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Zusammenfassung und Kontext 

 

Therapeutische Antikörper finden eine breite Anwendung in klinischen Applikationen, Diagnostik 
sowie Forschung und Entwicklung. Diese Proteine werden u.a. in Säugetierzellen in Bioreaktoren 
produziert und müssen danach über Aufreinigungskaskaden im sogennanten „Downstream 
processing“ von anderen, unerwünschten Proteinen sowie Verunreinigungen getrennt werden. 
Typischerweise erfolgt zunächst eine Klärifizierung des Zellkulturüberstandes durch Zentrifugation 
und Filtration und danach eine Reihe von chromatographischen Schritten sowie weitere 
Filtrationen. Der initiale Chromatographieschritt ist hierbei üblicherweise eine 
Affinitätschromatographie, basierend z.B. auf Protein A oder G. Das Zielprotein bindet dabei an die 
Säulenmatrix, wobei unerwünschte Störproteine, sogenannte „host cell proteins“, abgetrennt 
werden können. Dieser Schritt beinhaltet eine Elution des gebundenen Zielproteins durch pH-
Erniedrigung und kann mit einem Virusinaktivierungsschritt verknüpft werden. Danach folgen 
typischerweise Ionenaustauschchromatographie, z.B. Kationenaustauschchromatographie zur 
Abreicherung von Antikörperaggregaten, sowie hydrophobe Interaktionschromatographie. Nach 
einer finalen Filtration und zusätzlichen Virusinaktivierung kann das gereinigte Protein als „Drug 
Substance“ Verwendung finden.  

Bei diesem Herstellungsprozess wurden in den letzten Jahrzehnten erhebliche Fortschritte erzielt, 
was zu Steigerungen bei der Ausbeute geführt hat. Die höheren Volumenausbeuten haben jedoch 
gleichzeitig zu einer Verlagerung des Engpasses bei der Produktion weg vom Upstream, hin zum 
Downstream Bereich geführt. Dieser Engpass findet sich also nun in der Aufreinigung. 
Herkömmliche Chromatographie-basierte Systeme stoßen hierbei an ihre Kapazitätsgrenzen. 
Zusätzlich kann z.B. der Elutionsschritt bei der Affinitätschromatographie in der 
Aufreinigungskaskade unerwünschte Aggregate erzeugen.  

Diese Aspekte sowie steigender wirtschaftlicher Druck auf die Hersteller verlangen die Entwicklung 
alternativer nicht Chromatographie-basierter Aufreinigungsverfahren, um diesen Problemen - 
zumindest teilweise- entgegenzuwirken. Möglichkeiten hierfür sind z.B. größere 
Chromatographiesäulen, eine größere Kapazität der Säulenmaterialien,  Wegwerfsäulen oder 
gezielte Fällung der Proteine in Batch-Verfahren.  
 
Beispiele für diese Fällung sind die Fällung von Immunglobulinen mit Caprylsäure, das Aussalzen 
mittels Ammoniumsulfat sowie die Fällung mit Polyethylenglykol (PEG). Die Verwendung dieser 
Fällungsmittel hat jedoch einige Nachteile. Einige dieser Präzipitantien müssen in größeren 
Konzentrationen eingesetzt werden und führen dadurch zu größeren Abfallmengen, andere 
erfordern bestimmte Mindestkonzentrationen der zu fällenden Proteine. Daher sind Polyelektrolyte 
als Kopolymere in den wissenschaftlichen Fokus gelangt. Diese erlauben eine gerichtete 
Anpassung an die biophysikalischen Eigenschaften des Zielproteins, indem neben dissoziierbaren 
Gruppen (Eigenschaft der Polyelektrolyte) auch Gruppen mit ausgeprägten hydrophoben bzw. 
hydrophilen Eigenschaften ins Kopolymer eingefügt werden. Diese „mixed-mode“ Eigenschaften 
ermöglichen eine selektivere Präzipitation des Zielproteins, als dies durch Polymere mit rein 
elektrostatischen bzw. rein hydrophoben Wechselwirkungen möglich wäre (siehe Journalbeiträge 
[4] und [6]). Die Verwendung dieser Kopolymere soll u.a. dazu dienen, den initialen 
Affinitätschromatographieschritt zu ersetzen. Durch direkte Zugabe der Kopolymere in die 
klärifizierte Fermentationsbrühe kann in einem Batch-Verfahren eine selektive bzw. semi-selektive 
Fällung des Zielproteins erreicht werden. Nach Präzipitation und Rücklösung des Zielproteins in 
einem definierten Volumen kann zusätzlich eine Aufkonzentrierung erzielt werden und weitere 
folgende Chromatographieschritte teilweise ersetzt bzw. deren Kapazität erhöht werden. Dies kann 
idealerweise Aufreinigungsdauer und Aufwand verringern und gleichzeitig Ausbeute, Lebensdauer 
von Säulenmaterialien sowie Reinheit des Zielproteins erhöhen. 
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Dafür müssen solche Kopolymere jedoch speziellen Anforderungen genügen wie: 
(a) geringe Herstellungskosten; (b) hohe Selektivität und Ausbeute bei der Fällung; (c) einfache 
Anpassung an jeweilige Zielproteine; (d) gute Rückgewinnung bzw. Abtrennung vom Präzipitat; (e) 
sinnvollerweise geringere oder vergleichbare Kosten im Bezug zu etablierten Aufreinigungs-
verfahren. 
 
Im Rahmen dieser Arbeit wurden verschiedene Kopolymere neu synthetisiert und für die 
spezifischen Anforderungen der Proteinaufreinigung untersucht. Durch systematische Variation der 
Kopolymerzusammensetzung gelang es, einen optimierten Präzipitationsprozess zu etablieren, 
welcher auch als Patentanmeldung eingereicht wurde. Die mit diesem Prozess assoziierten Kosten 
wurden hierbei mit Protein A Affinitätschromatographie verglichen und zeigten die Wirtschaft-
lichkeit der Präzipitation gegenüber Chromatographie ab einem bestimmten Antikörpertiter in der 
Produktion (Journalbeitrag [4]). Parallel zur Entwicklung eines Kopolymer-basierten Protein-
aufreinigungsverfahrens wurden grundlegende Mechanismen der Kopolymer- Protein- Interaktion 
untersucht, auch um die Selektivität und Ausbeute zu verbessern und ein tiefergehendes 
Verständnis der Präzipitation zu schaffen (Journalbeiträge [3] und [7]). 
 
Die Abhängigkeit der Präzipitation von physiko-chemischen Eigenschaften der zu fällenden 
Proteine an Hand eines eingeführten binären Proteintestsystems war Gegenstand weiterer 
Untersuchungen (Journalbeitrag [6]). Als analytische Methode zur Untersuchung des 
Präzipitationsprozesses wurde die Infrarotspektroskopie eingesetzt [Journalbeiträge [1], [2], [4], [5], 
[7], Buchkapitel [8]). Sie erlaubte nicht nur eine Aussage über die Zusammensetzung der 
verwendeten Kopolymere sondern auch über die Präzipitationsausbeute und Selektivität der 
Fällung. Dabei wurden in einem at-line Verfahren der Titer des zu präzipitierenden Antikörpers, die 
Bildung von Aggregaten sowie der Gehalt an unerwünschten „host cell proteins“ bestimmt. 
Zusätzlich zur Nutzung der IR im speziellen Rahmen der Präzipitationsprozessentwicklung konnte 
gezeigt werden, dass diese Technik auch im Allgemeinen für die Quantifizierung kritischer 
Prozessparameter bei der Proteinaufreinigung Nutzung finden kann. Diese kritischen 
Prozessparameter beinhalten neben den oben genannten Parametern z.B. auch Endotoxine und 
exakte Konzentration an Antikörperaggregaten. Spezielle Anwendungsbeispiele dazu wurden in 
Publikationen und einer Patentanmeldung beschrieben (Journalbeiträge [1], [2] und [5]). 
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Aims and scope 

 

Within recent years, production of biotherapeutic proteins such as monoclonal antibodies (mAbs) has 
increased and is rising further. An elevation in cell culture titers during production of these proteins 
has led to the shift of a manufacturing bottleneck away from the upstream part to the downstream part 
of processing. This purification bottleneck is mainly associated with chromatography based 
purification and requires either implementation of new, even larger chromatography columns, or the 
invention of alternative non-chromatography based purification strategies. One such alternative 
technique is protein purification via precipitation. This is based on solid-liquid phase separation and 
has been known for a long time. 
 
Additionally, regulatory and governmental authorities impose more stringent limits on production, also 
demanding better quality control strategies. One potential technique allowing permanent monitoring of 
production and purification is mid- infrared- spectroscopy (MIR). It allows identification of a compound 
based on specific absorbance patterns within the infrared spectrum and can be used for at-line as 
well as on-line monitoring, allowing for fast and cost-effective results. 
 
The aims of this thesis were to 
 
a) Develop and optimize a precipitation-based industrial protein purification process (see articles 3-4, 
6-7) 
 
b) Establish MIR to determine precipitation yield and selectivity, monitoring antibody and host cell 
protein amount during precipitation process development (see articles 1-2, 5) 
 
c) Additionally, enable monitoring of critical process parameters within biotherapeutic protein 
production (see book chapter) 
 
These aims can be divided into the following parts 
 
a) Characterization of in-house synthesized copolymers 
 
b) Evaluation of precipitation conditions depending on ionic strength, polymer chain length as well as 
composition of copolymers 
 
c1) Homology modeling and in silico calculations of antibody structures, charge densities and charge 
distribution on antibody surfaces 
 
c2) Optimization of precipitation conditions using different antibodies, cell culture fluids as well as test 
protein systems 
 
d) Establishing MIR as a cost-effective tool to measure mAb titer, mAb aggregate amount and host 
cell protein level in precipitation process development samples to optimize yield and selectivity 
 
e) Implementing a polyelectrolye-driven protein purification process including a cost comparison to 
alternative purification techniques 
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2. Introduction 

 

2.1. General steps during purification of therapeutic proteins 

 
Therapeutic proteins are typically produced in a bioreactor. To allow their later use within medical 
treatments and research applications, impurities, such as host cell proteins, aggregated proteins, 
endotoxins, viruses, leachables and nucleic acids have to be removed to meet regulatory 
requirements and safety aspects.[1-2] This is done during downstream processing (DSP) referring to 
the recovery and purification of biosynthetic products such as biopharmaceuticals and therapeutic 
proteins, using a series of different purification techniques to remove impurities (overview of typical 
DSP-process see figure 1). DSP can be divided into different stages, the so-called CiPP stages 
(capture, intermediate purification and polishing).[3-4] The first steps in downstream processing include 
mainly high-throughput low-resolution techniques while the latter stages use high-resolution low-
throughput techniques. Removal of insolubles and recovery is performed during the first stage, 
capture, capturing the target protein. To prevent blockage of subsequent chromatography steps, cell 
debris as well as other particulates need to be removed from the target protein.[5] This is mainly done 
by employing centrifugation and several filtration steps. Contaminants with different and similar 
properties as the target protein are then separated from clarified harvest pool during intermediate 
purification. These steps are usually the bottleneck during large-scale protein production and mainly 
involve chromatography based systems such as affinity chromatography, ion-exchange 
chromatography or hydrophobic interaction chromatography.[5] Addtionally, virus inactivation and 
removal need to be done, e.g. by low pH-treatment, which can follow e.g. affinity chromatography. 
Afterwards, a higher than 98% purity of the product compared to HCP’s in solution is typically 
achieved.[6] Additionally, specific impurities such as endotoxins and antibody dimers and other 
antibody aggregates are removed. Finally, within the so-called polishing, sterilization, pyrogen and 
virus removal are done before the protein is formulated in an according buffer, crystallized or 
lyophilized.  For purification of an antibody, yields vary usually between 60-80%, depending on the 
number of purification steps.[7] A further description of purification steps during biotherapeutic protein 
production can be found in the chapter “protein production and monitoring techniques”. 

