure and due to a higher sequence variability of
the X4 population.

2.1.3. Project III: Simulation of HIV-1 V3 loop evolution

In the third part of the project, we developed a software tool to simulate the course of an
HIV-1 infection in silico. The fitness function we derived in the second part prepared the
ground to estimate the replicative fitness of the simulated sequences. We examined the
interplay of different biological parameters used in the simulation, e.g. the mutation rate
and the population size. Furthermore, we balanced the strength of the main and epistatic
fitness contributions and explored the influence of the R5 and X4 fitness term.
The simulated sequence data was used to monitor the in silico evolution with respect to
the course of the diversity and the divergence of the viral quasispecies over time and the
course of the position specific chemical properties over time.

2.1.4. Previous work within the project

The present work is part of the joint project Monitoring of resistant HIV in newly and
chronically infected HIV patients in Germany - Evolution of HIV-genotype and phenotypes
during antiretroviral therapy. The project was initiated in 1999 by Albrecht Werner at the
Paul-Ehrlich-Institut and Hans-Reinhard Brodt at the Universitätsklinikum Frankfurt am
Main.
When we started to work on this project in 2010, the study run for ten years and two
previous research projects had been finished. In the first project, Binninger-Schinzel et al.
[14] established a cell-based biological assay for in vitro co-receptor prediction (see the
following Section 2.1.4).
The second research project addressed the peculiarities of HIV evolution of a patient
who discontinued HAART to underwent stem cell therapy. The respective case studies
published by Wolf et al. [162] and by Kamp et al. [85] built the basis for the correlation
analyses in Chapter 3.
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Biological assay for in vitro co-receptor prediction

The first in silico co-receptor prediction tools lacked sensitivity to detect X4 variants,
a fact that became critical with the marketing authorization of Maravirioc [49, 67], the
first CCR5 co-receptor blocker. The problem of a decreased X4 sensitivity is even harder
to tackle in patients with a viral load level at or below the limit of detection, since the
isolation of viral RNA sequences from the blood of those patients is often impossible.
Binninger-Schinzel et al. [14] addressed this problem by the development of a highly
sensitive assay for in vitro co-receptor determination. They isolated peripheral blood
mono-nuclear cells (PBMCs) from a homozygous CCR5 negative healthy donor. By a
co-cultivation of the donor PBMCs with gamma-irradiated human leukaemia T-cells, they
established an immortal CD4-positive cell line that was CCR5 receptor negative and hence
non-permissive for R5-tropic strains. Due to this property, the cell line was named isnoR5.
Infection of the isnoR5 cells with a dilution series of virus-containing supernatant proofed
that the assay is highly sensitive for the detection of low amounts of X4 viruses in a viral
population. As a marker to quantify the viral replication, a p24 antigen assay of the
content of viral Gag protein was used.
Werner et al. [159] could show successful breeding of virus on the isnoR5 cell line in 87%
of the experiments, independent of the therapy or the CDC state of the patients, which
they stated to be a high rate in comparison to other labs.
In the course of this project, the isnoR5 cell line was used for the in vitro co-receptor
determination and for the validation of the in silico co-receptor predictions generated by
the bioinformatics tools geno2pheno [97] and FSSM [82, 81, 118], which are described in
Section 3.3.3.

Case study of stem cell treated patient

Wolf et al. [162] described the course of the disease of an HIV-1-infected patient that
underwent allogeneic stem cell transplantation due to severe aplastic anemia. After
radiation and deletion of his own bone marrow cells, the patient got blood stem cells of a
healthy donor. In contrast to the therapy of Thimothy Brown, better known as Berliner
Patient [80, 3], who was treated with blood stem cells from a CCR5∆32 donor, the blood
stem cells for this patient originate from a donor without CCR5 deficiency.
The clinical perspective of this case study was complemented by Kamp et al. [85], who
analysed the evolution of the viral V3 loop sequences of this patient using phylogenetic
methods. A detailed analysis of the viral sequences of the patient, taken at six subsequent
time points, showed that the stem cell therapy led to a decreased viral diversity, though
HAART was disrupted during the period of the stem cell transplantation. Radiation
and stem cell transplantation suppressed the patients immune system and simultaneously
slowed down the course of the viral evolution.
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3. Correlations between clinical and

evolutionary parameters of patients

under HAART

3.1. Introduction

In the first section of this chapter, we introduce some relevant details of the human immune
system and describe the peculiarities of the human immunodeficiency virus type 1 (HIV-1),
with special emphasise on its influence on the human immune system. The knowledge
about the special properties of the virus and its interplay with the CD4-positive (CD4+)
immune cells is crucial to understand the relevance of the subsequent analyses. After
the introduction of the biological background, we define some important biological and
mathematical terms and explain the methods we used for the data analysis.
Central to this chapter is the description and the analysis of the longitudinal patient data
set established in the course of this study. We examine the course of the disease of HIV-1-
infected patients under HAART, with special emphasis on the clinical and evolutionary
parameters of the infection.
We compare our findings with the well-known descriptions of the course of the disease
of Pantaleo et al. [64] and Shankarappa et al. [138], which were established in the early
1990th.

3.1.1. HIV-1 infection and the human immune system

In the following lines, we give an overview over the role of CD4+ in the immune system
and the consequences of an HIV-1 infection. A more detailed description can be found in
the article of Weber [157] or the book review of Levy [98], which are the main sources for
the presented summary.

The human immune system

The human immune system is a complex interplay of innate and adaptive mechanisms,
consisting of physical barriers and cell mediated responses, that protect us against diseases.
An infection with the HI virus has large impact on the immune defence, since it alters the
cell balance and disturbs the cell interactions of the human immune system.
The central aspect of an HIV-1 infection is a steady decline of immune cells bearing
the CD4 receptor on the surface (CD4+ cells) [98, 157]. While healthy young adults
have ∼ 2 · 1011 mature CD4+ cells, the CD4+ cell count of HIV-infected patients in a
progressed state of the disease often drops below 200 cells per microlitre (which meets
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approximately a bisection of the amount of cells) [68]. This threshold is commonly known
as the AIDS-defining threshold [21, 160].

Innate immune system The first layer of immune protection is the innate immune
system. The innate defence consists of a combination of physical barriers and cell-mediated
immunity. The mucosa in the genital tract, populated by CD4+ dendritic cells (DC), is
one of these barriers.
DCs orchestrate the immune system via a signalling to T cells and B cells and stimulate
resting T cells. Furthermore, DCs are important antigen presenting cells (APC) - they
present foreign proteins to T cells via the major histocompatibility complex (MHC) on
their surface. Efficient antigen-presentation is essential for an effective innate and adaptive
immune response, since T cells can only recognise antigens that are presented on MHC
molecules of APCs (e.g. DCs and macrophages).
The DCs in the mucosa of the genital tract are often the first cells that are infected by the
HI virions. These early infected cells can transport the virus to the lymphoid tissue and
enable the infection of other immune cells [98, 99].

Adaptive immune system The major component of the adaptive immune system are
lymphocytes [98], a variant of white blood cells. The lymphocytes can be further discrimi-
nated into the thymus-derived T cells, the bursa-derived B cells, and the natural killer
(NK) cells. While B cells are important for the humoral immunity, T cells are indispensable
for the cell-mediated immunity. In contrast to B cells and T cells, NK cells are a part of
the innate immune system.
The group of T cells can be further divided into precursor, effector, helper, and suppressor
T cells, based on their specialised function within the immune system. T helper cells
direct and regulate both humoral and cell-mediated immune responses via interaction
with precursor and suppressor T cells, B cells, and monocytes. They orchestrate the
immune defence by the secretion of cytokines, stimulate the antibody production of B
cells, direct phagocytes, and activate other immune cells. Though T helper cells have no
direct cytotoxic activity, they bear a central role in the human immune system.

3.1.2. The influence of the HIV-1 infection on the immune system

The CD4+ T cells and the macrophages are the major target of the HI virions. NK cells
can also be infected by HIV-1, since ∼ 50% express CD4, and a lower percentage in
addition bear CCR5 and CXCR4 receptors [98, 99].
In the course of an HIV-1 infection, the CD4+ cells are reduced in function, prior to an
observed reduction in number [27]. The reasons for the reduced number of CD4+ cells
are manifold and comprise an increased cell death (e.g. due to apoptosis, necrosis, and
bystander effects from the formation of syncytia (i.e. multi-nucleated cells) that induce the
death of uninfected CD4+ cells), and a decreased proliferation, life span, and regeneration
(due to the cytokine release from the infected cells) [89, 98].
Furthermore, the rate of the remaining immune cells is altered [98, 157]. While the number
of the long-term memory T cells is decreased, the number of short-lived naive effector T
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cells is increased. This leads to a shift in the rate of CD4+ to CD8+ cells.
In advanced stages of the disease, different forms of anemia, leukopenia, and throm-
bocytopenia are observed in the HIV-1-infected patients (e.g. due to a bone marrow
dysfunction), but it is still not understood in detail how HIV-1 disorders the immune
system.
Finally, the HIV-1-infected patients develop immune deficiencies, which lead to the ac-
quired immunodeficiency syndrome (AIDS) in the late stage of disease. Due to this
property of the virus, an international virus taxonomy consortium coined the name human
immunodeficiency virus (HIV) [28].

Characteristics of HIV-1

HIV is a positive single-stranded RNA (ribonucleic acid) virus of the genus of lentiviridae
belonging to the retrovirus family. The complete HIV-1 genome has a length of 9,181
basepairs (bp) [58] and consists mainly of the genes gag, pol, and env, flanked by two long
terminal repeats (LTR) of about 600 nucleotides (nt) with a 5′-cap and a 3′ poly-A tail.
Figure 3.1 illustrates the sequence of genes of the HIV genome.
The Gag polyprotein is cleaved into three proteins: matrix, capsid, and nucleocapsid.
The cleavage of the Pol polyprotein results in additional viral reverse transcriptase (RT),
protease, and integrase molecules. The envelope gene (env) of HIV has a length of 2,571
bp. The gene product of env is a precursor glycoprotein (gp) 160, which is cleaved into
the membrane proteins gp41 and gp120 as well as the HIV accessory proteins Vif, Vpu,
Vpr, and Nef, and the regulatory proteins Rev and Tat. Central to the present project is a
specific 105 bp nucleotide region of gp120, termed V3 loop region.

Figure 3.1.: Complete HIV genome
The figure illustrates the sequence of genes of the HIV-1 genome and the location of the V3
loop within the env gene.
(image source: image adapted from [5])

Upon the creation of virions, two (usually identical) strands of the full-length HIV RNA,
together with the proteins RT, protease, and integrase, and the accessory proteins Nef,
Vif, and Vpr are packed together into the cone-shaped viral core formed by the p24 Gag
capsid protein. The viral core is coated by a lipid membrane, carrying 10 to 15 protein
spikes. Each spike consists of a heterodimeric trimer of the external surface glycoprotein
(gp) gp120 and the transmembrane protein gp41. These membrane-protruding spikes play
an important role in the cell entry of HIV (see Section 3.1.2).
Mature HI virions are roughly spherical with a diameter of 100 − 120 nm. Figure 3.2
illustrates the organisation of the viral components of a mature particle.
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(a) (b)

Figure 3.2.: Illustration of a mature HI virion
a) A schematic sketch of a mature HI virion (www.niaid.nih.gov/SiteCollectionImages/

topics/hivaids).
b) Electron microscopic image of a mature HI virion (Yu et al. [166]).

The HIV-1 infection cycle

The HIV-1 infection cycle can be distinguished into five coarse-grained phases that are
depicted in Figure 3.3. In the following description, we will focus on some key aspects of
HIV biology [55] which are relevant for this work.
An HIV-1 infection is initiated by the process of receptor binding and cell entry (step 1 in
Figure 3.3). After the release of the viral core into the host cell, the viral proteins and the
RNA are distributed within the cell. The RT transcribes the viral RNA into cDNA (step
2), which becomes integrated into the host cell DNA by the integrase (step 3). Initiated
by some start signals, the replication of the integrated pro-viral DNA starts (step 4). The
viral transcripts are translated and processed into viral proteins. They assemble with two
full-length viral RNA molecules and form immature virions, which maturate upon budding
from the infected cell (step 5). The mature virus particles start a new infection cycle.
In the following paragraphs, the main aspects of these five phases are described. If no
other references are given, the content of the following paragraphs is based on the work of
Frankel et al. [55].
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Figure 3.3.: HIV infection cycle
The image depicts the sequence of steps of the viral infection cycle. (image adapted from
[128])

1. Receptor binding and cell entry
2. Reverse transcription
3. DNA integration
4. Replication
5. Translation, assembly and budding

Step 1: Receptor binding, membrane fusion and cell entry In 2000, Doms and Trono
[37] described and illustrated the process of receptor binding and cell entry (see Figure
3.4). The surface protein gp120 and the transmembrane protein gp41 are the most impor-
tant HIV proteins that are involved into the virus-to-cell contact. Heterotrimers of both
proteins are non-covalently associated to form membrane protruding spikes. These spikes
are anchored in the lipid membrane of the virion by the gp41 domain, and the tip of the
spikes is formed by the gp120 moieties.
When the viral and the cellular membrane proteins are in close proximity, the gp120
region at the tip of the spikes binds to the primary CD4 receptor on the host cell surface.
This interaction is a necessary prerequisite for viral cell entry since it initiates the first
structural rearrangements of the gp120 moiety and the CD4 receptor. The conformational
changes lead to an exposure of the third variable loop (V3 loop), a part of the gp120
subunit, to the host cell [37, 98].
Revealed at the tip of the spike, the V3 loop structure is a high affinity binding site that
interacts with a chemokine co-receptor on the target host cell surface. Different chemokine
receptors from a seven-transmembrane G-protein-coupled receptor family are known to
serve as co-receptors for HIV binding and cell entry, for example the receptors CCR1 to
CCR5, CCR8, CXCR4, BOB, or Bonzo [16, 44]. Of those, the chemokine receptors CCR5
and CXCR4 (prior known as fusin) are the most important co-receptors to facilitate HIV
cell entry [36, 38, 167].
The co-receptor tropism has been shown to influence significantly the disease progression
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[29, 62, 125]. More details on the co-receptor usage are given in Section 3.1.2.
Upon binding of the V3 loop to the cellular co-receptor, further structural rearrange-
ments of the spike are induced. These conformational changes occur predominantly in
the gp41 moiety and lead to the formation of a hairpin structure which is exposed to
the host cell membrane. This hairpin structure of gp41 triggers the fusion of the mem-
branes of the virus particle and the host cell (possibly including an interaction with
another specific host cell receptor) [37, 98]. As a result of the fusion process, the viral
nucleocapsid is released into the target cell. In the cytoplasm, the capsid is uncoated
and the complex of the viral RNA and the viral proteins is transported into the cell nucleus.

Figure 3.4.: Binding and cell entry of HIV
The image describes the sequence of steps of HIV cell entry, from CD4 binding to membrane
fusion and the release of the viral nucleocapsid into the host cell.
(image adapted from Doms et al. [37])

Step 2: Reverse transcriptase Once the complex of the viral RNA and protein molecules
reaches the nucleus, the viral reverse transcriptase (RT) molecules start to transcribe
the viral RNA into proviral DNA. The transcription needs specific tRNA primers for
initiation. Usually, one Lysin tRNA is packed into the viral capsid and this molecule is
used to start the transcription on one of the two RNA strands. During the formation
of the first minus-strand of HIV DNA, the viral plus-strand RNA template is degraded.
After completion of the minus-strand DNA copy, the RT jumps onto this newly produced
DNA strand and uses it as template to transcribe a complementary plus-strand. The two
newly synthesised DNA strands hybridise into a double-stranded viral copy DNA (cDNA).
It is important to note that the HIV RT lacks an editing function and thus the transcription
of the viral RNA into DNA is highly error prone. Estimates of the error rate vary in
the range of 5.0 · 10−4 [126] to 3.4 · 10−5 [102]. Typically, one error in every 1,000 bp is
assumed. Applied to an HIV genome of ∼10,000 bp, this results in ten nucleotide changes
in every round of reverse transcription.
This high mutation rate of the HIV RT is the main obstacle to HIV therapy as well as
drug and vaccine development.

Step 3: Integration into host genome After reverse transcription, the viral integrase
processes the newly formed viral cDNA. By detaching two nucleotides to both sides of
the blunt, double-stranded ends, it creates so-called sticky ends, single-stranded DNA
extensions at both ends of the viral DNA genome. Such prepared, the viral cDNA is
integrated into the host genome, being site specific only with respect to the sticky end
extensions.
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Upon cleavage of the host DNA, the integrase joins the sticky ends of the cDNA to the
host cell DNA and ligates them. Upon DNA repair after ligation, host cell enzymes create
short repeats at the flanking ends of the integrated cDNA.

Step 4: Replication After integration into the host cell genome, the hosts RNA poly-
merase II transcribes the provirus and produces HIV RNA and mRNA whenever the DNA
of the infected host cells is transcribed. The transcription is regulated by the binding of
host factors and viral proteins to the long terminal repeat. The viral proteins Tat and Rev
are important for transcription control. While the Tat protein stimulates transcription
and facilitates elongation of the transcript, Rev controls the splicing of the transcript
and mediates the transport of the fully and partially spliced messenger RNA (mRNA)
from the nucleus into the cytoplasm [86]. In the cytoplasm, some of the mRNAs are
directly translated into HIV proteins or into chains of multiple protein precursors, which
are further processed by the viral protease. Other mRNAs are delivered to different cell
locations for translation and processing − the env mRNA for example is translated at the
endoplasmatic reticulum.
In contrast to the productive state of activated infected host cells, infected cells can also
go to resting state. Then the infection becomes latent and non-productive until the cell is
re-activated again [142].

Step 5: Viral assembly and budding After the translation and the processing of the
viral proteins, the viral components assemble to form new virions. The structural proteins
derived from the gag gene form the new viral cores. Each viral core comprises a complex
of two full-length RNA transcripts, some host tRNAs, the viral proteins RT, protease, and
integrase, and the accessory proteins Nef, Vif, and Vpr.
Upon budding of the new viral particles from the host cell, the cores are coated with
a lipid bilayer taken off the cell membrane. This newly formed lipid envelope becomes
spiked with complexes of the viral Env proteins gp41 and gp120. Shortly after budding,
the maturation of the new viral particles is completed and the released virions can infect
new host cells and restart the transcription cycle.

Co-receptor usage of HIV-1

The binding of the V3 loop to the cellular co-receptor is an important step in cell entry.
The co-receptor usage is highly specific and mainly depends on the protein sequence of
the V3 loop [24]. Visualisations of the loop structure are given in part two of the work
(Figure 4.13).
The amino acid sequence of the V3 loop determines the cell tropism and thereby influences
the progression of the disease [29, 62, 125].
As stated earlier, the chemokine receptors CCR5 and CXCR4 are the most abundant
co-receptors for cell entry [36, 38]. While the CCR5 receptor is predominately used in
early HIV infection, about 50 % of all patients face a co-receptor switch from CCR5
towards CXCR4 in later stages of the disease [35]. The co-receptor switch is associated
with disease progression and with a worse prognosis for the patient. CXCR4-tropic
strains show an increased growth rate in vitro and induce the formation of multi-nucleated
cells (syncytia), which have a cytopathic effect on uninfected cells (bystander effect).
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The occurrence of CXCR4-tropic strains often marks the manifestation of AIDS related
symptoms [29, 135, 138].
Amino acid changes due to non-synonymous mutations in the nucleotide sequence of the
V3 loop region are the reason for the switch of the co-receptor tropism from CCR5 towards
CXCR4. Xiao et al. [165] explored these sequence changes and found conserved uncharged
amino acids at position 11 of the V3 loop, mostly serine and glycine, and the negatively
charged amino acids glutamic acid and aspartic acid at position 25 of CCR5-tropic strains.
Mutational studies showed that a substitution with the positive amino acids arginine or
glutamine at both positions altered the co-receptor usage in favour of the CXCR4 receptor.
From this observation they derived the amino acid consensus motif S/GXXXGPGXXXXXXXE/D

for positions 11 to 25 of the V3 loop as a determinant of CCR5 tropism. The notation
S/G and E/D indicates the alternatives of the dominant amino acids at positions 11 and 25
of CCR5-tropic sequences.
Based on these observations, the first sequence derived decision rule to determine the
co-receptor phenotype of a V3 loop sequence was established, the so-called 11/25 rule.
The 11/25 rule still is an important determinant of recent in silico co-receptor prediction
tools. In Section 3.3.3 we describe two co-receptor prediction tools that are used as
valuable instruments in scientific research and in therapy optimisation.
The reasons that lead to the co-receptor switch in about 50% of all patients are still
unclear, but a number of hypotheses tries to explain the change in cell tropism. The most
prominent hypotheses were discussed by Regoes and Bonnhoefer in 2005 [123]. A short
description is given in the following paragraphs.

Transmission mutation hypothesis According to Regoes and Bonnhoefer [123], the
transmission mutation hypothesis relies on the as-
sumption that CCR5-tropic strains are favoured
upon virus transmission. In consequence, CCR5
using viruses are found more often in early stages
of disease. This hypothesis further states that the
co-receptor switch happens by chance at some time
during infection as a result of the high mutation
rate of the reverse transcriptase of HIV.

Target cell life time hypothesis Rodrigo [127] attributes the co-receptor switch to
a competition of CXCR4- and CCR5-tropic strains.
He argues that the more cytopathic CXCR4 viruses
are outcompeted since they destroy their replication
reservoirs faster than the CCR5-tropic viruses. This
disadvantage leads to a shorter life time of CXCR4-
infected host cells and thus CCR5-tropic strains
persist longer and dominate the infection.

Target cell based hypothesis The target cell based hypothesis formulated by Dav-
enport et al. [34] and modelled by Ribeiro et al.
[124] argues that the co-receptor switch is a conse-
quence of the different rates of available CCR5 and
CXCR4 positive cells within the host.
Following this hypothesis, the number of activated
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CCR5 positive memory T cells is increased early
during the infection as a result of the hosts immune
defence. The availability of activated CCR5 cells
favours CCR5-tropic viral strains early in the in-
fection. In the late stage of the disease, when the
memory T cells are mainly depleted, the rate of
the näıve CXCR4 positive T cells increases, and
thus the CXCR4-tropic strains dominate in the late
stage of the infection.

Immune-control hypothesis The immune-control hypothesis of Pastore et al.
[113] explains the predominance of CCR5-tropic
viruses in early stages of the disease with a reduced
replicative fitness of CXCR4-tropic strains on the
one hand and a better immune recognition and
control of CXCR4 strains by the human immune
system on the other hand. They state that CXCR4-
tropic strains are successfully fought by the immune
system and are not able to replicate efficiently early
in infection, when the number of immune cells is
high and the immune system is strong.
With advanced T cell depletion due to continuous
infection of T cells by HIV, the immune system
is weakened and the immune pressure fades. In
the late stage of disease, the exhausted immune
system is no longer able to effectively fight HIV
and under this condition the CXCR4 strains are
able to sustain and become prevalent.

So far, none of the hypotheses could be confirmed or disproved and an explanation for the
co-receptor switch is still missing. Since the occurrence of CXCR4-tropic strains marks an
advanced stage of the infection and an accelerated disease progression, an understanding
of the mechanisms of the co-receptor switch is essential to prevent the disease progression
and the development of AIDS.
The knowledge is also necessary in the field of rational drug design to develop new drugs
and to avoid unwanted side effects, for example regarding the new drug class of co-receptor
blockers, with Maraviroc as the first licensed drug [49, 67]. Since Maraviroc impedes
the usage of the CCR5 receptor, it was suspected to accelerate the co-receptor switch by
establishing an additional pressure to HIV towards CXCR4 co-receptor usage.
These aspects indicate the relevance of the co-receptor usage and pronounce the importance
of an understanding of the mechanisms of HIV evolution.

3.1.3. Phases of an untreated HIV-1 infection

The course of an untreated HIV-1 infection can be separated into three phases, either based
on clinical observations or on evolutionary sequence parameters. In both classification
systems, the co-receptor switch occurs in an progressed stage of infection.
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In this section we describe the three phases of the disease and the different classification
methods.

Clinical classification

At the Clinical Staff Conference held on the 27th of June 1990, Anthony S. Fauci and
Giuseppe Pantaleo et al. [51] for the first time showed an illustration summarising the
typical clinical course of an HIV-1 infection. Fauci and Pantaleo et al. refined the image
in their subsequent publications [64, 50]. This image, shown in Figure 3.5, describes the
general course of the CD4+ cells and of the viral load (VL) during the three phases of the
disease in untreated patients.
During the initial phase of infection (phase 1), the viral load rapidly increases, leading
to an acute retroviral syndrome three to six weeks after primary infection [64]. During
this phase, the symptoms are described like the symptoms of an acute seasonal influenza
infection. Clinically, a pronounced drop of the number of CD4+ cells to about 500 cells
per microlitre of plasma is described.
After one week to three months of high level viremia, the immune system is capable to
effectively chase the virus [64]. The viral load remarkably decreases and stabilises at a
patient specific virus level known as the viral set point. The viral set point is an individual
amount of virus that can be controlled by the hosts immune system. This level of viral
load is quite stable throughout the chronic phase of the HIV infection (phase 2). Though
the immune system is able to control the level of the virus during the chronic phase, the
number of CD4+ cells decreases slowly but permanently due to a continuous infection of
the activated cells by the replicating virus.
In most patients, the number of CD4+ cells drops below 200 cells per microlitre of plasma
during the infection (phase 3). The time span to this clinical observation varies between
patients and averages to about ten years [51]. At that time, the immune system of the
patients is exhausted and the CD4+ cells are widely depleted. Clinically, a dramatic weight
loss is described for the majority of the patients and they suffer from various opportunistic
infections. Characteristic examples are respiratory tract infections, herpes, hepatitis, and
cancer. This third stage of disease is known as acquired immunodeficiency syndrome
(AIDS). The patients die due to multiple opportunistic infections which the immune system
no longer can control.
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Figure 3.5.: Clinical phases of an untreated HIV-1 infection
The illustration describes the clinical course of an HIV-1 infection in a patient without therapy.
The blue curve marks the number of CD4+ cells and the red curve describes the course of the
viral load.
(image based on Fauci and Pantaleo et al. [51, 50, 64])

In 1986, the Centers for Disease Control and Prevention (CDC) [21], Atlanta, USA
introduced a classification system for HIV-1 infections. The classification is based on a
laboratory category, which is the lowest documented CD4+ cell count of the patient, called
nadir, and a clinical category based on the presence or absence of specific HIV-related
conditions. This staging system is still used in hospital. The most recent version was
revised by the CDC in 2008 [133] and is presented in Table 3.1

Table 3.1.: Classification of the HIV-1 infection stage by the CDC [133]

CD4+ cell count Clinical categories
categories

category A: category B: category C:
Asymptomatic, Symptomatic AIDS-
acute HIV, or conditions, indicator

persistent generalised not A or C conditions
lymphadenopathy

stage 1: ≥ 500 cells/µL A1 B1 C1
stage 2: 200 - 499 cells/µL A2 B2 C2
stage 3: < 200 cells/µL A3 B3 C3
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Besides the nadir of the patient, which defines the coarse-grained numerical classifica-
tion of the disease stage, the CDC provides a list [133] of symptomatic conditions and
AIDS-indicator conditions to assist the physicians to determine the disease stage.
In the case of a missing diagnosis, the classification system is supplemented by stage
unknown (e.g. Ax) and category unknown (e.g. x2).

Evolutionary classification

In 1999, nine years after Fauci and Pantaleo et al. [51, 50, 64] presented their illustration
of the clinical course of the disease, Shankarappa et al. [138] described the course of an
untreated HIV-1 infection based on evolutionary parameters. They originally discriminated
five different phases of the infection, which can be consolidated into three phases comparable
to the phases observed by Fauci and Pantaleo et al. (compare Figure 3.6).
They found that during the acute initial phase of the disease the genetic diversity within the
viral population and the evolutionary distance (termed divergence) of the viral population
to the founder strain steadily increase. Furthermore, the transition from acute to chronic
phase is marked by the emergence of CXCR4-tropic strains.
During the following chronic stage of disease, the error-prone reverse transcriptase still
generates escape mutants and the viral population further diverges from the founder strain.
In parallel, the level of diversity stabilises, since the diminishing number of CD4+ cells
results in a decreasing immune pressure and an increasing amount of the virus.
In patients with a co-receptor switch, a peak of the CXCR4-tropic viral population marks
the breakdown of the immune system and the begin of the last stage of the disease. In
that phase, also the viral divergence stabilises. The immune system is exhausted and the
depleted population of immune cells is no longer able to fight the virus. High amounts of
virus particles are produced.
During the present work we recognised that the description by Fauci and Pantaleo et al.
[51, 50, 64] mainly coincides with the findings by Shankarappa et al. [138]. Both groups
distinguished three phases of the disease in the course of an HIV-1 infection. While the
older illustration of Fauci and Pantaleo et al. focussed on the clinical parameters that were
determined routinely by physicians during the regular visits of the patients, Shankarappa
et al. described the evolutionary measures that were available as a result of the beginning
sequencing approaches in later days of biological research.
For the evaluation of the clinical and evolutionary patient data presented in this work, we
have to keep in mind that both the publications by Fauci and Pantaleo et al. [51, 50, 64]
from the 1990th and the publication by Shankarappa et al. [138] from 1999 are based on
data from the early days of HIV research. The participating patients were therapy näıve
or treated only by a single reverse transcriptase inhibitor. In contrast, the present study
analysed data from HAART treated patients.
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Figure 3.6.: Phases of an untreated HIV-1 infection The illustration describes the course of an un-
treated HIV-1 infection over time (x-axis), based on evolutionary parameters. The divergence
of the population from the founder strain is described by the hight of the curve (y-axis),
whereas the diversity of the sequences within a sample is described by the size of the circles.
(image adapted from Shankarappa et al. [138])
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3.2. Methods

In this section we introduce necessary terms and definitions as well as mathematical mea-
sures and software that were used to describe and analyse the evolutionary interrelations.

3.2.1. Evolutionary and mathematical definitions

Phylogenetics and phylogeny

The study of evolutionary relationships of populations is termed phylogenetics. Based
on sequencing data and by the computation of multiple sequence alignments (MSA),
evolutionary relations are reconstructed. A phylogenetic study yields a hypothesis about
the evolutionary history of the population, which is in general described by a genealogic
tree, termed phylogeny of the population [20].

Coalescence and coalescence time

The term coalescence describes the merging of genetic lineages backwards in time towards
the most recent common ancestor (MRCA). In this context, the coalescence time is the
predicted amount of time that passed between the introduction of a mutation and the
observation of a particular distribution of the mutation in a population [91].

Effective population size Ne

Following Sewall Wright [164, 163], the effective population size Ne is ”the number of
breeding individuals in an idealised population that would show the same amount of disper-

sion of allele frequencies under random genetic drift or the same amount of inbreeding

as the population under consideration”. The concept is used to determine the rate of the
evolutionary change that results from the effect of sampling in a finite population [23]. Ne

is estimated empirically with respect to the coalescence time.
In real populations, Ne is neither constant nor undergoes a regular (e.g. linear or expo-
nential) change [155]. Therefore models developed to estimate the Ne of real populations
based on predictions from artificial evolutionary models assuming a regular change have
to be used with care.

Bayesian skyline

The Bayesian skyline [42] estimates the effective population size Ne over time. It describes
a possible course of the number of individuals over time that would result in the observed
phylogeny, reflecting the allele frequencies over time. The details of the Bayesian skyline
reconstruction we used in the present work are described in the recent BEAST publications
[40, 42, 43].

Hamming distance

The Hamming distance is a distance measure for strings that was introduced by Hamming
[71, 72]. For two sequences of symbols of equal length, the Hamming distance is defined
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as the number of differing sequence positions.
In biological terms, the Hamming distance is the least number of point mutations that are
necessary to transform one nucleotide sequence into another. For the analysis of amino
acid sequences, it is defined as the number of differing amino acids between two sequences.
For two sequences X = x1, ..., xn and Y = y1, ..., yn of equal length n, the Hamming
distance H(X, Y ) is the sum of the different sequence positions i, e.g. for two identical
positions xi == yi, hi(xi, yi) = 0, and for two differing positions xi Ó= yi, hi(xi, yi) = 1:

H(X, Y ) =
n∑

i=1

hi(xi, yi) (3.1)

Example:
Sequence X = ATGCATGC
Sequence Y = ATGGATCC

h1(x1, y1) = h2(x2, y2) = h3(x3, y3) = h5(x5, y5) = h6(x6, y6) = h8(x8, y8) = 0
h4(x4, y4) = h7(x7, y7) = 1

H(X, Y ) =
n∑

i=1
hi(xi, yi) = 2

Diversity and Divergence

Diversity and divergence are two measures that describe the genetic distance within or
between samples of sequences. According to Shankarappa et al. [138], the genetic diversity
within a group of sequences can be estimated as the mean and the standard deviation of
the pairwise nucleotide distances between all pairs of sequences from that group.
The divergence determines the evolutionary distance between two groups of sequences
at different time points. In terms of viral infection, the viral sequences from the earlier
time point are supposed to be the founder sequence or the founder population (i.e. the
population of the first virus-positive sample). The second sample is a more recent sample
obtained at a later time point. To determine the viral divergence, all pairwise Hamming
distances between the founder sequence and every sequence of the later sample are calcu-
lated. The divergence of the later sample from the founder strain is then calculated as the
mean and standard deviation of all pairwise distances.
In biological samples, a single founder sequence can often not be determined. In the case
of a founder population of differing sequences, Shankarappa et al. [138] either defined
one random sequence from the first virus-positive sample as the founder sequence or
approximated the founder sequence by a consensus sequence of all sequences of the founder
population.
In the present work, we adapted the definitions of Shankarappa et al. [138] to fit our needs.
We computed the diversity of any pair of sequences as the pairwise nucleotide distance, i.e.
the Hamming distance, of this pair of sequences. We defined the diversity of a sample S

of m sequences as the average of the Hamming distance of all m(m − 1) pairs of sequences
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(Xj, Xk), (k Ó= j) of that sample.

diversity(S) =
1

m(m − 1)

m∑

j=1

m∑

k=1
k Ó=j

H(Xj, Xk) (3.2)

with H(Xj, Xk) being the Hamming distance of sequence Xj and sequence Xk.
The divergence estimates the genetic distance of a sample of sequences taken at time t

(t > 0) to the viral founder strain (at time t0). Since many of the patients of our study
were in a progressed state of the disease, we were not able to determine the founder strain
of the viral population or to estimate it as Shankarappa et al. [138] did. Thus, we adapted
the definition of the divergence. We defined the divergence of the first HIV-positive blood
sample E of each patient, consisting of l sequences Yo, to be zero. The divergence of any
more recent sample S of m sequences Xj is defined as the average Hamming distance of
all ml pairs of a sequence Xj of S to a sequence Yo of E of that patient.

divergence(E) = 0

divergence(S) =
1

ml

m∑

j=1

l∑

o=1

H(Xj, Yo)
(3.3)

with H(Xj, Yo) being the Hamming distance of sequence Xj and sequence Yo.

Bayes factor

The Bayes factor (BF) [87, 110, 61] is a method for hypothesis testing. The test is a
modification of the classical likelihood ratio test described by Neyman and Pearson [111]
and can be used to decide between two alternative models M1 (e.g. the null model) and
M2 (an alternative model) to describe some observed data X. To decide whether model
M1 with parameters θ1 or model M2 with parameters θ2 fits the data X best, the BF [40]
is calculated:

BF =
p(X|M1)

p(X|M2)
=

∫
p(X|θ1, M1)p(θ1|M1) dθ1∫
p(X|θ2, M2)p(θ2|M2) dθ2

(3.4)

where the conditional probability p(X|Mi) is called the marginal likelihood for model i

and the θi are vectors of the model parameters. Since the Bayesian model comparison
integrates over all parameters θi in each model Mi, the method does not depend on a
single set of model parameters.
A problem of model fitting is the danger of overfitting. In general, a model can be adapted
to reproduce any data set by an increase of the number of model parameters, but with an
increasing number of parameters, the model loses the ability to describe new, unknown
data. The difficulty is to find the best trade-off between the model complexity and the
quality of the data fitting.
According to Kass et al. [87], the problem of overfitting is avoided by the Bayesian model
comparison, since the usage of large numbers of parameters is intrinsically penalised during
the calculation of the BF.
In this work, the BF was used for the evaluation and the selection of the best phylogenetic
model. The exact implementation of the BF is described in the recent BEAST literature
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[40, 42, 43].