 

 

Fig. 1: Exemplary overview typical downstream process. 
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2.2. Current challenges and bottlenecks during therapeutic protein purification 

 
There are several problems associated with downstream processing in general and specific 
purification steps in particular: Affinity chromatography for antibody capture that makes use of cell wall 
proteins A from Staphylococcus aureus and protein G from Streptococcus, includes the inherent risk 
of leaching protein A and is quite expensive.[8] Additionally, the rather harsh elution conditions during 
this purification step as well as the low pH virus inactivation step can induce aggregates, which have 
to be removed.[9] As with most chromatography systems, large buffer volumes are required, also 
leading to a higher waste load. While in the past the production bottleneck was localized within protein 
expression and upstream processing, it now shifts towards downstream processing. Rising economic 
pressure as well as increased cell culture titers require improved manufacturing processes, enhanced 
throughput and optimized purification yield.[10-11] 

There are several options to meet these criteria: chromatography column material capacity can be 
increased as well as dimensions of columns. Alternatively, different means of purification, not 
chromatography-based, can be implemented, however requiring comparable yields and purities but 
with lower costs and better scalability.[7, 12-13] Disposable columns represent one option, reducing costs 
and eliminating excessive cleaning as well as cleaning documentation, however, limiting the number 
of purification cycles per column lifetime.[14] Alternatively, batch purification methods have been 
developed, allowing precipitation of the desired protein out of the fermentation broth. Common 
precipitants thereby are ammonium sulphate,[15] polyethylene glycol (PEG) or caprylic acid.[16-17] Yet, 
they lack selectivity.[18] Therefore, improvements in protein and antibody purification are urgently 
required.[10, 12] As one option, membrane chromatography, charged ultrafiltration membranes and 
flocculation agents can be used.[9] Another option is the use of affinity macroligands with attached 
polymers precipitating in dependence on pH or temperature changes.[18-22]  

However, additionally to the need of creating a customized macroligand for each target, the use of 
these macroligands is costly due to the requirement of antibody binding proteins.[23] Therefore, a 
similar but more cost-effective way can be the use of customizable polyelectrolytes to allow semi-
selective precipitation of the respective target protein, not requiring additional binding proteins as 
ligands. 
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2.3. Protein purification and precipitation using polyelectrolytes 

 
Proteins can interact with each other and other molecules via electrostatic forces, hydrophobic forces 
as well as van der Waals forces. This can be used in precipitation, a solid-liquid phase separation. 
Common precipitants include polyethylene glycol (PEG), ammonium sulphate, organic solvents and 
caprylic acid.[4, 24] PEG separates proteins via an excluded volume effect, excluding proteins sterically 
from the solvent until protein concentration exceeds solubility and they precipitate. Although PEG can 
precipitate immunglobulins with some specificity from serum, it is generally difficult to selectively 
precipitate proteins as this precipitant increases the effective concentration of all proteins in 
solution.[25] Ammonium sulphate removes the shell of hydrating water around proteins, allowing them 
to aggregate as their hydrophobic surfaces are not shielded anymore.[26-27] This technique is cost-
effective and the salt can be removed easily by centrifugation, however, precipitation selectivity is 
limited due to similar protein solubility.[28] Another precipitation technique uses organic solvents as 
precipitants, which displace molecules around hydrophobic areas of proteins and lower the dielectric 
constant, increasing electrostatic dipole-dipole- attraction and interaction between charged molecules 
which leads to protein aggregation.[29] An example is the so-called Cohn fractionation which has been 
used since 1946 and is still employed today for purification of plasma proteins.[30]  

However, as these techniques have some disadvantages such as the amount of precipitant required, 
the risk of denaturation, or reduced precipitation selectivity,[27] polyelectrolytes as protein precipitants 
came into the scientific focus some time ago and were already studied in the 1950’s by the working 
group of Morawetz.[31-32] Polyelectrolytes are polymers which have charged groups in their repeating 
units. Important polyelectrolytes in biology are proteins, DNA and ionic polysaccharides such as 
alginate and pectin. Examples for synthetic polyelectrolytes include poly vinyl sulfonic acid (PVS), 
poly acrylic acid (PAA) and polystyrene sulfonic acid (PSS), which can be used to separate and 
fractionate proteins.[21, 33] Other polyelectrolytes find applications in water treatment and food 
technology.[34-35] 

Generally, there are two main problems associated with using polyelectrolytes for protein purification. 
The first problem is the recovery of the protein after precipitation and potential re-use of the 
polyelectrolyte. Another problem is how to obtain a sufficient selectivity to enable the use within 
purification.[22] Although polyelectrolytes can interact in a so-called mixed-mode principle, exhibiting 
both electrostatic as well as e.g. hydrophobic interaction, for strong polyelectrolytes such as 
polystyrene sulfonic acid, which dissociate completely in solution, fine-tuning is not possible. In 
contrast, for weak polyelectrolytes, dissociation and thereby switching from e.g. hydrophobic to 
electrostatic interaction can be controlled by pH and ionic strength. However, while fine-tuning and 
thereby modulation of precipitation selectivity for these weak polyelectrolytes can be achieved, 
required changes in pH and ionic strength do also affect the charge presentation and distribution of 
the target as well as impurity proteins, making it difficult to find optimal conditions as both, 
polyelectrolyte and protein charge are altered at the same time. These problems of selectivity can, 
however, partly be solved when choosing a protein system with a discriminating power, e.g. where the 
target protein has a very distinct feature compared to (most) of the impurity proteins.[22]  

One such system would be e.g. a mammalian cell culture solution, containing many impurity proteins, 
the majority with an isoelectric point below 7 and a target protein, e.g. an antibody with an isoelectric 
point between 8- 9. Such a system has been employed by McDonald et al.,[23] using polyelectrolytes 
PAA, PSS and PVS for purification, however requiring additional dilution of the cell culture fluid. PSS 
as strong polyelectrolyte did not allow recovery of the protein due to bad redissolution behavior. 
 
Thus, the use of copolymers as precipitants, polymers composed of polyelectrolytes as well as 
permanently non-charged groups, allowing the permanent introduction of hydrophobic groups, came 
into the focus. The underlying idea is that they would allow even better fine-tuning of selectivity, not 
necessarily by pH change but by changing the composition of the copolymer optimized for the 
respective target protein and conditions. Although the properties of these copolymers can still be 
modulated by pH-changes, the main “fine-tuning” is done during synthesis, allowing customization for  
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the respective target protein. An additional benefit of these copolymers is their ability to withstand high 
salt concentrations, as e.g. required for precipitation in cell culture fluid at physiological ionic strength.  
 
These high salt concentrations can shield the charges at the polyelectrolyte chains and lead to 
polymer chain collapse during a coil- globule transition. The introduced hydrophobic groups in 
copolymers displace surrounding water molecules. Thereby, screening effects due to salt as seen 
with polyelectrolytes are reduced, allowing the use of these copolymers at higher ionic strength 
compared to polyelectrolytes.  
 
There are several factors influencing protein- polyelectrolyte interaction. For example, it is known that 
protein- polyelectrolyte interaction exhibits a non-monotonic ionic strength dependence. While for low 
ionic strength, interaction is impeded, an optimum is found in the medium salt concentration between 
5- 30 mM NaCl [36] whereas further salt addition leads to worse interaction again.[37-38] Furthermore, 
polyelectrolyte- protein interaction also depends on the polymer chain length as shown by Houska et 
al. and Izumrudov et al.[22, 39] An increase in the chain length, i.e. higher polymerization degree, allows 
these polyelectrolytes to form complexes even at higher salt concentrations compared to same 
polyelectrolytes of lower chain length.[40] Further parameters are temperature, physico-chemical 
properties of polymer and protein, e.g. charge distribution and charge density, hydrophobicity and 
polymer chain stiffness.[41-42] Highlighting the underlying principles behind protein-polyelectrolyte 
interaction, a wide range of experiments has been performed including in silico studies.[43-44] These 
experiments also showed a redissolution of complexes when adding excess polymer.[45]  

How does protein purification via precipitation of a target protein work? The pH of a cell culture 
solution is adjusted so that the target protein has the opposite charge as most of the impurity proteins. 
Afterwards a concentrated copolymer solution is added, obtaining a charge opposite the one of the 
target protein, allowing interaction with that respective target protein. As the copolymer has the same 
charge as most of the impurity proteins, interaction is minimized. A complex between target protein 
and copolymers is formed, leading to precipitation and allowing to separate the precipitate, e.g. via 
centrifugation. Afterwards, the non-precipitated proteins in the cell culture fluid are discarded together 
with the supernatant. The complex of target protein and copolymer is then redissolved via pH-change, 
and the protein recovered by a suitable method which can be chromatography or filtration. Copolymer 
can be removed, e.g. adding beads or flakes with opposite charge to selectively bind the copolymer. 
Another advantage of this principle is that by adjusting the volume for redissolving the protein-
copolymer complex, the concentration of the target protein can be adjusted to the demands, also 
allowing up-concentrating the protein. This principle, employing polyelectrolytes for purification of 
target proteins has been pursued by the industry, found its way into patent databases[46-47] and could 
be a promising technique, allowing now to reduce the purification bottleneck as described in the 
previous section. 

Compared to chromatography-based purification, precipitation can be more cost-effective for high 
protein titer expressing cell cultures. Purifying these high titer mAbs with protein A chromatography 
would mainly suffer from high media and buffer costs. While for low mAb titers, chromatography is the 
method of choice, purification of higher titers would require several loadings and runs due to limited 
resin capacity.[10] For precipitation, costs are mainly due to larger mAb loss during precipitation. 
However, upstream production costs are decreased for increased product titers, due to economy of 
scale.[10] Thus, using higher titers during precipitation, the contribution of costs due to mAb loss to 
overall costs in precipitation can be reduced. Therefore, depending on the product titer, either of the 
two techniques can be more cost-effective. Protein A chromatography is more suitable for low titer 
systems, while precipitation is better suitable for titers above 5-6 g l-1 also allowing scalability. 
Comparing both techniques for purification of cell culture fluid with a mAb titer of 10 g l-1, precipitation 
could save costs between 30-50% compared to the protein A chromatography step.[48] 
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2.4. Infrared Spectroscopy 

 
During process development, analysis of protein quality and process parameters is very important to 
understand and optimize a process. Spectroscopy is widely used for protein analysis, e.g. UV-
spectroscopy for protein quantity. While this does not allow for selective quantification, infrared 
spectroscopy presents a fast and cost-effective tool with the possibility for selective quantification and 
analysis of proteins as well as other process parameters during process development, also in the 
context of this thesis. Thus it was used to help in designing a precipitation-based protein purification 
process. 