Mathematical correlations

In general, correlations or dependencies are mathematical relations between two or more
features of a data set or between two or more random variables. By definition, mathe-
matical correlations are in the range of [−1, 1]. While a positive correlation value of two
variables x and y describes a the more of x, the more of y relation (e.g. the more CD4+

cells, the higher the immune pressure), a negative correlation of x and y means a the more
of x, the less of y association (e.g. the higher the viral load, the less CD4+ cells survive).
The absence of a significant correlation between two sets of observations does not neces-
sarily mean that there is no causal relation. This was formulated by Carl Sagan, an US
astronomer and popularizer of astronomy (1934 - 1996), in the famous and often cited
expression ”The absence of evidence is not the evidence of absence.”
For example the application of a weak or wrong method of analysis or an inadequate
sample size could be reasons for a missing significant correlation [4]. On the other hand,
the presence of a significant correlation does not guarantee a causal interrelation of the
respective data [2]. The causation has to be ensured by the design of the experiment.

Statistical significance

In statistical hypothesis testing it is indispensable to check for the statistical significance of
a correlation [53]. A test on the statistical significance analyses whether an observation is
only a rare event that arose by chance (null hypothesis) or whether an observation reflects
a real pattern among the observed data (alternative hypothesis).
The p-value describes the level of significance. A p-value of 0.05 states that the probability
to gain the observed result (or an even extremer one) by chance is 5.0%. If the p-value of
a correlation is smaller than the defined significance level, than the observed pattern is
defined to be statistically significant with respect to the selected significance level.
To avoid misinterpretations, the desired significance level has to be defined prior to testing.
In general it is not admissible to adjust the level afterwards when the result is already
known.
In the present work, we used a threshold for the p-value of 0.05, if not stated otherwise.

Confidence interval

Closely related to the statistical significance is the confidence interval (CI). The CI is
calculated from the observed data and estimates an interval that contains an unknown
parameter of interest with a given probability.
Similar to the significance level, the level of confidence describes the reliability of a model,
or to be more concise, it describes the probability that the estimated parameter of interest
is comprised in the calculated interval. A CI of 95% states that one is 95% confident that
the true value of the parameter of interest can be found within the interval (i.e. we face a
risk of 5.0% that we have made the wrong decision). A CI of 95% defines a significance
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level of α = 5%.
If not stated otherwise, we used a CI of 95% throughout this work.

Correlation coefficients

Many tests on mathematical relations are parametric tests that rely on specific assumptions
about the data of interest, for example the assumption that the data follow a specific
distribution. It is important to know and to be aware of the underlying assumptions of an
applied test method and it is crucial to critically check whether the assumptions suit the
specific data that are analysed.
In the following paragraphs we describe the parametric Pearson correlation coefficient that
relies on the assumption that the observed data follow intrinsically a linear dependence
and the non-parametric rank correlation coefficients of Spearman and Kendall.

Pearson correlation coefficient The parametric Pearson correlation coefficient r can
be used to measure the strength of the linear dependence of samples of paired values xi

and yi. Thus, the Pearson correlation coefficient relies on the assumption that the data
intrinsically follow a linear dependence.
A perfectly positive correlation results in a value of r = 1, e.g. for the correlation x and
y = 2x, while a perfectly negative linear relation results in r = −1, e.g. the correlation
between x and y = −2x. A value r = 0 indicates that the two variables are not linearly
dependent.

Spearman rank correlation coefficient The non-parametric Spearman rank correlation
coefficient ρ estimates how well the relation between samples of paired values xi and yi

can be described by a monotonic function. The Spearman rank correlation coefficient is
related to the Pearson correlation coefficient and is mathematically defined as the Pearson
correlation between the ranked values. For the computation of ρ, the xi and yi values are
ranked and the coefficient of the ranks is calculated.
A Spearman rank correlation coefficient ρ = 1 states that the association between the xi

and yi values is a monotonically increasing function, and ρ = −1 states that the association
is monotonically decreasing.
If the samples contain many identical values, so called tied values, the computation of ρ

has to be performed with care. Identical values within a sample are ranked as the mean of
all their ranks, e.g. if xk == xl occupy both rank 2 and 3, than xk and xl are both ranked
as 2.5.

Kendall rank correlation coefficient The Kendall rank correlation coefficient τ is a third
measure to quantify the extent of the statistical dependence between pairs of observations
xi and yi. Similar as the Spearman rank correlation coefficient ρ, τ is a non-parametric
rank correlation measure. The value of τ describes how well the rankings of the xi’s and
yi’s coincide given that the spacing is non-equidistant. If xk > xl and yk > yl, the ranks of
both variables are said to be concordant, if xk > xl and yk < yl, the ranks are discordant,
and if xk == xl and yk == yl they are neither concordant nor discordant.
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Since the Kendall rank correlation coefficient relies on the counts of concordant and
discordant data pairs, pairs that are neither concordant nor discordant weaken the method,
comparable to the difficulties caused by tied values upon computation of the Spearman
rank correlation coefficient.
Details on the described mathematical concepts can be found in the classical textbooks of
Cramer [30] and Bronstein et al. [17].

3.2.2. Software tools and programming languages

R scripting

We used the freely available R [121] software environment and the R package MASS [152]
for standard statistics, e.g. to compute the Pearson, Kendall, and Spearman correlation
coefficients and to provide significance testing. In the second part of the project, we used
the BioPhysConnectoR [77] package of R for the calculation of the mutual information
and for the structural coupling analysis.

Perl scripting

In addition to the Perl [26] standard routines, we used the BioPerl [56] package and the
Perl Statistics [105] package. BioPerl is a developers project that comprises routines and
code snippets that are useful for biological applications, and the Statistics package is a
collection of a number of basic statistics methods.
Based on these packages, we developed a number of Perl scripts for sequence collection
and handling, data renaming and statistics calculations.

BALLView software suite

BALLView [107, 106] is a Bioinformatics software designed for molecular modelling and
visualisation. BALLView supplements the functionality of the Biochemical Algorithms
Library (BALL) [73] with an integrated graphical user interface. In combination, BALL and
BALLView provide tools and methods for the visualisation and manipulation of molecular
structures, e.g methods for energy minimisation and molecular dynamics simulations with
different force fields or the calculation and visualisation of the electrostatic properties of
molecules.
We used the software for the modification and visualisation of different 3D crystal structures
of the V3 loop of HIV.

geno2pheno[coreceptor]

Due to a prior cooperation with the scientific research group at the Max Planck In-
stitute for Computer Science, Saarbrücken, we decided to use the Bioinformatics tool
geno2pheno[coreceptor] [97] for the in silico predictions. geno2pheno is a classification tool
based on a machine learning approach using so-called support vector machines (SVM) for
two-class decisions.
Prosperi et al. [119] validated the geno2pheno[coreceptor] predictions in 2010. They found
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a prediction accuracy of 71.4% for plasma RNA and of 70.6% for whole-blood DNA [151].

FSSM

We used FSSM [82, 81, 118] as an additional co-receptor prediction tool. Similar to
geno2pheno, the tool first aligns the amino acid sequence of a V3 loop against a reference
sequence. In the next step, the co-receptor tropism of a specific sequence is calculated
based on a prediction score derived from position specific scoring matrices (PSSM) of the
amino acid content of the FSSM R5 and X4 reference data set.
We used the HIV-1 subtype B X4/R5 scoring matrix for our predictions and selected the
option to exclude degenerated sequences from the analysis. Regarding the publication
of Low et al. [101], we predicted sequences with a sequence score above −8.12 as X4- or
dual-tropic, while scores equal or below −8.12 indicate the use of the R5 co-receptor. The
FSSM web server allows the upload of datasets of up to 200kb in size, which conforms to
a maximum of 1,300 V3 loop sequences in .fasta format.

Clustal software family

Clustal [25, 149] is a software family that comprises a number of widely used tools for the
computation of multiple sequence alignments (MSA). In MSAs, biologically related amino
acid sequences (or less frequent nucleotide sequences) are organised in sequence tables in a
way such that corresponding sequence positions of the individual sequences are contained
in the same alignment column. The Clustal software suite is designed to handle large sets
of sequences.
The Clustal software family consists of ClustalX, ClustalW, and most recently ClustalO.
We used ClustalW with a command line interface. For our data, the most important
alignment parameters were the gap associated parameters. We chose a gap opening penalty
of 10 and a gap extension penalty of 0.1 for the pairwise alignments. During the extension
of the pairwise alignments into an MSA, the gap extension penalty was increased to 0.2,
since a value of 0.1 introduced several large gaps that massively prolonged the sequence
length of the resulting MSA.
In detail, we used the following parameter settings for the computation of the multiple
sequence alignments:

• Gap opening penalty: 10
• Gap extension penalty: 0.2 (0.1 for pairwise alignments)
• Protein Weight Matrix: BLOSUM
• Residue specific penalties: ON
• Hydrophilic penalties: ON
• Gap Separation distance: 4
• End gap separation: OFF
• Use negative matrix: OFF
• Delay divergent cutoff: 30%
• Keep predefined Gaps: NO
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MEGA software

For the illustration and the visual inspection of the sequences, we used ClusalW [149] in the
MEGA [95] (Molecular Evolutionary Genetics Analysis) environment. MEGA comprises a
collection of tools for DNA and protein sequence analyses. We used the software version
MEGA 4.0 [147] which was released in 2007. Among other applications, MEGA 4.0 enables
the user to calculate multiple sequence alignments, to reconstruct phylogenetic trees, and
to estimate rates of molecular evolution.
We chose the MEGA environment mainly due to the nice MSA illustration and the
graphical sequence modification properties, which enabled us to do visual checks and
experimental modifications of our sequence alignments.

BEAST software package

The BEAST [40] (Bayesian Evolutionary Analysis by Sampling Trees) cross-platform
software package is a Bioinformatics tool that can be used for a number of phylogenetic
inferences, for example for the reconstruction of evolutionary trees and for estimates of
population measures. Mandatory input for the calculations are files containing MSAs.
The BEAST software family comprises a number of integrated tools with multiple functions.
We only give a short impression of those properties of BEAST that we used to analyse our
data. For details on the variety of possibilities provided by the BEAST software package,
we recommend to consult the BEAST literature [40, 39, 42, 41, 43].
BEAST provides methods for the reconstruction of phylogenetic trees. The computations
are not restricted to the reconstruction of single phylogenetic trees, but create a forest of
independently calculated trees. The number of trees can be predefined by the user. The
result is a cross-section of the most frequently created tree topologies.
BEAST uses Markov Chain Monte Carlo (MCMC) [10] as core algorithm. MCMC is
used to average over tree space and thus weights each tree proportional to its posterior
probability.
Based on the reconstructed phylogenetic trees, BEAST enables the calculation of important
evolutionary measures, e.g. the coalescent time and the effective population size Ne. The
user can decide between different molecular clock models and different options for the
prior distribution and the integration of a priori knowledge.
We used the following tools of the BEAST software distribution (version 1.6.1):

BEAUti (Bayesian Evolutionary Analysis Utility) provides a graphical user inter-
face to prepare .xml input files for BEAST based on sequence alignment
files in .nex format.

BEAST reconstructs phylogenies using an MCMC algorithm based on a tree
weighting process [40, 39].

LogCombiner combines the output log and tree files from different BEAST reconstruc-
tion runs.

LogAnalyser enables analyses of the result and the quality of the reconstruction runs.

Tracer allows a visual inspection of the BEAST log files, especially of the
reconstruction traces created by the MCMC calculations, and enables
the calculation of an estimated time course of Ne [42, 41].
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TreeAnnotator consolidates the information of a forest of phylogenetic trees into one
consensus tree [43].

Figtree enables the visualisation and the modification of the reconstructed
phylogenetic trees [122].

BEAST workflow We combined the BEAST tools to a sequential workflow to perform
phylogenetic reconstructions of the viral sequences of the study patients. Using ClustalW
in the MEGA environment, we translated the available nucleotide (nt) sequences of the
V3 loop into amino acid (aa) sequences, calculated the aa MSA for each patient, and
back-translated the aa MSAs into nt MSAs. The resulting patient specific nt MSAs were
converted into .nex file format and separately uploaded into BEAUTi to create the .xml
input files for the phylogenetic calculations of BEAST.
After a predefined number of BEAST reconstruction runs, LogCombiner was used to
combine the multiple .log files into one summary file. The combined result was inspected
with LogAnalyser and Tracer to evaluate the reconstruction quality and to decide about the
so called burn-in, the number of initial BEAST runs necessary to calibrate the parameters
for each specific data set. In general, the burn-in comprised the first ten percent of the
runs, the exact value for each data set was individually determined.
Excluding the burn-in, Tracer was then used to the determine the effective population
size Ne over time, also known as Bayesian Skyline reconstruction. In parallel, the forest of
reconstructed phylogenetic trees was consolidated into one summary tree by TreeAnnotator.
Finally, FigTree was used to illustrate and inspect the consensus trees.
Due to the close association with the study data, the model and parameter selection is
described in detail in Subsection 3.4.1 within the data Section 3.3.

RAxML

In addition to the BEAST software family, we used the RAxML-VI-HPC [144, 145] soft-
ware package for the reconstruction of evolutionary phylogenies. RAxML-VI-HPC is an
acronym for Randomized Axelerated Maximum Likelihood for High Performance Com-
puting, version VI. The software was developed to enable fast and parallel calculations of
multiple runs on distinct starting trees. Details can be found in the RAxML publications
[144, 145].
Using a bootstrapping approach, RAxML creates a set of independent random starting
trees for the phylogenetic reconstruction. After the independent reconstruction runs, the
bootstrapping results are summarised on the tree with the best likelihood. In the last step,
the pairwise distances are extracted.
RAxML can directly be operated from the command line, is less complex than the bundle
of BEAST tools, and enables fast phylogenetic reconstructions, thus we used the software
to get a fast estimate of the viral phylogenies and to cross-check the BEAST results.
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3.3. Data

The first part of our project is based on longitudinal patient data that were collected
in the course of the joint project Monitoring of resistant HIV in newly and chronically
infected HIV patients in Germany - Evolution of HIV-genotype and phenotypes during
antiretroviral therapy. Starting in 1999, it was initially planned to collect sequential blood
samples of HIV-1-infected patients at the Universitätsklinikum Frankfurt am Main during
regular visits of the patients at the hospital to monitor the intra-host evolution of the HIV
genome during infection. In addition, we received selected information from the patient
records of the participants of the study.
The study was authorized by an ethical commission and informed consent was obtained
from all participants before they were included in the study.

3.3.1. Patient records

Our cooperating physicians at the hospital provided us with a data base of selected data
from the patient records. Among others, the files comprised the sex, the date of the
first HIV positive test, and the putative way of infection. In some rare cases also the
date of the last HIV negative test was given. The patients were identified by an unique,
patient-specific number.
During the sequential visits of the patients at the hospital, the number of CD4+ cells
and the viral load were documented. Occasionally, also the number of CD8+ cells was
determined. Based on these data, the stage of the disease with respect to the CDC
classification system [21, 133] was regularly ascertained. In addition, the drug therapy and
the reason for an eventual therapy change was reported in most cases. Less frequently, the
drug related side effects or patient-induced therapy discontinuations were documented in
the patient records.
These general disease-related data were complemented by information on occasional tests
of the patients for co-infections (e.g. human cytomegalo virus, syphilis, and hepatitis A,
B, and C). In the case of stationary visits of the patients at the hospital, the reason and
the duration of the stay at the hospital are also noted in the patient records.

3.3.2. Blood samples

According to the study protocol, it was planned to include 300 patients into the study
and to collect blood samples of the participants every three to six month up to ten years.
Without further preparation, the refrigerated full blood samples were directly sent to the
Paul-Ehrlich-Institut in Langen, where the blood samples were processed for sequencing.
The elaborative isolation of the virus from the blood was performed in the wet lab of the
division of Virology in the section AIDS, New and Emerging Pathogens of the institute.
During the process of virus isolation, it is important to ensure the absence of a selective
pressure on the virus. Therefore, a multi-step protocol was developed for sequence
extraction. According to Werner et al. [159] breeding was successful in about 87 % of all
cases. For a detailed description of the sequencing process we recommend the respective
publication [159].
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3.3.3. In silico processing of sequence data

We were provided with the nucleotide (nt) V3 loop sequences of 106 patients. Collected
during more than years of research, the digital data were organised in multiple directories
and stored in hundreds of files of different data types. Unfortunately, neither a uniform
system of file and folder naming or folder structure was used, nor a unified file (.doc, .txt,
.xls) and sequence (.ab1, .seq) format or consistent information content of the files. The
sequencing protocols contained the nt sequences as well as some additional information
not relevant for this study. It was very challenging to ensure an automated data analysis
of the complete data.
We developed a Perl script and searched all directories and folders for sequence data. Upon
data collection, an unique identifier was created for every sequence, consisting of:

• the unique patient number,
• the number of the blood sample,
• an enumerator counting the sequences within one blood sample,
• the number of days that passed since the first HIV-positive test of the patient

As an example, the identifier 004 P411 01 d5 describes sequence 01 of patient 004 from
sample P411 that has been collected five days after the first HIV-1 positive test. The
identifiers were later supplemented by the predicted co-receptor (compare Section 3.3.3).
In the first approach, we extracted all sequences available in any kind of text format (.txt,
.doc, .xls) and ended up with 2,349 nucleotide sequences, on average 42 sequences of four
visits at the hospital. Some of the sequences contained stop codons or were extremely
shortened (in the range of 100 nt instead of 300 nt). A further inspection of the data
revealed that the sequences covered only half of all blood samples that were documented
to be collected in the course of the project. Therefore, we decided to go one step back in
the protocol and to have a closer look onto the raw sequencing data.
We checked all directories for .seq and .ab1 files, manually inspected the data, and exported
the nt sequences. In a subsequent refinement step, fragmented sequences of a length of
less than 200 nt (i.e. less then two thirds of the target region) were removed. On average,
the remaining sequences consisted of 300 to 330 nt. Using ClustalW [149] in the MEGA
environment [95], the nt sequences were translated into amino acid (aa) sequences and an
MSA was calculated. Finally, we excluded aa sequences that contained stop codons or
large gaps within the V3 loop.
This extended data collection resulted in a data set of 3,132 sequences, about 800 sequences
richer than the original set of 2,349 sequences. The sequences were extracted from the
blood of 47 male and eight female patients.
Since we planned to examine the sequence evolution over time, we determined a subset of
all patients with at least four sequential blood samples and remained with 2,224 sequences
of 34 male and two female patients - the final data set contained an average of 60 sequences
per six visits per patient. Figures 3.7 and 3.8 illustrate the distribution of sequences for
each patient and for each blood sample.
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Figure 3.7.: Distribution of the number of sequences per patient
The illustration shows the number of sequences per patient. 30 to 120 sequences per patient
were extracted during the course of the study.
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Figure 3.8.: Distribution of the number of sequences per blood sample
The distribution of sequences per blood sample shows that the intended number of ten
sequences per sample could be achieved for the majority of samples. Operating the sequencing
process at full capacity resulted in more than the envisaged ten sequences for some samples.

In silico co-receptor determination

We started the data analyses with an in silico determination of the co-receptor. Using
geno2pheno[coreceptor] [97] for the classification, we applied a FPR of 10% according to
the recommendations of the European Consensus Group on clinical management of HIV-1
tropism testing [151] (i.e. sequences for which the geno2pheno classifier reported a FPR
< 10% were labelled as X4- or dual-tropic, while sequences with a reported FPR of the
classifier ≥ 10% were labelled as R5-tropic). Of the 2,224 viral sequences, 1,557 sequences
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were predicted to be R5-tropic and 677 sequences were predicted to be X4-tropic.
We used ClustalW to calculate two independent multiple sequence alignments (MSA) for
the R5-and the X4-tropic data set to get an impression of the genotypic differences. Based
on the MSAs, we derived an R5 and X4 consensus sequence by the determination of the
most probable amino acid at each position. The resulting consensus sequences are:
R5: CTRPNNNTRK S--IHIGPGR--AF YATGDIIGDI RQAHC

X4: CTRPNNNTRK R--IHIGPGR--AF YTTGAIIGDI RKAHC

We excluded the gap positions 12/13 and 21/22 from the sequences to adapt the sequence
positions to meet the 11/25 motif for co-receptor description:
R5: CTRPNNNTRK SIHIGPGRAF YATGDIIGDI RQAHC

X4: CTRPNNNTRK RIHIGPGRAF YTTGAIIGDI RKAHC

To illustrate the position specific amino acid probabilities of the MSAs, we used WebLogo
[31, 134] to create the sequence logos presented in Figure 3.9.
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Figure 3.9.: Sequence logos of patient sequences with predicted R5 and X4 phenotype The

sequence logos illustrate the MSA of the 1,557 R5 predicted sequences and the MSA of the
677 X4 predicted sequences.
The hight of the letters (y-axis) describes the position specific amino acid probability. The
colours illustrate chemical amino acid properties: blue: basic (K,R,H), red: acidic (D,E),
green: polar (C,G,N,Q,S,T,Y), and black: nonpolar/hydrophobic (A,F,I,L,M,P,V,W).

Comparing the R5 and X4 MSA and the respective consensus sequences, we found
differences in the tropism defining positions of the V3 loop, namely in position 11 (R5:
S, X4: R) and position 25 (R5: D, X4: A) of the sequence. Furthermore, positions 22
(R5: A, X4: T) and 32 (R5: Q, X4: K) showed differing consensus amino acids. The
exchange of the negatively charged aspartic acid (D) in position 25 of the R5 consensus
sequence by the non-polar amino acid alanine (A) of the X4 consensus sequence, as well
as the observation of the positively charged amino acids arginine (R) and lysine (K) in
positions 11 and 32 of the X4 consensus sequence confirmed the well-known switch of
X4-tropic sequences towards a positive net charge [165, 7, 22, 54, 141]. Thus, the observed
differences between the R5 and X4 data set indicated the quality of our data.
For a further validation of the data, we calculated the Hamming distance of any pair
sequences of our data sets. In general, we expected lower Hamming distances between
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any two sequences of the more conserved R5 population (R5-R5), and higher Hamming
distances for sequence pairs of the more heterogeneous X4 population (X4-X4). A calcula-
tion of the Hamming distances of mixed sequence pairs (X4-R5 or R5-X4) was expected
to result in Hamming distances in between the two regimes. Figure 3.10 depicts the
frequencies of the respective Hamming distances. The curves confirmed our expectations.
While most R5-R5 sequence pairs showed an amino acid distance of nine, the most frequent
X4-X4 distance was 13, and most mixed R5-X4 pairs differed 12 by amino acids.
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Figure 3.10.: Hamming distances of sequences of selected patients
The figure illustrates the Hamming distance distribution of all R5-R5, X4-X4, and R5-X4
sequence pairs of the patient sequence data.
Both the Kolmogorow-Smirnov [92, 143] and the χ2 [114] test confirmed that the Hamming
distance distributions of the data sets were significantly different:
R5 vs. X4 pairs: p − value =< 0.0001, R5 vs. mixed pairs:p − value < 0.0001, X4 vs. mixed
pairs: p − value < 0.0001.

Interestingly, the illustration of the X4 distances indicated a second peak at a Hamming
distance of 16. Upon literature search, we found a publication of Bozek et al. [15]
(belonging to the group of geno2pheno developers) that also showed this double peak.
Bozek et al. analysed the distribution of Blosum62 distances of an R5 and X4 population,
but they did not further address this phenomenon in their study.
A closer inspection of our data showed that the second peak resulted from three sequence
positions of the X4 MSA that were occupied by more than two predominant amino acids,
namely positions 11, 13, and 32. The increase in the Hamming distance from 13 to 16
resulted from these three positions.
Thus, the observed Hamming distance distribution of our data was in good agreement with
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the prior described V3 sequence population study of Bozek et al. [15] and gave further
evidence for the validity of our R5 and X4 patient data set.

3.3.4. Data processing of clinical measurements

Subsequent to the processing and the phenotypic classification of the sequence data, we
inspected the electronic patient records. We found that the data of one male patient was
missing, thus we excluded this patient from further studies. In addition, we corrected
some entries of the clinical measurements and some data on therapy and co-infections for
misspellings (i.e. the format of the date and the use of the wrong line separator), and
removed duplicated entries.
To build a better basis for the following analyses, all dates of the samples, of the clinical
measurements, and of the drug therapy were uniformly transformed into days since the
first HIV-positive test.
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3.4. Results

In this section we first present the phylogenetic reconstructions of the patients sequence
data. Since the process of model selection and parameter fitting strongly influences the
result of the phylogenetic reconstructions, we describe the search for a suitable phylogenetic
model in this section.
Based on the phylogenetic reconstructions, we determined the correlations between the
evolutionary data and the clinical measurements. An analysis of the course of the infection
of the patients under successful HAART and the possibility of a back-switch of the viral
population from X4 towards R5 tropism are addressed at the end of this section.

3.4.1. Model selection using Bayes factor analysis

The reconstruction of phylogenies and the estimation of population sizes were performed
with the BEAST software package [40, 39, 42, 41, 43]. The the initial model selection
process and the parameter setting were tied up to the prior study of Kamp et al. [85] in
the course of the project. Based on their work, we did not consider the HKY or TN93
nucleotide substitution model for the phylogenetic reconstructions, but restricted our
analyses to the general time-reversible (GTR) models [96, 130].
Furthermore, we applied coalescent models [91, 90], since the coalescent approach in
general relies on the assumption that only a limited sample of a population is studied,
instead of the whole population, which is valid for our data. For the reconstruction of the
viral phylogenies, the empirical base frequencies, the gamma distribution of among-site
rate variation, and the rate of invariant sites (+I) [65, 154] were derived from the sequence
data. The analyses were initiated from randomly generated starting trees.
We started the model selection process from the following subset of evolutionary models:

• Site heterogeneity model

– gamma
– gamma+I

• Molecular Clock Model

– Relaxed uncorrelated exponential
– Relaxed uncorrelated lognormal
– Strict Clock

• Tree prior

– Coalescent: Constant Size
– Coalescent: Exponential Growth
– Coalescent: Logistic Growth
– Coalescent: Expansion Growth
– Coalescent: Bayesian Skyline
– Coalescent: Extended Bayesian Skyline

In addition to the data of patient 265 that was analysed extensively by Kamp et al. [85]
in an earlier study, comprehensive reconstructions of three additional patients served as
a decision basis to test a variety of model parameters. The patients 041, 107, and 132
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were selected since their data resembled different courses of disease. We used Bayes Factor
statistics [87, 110] to analyse the suitability of the different phylogenetic models and to
measure their capability to perform phylogenetic reconstructions. The Bayes factors (BF)
of the different models for the selected patients are summarised in Table 3.2.

Table 3.2.: Bayes factor of four phylogenetic models and three patients
The table summarises the Bayes factor of four general time-reversible (GTR) Bayesian skyline
coalescence models (BSC) for three different data sets and 106 reconstruction steps. The
empirical base frequencies, the gamma distribution of among-site rate variation, and the rate
of invariant sites (+I) were derived from the sequence data.

patient 041 ln p(model|data)

GTR gamma+I constant BSC -822,04

GTR gamma+I linear BSC -824,85

GTR gamma linear BSC -829,23

GTR gamma BSC expansion -829,56

GTR gamma extended linear BSC -831,27

GTR gamma constant BSC -831,83

GTR gamma extended exponential BSC -832,37

GTR gamma constant BSC -905,43

GTR gamma extended exponential BSC -907,73

GTR gamma BSC expansion -4707,58

patient 107

GTR gamma+I linear BSC -1211,86

GTR gamma linear BSC -1214,44

GTR gamma+I constant BSC -1214,52

GTR gamma+I extended linear BSC -1215,59

GTR gamma extended linear BSC -1216,41

GTR gamma extended exponential BSC -1216,80

GTR gamma constant BSC -1217,03

GTR gamma+I extended exponential BSC -1251,60

patient 132

GTR gamma linear BSC -1533,88

GTR gamma+I constant BSC -1536,35

GTR gamma constant BSC -1539,95

GTR gamma+I linear BSC -1545,88

GTR gamma BSC expansion -1546,88

GTR gamma+I extended exponential BSC -1550,45

GTR gamma+I extended linear BSC -1554,92

GTR gamma extended exponential BSC -1556,44

GTR gamma extended linear BSC -1559,63

GTR gamma+I BSC expansion -1573,95

During these first analyses, we found some of the models to be less suitable to reconstruct
our sequence data. The Bayesian skyline expansion model as well as the extended linear
and exponential models did not fit our data well. Furthermore, the reconstruction runs for
some data sets finished without being able to calculate any phylogenetic reconstruction.
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Thus we reduced the analyses to the four best-ranked models: the GTR Bayesian skyline
model with constant or linear coalescence and with gamma distribution of among-site rate
variation, with (+I) or without invariant sites.
Since we recognised a danger of overfitting of the models to the individual patient data, we
included further patients into the model selection process. The decision about the suitable
evolutionary model for the phylogenetic reconstruction finally was based on reconstruction
runs results of the four preselected models for 14 different patient data sets. The ranked
BF are listed in Table 3.3 (with best model ranked 1, least model ranked 4).

Table 3.3.: Bayes factor of four phylogenetic models and 14 patients
Comparison of the Bayes factor of four general time-reversible (GTR) Bayesian skyline
coalescence models (BSC) for 14 patients (ID):
(top) 1 · 106 reconstruction steps, (bottom) 2 · 108 reconstruction steps.
The empirical base frequencies, the gamma distribution of among-site rate variation, and the
rate of invariant sites (+I) were derived from the sequence data. The number in parentheses
gives the rank of the respective model among the four analysed models.

ID linear model + I constant model + I linear model constant model

041 -824,85 (2) -822,04 (1) -829,23 (3) -831,83 (4)

107 -1211,86 (1) -1214,52 (3) -1214,44 (2) -1217,03 (4)

132 -1545,88 (4) -1536,35 (2) -1533,88 (1) -1539,95 (3)

005 -1220,86 (1) -1223,85 (2) -1229,43 (4) -1226,47 (3)

007 -1571,46 (4) -1571,12 (3) -1569,10 (2) -1559,84 (1)

013 -709,44 (2) -707,91 (1) -710,26 (3) -712,32 (4)

040 -776,82 (2) -776,71 (1) -780,62 (4) -779,49 (3)

085 -1621,86 (4) -1621,32 (3) -1613,31 (2) -1610,40 (1)

127 -1266,96 (1) -1269,40 (4) -1267,68 (2) -1268,31 (3)

180 -1289,11 (4) -1285,82 (2) -1286,08 (3) -1284,01 (1)

190 -1078,23 (1) -1083,53 (3) -1084,18 (4) -1078,26 (2)

194 -1043,69 (2) -1043,50 (1) -1051,83 (4) -1050,29 (3)

196 -771,34 (1) -772,35 (2) -775,96 (4) -775,03 (3)

265 -687,83 (4) -686,49 (3) -683,72 (2) -682,29 (1)

41 -823,56 (3) -822,99 (1) -823,12 (2) -830,29 (4)

107 -1216,00 (4) -1215,62 (2) -1215,94 (3) -1215,09 (1)

132 -1554,20 (4) -1545,02 (1) -1551,22 (2) -1553,33 (3)

190 -1075,83 (1) -1084,01 (4) -1083,60 (3) -1078,06 (2)

Considering the BF, we preferred the performance of the linear or constant Bayesian
skyline model with codon handling using the GTR Gamma model with invariant sites
(+I), but we were aware that the differences of the best rankings were very small.
To gain further information about the suitability of the preferred model, we increased the
number of calculations to 2 · 108 reconstruction steps per data set, and reduced the number
of data sets again to the four patients resembling a different course of the disease. The
respective BF and rankings, subsumed in the lower part of Table 3.3, showed only subtle
differences in the BF statistics, but the analyses again confirmed the danger of overfitting
when using a proportion of invariant sites.
We decided to perform the phylogenetic reconstructions of all patient data sets with one
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single model and parameter set. A fixation of the reconstruction parameters yielded at
least some comparability of the results, since the data of the individual patients already
showed a broad variability. We finally selected the linear GTR Bayesian skyline model
with relaxed clock coalescence and uncorrelated lognormal distribution of among-site rate
variation for the reconstruction of the phylogenies of the study patients. To decrease the
danger of overfitting, we restricted the use of invariant sites.

Parameter setting

Following the model selection process, we determined the parameters for the phylogenetic
reconstruction. Using the empirical base frequencies of the MSA, we selected four gamma
categories (A,G,T,C) and three unlinked codon positions, thus substitution rate parameters,
rate heterogeneity, and base frequencies were set to be unlinked across codon positions.
Using the relaxed clock coalescence model with uncorrelated lognormal distribution and
linear Bayesian skyline estimate, we started the calculations from randomly generated
starting trees.
Since BEAST can integrate information about the timely course of sequences, we included
the age of the sequences, defined as the number of days since the first HIV-positive test.
According to the study of Kamp et al. [85], we mainly stuck to the default BEAST model
priors and exclusively adjusted the following parameters:

• CPx.mu

– start 0.5
– min 0
– max 1,000

• ucld.mean

– start 0.5
– min 0
– max 1,000

With these parameters, we performed 109 reconstruction steps for each set of sequences.
Saving the trees to file every 50,000 steps yielded 20,000 phylogenetic trees per patient.
We selected a posterior probability limit of 0.5 with maximum clade credibility and median
heights to summarise the trees with TreeAnnotator [43]. For the skyline reconstruction
with Tracer [41], the date of the latest sample served as starting point. All other Tracer
parameters were extracted from the BEAUTi .xml files.

3.4.2. BEAST phylogenetic reconstruction

After the determination of the reconstruction model and the phylogenetic parameters, we
performed the reconstruction runs for the sequence data of each individual patient. The
Ne was extracted from the Bayesian skyline reconstructions and is presented in Section
3.4.5.

3.4.3. RAxML phylogenetic reconstruction

RAxML was used to form a second view on the phylogenetic reconstructions. The re-
construction model and the parameter settings were adopted from the BEAST selection
process. We found that RAxML in general yielded comparable phylogenetic reconstructions
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and successfully confirmed the BEAST results.

3.4.4. Associations between clinical parameters

We started the data analysis with a determination of the correlations between the clinical
parameters HAART, viral load, CD4+ cell count, and co-receptor usage.

Association of HAART and the viral load

Analysing the correlations between the clinical measurements, we focussed on the question
whether the early illustration of the clinical course of an HIV-1 infection presented by
Pantaleo et al. [51] fits the data of recent HAART treated patients.
To get a first impression of the clinical course of disease of the study patients, we illustrated
the clinical data in Figures 3.11 and 3.12. While most patients were under long term
therapy, 8 patients (013, 040, 051, 062, 100, 127, 197, and 212) were included into the
study upon HAART initiation. HAART treatment of patient 004 was initiated at the day
of the last clinical measurement.
As the illustrations indicate, the HIV therapy in general successfully suppressed the viral
growth. The rare cases of therapy failure (patients 005, 010, 026, 041, 072, 107, and
196) showed a dramatical increase of the viral load within a short period of time, with
a beginning decline of the number of CD4+ cells. In most cases, a subsequent change of
therapy immediately suppressed the viral load again below the limit of detection (compare
data of patients 041, 072, 107, and 196).
Only five patients (005, 010, 026, 109, and 180), all of them therapy experienced, showed
a high viral load persisting for more than a few days. Patient 005 had a transient increase
in viral load due to therapy discontinuation, while patient 010 was documented to take
the drugs irregularly. For patient 026, a therapy failure in the late stage of the disease
was documented, and for patient 109, the uptake of several drugs in parallel led to drug
interactions. The therapy changes of patient 180 mainly were a consequence of side effects
and of frequent co-infections.
Despite these patient specific exceptions, the clinical data reported an immediate decrease
of the viral load upon a therapy initiation or a therapy change, in most cases suppressing
the viral load below the detection limit within a few days. Contemporaneously with the
initiation of the (new) therapy, the number of CD4+ cells started to recover, but at a lower
speed than the observed drop of the viral load.
In summary, the visual inspection of the clinical data gave first evidence for a negative
correlation between the viral load and the number of CD4+ cells in HAART treated
patients — a fact, that is already known for untreated patients [50, 64, 104]. In addition,
the data indicated that successful HAART might be able to pause the course of the
infection or to even turn back the disease progression in time.
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Figure 3.11.: Course of the disease of 20 patients
The figure illustrates the course of the CD4+ cells (green) and the viral load (red) of 20
study patients on an uniform time interval of seven years (starting at the time of the first
patient specific measurement). Blue triangles along the x-axis indicate the time points of
the sequenced blood samples, and the HIV therapy is depicted as horizontal lines in the
upper part of each plot. Blue lines mark nucleosidic (NRTI) and violet lines non-nucleosidic
(NNRTI) reverse transcriptase inhibitors, cyan lines mark protease inhibitors (PI) and red
lines mark integrase inhibitors (II). An arrow on the therapy lines indicates the initiation of
the respective therapy.
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Figure 3.12.: Course of the disease of 16 patients
The figure illustrates the course of the CD4+ cells (green) and the viral load (red) of 16
study patients on an uniform time interval of seven years (starting at the time of the first
patient specific measurement). Blue triangles along the x-axis indicate the time points of
the sequenced blood samples, and the HIV therapy is depicted as horizontal lines in the
upper part of each plot. Blue lines mark nucleosidic (NRTI) and violet lines non-nucleosidic
(NNRTI) reverse transcriptase inhibitors, cyan lines mark protease inhibitors (PI) and red
lines mark integrase inhibitors (II). An arrow on the therapy lines indicates the initiation of
the respective therapy.
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Viral load and the number of CD4+ cells

Based on the indications derived from the visual inspection of the clinical data, we hy-
pothesised to find negative correlation between the number of the CD4+ cells and the
viral load of HAART treated patients. We observed that successful therapy suppressed
viral load and enabled the number of CD4+ cells to recover, while therapy discontinuation
or failure facilitated an increase in viral growth and a decrease of the number of CD4+

cells. From these findings, we expected the course of the disease to step forth and back in
progression, in contrast to the linear course of the disease described by Pantaleo et al. for
untreated patients [51, 50, 64].
To address this question, we computed the correlations between the clinical measurements.
We extracted the numbers of CD4+ cells and the viral load from the patient records and
determined the Pearson correlation coefficient separately for the data of each patient
(compare Table 3.4).

Table 3.4.: Pearson correlation of the CD4+ cell count and the viral load
The table lists the Pearson correlation coefficient r and the respective p-values for the association

of the of the CD4+ cell count and the viral load. ’ID’ is the unique patient identifier and the

column ’obs.’ gives the number of observations.

ID obs. r p-value ID obs. r p-value

004 41 0.290 0.066 098 33 -0.348 0.047

005 44 -0.397 0.008 100 33 0.467 0.006

007 28 0.064 0.745 107 42 -0.488 0.001

010 9 -0.780 0.013 109 29 -0.417 0.024

013 20 -0.840 <0.001 127 29 0.103 0.595

024 43 -0.606 <0.001 132 15 -0.632 0.011

026 13 0.298 0.323 143 38 -0.225 0.174

032 41 -0.441 0.004 166 35 -0.530 0.001

040 25 -0.355 0.082 178 21 -0.484 0.026

041 26 -0.192 0.348 180 68 -0.497 <0.001

043 11 0.123 0.718 190 12 -0.540 0.070

049 36 -0.475 0.003 194 40 -0.144 0.375

051 34 -0.143 0.418 196 44 -0.162 0.293

062 45 -0.461 0.001 197 22 -0.254 0.254

068 45 -0.381 0.010 212 21 -0.812 <0.001

072 33 -0.061 0.737 222 12 -0.200 0.533

085 38 -0.600 <0.001 265 44 -0.552 <0.001

097 40 -0.839 <0.001 268 11 -0.872 <0.001

We found negative correlations between the number of CD4+ cells and the viral load for
30 of 36 the patients, with a p-value <0.05 in 20 data sets. In contrast, 6 of 36 patients
showed a positive Pearson correlation (p-value <0.05 only for patient 100).
Though the Figures 3.11 and 3.12 indicated a negative association of the observed data,
the totality of all correlations could not support our hypothesis. An additional calculation
of the Spearman and Kendal correlation neither could confirm our idea (data not shown).
Thus, based on the present study data, we could not decide whether Patients under
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HAART treatment show a comparable association between the number of CD4+ cells and
the viral load as therapy näıve patients.

3.4.5. Associations between evolutionary parameters

Following the correlation analyses of the clinical data, we analysed the correlations between
the evolutionary measures diversity, divergence, and the effective population size Ne.

Diversity and the effective population size Ne

The internal Bayesian skyline reconstruction method of BEAST estimates the putative
course of the effective population size Ne over time that would result in the reconstructed
phylogeny of sequences. Ne describes the genetic range of sequences within a population,
thus the Ne estimates are comparable to the course of the population diversity over time
as defined in Section 3.2.1. Following this idea, we hypothesised to find a positive linear
correlation of Ne and the population diversity.
We illustrated the Ne and the diversity of each patient to get a first visual impression
of the data (compare Figures 3.13 and 3.14). For ease of computation, we scaled both
measures onto the interval [0, 1].
In the next step, we computed the Pearson correlation coefficient r of Ne and the viral
diversity for a statistical evaluation. The Pearson correlation values are listed in Table
3.5. We found a positive correlation in 28 of 36 patients, ranging from almost zero (0.02)
to strong (0.9) positive correlations. Due to the small number of observations (i.e. four
to 12 sequenced blood samples), the level of significance of the results was poor. The
envisaged p-value <0.05 was missed in all but one data set (patient 107). Eight of 36
samples showed negative Pearson correlation values ranging from -0.02 to -0.57, but none
of the correlations was significant.
A repetitive analysis using the Spearman and Kendal rank coefficients confirmed these
findings. We calculated a positive correlation for 28 respective 26 data sets, yielding
significant results (p-value <0.05) only for patients 010, 196, and 265 with the Spearman
rank coefficient and for patients 010 and 265 with the Kendal rank coefficient (data not
shown).
In summary, the we were not able to confirm our hypothesis of a positive linear correlation
between Ne and the viral diversity due to missing empirical evidence.
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Figure 3.13.: Course of Ne and diversity of 20 study patients
The figure illustrates the course of the estimated effective population size Ne (blue line)
with 95% confidence interval and the course of diversity (red line) of 20 study patients on
an uniform time interval of seven years (starting at the time of the first patient specific
measurement).
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Figure 3.14.: Course of Ne and diversity of 16 study patients
The figure illustrates the course of the estimated effective population size Ne (blue line)
with 95% confidence interval and the course of diversity (red line) of 16 study patients on
an uniform time interval of seven years (starting at the time of the first patient specific
measurement).
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Table 3.5.: Pearson correlation of Ne and diversity
The table lists the Pearson correlation values r and the respective p-values for the association
between Ne and the diversity. ’ID’ is the unique patient identifier and the column ’obs.’ gives
the number of observations.

ID obs. r p-value ID obs. r p-value

004 8 0.609 0.109 098 6 0.587 0.221

005 6 0.795 0.058 100 4 0.765 0.235

007 5 0.172 0.783 107 9 0.686 0.041

010 5 0.754 0.141 109 4 0.783 0.217

013 6 0.788 0.062 127 8 -0.510 0.197

024 4 -0.567 0.433 132 12 0.025 0.939

026 4 -0.545 0.455 143 4 0.827 0.173

032 6 0.629 0.181 166 5 -0.017 0.978

040 6 0.246 0.639 178 4 0.501 0.499

041 7 0.251 0.587 180 12 0.490 0.106

043 3 0.251 0.838 190 6 0.324 0.530

049 4 0.769 0.231 194 7 0.672 0.098

051 5 0.080 0.899 196 7 0.474 0.282

062 5 -0.247 0.689 197 6 0.509 0.302

068 4 0.552 0.448 212 5 -0.366 0.544

072 7 0.276 0.549 222 4 0.782 0.218

085 7 -0.261 0.572 265 9 0.518 0.153

097 4 0.901 0.099 268 7 -0.220 0.636

Diversity and divergence

From the illustration of the evolutionary course of the HIV-1 infection of Shankarappa
et al. [138], we derived a hypothesis about the sequence evolution. The observation of
the parallel increase of the viral diversity and the divergence in the initial phase of the
infection and the simultaneous stabilisation of both measures in the third phase led us to
the assumption of a positive linear correlation between the measures. Therefore we next
analysed the Pearson correlation coefficient r of the viral diversity and the divergence.
We found a positive correlation for 24 of 36 patients, with a p-value <0.05 for eight data
sets. The data on the diversity and the divergence showed an almost perfect positive linear
correlation (r >0.95 ) for patients 049, 100, 127, and 222, confirmed by an significance
level of 0.05 in all four cases. In contrast, 12 patients showed negative correlation values,
being significant for patients 041 and 043.
A closer inspection of the data revealed a difficulty regarding the definition of the diver-
gence of the sample at the first time point. The genetic distance of a sample to itself is
zero, thus the divergence of the first sample of each patient was defined to be zero. Since
the first sample of our patient data does not equal the founder sample, we excluded this
time point from the analyses.
A repetitive analysis, excluding the first sample, resulted in 24 of 36 positive and 11 of 36
negative correlations. We could not calculate a correlation for patient 043, since only two
data points remained in the respective data set. Three of the four data sets with initial
positive correlations r >0.95 (patients 049, 127, and 222) increased to significant corre-
lations r >0.99, while three additional data sets yielded significant positive correlations
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r >0.95 (patient 040, 166, and 265). In summary, we only found a significant positive
correlation for six patients (040, 049, 127, 166, 222, and 265), while none of the negative
correlations was significant.
All Pearson correlation values for the association of the diversity and the divergence are
given in Table 3.6. A calculation of the respective Spearman and Kendal rank correlation
coefficients could not improve the results (data not shown).

Table 3.6.: Pearson correlation of diversity and divergence
The table lists the Pearson correlation values r and the respective p-values for the association
of the diversity and the divergence. ’ID’ is the unique patient identifier and the column ’o.’
gives the number of observations. The numbers in parentheses resemble the correlation values
calculated upon the exclusion of the first data point.

ID o. r p-val. ID o. r p-val.

004 8 -0.247 (-0.488) 0.556 (0.267) 098 6 0.648 (0.585) 0.164 (0.300)

005 6 0.576 (0.691) 0.231 (0.196) 100 4 0.977 (0.993) 0.023 (0.073)

007 5 0.075 (-0.255) 0.905 (0.745) 107 9 -0.082 (-0.143) 0.834 (0.735)

010 5 -0.342 (0.739) 0.573 (0.261) 109 4 0.794 (0.987) 0.206 (0.104)

013 6 0.524 (0.259) 0.285 (0.674) 127 8 0.994 (0.994) <0.001 (<0.001)

024 4 0.725 (0.940) 0.275 (0.221) 132 12 -0.406 (-0.372) 0.191 (0.260)

026 4 -0.825 (0.571) 0.175 (0.613) 143 4 0.724 (0.884) 0.276 (0.309)

032 6 0.315 (0.212) 0.543 (0.733) 166 5 0.774 (0.988) 0.124 (0.012)

040 6 0.839 (0.976) 0.037 (0.004) 178 4 0.342 (0.397) 0.658 (0.740)

041 7 -0.756 (-0.572) 0.049 (0.235) 180 12 0.383 (0.324) 0.219 (0.330)

043 3 -0.998 (-) 0.038 (-) 190 6 -0.251 (-0.773) 0.632 (0.125)

049 4 0.997 (1.000) 0.003 (0.002) 194 7 -0.067 (-0.061) 0.887 (0.909)

051 5 0.887 (0.576) 0.045 (0.424) 196 7 0.016 (-0.163) 0.973 (0.758)

062 5 0.894 (0.926) 0.041 (0.074) 197 6 0.041 (-0.587) 0.939 (0.298)

068 4 -0.480 (0.955) 0.520 (0.193) 212 4 0.805 (0.856) 0.195 (0.346)

072 7 0.198 (0.011) 0.671 (0.983) 222 4 0.999 (0.999) 0.001 (0.026)

085 7 0.457 (0.505) 0.302 (0.307) 265 9 0.893 (0.994) 0.001 (<0.001)

097 4 -0.648 (-0.816) 0.352 (0.392) 268 7 -0.532 (-0.475) 0.219 (0.341)

An further inspection of the data of the 11 patients with a non-significant negative
correlation revealed that 8 of these patients were clinically classified as CDC stage A3 or
Bx patients, presumably situated in the intermediate phase of the infection. Therefore
the observed negative correlations hint towards a discordant course of the diversity and
the divergence, as described by Shankarappa et al. [138] for the intermediate phase of the
infection. Due to the non-significant statistics, we could not confirm this idea.
In summary, the hypothesis about the evolutionary data could not be confirmed. Our
data did not enable us to decide whether the evolutionary correlations of HAART treated
patients coincided with the observations of Shankarappa et al. due to insufficient statistical
support.
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3.4.6. Analyses of the correlation between evolutionary and clinical

parameters

So far, the analyses of the associations between the clinical as well as between the evo-
lutionary parameters in general gave no statistical support to our hypothesis about the
course of the disease in HAART treated patients. In the next step, we determined the
correlations between the evolutionary data on the one hand and the clinical data on the
other hand.
Since we hypothesised the immune system to drive the speed of evolution, we supposed
to find an interrelation between the strength of the immune system and the speed of the
sequence evolution. In evolutionary terms, we expected to find a positive association
between the diversity and the number of CD4+ cells as well as between the divergence
and the number of CD4+ cells.
The computation of the Pearson correlation coefficient did not support our idea. Though
we found a weak trend for a positive correlation between the viral diversity and the number
of CD4+ cells (positive r for 22 and negative r for 12 of 36 patients), only two of the
positive and one of the negative correlations were significant (p-value <0.05). In two cases,
the calculation of the correlation failed due to missing measurements.
The analysis of the divergence and the number of CD4+ cells yielded comparable results.
24 of 36 correlations were positive, 10 of 36 correlations were negative and for two patients,
no correlation could be calculated. Only one positive and one negative correlation were
significant (p-value <0.05). The complete list of the Pearson correlation coefficients of all
patients is given in the supplementary material in Section A.1.1.
Thus, our idea of the immune system as driving force of the viral evolution could not be
confirmed. Our data gave no statistical support for our hypothesis.
We further examined the association of the size of the viral population and the viral diver-
sity. Formulating an idea of a survival of the fastest we expected a large viral population
to be more homogeneous.
A negative Pearson correlation coefficient between the viral load and the diversity for 18
patients (p-value <0.05 for one patient) and a positive correlation coefficient for 14 patients
(p-value <0.05 for one patient) confuted our idea. The calculation of a correlation for four
data sets failed due to a lack of data. Thus, the data did not support our hypothesis of a
dominance of the fastest replicating sequence.
A number of additional analyses also failed due to missing statistical support (e.g. the
analysis of the association between the slope of the clinical and evolutionary measurements
or an approach using a joined data set of all patients). Correlations with the putative
way of infection, the medication as well as the occurrence of co-infections could not be
observed.
Additional calculations using the Kendall and Spearman rank correlation coefficients
encountered further difficulties, for example the existence of identical viral load measure-
ments in the data sets (e.g. the value of 50 viral RNA copies per millilitre was multiply
observed, indicating a viral load below the detection limit). Therefore, including a ranking
of the data points into the calculation of the correlations did not improve the power of the
analyses.
Summarising the data analysis, we can not conclude that the illustrations of Pantaleo et al.
[51] and Shankarappa et al. [138] derived in times before HAART resemble the correlations
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of patients under modern HIV combination therapy. Due to the weak statistical support,
the analyses have to be repeated by a larger data set.

The course of the co-receptor tropism over time

Analysing Figures 3.11 and 3.12 we supposed that the course of disease of patients with
successful HAART does not develop one-directional, but can be paused or reverted by
successful therapy. Following this idea, we finally asked whether the therapy could invert
an X4- or R5/X4-tropic population to use exclusively the R5 co-receptor. We hypothesised
that the reversion of the course of infection entails the reversion of the co-receptor usage.
Jensen and Shankarappa et al. [82] reported the observation of transient X4 strains in a
co-receptor prediction study, describing two possible reasons for the back-switch. On the
one hand, they observed a switch in the viral production through a shift in the latency
and a repression of X4-tropic by viruses by R5-tropic viruses, while on the other hand,
they monitored a possible sequence of back-mutations from X4-tropic sequences towards
R5-tropic sequences.
Upon the analyses of the clinical course of the infection (compare Figures 3.11 and 3.12),
we selected five patients for an extended co-receptor analysis: 007, 051, 062, 098, and 197.
Using geno2pheno and FSSM for in silico co-receptor predictions, we found the following
course of tropism:

• 007: mixed → X4 → mixed → X4 → X4
• 051: R5 → mixed → mixed → mixed → mixed

• 062: X4 → R5 → X4 → X4 → X4
• 098: X4 → mixed → mixed → X4 → mixed → mixed

• 197: R5 → X4 → X4 → X4 → X4 → mixed

This result was very surprising and did not support our idea in any of the five patients.
In fact, the observed co-receptor evolution over time seemed to be almost random and
provoked a further inspection of the sequence data.
An investigation of the sequencing method and the laboratory records as well as personal
discussions with laboratory assistants and biologists revealed an important fact about the
sequence data. For patients with viral load below the limit of detection it was in general
not possible to extract viral RNA sequences. Therefore pro-viral DNA of the infected host
cells was sequenced.
This knowledge led to the realisation that our evolutionary data did not show the recent
population at the time of sampling, but constituted a view back into the past of the viral
memory of the patient. We will discuss this observation extensively at the end of the
chapter, since it has major impact on the presented evolutionary data.
With respect to the co-receptor analysis, we looked for a way to solve this problem and to
gain information about the recent viral population at the time point of sampling. The
previously described in vitro co-receptor prediction method of Binninger-Schinzel et al.
[14] provided a solution. The researchers predicted the co-receptor usage of some of the
study patients based on the isnoR5 cell line.
The isnoR5 reporter cells are highly sensitive for the existence of X4-tropic viruses, as
the researchers could show in their study [14]. The cell culture exclusively facilitates the
growth of HIV populations that contain at least some replicative-competent X4 virions.
Mere R5-tropic populations are not able to infect the cell line due to the absence of the
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CCR5 receptor on isnoR5 cells. To avoid misclassification and to confirm the existence
of replicative competent HIV virions in the absence of viral growth, control experiments
were performed.
Assessing the in vitro co-receptor prediction data of Binninger-Schinzel et al., we gained
experimental data for four of the five patients. The co-receptor usage of patient 062 was
not examined in vitro and one sample of patient 197 could not be analysed. We found the
following course of co-receptor usage:

• 007: X4 → X4 → X4 → R5 → R5
• 051: X4 → X4 → X4 → R5 → R5
• 098: X4 → X4 → R5 → R5 → R5 → R5
• 197: X4 → X4 → R5 → R5 → not possible → R5

The in vitro co-receptor analyses finally confirmed our hypothesis. The experiments showed
that all patients harboured at least some X4-tropic virions at the beginning of the study
period. The observed early X4-tropic strains vanished under successful therapy, leaving
mere R5-tropic samples during subsequent in vitro analyses. In the case of the patients
098 and 197, the X4-tropic strains were completely lost one year after the introduction
of HAART, and in the case of the patients 007 and 051, the X4-tropic subpopulation
dispersed about one year after a successful change in therapy.
For clarification we want to stress that the isnoR5 cell line is highly sensitive for the
existence of X4-tropic virons in the viral population. Discussions with our cooperation
partners revealed that the presence of at least one replicative competent X4 virion suffices
to induce viral growth on the isnoR5 cell line. Therefore we can rule out the presence
of X4-tropic strains in the case of an absence of viral growth. Due to this property, the
method is not feasible to determine the co-receptor usage of the dominant viral strain,
since as few as one X4-tropic minority strain induces viral growth on isnoR5 cells.
Thus it is save to say that at least a subpopulation of X4-tropic virions was present under
phases of high viral load, and this subpopulation completely vanished from the active
population under successful HAART.
Summarising this last part of the analysis, we can say that the emergence of an X4-tropic
strain during the course of the infection is no final state of the population We observed
that successful therapy can obliterate sequences with X4 phenotype from the population
and facilitate the outgrowth of mere R5-tropic populations from populations harbouring
at least some X4-tropic strains.
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3.5. Discussion

In the first part of this section, we analysed correlations between clinical and evolutionary
data of HAART treated patients. Unfortunately, our study data were neither feasible
to confirm the well-known negative correlation between the number of CD4+ cells and
viral load, nor to find the expected positive correlation between the diversity and the
divergence.
At most, the data of some patients suggested a difference in the timely course of the disease
between HAART treated HIV-1 infections and infections in the early days of HIV therapy.
We suppose that the linear course of the disease that was observed in therapy näıve patient
ends with the initiation of HAART. For some patients, we found weak indications that
the infection under HAART does not develop linearly from phase one towards phase three,
but describes a steady forth-and-back course, in which either the virus or the therapy
dominates the infection and determines the speed and the direction of evolution.
Due to the weak statistical support resulting from mainly non-significant correlations, the
idea has to be confirmed by further studies.
In the last part of the section we analysed the co-receptor usage over time. Our results
indicated that the emergence of X4-tropic strains during an HIV infection is no one-way
street towards disease progression. An approach using the isnoR5 cell line [14] for in vitro
co-receptor predictions showed that successful HAART suppressed an initially observed
X4-tropic viral subpopulation and facilitated the subsequent outgrowth of an R5-only
population in the analysed patients. Thus, X4-tropic strains can be displaced by R5-tropic
strains upon successful therapy.
During the analyses we revealed a weakness of the applied sequencing method and therefore
a problem of the sequence data. For patients with a viral load below the detection limit, it
was not possible to obtain viral RNA from the blood samples. Therefore, pro-viral DNA
sequences were extracted from the infected host cells. In consequence, the evolutionary
data does not reflect the recent population at the day of sampling, but comprises a view
into the history of the viral evolution of the patient.
Therefore, the analysis of a correlation between evolutionary and clinical measurements is
not possible due to the insecure timing of the pro-viral sequences. This finding explains
the observation of mainly non-significant and contradictory correlations of our data set.
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3.6. Outlook

The presented study is based on longitudinal blood samples of HIV-infected patients that
have been collected beginning in the year 1999. During the last ten to 15 years, the
sensitivity of the clinical measurement methods as well as the sequencing techniques have
widely improved. Due to the progress in the field of sequencing, a recent study using a
deep sequencing approach could provide the whole viral population instead of a reduced
sample that is mainly restricted to the dominant subpopulation. Also the pro-viral DNA
could be examined in detail and could provide a complete history of the infection.
An interesting extension of the present work would be an analysis of the frozen longitudinal
blood samples of some patients with modern sequencing methods, with special emphasis
on a complete picture of both the active viral population and the viral reservoir. Such
an analysis could presumably answer the question whether the viral reservoir contains a
more complete image of the evolutionary pathways of the viral sequences by presenting
sequences that are normally swept off the population by selection. Furthermore, we could
gain insight into the time delay between the active and the latent viral population.
For the design of a new, consecutive study, special attention should be paid to sound and
consistent sampling intervals, e.g. in the range of three to six months. As a consequence
of successful HAART, the viral population evolves at very low levels of viral load. Due to
the small population size, presumably less mutations accumulate among the individuals of
the population. Thus, the follow-up times per patient should be increased.
Last but not least, the responsible physicians should seek to include patients in an early
stage of the infection to gain a view of the complete viral evolution, since the present
study was dominated by patients in CDC stage C3.
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4.1. Introduction

In the second part of the work, we used two large datasets of R5- and X4-tropic sequences
to derive to fitness functions that enabled us to analyse the differences of the R5 and X4
fitness landscape.
In modern theoretical population genetics, the concept of fitness landscapes was introduced
by Sewall Wright [164]. The basic idea of the concept is to use a suitable mathematical
function, termed fitness function, to translate the genotype of an individual into a fitness
value. The fitness value of an individual for example measures its capability to create
offspring.
For means of visualisation, Wright used the method of fitness landscapes to reduce a multi-
dimensional field of possible gene combinations of a population onto a two-dimensional
landscape map, which he compared to a geological landscape with contour lines that are
build around peaks and valleys in the landscape. Sequences with high fitness values tower
above their neighbourhood and create peaks in the fitness landscape, similar to mountains.
Sequences with low fitness create valleys that pass through the landscape, and sequences
with zero replicative fitness are represented by holes in the fitness landscape.
In general, two types of fitness landscapes are used. Dynamic fitness landscapes [161] adapt
to changing environmental conditions. These might be internal population properties, for
example the competition of the individuals for limited resources (e.g. available host cells),
as well as external influences, for example the immune pressure or the administration of
drugs.
Dynamic landscapes are difficult to handle. It is not only challenging to determine all
relevant environmental factors and to measure their individual influence on the fitness
of the population, but also to formulate the correct mathematical representation and to
compute the solution for a complete dynamic fitness landscape.
In contrast, static landscapes [57] are a good approximation to describe the fitness
of individuals on a fixed population background, e.g. an environmental scenario that
converged into a steady state. Furthermore, static fitness landscapes can be used to
approximate the fast evolution of a population that evolves on a background of long-term
changes.
In our work, we used static fitness landscapes to analyse the fitness landscapes of R5-
and X4-tropic V3 loop sequences. We hypothesised that the cross section of data bank
sequences we obtained from the Los Alamos database [100] represented a kind of steady
state of the viral population. Dissociated from their genetic background and without
knowledge of the immune status or the therapy scheme of the individual patients, the
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database population served as a tool to describe an average V3 loop population. Therefore,
static fitness landscapes are a suitable approximation for our approach.

54



4. Fitness function and fitness landscape

4.2. Methods

In the first part of this section, evolutionary terms and mathematical methods are explained
to describe and examine fitness landscapes and sequence networks. In the second part we
introduce software and bioinformatics tools that we used to derive our fitness functions
and to analyse the resulting fitness landscapes.

4.2.1. Additional Notation and Measures

Fitness

The term fitness describes a trait of an individual of a population in a defined environment.
All individuals of a population contribute to the mean fitness of the population. The
fitness of an individual measures for example its probability of survival, its growth rate, or
its contribution to the next generation in general [57, 33, 47].
In the present work, we defined fitness as the replicative capacity of an individual, in terms
of the probability to create offspring. The fitness is determined based on the amino acid
sequence (i.e. the phenotype) of the individual.

Fitness landscape

Wright [164] described a fitness landscape as a ”representation of the field of gene combi-
nations in two dimensions instead of many thousands.” By translating a genotype into a
fitness value, he created a rugged field of fitness peaks, surrounded by contours built of
individuals with similar gene combinations, and separated by fitness valleys.
We used the concept of fitness landscapes to describe the replicative capacity of popula-
tions of V3 loop sequences. By a translation of the fitness landscape into a network of
sequences, we analysed the underlying properties of the landscape and of the respective
viral population.

Mutation

A mutation is a change in the nucleotide sequence of a gene that is passed on to descendent
generations. Mutations are the basis for genetic variability. In HIV, the main source of
mutations are replication errors introduced into the viral genome by the reverse transcrip-
tase.
The majority of all mutations are point mutations [75, 156] that exchange one nucleotide of
a codon triplet for another. Due to the redundancy of the genetic code, a point mutation
can have three possible outcomes upon translation: 1) the amino acid sequence remains
unchanged (i.e. a silent or synonymous mutation), 2) the amino acid is replaced by
another amino acid (i.e. non-synonymous mutation), or 3) the amino acid is replaced
by a stop codon. While silent mutations in general do not alter the protein function,
non-synonymous mutations, might lead to sensible protein changes. The introduction
of a stop codon often has a deleterious effect on the protein function, since it leads to a
termination of the translation and results in a shortened protein [109, 132].
In addition to point mutations that conserve the open reading frame of the nucleotide
sequence, frameshift mutations can occur. A frameshift mutation or indel inserts or deletes
a number of n nucleotides from the nucleotide sequence (n not evenly divisible by three).
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Indels change the reading frame by prolonging or shortening the sequence by lengths n

different from the codon length. Starting at the position of the indel, a frameshift mutation
alters all subsequent amino acids downstream of the indel upon translation of the shifted
codons. A second indel further downstream of the first could shift the displaced reading
frame back into the correct frame. Indels are often deleterious for the protein [156].

Selection

The idea of natural selection was formulated by Charles Darwin [33] in 1859: ”This
preservation of favourable variations and the rejection of injurious variations, I call
Natural Selection.”
In general, a mutation that changes the amino acid sequence also alters the fitness of
an individual. If the individual carrying the mutation has a fitness benefit (i.e. a higher
fitness than the parent), it is more capable to reproduce. Thus, mutations that increase
the replicative fitness have a selective advantage and the mutated individuals dominate
the population. Individuals with a lower fitness create less offspring and are outcompeted
by number.
Since individuals with higher fitness are favoured upon replication, the process of selection
increases the mean fitness of the population.
Silent nucleotide mutations do not alter the amino acid sequence, thus they do not grant
any fitness benefit or disadvantage. They are selectively neutral with respect to the
replicative fitness and are not affected by selection.

Quasispecies model

The concept of quasispecies was introduced by Eigen [45] and put forward in subsequent
publications; among others, also Schuster [47, 46, 136] contributed to the idea. A quasis-
pecies represents a stationary distribution of self-replicating individuals with error-prone
replication, e.g. a population of RNA or DNA molecules.
The quasispecies model describes the dynamic of an individual or sequence i in an infinite
population by the following equation:

ẋi =
n∑

j=1

fjxjµji − φxi (4.1)

xi is the concentration of i, resulting from a specified replicative fitness fi and a mutation
rate µji (i.e. parent j producing offspring i). The model forms a population of n

genetically diverse but closely related sequence variants, the so-called quasispecies. The
term φ =

∑
i fixi describes the average fitness of the population and is used as a regulator

to keep the population size constant.

Mutual information

The mutual information (MI) is a non-parametric measure that is used to describe the
information content one data set provides about another data set. The method is trans-
ferred from information theory and is also known under the older term of transinformation.
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Derived from the Shannon entropy [139], the MI measures the expected information
content of a message by estimating the content of information that can be derived from
one random variable X about a second random variable Y , and vice versa.
Korber et al. [93] were the first to use the MI in biological context to examine the co-
evolution of sequence positions by an analysis of the information content of two columns i

and j of a multiple sequence alignment (MSA). Further approaches to reveal co-evolutionary
effects were, among others, described by Gloor and Martin et al. [59, 103].
Using the probabilities p(xi) and p(x′

j) of the amino acids x at position i and x′ at position
j, the MI of the columns i and j can be defined based on the Shannon entropy H(i) and
H(j) that measures the amino acid variability at position i and j of the alignment [93]:

H(i) = −
20∑

x=1

p(xi) log p(xi)

H(j) = −
20∑

x′=1

p(x′
j) log p(x′

j)

H(i, j) = −
20∑

x=1

20∑

x′=1

p(xi, x′
j) log p(xi, x′

j)

MI(i, j) = H(i) + H(j) − H(i, j)

(4.2)

with H(i, j) being the joint entropy of columns i and j of the alignment and p(xi, x′
j)

describing the joint probability to find xi in column i while observing x′
j in column j.

Alternatively, the mutual information can be expressed by [93]:

MI(i, j) = −
20∑

x=1

20∑

x′=1

p(xi, x′
j) log(

p(xi, x′
j)

p(xi), p(x′
j)
) (4.3)

The MI values of two columns i and j of an MSA are positive real numbers in the interval
[0, log(20)] (20 being the size of the amino acid alphabet), describing the magnitude of
the mutual dependence of columns i and j.
In our work, we applied the MI to identify potentially co-evolving positions in the MSAs
of the V3 loop data sets. We used the R package BioPhysConnectoR [77] developed
by Hoffgaard and Weil et al. which provides an easy-to-use tool to compute the MI of
MSAs. The package comprises four alternative approaches to handle gaps in the MSA.
The occurrence of gaps in alignments can cause problems upon the calculation and inter-
pretation of the MI values, e.g. by overestimating the information content of the remaining
amino acid symbols in columns with frequent gaps. The different methods provided by
the BioPhysConnectoR package are described in the following paragraphs.

ORMI The ORriginal MI intuitively defines gaps as an additional 21th letter of the
amino acid alphabet and calculates the MI values following Equation 4.3.

SUMI The SUbset MI excludes position pairs (xi, yi) with gaps and computes the MI
of the reduced alignment subset following Equation 4.3, i.e. if one of the selected columns
x or y contains a gap, the respective row i is omitted from the computation of the MI
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of the columns x and y. By the exclusion of gaps, the SUMI maximises the information
content carried by the amino acid symbols.

ESMI The Enhanced Sampling MI computes the mutual dependence of two columns i

and j using their position specific amino acid probabilities (compare Equation 4.3). Gap
characters are omitted upon the calculation of the respective probabilities, but in contrast
to the SUMI approach, the gap frequency is regarded for the computation of the column
probabilities.
The ESMI calculation can lead to artificial results. In columns x with many gap characters
and reduced amino acid content, the gap handling process results in very small probabilities
p(x) in the denominator. Thus, the resulting ESMI values are very large, overestimating
the impact of the low amino acid content in the observed column x.

DEMI The gap handling of the Delta Entropy MI is related to the calculation of the
SUMI. The method is based on the entropy definition of the MI (Equation 4.2) and
calculates the entropy H(i) and H(j) of two columns i and j upon the exclusion of gap
characters only in the actual column. In consequence, all rows i with gap characters in
either position xi or yi are excluded from the computation of the joint entropy H(i, j).
Due to this mode of calculation, the DEMI values can become negative, i.e. H(i, j) ≥
H(i) + H(j).
A detailed description and analysis of the MI and the different gap handling algorithms

is presented by Weil et al. [158]. Based on their observations and on first evaluations of
our data sets, we decided to use the SUMI method to treat gap characters. We omitted the
ESMI from our analyses because the method can result in artificially large ESMI values in
columns with many gaps and therefore might price positions with few information with
high MI values. The DEMI was excluded because it can violate the general definition of
the MI by taking negative values.

Normalisation and significance of MI values For MI normalisation, we also consulted
the work of Weil et al. [158]. They described different methods to normalise the MI values
and to determine the significance of the results.
The MI is capable to estimate the mutual dependence between two random variables, but
the mere MI values can not be used to discriminate significant results from random effects
of the underlying data or to detect so-called finite size effects caused by insufficiently large
data sets.
To cope with this problem, Weil et al. developed a method to normalise the MI values, the
so-called shuffle null model of the MI. The idea of the shuffle null model is to randomly
shuffle the intra-column letters of an MSA to destroy the dependencies between the
sequence positions, but to conserve the amino acid content in the column.
Since this shuffling method does not change the amino acid probabilities within a column,
it enables an exact estimation of the random dependencies.
After the column shuffling, the MI of the shuffled MSA is calculated. The process of
shuffling and the subsequent calculation of the MI is done n times. The average of the
n runs gives an estimation of the random dependencies or basic noise of the observed
columns.
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Following the noise estimation, the concept of Z-scores is used to decide about the
significance of the MI values. A Z-score counts the number of standard deviations a value
differs from the sample mean. Weil et al. calculate the respective Z-scores of the MI for
two columns i and j as follows:

Z(i, j) =
MI(i, j) − M̃I(i, j)√

var(M̃I(i, j))
(4.4)

with M̃I(i, j) being the mean MI value of the shuffled columns i and j and var(M̃I(i, j))
being the respective variance.
Significant and non-significant MI values can be discriminated by the a priori definition of
a threshold. If the Z-score of the MI value of a specific pair of columns i and j surpasses
the defined threshold, the respective MI value is significant, else it is discarded as noise.