Generally, infrared spectroscopy (IR) is a spectroscopic method, making use of the interaction 
between irradiation and matter at wavenumbers (number of waves per cm; λ-1). It can be divided into 
near-infrared (NIR), mid-infrared as used within the context of this thesis (MIR) and far-infrared (FIR). 
It is used to study fundamental vibrations, thereby elucidating the structure of molecules such as 
proteins. Protein secondary structure can be analyzed measuring IR spectra near the Amide I 
absorption band (1600- 1690 cm-1). This technique gives better results for proteins with high β-sheet 
content, such as antibodies, compared to circular dichroism.[49] Dipole changes have to occur for a 
molecule to be IR-active; of diatomic molecules, only non-symmetrical bonds can be observed. 
Molecules absorb frequencies of irradiation matching their resonance vibration frequency. The 
vibration frequency thereby depends on the bond strength which is related to the bound atoms and 
the shape of the molecular potential energy surfaces.[50] Complex molecules have more bonds and 
can vibrate in different vibrational modes, leading to different peaks in the spectra. Typically, a beam 
of infrared light is passed from a Helium-neon laser through a cuvette containing the sample. Using 
Fourier transformation, the transmission of all the wavelengths is measured at once, analysing the 
amount of energy absorbed at each wavelength. The recorded signal represents light output as a 
function of mirror position in the so-called interferometer. Fourier transformation then converts the raw 
data into a spectrum.[50] A reference spectrum, typically water, is subtracted from the sample 
spectrum to account for instrument effects such as light sources and detector differences. A 
transmittance or absorbance spectrum is plotted, revealing the wavelengths at which the sample 
absorbs. Resolution-enhancing methods such as supersmoothing can be used to determine the 
position of the band components. After that the amount of secondary structure components can be 
adjusted with their absorption maxima, amplitudes and half-widths. Assignment of those components 
is done by analyzing reference proteins with similar structural properties, whereby using proteins from 
the same batch can facilitate comparison. Protein stability and protein folding properties are analyzed 
using denaturing agents or different temperatures during IR-spectrum aquisition. Thereby spectra can 
reveal information about the content of the sample and enable to identify unknown substances by 
comparing their spectra to known ones. Transmission measurements using infrared spectroscopy at 
the spectral area between 500 cm-1 and 1800 cm-1 require very thin coat thicknesses of maximum 10-
15 µm. This is due to the fact of high background absorption by water molecules at 1645 cm-1, which 
is an order of magnitude higher than the absorption of the Amide I band.[51] Thereby the amount of 
water in the beam path length can be reduced and by using high protein concentrations it is possible 
to obtain good spectra. Cuvettes are made of different IR-transparent materials with coating 
thicknesses of 5- 50 µm, allowing precise coating thickness adjustment, BaF2 or CaF2 windows are 
one example.[50] Other means of sample preparation include hydrated films, similar to the principle 
used by Direct Detect™ spectrophotometer, which contain concentrated sample after water removal. 
Another technique uses attenuated total reflection (ATR) (figure 2). The IR beam passes through 
material with a high refraction index, leading to multiple total reflections, creating an evanescent 
wave, which can penetrate the optical thinner area with the sample. Immobilised protein on the 
surface of ATR-crystals can thereby be analyzed.[50] Special ATR-cells can be used for high-
throughput analysis of ingredients of drinks and reactions during fermentation processes in real-time. 
More detailed applications of MIR and ATR can be found in the next chapter “protein production and 
monitoring techniques”. 
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Fig. 2: principle of attenuated total reflection for infrared spectroscopy. An IR beam passes through a 
crystal, being reflected at the boundary phases and revealing information of the sample being coated 
to the crystal. own drawing 
 

Within the mid-infrared, proteins are mainly characterized via the so-called Amide I band, although 
several other bands can be used (see next chapter “protein production and monitoring 
techniques”).[50] This is mainly due to the carbonyl bond, interacting with hydrogen bonds of the 
secondary structure and leading to different bands at specific wavenumbers within the Amide I region, 
depending on the secondary structure involved. Strong hydrogen bonds weaken the C=O bond, 
thereby reducing the oscillation frequency.[51] As these smaller bands are also present in the Amide I 
band, mathematical data analysis methods can yield information about the secondary structure of a 
protein. These methods include Fourier self-deconvolution, partial least-squares analysis and second 
derivative analysis. 
 
Second derivative analysis is usually performed, employing an algorithm derived from Savitzky and 
Golay,[52] whereby a polynom is fit into the spectral course. A defined number of vertices help to cut 
noise-derived minipeaks and attenuate background noise by “smoothing” the spectral course.[52] 
Smoothing, however, can lead to a falsification of spectral intensities as a reduction of associated 
peaks occurs. Yet, derivatives of spectra are suitable for qualitative spectral interpretation, as the 
intensities of derived spectra depend mainly on half-widths, not the intensities of the respective 
original bands.[53] At the first derivation of a spectrum, extreme values or peaks are present as roots. 
In contrast, after the second derivative, inflection points of a spectrum become roots. Derivation leads 
to worse signal to noise ratios as peaks show stronger decrease than background noise.[54] The first 
derivative serves as a means of baseline correction, whereby second and higher derivatives have the 
function of band separation and lead to an apparent resolution enhancement as they present broad 
spectral bands more narrow, however, also with reduced band intensity.[54]kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 
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Cumulative part 

 
This part consists of manuscripts submitted to different journals and publishing companies. The 
chapter “protein production and monitoring techniques”, still belonging to the introduction, is based on 
a book chapter contribution, written on behalf of invitation by Nova Science Publishers Inc, New York.  
The then following “experiments” chapter is based on eight articles, six of them accepted and either 
published as early-view or in printed journal volumes. Two articles have been submitted to journals or 
are going to be submitted as soon as possible. 
 

Following contributions are included in the cumulative part of this thesis: 

 
Introduction 
 
Capito, F., Skudas, R. (2013) Applications and limitations of FT-MIR for monitoring critical process 
parameters during downstream processing of therapeutic proteins, in Infrared Spectroscopy: Theory, 
Developments and Applications (ed. D. Cozzolino), Nova Publishers, Hauppauge, New York. 
Submitted by invitation 
 
Experimental 
 
Capito, F., Bauer, J., Rapp, A., Kolmar, H., & Stanislawski, B. Synthesis and characterization of 
customized 2-acrylamido-2-methylpropane sulfonic acid - benzylacrylamide /acrylamidobenzoic-acid 
copolymers for semi-selective protein purification. 
 
Capito, F., Skudas, R., Stanislawski, B., & Kolmar, H. (2013). Polyelectrolyte–protein interaction at 
low ionic strength: required chain flexibility depending on protein average charge. Colloid and 
Polymer Science, 291(7), 1759-1769. DOI: 10.1007/s00396-013-2911-3 
 
Capito, F., Kolmar, H., Stanislawski, B., & Skudas, R. (2013) Determining the defined length of a 
polymer chain required per precipitated protein molecule: studying interactions between anionic 
polymers and four physicochemically different proteins. Journal of Polymer Research. submitted 
 
Capito, F., Skudas, R., Kolmar, H., & Stanislawski, B. (2013) Customization of copolymers to 
optimize selectivity and yield in polymer-driven antibody purification processes. Biotechnology 
Progress. in press DOI: 10.1002/btpr.1813 
 
Capito, F., Skudas, R., Kolmar, H., & Stanislawski, B. (2013). Host cell protein quantification by 

fourier transform mid infrared spectroscopy (FT‐MIR). Biotechnology and Bioengineering, 110(1), 
252-259. DOI: 10.1002/bit.24611 
 
Capito, F., Skudas, R., Stanislawski, B., & Kolmar, H. (2012). Matrix effects during monitoring of 
antibody and host cell proteins using attenuated total reflection spectroscopy. Biotechnology 
progress, 29(1), 265-274. DOI: 10.1002/btpr.1643 
 

Capito, F., Skudas, R., Kolmar, H., & Hunzinger, C. (2013). Mid‐infrared spectroscopy‐based 
antibody aggregate quantification in cell culture fluids. Biotechnology journal. 8(8), 912-917. 
DOI: 10.1002/biot.201300164 
 
Capito, F., Bauer, J., Rapp, A., Schröter, C., Kolmar, H., & Stanislawski, B. (2013). Feasibility 

study of semi‐selective protein precipitation with salt‐tolerant copolymers for industrial purification 
of therapeutic antibodies. Biotechnology and bioengineering. 110(11), 2915-2927.  
DOI: 10.1002/bit.24950 
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2.5. Protein production and monitoring techniques 

 

Book chapter: Applications and limitations of FT-MIR for monitoring critical process 

parameters during downstream processing of therapeutic proteins 
 

Florian Capito, Dr. Romas Skudas 
 
Submitted 30/04/2013 
 

in D. Cozzolino: Infrared Spectroscopy: Theory, Developments and Applications, Nova 
Science Publishers Inc., Hauppauge, USA. 
 

Short summary: 
 
This part is based on a book chapter contribution and describes applications of FTIR in general and 
MIR as well as ATR in particular for monitoring critical process parameters in bioproduction. An 
introduction explains current purification strategies for protein production and monitoring techniques 
used for surveillance of these processes. Detailed case studies are given, showing the suitability of IR 
spectroscopy to quantify several critical process parameters, e.g. mAb titer, mAb aggregate amount 
and host cell protein level. Furthermore, besides glycosylation analysis, the applicability to analyze 
protein secondary structure and e.g. distiniguish protein A from mAb is shown. 
 

 

 
Fig. 3: Cover of last edition of a book at Nova, depicting FTIR. 
 

 

Reprinted from Infrared Spectroscopy: Theory, Developments and Applications, Copyright 2013, 
edited by D. Cozzolino. With permission from Nova Science Publishers, Inc. 2013 
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Chapter: Applications and limitations of FT-MIR for monitoring critical process parameters 

during downstream processing of therapeutic proteins (15,680 words)   

Contributors: Florian Capito1 2, Dr. Romas Skudas2 

1 Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Germany 
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Abstract 

1. Introduction to biotherapeutic molecule downstream processing and monitoring of critical 

process parameters (CPP's) 

General procedure for quantification of a CPP 

Aspects to consider before choosing FT-MIR as monitoring technique in downstream processing 

Elucidation of protein structure, differentiation and quantification of protein secondary structure using 

MIR 

2. Case studies: Using FT-MIR for monitoring critical process parameters in downstream 

processing 

a) Quantification of antibody levels in cell culture fluid using FT-MIR 

b) Quantification of impurity protein levels in cell culture fluid using FT-MIR 

c) Antibody aggregate quantification using FT-MIR 

d) Quantification of leaching protein A in cell culture fluid using FT-MIR 

3. Other possible applications 

a) Quantification of endotoxins, lipids and polysaccharides by FT-MIR 

b) Quantification of nucleic acids by FT-MIR 

c) Detection of glycosylation patterns by FT-MIR 

4. CONCLUSION 
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ABSTRACT 

This chapter outlines Fourier transform mid infrared spectroscopy (FT-MIR) applications in monitoring 

critical therapeutic protein process quality parameters, taking antibody (mAb) production as an 

example. 

Being the most profitable group of new therapeutic proteins generated, mAbs are still gaining great 

interest. But the pressure on production cost reduction, emerging biosimilars and regulatory concerns 

requires a process optimization. Upon all, this is achieved through better process control and 

monitoring, avoiding batch failures and assuring product quality attributes throughout the whole 

production line. Critical process parameters, such as mAb titer, impurity contamination and mAb 

aggregate levels are to be monitored throughout the mAb production process to fulfill therapeutic 

protein quality and regulatory requirements. Besides, this constant in-time monitoring is required to 

obtain high product yields and minimize manufacture costs by reducing the risk for production errors. 

The state-of-the-art techniques for monitoring mAb and impurity levels are HPLC, ELISA and SDS-

PAGE. These methods provide a low limit of detection but are time-consuming and laborious.  