Structural coupling

In addition to the computation of the MI, the R BioPhysConnectoR [77] package provides
an algorithm to analyse the co-evolution of sequence and structure, termed structural
coupling. The idea of the method is to combine the knowledge about the sequence
conservation analysed by the MI with information on the structural conservation of the
respective positions of the protein structure.
The structural coupling approach is based on the work of Brooks et al. [18] and Go et al.
[60] who introduced a method to describe the spatial fluctuations of atoms in molecules.
They define the coordinates of an atom in a protein structure as the mean position of the
real atom fluctuations. Structural coupling combines this idea with an elastic network
models approach described by Bahar et al. [6].
Using the structural coupling analysis, the spatial protein representation is reduced to the
Cα atoms of the amino acid residues. Neighbouring Cα’s of the original protein structure
are connected by springs. The result of this reduction process is a simplified representation
of the contacts of the original protein structure p0, which can be represented as a matrix
m0. An entry m0ij

in this matrix represents the presence or absence of a contact of the
Cα atoms i and j. During analysis, the contacts are switched off one after the other and
the protein rearranges, resulting in a modified structure p1 and the respective matrix
representation m1. In the next step, the spatial differences of the original and the altered
structure are compared by the calculation of the Frobenius norm of the contact matrices
m0 and m1. Large values of the Frobenius norm represent large deviations of the structures
p0 and p1, and thus the causative contact in the original protein structure is supposed to
be highly conserved.
The idea behind the coupling of the amino acid sequence and the protein structure states
that an amino acid contact that both shows a high MI value and is essential to conserve
the protein structure is biologically highly important in terms of protein function.
A detailed description of the theory was published in [77, 76, 158].
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Cross correlation

By definition, MI values are always positive. Though the method is highly suitable to
reveal the co-evolving positions, is fails to discriminate positive and negative epistatic
effects of the coupled positions. To cope with this problem, we used the measure of cross
correlation (CC). The method was recently described by Kouyos et al. [94] and Dahirel
et al. [32]. Both groups used a formulation of the cross correlation to analyse epistatic
interactions of an MSA of HIV sequences. While Kouyous et al. determined properties
of the fitness landscape of the HIV protease and the partial reverse transcriptase gene,
Dahirel et al. analysed the gag, nef, and rt gene to detect coupled regions, so-called sectors
of immunological vulnerability, which they hypothesised to suppress the viral reproduction
upon simultaneous targeting by anti-HIV drugs.
Dahirel et al. [32] formulated the following equation to compute the cross correlation cij

of a pair of sequence positions i and j:

cij =
< xi, xj > − < xi >< xj >√

(< x2
i > − < xi >2)(< x2

j > − < xj >2)
(4.5)

The values xi and xj indicate the presence or absence of the consensus amino acid at
position i and j. Thus, < xi > and < xi > describe the counts of a mutation in position i

and j in all sequences of the MSA, while < xi, xj > describes the number of the mutual
occurrences of mutations in both positions. A higher frequency of the mutual occurrence
compared to the single mutations is indicative of positive epistasis, while a lower frequency
is indicative of negative epistasis. The observed difference of the mutual and single muta-
tions is divided by the variance of the observed mutations.
The evaluation of positions i and j is commutative, thus cij and cji are identical, and the
resulting cross correlation matrix C is symmetric. Since all entries of C are real-valued, C

can be diagonalized and all eigenvalues of C are real.

Validation and noise reduction of the cross correlation Kouyous et al. [94] validated
the method using measurements of in vitro fitness of 70,081 virus samples of HIV-infected
patients [74]. They compared the predicted values with the in vitro replicative capacity of
HIV protease and reverse transcriptase mutants. They found a Spearman rank correlation
of 0.33 (p ≤ 10−16) between the in vitro replicative fitness and the in silco results.
In contrast to the biological validation of Kouyos et al. [94], Dahirel et al. [32] focussed
on a mathematical method to discriminate significant correlations from background noise.
Furthermore, they addressed the problem of finite size effects due to the limited number
of sequences.
In detail, Dahirel et al. determined the eigenvalues λC and the corresponding eigenvec-
tors kC of the cross correlation matrix C, which entries are defined by Equation 4.5.
Subsequently, they randomised the underlying MSA by randomly shuffling each column
of the sequence alignment independently, analogue to the shuffle null model Weil et al.
[158] developed for the noise-reduction of the MI. The column shuffling removed the
dependencies between two columns i and j in the original alignment, but conserved the
amino acid composition and thus the phylogenetical and statistical properties within each
column.
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Subsequent to the shuffling, the authors computed the cross correlation matrix Cshuff

based on Equation 4.5 and determined the eigenvalues λshuff and the eigenvectors kshuff of
the shuffled matrix. This process was done 1,000 times, resulting in 1,000 cross correlation
matrices Cshuff and their corresponding eigenvalues and eigenvectors.
They determined the largest eigenvalue λshuffmax

across all 1,000 random matrices and
reduced the original cross correlation matrix C to the eigenvalues λC>

= λC > λshuffmax

that are larger than the largest eigenvalue λshuffmax
.

A matrix reconstruction using the significant eigenvalues λC>
and corresponding eigenvec-

tors k> yielded the matrix Cclean, which represented the original cross correlation matrix,
cleared from noise and random correlations, but preserving the significant correlations of
the underlying MSA.
So far, we found the approach to be closely related to the idea of principal component
analysis (PCA) first presented by Pearson [115] and recently reviewed by Abdi et al. [1]. In
their approach, Dahirel et al. stated further, that the contribution of the largest eigenvalue
λCmax

of C is a result of the phylogenetic history of the related sequences in the MSA.
They claimed that the contribution of λCmax

merely resembles phylogeny, but contains no
relevant co-evolutionary information. Thus, they removed the largest eigenvalue λCmax

and
corresponding eigenvector kCmax

from C and recomputed the eigenspectrum of C, since
they state that the largest eigenvalue λCmax

influences the remaining eigenvalues. Finally,
they reconstruct Ccleanphyl

from the recomputed eigenvalues.
The details and the derivation of this argument are described in the supplementary material
of the publication by Dahirel et al. [32].

Biological networks

Graph or network theory is in wide-spread use throughout different research areas, since it
provides comfortable and well-studied methods to analyse properties of complex interrelated
data. The basics were coined by Euler [48] formulating the Königsberger bridge problem in
the eighteenth century. Since then, almost any kind of data was transferred onto network
structures for analysis. Kauffman [88] was one of the first to present interaction networks
to analyse aggregated nets of chemical reactions and the method is used until today to
describe the dynamic interactions of cellular metabolic processes [83].
In our work, we used network theory to analyse the fitness landscapes of populations of
V3 loop sequences. The analyses were performed using the Python Networkx [120, 69]
package, which provides a number of fast routines for the calculation of basic network
measures.

Basic network terms A simple graph G is mathematically described as a tuple (V, E),
where V is the non-empty set of all vertices (or nodes) and E ⊆ V ×V the set of unordered
pairs of vertices, the edges of G. In a directed graph, the set of edges E consists of ordered
pairs of vertices.
The number of all vertices |V (G)| is called the order n(G) of the graph, while the number
of all edges |E(G)| determines the size e(G) of the graph.
Based on these definitions, we introduce a number of measures from graph theory that
we used to analyse the networks of the V3 loop sequences. The definitions in this section
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are based on Rosens book of Discrete Mathematics and its applications [129], if no other
source is given.

Adjacency Two vertices vi and vj are called adjacent (or neighbours) in G if there exists
an edge eij in G. The edge eij is called incident with the vertices vi and vj. While eij is
said to connect vi and vj, vi and vj are endpoints of eij.
If a directed graph G contains the edge eij, vi is adjacent to vj and vj is adjacent from vj,
while vi is the initial and vj the terminal vertex of eij.
Two edges exi and eix of an undirected graph are adjacent or consecutive if they are
incident with the same vertex vi. In a directed graph, two edges or arrows eij and ejk are
called adjacent or consecutive if the terminal vertex of the first edge eij is the start vertex
of the succeeding second edge ejk.

Paths A path is a sequence of adjacent edges in a graph. The length n of the path in an
unweighted graph is the number of edges traversed. A path of length n connecting v0 and
vn can be described by listing the vertex sequence v0, v1, ..., vn.
The shortest path between two nodes vi and vj is the path with the least number of edges
starting in vi and ending in vj or vice versa. In a graph G, the average shortest path l(G)
is the average of all shortest paths between any possible pair of vertices in the graph.

Node degree In an undirected graph, the degree kG(vi) of a vertex vi is the number of
all vertices incident with vi in G.
In a directed graph, the degree of a vertex vi is discriminated into an in-degree k−

G(vi) and
an out-degree k+

G(vi). While the in-degree is the number of all edges with vi as final vertex,
the out-degree is the number of all edges with vi as initial vertex. Incoming edges on a
vertex of a directed graph G are represented by an arrow head, while outgoing edges are
represented as an arrow tail.
To describe a network or to compare the structure of two networks, we can determine the
average, minimal, and maximal (in- or out-)degree of all vertices, as well as the degree
distribution of all vertices of the networks.

in-degree k+
G(vi) =

n(G)∑

j=1

eji

out-degree k−
G(vi) =

n(G)∑

j=1

eij

degree kG(vi) = k+
G(vi) + k−

G(vi)

(4.6)

with eij being an edge directed from vertex i towards vertex j.

Connectedness Two vertices vi and vj are called connected, if there exists a path vi, ..., vj

between them in the graph.
A graph is called connected, if such a path can be found for every pair of vertices. A
directed graph is strongly connected if there is a path from vi to vj and from vj to vi for
each pair vi and vj of the graph, and it is weakly connected, if the underlying undirected
graph is connected.
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If the graph is not connected, then it can be divided into at least two connected components,
which are disjoint and disjunct connected subgraphs of the original graph.
A vertex vi of a graph G is isolated, if the degree kG(vi) = 0.

Reachability In a graph G, a vertex vj is reachable from vi in G, if there exists a path
from vi to vj. Each vertex is reachable from any other vertex, if an undirected graph is
connected or a directed graph is strongly connected.

Betweenness The betweenness bvi
, or betweenness centrality, of a vertex vi in a graph

G is calculated as the fraction of the number of all shortest paths pvj ,vi,vk
in the network

that pass through vi.

bvi
=

∑

j,k

pvj ,vi,vk

pvj ,vk

(4.7)

for vj Ó= vi, vi Ó= vk, and vk Ó= vj.
The betweenness of an edge eij can be defined correspondingly as the fraction of all shortest
paths that contain eij.

Closeness The closeness cvi
of a vertex vi is the reciprocal of the average path length

of all shortest paths to all other vertices vj of a graph G. If G consists of n vertices, the
closeness cvi

of a vertex vi is computed as follows:

cvi
=

1
1
n

∑n
i=1 pvi,vj

(4.8)

for vi Ó= vj.
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4.3. Data

The second part of the present work focusses on the determination of two fitness functions
to describe the replicative fitness of R5and X4-tropic sequences of the V3 loop of HIV-1.
We developed the multi-step approach presented in Figure 4.1 to derive the fitness functions.
The detailed description of each task is given in the following sections.

Los Alamos sequences

co-receptor prediction

multiple sequence alignment 

consensus sequence

co-evolving positions 

noise correction

fitepi

fitmain

data sets

Figure 4.1.: Sequence of steps to derive main fitness and epistatic interactions
The figure presents an overview over the sequence of tasks to derive the fitness functions. We
separated the Los Alamos V3 loop sequences into an R5 and X4 data set and calculated the
respective MSAs. Based on the MSAs, we derived position specific aa frequencies and consensus
sequences. The results were used to determine the main and the epistatic contributions of the
fitness functions.
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4. Fitness function and fitness landscape

4.3.1. Sequence collection

In the first step, we retrieved all HIV-1 subtype B V3 loop sequences from the Los Alamos
HIV database [100] that were accessible until 10.05.2012. We used the following parameters
for the database search:

• Virus: HIV-1
• Subtype: B
• Genomic Region: V3

All other categories were set to default.
Nucleotide sequences of the V3 loop were the largest group of all HIV-1 sequences in the
data base, providing 81,651 loop sequences. For reasons we could not clarify, the database
search labelled 1,963 sequences as being problematic. We removed those from the search
result and requested the remaining 79,688 nucleotide sequences for download.
44,656 (55%) of the sequences were extracted from blood samples of patients in the
United States, whereas only 430 sequences from Germany were contained in the data
set. Detailed statistics of the sampling country of the sequences are presented in Figure 4.2.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

U
S

C
H

N
L

F
R

G
B

IT E
S

B
E

S
E

T
T

B
R

J
P

C
A

A
U

P
R

C
N

D
K

D
E

V
E

A
R

D
O

K
R

T
W

P
T

o
th

e
r

n
o
. 

o
f 

s
e
q
u
e
n
c
e
s

country

Figure 4.2.: Statistics of Los Alamos V3 loop sequences: country of sample The figure distin-
guishes the sequences based on the sampling country.
(US: United States of America, CH: Switzerland, NL: Netherlands, FR: France, GB: Great
Britain, IT: Italy, ES: Spain, BE: Belgium, SE: Sweden, TT: Trinidad and Tobago, BR: Brazil,
JP: Japan, CA: Canada, AU: Australia, PR: Puerto Rico, CN: China, DK: Denmark, DE:
Germany, VE: Bolivarian Republic of Venezuela, AR: Argentina, DO: Dominican Republic,
KR: Republic of Korea, TW: Taiwan, Province of China, PT: Portugal)

The sequences were collected in the years from 1978 to 2011, for 24,415 sequences the
year of sampling was missing. Figure 4.3 describes the distribution of sequences over time.
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Figure 4.3.: Statistics of Los Alamos V3 loop sequences: year of sample The figure distinguishes
the sequences based on the sampling year.

For 2,768 patients, at least one sequence was available. Of those, 2,096 patients con-
tributed at least five sequences to the data set. For 7,324 sequences, a patient identification
code was missing. More detailed statistics on the sequence distribution per patient are
depicted in Figure 4.4.
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Figure 4.4.: Statistics of Los Alamos V3 loop sequences: sequences per patient The figure
describes how many patients with at least 1/5/10/20/50/100/200 sequences are included in
the data set.

In addition to the sampling country, the sampling year and the unique patient identifier,
the database provided a co-receptor phenotype for 4,160 of the 79,688 sequences. Of those,
3,301 sequences were annotated with R5 label, 199 with X4 label, and 500 sequences with
both R5 and X4. The remaining 160 sequences were annotated with other known HIV
co-receptors.
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4.3.2. Separation into R5 and X4 subset

The Los Alamos sequence data served as a basis to determine fitness functions to describe
the replicative capacity of R5- and X4-tropic sequences. Since a high quality of the data set
is indispensable for the derivation of the fitness functions, we performed several analyses
of the sequence data set.

R5 and X4 sequence subsets

Starting from the 79,688 V3 loop sequences, we first performed an in silico co-receptor
prediction to separate the sequences into an R5 and an X4 sequence subset. Due to the
upload restriction of geno2pheno [97] to ≤ 50 sequences, we used FSSM [82, 81, 118] for
the first phenotypic predictions.
Following the analyses of Poveda et al. [118] and Low et al. [101], we used a prediction
cutoff value of −8.12: sequences with scores ≤ −8.12 were classified as R5-tropic and
sequences with scores > −8.12 were classified as X4- or dual-tropic.
Upon prediction, FSSM highlighted problematic sequences, either due to alignment errors
or due to prediction values that lay outside the 95% CI of the distribution. We excluded
these sequences from further analyses. FSSM provided valid classifications of 67,770
sequences of 6,403 patients: 47,036 sequences of 4,410 patients were predicted to be
R5-tropic and 20,734 sequences of 1,993 patients to be X4-tropic.

Intra-sample duplicates Intra-sample duplicates are known to be rather a result of the
sequencing technique used in former days than a result of the replicative fitness of the
sequence [146], therefore we next removed sequence duplicates within a patient specific
sample from the data set. In consequence, we had to remove also sequences with missing
patient identifier. This process removed about two thirds of both the R5 and X4 sequences
from the data set, reducing the R5 data set to 15,626 sequences (of 4,410 patients) and
the X4 data set to 7,053 sequences (of 1,993 patients). The rate of about one third of
all sequences being unique could be confirmed by an analysis of the sequences from the
clinical study presented in part one of this work (compare Section 3.3), of which we know
the exact sequencing protocol that was used.
It has to be clarified that the reduced R5 and X4 data sets still span the same sequence
space as the data set including the intra-sample duplicates, but the data sets miss the
information of the frequency of the sequences within a sample. Since the sequence counts
are a determinant of the replicative fitness, the exclusion of intra-sample duplicates reduced
the sequencing bias at cost of a loss of fitness information. Despite, we expect to find
sequences with high fitness not only within one sample but within multiple samples, of
the same or of different patients. Therefore the loss of information on replicative fitness
was rated less severe in comparison to the estimated sequencing bias.
To evaluate the effect of the exclusion on the position specific aa counts of our data
sets, we performed a comparison of the R5 and X4 data set before and after exclusion.
Using ClustalW [149], we created MSAs of the reduced and the full R5 and X4 data
sets. During the alignment process we observed that no gap columns were introduced
into the R5 alignment, it maintained the length of 35 aa. In the case of the X4 data
set, eight gap-dominated columns were introduced into the MSA, due to insertions found
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in single V3 loop sequences of the X4 data subset. Varying alignment parameters did
not further reduce the number of gaps, since some of the unaligned X4-tropic sequences
already contained 43 instead of 35 amino acids. Length polymorphisms of X4 sequences
have already been observed in earlier studies (e.g. [137]).
Due to a better comparability of the R5 and X4 sequences, we reduced the X4 alignment
to a sequence length of 35. Therefore, we aligned the complete MSA of the X4 data set to
four V3 template sequences, one being the standard HIV-1 B consensus sequence HXB2
[70] and the others being the V3 loop sequences of the .pdb structures presented in Section
4.4.4. As expected, this step introduced eight gaps into the four V3 template sequences.
The supernumerary gap columns of the MSA were marked by the introduction of gaps
into the four template sequences. By the removal of those gap-dominated columns, we
trimmed the X4 MSA to a sequence length of 35 aa.
After the computation of the MSAs, we created heat maps of the differences of the position
specific aa counts (left illustration in Figure 4.5). In the case of the R5 MSA, the exclusion
of intra-sample duplicates resulted in small deviations of the position specific conservation
values. The maximal change of the aa counts was as small as 2.06% and was observed in
position 29 for aspartic acid (D). Though the frequency deviations were more pronounced
in the X4 MSA, most changes affected the frequency of position specific gaps, a fact that
is also reflected in the maximal deviation of 13.50% for the deviation of the gap count in
position 24 (compare right image in Figure 4.5).
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Figure 4.5.: Differences in position specific amino acid counts of the full and reduced data
set
The heatmaps illustrate the rate of the frequency difference between the full minus the reduced
data set.
left: The exclusion of intra-sample duplicates from the R5 data set resulted in small deviations
of the position specific aa frequencies.
right: In the X4 data set, the exclusion of intra-sample duplicates resulted in more pronounced
deviations of the position specific aa frequencies, but most changes affected the counts of the
position specific gaps.

US versus non-US samples Following the exclusion of intra-sample duplicates, we
performed additional subset analyses to gain deeper insights into the structure of our data
sets. Using Perl scripts we selected subsets based on different parameters, for example
sampling country, sampling year, or the number of patient specific sequences in the data
set.
We already revealed that 55% of all sequences originate from the US. Therefore we analysed
the differences between the US (7,877 R5 and 3,596 X4) and non-US sequences (7,739 R5
and 3,450 X4).
For the R5 predicted sequences, we could hardly find any differences in the position
specific aa preferences of the US and non-US data set (compare left image in Figure 4.6).
The maximal frequency deviation of 5.46% was observed in positions 13 for amino acid
asparagine (N).
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Figure 4.6.: Differences in position specific amino acid counts of the US and non-US data
subset
The heatmaps illustrate the rate of the frequency differences of the US minus the non-US
data subset.
left: In the R5 data set, the maximal deviation of the position specific aa counts was 0.0546
(5.46%), observed in position 13 for asparagine.
right: Positions 13, 14, and 23 of the X4 MSA showed deviations of the position specific aa
counts of the US data set compared to the non-US data set, with a maximal deviation of
19.19% for threonine (T) in position 23 in the US subset.

In the case of the X4 data set, the analysis showed increased deviations between the
US and non-US sequences (compare right image in Figure 4.6). The largest deviation
occurred in position 23, with a frequency shift of 19.19% between the amount of threonine
(T) and alanine (A). The other positions showed only marginal differences in the position
specific aa probabilities.
For an additional representation of the differences, we created sequence logos of the
X4-tropic US and non-US sequences compare Figure 4.7). The deviations of the sequence
logos did not alter the aa dominance of the consensus sequence, and only marginally
modified the position specific aa probabilities. The largest deviations were found for the
less frequent aa in positions 13 (S,P,R,N) and 24 (T,E,D,R), but histidine (H) in position
13 and glycine (G) in position 24 were still dominant in both data sets. The differences in
the other sequence positions were even smaller, as we have already seen in Figure 4.6.
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Figure 4.7.: Sequence logo of X4 predicted sequences of US and non-US subsets (without du-

plicates)
The hight of the letters (y-axis) describes the position specific aa probability. The
colours illustrate chemical properties: blue: basic (K,R,H), red: acidic (D,E), green: po-
lar (C,G,N,Q,S,T,Y), and black: non-polar/hydrophobic (A,F,I,L,M,P,V,W).
The upper sequence logo describes the position specific aa probability of the 3,596 X4 se-
quences from US, while the lower sequence logo describes the position specific aa probability
of the 3,450 non-US X4 sequences. The sequence logos revealed no differences in the dominant
position specific aa.

Since the position specific aa counts differed in only a few positions between the US
and non-US data set, the respective consensus sequences were not altered by the data
separation. Thus, we did not further consider a separation of our sequences into an US
and a non-US data set.

R5-only samples versus mixed-tropic samples In another subanalysis, we asked for
differences between sequences of patients in early and progressed state of disease. There-
fore we discriminated patients with exclusively R5-tropic sequences from patients with
X4-tropic sequences. We created an R5 sequence subset consisting solely of sequences
of patients without X4 sequences (R5-only). A second data set contained sequences of
those patients with both X4 and R5 predicted sequences, but without sequences from
R5-only patients (mixed X4/R5). A subset of X4-only patients is difficult to gather, since
X4 patients in general also harbour R5 sequences. Thus, we could only perform this weak
separation to get an X4 subset of a reliable size.
The comparison of the sequences of R5-only patients and of mixed X4/R5 patients showed
no significant differences. Similar to the previous analyses, we mainly observed a slight
tendency towards a higher sequence conservation within the R5-only subset, in parallel with
a marginal decrease of the conservation within the mixed X4/R5 subset. The differences
were even smaller than those observed for the US and non-US sequences (data not shown).
Due to the marginal differences between the analysed subsets, we regarded the observed
differences as minor random data fluctuations. Therefore we decided to reduce the se-
quencing bias by the exclusion of the intra-sample duplicates, but to perform no further
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subset separation.

Consistent FSSM and geno2pheno co-receptor prediction A correct separation of
R5- and X4-tropic sequences is essential for our data sets. Therefore, we used geno2pheno
[97] for confirmative predictions of the FSSM [82, 81, 118] co-receptor classification. We
first compared the predictions of FSSM (using the HIV-1 subtype B X4/R5 scoring matrix
and a threshold of −8.12, compare Section 3.2.2) with the geno2pheno predictions (using
a threshold for the FPR of 10%) for a subset of randomly selected V3 loop sequences to
get an idea of the concordance of both tools.
Based on geno2pheno predictions of the Los Alamos data set, we selected 580 random
R5 and 580 random X4 predicted sequences. Using FSSM, we performed a subsequent
prediction of those 1.060 sequences.
Three sequences could not be classified by FSSM due to problems in the alignment process.
Of the remaining 1.057 test sequences, FSSM gave concordant predictions for 477 of the
580 R5 sequences (82.24%) and for 399 of the 580 X4 sequences (68.79%). In summary, 281
R5 and X4 predictions (24.29%) were discordant between the tools. The rate of discordant
predictions of the random test set was confirmed during the analyses of the complete data
set.
Based on discussions with A. Thielen and an additional search in the published literature,
we could address this problem mainly to the observed length polymorphism of the X4 data.
This phenomenon was earlier analysed in a study by Poveda et al. [137]. For sequences
of uniform length of 35, the researchers found a concordance up to 88% between the
position-specific scoring matrix and geno2pheno algorithms. For V3 loop sequences of
other lengths, the concordance was as low as 55%. These numbers were confirmed in our
analysis.
The discordance is further influence by the design of geno2pheno, which is aimed to
maximize the X4 sensitivity, and by deviations in the underlying consensus sequences of
both prediction tools.
In consequence, a restriction to those sequences consistently predicted by FSSM and
geno2pheno reduced the 15,626 R5 sequences to 14,008 (89.65%) and the 7,053 X4
sequences to 3,409 (48.33%) sequences.

Final R5 and X4 data set In summary, the final data sets consisted of 14,008 R5 and
3,409 X4 sequences, consistently classified by FSSM and geno2pheno to minimize the
prediction bias, and without intra-sample duplicates to reduce the frequency bias resulting
from the sequencing method. Based on four template sequences, the length of the X4
sequences was trimmed to a length of 35 aa (as described in Section 4.3.2). We did not
use any other restriction.
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Figure 4.8.: Differences in sequence conservation of R5 and X4 data set
The heatmap illustrates the position specific aa differences between the R5 data set (14,008
sequences) and the X4 data set (3,409 sequences). The colours represent the position specific
aa probabilities of the R5 data set minus the position specific aa probabilities of the X4 data
set. Most differences accumulate close to the co-receptor determining positions 11 and 25.

We analysed the differences between the final R5 and X4 data set. Figure 4.8 illustrates
the deviations in the position specific aa probabilities. Differences in the R5 and X4
sequence conservation are especially pronounced in positions 9 to 11 (variation in frequency
and conservation of R, K, and S), 19 to 27 (variation in frequency and conservation of A,

G, F, T, I, and V), and 32 (K and Q).
In detail, positions 10 and 11 of the X4 data set show a higher conservation of arginine
(R), a positively charged amino acid. Furthermore, the content of lysine (K), also positively
charged, is slightly increased in positions 25 and 32 of the X4 data set. In contrast, the
neutral amino acid glycine (G) is strongly increased in position 24 of the R5 data set. This
reflects also the maximal deviation of 46.44% between the R5 and X4 data set.
It is well-known from literature [165, 7, 22], that an overall positive net charge of the
V3 loop is essential to utilise CXCR4 as co-receptor. Therefore these observations gave
evidence to evaluate the quality of our data set.
In summary, most position specific aa differences accumulate in the positions flanking posi-
tion 11 and 25, which are the positions that are known to be causative for the co-receptor
tropism. Furthermore, the subsets show a higher position specific aa conservation of the
R5-tropic sequences. The observation that the X4 sequences are more diverse was already
described in previous studies (e.g. [15]) and confirms the quality of our data sets.
The sequence logos of the final R5 and X4 data set are illustrated in Figure 4.9. Based on
the MSAs of the final data sets, we derived the following aa consensus sequences:
R5: CTRPNNNTRK SIHIGPGRAF YATGDIIGDI RQAHC

X4: CTRPNNNTRK SIHIGPGRAF YTTGKIIGDI RQAHC

The consensus sequences differ in positions 22 (R5: A, X4: T) and 25 (R5: D, X4: K), again
confirming the preference of positive charges in the co-receptor determining positions of
the X4 sequences. An in silico co-receptor prediction classified the R5 consensus sequence
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as R5-tropic and the X4 consensus sequence as X4-tropic.
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Figure 4.9.: Amino acid sequence logo of R5 and X4 subset

The figure illustrates the position specific aa probabilities of
(top) 14,008 R5-tropic sequences, and
(bottom) 3,409 X4-tropic sequences (adjusted to a length of 35 aa).
The consensus sequences differ in positions 22 (R5: A, X4: T) and 25 (R5: D, X4: K).
The hight of the letters (y-axis) describes the position specific aa probability. The
colours illustrate chemical properties: blue: basic (K,R,H), red: acidic (D,E), green: po-
lar (C,G,N,Q,S,T,Y), and black: non-polar/hydrophobic (A,F,I,L,M,P,V,W).

In addition to the amino acid consensus sequences, also the corresponding nucleotide (nt)
consensus sequences were determined. Using the original nt sequences as templates, the R5
and X4 aa MSA were back-translated into nt sequences. The dominant nucleotide letter at
each sequence position determined the nt consensus sequence. Due to the length adaptation
of the X4 MSA, the nucleotide consensus sequences are both of length 105. The sequence
logos in Figure 4.10 illustrate the position specific nt probabilities of the R5 and X4 nt MSA.
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Figure 4.10.: Nucleotide sequence logo of R5 and X4 subset

The figure illustrates the position specific nt probabilities of
(top) 14,008 R5-tropic sequences, and
(bottom) 3,409 X4-tropic sequences (adjusted to a length of 105 nt).
The consensus sequences differ in positions 22 (R5: A, X4: T) and 25 (R5: D, X4: K).
The hight of the letters (y-axis) describes the position specific amino acid probability. The
colours illustrate the nt A and T in orange and C and G in blue.

We derived the following R5 nucleotide consensus sequence:
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA CCA GGG AGA

GCA TTT TAT GCA ACA GGA GAA ATA ATA GGA GAT ATA AGA CAA GCA CAT TGT

and the respective X4 consensus sequence from the nt MSAs:
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA CCA GGG AGA
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GCA TTT TAT ACA ACA GGA AAA ATA ATA GGA GAT ATA AGA CAA GCA CAT TGT

Analogue to the aa consensus sequences, the R5 and X4 nt consensus sequences differed
only in codons 22 (R5: GCA, X4: ACA, nt positions 64 to 66) and 25 (R5: GAA, X4: AAA, nt
positions 73 to 75).
During this analysis, we observed a peculiarity about the nt and aa consensus sequence of
the R5 data set. The aa translation of the nt consensus sequence of R5 did not exactly
match the aa consensus sequence. Codon 25 (GAA) translates into glutamic acid (E), while
we found aspartic acid (D) in the respective aa position 25, which would be encoded by
codon GAC.
An examination of our data showed that this peculiarity was not an error in our consensus
sequences, but a result of the most weakly conserved nucleotide position 75, the third
position in the differing codon. In position 75 of the nucleotide MSA, the nucleotides
adenine (A) and cytosine (C) occurred with almost similar probability, but with a slight
preference towards nucleotide A, while amino acid D was slightly more frequent in the
corresponding position 25 of the aa sequence.
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4.4. Results

Based on the previously described R5 and X4 sequence data sets, we give a detailed
description of the determination of the R5 and X4 fitness function. Additive and multi-
plicative terms for the fitness functions are introduced and discussed. In the second part
of the section, the underlying R5 and X4 fitness landscapes are analysed.

4.4.1. Determination of R5 and X4 fitness function

We derived an independent R5 and X4 fitness functions from the respective R5 and X4
MSA of the V3 loop. Both fitness functions were built of a main fitness term, evaluating
the one-dimensional aa sequence, and an epistatic term, accounting for the effects of
evolutionary coupled pairs of mutations.

4.4.2. Position specific amino acid counts

Following the sequence of steps presented in Figure 4.1, we first determined the frequency
of each aa at each alignment position, separately for the R5 and X4 data set.
Figure 4.11 illustrates the position specific aa counts of the 14,008 R5 sequences as a
heatmap, and Table 4.11 contains the respective numerical values. Since the sequence
space of R5 was highly conserved, only one amino acid was dominant in most sequence
positions. The few positions with ambiguous aa preferences were found in the regions
flanking positions 11 and 25. For example histidine (H) is dominant in position 13, but
only in half of the sequences (7,888 of 14,008). The remaining sequences mainly contain
proline (P, 2,723), asparagine (N, 1,926), serine (S, 658), and threonine (T, 546).
A heatmap of the position specific aa counts of the 3,409 X4 sequences is given in Figure
4.12. Though we adapted the X4 MSA to a length of 35 amino acids, it still contained 679
gaps that were scattered throughout the sequences and positions, with most of the gaps
accumulated in position 24.
In contrast to the R5 data set, a number of sequence positions of the X4 data set did
not show a clear dominance of any aa, an observation that applied in particular for the
co-receptor determining positions 11 and 25. Table 4.12, presents the exact position
specific aa frequencies and clarifies this observation. In position 11, arginine (R) and serine
(S) showed almost balanced counts of 1,086 and 1,184. This applied also for threonine (T,
1,754) and alanine (A, 1,381) in position 22. Most pronounced is the diversity for sequence
position 25, with comparable frequencies for the four aa lysine (K, 700), glutamic acid (E,
661), glutamine (Q, 563), and arginine (R, 513).
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Figure 4.11.: Position specific amino acid counts in the R5 data set
The figure presents the position specific aa counts of the 14,008 R5 sequences and the table
lists the respective numerical values. In general, one aa was dominant in each positions of
the R5 MSA, but we found a few ambiguous positions in the regions flanking positions 11
and 25.
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Figure 4.12.: Position specific amino acid counts in the X4 data set
The figure presents the position specific aa counts of the 3,409 X4 sequences and the table
lists the respective numerical values. Many sequence positions are highly diverse, some
dominated by two aa at similar rates (e.g. R and S in position 11), others by three to four
aa (e.g. position 25).
In some positions, no clear dominance of any aa could be observed, in particular for the
co-receptor determining positions 11 and 25.
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The derivation of the position specific aa frequencies started from 79,688 V3 loop
sequences. During data analysis we concluded that our data reduction method did not
lead to relevant changes in the position specific aa probabilities. Despite this fact, we are
aware that our data set is not infinite and does not cover the complete V3 loop sequence
space. We presumably missed V3 loop sequences with further position specific aa that are
not represented in our finite data sets.
This kind of problems, known as regularisation problems, was described by Tikhonov [150].
The method of regularisation tries to find suitable approximations to solve ill-conditioned
mathematical problems that arose from finite data or noise contributions.
We addressed the finite size effect of our data by the use of a regularisation parameter γ

and adapted the observed aa frequencies using the following equation:

freqnewij
= freqorigij

+ γ (4.9)

By an addition of γ = 1 to any frequency value freqorigij
of any amino acid j at any

sequence position i, we accounted for amino acids that we possibly have not seen at
position i in our data set. This regularisation equation explicitly includes positions with
amino acid counts of zero.
The selection of a small γ value guaranteed only marginal alterations of the real amino
acid frequencies of our data.

4.4.3. Main fitness contribution fitmain

The position specific aa counts of the R5 and X4 data set are the basis for the computation
of the main fitness contribution fitmain. Given a specific V3 loop sequence, we compute
two independent fitness contributions fitmainR5

and fitmainX4
, using the respective R5 or

X4 frequency table (compare Figures 4.11 and 4.12). Based on the frequencies freqijc
, we

calculated the position specific aa probabilities pijc
= freqijc

Nc
, with c being the respective

co-receptor and NR5 = 14,008 and NX4 = 3,409 being the number of R5 and X4 sequences.
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We considered two possible formulations to calculate the replicative fitness, an additive
and a multiplicative fitness function:

addF itmainR5
=

35∑

i=1

20∑

j=1

pijR5
rij ;

addF itmainX4
=

35∑

i=1

20∑

j=1

pijX4
rij ;

multF itmainR5
=

35∏

i=1

20∑

j=1

pijR5
rij ;

multF itmainX4
=

35∏

i=1

20∑

j=1

pijX4
rij

with rij =




1 if aa j is at position i

0 else

(4.10)

and the probability pijR5
of aa j at position i in the R5 data set and the probability pijX4

of aa j at position i in the X4 data set.
For any sequence, rij = 0 for all but amino acid j at position i, and thus the inner sum∑

pijrij = 0.0 for all but one amino acid.
Using the additive fitness function defined in Equation 4.10, we summed up the respective
aa 35 probabilities in each position. Maximal fitness values addF itmainR5

= 31.26 and
addF itmainX4

= 27.26 were assigned to the respective R5 and X4 consensus sequence. The
deviations of the additive main fitness contribution from the absolute maximum of 35.0
reflected the deviations in the conservation of the sequence positions.
To observe the impact of an aa mutation on the replicative fitness, we analysed a number
of random sequence examples. For clarification, a small example of two shortened V3 loop
sequences a and b (V3 loop positions one to 11) is presented. Sequence a is composed
of the consensus amino acids, while position seven of sequence b carries a biologically
unfavourable mutation (E) that was not observed at this position in both data sets.
We computed the fitness of the example sequences based on the aa frequencies freqijR5

and freqijX4
shown in Tables 4.11 and 4.12, altered by the regularisation Equation 4.9:

sequence a: CTRPNNNTRKS

addF itmainR5
(a) = 14009+12050+14009+13630+11178+13836+13926+13958+13699+11476+11249

14008+20·γ
= 10.20

addF itmainX4
(a) = 3410+2851+3410+3340+2505+3109+2915+3101+2749+2247+1185

3409+20·γ
= 8.99

sequence b: CTRPNNETRKS

addF itmainR5
(b) = 14009+12050+14009+13630+11178+13836+1+13958+13699+11476+11249

14008+20·γ
= 9.20
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addF itmainX4
(b) = 3410+2851+3410+3340+2505+3109+1+3101+2749+2247+1185

3409+20·γ
= 8.14

The examples showed deviations of the additive replicative fitness of ≈ 1.0 for the R5
fitness function and of 0.85 for the X4 fitness function, reflecting the reduced replicative
fitness of the mutated aa in position seven. Thus, the mutation of a highly conserved aa
into an aa not observed in that sequence position of the underlying MSA leads to a fitness
reduction of ≈ 1.0.
The regularisation Equation 4.9 with γ = 1 changed the additive fitness of the consensus
sequences in two decimal points (data not shown).
In the alternative formulation of the main fitness contributions, we multiplied the position
specific aa probabilities. In this case, maximal fitness values multF itmainR5

= 1.149 · 10−2

and multF itmainX4
= 2.779 · 10−5 were calculated for the consensus R5 and X4 sequence.

The consensus sequence maxima differed remarkably from the theoretic fitness maximum of
1.0 (1.035), which would be assigned to a completely conserved data set. These deviations
reflected the variability in the position specific conservation of the aa sequences.
We again demonstrate the calculation of the replicative fitness for sequences a and b,
carrying the aa mutation E in position seven.

sequence a: CTRPNNNTRKS

multF itmainR5
(a) = 14009·12050·14009·13630·11178·13836·13926·13959·13699·11476·11249

(14008+γ)11 = 0.42

multF itmainX4
(a) = 3410·2851·3410·3340·2505·3109·2915·3101·2749·2249·1185

(3409+γ)11 = 0.08

sequence b: CTRPNNETRKS

multF itmainR5
(b) = 14009·12050·14009·13630·11178·13836·1·13959·13699·11476·11249

(14008+γ)11 = 3.02 · 10−5

multF itmainX4
(b) = 3410·2851·3410·3340·2505·3109·1·3101·2749·2249·1185

(3409+γ)11 = 2.70 · 10−5

In case of the multiplicative fitness function, the mutation of a conserved aa was highly
pronounced and resulted in a maximal fitness reduction of 1

(14008+γ)
≈ 104 for the multi-

plicative R5 fitness function and in a maximal fitness reduction of 1
(3409+γ)

≈ 103 for the

multiplicative X4 fitness function. This variation of the replicative fitness was in a range
we would expect from an aa that is biologically and chemically unfavourable.
An analysis of the influence of the regularisation Equation 4.9 with γ = 1 revealed that the
regularisation altered the fitness value of the consensus sequences in five (R5) respective
four (X4) decimal points (data not shown), except for the case when a frequency of 0 is
replaced by a frequency of γ = 1. In that case, the regularisation Equation 4.9 with γ = 1
avoids the multiplication of a zero probability and restricts a resulting zero fitness.
Based on these observations, in combination with the simulation results we present in
Section 5.3.1, we decided to use the multiplicative formulation of the fitness function.
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4.4.4. Counts of pairs of coupled mutations

The second part of the fitness function is an epistatic fitness contribution. Epistatic
positions are characterised by a coupled evolution, meaning that mutations of the amino
acids at two (or more) positions of the V3 loop are linked and the occurrence of an aa
mutation in one position influences the aa in the other position.
For the replicative capacity of an individual, the epistatic fitness effect can either be
positive or negative. If the mutual occurrence of two aa mutations mi and mj in two
coupled positions i and j leads to a fitness benefit compared to the fitness effects of both
single mutations (e.g. two cysteine residues that build a disulfide bridge), we speak of
positive epistasis. In the case of a negative epistatic effect, two contemporary aa mutations
lead to a decreased replicative fitness compared to the sole occurrence, for example due to
steric hindrance in the case of two large aa in close proximity.
We discriminated positions of positive and negative epistatic based on the sign of the
entries of the cross correlation matrix described in Section 4.2.1.

Structural coupling

There are different methods to detect co-evolving positions in sequences. We first used
the measure of mutual information complemented by the structural coupling analysis as
provided by the R Bioconductor [121, 77] package to determine pairs of co-evolutionary
coupled positions in the R5 and X4 MSA.
The structural coupling analysis is based on an MSA and an additional crystal structure
of the respective molecule. To obtain a crystal structure of the V3 loop, we used the PDB
data base [12, 11], an archive of macromolecular structures. A search for ’env HIV’ in
the database resulted in 104 structure hits, a search for ’gp120’ delivered 153 hits and
searching for ’V3’ we found 86 structures. The different search results were mainly subsets
of each other.
A close inspection of the files revealed that most of the structures contained incomplete
V3 loop sequences. Especially the gp120 residues 300 to 320 (V3 loop positions five to 25)
were missing in almost all .pdb structure files.
At the date of our search, only the following three .pdb files contained complete HIV-1 V3
loops:

1CE4.pdb The file [153] contained a conformational model for the consensus V3 loop of
the HIV-1 envelope protein gp120 published in 1997. The authors presented
no unique crystal structure, but described a summary of observations from
several structures, and combined them into one consensus model. The
resolution of the structure thus could not be determined. In the 1CE4.pdb
structure, a synthetically disulfide bridge between cys296 (loop position 1)
and cys331 (loop position 35) has been introduced due to crystallisation
issues. In consequence, we did not consider this contact during the structural
coupling analysis.
We extracted the following aa sequence of the V3 loop from the file:
CTRPNNNTRK SIHIGPGRAF YTTGEIIGDI RQAHC

2QAD.pdb In 2007, the group of Kwong et al. [78] published the structure file 2QAD.pdb.
The file contained the spatial structure of a tyrosine-sulfated antibody,
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complexed with the complete HIV-1 envelope protein gp120 and the CD4
receptor. The resolution of the file was 3.3 Å.
We trimmed the molecule to the V3 loop and extracted the following aa
sequence:
CTRPNNNTRK SINIGPGRAL YTTGEIIGDI RQAHC

2B4C.pdb The third structure was also published from the group of Kwong [79]. The
file 2B4C.pdb contained a crystal structure of the gp120 core protein of
HIV-1, complexed with CD4 and an X5 antibody. The resolution of the file
was specified as 3.3 Å.
We extracted the following sequence, restricted to the V3 loop residues, from
the file:
CTRPNQNTRK SIHIGPGRAF YTTGEIIGDI RQAHC

Though the research groups of Zolla-Pazner et al. and Kwong et al. did excessive research
in the field of V3 loop structure, no further V3 loop structures were available. The majority
of the envelope structures was lacking the V3 region or missed at least the central residues
of the loop due to problems upon the crystallisation.
We used the BALLView [107, 106] package to visually inspect the crystal structures and
to restrict the sequence to fit the V3 loop region. Figure 4.13 illustrates the three V3 loop
structures we extracted from the files.

(a) (b) (c)

Figure 4.13.: Selected V3 loop structures
The illustration presents the V3 loop structures extracted from the files 1CE4.pdb (left),
2QAD.pdb (center), and 2B4C.pdb (right). The co-receptor determining position 11 is
coloured in blue and position 25 in yellow.

The BALLView software package furthermore enabled us to calculate the root mean
square deviation (RMSD), a measure used to determine spatial deviations between protein
structures. The best match of the Cα atoms of the protein backbone of the three V3 loop
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structures is depicted in Figure 4.14.
Using the backbone mapping, BALLView calculated the following RMSDs:

• 1CE4 - 2QAD: 10.20 Å
• 1CE4 - 2B4C : 7.55 Å
• 2B4C - 2QAD: 5.84 Å

Regarding the resolution of the crystal structures, the RMSD of each pair of structures
was small, thus we decided to perform a coupling analysis for all three structures.

Figure 4.14.: Optimal match of selected V3 loop structures
The figure illustrates the best match of the Cα atoms of the V3 loop structures 1CE4, 2QAD,
and 2B4C. The amino acid in position 11 is coloured in blue, while position 25 is depicted in
yellow.

Despite several independent approaches with varying parameters, the coupling analysis
did not lead to any meaningful results. We found a number of co-evolving positions
represented by high MI values, but the coupling analyses did not detect positions that
showed a significant signal of structural conservation. The spatial V3 loop structure only
marginally changed upon the disruption of any protein contact. In consequence, we could
not determine positions either in the R5 or in the X4 data set that were both coupled in
sequence and in structure.
During private communication with biologists, we addressed this finding to the fact that
the bound V3 loop is highly conserved in structure, but less conserved in the aa sequence.
The unbound V3 loop in contrast is highly flexible and undergoes large conformational
changes upon binding [7, 22], which are still unresolved in detail [140, 78].
Last but not least, the crystallisation of membrane proteins in general is very challenging
or often impossible without further modifications. The introduction of a synthetic disulfide
bond between positions one and 35 was already described for the structure 1CE4.pdb.
These considerations led us the finding that the structural coupling analysis is not applicable
for the V3 loop.
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Mutual Information

We next concentrated on methods that are solely sequence based. We used the R
Bioconductor [121, 77] package to calculate the mutual information and to detect pairs of
co-evolving sequence positions in the MSAs. For an optimal handling of the 679 gaps we
observed in the X4 MSA, we used the subset mutual information (SUMI) described in
Section 4.2.1. We further applied the shuffle null model of Weil et al. [158] to discriminate
significant co-evolution signals from background noise.
The SUMI values of the sequence positions pairs are depicted in Figure 4.15. The matrix
of the R5 SUMI values showed co-evolutionary signals in positions 13 to 14 linked to
positions 18 and 20. Furthermore, positions five and 25 were weakly coupled to a number
of additional positions, indicated by the increased SUMI values in column 25.
The X4 data set contained an increased number of coupled positions and also higher
SUMI values compared to the R5 data set, but in general, the same regions were detected.
The co-evolutionary X4 signal extended from positions 11 to 14, coupled to positions
19 to 25. In addition, positions 19 to 25 of the X4 data set are evolutionary coupled
intra-sequentially, indicated by the increased SUMI values in positions 19 to 25.
In summary we found increased co-evolutionary signals for the co-receptor determining
positions 11 and 25 and the flanking amino acids.
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Figure 4.15.: Mutual information of R5 and X4 sequence alignment
The heat maps illustrate the R5 SUMI values (left) and the X4 SUMI values (right). In
general, both data sets contain a number of coupled positions in the co-receptor determining
regions, but the coupling is more pronounced in the X4 data set.
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To discriminate the significant SUMI values from the background noise, we used the
Z-score normalisation approach described in Section 4.2.1. The resulting Z-scores are
illustrated in Figure 4.16.
In general, the Z-scores confirmed the pattern of the co-evolving positions and increased
the strength of the signal. The co-evolutionary signal of the R5 MSA was expanded to
positions 11−14 coupled to positions 18−20, the pattern of the X4 MSA was conserved
Z-score normalisation.
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Figure 4.16.: Z-scores of mutual information of R5 and X4 sequence alignment
The heat maps illustrate the Z-scores of the R5 (left) and X4 (right) SUMI values. The
Z-score normalisation expanded the region of the coupled R5 MSA positions towards positions
11−14 linked to positions 18−20 and confirmed the co-evolutionary signal of the X4 MSA.

Apart from the Z-score normalisation approach, Martin et al. [103] presented another
idea to discriminate significant values from background noise. They described a method
using the entropy values H(X, Y ) to normalise the data. To cross-check our findings, we
also applied this normalisation method to the SUMI values. Our analyses confirmed the
co-evolutionary pattern we found upon Z-score normalisation (data not shown).
In summary, we found an evolutionary coupling of the co-receptor determining positions
11 and 25 and their flanking regions. We know from literature [54] that contemporary
mutations of positions 10 to 14 and 25 to 29 of the V3 loop from neutral or negatively
charged residues to positively charged residues are indicative of the co-receptor switch.
Thus, the observed co-evolutionary pattern in the co-receptor determining regions con-
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firmed our expectations about the data and indicated that we found relevant epistatic
positions that were cross-linked during evolution.

Cross correlation

Mutual information values are defined to be positive. Though the SUMI was highly
suitable to reveal the co-evolving positions, the measure failed to discriminate positive and
negative epistatic effects of the coupled positions. To cope with this problem, we applied
the cross correlation method described in Section 4.2.1.

Cross correlation of the R5 and X4 data set

Using Perl [26] and additional content of the packages List [8] and Math::MatrixReal [13],
we computed the cross correlation (CC) matrices of the R5 and X4 MSA using Equation
4.5. The resulting matrices CR5 and CX4 are illustrated in figure 4.17.
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Figure 4.17.: Cross correlation of R5 and X4 sequence alignment
The left heatmap illustrates CR5. While pairs (13,18) and (13,20) were highly positively
correlated, the matrix showed a strong negative correlation for the pair (11,13).
CX4 (right) contained more and increased signals. The pattern of positions 11−14 correlated
to positions 19−24 contained the largest positive values of CX4 for pairs (13,19) and (14,19),
and comprised highly negative correlations. The largest negative correlation was observed
for pair (19,24).

88



4. Fitness function and fitness landscape

Positively correlated positions dominated CR5. The correlations of position 14 coupled
to positions 18−20 were pronounced. In contrast, the pair (11,13) showed the largest
negative correlation.
Similar to the MI approach, CX4 contained a higher frequency of cross linked positions.
Furthermore, the CC analysis revealed a high number of negatively correlated pairs in
CX4 compared to CR5.
In detail, positions 11−14 were positively correlated with positions 19−20, and negatively
correlated with positions 22−24. This pattern contained the largest positive values of CX4

for pairs (13,19) and (14,19), and also the highly negatively correlated pair (14, 24). The
largest negative correlation was calculated for the pair (19,24).
The correlations of positions 1, 3, and 35 were ∼ 0.0 in both matrices, since the positions
of the respective MSAs were highly conserved.
Next, we applied the noise reduction method to the CC matrices. After a column shuffling
of both the R5 and the X4 MSA, we calculated the matrices CR5shuff

and CX4shuff
and

performed eigenvalue decompositions. We found the largest eigenvalue in the sixth shuffling
run for the R5 MSA and the 13th for the X4 MSA, therefore we stopped the shuffling
after 500 runs for each alignment.
The resulting eigenvalues of the real and column-shuffled MSAs are illustrated in Figure
4.18. We can clearly see the differences between the eigenvalues of the shuffled alignments,
which concentrate in the range from 0.7 to 1.2 for both data sets, and the eigenvalues
λR5 and λX4 of the original MSAs that are spread over a range of 0.3 to 2.8. The largest
eigenvalues of the shuffled MSAs were λR5shuffmax

= 1.177 and λX4shuffmax
= 1.221.

The thresholds that we used for separation were determined as half the distance of the
largest real eigenvalue that was smaller and the smallest real eigenvalue that was larger
than the largest random eigenvalue. Based on these thresholds, we kept four eigenvalues of
the R5 MSA and six eigenvalues of the X4 MSA. From these eigenvalues and corresponding
eigenvectors, we reconstructed the noise-reduced CC matrices for both data sets. The
reconstructed matrices are depicted in Figure 4.19.
An analysis of the differences of the original CC CR5 and CX4 in Figure 4.17 and the
noise-corrected matrices CR5clean

and CX4clean
in Figure 4.19 revealed that the method of

noise-reduction worked as intended. While the previously identified cross-linked pairs were
conserved by the method, the signals increased and became more pronounced.
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Figure 4.18.: Eigenvalues of R5 and X4 CC matrices
The figures illustrate the eigenvalues of the CC matrix of the original MSAs in red, the
eigenvalues of the matrices of the shuffled MSAs in blue, and the selected threshold as a
black dashed line. Four eigenvalues λR5 of the R5 MSA (left), and six eigenvalues λX4 of
the X4 MSA (right) were larger than the threshold.

In their approach, Dahirel et al. [32] next removed the influence of the largest eigenvalue
λCmax

and the corresponding eigenvector kCmax
of C, since they claimed this contribution

merely resembled the phylogenetic history of the data and contained no relevant co-
evolutionary information. After a recalculation of the eigenspectrum, the researchers
reconstructed the cross correlation matrix Ccleanphyl

.
Based on the similarity of the presented method to the principal component analysis
(PCA), we were not convinced to remove the largest eigenvalue of the matrices, since in a
PCA the largest eigenvalue is the one that describes the majority of the data.
For clarification, we computed Ccleanphyl

using a simplified approach. We removed the largest
eigenvalues of CR5clean

and CX4clean
and directly reconstructed the matrices CR5cleanphyl

and

CX4cleanphyl
, without a recalculation of the eigenspectrum.

An analysis of the differences of the matrices before and after removal of the largest
eigenvalue λCmax

showed that the exclusion of the largest eigenvalue in general conserved
the co-evolutionary pattern, but decreased the strength of the signal (data not shown).
From this observation, we suggested that our data originated from a consistent phylogenetic
background. Due to the small impact of this additional data processing, we skipped this
step and used the noise-corrected matrices CR5clean

and CX4clean
for further computations.

90



4. Fitness function and fitness landscape

1 5 10 15 20 25 30 35

sequence position

1

5

10

15

20

25

30

35

s
e
q
u
e
n
c
e
 p

o
s
it
io

n

1 5 10 15 20 25 30 35

sequence position

1

5

10

15

20

25

30

35

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

Figure 4.19.: Noise-reduced CC matrices of R5 and X4 MSA:
The left figure illustrates the reconstructed matrix CR5clean

, and the right figure the matrix
CX4clean

. Noise-reduction conserved and pronounced the co-evolutionary signals.

A comparison of the CC matrices depicted in Figure 4.19 on the one hand and the MI
Z-score matrices presented in Figure 4.16 on the other hand revealed, that both the CC and
the MI method found mainly the same co-evolution pattern. Thus, the well-established and
frequently applied MI method confirmed the validity of the recent CC approach for our data.

4.4.5. Epistatic fitness contribution fitepi

The noise-corrected CC matrices CR5clean
and CX4clean

build the basis for the computation
of the epistatic fitness term fitepi. The epistatic fitness contribution is defined by the
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following equations:

fitepiR5
=

35∏

i,k=1

20∑

j,l=1

cikR5
sijskl

fitepiX4
=

35∏

i,k=1

20∑

j,l=1

cikX4
sijskl

with sij =




1 if aa j at position i is mutated

0 else

and skl =




1 if aa l at position k is mutated

0 else

(4.11)

and cikR5
and cikX4

being the CC values of position pair (i, k) of the corresponding R5 or
X4 MSA.
If both amino acids j and l at the observed positions i and k are mutated, sijskl = 1, else
sijskl = 0. Thus, for each pair (i, k) the inner sum contributes exactly once.
On basis of the epistasis equations, we used a bootstrapping approach to determine the
range of the epistatic fitness values. From the set of all possible aa sequences of length 35,
we randomly picked two times 1.6 · 106 sequences and calculated the respective fitepiR5

and
fitepiX4

values. The distributions of the fitness values of both runs were mainly concordant.
Thus, we could derive reliable estimates for the range of the epistatic fitness values (data
not shown).
Though the main fitness contribution of R5-tropic sequences is generally higher, due to
the higher sequence conservation of the R5 data set (compare Section 4.4.3), we observed
a larger epistatic fitness contribution for the X4-tropic sequences. A retrospect of the CC
matrices revealed that this finding was result of the more frequent epistatic positions and
the increased epistatic signals of CX4clean

.

4.4.6. Complete R5 and X4 fitness function

Based on the R5 and X4 MSA, we determined the position specific aa probabilities to
compute the main fitness term fitmain (compare Equation 4.10), and we calculated CC
matrices to compute the epistatic fitness term fitepi (compare Equation 4.11). We decided
to use a multiplicative fitness formulation to ensure fitness values close to zero for sequences
with biologically unlikely aa mutations.
First analyses revealed that a combination of the main and epistatic fitness terms resulted
in small fitness values, even in the case of the consensus sequences, with a fitness of
1.149 ·10−2 for the R5 consensus sequence and of 2.779 ·10−5 for the X4 consensus sequence.
Test sequences that deviated in one aa decreased the resulting R5 fitness by a factor of
10−4 and the X4 fitness by a factor of 10−3 (compare Section 4.4.3). Further tests of the
epistatic Equation 4.11 revealed that the fitness of sequences that accumulated mutations
could become negative due the multiplication of an odd number of negative epistatic terms.
Negative replicative fitness values are biologically contradictory and very small numbers
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can lead to numerical instabilities. We resolved these difficulties by the usage of an
exponential fitness function. While negative fitness values in the exponent of e resulted in
small positive fitness values, the multiplication of the aa probabilities was converted into
an addition and thus numerical inconsistencies due to the multiplication of 35 probability
values < 1.0 were avoided. The usage of the exponential fitness function was paired with
the usage of the inverse logarithmic function. The Taylor expansions of a logarithmic
function:

ln(x) = (x − 1)−
(x − 1)2

2
+
(x − 1)3

3
− · · ·

reduces to ln(x) ≈ (x − 1) for small x. Since we used a normalisation of our fitness values
to an interval of [0, 1], the expression could be reduced further to ln(x) ≈ x. Based on
these considerations, we used an exponential expression without an inverse logarithmic
operation. A subsequent normalisation of the fitness values to the interval of [0, 1] was
used to perform the the balancing of the main and epistatic fitness terms.
Since we applied different methods to derive the single fitness contributions from our data,
the ratio of the main and the epistatic fitness contribution had to be derived in a sequence
of independent steps. In a first step, we approximated the task by scaling both main and
epistatic fitness to the interval of [0, 1]. Therefore, we determined the maximal fitness
values for the main and epistatic term for both the R5 and X4 contribution. The maxima
of the main fitness terms equal the main fitness of the consensus sequence, since the
consensus sequence is computed based on the most frequent amino acid in each sequence
position. The determination of the maxima of the epistatic terms was more challenging.
We performed a bootstrapping approach, creating two times 5% of all possible sequences,
and determined their epistatic fitness. A comparison of the distribution of the two sets of
epistatic fitness values showed similar fitness distributions. Therefore, we could estimate
the maximal fitness values by the use of the maximal fitness of the independent random
sequence subsets.
Based on the maximal main and epistatic fitness values of both the R5 and X4 data set,
we performed a normalisation of each single fitness contribution to the interval [0, 1] by
the division of the fitness values by the respective maximal value.
Using a weighting factor β enabled us to further balance the influence of the main and
epistatic fitness contribution. Large values of β represent a strong influence of the epistatic
contribution, while small values of β decrease the epistatic contribution to the replicative
fitness of a sequence. Finally, we combined the individual R5 and X4 fitness functions by
an additional weighting factor α. A value α = 1 restricted the calculation of the replicative
fitness to the R5 fitness term, and α = 0 restricted the calculation to the X4 fitness term.
A variation of α could for example be used to mimic the availability of CCR5 or CXCR4
positive target cells.
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The complete exponential fitness function eF it is defined as follows:

eF it = αeFitR5 + (1 − α)eF itX4

with eF itR5 = e

35∑
i=1

20∑
j=1

pijR5
rij

+ βe

35∑
i,k=1

35∑
j,l=1

cikR5
sijskl

and eF itX4 = e

35∑
i=1

20∑
j=1

pijX4
rij

+ βe

35∑
i,k=1

35∑
j,l=1

cikX4
sijskl

and rij =




1 if aa j is at position i

0 else

and sij =




1 if aa j at position i is mutated

0 else

and skl =




1 if aa l at position k is mutated

0 else

(4.12)

and pijR5
being the probability of aa j at position i in the R5 data set and pijX4

being the
respective probability in the X4 data set. cikR5

is the cross correlation of position i and
position k in the R5 data set and cikX4

the cross correlation of position i and position k in
the X4 data set. While α determines the R5 fitness contribution, and 1− α the respective
X4 fitness contribution, β balances the influence of the epistatic effect on the joined fitness.
The normalisation of the main and epistatic term for the R5 and X4, performed by the
division by the respective maximal values, is not expressed in the equation for reasons of
clarity. When we used Equation 4.12 during subsequent analyses, we used the normalised
expression of the exponential fitness equation.
The normalised exponential fitness equation assigns the maximal fitness value of 1.0 to
the R5 consensus sequence for α = 1.0, while α = 0.0 assigns the maximal value of 1.0
to the X4 consensus sequence. The selection of a weighting parameter β < 1.0 reduces
the influence of the epistasis and thus assigns a fitness value smaller than the maximal
value to any sequence that deviates from the consensus sequence. A selection of β > 1.0
pronounces the epistatic effect. Analyses showed that this results in the accumulation of
random sequence mutations and destabilises the conservation of the V3 loop sequence.
Thus, a selection of β < 1.0 in Equation 4.12 is recommended.
Mutations that introduce stop codons into the V3 loop typically terminate the protein
translation and result in truncated, non-functional proteins. Since the functionality of the
loop is essential to HIV, truncated sequences would not enable the process of co-receptor
binding and cell entry and inhibit viral replication. Therefore the replicative fitness of
sequence variants carrying stop codons was defined to be zero.
It has to be noted that the absolute fitness values defined by Equation 4.12 are only sound
for an intra-R5 or intra-X4 population ranking, since the fitness contributions were derived
from two independent MSA and we lacked a method to compare the replicative fitness
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of the R5 and X4 sequences. Thus, an inter-population comparison of an R5 and an X4
fitness value is not possible with the presented fitness function.

4.4.7. Structure of modelled fitness landscape

We derived fitness functions to describe the replicative fitness V3 loop sequences. Our
main concern were the differences between the R5 and X4 population, as well as the
evolutionary pathways that transform R5-tropic viruses into X4-tropic viruses. Our fitness
functions built the basis to analyse the structural differences of the R5 and X4 fitness
landscape.

Local fitness landscape

We created two populations of unique nucleotide (nt) sequences, derived from the R5 and
X4 nt consensus sequence by the introduction of a predefined number of mutations. The
complete sequence space of the V3 loop covers 4105 = 1.6 · 1063 sequences. Due to this
multitude of sequences, it is not possible to analyse the complete sequence space.
A limitation to all five-point mutants of a V3 loop consensus sequences still results in
4

(
105
5

)
≈ 3.9 · 108 sequences. First analyses of two random samples of five-point mutants

showed that many of the sequences contained stop codons or yielded very low fitness
values due to mutations in highly conserved positions. Following these observations, we
stopped the respective analyses and performed a local approach - local in the sense that
we analysed a reduced fitness landscape of sequences that are evolutionary close to the
R5 and X4 consensus sequence. We introduced mutations only in the ten least conserved
sequence positions of the R5 and X4 nt MSA.
The following ten nt positions of the R5 and X4 MSA are the weakest conserved positions
and were thus selected for mutation (sorted from least to most conserved nt position):

• R5: 75, 64, 38, 37, 51, 31, 85, 14, 42, 29
• X4: 73, 38, 37, 64, 71, 31, 94, 33, 74, 29

Mutations in these positions of the R5 and the X4 MSA were most frequently observed
and are thus assumed be biologically most relevant.
We performed analyses of the R5 and X4 populations, consisting of all possible four-,
six-, eight-, and ten-point mutants, but with the mutations restricted to the most weakly
conserved nt positions, i.e. each of the selected least conserved nt positions was mutated
towards every possible nucleotide. This approach built populations of the size n = 4m, with
m being the number of mutated sequence positions and 4 being the number of different
nucleotides.

• m = 4 : n = 44 = 256 sequences
• m = 6 : n = 46 = 4, 096 sequences
• m = 8 : n = 48 = 65, 536 sequences
• m = 10 : n = 410 = 1, 048, 576 sequences

The mutated nucleotide sequences were translated into the corresponding amino acid
sequences and their fitness was determined based on Equation 4.12.
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Upon the inspection of the resulting number of aa changes, we observed first deviations
between the R5 and X4 population. The analysis showed that mutations of the ten least
conserved nt positions of the X4 nt sequence in general result in a higher number of aa
changes, compared to mutations of the least conserved nt positions of the R5 nt MSA.
The histograms in Figure 4.20 depict the counts of aa mutations observed in the R5 and
X4 populations of all four-, six-, eight-, and ten-point mutants.
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Figure 4.20.: Histograms of amino acid Hamming distances
The figures compare the aa Hamming distances of the R5 population (in black) and the
X4 population (in grey) of the four-, six-, eight-, and ten-point mutants, compared to the
respective consensus sequence. Alterations of the weakly conserved X4 nt positions in general
result in higher numbers of aa mutations than alterations of the weakly conserved R5 nt
positions.

The differences of the distributions of the number of aa mutations in the R5 and X4
population were analysed in R [121], using the χ2 test [114]. The test statistics showed
that the distribution of the number of aa mutations in the R5 and X4 populations were
significantly different for the four-, six-, eight-, and ten-point nucleotide mutants (compare
Figure 4.21).
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Figure 4.21.: Cumulative statistics of amino acid Hamming distances
The figures illustrate the analyses of the differences of the aa Hamming distances of the R5
and X4 sequences. The distributions of the Hamming distances were significantly different,
χ2 tests [114] resulted in the following statistics:
4-point mutants: p − value = 0.0002, 6-point mutants: p − value < 0.0001,
8-point mutants: p − value < 0.0001, 10-point mutants: p − value < 0.0001,
CDF: cumulative distribution function, x ∼ f(x),

∫
x

0
f(y) dy

The differing numbers of aa mutations were a consequence of the differences of the
weakly conserved nt sequence positions, resulting in different mutated codon positions.
Though 50% of the less conserved nt positions were concordant between the R5 and X4
MSA (29, 31, 37, 38, 64), a detailed inspection of the remaining discordant positions led
us to an interesting finding. Our analyses revealed that the first codon position dominated
the ten weakly conserved positions of the X4 MSA, but not of the R5 MSA. The following
weakly conserved nt positions occurred at the first codon position (positions sorted by
weakness of conservation):

• R5: 64, 31, 85
• X4: 73, 37, 64, 31, 94
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Three of the ten most weakly conserved nt R5 positions are first codon positions, in
contrast to five of ten positions in the X4 data set. Analysing only the four-point mutants,
we found three times the first codon position among the least conserved X4 nt positions
(73, 37, and 64), but only one first codon position (64) among the four least conserved R5
nt positions.
A subsequent analysis revealed that respective X4 codons with weakly conserved first
codon position in parallel contained weakly conserved second (74, 38) and third (75) codon
positions. None of the three R5 codons with a weakly conserved first codon position (64,
31, 85) showed an additional weakly conserved second codon position, and only one of the
three showed an additional weakly conserved third codon position (33).
This observation is quite remarkable, since due to the ambiguities of the aa code, a
mutation in the first codon position leads to an aa change in all but one of the 61 amino
acid codons. In consequence, mutations of the weakly conserved nt positions of the X4
nucleotide alignment led to more aa changes than mutations of the weakly conserved nt
positions of the R5 nucleotide alignment.
This finding yielded a first indication that the aa sequence space of R5-tropic sequences
is more dense and conserved, while the less conserved X4 sequences are wide-spread in
sequence space.
We deepened this analysis and found another interesting aspect of our data. Mutations of
the ten most weakly conserved R5 nt positions did not result in any stop codon, while
mutations of only the four least conserved nt positions of the X4 nt MSA already introduced
stop codons into the X4 aa sequences.
A detailed inspection of the nucleotide consensus sequences is illustrated in Figure 4.22. It
revealed that the codon XXA is found in the weakly conserved positions 73 and 74 and also
in the weakly conserved position 94 of the X4 MSA (an X marks the weakly conserved nt
position selected for mutation). Furthermore, the combination of the weakly conserved
positions 31 and 33 can lead to the codon pattern XGX. Matching those codons with the
nt sequences of the three stop codons, TAG, TAA, and TGA, we recognised that a mutation
of the X position of the pattern XAA towards T creates stop codon TAA. In addition, two
nt mutations in XXA can lead to the stop codons TAA and TGA, and two mutations in the
codon XGX generate the stop codon TGA.
For clarification, we want to stress that the observed stop codons are not directly present
in the X4 consensus sequence, but occur by a mutation of the four to ten least conserved
X4 nt alignment positions. The nt sequence of X4 is given below, the five codons with
least conserved first codon position were highlighted in red:
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA CCA GGG AGA

GCA TTT TAT ACA ACA GGA AAA ATA ATA GGA GAT ATA AGA CAA GCA CAT TGT

A corresponding analysis of the weakly conserved positions of the R5 nucleotide sequence
at the first codon position led to the following pattern:
TGT ACA AGA CCC AAC AAC AAT ACA AGA AAA AGT ATA CAT ATA GGA CCA GGG AGA

GCA TTT TAT GCA ACA GGA GAA(C) ATA ATA GGA GAT ATA AGA CAA GCA CAT TGT

From this analysis, we learned that a weakly conserved first codon position in the R5 nt
consensus sequence can not create a stop codon upon a mutation in any case. None of the
three codons XGT, XCA, and XAT, which all show a weakly conserved nt in the first codon
position, can result in a stop codon upon a mutation in a weakly conserved X position.
Though both position one and two of the codon XAT (nt positions 37 to 39) were weakly
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conserved, the nt in the third position, T, restricted the mutation of the codon into a stop
codon, since a stop codon with T in the third position does not exists. No other codon of
the R5 MSA comprised two weakly conserved nt positions.
Thus, mutations of the least conserved sequence positions frequently create stop codons in
sequences derived from the X4 nt consensus sequence, but not in R5 derived sequences.

For a further validation of these results, we made a similar analysis, including all 105
sequence positions instead of focussing on the weakly conserved ones. We previously
described in Section 4.3.2 that the R5 and X4 nt consensus sequences differ only in codon
22 (nt 64 to 66) and 25 (nt 73 to 75). Codon 22 of R5 is GCA, of X4 it is ACA. Since there
is no stop codon with either G or A in the first position and positions two and three are
identical, both codons yield the same probability to mutate into a stop codon. For codon
25, we have GAA in case of R5 and AAA in case of X4. Again, only codon position one
differs, and there is no stop codon with either G or A in the first position. Following these
observations, the distance to any stop codon is identical for both the R5 and X4 consensus
sequence (compare illustration (b) of Figure 4.22).
In consequence, the complete consensus sequences of the R5 and X4 nt MSA did not give
further indications whether the R5 or X4 sequence is more or less in danger to be mutated
into a sequence with stop codon.
Finally, we did an analogue analysis, but we started from the aa instead of the nt consensus
sequences. As described at the end of Section 4.3, a translation of the R5 nt consensus
sequence does not exactly match the R5 aa sequence. The codon 25, GAA, translates
into glutamic acid (E), while we find aspartic acid (D) at position 25 in the aa consensus
sequence of R5, encoded by codon GAC. This differing sequence position is a result of the
most weakly conserved nt position 75 (position three of codon 25). If we analyse the codon
GAC instead of GAA, and compare the R5 codon GAC in position 25 to the corresponding
codon AAA of the X4 consensus sequence, at least two mutations for codon GAC in R5
sequence are necessary to be translated into a stop codon (TAG or TAA), while the codon
AAA in the X4 sequence needs only one mutation to be transformed into the stop codon
TAA. The distance of both sequences to the third stop codon, TGA, is identical (compare
illustration (c) of Figure 4.22).
In summary, the mutation of GAC to TAG and TAA in R5 could occur with the probability
2 · 1

4
· 1

4
= 1

8
, while a mutation of the codon AAA into TAA in X4 occurs with twice the

probability (1
4
).