As alternative, FT-MIR can be used for mAb and HCP level monitoring as it enables quantification of 

proteins due to their structure-specific vibrational modes and wavelength specific energy absorption, 

resulting in a protein-structure specific sample spectrum, allowing differentiation of protein types, e.g. 

mAb and protein A. Moreover, process information is obtained promptly, thereby enabling the ability 

to react adequately to manufacture changes. Other process related impurities, such as aggregate 

levels, are mainly quantified by size exclusion chromatography and dynamic light scattering, whereby 

FT-MIR has been proven by numerous publications to be a suitable tool for aggregate amount 

estimation.  

Application of this technology for monitoring critical process parameters during mammalian cell 

culture based antibody production might benefit from direct sample application (no sample 

preparation), quantitative critical process parameter estimation from a single measurement, and 

application to different cell cultures in situ. Impurity levels (e.g. HCP's) between 5,000- 300,000ng ml-1 

and mAb titer between 0.2- 1.7g l-1 were successfully quantified, using FT-MIR and adequate 

chemometric models for multivariate data analysis. Antibody aggregates were quantified in the low 

percent range, meeting the FDA's limit of < 5%. Therefore, FTIR is applicable as cost-effective, 

simple, fast and non-invasive process monitoring technique. 
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INTRODUCTION 

 

Protein production 

Monoclonal antibodies (mAb) are widely used in clinical applications, diagnostic systems and different 

research fields. To date, there are more than 350 antibodies in development worldwide, and their 

number is rising (Vunnum, Vedantham, and Hubbard, 2009). mAbs are very efficient but among the 

most expensive drugs as well, with costs mounting to $ 35,000 per year for mAbs used in cancer 

treatment, involving high dosage treatment (Farid, 2009). Additionally, demands per product can 

annually mount to several hundreds of kilograms. With patents running out, and biosimilar molecules 

making their way to clinical trials, the production of antibodies requires process optimization. Besides 

the economic pressure, healthcare providers and governmental regulations tend to put certain limits 

on pricing and marketing possibilities of new therapeutics. 

These factors require pharmaceutical companies to focus on material consumption, e.g. buffers, 

consumables, utilities, labor and work force as cost-intensive examples.  

Thereby cost-effective production facilities and processes need to be achieved and processes require 

to be optimized and developed within shorter time- periods, reducing time to market due to lower 

overall process development and lowering development costs (Farid, 2009; Kamarck, 2006; Farid, 

Washbrook, and Titchener-Hooker, 2005). 

Typically, mAb expression is performed in genetically modified mammalian cell cultures, e.g. chinese 

hamster ovary cells (CHO), murine myeloma cells, e.g. NS0 and SP2/0, in genetically modified 

bacterial cell cultures, e.g. Escherichia coli, in yeast, e.g. Pichia pastoris or Saccharomyces 

cerevisiae and other protein expression systems. The production process starts with the so-called 

upstream processing phase. This encompasses optimization of cell growth, usually within a 

bioreactor. A small scale bioreactor is used to elucidate optimum bioreactor design, feeding rate, 

agitation speed, stirring rate, gas supply, waste removal and temperature while fermentation within 

the bioreactor can be done as either batch, fed- batch or continuously.  

Following small- scale feasibility experiments, typically, a large- scale production process is 

established, covering a size of several hundred to several thousand liters. Today, typical bioreactor 

scales are between several thousand litres up to 25,000 litres and more with antibody titers in the mg 

per ml scale (Farid, 2009; Birch and Racher, 2006; Werner, 2005). 
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Figure 1: Overview typical downstream process in antibody manufacture. 

 

Following the upstream processing phase, cell culture is harvested (figure 1). In mAb expression, 

usually the product is secreted into the cell culture; therefore cells and cellular debris have to be 

removed. This can be achieved by centrifugation or depth filtration, leaving the antibody together with 

impurities such as proteins, nucleic acids and protein variants in solution. It marks the beginning of 

the so- called downstream processing phase. Within this phase, the desired biopharmaceutical 

product, e.g. a mAb, needs to be purified to a desired yield to meet product and regulatory quality 

criteria, using a sequence of orthogonal purification strategies. Within downstream processing, this 

can be separated into several stages: the so-called RIPP stages (Recovery, Isolation, Purification and 

Polishing) (Gosh, 2006) or CiPP scheme (capture, intermediate purification and polishing) (Antibody 

Purification Handbook, Amersham Biosciences). 

The first two steps include mainly high-throughput low-resolution techniques while the last two stages 

use high-resolution low-throughput techniques. Removal of insolubles and recovery is done during the 

first step, recovery, by capturing the target as a solute in a particulate-free liquid. Cells, cell debris and  
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other particulate matter have to be removed from the fermentation broth containing the target protein, 

to prevent blockage of the chromatography columns. This can be done by filtration, centrifugation, 

sedimentation, flocculation, precipitation or crystallization. During product isolation impurities with 

properties varying a lot to the ones of the target and bulk proteins are removed. As water is the main 

impurity for most products, isolation steps are designed to remove most of it, thereby concentrating 

the target and reducing the material volume to be handled. This involves adsorption, solvent 

extraction, ultrafiltration and precipitation. Contaminants with similar properties as the target are 

separated during product purification. Steps may be repeated to increase product purity after partial 

purification. After affinity chromatography, ion-exchange chromatography and gel-filtration are 

typically used to obtain a higher than 98% purity of the product compared to HCPs in solution. These 

chromatography steps also need to remove specific impurities such as endotoxins, nucleic acids, 

antibody dimers and other antibody aggregates as well as leaching protein A, from e.g. affinity 

chromatography. 

The final processing stage is the so-called product polishing which ends with packaging of the product 

in a stable, easily transportable containment and can involve buffer changes, crystallization and 

lyophilization. Sterilization, pyrogen and virus removal, and removal of trace contaminants to ensure 

product safety also have to be done during the polishing step. To avoid the risk of virus contamination 

working with cell lines, several virus removal steps are included. These can be based on filtration, UV 

irradiation, low pH treatment and use of detergents and solvents (Birch and Racher, 2006; 

Sommerfeld and Strube, 2005). 

Some of these stages can be combined using special methods. Insolubles are removed and the 

product is isolated in a single step during expanded bed adsorption or using affinity chromatography. 

Typical yields for antibody purification are around 60-80%, varying with the number of purification 

steps (Farid, 2009; Werner, 2004). 

 

Monitoring techniques 

Having a look at above mentioned parameters, one can easily see that a large set of experiments is 

necessary to allow for optimum growth conditions and high product quality and purity. Using wrong 

agitation speed can lead to increased cell death due to shear forces or decreased oxygen and 

nutrient supply. Using wrong reactor design can also impede gas and nutrient distribution within the 

cell culture broth. Within downstream processing, the correct choice of e.g. filter pore sizes and 

correct pH- adjustment for ion exchange chromatography are vital to obtain high yields and high purity 

of the final biotherapeutic product. Also, the correct pH for virus inactivation needs to be chosen so as 

to obtain virus inactivation but prevent excessive antibody aggregate formation due to pH and pH-

incubation time. Removal of HCP and DNA needs to be monitored to adjust the corresponding 

chromatography systems (Fontes and van Reis, 2009). Thus, a number of so-called critical process 

parameters need to be monitored throughout the entire production process. Within upstream 



tttt 
 

Cumulative part- Introduction   17  

processing, these critical process parameters can comprise glucose, lactate and ammonia levels, 

oxygen level, optical density and live cell counts. For the downstream part, these parameters can 

comprise target protein titer, e.g. antibody levels at different purification stages, impurity protein level, 

e.g. host cell protein concentrations, antibody aggregate level, glycosylation patterns as well as 

detection of leachables, e.g. residual protein A from purification steps involving affinity 

chromatography. Monitoring of these critical process parameters is vital to obtain high product quality 

while at the same time ensuring low production costs and minimizing production errors.  

This monitoring can be done off-line, at-line and on-line. With off-line monitoring, a sample is regularly 

withdrawn from the bioreactor or from different purification stages and then analyzed outside the 

bioreactor.  

At-line monitoring is similar, however, the sample is analyzed next to the bioreactor, reducing analysis 

time. The third technique is on-line or in-line monitoring.In-line monitoring is done in-situ directly in the 

reactor within the fermentation broth, while on-line monitoring is done ex-situ, in a bypass or loop, 

making use of filters to remove cells and unwanted particles prior to sample analysis (Vojinović, 

Cabral, and Fonseca, 2006; Garn et al., 1989). 

For the upstream part, analysis of critical process parameters is mainly done by using sensors. These 

can comprise, but are not limited to standard potentiometric ion selective glass electrodes for pH- 

measurement, Clark amperometric electrodes for oxygen level monitoring and Severinghaus type 

electrodes for CO2 monitoring (Vojinović, Cabral, and Fonseca, 2006). 

However, their overall use is impeded by contamination- and long- term stability risks, requiring the 

implementation of non-invasive sensors (Rhiel et al., 2002). Additionally, UV as a standard sensor 

within process analysis can track protein levels, however, is unable to differentiate between product 

and impurities (Pujar, Low, and O’Leary, 2009). 

Within downstream processing, critical process parameters are mainly analyzed with off-line 

techniques such as enzyme linked immunosorbent assays (ELISA), SDS-PAGE and western blotting 

or isoelectric focussing. These techniques have the advantage of obtaining a low to very low limit of 

detection. However, they are quite expensive, with ELISA plates mounting to several hundred euros 

per plate. Furthermore, it takes several hours to obtain the results, thus information on the process is 

obtained retrospectively. Thereby, adequate process adjustments cannot be made on time, increasing 

the risk for process failures and thereby higher production costs and longer process development 

times.  

Protein aggregation is usually monitored by size exclusion chromatography, differentiating proteins 

according to their hydrodynamic radius, or using dynamic light scattering to analyze the size of a 

protein and thereby identify protein dimers, multimers and other forms of protein aggregates. Some of 

these techniques can be done at-line, allowing for sample analysis next to the bioreactor, e.g. using 

lab-on-the chip techniques. Thereby, results are obtained slightly faster. 

However, the use of non-invasive techniques for monitoring would reduce workload significantly, not 

requiring regular sample withdrawal anymore and leading to faster analysis time. Additionally, batch  
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success rates could be increased, eliminating operator errors and contamination risks, associated 

with sample withdrawal.  

 

FTIR as technique within process development and monitoring 

One alternative non-invasive technology is Fourier transform infrared spectroscopy (FTIR) which can 

give structural information and identity confirmation of an (un)known sample, based on the interaction 

between irradiation and matter at different wavelengths (Kong, 2007). 

This is achieved as molecules absorb frequencies of irradiation matching their resonance vibration 

frequency depending on their bond strength, hydrogen bonding pattern and surrounding molecule 

bonds. 

Complex molecules have more bonds and can thus vibrate in different vibrational modes, resulting in 

fundamental vibrations as well as overtones via specific energy absorption at different wavelengths. 

Thereby, a specific sample spectrum is obtained, which provides the opportunity for identifying 

functional groups and molecules (Griffiths and de Haseth, 2007), e.g. proteins and protein structures. 

Infrared spectroscopy can be separated into two, for structure analysis and quantification relevant 

subtypes: near- infrared spectroscopy (NIR), already largely employed in monitoring processes, and 

mid- infrared spectroscopy, used e.g. for studying protein structures. While NIR covers the 

wavenumber range between 4,000- 13,000cm-1, MIR extents across the range of 200- 4,000cm-1 

(Landgrebe et al., 2010). The advantage of IR as analytical tool is the relatively low amount of sample 

required, between 10- 100μg and down to 50ng, its short measuring time, obtaining results within less 

than 1-2 minutes and its cost- effectiveness (Barth, 2007). 