Thus, the direct comparison of the complete nt consensus sequences showed no differences,
but upon a back-translation of the aa consensus sequences into nt sequences, we found
the genetic distance of the X4 consensus sequence to a stop codon to be closer than the
distance of the R5 consensus sequence.
In summary, the analysis of the ten most weakly conserved nt sequence positions revealed
that the X4 codons are evolutionary closer to stop codons than the R5 sequences and are
thus in higher danger to evolve into dead-end sequences. From the observed differences
in the intra-codon conservation, we expected to observe an accumulation of stop codons
in the X4 mutant population, resulting in many individuals with zero replicative fitness.
Furthermore, we hypothesised that the X4 mutant sequences form a rugged and holey
fitness landscape. In contrast, we did not expect to see any individuals of zero fitness in
the R5 mutant population, provided that we mutate exclusively the ten least conserved
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Figure 4.22.: Genetic distance to stop codons
The figure illustrates the genetic distance of the most weakly conserved R5 and X4 codons
to any of the three stop codons.
a) Mutations in the ten most weakly conserved R5 nt positions did not result in any stop
codon, while mutations in the ten most weakly conserved X4 nt MSA positions frequently
introduced stop codons into X4 sequences.
(colour coding:
red underlined: weakly conserved nucleotides (nts) at the first codon position, green: weakly
conserved nts at the second or third codon position, blue: nts that are not among the ten
most weakly conserved nts)
b) The R5 and X4 consensus nt sequences differ only in codon 22 and 25. A comparison of
the two pairs of differing R5 and X4 codons showed equal evolutionary distances to stop
codon sequences.
c) A back-translation of the R5 aa consensus sequence into the respective nt sequence changed
the nt position 75 (position three of codon 25, emphasised by square). This wobble position
of the consensus sequence indicated a farther evolutionary distance of the R5 sequence to
stop codons.

sequence positions of the nt MSA. The underlying fitness landscape of the R5 mutant
population was expected to be more continuous and without holes built by individuals of
zero fitness.
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An inspection of the fitness values of the R5 and X4 populations of four-, six-, eight-, and
ten-point mutants gave a first hint to confirm our idea. We translated each nt sequence
into an aa sequence and determined the corresponding fitness based on Equation 4.12.
The fitness values were in the range of [0.0, 1.0], with 0.0 representing sequences with stop
codons and 1.0 representing the most fit consensus sequence of each population.
Figure 4.23 depicts histograms of the resulting fitness values of the R5 and X4 mutant
populations. The figures show that aa changes decreased the fitness of the R5 mutants
to a larger extend than the fitness of the X4 mutants. This was already observed in
the sequence examples presented in Section 4.4.3. Due to the larger position specific aa
probabilities of the R5 MSA and the higher conservation of the R5 consensus sequence,
the R5 sequences are more sensitive to aa changes than the less conserved X4 sequence. A
change in the highly conserved R5 consensus sequence decreases the fitness of the mutant
to a larger extend.
This effect can also be seen by a direct comparison of the Figure 4.23 to the previous
presented distribution of the aa Hamming distances (see Figure 4.20). Though the X4
mutant populations tend to accumulate a higher number of aa mutations upon mutation
of the weakly conserved nt positions, the distribution of the fitness values indicates a shift
of the X4 mutant fitness towards higher fitness values.
The X4 sequences showed a broader range of fitness values. The fitness values of the X4
four-point mutants for example extended to the complete interval [0.0, 1.0], while the R5
four-point mutants did not drop below a fitness threshold of 0.28. The Figure 4.23 showed
further the accumulation of stop codons upon mutations of the most weakly conserved X4
nt positions, resulting in high counts of individuals with zero fitness. The populations of
eight- and ten-point mutants furthermore showed that mutations in the less conserved
X4 consensus sequence in general lead to a decreased fitness reduction, except in the case
that a stop codon is generated.
Using the Kolmogorow-Smirnov test [92, 143], we compared the distributions of the fitness
values of the R5 and X4 mutant populations. Our analyses showed that the distributions
of the fitness values are significantly different for the four-, six-, eight-, or ten-point mutant
populations (see Figure 4.24).
It has to be noted that the absolute fitness values can only be used for a ranking of
the replicative capacity within the respective R5 or X4 population, i.e. the deviations
between the fitness values are only sound for an intra-population ranking. Since we lacked
an in vitro method to compare the replicative fitness of the R5 and X4 sequences, an
inter-population comparison of the fitness values is not possible with the presented method.
The numerical deviations between the R5 fitness values eF itR5 and the X4 fitness values
eF itX4 need a further validation.
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Figure 4.23.: Histograms of population fitness
The figures compare the replicative fitness of the R5 population (in black) and the X4
population (in grey) of the four-, six-, eight-, and ten-point mutants. Mutations in the
conserved R5 consensus sequence decreased the fitness of the individuals to a larger extend
than mutations in the less conserved X4 consensus sequence.

102



4. Fitness function and fitness landscape

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

4−point mutants

fitness

C
D

F

●●
●●
●
●●
●
●●
●●
●●
●●
●●
●
●
●●
●●
●
●●
●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●

●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●

●●
●●
●●
●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●●●

●●
● ● ●

● ●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●
●●●
●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

●●●
●●●●● ●●●

R5
X4

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

6−point mutants

fitness

C
D

F

●●●●
●●●
●●●
●●●●
●●●
●●
●●●●
●●●
●●●
●●●●
●●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●●●
●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●
●●●●
●●●●
●●●●●
●●●
●●●●
●●●●●
●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●
●●●●●●●●
●●●● ●● ● ● ●

R5
X4

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

8−point mutants

fitness

C
D

F

R5
X4

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

10−point mutants

fitness

C
D

F

R5
X4

Figure 4.24.: Cumulative statistics of fitness
The figures illustrate the differences between the distributions of the fitness values of the
R5 and X4 mutant populations. Kolmogorow-Smirnov [92, 143] tests confirmed that the
distributions of the fitness values are significantly different:
4-point mutants: p − value = 0.0001, 6-point mutants: p − value < 0.0001,
8-point mutants: p − value < 0.0001, 10-point mutants: p − value < 0.0001,
CDF: cumulative distribution function, x ∼ f(x),

∫
x

0
f(y) dy
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Definition of a graph representation of the fitness landscapes

Analysing the aa Hamming distances and the distribution of the fitness values of the
populations of four-, six-, eight-, and ten-point mutants, we found some first evidence for
structural differences between the R5 and the X4 fitness landscape. We next examined
the underlying local R5 and X4 fitness landscapes. Therefore, we used the Python graph
analysis package networkx [120, 69] to translate the populations of four-, six-, eight-, and
ten-point mutants into a graph representation of the R5 and X4 fitness landscape. The
fitness values of the four-, six-, eight-, and ten-point mutants were determined based on
equation 4.12.
The mutant networks were created based on the following rules:

• define a maximal nt Hamming distance threshold maxHamming

• define a maximal fitness deviation maxfitDev

• create a vertex vi for each sequence i

• add an edge between two vertices vi and vj if

• H(vi, vj) ≤ maxHamming and
• |vi − vj| ≤ maxfitDev and
• eF itvi

Ó= 0.0 or eF itvj
Ó= 0.0

Thus, two mutant sequences i and j were connected by an edge, if both the Hamming
distance of the two nt sequences and the fitness deviation of the corresponding aa transla-
tions did not exceed a given threshold maxfitDev. The approach restricted to create an
edge between two sequences i and j with zero replicative fitness, since mutants with zero
replicative fitness by definition can not produce offspring and thus can not be mutated
one into the other. In contrast, a link between a sequence eF iti Ó= 0.0 and a sequence
eF itj = 0.0 is allowed, since a replicative-competent sequence can be mutated into a
sequence of zero fitness.
The size of the resulting networks can be calculated based on the number of sequences
respective vertices of the network, n = 4m (again m being the number of mutated sequence

positions). The maximal number of edges e of each network is n(n−1)
2

. The term n − 1
addresses the fact that we do not allow self loops and the denominator of 2 is a consequence
of the graphs being undirected. Table 4.1 presents the number of vertices and the maximal
number of edges of the graph representations of the four-, six-, eight-, and ten-point mutant
populations.

Table 4.1.: Graph size
The table gives a overview over the number of nodes and the maximal number of edges of the
networks of four-, six-, eight-, and ten-point mutants.

m n = 4m e
n(n−1)

2

4 256 3.3 · 104

6 4,096 8.4 · 106

8 65,536 2.1 · 109

10 1,048,576 5.5 · 1011
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Fitness landscape of four-point mutants In the following paragraphs, we analysed the
local networks of the R5 and X4 mutants with fitness values based on Equation 4.12. The
mutated nt positions resembled the four, six, eight, or ten weakest conserved nt sequence
positions of the respective data set. We started with a comparison of the R5 and the X4
network of all four-point mutants, using the network definition in Section 4.4.7.
Figure 4.25 illustrates the number of edges that were realised in the R5 and X4 network
of four-point mutants. The distinct lines in the illustration represent four nt Hamming
distance thresholds. The selected fitness deviation threshold, describing the fitness devi-
ation between connected nodes, is represented on the x-axis. We used the following 28
fitness deviation thresholds: 10−5, 10−4, 10−3, 10−2, 2.5 ·10−2, seven subsequent equidistant
intervals of 2.5·10−2 up to a maximal fitness deviation of 0.2, and 16 subsequent equidistant
intervals of 0.05 up to a fitness deviation of 1.0. Thus, the illustration presented in Figure
4.25 summarises the results of 4 · 28 = 112 different R5 respective X4 networks. The image
presents the number of the realised edges. The maximal possible number of edges (32,640,
compare Table 4.3) was realised only in the R5 network with a nt Hamming distance
threshold of four and the maximal fitness deviation of 1.0. A Hamming distance of four
and a maximal fitness deviation of 0.3 realised the majority of all possible edges in the R5
network (29,876). Using the same same definition, the X4 network contained about half of
all possible edges (16,033). Even using the maximal fitness deviation threshold of 1.0 at a
maximal Hamming distance of four, the X4 network only contained 30,624 of 32,640 edges.
A detailed analysis showed that this is a consequence of the sequences with zero fitness,
which were by definition not allowed to interconnect to each other.
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Figure 4.25.: Number of edges in the R5 and X4 network of four-point-mutants
The graphic depicts the number of realised edges in the R5 and the X4 network of the
four-point-mutants. The distinct lines represent four nt Hamming distance thresholds. The
selected fitness deviation threshold, describing the fitness deviation between connected nodes,
is represented on the x-axis.
Identical nt Hamming distance and fitness deviation thresholds enabled more connecting
edges in the R5 network than in the corresponding X4 network.
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Thus, the same number of nt changes created a population of X4 mutants that were
more isolated, while the R5 sequences created densely connected regions of homogeneous
fitness. The last edges, that were only created upon the definition of the maximal fitness
deviation, connected the most fit R5 consensus sequence to the least fit mutants of the
population.
We next determined the maximal node degree of the networks. Since self-loops were re-
stricted, the maximal possible node degree was 255. In the R5 network, a fitness deviation
of 0.20 and an nt Hamming distance of four almost resulted in the maximal node degree
(245). We observed a comparable maximal node degree of 244 in the X4 network at a
fitness threshold of 0.4. The corresponding fitness deviation of 0.2 restricted the number
of edges in the X4 network to two thirds of all possible edges (180). The exact maximal
degree was reached almost in parallel for a fitness deviation of 0.4 for R5 and 0.5 for X4.
Using a fitness deviation >0.4 and a consistent nt Hamming distance for both the R5 and
X4 network, the R5 and X4 networks had an almost identical maximal degree.
Though mutations of the less conserved X4 consensus sequence in general lead to smaller
fitness deviations than mutations of the R5 consensus sequence, the X4 population showed
a broader range of fitness values. The X4 fitness values spread along the complete interval
[0.0, 1.0], while the fitness of the R5 four-point mutants did not drop below a fitness
threshold of 0.28 (though the fitness Equation 4.12 enabled R5 fitness values along the
complete interval [0.0, 1.0] as presented in Figure 4.23).
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Figure 4.26.: Maximal node degree in R5 and X4 network of four-point-mutants
The graphic depicts the maximal node degree that was found in both the R5 and the X4
network of the four-point mutants. The distinct lines represent four nt Hamming distance
thresholds. The selected fitness deviation threshold, describing the fitness deviation between
connected nodes, is represented on the x-axis.
At low fitness deviations, the maximal node degree of the R5 network was always higher
than the maximal node degree of the X4 network at the same Hamming distance. A fitness
deviation >0.4 approximated an equal maximal node degree for the R5 and X4 networks.
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Further investigations showed that this difference between the R5 and the X4 fitness
values was a consequence of the sequences with zero replicative fitness in the X4 population
of four-point mutants. An exclusion of those sequences would limit the range of the X4
fitness values to the interval [0.39, 1.0].
An analysis of the number of network components fit into the line of observations (compare
Figure 4.27). The maximal number of network components is the number of nodes in
the network, which was 256 for the four-point mutants. Independent of the selected nt
Hamming distance threshold, the R5 network merged fast into one component. At a fitness
deviation of 0.1, one large and one small component were formed. Increasing the fitness
deviation threshold to 0.25 joined the small component and the large network component.
At the same time, the X4 network consisted of ≥ 65 separated components, and the
components were stable until a fitness deviation of 0.35. For fitness deviations >0.35, new
edges were created and at an nt Hamming distance ≥ 3, the networks merged into one
component. At an nt Hamming distance of two, a fitness deviation of ≥ 0.6 was required
to merge the components. Finally, at an nt Hamming distance of one, the maximal fitness
deviation of 1.0 (i.e. no fitness restriction) was obligatory to merge the components into
one large network.
We already discussed this peculiarity of the X4 network to be a result of the mutant
sequences with zero replicative fitness. In the case of the R5 population, the merging
network structures again indicated a homogeneous distribution of the R5 fitness values.
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Figure 4.27.: Number of components in R5 and X4 network of four-point-mutants
The graphic depicts the number of network components created from the R5 and X4
population of four-point-mutants. Independent of the nt Hamming distance threshold, the
R5 networks converged into one large component at low fitness deviations, while the X4
networks stably formed ≥ 65 independent components. For a fitness deviation >0.35, the
X4 components started to merge into one component.

The number of network components is highly correlated with the number of isolated
nodes of the respective network. A corresponding analysis showed almost identical results
(data not shown).
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In Figure 4.28, we analysed the degree of the vertex representing the consensus sequence.
For an nt Hamming distance of one and for a fitness deviation ≥ 0.75, the R5 consensus
sequence connected to all sequences of the population (represented by a node degree
of 255). This fitness threshold is consistent for the nt Hamming distances of two and
three. The steep increase of the node degree for fitness deviations of 0.4 to 0.75 showed
that mutations in the highly conserved R5 consensus sequence remarkably decreased the
replicative fitness of the mutant sequences.
In comparison to the previous analysis of the number of network components (compare
Figure 4.27), this observation confirmed that the most fit consensus sequence was only
connected to a few sequences of similar fitness and was clearly marked off from the majority
of the mutated individuals. Thus, the consensus sequence builds a peak in the fitness
landscape, while the mutated sequences build a plateau or cloud of sequences of lower
fitness. This plateau of sequences of lower fitness is also indicated by Figure 4.26, which
showed that a high node degree of 245 in the R5 network was reached at a low fitness
deviation of 0.20. Thus, many sequences reside in a region of comparable fitness, separated
by fitness deviations ≤ 0.20.
In the X4 network, the drop of the node degree of the consensus sequence was less
pronounced, presumably due to the weaker sequence conservation in general. In addition,
the X4 sequences of high fitness are more interconnected than the R5 sequences of high
fitness and thus have a higher node degree. A close inspection of the X4 MSA showed that
this was a consequence of the observed wobble positions of the MSA, populated by almost
identical counts of two (positions 11 and 22) or four (position 25) different aa (compare aa
counts presented in Section 4.4.2).
In contrast to the higher node degree of the X4 consensus sequence, resulting from a
multitude of edges to the neighbouring X4 mutants of high fitness, a biologically unsuitable
fitness deviation threshold of 1.0 was required to achieve a maximal node degree of the
consensus sequence. The fitness threshold of 1.0 represents a connection of the X4 fitness
peak to all sequences of the population, including the holes of zero fitness. A comparison
of the average node degree of the R5 and X4 network with the degree of the consensus
sequences showed a lower degree than the average node degree for the consensus sequences.
This difference in the degree was especially pronounced for fitness deviations ≤ 0.75 for
the R5 network and ≤ 0.6 for the X4 network (data not shown). This result confirmed the
observation that the fitness peaks are weakly connected to the majority of the sequences
of the mutant population.
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Figure 4.28.: Degree of the consensus sequence in R5 and X4 network of four-point mutants
For fitness deviations of ≤ 0.4, the R5 consensus sequence showed a low node degree and
was connected to only a few high fit sequences. A fitness threshold of 0.75 connected the R5
consensus sequence to all mutated individuals.
In the case of the X4 consensus sequence, the degree of the consensus sequence was higher
at smaller fitness thresholds, but the X4 consensus sequence could only reach the maximal
degree at a fitness deviation of 1.0.

In the final analysis of the networks of all four-point mutants, we determined the node
degree of the sequences of minimal fitness. In general, we found a higher degree for the
least fit R5 sequences and than for the least X4 sequences (compare Figure 4.29. At
the maximal nt Hamming distance of four and a fitness deviation of 0.4, the least fit R5
sequences were connected to 245 of 256 sequences of the network. In contrast, the 64 X4
mutants with zero fitness were still isolated at this level of fitness deviation. A transition
that was comparable to the increase in the node degree observed for the R5 network at a
fitness deviation of 0.4 could be observed at a fitness deviation threshold of ≥ 0.75 for the
X4 network. Using this threshold, the node degree increased to 174. Since our network
definition restricted sequence mutants of zero fitness to interconnect, the degree of the
nodes of minimal fitness in the X4 networks was lower.
The comparison of the R5 and the X4 fitness landscape of four-point mutants revealed
that the R5 fitness landscape contains a few sequences of high fitness, that result in a
steep fitness decay upon the introduction of mutations, levelling off into a non-zero fitness
plateau built by a set of least fit (but Ó= 0.0) sequences. In contrast, the X4 consensus
sequence fitness peak is surrounded by a number of mutated variants with small fitness
deviations and the fitness decrease close to the peak is less steep. On the other hand, the
X4 fitness landscape contains fitness holes built by 64 sequences of zero fitness.
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Figure 4.29.: Degree of least fit sequences in R5 and X4 network of four-point mutants
At an nt Hamming distance of four and a fitness deviation of 0.4, the R5 sequences of
minimal fitness achieved a node degree of 245. The least fit X4 mutants were still isolated
at this level of fitness deviation and were connected to the central X4 network at a fitness
threshold ≥ 0.75.

Fitness landscape of six-point mutants After a detailed analysis of the fitness land-
scapes built by the four-point mutants, we examined the fitness landscapes described by
the populations of six-point mutants. Corresponding analyses of the R5 and X4 mutants
confirmed the previous observations of the fitness landscapes of the four-point mutants
and did not reveal additional findings. Thus, we only discuss two exemplary analyses.
According to Table 4.3, the networks contained 4,096 vertices and at most 8,386,560 edges.
Figure 4.30 illustrates the number of edges that were realised in the networks, depending
on the selected nt Hamming distance and the fitness deviation threshold. The maximal
number of edges was created only in the R5 network (of an nt Hamming distance of
six), with the majority of all possible edges (7,455,424) already being realised at a fitness
deviation ≥ 0.3. Our findings confirmed the observation of a majority of homogeneous
fitness values on the one hand, and the distinct separation of a few highly fit R5 sequences
on the other hand, which were completely connected to all sequences only at fitness
deviations ≥ 0.9.
In contrast to the R5 network, the X4 network contained approximately two thirds of
all possible edges (5,384,534) at a fitness deviation level of 0.3 and at an nt Hamming
distance of six. Furthermore, 523,776 edges (∼ 6% of the possible edges) were not realised
in any X4 network, which was again a result of the restriction to connect two vertices that
both carry sequences of zero replicative fitness.
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Figure 4.30.: Number of edges in R5 and X4 network of six-point-mutants
The graphic depicts the number of realised edges in the R5 and the X4 networks of six-point-
mutants, depending on the selected nt Hamming distance (different lines) and the fitness
deviation threshold (x-axis).
Most of the edges of the R5 network are already created at a fitness deviation ≥ 0.3; the
maximum number of edges was realised at a fitness deviation ≥ 0.9 at an nt Hamming
distance of six. In contrast, the X4 network realised at most two-thirds of all possible edges.

Figure 4.31 illustrates the maximal node degree that was observed in the networks of
six-point mutant. In the case of the R5 network, a fitness deviation of 0.15 resulted in a
maximal node degree of 3,679 (∼ 90% of all possible edges), while a comparable transition
in the X4 network was observed at a fitness threshold of 0.25 (3,670). A fitness deviation
of 0.15 restricted the number of edges of the X4 network to 2,517 (∼ 61.5%). The maximal
node degree of 4,095 was reached almost in parallel for a fitness deviation of 0.45 in the
R5 network and a fitness deviation of 0.55 in the X4 network.
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Figure 4.31.: Maximal node degree in R5 and X4 network of six-point-mutants
The graphic depicts the maximal node degree in the R5 and X4 networks of six-point mutants.
At lower fitness deviation thresholds ≤ 0.4, the maximal node degree of the R5 network
was higher compared to the X4 network. At a Hamming distance of six, the exact maximal
degree was realised for a fitness deviation of 0.45 in the R5 and 0.55 in the X4 network.

In summary, the analyses of the six-point mutants did confirm the analyses of the
four-point mutants, but did not contribute new findings. The observed network transitions
are more regular upon changing fitness thresholds, illustrated by more smooth curves.
An inspection of the weakly conserved sequence positions revealed that the four most
weakly conserved sequence positions of the X4 data set already comprised three different
first codon positions. The six-point mutants included four and the eight-point mutants
all five weakly conserved first codon positions of the X4 MSA. In case of the R5 MSA,
the four-point mutants contained one first codon position, the six-point mutants two and
the eight-point mutants all three weakly conserved first codon positions. Due to this
observation, we neither expected remarkably different results for the eight- nor for the
ten-point mutant networks and thus, we did not further deepen the analyses of this kind
of mutant networks.
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Definition of evolutionary networks

In the first network approach, we observed the influence of the nt Hamming distance
and of a range of fitness deviation thresholds on the structure of the R5 and X4 mutant
networks. In this section, we used an alternative definition for the construction of the
networks of four-, six-, eight-, and ten-point mutants. We intended to analyse beneficial
paths of evolution, and thus we applied directed networks. The networks were constructed
as follows: for every individual of the population, we created one vertex, containing
information about the nt sequence and the replicative fitness of the individual (based on
Equation 4.12). Two vertices were connected by a directed edge, if the Hamming distance
of the nt sequences was one (since the mutant sequences in each population were unique,
no two sequences had a Hamming distance of zero). Furthermore, the edges were defined
to start at the node with the lower fitness and point towards the node with the higher
fitness. If both nodes had the same fitness, two parallel edges pointing into opposite
directions were created to connect the nodes.
In summary, the evolutionary networks were defined in the following way:

• create a vertex vi for each sequence i

• add a directed edge pointing from vertex vi to vertex vj if

• H(vi, vj) == 1 and
• eF itvi

≤ eF itvj
and

• eF itvi
Ó= 0.0

This approach again restricted the construction of links between two vertices representing
sequences with zero replicative fitness. Links pointing from a sequence of non-zero fitness
to a sequence of zero fitness are allowed, since sequences with replicative fitness Ó= 0.0
could replicate and generate offspring with zero fitness, but not vice versa.
Using this definition, we created finite directed cyclic graphs of the R5 and the X4 mutant
population. Cycles can only contain nodes that represent sequences with identical replica-
tive fitness (i.e. different nt sequences that were translated into the same aa sequence).
Self-loops did not contribute additional information to this analysis, thus, they were
restricted to keep the graphs more simple. In contrast to the previous approach, this
definition created only one network for each R5 and X4 mutant population.
The resulting graphs enabled us to follow paths of beneficial or neutral evolution, repre-
sented by an increasing or steady fitness along any path through the network. Analyses of
the network structure enabled us to determine difference between the underlying fitness
landscapes of the R5 and X4 mutant population and to find deviations in the length of
the evolutionary pathways. Table 4.2 summarises the analyses of the R5 and X4 networks
for the four-, six-, eight-, and ten-point mutant populations.

Evolutionary networks of four-point mutants We started with an analysis of the evo-
lutionary networks of the R5 and X4 four-point mutants. The directed networks were
both very sparse. In the case of R5, 1,664 edges were realised, representing 2.549% of all
possible edges. The average node degree was 13, which was also the degree of each of the
256 nodes. Both the average in- and out-degree of the R5 network were 6.5.
The R5 network comprised two nodes of the maximal fitness of 1.0, representing the
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consensus master sequence and an alternative nt mutant that consistently was translated
into the aa consensus sequence. The in-degree of both R5 nodes of maximal fitness was
one, representing the possible mutational pathway from one node to the other, exchanging
only one nucleotide. The out degree was 12 for both nodes, resembling the four mutated
nt positions and the three alternative nucleotides at each position.
As we expected, the R5 population did not contain any sequence of zero fitness. The
least fitness value was 0.285 and represented four different nt sequences that all translated
into the same aa sequence. The evolutionary network of the X4 mutants contained 1,248
edges, which represents a fraction of 1.911% of the theoretic maximum. The average node
degree was 9.75, with an average in-degree of 4.875 and an average out-degree of 4.875. A
maximal degree of 12 could be observed for 192 nodes, and the remaining 64 nodes had
an (in-)degree of only three. The X4 network comprised only one node of the maximal
fitness of 1.0, which in consequence had an in-degree of zero and an out-degree of 12. No
silent nt mutation was possible for the X4 consensus master sequence.
We found 64 sequences of zero fitness among the X4 mutants, all containing at least one
stop codon in the translated aa sequence. Only three directed paths led into each of these
nodes and stopped there. The three pathways represented the three alternative nt at the
respective sequence position.
This first analysis showed that the R5 network contained more edges than the X4 network,
an observation that was already made for the previously described networks. An inspection
of the underlying populations revealed that the differences between the R5 and the X4
network resulted from the 64 sequences of zero replicative fitness in the X4 population.
We next analysed the shortest paths in the networks. In the R5 network, the average
length of all 35,928 reachable shortest paths (of length 1.0 to 6.0) was 2.676. In contrast,
the number and average shortest path length in the X4 network was slightly decreased.
We found 24,144 reachable shortest paths of length 1.0 to 5.0, with an average length of
2.583. Though the R5 network in general had a higher node degree than the X4 network,
the shortest paths in the R5 network were longer. Analyses of single shortest paths of
the R5 network showed that difficult mutational pathways were evolutionary reachable
via detour and thus increased the shortest path length. In contrast, difficult evolutionary
paths in the X4 network showed a tendency to become disconnected at some vertex. Thus,
the shortest paths lengths in the X4 network were shorter (since long shortest paths more
often were not reachable).
We next focussed the shortest paths analyses to those paths that connected a sequence of
minimal fitness to a sequence of maximal fitness (min-max path), following the shortest
mutational pathway to evolve from the least to the most fit sequence (or vice versa). The
R5 network contained eight possible min-max paths, each of a length of 4.0, connecting
any of the four nodes of minimal fitness to the two nodes of maximal fitness. In the
X4 network, with one sequence of maximal fitness and 64 sequences of minimal fitness,
we found 52 possible shortest paths of length 1.0 to 4.0. The network restriction to nt
Hamming distances of one blocked 12 of the possible min-max pathways. The average
shortest path length of 4.0 for the min-max paths was higher in the R5 network, than the
average shortest path length of 3.135 for the 52 min-max paths in the X4 network.
Though the general shortest path length of the R5 and X4 network only varied by 3.6%
(R5: 2.676 vs. X4: 2.583), the length of the shortest min-max paths connecting sequences
of minimal to sequences of maximal fitness varied by ∼ 27.6% (R5: 4.0 vs. X4: 3.135)
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between the R5 and X4 population.
This observation indicated a faster evolution of sequences of minimal fitness into sequences
of maximal fitness in the X4 population, and gave further evidence to our hypothesis that
the X4 population is evolutionary closer to sequences with minimal fitness than the R5
population.
This idea gained further support by an analysis of the maximal and minimal node be-
tweenness, a value that represents the rate of all shortest paths that pass through a node.
The measure describes the importance of the central nodes of a network as well as the
network extension (i.e. for a network of sequences the extension in sequence space).
The maximal betweenness was 2.5 · 10−3 for the R5 network and 2.1 · 10−3 for the X4
network. These numbers indicated a slightly reduced importance of the central nodes of
the X4 network as well as a larger expansion in sequence space. This observation was
confirmed by the minimal betweenness of 2.9 · 10−4 for the R5 and 0.0 for the X4 network.
Thus, the R5 network was more central and dense and contained more evolutionary paths
that traversed through the central nodes, while the X4 network was further extended in
sequence space.
An analysis of the network closeness, which is an alternative measure of node centrality,
further stressed this point. The maximal closeness of 0.332 in the R5 network was higher
than the maximal closeness of 0.315 in the X4 network, and also the minimal closeness of
the R5 network was higher than the minimal closeness of the X4 network 4.0 · 10−3 vs.
0.0). In summary we found that the R5 network of all four-point mutants was more dense
and concentrated in a smaller region in sequence space. The betweenness and closeness
of the R5 network was higher, indicating more important central nodes. Evolutionary
pathways between the R5 mutants in general were short (avg. length of 2.676), but paths
that connected sequences of maximal fitness to sequences of minimal fitness were as long
as 4.0.
In contrast, the network of the X4 mutant population was more sparse and extended
in a larger region of sequence space. The X4 network enabled less evolutionary paths
connecting the sequences of the population, and the possible pathways in general were
slightly shorter (average length of 2.583), presumably due an interruption or blocking of
longer evolutionary paths. Pathways from sequences of minimal to sequences of maximal
fitness traversed on average 3.135 edges. A comparison of the average shortest path length
and the shortest min-max path length indicated a reduced shortest min-max path length
in the X4 network. Thus, a direct comparison of the fitness landscapes of the R5 and
X4 four-point mutants supported our hypothesis that the pathways between sequences
of maximal fitness and sequences of minimal fitness are evolutionary shorter in the X4
network than in the R5 network.
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Table 4.2.: Network measures of R5 and X4 mutant network
The table gives a summary of the network analyses. The number of the sequences of minimal
and maximal fitness is given in parenthesis (obs.).

network measure R5 (obs.) X4 (obs.)

4-p. mut. no. of edges 1,664 1,248

6-p. mut. no. of edges 46,112 29,184

8-p. mut. no. of edges 934,264 495,360

4-p. mut. avg. degree 13.00 9.75

6-p. mut. avg. degree 22.52 14.25

8-p. mut. avg. degree 28.51 16.54

4-p. mut. min. fit 2.8 · 10−1 (4) 0.00 (64)

6-p. mut. min. fit 1.3 · 10−1 (48) 0.00 (1,024)

8-p. mut. min. fit 2.56 · 10−2 (32) 0.00 (30,976)

4-p. mut. avg. shortest path 2.68 2.58

6-p. mut. avg. shortest path 4.03 3.74

8-p. mut. avg. shortest path 5.26 5.12

4-p. mut. avg. shortest min - max path 4.00 3.14

6-p. mut. avg. shortest min - max path 5.75 4.64

8-p. mut. avg. shortest min - max path 7.75 6.04

4-p. mut. not reachable min - max paths 0 12

6-p. mut. not reachable min - max paths 0 192

8-p. mut. not reachable min - max paths 0 9,504

4-p. mut. max. betweenness 2.49 · 10−3 2.10 · 10−3

6-p. mut. max. betweenness 1.83 · 10−4 9.43 · 10−5

8-p. mut. max. betweenness 1.93 · 10−5 9.36 · 10−6

4-p. mut. min. betweenness 2.92 · 10−3 0.00

6-p. mut. min. betweenness 5.93 · 10−5 0.00

8-p. mut. min. betweenness 2.29 · 10−6 0.00

4-p. mut. max. closeness 3.32 · 10−1 3.15 · 10−1

6-p. mut. max. closeness 2.22 · 10−1 2.10 · 10−1

8-p. mut. max. closeness 1.67 · 10−1 1.58 · 10−1

4-p. mut. min. closeness 3.92 · 10−3 0.00

6-p. mut. min. closeness 4.09 · 10−3 0.00

8-p. mut. min. closeness 1.23 · 10−4 0.00

Evolutionary networks of six-point mutants Analogue to the networks of four-point
mutants, we analysed the R5 and X4 network of all six-point mutants. A summary of the
network measures is given in Table 4.2.
The networks consisted of 46 = 4, 096 nodes. While 46,112 edges were realised in the
R5 network, the X4 network only contained 29,184 edges. The higher density of the R5
network was reflected in a higher average node degree of 22.52, compared to 14.25 in the
X4 network.
The average shortest path length was 4.03 (path length 1.0 to 8.0) in the R5 network,
and 3.74 in the X4 network (paths length 1.0 to 7.0). Thus, the shortest paths in the X4

116



4. Fitness function and fitness landscape

network are 7.75% shorter than in the R5 network, though the R5 network contains more
edges and a higher average node degree.
An analysis of the sequences of minimal and maximal fitness showed that the R5 population
contained eight individuals of maximal fitness (1.0), and 48 individuals of a minimal fitness
of 0.13. The X4 population contained only one sequence of maximal fitness (1.0), but
1,024 individuals of a minimal replicative fitness of 0.0. Thus, the highly fit R5 sequences
can integrate a number of different neutral nt mutations without a fitness loss. While the
X4 population still contains only one sequences of maximal fitness, it accumulated further
sequences of zero fitness, compared to the X4 population of four-point mutants.
All 384 possible shortest pathways between the eight sequences of maximal fitness and
the 48 sequences of minimal fitness were reachable in the R5 network, while 192 of the
possible 1,024 shortest pathways between the sequence of maximal and a sequence of
minimal fitness in the X4 network could not be realised. The resulting shortest min-max
path length varied between 6.0 and 7.0 in the R5 network and between 1.0 and 6.0 in
the X4 network. On average, the shortest mutational pathway between a sequence of
maximal and a sequence of minimal fitness was 5.75 in the R5 and 4.64 in the X4 network.
Though the general shortest paths length only varied by 7.75% between the R5 and X4
network, the shortest min-max paths showed in a length difference of 23.92% and were
again significantly shorter in the X4 network than in the R5 network.
The comparison of the centrality measures indicated a more condensed R5 network with a
higher importance of the central nodes (maximal betweenness of 1.83 · 10−4 and maximal
closeness of 0.22), in contrast to a less central X4 network (maximal betweenness of 9.43 ·
10−5 and maximal closeness of 0.21.
Thus, the results of the R5 and X4 network of the six-point mutants again confirmed that
the R5 network is more central, while the decreased centrality measures of the X4 network
indicate a less concentrated around its centre. Furthermore, the shortest paths analyses
of all shortest paths in comparison to the min-max shortest paths further confirmed our
hypothesis of a closer proximity of sequences of maximal fitness to sequences of minimal
fitness in the X4 sequence population.

Evolutionary networks of eight- and ten-point mutants Analyses of the evolutionary
networks of the eight-point mutants revealed that the observed differences that we found
for the networks of four- and six points mutants of the R5 and the X4 population were
also present in the population of all eight-point mutants. The R5 population contained
eight sequences of maximal fitness and the X4 population two individuals. We observed a
minimal fitness of 0.0256 for 32 R5 mutants, while the minimal fitness in the X4 population
was again zero, representing 30,976 mutants with stop codons.
Our analyses indicated a more dense R5 network, containing almost twice as many edges
as the X4 network (934,264 edges versus 495,360 edges). Despite this difference, the
general shortest path length of 5.26 edges in the R5 network and of 5.12 in the X4 network
were comparable. In contrast, the length of the shortest evolutionary pathways between a
sequence of minimal fitness and a sequence of maximal fitness differed remarkably from
these numbers. An average shortest min-max pathway traversed 7.75 edges in the R5
network, but only 6.04 edges in the X4 network. Thus, the evolutionary distance of a
sequence of maximal fitness to sequence of minimal fitness was in general 28.31% closer in
the X4 network than in the R5 network. In addition, 9,504 (15,34%) of the 61,952 possible
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evolutionary pathways between a sequence of minimal and a sequence of maximal fitness
in the X4 network were not reachable, while each of the 256 corresponding pathways in
the R5 network were reachable.
A final comparison of the network centrality measures of both networks showed that both
the maximal betweenness (R5: 1.93 · 10−5, X4: 9.36 · 10−6) and the maximal closeness (R5:
0.17, X4: 0.16) of the R5 network were higher, which was also true for the corresponding
minimal values.
Thus, the R5 network of all eight-point mutants was more central and concentrated on a
specific region of the sequence space, and many paths traversed the central nodes of the
network. In contrast, the central nodes of the X4 network were less important for the
network structure. This finding again indicated a larger extension of the X4 network.
The detailed results are given in the summary in Table 4.2.
First analyses of the R5 and X4 population of the ten-point mutants showed a similar
tendency. The inclusion of the ninth and tenth weakly conserved nucleotide position did
not add a new first codon position to the mutated sequences, neither in the R5 nor the
X4 data set, therefore we did not expect contradictory observations upon further analysis
of the R5 and X4 network of ten-point mutants. On basis of the results for the previous
network approaches and the different mutant networks, we decided to discontinue the
analysis of the ten-point mutants and to omit the time-consuming analyses of shortest
paths and centrality measures.
In summary, this part of the network analyses showed that the R5 networks concentrated
in a condensed region of the sequence space. Central nodes of the network are an important
component of many shortest evolutionary paths. The R5 networks contained no sequences
of zero fitness, and pathways between nodes of maximal fitness and nodes of minimal fitness
were longer than the average shortest path length. In comparison, the centrality values
of the X4 networks showed that the networks were less concentrated. The central nodes
were less important for the network structure, since they were less frequent integrated
into the shortest network paths. Though the shortest min-max paths were also longer
than the average shortest network pathways, the length difference was less pronounced. A
comparison of the shortest min-max pathways in the R5 and X4 networks showed that the
evolutionary distance of the sequences of minimal fitness and the sequences of maximal
fitness was shorter in the X4 than in the R5 network. We assume that the X4 sequences
yield an increased tendency to mutate towards low fit sequences that are no longer able to
replicate efficiently.
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Definition of neutral networks

In the two previous network approaches, we observed the structure of the R5 and X4
mutant networks using all available mutant sequences and enabling edges under different
conditions (undirected edges at variable nt Hamming distances and different fitness
deviation thresholds as well as evolutionary networks of directed edges from low to high
fitness at a fixed nt Hamming distance of one). In the last part of the network analysis,
we combined the fixed Hamming distance with a fitness constraint. Upon the network
construction, we limited the sequences to a fraction of the R5 and the X4 sequences that
surpassed a defined fitness threshold eF itmin. From the remaining sequences, we created
an R5 respectively an X4 network based on two conditions. First, the nt Hamming distance
between two sequences was one, and second, the representing vertices were connected via
a directed edge, starting at the node with lower fitness and pointing towards the node
with higher fitness. If both sequences had the same replicative fitness, two directed edges
with an opposite orientation were created.

• create a vertex vi if eF itvj
≥ eF itmin

• add a directed edge pointing from vertex vi to vertex vj if

• H(vi, vj) == 1 and
• eF itvi

≤ eF itvj

The fitness eF it was determined based on Equation 4.12.
The idea behind the definition of a fitness restriction for the inclusion of the nodes re-
spectively sequences into the networks was to reduce the networks to sequences of a high
replicative fitness, since we presume those sequences to be biologically relevant for the
course of the infection and the evolution of the sequences. Sequences with low or even zero
replicative fitness are supposed to build a less relevant minority. The resulting networks
should only contain sequences that are evolutionary neutral with respect to the replicative
fitness of the underlying sequences.
Based on these definitions, we repeatedly analysed the structural differences between the
R5 and X4 mutant networks. Depending on the selected fitness threshold eF itmin, we
found a significant deviation in the size of the corresponding R5 and X4 networks, as
presented in Table 4.3. The reason for the different network sizes are the deviations in the
underlying fitness distributions discussed and presented in Figure 4.23.
The observed differences in size were largest in the networks of eight-point mutants using
fitness constraints of 0.5 and 0.6. The definition of a fitness threshold led to networks
that varied up to a factor of ten in size, making it less sensible to compare the resulting
networks and to interpret the results. Clearly, the numbers of edges were smaller and also
the paths lengths were remarkably shorter in the small networks.
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Table 4.3.: Graph size using minimal fitness constraint
The table gives a overview over the number of nodes and the number of edges of the networks of
four-, six-, eight-, and ten-point mutants, depending on the selected fitness threshold eF itmin.

nodes edges
network eF itmin R5 X4 R5 X4

4-p. mut. 1.0 2 1 2 0
4-p. mut. 0.9 4 3 8 3
4-p. mut. 0.8 4 11 8 14
4-p. mut. 0.7 8 33 20 79
4-p. mut. 0.6 16 91 44 385
4-p. mut. 0.5 74 104 352 458
4-p. mut. 0.0 256 256 1,664 1,248

6-p. mut. 1.0 8 1 32 0
6-p. mut. 0.9 16 8 80 14
6-p. mut. 0.8 16 25 80 53
6-p. mut. 0.7 32 75 176 217
6-p. mut. 0.6 64 253 368 1,216
6-p. mut. 0.5 312 425 2,392 2,179
6-p. mut. 0.0 4,096 4,096 46,112 29,184

8-p. mut. 1.0 8 2 32 2
8-p. mut. 0.9 16 32 80 146
8-p. mut. 0.8 16 94 80 458
8-p. mut. 0.7 32 311 176 1,721
8-p. mut. 0.6 64 1,076 368 7,939
8-p. mut. 0.5 328 2,331 2,488 18,185
8-p. mut. 0.0 65,536 65,536 934,264 495,360

We decided to modify the fitness constraint and to use a fixed percentage of the most
fit sequences of each population to balance the network sizes. As we discussed upon the
introduction of the fitness function 4.12, the explicit fitness values are only valid for an
intra-R5 or intra-X4 ranking of the replicative fitness. Due to a missing in vitro validation,
we had no method to perform a direct comparison of the replicative fitness of the R5 and
X4 fitness values.
Therefore, this relaxation of the network constraint is sensible. We tested fractions of
sequences in a range x from 1% to 25%. In consequence, the neutral networks were defined
in the following way:

• create a vertex vi for the x percent of the most fit sequences i

• add a directed edge pointing from vertex vi to vertex vj if

• H(vi, vj) == 1 and
• eF itvi

≤ eF itvj

Using this definition, we created networks of a fixed size, containing only the x percent
most fit sequences of the R5 and X4 mutant population, up to a proportion of x = 25%.
The resulting networks are finite directed cyclic graphs. Cycles can only contain nodes
representing sequences of identical replicative fitness (self-loops were restricted).
The neutral networks enabled us to analyse the differences between the underlying fitness
landscapes of the R5 and the X4 sequences of the highest replicative fitness, presumably
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representing the dominant sequences in an HIV infection.
We excluded the population of the four-point mutants from this analysis, since it contained
only 256 sequences and resulted in very small networks. First analyses of these small
networks showed that it was less informing to analyse and compare the network measures
of these networks.
The restriction to use the 1 - 25% most fit sequences created R5 and X4 networks of equal
size, but with differing least fitness values. These differences resulted from the deviations
between the R5 and X4 fitness distribution we already described in Figure 4.23. Therefore,
the least fit sequences that were included into the X4 network showed a higher fitness
value than the least fit sequences that were included into the R5 network.
Using the 1% most fit sequences of the R5 population of all 6-point mutants for example
comprised the sequence with fitness eF itR5 = 0.69 as least fit node. In the corresponding
X4 network, the node with minimal fitness had a fitness of eF itX4 = 0.75. Correspond-
ingly, the 1% most fit sequences of the 8-point mutants resulted in least fitness values of
eF itR5 = 0.40 in the R5 network and of eF itX4 = 0.66 in the X4 network.
As stated above, we had no in vitro method to calibrate this pure numerical fitness values
in terms of replicative capacity. Therefore, the numerical fitness value are valid for a
ranking of the replicative capacity within the R5 or within the X4 population, but not
across the populations. The numerical deviation of two fitness values, e.g. eF itR5 = 0.40
and eF itX4 = 0.66, could only be an artefact of our computational method and in vitro
result in the same replicative fitness.
The minimal numerical fitness values of the six- and eight-point mutant sequences that
were included into the R5 and X4 networks are compared in Figure 4.32, depending on the
used proportion x of the most fit sequences. An overview over the fitness values and the
additional network measures presented in the following lines are given in the Appendix in
Table A.5 for the six-point mutants and in Table A.6 for the eight-point mutants.
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Figure 4.32.: Minimal node fitness of R5 and X4 network
The illustrations compare the minimal node fitness included into the R5 (blue) and X4 (red)
network, depending on the selected threshold x. Figure (a) shows the minimal fitness for the
six-point mutant networks, and Figure (b) for the eight-point mutant networks.

121



4. Fitness function and fitness landscape

The analyses of the network measures of the neutral R5 and X4 networks of varying
size confirmed our previous findings. A comparison of the maximal node betweenness of
the R5 and the X4 networks of the most fit six- and eight-point mutants revealed that
the maximal node betweenness of the R5 networks was always higher than the maximal
node betweenness observed in the corresponding X4 networks (see Figure 4.33). Further
comparisons of the average node betweenness as well as the minimal node betweenness
witnessed this finding. Comparable to the evolutionary networks analysed before, the
minimal node betweenness in the X4 networks was zero, but in general differed from zero
for the R5 networks (data not shown).
The higher node betweenness of the nodes of the R5 network confirmed that the R5
networks are more centralised and that the central nodes are more often traversed by
the shortest paths than the central vertices of the X4 networks. This result consolidates
the idea that the R5 population is more condensed and centralised in sequence space, in
contrast to the X4 sequences that are farther extended in sequence space.
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Figure 4.33.: Maximal node betweenness of R5 and X4 network
The illustrations compare the maximal node betweenness of the R5 (blue) and X4 (red)
network, depending on the selected threshold x. Figure (a) shows the maximal betweenness
of the six-point mutant networks, and Figure (b) of the eight-point mutant networks.

We found the same result upon the computation of the node closeness as an alternative
centrality measure. The maximal node closeness for any threshold x in the range of 1 -
25% was higher for the R5 network than for the X4 network (compare Figure 4.34), and
this observation was confirmed by additional analyses of the average and the minimal
node closeness of the respective networks (data not shown). In agreement to the findings
from the previous network analyses (see Table 4.2), the minimal node closeness in any of
the X4 networks was zero, while the minimal closeness in the respective R5 networks in
general differed from zero. The analyses of the node centrality measures coincided with
the findings for the previous R5 and X4 network definitions.

A subsequent analysis of the maximal and the average node degree showed that the
node degree in the R5 was higher (data not shown).
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Figure 4.34.: Maximal node closeness of R5 and X4 network
The illustrations compare the maximal node closeness of the R5 (blue) and X4 (red) network,
depending on the selected threshold x. Figure (a) shows the maximal closeness of the
six-point mutant networks, and Figure (b) of the eight-point mutant networks.

Further computations showed that the shortest paths in the X4 networks were in general
longer than in the corresponding R5 networks (compare Figure 4.35. This finding differed
from the previous shortest path analysis 4.2, in which we found comparable average
shortest path lengths in the R5 and the X4 networks. The deviation in the path lengths
between the neutral networks and the evolutionary networks presumably resulted from the
exclusion of the sequences of low fitness. In the previous evolutionary network definition,
the low fit X4 sequences often led to an interruption of network paths in the more sparse
and extended X4 network. Starting at a sequence of maximal fitness, a fraction of the least
fit sequences was not reachable in each X4 network (compare number of not reachable
min-max paths in Table 4.2). Using the present neutral network definition, the shortest
path length of the X4 network increased, since less fit mutants were excluded and thus
less frequently led to an interruption of the paths.
In summary, the analyses of the neutral networks of sequences of similar replicative

fitness agreed with the findings for the previous network types. Thus, our results are
independent of the details of the network definition. We conclude that the highly conserved
R5-tropic viral sequences are evolutionary close and condensed in sequence space, while
the more variable sequences of the X4-tropic viral populations extend farther to more
distant regions of the V3 loop sequence space.
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Figure 4.35.: Shortest path length of R5 and X4 network
The illustrations compare the average shortest path length of the R5 (blue) and X4 (red)
network, depending on the selected threshold x. Figure (a) shows the average shortest path
length of the six-point mutant networks, and Figure (b) of the eight-point mutant networks.
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4.5. Discussion

In the second part of the work, we used the Los Alamos database [100] to collect a large V3
loop data set. We separated the sequences into two independent R5- and X4-tropic data
sets, calculated multiple sequence alignments (MSA) of the R5- and X4-tropic sequences,
and analysed the differences of the MSAs and the resulting consensus sequences. We
further used the MSA to derive two fitness functions to describe the replicative fitness of
R5- and X4-tropic V3 loop sequences. Finally, we studied evolutionary pathways defined
by the fitness landscapes using methods from network theory to compare the underlying
R5 and X4 fitness landscape.
We found deviations in the sequence conservation of the nucleotide (nt) and amino acid
(aa) MSAs of the R5 and X4 data set. In general, the X4-tropic viral sequences are less
conserved than the R5-tropic sequences. In consequence, random mutations of the more
variable X4 consensus sequence altered the replicative fitness less than the introduction of
random mutations into the highly conserved R5 consensus sequence.
During our analyses, we further revealed a putative fitness deficit of the X4-tropic strains.
Upon analyses of the conservation of the MSAs with respect to the codon position, we
observed a preference of the most weakly conserved X4 nt to occur in the first codon
position. Among the ten most weakly conserved X4 consensus sequence positions, we
found five times a first codon position. Though mutations in the ten least conserved X4
consensus sequence positions in general had a small impact on the X4 fitness, alterations in
the five weakly conserved first codon positions frequently introduced stop codons into the
mutant sequences of the X4 population. Based on the definition of our fitness functions,
these stop mutations inhibit the replication of the respective X4 mutants.
In contrast to the five first codon positions among the ten most weakly conserved X4
sequence positions, we observed three first codon positions among the ten most weakly
conserved R5 sequence positions. We further showed that no point mutation in the
ten most weakly conserved R5 nt positions of our MSA (including the three first codon
positions) could introduce a stop codon into any individual of the R5 mutant population.
We formulate the hypothesis that a random mutation in general has a more negative
impact on the replicative fitness of the R5 sequences, due the higher sequence conservation
of the R5 consensus sequence, but a complete loss of the replicative fitness upon the
introduction of a stop codon might occur in the less conserved X4 sequences at a higher
probability.
Subsequent network analyses of the R5 and X4 mutant populations showed that the central
nodes of the R5 network were part of many shortest paths and that the R5 sequences
concentrated in a small region in sequence space, while the sparse and less centralised X4
network extended into a farther regions of the sequence space.
Furthermore, we found that the average shortest path length of the R5 and X4 networks
was comparable, but the shortest evolutionary pathways between a sequence of maximal
fitness and a sequence of minimal fitness were approximately one fourth shorter in the X4
network than in the R5 sequence network. These observations again indicated that the
more variable sequences of the X4 population are evolutionary closer to sequences with
low replicative fitness than the conserved sequences of the R5 population.
Based on our observations and on additional knowledge from literature, we hypothesise
the following explanation for the co-receptor switch:
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4. Fitness function and fitness landscape

The fast replication of the HIV sequences and the high error rate of the reverse transcriptase
result in the accumulation of replication errors. Since the R5 and X4 sequences are in close
proximity in the sequence space, the accumulation of mutations frequently transforms R5
sequences into X4 and vice versa, and creates both R5- and X4-tropic HIV sequences.
In early stages of the disease, the immune system is strong. Due to a preference to detect
X4-tropic viruses, X4 sequences are the major target of the immune system and the
remaining R5-tropic sequences dominate the infection. In later stages of the disease, the
decreasing immune pressure results in a diminishing immune selection, and the continuously
high error rate of the reverse transcriptase creates a high sequence variability, which enables
a dominance of the more variable X4-tropic sequences.
Thus, our hypothesis of the co-receptor switch merges the idea of the immune control
hypothesis with our observation of a less conserved X4 population.
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4.6. Outlook

Upon the comparison of local R5 and X4 mutant populations, our work revealed differences
in the most weakly conserved sequence positions. In further studies, it is essential to extend
our local studies onto larger populations of V3 loop sequences. To increase the observed
sequence space, the next analyses should compare populations that carry mutations at
the identical sequence positions, for example we could combine the weakly conserved R5
and X4 nucleotide positions and mutate both consensus sequences at the same sequence
positions.
Furthermore, the replicative fitness of the V3 loop sequences should be confirmed ex-
perimentally in in vitro experiments. Above all, it would be very interesting to directly
compare the replicative capacity of the R5 and the X4 consensus sequence. Though our
data analyses indicated a higher replicative fitness of the highly conserved R5 consensus
sequence, this observation is presumably an artefact of our computational method, that
rewarded the higher sequence conservation with a higher replicative fitness.
In our work, we derived a fitness function that is composed of an amino acid based main
fitness contribution and a second term that evaluates epistatic interactions between pairs
of coupled amino acid mutations. In further studies, it would be challenging to include
higher dimensions of amino acid interactions into the fitness function.
Our analyses were based on a cross section of data bank sequences that we assumed
to represent a steady state of the V3 loop population. For further studies, it would be
interesting to further increase the data set. One could include viral populations from deep
sequencing approaches, and in addition gain fitness information based on the number of
sequence duplicates found within the patient-specific viral populations.
Last but not least, our approach presumed static fitness landscapes. It would be interesting
to transform the static fitness landscapes into dynamic fitness landscapes, and to model
for example changes in the immune pressure, the cell availability, and in the administered
therapy. The increasing availability of high-throughput sequencing techniques could enable
an approach to formulate a dynamic fitness landscape based on the longitudinal deep
sequencing information of a single patient, for example at different time points during the
infection, supplemented by the additional clinical information as presented in the first part
of this work.
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loop

5.1. Introduction

In the last part of this work, we developed a model to simulate the evolution of HIV V3
loop populations in an artificial in silico setting.
The observation of a patients complete viral population is time consuming, costly and
depends on the compliance of the patient. Our model enables us to create a multitude of
different viral populations, starting from varying founder sequences or founder populations,
and to observe their evolution in detail. Using this simulation tool, we are not limited
by the restrictions of a clinical study, neither by the compliance of the patient and the
physician, by the sensitivity of the sequencing method, by the observation time, or by the
costs.
The only restriction we face in an in silico approach is the availability of sufficient compu-
tation time and hardware to perform the simulations, to store the data, and to analyse
the simulated populations, but these are restrictions we also face upon the analysis of real
sequencing data, for example from a high-throughput sequencing approach.
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5.2. Methods

In the following sections, we describe the established evolutionary model of Moran [108] on
which our simulation of the V3 loop evolution is based. We first introduce the basic concept
of the model, then we describe some model extensions and introduce the adaptations we
used in our simulation.

5.2.1. Moran model

The basic idea of the Moran model was introduced by Moran [108] in 1958. In general,
the model describes the evolution of a population of N individuals over time.

Basic Moran model

In the standard Moran model, two representations, a and A, build a population of N

individuals. In each time step, one random individual x is replaced by another random
individual which is selected from the whole population (including x). Thus, the allele
frequencies of A and a can change by 1 in each time step.
Starting from k individuals A and N − k individuals a, with the birth process b and death
process d, the frequency of A changes following these equations:

k → k + 1 : bk = (N − k) ·
k

N

k → k − 1 : dk = k
N − k

N

(5.1)

Note that the birth and death rate, bi and di, are identical.

Adaptation of the Moran model for simulation

Our simulations are based on the Moran model. In contrast to the classical model, in which
one individual is replaced in every time step, our simulation tool replaces ten individuals
in every time step. This modification was introduced to decrease the computation time of
the simulation runs.
In test simulations, the modification did not influence the evolutionary course of the
simulated sequences, but changes of the default population size of the model could alter
the impact of this adaptation.

5.2.2. Simulation

We used the Perl programming language to develop the simulation tool. Each run of the
simulation is divided into three phases:

• model initialisation
• simulation turns
• sampling and computation of mean population fitness

A graphical description of the simplified model workflow is given in Figure 5.1.
During initialisation (1), the user defines the evolutionary parameters of the model. These
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are the duration of the simulation, the population size, the rate of sequence sampling,
the mutation rate, the strength of the epistasis, (the parameter β in Equation 4.12), the
rate of the R5 and the X4 fitness contribution (the parameter α in Equation 4.12), their
variation during the simulation, and the method to select the replicating sequences.
After initialisation, the simulation starts to run for the predefined number of turns (2).
Each turn starts with a replication phase, during which new offspring are created and
random individuals die and are removed from the population (except the newly created
offspring). In this phase, the mean fitness of the population is calculated. After an
user-specified number of turns, a random sequence sample is selected and saved to a
sequence file.
At the end of the simulation (3), a final random sample is saved. In addition, the complete
final population is saved for further analyses.

Initialize

set parameters

define start sequence 

create start population 

replicate sequences

remove sequences

save fitness 

save sample 

save final population

Run

Save

1a

1 1b

1c

2a

2b

2c

2d

3a

2

3

Figure 5.1.: Graphical description of the workflow of the simulation
The illustration describes the sequence of steps of a simulation run.

Due to the importance of the simulation parameters for the course of the evolution, the
simulation is described in detail in the following sections.

Initialisation of the simulation

In the initialisation phase, the user defines the simulation parameters. The founder
population is defined by the size of the population and by the selected sequence of the 105
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nucleotides (nt) that build the V3 loop. The user can decide whether to use a constant
population size or to allow the population to vary in size. In general, we use a population
of a constant size of 3,000 sequences for our simulations. This is based on the knowledge
that the virus population in the blood of a successful treated patient is almost constant
over time, with an estimate of 3,000 cells infected. A population of variable size will
increase or decrease, depending on the replicative fitness of the sequences of the population.
The fitter the population, the more sequences are by chance selected for replication.
In addition to the size of the population, the user also decides whether the start population
is homogeneous or heterogeneous. Choosing a uniform start population enables the user to
decide about the exact nt start sequence. The simulation will then start with the defined
number of identical, predefined nt sequences.
In the default setting, our simulation generates a homogeneous initial population of
identical V3 loop sequences, based on the knowledge that an in vivo HIV infection typically
is seeded by only one viral founder strain [52]. The homogeneous population consists of
identical copies of a random ten-point mutant of a modified V3 loop consensus sequence.
We previously analysed that the original R5 and X4 consensus sequences only differed
in the nt positions 64 (R5: G, X4: A) and 73 (R5: G, X4: A). To minimise the risk to
introduce a co-receptor bias by the founder population of the simulation, the R5 and X4
consensus sequence was modified into a neutral sequence with respect to the co-receptor
usage. Thus, both position 64 and 73 the nt was altered manually into the alternative nt
T, mutating the aa from A (R5) and T (X4) into S, respectively from D (R5) and K (X4)
into Y.
The resulting co-receptor neutral sequence is then mutated in ten random nt positions to
create a start sequence for the simulations. For additional variability, a back-switch of the
randomly selected nt position into the consensus nt symbol is not restricted. Therefore,
the resulting start sequence has a nt Hamming distance in the range of two to twelve with
respect to the R5 and X4 nt consensus sequence.
It is also possible to start from a heterogeneous population of nt sequences of length 105,
with the nt sequences randomly created from the letters of the DNA alphabet (G, C, A, T).
The simulation ensures a founder population of nt sequences without stop codons. Random
sequences with stop codons are created again until they are replaced by a sequence without
any stop codon.
The duration of the simulation is measured in replication cycles (termed turns). The
default duration of the simulation was set to 30,000 turns and can be modified by the
user upon the simulation start. Using the default parameters, a simulation of 30,000 turns
ensured the convergence of the population towards the consensus sequence.
Next, the user can define the mutation rate. We determined a default mutation rate of
0.016 to result in an average of one amino acid mutation per replication. The average
number of mutations is based on an analysis of 1,000 simulation runs. In parallel, we
determined the mutation rate of 0.016 analytically A.3. This mutation rate is set as default
mutation rate for the simulation. Note that higher mutation rates increase and lower rates
decrease the speed of evolution, leaving the course of the evolution in general unaffected.
The user can further decide between roulette and tournament selection to select a sequence
for replication (see next Section), and between an additive or a multiplicative fitness
function to calculate the replicative fitness of the sequences. The roulette selection method
based on a multiplicative fitness function is defined as the default setting.
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Finally, the user can define the sampling rate and the sampling time. The sampling rate
determines the number of sequences that are saved and the sampling time determines after
which number of turns a sample is saved to the result file.
An overview over the simulation parameters is given in the following enumeration. The
default values are given in parenthesis.

• number of turns (30,000)
• initial population size (3,000)
• homogeneous or heterogeneous starting population (homogeneous)
• start sequence (ten-point mutant of consensus sequence)
• constant or variable population size (constant)
• mutation rate (µ = 0.016)
• roulette or tournament selection (roulette)
• fitness function: additive/multiplicative (multiplicative (see Equation 4.12)
• epistatic strength (β = 0.8)
• R5 fitness contribution (α = 0.5)
• X4 fitness contribution 1 − α

• sampling time: every t turns (t = 100)
• fraction of sampling: r (r = 0.05)

In addition, the user can decide to change the influence of the R5 or the X4 fitness function
during the simulation. Therefore, an optional parameter x can be defined which determines
the number of turns after which the parameter α is altered. In general, x = numberofturns

10
.

Using this setting, α is increased every 10% of the turns by 0.1. Also this value can be
modified upon simulation initialisation.
Apart from this expansion, the user can decide to use only the main or only the epistatic
fitness term by an alteration of the parameter β, as described in Equation 4.12.
Optionally, the user can initialise the random number generator of the simulation with a
random seed to get reproducible simulation results.

Simulation turns

After the initialisation, the simulation of the sequence evolution is started. During each
turn of the simulation, ten sequences of the population are selected for replication and ten
sequences are removed from the population.

Replication During the replication step, parental sequences are selected to create offspring
based on their fitness. The underlying selection algorithm is either roulette or tournament
selection. In general, all sequences have a chance to get selected by both methods, but
sequences with a larger replicative fitness are selected for replication at a higher frequency.
Upon roulette selection, a sequence is selected proportional to its fitness. Sequences with
a higher replicative fitness get selected with a higher probability, and sequences with a
fitness of zero (i.e. sequences that carry at least one stop codon) are selected with a
probability of zero , thus they are excluded from the selection process.
If tournament selection is used to select a parental sequence, the selection is a two-step
process. First, two sequences are randomly picked from the population (i.e. not depending
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on their fitness). In the second step, the two individuals compete and only the sequence
with the higher fitness is replicated.
In contrast to the classical Moran model, an average of ten parental sequences is selected
to replicate per turn.

Mutation The simulation performs the sequence replication with a chance for a mutation
(i.e. error-prone replication). Applying the defined mutation rate µ, each of the 105 nt
positions is checked for a possible mutation upon replication. The resulting nt sequence
of the offspring is translated into an aa sequence and the fitness of the newly created
offspring is calculated based on the selected fitness function.

Death After replication, an number of sequences equal to the number of newly created
offspring is randomly selected and removed from the population. Since the classical Moran
model assumes a parallel birth and death process, those offspring that were produced in
the same turn are excluded from the death selection process.

5.2.3. Save simulation results

During the simulation run, the results are saved to a result file at equidistant time points.
The distance of the time points can be defined by the user. The saved results comprise
the nt and aa sequences of the individuals of the population, their individual replicative
fitness as well as the mean replicative fitness of the population.
For large populations, the user can decide to save only a fraction of all sequences, i.e. a
limited sequence sample, instead of the complete population. The sampling rate can be
selected upon the initialisation of the simulation.
Independent of the defined sampling rate, the complete final population is saved at the
end of the simulation.
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5.3. Results

In the following section, we analyse a number of simulation properties and evaluate the
capability to reproduce the course of the V3 loop evolution. We start with an analysis of
the influence of the simulation parameters. Subsequently, we compare the effect of the
different definitions of the underlying fitness functions and finally, we present selected
simulation results using the default simulation parameters given in Section 5.2.2.

5.3.1. Parameter analysis

During the design of the simulation tool, we tested a variety of different simulation
parameters and a range of parameter values. The main purpose was to get a first
impression of the features of our model simulation.
Some of the parameter settings had no biologically meaningful equivalent and were excluded
from further considerations (e.g. simulations of the viral evolution merely based on epistatic
interactions, constant and very small viral populations, a random selection of replicating
parental sequences, simulations with heterogeneous random starting populations, or with
unrealistic viral start sequences as for example mere poly-A sequences).
The parameter analyses that were relevant to mimic a biologically sensible V3 loop sequence
evolution are described in the following lines.

Population size and mutation rate

We performed a parameter scan for both roulette and tournament selection to determine
biologically meaningful parameters for the simulations. Therefore, homogeneous test
populations were simulated for 50,000 turns and tested in ten simulations. We analysed
the influence of the mutation rate µ in the range of 0.001 to 0.032 and of the population
size in the range of 50 to 3,000 individuals.
The parameters of a simulation were defined to be appropriate, if the simulated sequences
evolved towards the most fit consensus sequence, represented by a fitness value of 1.0
(based on Equation 4.12), at some time point during the simulation (termed timed to
convergence). This definition relies on the observation that the consensus sequence in
general spreads fast throughout the population shortly after its first occurrence.
Using the roulette selection method, the time to convergence was closely related with the
population size (compare Figure 5.2). The larger the population, the earlier we observed a
sequence that evolved towards the consensus sequence. While the largest mutation rate of
0.032 only converged for simulated populations of more than 500 sequences, the smallest
mutation rate of 0.001 evolved towards the consensus sequence only in populations larger
than 1,000, (using a simulation duration of 50,000 turns). Additional simulations of a
duration of up to 500,000 turns showed only slightly improved result.
A detailed inspection of the populations during the simulations revealed that the sequences
do not persist long enough in small populations to enable their replication, since the
probability that they become removed from the population is higher. To avoid sequence
with increased fitness to be swept out before they create offspring, we either had to increase
the population size or the life span of the sequences in our simulations.
In a further analysis of the simulated populations, we found that small mutation rates
(e.g. 0.001) increased the mean population fitness, while large mutation rates (e.g. 0.032)

134



5. Simulation of evolution of HIV-1 V3 loop

decreased the mean fitness (data not shown). The simulated data indicated that large
mutation rates tend to overshoot the mark. Once the simulated sequences reached the
consensus sequence, simulation runs with large mutation rates continued to alter multiple
nucleotides within one round of replication and thus failed to stabilise the population at
the fitness optimum. We observed that large populations could cope with this problem.
Though the sequences spread wide in sequences space, a proportion of the simulated
sequences in a large population conserved the maximal fit consensus sequence. In the case
of small mutation rates, the majority of the sequences exactly hit the most fit consensus
sequence, since only rare mutations were introduced into the offspring upon replication.
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Figure 5.2.: Parameter scan for simulation using roulette selection
The figure illustrates the association of the population size, the mutation rate µ, and the
maximal fitness of the simulated population upon roulette selection. A fitness of 1.0 is
indicative of an evolution towards the consensus sequence.
A mutation rate of 0.032 converged for population sizes larger than 500, and a mutation rate
of 0.001 converged for population sizes larger than 1,000.

We performed the same parameter test for the tournament selection method (compare
Figure 5.3). The simulations showed that the method was very sensitive to the selected
mutation rate. Mutation rates µ > 0.008 (i.e. on average one aa mutation in every
second turn) restricted the population to evolve towards the consensus sequence during
simulations of 50,000 turns. A five- to tenfold duration of the simulations (i.e. up to
500,000 turns) increased the success, but still some simulations failed to evolve to the
consensus sequence.
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We found that this was mainly a consequence of the first step of the tournament selection
method. As log as there are many sequences of low fitness and only a few sequence of high
fitness in the population, the random selection picks sequences of high fitness at a low
probability. Therefore, the fitness-dependent second step can only decide between two less
fit sequences. Only if there are enough high fit sequences in the population, the highly fit
sequences are selected steadily for replication. In consequence, the time to convergence is
longer upon the usage of tournament selection.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000

fi
tn

e
s
s

population size

mut 0.001
mut 0.008
mut 0.016
mut 0.024
mut 0.032

Figure 5.3.: Parameter scan for simulation using tournament selection
The figure illustrates the association of the population size, the mutation rate µ, and the
maximal fitness of the simulated population upon tournament selection. A fitness of 1.0 is
indicative of an evolution towards the consensus sequence.
The use of the tournament selection method in our simulations was very sensitive to the
mutation rate. Mutation rates larger than 0.008 often failed to evolve towards the consensus
sequence during simulations of 50,000 turns.

Due the increased computation time, the simulations based on tournament selection
were less useful to observe the evolution of many populations in parallel. Thus, we decided
to use roulette selection. We used populations ≥ 1, 000 sequences, since populations of
that size were quite robust to any of the tested mutation rates, as analysed in Figure 5.2.
Higher mutation rates resulted in shorter convergence times, but introduced more sequence
diversity, while simulations with lower mutation rates required a longer simulation duration,
but resulted in populations of less sequence diversity. Thus, we selected a fast default
mutation rate of 0.016 for roulette selection (on average one aa mutation per replication).
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Sampling

During a simulation run, a user-defined fraction of sequences is written to a result file.
Given enough memory space, the user can decide to save all intermediate sequences of each
generation. The subsequent analyses of the full sequence data of the default simulation
with 3,000 sequences and 30,000 turns would then comprise 90,000,000 sequences. In test
simulations, this amount of data required more computational time for the determination of
the pairwise nt Hamming distances and the calculation of the diversity and the divergence
than the simulations themselves.
For practical reasons, we found a sampling process in predefined timely intervals (e.g.
every 100 turns) more suitable. Furthermore, limited sequence samples with intervals of
unknown populations in between mimic the conditions of our longitudinal patient study,
during which sparse samples were taken in variable time intervals.
To analyse the effect of sampling and to find an optimal sampling rate, we performed
a parameter scan for the sampling rate. Figures 5.4 and 5.5 illustrate the influence of
the sampling rate on the population diversity and divergence over time, as defined in
Section 3.2.1. For a population of 3,000 sequences, we tested sampling rates of 100%, 10%,
5%, and 2% , i.e. all 3,000 sequences and 300, 150, and 60 randomly drawn sequences.
The sampling rate of 100% represents the real sequence diversity and divergence of the
simulated population.
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Figure 5.4.: Parameter scan for sampling rate
The figure illustrates the influence of the sampling rate on the evolution of the population
diversity over time. The red curve (100% of all sequences saved) equals the real sequence
diversity of the simulated population and served as a standard to test sampling rates of 10%,
5%, and 2% for a population of 3,000 sequences.
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Figure 5.5.: Parameter scan for sampling rate
The figure illustrates the influence of the sampling rate on the evolution of the population
divergence over time. The red curve (100% of all sequences saved) equals the real sequence
divergence of the simulated population and served as a standard to test sampling rates of
10%, 5%, and 2% for a population of 3,000 sequences.