Both, NIR as well as MIR have advantages and disadvantages. However, they both enable structural 

analysis of molecules, based on the molecule's specific absorbance. While NIR detects overtones, 

MIR allows detection of more fundamental vibrations in a molecule. For NIR, quantification is not that 

straight-forward, as relatively large sample sets are required and calibration is not that simple to 

achieve and can also not be transferred from one instrument to another one (Cen and He, 2007). 

Additionally, bands in NIR are highly overlapping and need to be deconvoluted by mathematical 

steps- visual confirmation of results is not possible. In contrast, MIR also allows to visually identifying 

bands which correlate or seem to correlate with the concentration of an analyte, thus leading to higher 

confidence of a user when designing a new quantification method. Calibration in MIR is also more 

straightforward and information about a molecule’s structure is more clearly visible, due to usually 

well-separated bands of different functional groups and the additive effect of different groups within 

spectra of molecule mixtures. 

Although in principle both, NIR as well as MIR, lead to the same results and can be used for 

quantification purposes, most information about a molecule’s structure can be found in the MIR range, 

also with the ability to quantify substances at significantly lower concentrations compared to NIR 

(Landgrebe et al., 2010). Yet, the advantage of NIR is the low absorbance of water in that region, 

which imposes additional equipment effort, using MIR, in order to minimize water absorbance. There  



tttt 
 

Cumulative part- Introduction   19  

the problem is that usually very thin thicknesses in the µm- range are required for flow-through cells, 

as otherwise total absorbance within the Amide region would occur, due to water absorbing at the 

same regions as proteins. While for NIR, low-cost materials, e.g. quartz and glass can be used to 

transmit radiation, similar materials used for MIR irradiation transmittance are still very expensive. 

Despite this, in the following chapter MIR will be discussed as it facilitates the design of calibration 

models, and also allows visual identification of potentially useful wavenumber ranges within the 

spectra, thereby allowing process monitoring through increase or decrease of a specific band within 

the IR spectra. Furthermore, for protein structural analysis, which will also be the foundation for some 

of the monitoring applications described here, MIR is primarily used already. 

MIR has the ability to perform at-line analysis without destroying the analytes. Even in-line and on-line 

measurements are possible, e.g. using a sub-type of MIR, ATR (Fahrenfort, 1961; Harrick, 1960). 

To date, it is widely used for analysis of liquid samples, e.g. fuel composition, drinks, food composition 

as well as educts for chemical reactions (Fernanda Pimentel et al., 2006; Moros et al., 2005; Pillonel 

et al., 2003; Doak and Philips, 1999). 

MIR can be used to differentiate different proteins, e.g. protein A from mAb, or host cell proteins from 

mAb as well as aggregated mAb from non- aggregated antibodies. In the past, MIR has therefore 

been used to analyze protein secondary structures as well as elucidate changes in antibody 

formulations upon storage and formulation type (Skrdla, Harrington, and Lin, 2010; Barth, 2007; 

Yoshioka and Aso, 2007; Matheus, Mahler, and Fries, 2006; Gupta et al., 2002; Breen et al., 2001; 

Goormaghtigh,Raussens, and Ruysschaert, 1999; Jackson and Mantsch, 1995) and analyze 

compounds in various cell culture compositions (Mazarevica et al., 2004; Doak and Phillips, 1999). 

Furthermore, it has been used to determine protein levels  

(Capito et al., 2013; Capito et al. 2012; Sellick et al., 2010; Etzion et al., 2004; Oberg and Fink, 1998) 

and to quantify polysaccharides in bacterial samples (Marcotte et al., 2007). 

Pistorius et al. (2008) were able to quantify lipid, carbohydrate and protein content in biomass of 

different origin, using a single MIR measurement (Pistorius, DeGrip, and Egorova-Zachernyuk, 2009). 

Also IR-based classification of micro-organisms is possible, if they show differences in exposure of 

their surface proteins and composition (Preisner et al., 2010; Winder et al., 2004). 

Furthermore, besides NIR, MIR can be used to quantify single amino acids, differentiating them 

because of minor differences in their IR spectra. This allows amino acid quantification in the millimolar 

range (Barth, 2007; Riley et al., 2001). 

The suitability of MIR for quantification of recombinant protein levels was shown by various groups. 

Gross-Selbeck et al. (2007) and McGovern et al. (1999) used this technique to quantify protein in 

microbial cell cultures while Sellick et al. (2010) quantified protein in mammalian cell cultures. 

Timmins et al. (1998) utilized MIR to differentiate baker’s yeast strains. 

With ATR, the sample is coated to a crystal consisting of material with a high refractive index, usually 

zinc selenide, germanium, diamond or silicon. Instead of a crystal, immersion probes can be used 

such as chalcogenide and silver halide based autoclavable ATR probes fitting into a bioreactor port  
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(Landgrebe et al., 2010). Alternatively, glass fibers for ATR, made of Telur, Arsen and Selen can be 

used, passing through a bioreactor (Capito et al., 2013). For at-line analysis, either ATR instruments 

or flow-through cells can be used. 

ATR was already used for overall protein quantification as well as to elucidate differences in protein 

secondary structure (Landgrebe et al., 2010; Goormaghtigh, Ruysschaert, and Raussens, 2006; Doak 

and Phillips, 1999; Jackson and Mantsch, 1995). 

Additionally, due to its suitability for multivariate data analysis and process control, NIR, MIR in 

general as well as ATR all fit into the FDA's guideline for process analytical technology (PAT) and will 

likely be increasingly used for process monitoring in the future with different applications already 

(FDA, 2004; Lopes et al., 2004). 

Within the here discussed middle infrared region [4,000–200cm−1] nine characteristic IR bands are 

used to allow for quantitative and qualitative protein analysis. Besides the mainly used Amide I and II 

these bands comprise Amide A, Amide B and Amide 3- 7 (table I) (Krimm and Bandekar, 1986). NH- 

stretching leads to formation of the Amide A band which is insensitive to polypeptide backbone 

conformation (Barth and Zscherp, 2002). The Amide I band originates mainly from C-O stretching 

vibrations, with small contributions from CN stretching and NH- bending and provides information on a 

protein’s secondary structure, but is almost not influenced by amino acid side chains.  

Similarly to the Amide I band, also the Amide II band is only to a minor extent affected by amino acid 

side chains. Yet, the correlation of the protein secondary structure with the Amide II band shape is not 

as well established as with the Amide I region. The Amide II band is generated due to CN stretching 

and NH bending vibrations as well as CO bending and CC stretching.  

Also the Amide III band has been suggested to allow for protein analysis (table II continued; (Cai and 

Singh, 2004; DeOliveira et al., 1994). 

Similarly, different bands are generated due to different vibrations, exemplary shown in table I, and 

thus can be related to the structure causing these vibrations.  

The protein secondary structure affects the hydrogen bonding pattern, which on the other hand, 

influences the C=O stretching vibration frequency. Thus, proteins with high beta-sheet content, e.g. 

monoclonal antibodies, differ in their Amide I band from proteins with high alpha-helix content, e.g. 

protein A from Staphylococcus aureus. While beta-sheet structures shift the band maximum of the 

Amide I to lower wavenumbers, alpha-helix rich structures shift this maximum to higher 

wavenumbers. Depending on the protein secondary structure, there are different shifts of band 

maxima as well as appearance of new bands. While aggregated strands manifest themselves in peak 

maxima at 1,615 and 1,685cm-1, beta-sheets are related to band maxima visible in a smaller band at 

1,675-1,695cm-1 as well as a main band at 1,620-1,635cm-1. Even irregular structures, turns and 

loops can be detected and also be quantified; using specific wavenumber regions (tables II and III). 

 

Using infrared spectroscopy for monitoring of critical process parameters, there are some hurdles, 

which, however, are mostly possible to be solved. 
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One such hurdle is to separate the important information within the spectra, originating from critical 

process parameters from the non- important spectral information. Cell cultures consist of many 

different components such as amino acids, supplements such as BSA, vitamins, antibiotics, 

cholesterol, growth factors, proteins, lipids and nucleic acids (Chu and Robinson, 2001). These 

components result in complex overlapping spectra, making it not easy to identify the relevant 

information.  

Table I: Amide bands, their corresponding wavenumber ranges and associated molecule vibrations. 

Designation wavenumber 

range (cm-1) 

Assigned to 

Amide A 3,300 NH stretching 

Amide B 3,100 NH stretching 

Amide I 1,600- 1,690 C=O stretching 

Amide II 1,480- 1,575 CN stretching, NH bending 

Amide III 1,229- 1,301 CN stretching, NH bending 

Amide IV 625- 767 OCN bending 

Amide V 640- 800 out-of-plane NH bending 

Amide VI 537- 606 out-of-plane C=O bending 

Amide VII 200 skeletal torsion 

 

Table II: comparison of Amide I and Amide III band with associated secondary structure elements in 

proteins. 

 Amide I Amide III 

secondary structure 

element 

wavenumber  (cm-1)  

aggregated strands ~ 1,615; 1,619  

β-sheet 1,620-1,635;  

1,624-1,642 

1,224-1,255 

Irregular 1,640-1,650 1,256-1,288 

310 helix ~ 1,640  

α-helix 1,650-1,658 1,289-1,328 

310-helix ~ 1,660-1,663  

turns & loops 1,655-1,685  

antiparallel β-sheet 1,675-1,695;  

1,691-1,696 

1,224-1,255 

aggregated strands ~ 1,685  
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Therefore, using chemometrics and algorithms such as partial least squares regression, univariate or 

multivariate data analysis, software is then used to identify the resulting IR bands originating from 

these specific molecule structures and separate overlapping bands. Using data processing, first and 

second derivative treatment according to Savitzky- Golay (Gorry, 1990) results in a mathematical 

resolution enhancement, allows the differentiation of minor band maxima shifts and thus selective 

quantification. Fourier self-deconvolution and normalization helps to enhance the spectra resolution 

and reveal information, e.g. about secondary structure elements of proteins (Kong and Yu, 2007; 

Dong et al., 2002). 

For univariate analysis, a relationship is established between the absorbance of a single peak height 

or peak area, and the concentration of an analyte corresponding to that absorbance. This works well if 

there is no or little interference and no or little band overlap. Otherwise, multivariate methods need to 

be used. These techniques can comprise PCA or different types of PLS (Esbensen, 2002; Naes et al., 

2002; Wold, Sjöström, and Eriksson, 2001). 

Using PCA with PLS, an algorithm thereby extracts variables T and U by compressing the information 

from factors X (e.g. spectral intensities within spectra, formula (1)) and results Y (reference values, 

formula (2)), respectively.  

Irrelevant information is disregarded and the score matrix T is then used to predict the matrix U, which 

contains the Y-scores. Thereby the results Y are predicted (Sjöström et al., 1983). The loadings P and 

q are estimated by regression and explain the relation between the T-matrix and X as well as the U-

matrix and Y, respectively. The first PLS component is then used to explain for most of the 

covariance, with the succeeding components explaining less covariance. The succeeding 

components may also explain spectral noise, therefore the use of PLS models with fewer components 

reduces the risk of overfitting a model to a certain set of spectra, otherwise being another hurdle 

(Naes et al., 2002; Martens and Martens, 2000; Sjöström et al., 1983). 