As expected, the comparison showed an increasing deviation of the real measures from
the sample estimates with decreasing sampling rate. The required memory space for the
analyses scaled with the same rate, while the computation time scaled quadratically with
the sampling rate, due to the calculation of the Hamming distance of each sequence pair
upon the computation of the diversity. Based on these observations and with respect to
the consumption of memory space and computation time, we used a default sampling rate
of five percent, i.e. a sampling parameter of 1

20
for the simulations.

Additive versus multiplicative fitness

In our model, two fitness contributions influence the fitness value of a sequence. The
fitness is composed of the main fitness term, based on the aa sequence, and of the
epistatic fitness term, describing the effect of pairs of interacting mutations. Resolving
the mathematical description of the fitness terms in more detail, both the main and the
epistatic fitness contribution are composed of multiple individual fitness contributions.
The exact definitions were described in Sections 4.4.3 and 4.4.5.
We considered different possibilities to join the single fitness contributions: the summation
of all single fitness contributions, the multiplication of all single fitness contributions
(as described in Equation 4.10 and analysed in Section 4.4.3), and a combination of the
summation and the multiplication (i.e. the summation of the single position specific
contributions, and the multiplication of the resulting main and epistatic term).

138



5. Simulation of evolution of HIV-1 V3 loop

We tested the different methods and analysed the effect on the resulting replicative fitness
as well as on the course and the outcome of the simulations. The test simulations confirmed
our theoretical considerations presented in Section 4.4.3 (results not shown). Simulations
based on the multiplicative fitness function sifted the less fit sequences out fast and soundly,
due to an increased chance to select sequences of high fitness for replication. In the case
of the additive fitness function, the simulations run approximately the tenfold number
of turns to evolve towards the consensus sequence and the resulting final populations
were more heterogeneous and showed a decreased mean population fitness, compared to
simulations that were based on the multiplicative fitness function. The rational behind this
observation is that the multiplicative fitness function has a distinct and steep fitness peak,
representing the optimal consensus sequence, while the additive fitness function creates a
fitness landscape which is more flat and has a less pronounced consensus sequence peak.
Piganeau et al. [117] described that additive selective effects are not effective when the
number of selected sites is larger than the effective population size, an assumption they
state to be realistic for current molecular data.
Based on these results and the previous considerations (compare Section 4.4.3 ), we decided
to use a the multiplicative formulation of the fitness function for the default simulation
model, as presented in Equation 4.12. The resulting values were normalised to the interval
[0.0, 1.0] as described upon the introduction of the fitness function.

5.3.2. Results of the default model

We used the default parameter settings described in Section 5.2.2 to perform multiple
simulations of the evolution of the V3 loop, starting from homogeneous populations of ran-
dom ten-point mutants of the R5 and X4 nt consensus sequences presented in Section 4.3.2.

Evolution of the diversity and the divergence

Based on the default simulations, we analysed the course of the diversity and the divergence
(defined by Equation 3.2.1). Figure 5.6 illustrates the course of the diversity, using the
default simulation parameters (see Section 5.2.2) and the fitness function presented in
Equation 4.12. The simulations started from homogeneous populations with zero diversity,
and the diversity increased during the first 2,000 turns, representing approximately 20,000
replications. Around this time, one of the newly created offspring mutated into the most
fit consensus sequence. In the subsequent simulation turns, the consensus sequence became
dominant and spread throughout the population. As a consequence, the diversity of the
population decreased and finally stabilised at an average diversity level depending on the
mutation rate.
A comparison of the simulation results with the results of Shankarappa et al. [138]
showed that the course of diversity created by our simulations nicely coincided with the
three-staged pattern of viral evolution published in 1999.
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Figure 5.6.: Evolution of diversity in the default model
The figure illustrates the course of the diversity of 15 example runs, using the default simulation
parameters.
The diversity showed a three-staged pattern: an increase during the first 2,000 turns, a
decreasing diversity while the consensus sequence became dominant, and a final stabilisation
at an average diversity level.

The corresponding analysis of the course of the divergence is shown in Figure 5.7. After
an initial increase of the divergence during the first 2,000 turns, the divergence of the
population stabilised at a specific nt Hamming distance, representing the genetic distance
between the initial sequence and the consensus sequence. The extend of the final divergence
of the population depends on the exact number of mutations of the founder strain.
Using the default weighting parameter α = 0.5, we observed a closer genetic distance of
the simulated sequences to the R5 consensus sequence in the majority of all simulations.
A temporarily increase or decrease of the divergence during the course of evolution was
observed in single simulation runs. Detailed analyses showed that this was a result of a
transient dominance of the X4 consensus sequence. The closer genetic distance of the
simulated sequences to the R5 consensus sequence could so far not be completely resolved.
The reduced epistatic interactions in intermediate sequences seem to be one cause. We
further presume that the R5 dominance is at least partially a consequence of the finite
population size and the limited simulation time.
A comparison of the simulated course of divergence with the evolutionary course of an
HIV-1 infection described by Shankarappa et al. [138] showed similar patterns. After
an initial increase of the divergence during the acute phase of the infection, the genetic
distance stabilised at some time point during the disease and stayed at that level until the
end of the simulations.
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Figure 5.7.: Evolution of divergence in the default model
The figure illustrates the course of divergence of 15 example runs, using the default simulation
parameters.
The divergence increased during the first 2,000 turns, until one of the offspring evolved
towards the most fit consensus sequence. While the consensus sequence became dominant,
the divergence of the population stabilised.

Thus, regarding the viral diversity and divergence, our simulation tool is capable to
mimic the evolutionary course of an HIV-1 infection as described in early biological studies
of Shankarappa et al. [138]

Hamming distances of the final population

Subsequent to the analyses of the viral diversity and divergence, we analysed the genetic
distance between the simulated populations and the consensus sequences. Therefore, we
calculated the aa Hamming distance of each sequence of the final population to both the
R5 and the X4 aa consensus sequence. All default simulations resulted in comparable final
populations.
Figure 5.8 shows the distribution of the resulting aa Hamming distances. As previously
described, the R5-tropic sequences dominated the population at the end of the simulation
runs, despite an equal weight for both the R5 and X4 fitness contribution (α = 0.5). The
definition of our fitness function (defined in Equation 4.12) favoured the R5 sequence due
to less epistatic interactions in intermediate sequences. Using α = 0.5, a population in
favour of the X4 consensus sequence was only observed transiently in intermediate time
steps during the simulation.
In the default simulations, about 1

6
of the 3,000 sequences of the final population of each

simulation exactly matched the R5 consensus sequence, i.e. the aa Hamming distance to
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the R5 consensus sequence was zero for about 500 sequences per run. The majority of
the sequences (∼ 1, 000 sequences) accumulated at a Hamming distance of one. We found
this to be a result of the continuous replication and mutation process. Once the consensus
sequence is present in the population, it is most likely selected for replication due to the
maximal fitness value. Upon the following replication, the default mutation rate of 0.016
introduces on average one aa mutation into the newly created offspring. This phenomenon
is further discussed at the end of the section.
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Figure 5.8.: Hamming distances of the final population of the default model
The figure illustrates the distribution of the aa Hamming distances of the sequences of the
final population to the R5 and the X4 consensus sequence.
Both the Kolmogorow-Smirnov [92, 143] and the χ2 [114] test showed that the distributions
of aa the Hamming distances were significantly different (p − value =< 0.0001 for both tests).

In additional simulation runs, we found that an alteration of the weighting parameter
α in favour of the X4 fitness function (i.e. α < 0.5) directed the viral evolution either
towards mixed R5- and X4-tropic or mere X4-tropic final populations, depending on the
exact parameter value (data not shown).
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Evolution of position specific amino acids over time

Following the analyses of the course of the diversity and divergence and of the Hamming
distances of the final populations, we next asked whether the course of evolution is
chemically sensible. Therefore, we classified the amino acids into four chemical groups:
basic (K, R, H), acidic (E, D), polar (Y, T, Q, G, S, C, N), and non-polar (A, V, M, L, I,
P, W, F) (compare Table A.7).
During the simulations, the sampled sequences were translated into a chemical score with
respect to the target consensus sequence, regarding the following scheme: amino acids
matching the consensus sequence amino acid were scored as 1.0, differing amino acids
belonging to the same chemical group as the consensus amino acid were scored as 0.0
and differing amino acids of a differing chemical group were scored as -1.0. We scored all
sequences of each sample and calculated the position-specific sample average.
Figure 5.9 depicts the position-specific average of the samples compared to the respective
R5 (a) or X4 (b) consensus sequence. The illustrations show that evolution of the mutated
positions follows a meaningful chemical course. In general, mutated positions first met the
correct chemical group and finally evolved towards the correct amino acid. This effect is
especially pronounced in figure (a) for the R5 sequence position one, 22, and 25.
A comparison of the chemical evolution with respect to the R5 and the X4 consensus
sequence confirmed the finding, that the X4 consensus sequence dominated the population
only transiently. In the illustrated example in Figure 5.9, this can be seen for the first 5,000
to 10,000 turns in the positions 22 and 25 of the simulation. During this time, the correct
chemical group with respect to the X4 sequence dominated both positions, represented by
the blue colour in the X4 (b) plot. In consequence, the chemical group in the positions
22 and 25 differed from the R5 consensus sequence during that time, represented by the
red colour in the R5 plot (a). After approximately 12,000 turns, the R5 consensus aa
dominated, leading to a switch of the chemical property, represented by the positive score
(blue colour) in the R5 plot (a) and the negative score (red colour) in the X4 plot (b).
Figure 5.9 also nicely visualises the fluctuating character of the position-specific aa of
the population. Once the correct aa in a sequence positions occurred, it dominated that
position, but some individuals of the population continuously acquired new mutations
during later rounds of replication (illustrated by the change between dark and light blue
in position 25 beginning from turn 25,000).
From the analyses of the chemical course of the evolution we found that our model was
able to simulate chemically meaningful evolutionary pathways.
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Figure 5.9.: Evolution of chemical properties
The figure illustrates the evolution of the chemical properties during the simulation. Amino
acids are translated position-dependent into a chemical score, with respect to the consensus
sequence. Matching amino acids are scored as 1.0, differing amino acids belonging to the
same chemical group than the consensus amino acid are scored as 0.0 and differing amino
acids of a differing chemical group are scored as -1.0.
The plots depict the position-specific average of the sampled population. (a) illustrates the
course of the chemical properties with respect to the R5 consensus sequence, and (b) with
respect to the X4 consensus sequence.
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5.4. Discussion

In the third part of the work we developed a model to simulate the sequence evolution of
the HIV-1 V3 loop. The simulation tool is based on the findings from the previous parts of
the project, i.e. the sequence analyses, the observed evolutionary course of the evolution,
and the fitness function to describe the replicative fitness of the simulated sequences.
The model is flexible and enables the user to examine the influence of changing simulation
parameters on the timely course of the evolution, for example the impact of the mutation
rate, of the simulation time, of the population size, or the effect of different homogeneous
or heterogeneous founder populations.
We determined a set of parameters that serve as a default model to simulate the evolution
of the V3 loop over time. Our analyses showed that the default model is able to evolve
a population of sequences towards the observed R5 and/or X4 consensus sequence. The
evolutionary speed of the simulation depends on the composition of the founder population,
the mutation rate, and the size of the population.
We further found that the model is capable to reproduce the evolutionary course of
the viral diversity and divergence over time, as it was described by Shankarappa et al.
[138]. Further analyses confirmed that the simulated evolutionary pathways follow sensible
chemical paths, first accumulating amino acids with correct chemical properties and finally
converging into the correct position specific consensus amino acid.
Upon the inspection of the final steady state populations of the default model, we detected
that the majority of the sequences resided at an amino acid Hamming distance of one
to the consensus sequence. The exact distance is defined by the underlying mutation
rate (default 0.016). We found that the final Hamming distance is a consequence of the
continuous mutation process. The sequences are driven by the selection process towards
the fitness optimum, which is the consensus sequence. Once the fitness peak is reached,
the sequences slide down on the fitness landscape to positions of lower fitness. From the
lower level of the fitness landscape, they again step uphill towards the optimum, creating
a continuous exchange of the sequences at the top of the fitness peak and the sequences at
the observed Hamming distance.
Based on our observations we state that our in silico simulation model is a useful tool
to study V3 loop evolution. The model is able to cope with the restrictions of in vivo or
in vitro studies, e.g. the decreasing patient compliance during the years of a longitudinal
study, the high costs of the deep sequencing approaches to enable analyses of complete
viral populations, or the sensitivity of the sequencing methods.
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5.5. Outlook

In further studies, we would like to focus on the simulation of the co-receptor switch and
to evaluate the neutral networks generated by our simulation tool. We want to analyse
the network changes that happen during the simulated evolution. By a variation of the
simulation parameters during a running simulation, analyses of dynamic fitness landscapes
could be possible. This property has already been implemented into the simulation. Last
but not least, a combination of the simulation tool with a co-receptor prediction method
is also highly recommended to enable co-receptor predictions during the simulation.
We would further like to combine the simulation data with longitudinal studies of in vivo
HIV evolution. First, it would be very interesting to study HIV evolution in humanised
mice. Humanised mice are mice in which the mouse-specific immune system (in parts)
is replaced by a human immune system or at least a couple of human immune cells.
These studies would enable us to decide whether the simulated evolutionary pathways are
comparable with the viral evolution in a model organism. We could further imagine to
compare the intra-host evolution of a longitudinal study of HIV-infected patients with the
simulated evolution.
To do so, the simulation should be supplemented with a cell dynamics model, mimicking
the availability of CCR5 and CXCR4 positive T cells as well as the level of viral load.
This extension of the model was used in early version of the simulation tool and we were
already able to reproduce the dynamics of susceptible and infected (SI) cells.
A further extension could model the adaptation of the immune system to the viral se-
quences via the integration of a death or clearance process based on adapted immune cells.
The presented model is further prepared to utilise ageing information of virions. Some very
first test were made to distinguish between productively and latently infected cells and to
introduce compartmentalisation into the model (i.e. to compare the viral populations in
different body compartments). Last but not least, the model could be extended to mimic
HAART treatment, for example by the introduction of a fitness benefit for drug specific
amino acid mutations during the course of simulation.
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6.1. Discussion

The present PhD project is a composed of three intertwined parts. While the first part is
based directly on longitudinal data of 36 HIV-infected patients, the second part utilised a
cross-section of biological sequence data from 2,768 patients comprised in the Los Alamos
HIV data base. In the third part, the findings were combined to develop an in silico tool
to describe intra-host HIV evolution.
Though the general clinical and evolutionary course of an HIV-1 infection was known from
the early days of HIV research, so far it was not analysed whether the course of infection
of HAART treated patients is comparable to the course of untreated patients or patients
with antiretroviral monotherapy. We found some first indications that the course of the
infection of treated and untreated patients is highly related, but the timely course of the
infection varies, depending on the success of the administered therapy.
In vitro co-receptor studies further revealed that intermediate blinks of X4-tropic viral
strains can be suppressed by successful HAART therapy. Thus, we hypothesise that both
the course of infection and the co-receptor switch are not one- but bi-directional. Our first
findings should be confirmed in further longitudinal studies.
Based on approximately 80,000 Los Alamos V3 loop sequences we next analysed the
genetic differences between the R5- and the X4-tropic strains, since the conditions that
lead to a co-receptor switch in about 50% of all patients are still obscure. Therefore we
derived two independent fitness functions to describe the replicative fitness of R5- and
X4-tropic V3 loop sequences. Based on the fitness functions, we used methods from graph
theory to analyse the underlying fitness landscapes.
With our studies, we were able to confirm the differences between the R5 and the X4
sequence space of the V3 loop, that were described in prior publications, e.g. by Bozek
et al. [15]. Analysing the sequence conservation of our data set, we could show that the
R5-tropic sequences are more conserved than the X4-tropic sequences, a fact that was also
described earlier.
In addition, we found that the weakest conserved sequence positions deviate between the
R5 and the X4 sequences, leading to far-reaching consequences. Detailed studies of the
weakest conserved sequence positions and the respective nucleotide codons showed that
the most weakly conserved X4 sequence codons are evolutionary close to stop codons. In
several of the weakest conserved codons, only one nucleotide mutation suffices to introduce
a stop codon into the respective X4-tropic V3 loop sequence. In contrast, none of the
weakest conserved nucleotides of the R5 consensus sequence enables a mutation that
introduced a stop codon into the R5 sequence.
Following these observations we hypothesise that the less conserved X4 sequences have
a fitness disadvantage in a setting with high immune pressure. The better immune
recognition of X4-tropic sequences yields an additional disadvantage. Based on these ideas,
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the R5-tropic sequences dominate early in the infection due to a mutational robustness and
a worse immune recognition, while a weak immune pressure is a prerequisite to enable the
occurrence and replication of X4-tropic sequences. Thus, we suppose that the co-receptor
switch can be explained by the immune control hypothesis, in combination with the
observation of a weakly conserved X4 population.
We comprised our observations in the third part of this work by the development of an
in silico tool to simulate the sequence evolution of the HIV V3 loop. The heart of the
simulation is the fitness function derived in the second part of the work. The method is at a
early state and is still missing some important factors that influence in vivo viral evolution
(e.g. strength of immune pressure, availability of R5 and X4 target cells, drug-virus
interactions). Therefore we were not able to reproduce the course of the viral evolution
of our study patients. So far, the simulations enabled us to analyse some evolutionary
processes of simulated viral populations in fast time and at low costs. With our in silico
model we were able to mimic the course of the evolution of HIV populations with respect
to the viral diversity and the divergence. Further analyses showed that the simulated viral
evolution followed a chemically sensible course.
In summary, the present project gave us some clues regarding the mechanisms of the
co-receptor switch and was successful to gain a number of new and interesting insights into
the aspects of viral intra-host HIV-1 evolution and into the genetic differences between
the R5-tropic and the X4-tropic viral strains.
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A. Appendix

A.1. Supplementary results

A.1.1. Pearson correlation coefficient

Table A.1.: Pearson correlation of diversity and CD4+ cell count The table lists the Pearson
correlation values r and the respective p-values for the association of the diversity and the
CD4+ cell count. ’ID’ is the unique patient identifier and the column ’obs.’ gives the number
of observations.

ID obs. r p-value ID obs. r p-value

4 8 -0.168 0.691 98 7 0.183 0.694

5 6 -0.363 0.479 100 4 -0.967 0.033

7 4 -0.419 0.581 107 8 0.025 0.952

10 5 - - 109 3 0.023 0.985

13 6 0.855 0.030 127 7 0.845 0.017

24 4 -0.501 0.499 132 4 0.109 0.891

26 3 0.978 0.133 143 3 0.322 0.791

32 6 0.135 0.799 166 5 -0.145 0.816

40 5 -0.022 0.973 178 3 0.816 0.393

41 6 0.081 0.879 180 12 0.356 0.256

43 3 - - 190 5 0.665 0.220

49 5 0.851 0.067 194 7 0.307 0.504

51 5 0.299 0.624 196 4 -0.377 0.623

62 5 -0.082 0.895 197 5 0.517 0.373

68 4 -0.748 0.252 212 5 0.342 0.573

72 7 0.252 0.585 222 3 -0.530 0.644

85 3 -0.975 0.141 265 11 0.031 0.927

97 3 0.863 0.337 268 7 0.015 0.975
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Table A.2.: Pearson correlation of divergence and CD4+ cell count The table lists the Pearson
correlation values r and the respective p-values for the association of the divergence and the
CD4+ cell count. ’ID’ is the unique patient identifier and the column ’obs.’ gives the number
of observations.

ID obs. r p-value ID obs. r p-value

4 8 -0.725 0.042 98 7 -0.010 0.983

5 6 0.519 0.291 100 4 -0.893 0.107

7 4 0.545 0.455 107 8 0.343 0.405

10 5 - - 109 3 0.185 0.881

13 6 0.564 0.244 127 7 0.837 0.019

24 4 0.111 0.889 132 4 -0.741 0.259

26 3 -0.983 0.119 143 3 0.727 0.482

32 6 0.465 0.353 166 5 0.194 0.755

40 5 0.099 0.874 178 3 0.925 0.247

41 6 0.058 0.913 180 12 0.443 0.149

43 3 - - 190 5 -0.273 0.657

49 5 0.840 0.075 194 7 0.160 0.732

51 5 0.602 0.283 196 4 -0.836 0.164

62 5 -0.358 0.554 197 5 0.705 0.184

68 4 0.939 0.061 212 5 0.577 0.309

72 7 0.286 0.535 222 3 -0.496 0.670

85 3 0.459 0.696 265 11 -0.015 0.966

97 3 0.629 0.567 268 7 0.470 0.287
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Table A.3.: Pearson correlation of viral load and diversity The table lists the Pearson correlation
values r and the respective p-values for the association of the viral load and the diversity. ’ID’
is the unique patient identifier and the column ’obs.’ gives the number of observations.

ID obs. r p-value ID obs. r p-value

4 7 -0.203 0.663 98 7 -0.445 0.317

5 5 -0.586 0.299 100 4 0.748 0.252

7 3 1.000 0.015 107 8 0.377 0.357

10 5 - - 109 3 -0.390 0.745

13 6 -0.742 0.092 127 7 -0.133 0.776

24 4 -0.068 0.932 132 6 0.261 0.617

26 3 -0.233 0.850 143 3 0.744 0.466

32 6 -0.158 0.765 166 5 0.357 0.555

40 3 0.861 0.340 178 4 -0.260 0.740

41 5 0.339 0.577 180 9 -0.089 0.820

43 3 - - 190 5 0.305 0.618

49 5 -0.439 0.459 194 7 -0.026 0.956

51 5 -0.938 0.019 196 5 0.060 0.924

62 5 -0.533 0.355 197 6 0.262 0.616

68 3 0.993 0.074 212 5 0.259 0.674

72 6 -0.379 0.459 222 4 - -

85 7 - - 265 9 0.143 0.713

97 4 -0.162 0.838 268 6 -0.457 0.362
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Table A.4.: Pearson correlation of viral load and Ne] The table lists the Pearson correlation values
r and the respective p-values for the association of the viral load and the effective population
size Ne. ’ID’ is the unique patient identifier and the column ’obs.’ gives the number of
observations.

ID obs. r p-value ID obs. r p-value

4 32 -0.178 0.330 98 21 -0.758 <0.001

5 30 -0.806 <0.001 100 11 0.799 0.003

7 23 -0.009 0.969 107 36 0.080 0.642

10 10 0.344 0.330 109 10 -0.333 0.347

13 15 -0.805 <0.001 127 23 0.145 0.509

24 29 0.148 0.445 132 19 0.861 <0.001

26 14 -0.044 0.882 143 21 0.973 <0.001

32 28 -0.241 0.216 166 28 0.722 <0.001

40 19 0.539 0.017 178 10 -0.151 0.677

41 23 0.425 0.043 180 39 0.495 0.001

43 11 0.775 0.005 190 11 0.715 0.013

49 28 -0.399 0.036 194 34 -0.150 0.398

51 21 -0.467 0.033 196 35 -0.587 <0.001

62 34 -0.158 0.373 197 20 -0.372 0.107

68 31 0.075 0.689 212 13 0.518 0.070

72 20 -0.336 0.148 222 5 -0.137 0.826

85 40 -0.605 <0.001 265 26 0.438 0.025

97 18 -0.315 0.202 268 11 -0.311 0.352
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Table A.5.: Graph measures of 6-point mutant networks. The table lists the minimal node fitness,
the maximal node betweenness, the maximal node closeness and the average shortest path
length of the respective R5 and X4 six-point mutant networks, depending on the percentage
of the most fit nodes (%) included into the six-point mutant networks.

min. fit. max. bet. max. close. avg. length
% R5 X4 R5 X4 R5 X4 R5 X4

1 0.692 0.750 1.2 · 102 2.9 · 103 0.476 0.283 2.349 3.519
2 0.592 0.697 6.9 · 103 1.9 · 103 0.404 0.317 3.008 3.231
3 0.570 0.672 6.4 · 103 1.8 · 103 0.397 0.320 2.973 3.194
4 0.569 0.653 6.4 · 103 1.6 · 103 0.376 0.307 3.043 3.250
5 0.544 0.630 4.1 · 103 1.4 · 103 0.356 0.294 3.120 3.309
6 0.542 0.604 4.0 · 103 1.3 · 103 0.352 0.282 3.153 3.389
7 0.525 0.587 3.3 · 103 1.1 · 103 0.340 0.276 3.193 3.456
8 0.500 0.568 2.5 · 103 9.6 · 104 0.343 0.270 3.340 3.517
9 0.448 0.537 2.0 · 103 7.9 · 104 0.341 0.262 3.446 3.612
10 0.423 0.507 1.6 · 103 6.4 · 104 0.333 0.252 3.542 3.712
11 0.421 0.489 1.7 · 103 5.6 · 104 0.328 0.245 3.591 3.777
12 0.420 0.481 1.6 · 103 5.0 · 104 0.318 0.251 3.641 3.817
13 0.401 0.472 1.4 · 103 4.5 · 104 0.309 0.254 3.684 3.873
14 0.401 0.466 1.3 · 103 4.3 · 104 0.303 0.256 3.690 3.907
15 0.376 0.457 1.2 · 103 3.8 · 104 0.300 0.256 3.725 3.942
16 0.346 0.451 1.1 · 103 3.6 · 104 0.296 0.256 3.773 3.962
17 0.331 0.444 9.6 · 104 3.3 · 104 0.296 0.256 3.812 3.990
18 0.322 0.438 8.5 · 104 3.1 · 104 0.294 0.254 3.860 4.009
19 0.314 0.432 7.6 · 104 2.9 · 104 0.291 0.252 3.903 4.029
20 0.310 0.426 7.3 · 104 2.7 · 104 0.288 0.252 3.927 4.049
21 0.310 0.422 7.3 · 104 2.7 · 104 0.288 0.251 3.965 4.064
22 0.310 0.418 7.2 · 104 2.6 · 104 0.286 0.249 4.005 4.082
23 0.301 0.414 6.6 · 104 2.6 · 104 0.283 0.251 4.027 4.098
24 0.299 0.411 7.2 · 104 2.5 · 104 0.283 0.250 4.036 4.111
25 0.299 0.408 7.1 · 104 2.5 · 104 0.282 0.249 4.045 4.122
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Table A.6.: Graph measures of 8-point mutant networks The table lists the minimal node fitness,
the maximal node betweenness, the maximal node closeness and the average shortest path
length of the respective R5 and X4 six-point mutant networks, depending on the percentage
of the most fit nodes (%) included into the eight-point mutant networks.

min. fit. max. bet. max. close. avg. length
% R5 X4 R5 X4 R5 X4 R5 X4

1 0.401 0.659 1.0 · 103 7.0 · 104 0.317 0.228 3.818 4.096
2 0.302 0.579 4.1 · 104 4.1 · 104 0.288 0.211 4.301 4.373
3 0.285 0.520 3.1 · 104 2.1 · 104 0.272 0.198 4.448 4.661
4 0.257 0.486 2.3 · 104 1.7 · 104 0.265 0.190 4.598 4.826
5 0.245 0.462 2.0 · 104 1.2 · 104 0.261 0.195 4.672 4.951
6 0.231 0.444 1.7 · 104 1.0 · 104 0.257 0.194 4.753 5.042
7 0.213 0.427 1.3 · 104 8.7 · 105 0.251 0.191 4.879 5.111
8 0.192 0.414 1.1 · 104 7.1 · 105 0.245 0.191 4.971 5.161
9 0.188 0.403 9.9 · 105 7.1 · 105 0.240 0.192 5.027 5.200
10 0.179 0.395 8.8 · 105 6.9 · 105 0.235 0.191 5.065 5.230
11 0.163 0.385 7.5 · 105 6.5 · 105 0.232 0.191 5.136 5.261
12 0.157 0.373 6.8 · 105 5.9 · 105 0.229 0.189 5.189 5.299
13 0.152 0.361 6.1 · 105 5.4 · 105 0.227 0.188 5.232 5.338
14 0.147 0.353 5.7 · 105 5.0 · 105 0.225 0.187 5.273 5.374
15 0.142 0.344 5.2 · 105 4.6 · 105 0.223 0.185 5.313 5.408
16 0.139 0.334 4.7 · 105 4.3 · 105 0.221 0.183 5.350 5.439
17 0.139 0.325 4.5 · 105 3.9 · 105 0.220 0.181 5.383 5.469
18 0.135 0.317 4.4 · 105 3.6 · 105 0.219 0.180 5.402 5.496
19 0.134 0.308 4.3 · 105 3.4 · 105 0.217 0.179 5.418 5.520
20 0.133 0.304 4.0 · 105 3.3 · 105 0.216 0.178 5.443 5.540
21 0.131 0.296 3.8 · 105 3.2 · 105 0.215 0.177 5.464 5.557
22 0.128 0.290 3.7 · 105 3.0 · 105 0.214 0.177 5.478 5.574
23 0.127 0.282 3.5 · 105 2.9 · 105 0.213 0.176 5.494 5.590
24 0.125 0.277 3.4 · 105 2.8 · 105 0.212 0.176 5.517 5.608
25 0.121 0.271 3.1 · 105 2.6 · 105 0.211 0.176 5.540 5.622
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A.2. Amino acid code and chemical properties

Table A.7.: Amino acid code and chemical properties

A ALA Alanine non-polar
C CYS Cysteine polar
D ASP Aspartic Acid acidic
E GLU Glutamic Acid acidic
F PHE Phenylalanine non-polar
G GLY Glycine polar
H HIS Histidine basic
I ILE Isoleucine non-polar
K LYS Lysine basic
L LEU Leucine non-polar
M MET Methionine non-polar
N ASN Asparagine polar
P PRO Proline non-polar
Q GLN Glutamine polar
R ARG Arginine basic
S SER Serine polar
T THR Threonine polar
V VAL Valine non-polar
W TRP Tryptophan non-polar
Y TYR Tyrosine polar

Table A.8.: Nucleotide code

A Adenine T Thymine
C Cytosine G Guanine

168



A. Appendix

A.3. Analytical determination of the mutation rate

The 64 codons are translated into 21 different symbols, 20 amino acids and 3 stop codons.
First codon position:
19 symbols are altered into a differing symbol upon any nt mutation in the first codon po-
sition (19 · 3

4
), two symbols are altered due to a mutation into two of four possible nts (2 · 2

4
).

19 ·
3

4
+ 2 ·

2

4
=
61

4

Second codon position:
19 symbols are altered into a differing symbol upon any nt mutation in the second codon po-
sition (19 · 3

4
), two symbols are altered due to a mutation into two of four possible nts (2 · 2

4
).

19 ·
3

4
+ 2 ·

2

4
=
61

4

Third codon position: two symbols are altered into a differing symbol upon any nt mu-
tation in the third codon position (2 · 3

4
), ten symbols are altered due to a mutation

into two of four possible nts (10 · 2
4
), one symbol is altered only upon one specific nt

(1· 1
4
), and eight symbols are not altered by any nt mutation in the third codon position (8· 0

4
).

2 ·
3

4
+ 10 ·

2

4
+ 1 ·

1

4
+ 8 ·

0

4
=
27

4

In summary, these considerations result in:

61

4
+
61

4
+
27

4
=
149

4

Based on 21 symbols, the result is divided by 21, resulting in a value of 1.7738. This
number describes, that a mutation in the first, second, and third codon position in parallel
alters on average 1.7738 symbols.
In consequence, we need on average 3 · 1

1.7738
= 1.69 nucleotide mutations to produce an

average of one amino acid mutation per replication. Adapted to a nt sequence length of
105, this consideration results in a mutation rate of 1.69

105
= 0.016.
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A.4. Alphabetical list of frequently used abbreviations

aa amino acid

ART antiretroviral therapy

bp basepair

CCR5 one of the two predominant HIV-1 co-receptors, often used in the early to
latent phase of infection

CXCR4 one of the two predominant HIV-1 co-receptors, in about 50% of patients
used in latent to late phase of infection

CC cross correlation

CD4+ T-cell bearing CD4 receptor

CDC United States Centers for Disease Control and Prevention

DNA deoxyribonucleic acid

FPR false positive rate

HAART highly active antiretroviral therapy

nt nucleotide

MI mutual information

MSA multiple sequence alignment

MRCA most recent common ancestor

mRNA messenger RNA

PBMC peripheral blood mononuclear cell

PCR polymerase chain reaction

R5 short form of the CCR5 co-receptor

RNA ribonucleic acid

SUMI subset mutual information

X4 short form of the CXCR4 co-receptor

V3 third variable loop, a specific region of the HIV-1 envelope gene, which is
crucial in co-receptor binding and cell entry

HIV (HIV-1) human immunodeficiency virus (type 1)

AIDS acquired immunodeficiency syndrome

env envelope gene of HIV-1

gp glycoprotein

RT reverse transcriptase, a central HIV protein

WHO World Health Organization
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Last but not least ...

Vielen Dank an alle, die mich durch meine Promotionszeit begleitet haben!

Der erste Dank gebührt Christel, Barbara und Peter, die mir die Chance gaben, unter

ihrer Anleitung an einem tollen Thema zu arbeiten und die meine Doktorarbeit stets mit

Interesse und zahlreichen guten Ideen und Ratschlägen unterstützt haben.

Danke an Kay, der mich als externe Doktorandin in seine Gruppe aufgenommen hat,

obwohl er meist alle Hände voll zu tun hat. Die Diskussionen in der AG Hamacher haben

mir so manches mal eine neue Perspektive auf meine Arbeit eröffnet. Nicht zu vergessen

der wöchentliche Brunch, für den ich sogar ab und an ein Mittagessen mit Kollegen am PEI

hab’ sausen lassen. Aber nicht nur die Zeit mit euch, sondern auch mit euren zahlreichen

Gäste war immer eine Bereicherung, und allzu oft musste ich die Runde verlassen, wenn

ich gerne noch geblieben wäre.

Auch meinen Kollegen hier am PEI möchte ich herzlich für die gemeinsame Zeit danken.

Trotz vieler Umzüge war ich in der Nachbarschaft jedes meiner wechselnden Büros stets

willkommen und wurde mit offenen Armen empfangen. Auch wenn uns thematisch

meist wenig verband, haben wir beim Mittagessen oder auf dem Flur am Drucker viele

interessante Gespräche geführt.

Danke an Barbaras Gruppe, und insbesondere an Sarah, die meine Kenntnisse über die

Methoden im Labor und die mit den Analysen verbundenen Schwierigkeiten erweitert

haben. Danke an Jan, der sich jederzeit bereit erklärt hat, mit mir mathematische

Fragestellungen zu erörtern oder zur rechten Zeit gemeinsam eine Pause von der Arbeit

einzulegen. Danke an Kay für die Unterstützung bei den statistischen Auswertungen.

Auch Susanne möchte ich auf diesem Weg nochmal danke sagen für die gemeinsamen

Monate im Büro.

Ein besonderer Dank geht an die liebste Saarländerin im fernen Hessen. Es ist sehr schade,

dass wir uns erst so spät beim Joggen im Wald begegnet sind. Auf die gemeinsamen

Runden habe ich mich immer den ganzen Tag gefreut. Und auch Barbara hat uns so

maches Mal begleitet, wenn es ihre Zeit und das Wetter zugelassen haben.

Meinen Freunden zu hause danke ich, dass sie trotz der wenigen gemeinsamen Zeit den

Kontakt nicht haben einschlafen lassen. Ich hoffe sehr, dass wir in Zukunft wieder mehr Zeit

miteinander verbringen können und dass der abgesagte gemeinsame Urlaub im nächsten

Jahr statt findet.

Auch meine Familie und insbesondere mein Mann mussten viele Stunden während der

letzten Jahre ohne mich verbringen. Danke, dass ihr auch über viele Kilometer Entfernung

stets für mich da wart, euch gemeinsam mit mir gefreut und mir in schwierigen Zeiten

Kraft gegeben habt - auch dann, wenn ich selbst manchmal nicht für euch da sein konnte,

wenn ich es gerne gewesen wäre.

Danke auch an all die, die bisher unerwähnt geblieben sind. An Alexander Thielen für

die Durchführung der Korezeptor Vorhersagen, an die projektverantwortlichen für die
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