 

EPTX T   (1) 

 

fqUY T   (2) 

 

This approach is already used for several parameters within upstream processing, including pH, 

conductivity, ion concentration, temperature etc. For downstream processing, it can be used to 

correlate buffer pH, conductivity, residence time and similar input parameters with peak volume and 

shape, purity, overall yield and other output parameters (Kirdar et al., 2007). 

 

General procedure for quantification of a critical process parameter 

Before using FT-MIR for quantification of an analyte or critical process parameter, a model needs to 

be designed. A set of samples comprising several hundred samples is split into a training set, a  



tttt 
 

Cumulative part- Introduction   23  

 

calibration set and a validation set (figure 2). If the number of available samples is limited, cross-

validation, e.g. one-out- cross validation can be used. The corresponding analytes to be detected by 

MIR need to be quantified by a reference method, e.g. ELISA for host cell proteins as impurities or 

leaching protein A. Target protein concentrations can be quantified by affinity chromatography for 

antibodies, size exclusion chromatography (SEC) or other suitable tools. It is also possible to label the 

analyte of interest and quantify the label to indirectly quantify then the analyte, e.g. by fluorescence. 

However, using this step, labeling an analyte to simplify the generation of reference values, one has 

to assure that the label does not interfere with the spectral window area to be used for detection and 

quantification in FT-MIR. Best is, e.g. to measure an IR spectrum of the label without any other 

substance such as protein, to exclude potential interference and erroneous results. 

Having established a reference method, the training set comprising the samples is measured with FT-

MIR, using the analyte concentrations determined by the reference method for calibration. PCA can 

be used to simplify identification of relevant spectral wavenumber ranges which contain information 

about the analyte and thus allow potential quantification. PCA thereby converts the observations of 

putatively correlated variables, using orthogonal transformation, into linearly not correlated principal 

components. The first principal components have most of the variance within the data set, whereby 

the succeeding principal components have less variance and are all independent from the preceding 

principal components (Naes et al., 2002; Warnes et al., 1996). 

Using PCA, outliers, differing a lot from other spectra, can be removed. 

Alternatively to this procedure, wavenumber ranges can be selected manually, using wavenumber 

ranges which are known to be related to certain protein secondary structures or specific analytes. 

Also, wavenumber ranges which contain bands, whose intensities correlate with concentrations as 

determined by reference values, can be used to establish a quantification model, proven that there is 

a clear correlation. 

Afterwards, an initial quantification model, e.g. based on the PLS algorithm, is validated using a set of 

samples for validation. If the prediction accuracy is not acceptable, different wavenumber ranges can 

be chosen or combined to obtain better results. Alternatively, different mathematical pre-treatment 

steps for the spectra can be performed before doing spectral analysis, e.g. using first and second 

derivative, e.g. based on Savitzky- Golay algorithm, vector normalization and smoothing. 

In the end, an unused set of samples, a so-called independent test-set is used to elucidate the 

robustness and general prediction ability of the quantification model. Once the robustness of a 

specific model for using FT-MIR within a specific process is established, this technique can then be 

used to replace existing techniques or be used as stand-alone process control tool, thereby reducing 

process development time, leading to a cost-effective process and minimizing the effort for process 

development. 
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Figure 2: General set-up to establish a quantification model for critical process parameter estimation. 

 

Aspects to consider before choosing FT-MIR as monitoring technique in downstream 

processing 

Before deciding to use FT-MIR for quantification of critical process parameters, a user should be 

aware that this technique is not applicable if processes are prone to regular changes. While 

monitoring of constant downstream processes using FT-MIR is working well, results of process 

surveillance are less accurate and even irrelevant, if there are process changes, which can greatly 

affect the background matrix of a sample. Process changes can be e.g. any changes which affect the 

composition of the cell culture broth, e.g. an additional filtration step or using different chromatography 

systems for one IR calibration system. If these aspects apply, a user should consider using the to-

date monitoring techniques such as ELISA, affinity chromatography, light scattering and SEC. The 

problem with FT-MIR is, that e.g. a change in the buffer can interfere with the chosen wavenumber 

range for analyte quantification. 

However, for process monitoring applied to regular continuous purification processes, not subjective 

to changes, such as established downstream purification processes, MIR can be used, provided that 
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a careful quantification model is established, calibrated for a specific portion of the process chain with 

a specific background matrix (e.g. one calibration for analyzing samples after affinity chromatography 

and the other calibration for analyzing samples after the virus inactivation step) and carefully analyzed 

for potential interference. If a user follows these principles, this hurdle can be circumnavigated. 

Now that we described how and when FT-MIR can be used for monitoring critical process 

parameters, the next section will describe the use of FT-MIR for protein structure analysis as 

differences in protein structure, and thus differences in the absorbance spectrum are the foundations 

for the here presented monitoring applications. 

By describing potentials of FT-MIR for distinguishing relative amounts of protein secondary structure, 

as well as monitoring e.g. protein denaturation, we try to give the reader an introduction to the topic 

before giving examples of how to distinguish mAb from impurity proteins, mAb from protein A, 

aggregated mAb from non-aggregated etc. 

 

Elucidation of protein structure, differentiation and quantification of protein secondary 

structure using MIR 

IR- spectroscopy can be used to elucidate the relative amount of secondary structure within a protein 

of interest, e.g. beta-sheet and alpha-helix amounts or gain insight into reaction mechanisms, e.g. 

within photosynthesis (Berthomieu and Hienerwadel, 2009). However, it can also be used to state the 

protonation state of aspartate and glutamate groups, which  e.g. have a shift from 1,680cm-1 to 1,580-

1,560cm-1 as well as 1,420-1,395cm-1 upon deprotonation or  characterize His and Tyr residues, e.g. 

in photosystem II or in bacteriorhodopsin (Barth, 2007; Berthomieu and Hienerwadel, 2009). 

IR spectroscopy can provide information on the hydrogen bonding pattern of a protein. While 

increasing hydrogen- bonding leads to lower frequencies of stretching vibrations, bending vibrations 

are increased (Barth and Zscherp, 2002). Additionally, it can be used to identify side chains in 

proteins, although not straight-forward due to largely overlapping bands. However, due to band 

overlap, e.g. between alpha-helix and random structures, or with alpha-helix side chains and beta-

sheets, errors can occur which can be reduced, e.g. using D2O instead of water as solvent 

(DeOliveira et al., 1994). 

Additionally to the difficulties described above, side chains are estimated to contribute to up to 30% to 

the Amide I absorbance, thus contributing to a protein secondary structure estimation error. Yet, the 

average error compared to X-ray crystallographic data with respect to secondary structure estimation 

is about 4-10% and thereby similar to other structure elucidating techniques, such as circular 

dichroism (Barth and Zscherp, 2002). 

Using second derivative, it is possible to identify secondary protein structures and quantify the 

corresponding secondary structure composition within a protein using FT-MIR (Dong, Huang, and  

Caughey, 1990; Kalnin, Baikalov, and Venyaminov, 1990; Venyaminov and Kalnin, 1990; Susi and 

Byler, 1986; Susi and Byler, 1983).  
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The position and shape of the Amide I band can also be used to estimate the length of the alpha- 

helix or the number of strands in beta-sheets. Increasing length of alpha-helix as well as increasing 

number of strands in parallel beta-sheets both lead to shifting of the Amide I peak to lower 

wavenumbers (Barth, 2007). 

However, these above mentioned insights require usually protein concentrations of > 10mg ml-1 and 

short path lengths. 

One possibility is to use a library of proteins with known structures to build a secondary structure 

quantification model. This has been done by Capito et al. (2013; 2012) using a set of protein spectra 

with known secondary structure composition for establishing a protein secondary structure prediction 

model. Proteins at a concentration of 12mg ml-1 were measured, using a flow-through cell with a path 

length of 7µm (Aqua spec Flow cell, Microbiolytics GmbH, Esslingen, Germany) and correlated with 

relative secondary structure amounts, determined by Server- based secondary structure prediction 

tool Jpred III (Cole, Barber, and Barton, 2008). The obtained models for predicting relative amount of 

beta-sheet and alpha-helix, respectively, showed low RMSECV of 4.3 and 4.7%, respectively, similar 

to validation errors by Goormaghtigh et al. (2006) who used only three specific wavenumbers and first 

derivative to selectively quantify relative amounts of secondary structure in protein (table III). 

 

Table III. Protein secondary structure composition determined by MIR in comparison to known 

composition. SD: Standard deviation of the prediction compared with the actual structure component, 

using a linear model including different proteins. Goormaghtigh et al., 2006. 

secondary structure wavenumbers SD 

alpha-helix 1,545- 1,655- 1,613 5.4 

beta-sheet 1,656- 1,634- 1,691 6.6 

beta-turn 1,677- 1,528- 1,577 3.2 

random 1,544- 1,627- 1,691 7.9 

310-helix 1,631- 1,694- 1,625 2.9 
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Figure 3: Capito et al. (unpublished results): quantification models for predicting A: beta-sheet content 

and B: alpha-helix content in proteins. Prediction as relative content in %. R² and root mean square 

error of cross-validation (RMSECV) given. RPD: relative predictive deviation. 

 

Besides above described secondary structure quantification, FT-MIR can also be used to monitor 

secondary structure changes, e.g. upon thermal heating leading to denaturation. 

In such an approach, first the aqueous mAb solution is measured at temperatures between 25°C and 

95°C, using Bio ATR cell II (Bruker Optik GmbH, Ettlingen, Germany). Afterwards, water spectra are 

measured at the same temperature range and subtracted from the aqueous protein spectra, using 

corresponding water spectra at same temperature as measured protein spectra. This is done to 

account for spectral changes at different temperatures. Antibody secondary structure changes, e.g.  
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temperature dependent aggregation behavior can then be evaluated using second derivative for the 

Amide I wavenumber range (figure 4). 

 

 

Figure 4: Capito et al. (unpublished results): Second derivative of temperature stressed mAb at 

wavenumber range 1,630- 1,610cm-1 and 1,700-1,680cm-1, showing increased presence of 

aggregated strands at temperatures above 68°C.  
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Having a look at the spectra, a strong beta-sheet associated peak at 1,625- ~ 1,650cm-1 can be 

observed. Although this band is slightly shifted compared to table I, it is associated to beta-sheet, due 

to the high beta-sheet content of IgG- type antibodies of approximately 70%. 

Additionally, it might also refer to so-called beta-barrel structures, forming the different domains within 

light and heavy chains (Furtado et al., 2004; Chen et al., 2003). 

When exposing the mAb to increasing temperature, denaturation is visible through decrease of 

ordered beta-sheet structures, with simultaneous increase in bands, assigned to intermolecular beta-

sheet aggregated strands exhibited at wavenumbers below 1,620cm-1 and around 1,690cm-1 (Dong, 

Randolph, and Carpenter, 2000). First, significant spectral differences are obvious at temperatures 

above 68°C, and larger differences appear around 70°C, being relatively similar to described 

denaturation temperatures of mAbs of around 70- 74°C (Matheus, Mahler, and Friess, 2006; Li, 

Bomser, and Zhang, 2005; Chen et al., 2003; Welfle et al., 1999). 

Similar results were achieved by Natalello et al. (2005), who investigated effects of heat treatment on 

lipase from Candida rugosa. At temperatures above 50°C a decrease was noticed in the intensities of 

both: alpha-helix as well as beta-sheet associated bands in the Amide I and Amide II regions. 

Additionally, new bands appeared around 1,625 and 1,696cm-1, associated to aggregated protein 

structures. These results suggested to use FT-MIR as a tool to monitor protein conformational 

changes, e.g. due to induced aggregation, site-directed mutagenesis and processing steps. 

 

Case studies: Using FT-MIR for monitoring critical process parameters in downstream 

processing 

a) Quantification of antibody levels in cell culture fluid using FT-MIR 

Using PCA and PLS with FT-MIR, levels of recombinant expressed protein in cell culture fluid can be 

quantified via related spectral bands, e.g. those within the Amide I region between 1,600- 1,700cm-1 

or using different appropriate regions. 

Similarly, this has been done by Harthun et al. (1997), who quantified human antithrombin III levels in 

CHO cell culture. While the authors used near infrared spectroscopy with wavenumbers between 

10,000cm-1- 4,000cm-1, they were able to quantify protein levels between 0.1- 5µg ml-1, with a 

standard error of prediction of less than 0.5µg ml-1, despite using background matrices with slight 

differences. The same technique is also used for quantification of drug substance in the final drug 

product (Christiansen et al., 2007). Similarly, the use of FT-MIR for monitoring biomanufacturing 

processes, is also covered by a patent (Naughton, Rohrer, and Gentz, 2000) as well as quantifying 

antibody levels of different antibodies in serum (Iley, McClure, and Shaw, 2008). 

Alternatively, Etzion et al. (2004) showed the applicability of ATR for quantification of protein content 

in liquid samples with slightly varying matrix. They quantified total protein content in milk samples 

from cow milk, using protein related Amide I and Amide II bands. Their results showed the suitability  
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of ATR for possible on-line protein quantification in milk, however using samples with relatively high 

protein concentration, when compared to concentrations in downstream processing, of 24.7-39.0mg 

ml-1 for model setup. Standard errors of prediction were 0.22% and less, using either PLS or PCA. 

Monitoring of antibody levels throughout different parts of downstream processing is important to 

adjust e.g. residence times on chromatography columns, use correct elution and binding pH in buffers 

and monitor column lifetime based on its binding and separation efficacies. 

When using a software and the PLS algorithm, reference values need to be obtained. For mAb levels, 

a good reference is e.g. antibody quantification via protein A affinity chromatography as the protein A 

shows selective binding towards the Fc part of an IgG monoclonal antibody while having low affinity 

for other substances, such as impurity proteins. The reference values for a given set of samples are 

then used as training set to obtain a good mAb titer prediction model. 

The same set is then analyzed via FT-MIR and mAb related spectral window areas are selected. This 

can be done either by PCA or by visual inspection, looking for band maxima which correlate with the 

measured mAb level in those samples. When performing this work, one can e.g. use spectral window 

areas within the Amide I region, e.g. beta-sheet associated bands as well as alpha-helix associated 

bands as shown by Capito et al. (2012). As mAbs are known for their elevated beta-sheet content of 

about 70%, one can then look for strong beta-sheet bands, e.g. in the wavenumber range of 1,620-

1,635cm-1 for parallel beta-sheets and 1,675-1,695cm-1 for antiparallel beta-sheets and at the same 

time for weak alpha-helix bands. The latter is important as the mAbs should only give low signals 

regarding alpha-helix content. It might be necessary to modify the wavenumber ranges to be used, 

e.g. using wavenumber range 1,614-1,660cm-1 and 1,680-1,690cm-1 for mAb quantification which has 

been shown to give good results. Of course, there are several different analytes within cell culture 

fluid, therefore one has to assure that there is no interference with other analytes. Polysaccharides for 

example, are known to lead to associated bands at 1,610cm-1, therefore the use of these bands within 

a quantification model needs to be excluded.  

This approach has been used to develop specific calibrations for ATR based mAb quantification in 

liquid samples, using either filtered and unfiltered samples to simulate ex-situ and in-situ 

measurements (figure 5). Resulting models showed coefficients of determination between 83.0% and 

89.9% with a rank of 2 (figure 5). mAb concentrations between 0.17- 1.7g l-1 were quantified. 
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Figure 5: Capito et al. (unpublished results and 2012): Comparison of correlation of mAb titers 

predicted using PLS models covering Amide I region. Reference values measured by ELISA- assay. 

A: mAb quantification in unfiltered samples. B: PLS model for measuring mAb titer in both, filtered and 

unfiltered samples. C: mAb quantification in filtered samples.  
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Regarding prediction accuracy of FT-MIR and ATR based mAb titer monitoring, improvements can 

still be made. Currently, achievements are published enabling to predict 60-70% of samples with a CV 

equal to the acceptable variation in an ELISA assay, when using models specified for a specific 

background matrix during mAb quantification.  

Using a non-optimized calibration model, based on filtered and unfiltered samples and thus differing 

background matrix, only 50% of test-set samples could be predicted with a CV < 25%. Yet, for some 

quantification procedures, even a general quantification model can be applied to different phases 

within downstream processing. This has successfully been shown by Rodrigues et al. (2008) who 

used a PLS model, involving NIR for quantification of an active pharmaceutical ingredient after 

applying different kinds of filtration steps, at approximate concentrations of 2- 4.5mg ml-1. It was 

shown that a careful calibration design can help to use quantification models, even if the background 

matrix is slightly changed as is the case with different filtration systems. 

Sellick et al. (2010) quantified mAb levels in CHO and NS0 cell cultures, using 96 well microtiterplates 

with dried samples for high-throughput analysis, with scanning times of 45 seconds. The cross-

validation was used after splitting the samples into a training, a calibration and an independent test-

set, investigating two mAb producing cell lines as well as one non-producing Null cell line, for CHO 

and NS0, respectively, to design quantification models. The Null cell line was thereby used to prevent 

incorporation of accumulated protein, other than mAb, to be identified as mAb titer. Thus, samples 

taken from the non-producing Null cell line, at different time points, were included in the PLS model 

and assigned to 0mg ml-1 mAb, also to avoid PLS model accidentally predicting cell growth instead of 

antibody titer, as both of course increase during cell culture incubation. 

Afterwards, additional detection methods, such as ELISA, are used to validate PLS models designed 

for mAb titer prediction in either CHO or NS0 cell culture, respectively. While the RMS errors for 

prediction were below 10%, a relatively high-number of up to 8 factors was selected (table IV). 

Plotting either the Amide I band area or band height at 1,655cm-1 vs. the antibody titer as determined 

by ELISA, the achieved coefficient of correlation R² was between 92-96 percent for both cell cultures. 

To allow for normalization when predicting the mAb titer, a spectral background region at 2,000cm-1 

was used.  

Using this approach, mAb titer down to 10,000ng ml-1 was quantified. Additionally lactate and glucose 

were measured, at levels as low as 1g l-1 or less, thereby again showing the suitability of FT-MIR for 

simultaneous measurement of multiple analytes, using a single measurement. These findings suggest 

to apply FT-MIR within the early development phase, e.g. to elucidate high-producing cell lines after 

FTIR analysis using a cost-effective, fast and simple analysis technique. 
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Table IV: Details of PLS prediction for mAb titer in NS0 and CHO cell culture fluid as determined by 

FT-MIR (Sellick et al., 2010). RMS: root mean square (in mg L-1). 

 factor (rank) RMS error of 

training set 

RMS error of 

validation set 

RMS error of test-set 

NS0 cell culture 

fluid 

8 3.94 (4.9%) 7.07 (8.8%) 5.97 (7.4%) 

CHO cell culture 

fluid 

8 8.27 (2.1%) 37.82 (9.6%) 37.88 (9.6%) 

  

b) Quantification of impurity protein levels in cell culture fluid 

Another critical process parameter which can be monitored by FT-MIR is host cell protein (HCP) 

amount. These impurity proteins represent a major process related impurity group in cell culture 

supernatant during the production of biopharmaceuticals. They originate from host cells, e.g. 

mammalian CHO, NS0 or SP2/0 cells as well as bacterial and insect cells, which are used for the 

production of the desired biopharmaceutical substance. While a minor source is secretion into the cell 

culture broth, the main origin is due to cell lysis or release during cell disruption and harvesting (Tait 

et al., 2012). The number of HCPs can exceed hundreds to thousands of proteins (Hoffman, 2000). 

As HCPs are potentially immunogenic and have antigenic functions (Champion et al., 2005; Dotzel, 

1999; Zoon, 1997) they need to be removed to levels of <1-100ppm during downstream processing 

(Tait et al., 2012; Wang, Hunter, and Mozier, 2009; Champion et al., 2005; Wolter and Richter, 2005; 

Eaton, 1995).  

Various orthogonal methods are used to remove these impurities based on differences in their 

physicochemical attributes such as isoelectric point, charge at specific pH, hydrophobicity and size 

(Wang, Hunter, and Mozier, 2009), resulting in final HCP levels below 100ppm (Arunakumari and 

Wang, 2009). These orthogonal methods are usually established within a set of different methods 

within the purification chain during downstream processing. 

The potential of a chosen set of purification strategies for HCP clearance as well as impacts of 

upstream parameters on HCP secretion needs to be monitored and elucidated. This is preferably to 

be done by continuous process surveillance, requiring many HCP analyses or alternative tools for 

real-time monitoring. As FT-MIR is one technique allowing real-time monitoring due to fast data 

acquisition and analysis, this part will discuss the use of FT-MIR for HCP impurity monitoring. 

HCP- ELISA is the standard method of choice for quantification of host cell proteins and can detect 

less than 1ng ml-1 of proteins (Hoffman, 2000). However, the use of polyclonal antibodies and 

requirement of several immunization steps in the immunogen- producing animal makes ELISA assays 

expensive. Special chemicals used within the assay also contribute to additional costs. Although 

ELISA assays are very sensitive, they require quite some time for sample preparation and assay 

incubation, additionally adding dilution errors to the sample to be analyzed. 2D- SDS-PAGE combined  
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with western blotting has slightly lower sensitivity compared to ELISA but is time consuming, as well 

(Flatman et al., 2007). HPLC can be used, also at- or online to the bioreactor, but it shows lower 

sensitivity and results are subjective to interpretation (Hoffman, 2000). 

HCP quantification using FT-MIR can be done similar to mAb quantification. Elucidating wavenumber 

ranges which contain spectral information regarding HCP levels, a quantification model can be 

established. Before, training samples need to be generated. This can be achieved by using e.g. 

activated carbon to remove different amounts of HCP from cell culture fluid, depending on the pH. 

Alternative techniques can be semi- selective protein precipitation (Capito et al., 2013; Capito et al., 

2012) or ion exchange chromatography. The important aspect with all of these methods is, to avoid 

co-linearity between HCP concentration and the concentration of other analytes within the samples, 

e.g. antibody titer. This training set of samples is then analyzed with the ELISA assay to obtain 

reference values to be used within the IR quantification software. Afterwards, samples are measured 

on MIR and analyzed either by PCA or visual inspection of spectra to find bands whose intensity 

correlates with the reference values, similar to the above described principles for mAb quantification. 

Using this approach, several spectral window areas correlating with the HCP concentration can be 

used for multivariate data analysis and model design. The benefit of using a so-called multiple 

spectral window approach is that interference by other substances can be minimized. In case a 

substance interferes with e.g. one of these spectral windows, there are several other "windows" left, 

thus still allowing for good prediction ability. However, one should be aware, that if the interfering 

substance has structural similarities very close to the impurity proteins, the interference would most 

likely occur with all "windows".  

Performing this multiple spectral window approach, five wavenumber ranges which correlate with 

ELISA values, can be identified (figure 6). These ranges are 1,557.49-1,546.88; 1,514.092-1,505.412; 

1,424.403-1,417.653, 1,410.9-1,395.47 and 1,352.07-1,341.47cm-1. The wavenumber ranges 1,557-

1,545cm-1 and 1,514-1,505cm-1 may be assigned to the Amide II band at 1,575-1,480cm-1, 

corresponding to CN stretching and NH bending vibrations as well as minor contributions from CO 

bending and CC stretching (Barth, 2007). Two other ranges (1,424- 1,417cm-1 and 1,410-1,394cm-1) 

may be assigned to C-O-H bending (table V). The wavenumber range 1,352-1,341cm-1 may be 

assigned to a carboxyl group. Using this approach, HCPs can be quantified between 5,000-

300,000ng ml-1 with CVs similar to ELISA assays (table VI and figure 7) and coeeficients of correlation 

between 87- 98%., However, the detection limit is slightly lower as the reported 17,000ng ml-1 for 

polysaccharides and 10,000ng ml-1 for mAbs (Sellick et al., 2010; Marcotte et al., 2007). Yet, the 

possible quantification range also encompasses the relevant HCP titer after ion exchange 

chromatography, when using this technique instead of protein A affinity chromatography as initial 

purification step (Arunakumari and Wang, 2009). Therefore, FT-MIR can in principle be used to semi-

selectively quantify HCPs in upstream processing as well as early downstream processing. 
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However, after affinity chromatography, HCP levels vary usually between 500-10,000 ng per mg mAb 

(Eriksson et al., 2009), thus currently impeding the use of FT-MIR based impurity quantification for 

this part of the purification chain. 

 

Table V: Functional groups assigned to wavenumbers used for the model building in HCP 

quantification. 

Wavenumber range cm-1 Assigned 

1,557 - 1,545 Amide II 

1,514 - 1,505 Amide II 

1,424 - 1,417 C-O-H bending 

1,410 - 1,394 C-O-H 

1,352 - 1,341 C-O carboxylic acid 

 

Table VI: Capito et al. (unpublished results): Prediction accuracy of calibration model for independent 

test-set samples taken from CHO cell culture fluid.  

Sample HCP titer 

determined by 

ELISA (ng ml-1) 

HCP titer 

predicted with 

model (ng ml-1) 

precision: % CV (* 

ELISA precision < 

10% CV) 

within limitation of ELISA 

1 6,763 10,346 37.46 no 

2 7,476 9,188 16.19 yes 

3 8,015 9,453 12.69 yes 

4 24,470 27,287 8.14 yes 

5 26,006 27,370 3.71 yes 

6 42,562 51,660 15.12 yes 

7 60,503 62,230 2.02 yes 

8 73,675 71,209 2.37 yes 

9 85,908 84,905 0.83 yes 

10 93,443 79,741 10.37 yes 
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Figure 6: Capito et al. (2013): Spectral overview and wavenumber ranges used for HCP 

quantification, with assigned structural information. 
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Figure 7: Capito et al. (unpublished results and 2012, 2013): Comparison of correlation of HCP titers 

predicted using ELISA and ATR by application of different PLS models for different cell culture fluids. 

Models optimized for A: samples taken from CHO cell culture fluid; B: samples taken from NS0 cell 

culture fluid; C: samples taken from SP2/0 cell culture fluid. 
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c) Antibody aggregate quantification using FT-MIR 

Antibody aggregation can occur at different steps during the mAb production process and needs to be 

monitored to meet regulatory limits. One source for aggregation is affinity chromatography, requiring 

low pH-elution which can then result in aggregate formation (Vunnum, Vedantham, and Hubbard, 

2009). Other causes are the low- pH- virus inactivation step during downstream processing, shear 

stress in tangential flow filtration as well as shear stress due to agitation and aeration in suspension 

cell cultures within the upstream phase (Chu and Robinson, 2001). 

mAb aggregation can also be induced by factors influencing protein-protein interaction such as 

freeze-thawing, pH-shifts, shaking, long-term storage or lyophilization (Wang et al., 2007) as well as 

mAb formulations of highly concentrated protein which may lead to concentration-induced 

aggregation of antibodies (Shire, Shahrokh, and Liu, 2004). 

Antibody aggregates are a challenging impurity as they closely resemble the product (Arunakumari 

and Wang, 2009). To date, they are measured using SEC-HPLC and SDS-PAGE as robust routine 

analysis techniques and also by light scattering as semi-quantitative and qualitative method (Brorson 

and Phillips, 2005). Other techniques involve analytical ultracentrifugation, field-flow fractionation and 

electrophoresis (Hawe et al., 2009; Brorson and Phillips, 2005).  

However, these techniques, especially HPLC and SDS-PAGE are not suitable for rapid monitoring of 

process development (Flatman et al., 2007), although they have a higher sensitivity compared to the 

faster dynamic light scattering. Typical aggregation levels in antibody purification can vary between 

0.5%- 25% and reach even up to 40-60% (Vunnum, Vedantham, and Hubbard, 2009; Shukla and 

Han, 2007; Harinarayan et al., 2006; Ishihara et al., 2005). 

These aggregates need to be removed as they can result in anaphylactoid side reactions and renal 

failure due to increased immunogenicity with lower activity (Wang et al., 2007; Rosenberg, 2006; 

Demeule, Gurny, and Arvinte, 2005; Hermeling et al., 2004 ; Braun et al., 1997; Ryan, Webster, and 

Statler, 1996). Thus, a common acceptance criterion for aggregates during early development of 

mAbs, also used by FDA, is "<5%" (Brorson and Phillips, 2005) 

However, this accepted level can be more stringent if expertise on the manufacture of such mAbs is 

available and therefore should not be used as a general acceptance criterion. 

Of potential techniques to be used in aggregate monitoring, MIR is one of the most- promising ones, 

providing a good balance between measurement speed and sensitivity (Flatman et al., 2007). The 

approach, using MIR for aggregate analysis is not new. Several research groups have used this 

technique already for aggregate quantification (Joubert et al., 2007; Ami et al., 2006; Maruyama et al., 

2001; Seshadri et al., 1999; Dong et al., 1995) and it has been proposed as a potential replacement 

technique for protein aggregation and conformation analysis (Flatman et al., 2007). 

MIR was used to elucidate changes in antibody formulations upon storage and formulation type, as 

formulations containing aggregated mAbs are known to exhibit a band shift of beta-sheet associated 

bands from 1,690cm-1 to 1,694cm-1 as well as broadening of bands, indicative for the increase of  
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disordered structures (Skrdla, Harrington, and Lin, 2010; Yoshioka and Aso, 2007; Matheus, Mahler, 

and Friess, 2006; Andya, Hsu, and Shire, 2003; Gupta et al., 2002; Breen et al., 2001; Surewicz, 

Mantsch, and Chapman, 1993). 

Andya et al. compared the secondary structure of native mAb with that of mAb after undergoing 

lyophilization (Andya, Hsu, and Shire, 2003). Comparing assigned secondary structures within the 

Amide I region, a band broadening, appearance of a broad band at 1,650cm-1 which they saw as 

indicator of protein unfolding to unordered structures as well as band shifts from 1,690 cm-1 to 

1,694cm-1 were discovered (compare figure 8). 

Furthermore, the authors showed evidence for more native-like mAb secondary structures, if adding 

specific carbohydrates before formulation and storage, thereby showing the suitability of FT-MIR for 

formulation monitoring  

Hawe et al. (2009) showed strong bands at wavenumbers 1,635 and 1,690cm-1, using non-

aggregated mAb while the aggregated-denatured mAb, subjected to heat-denaturation at 77°C 

exhibited bands at 1,655cm-1 and 1,619cm-1(compare figure 8), attributed to intermolecular beta-

sheets within the mAb aggregates and was consistent to results obtained by complementary 

techniques. 

 

Figure 8: Second derivative of samples containing aggregated mAb (black) and native mAb (grey). 

Encircled in black: a distinct peak at 1,619cm-1 visible with the aggregated mAb as well as a strong 

band around 1,694cm-1. Results by Capito et al. (unpublished) similar to Hawe et al. (2009) and 

Andya et al. (2003). 

 

As aggregates are mainly occurring in the intermediate and late phases of downstream processing, 

such as after affinity chromatography, virus inactivation or even after formulation of the purified drug 

product, they can easily be measured using FT-MIR. Interfering substances such as other impurity  
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proteins are already removed to >98% after affinity chromatography. This allows for relatively 

straightforward aggregate quantification using FT-MIR without having to consider significant 

interference by impurity proteins. As aggregates are detected at slightly different wavenumber ranges 

compared to protein A quantification, there is also no cross-interference between these two analytes 

within FT-MIR. Depending on the concentration of aggregated mAb within the overall mAb 

concentration, different models can be used to optimize prediction accuracy. This approach has been 

used to quantify aggregated mAb within mAb drug solution to concentrations of less than 5% (w/w), 

using the wavenumber range 1,660-1,642cm-1 and 1,620-1,610cm-1 (figure 9 A). Additionally, for a 

second mAb, a model optimized for quantification of aggregates down to 1% (w/w) could be achieved, 

using wavenumber ranges 1,665-1,654; 1,580-1,567; 1,502-1,496; 1,360-1,346cm-1 (figure 9 B). 

Therefore, FT-MIR can be a method of choice for aggregate quantification as it requires low 

workforce, no materials, no buffer and obtains fast data analysis, compared to conventional 

techniques. 
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Figure 9: A: Results by Capito et al. (unpublished): aggregate quantification in mAb1 mixing 

aggregated mAb1 with non-aggregated mAb1. Rank of 5. Model covering a wide aggregate titer 

range with R² of 95.76, RMSECV of 6.58 and RPD of 4.87, showing good prediction of the model 

based on the entire calibration range. Data pre-processing done removing outliers according to PCA, 

performing multiplicative scatter correction and using wavenumber range 1,660- 1,642cm-1 as well as 

1,620-1,610cm-1, covering secondary structure associated wavenumber ranges. B: Model for 

aggregate quantification in mAb2, optimized for quantification down to 1% (w/w) relative aggregate 

amount, using first derivative and wavenumber ranges 1,665-1,654; 1,580-1,567; 1,502-1,496; 1,360-

1,346cm-1. Rank of 6, R² 95.24 and RMSECV 0.94%.  

 

 

 

 



tttt 
 

Cumulative part- Introduction   42  

d) Quantification of leaching protein A in cell culture fluid using FT-MIR 

Protein A is a cell-wall anchored protein in Staphylococcus aureus. It is exposed on the surface of this 

pathogenic bacterium and binds antibodies of the IgG- type, due to its affinity to the Fc region of these 

antibodies. By that, it leads to "wrong binding" of the antibodies, which are then not able to initiate an 

immune reaction. 

In antibody purification, protein A is used within downstream processing in affinity chromatography 

due to its selective binding towards the mAb’s Fc region. The protein itself has a molecular weight of 

about 54kDa and consists of five domains, all of which are composed of an anti-parallel three-helix 

bundle motif and tow inter-helical loops, but no beta-sheets (Vunnum, Vedantham, and Hubbard, 

2009). 

Protein A can leach into cell culture when using affinity chromatography involving this protein. 

Leaching arises due to proteolytic cleavage between domains by proteases present in cell culture 

fluid, resulting in segments between 6- 40kDa being present in the purified eluate (Vunnum, 

Vedantham, and Hubbard, 2009). Residual protein A levels after affinity chromatography are 

approximately between 2-40ppm (Horenstein et al., 2003; Godfrey et al., 1992) and thus meet FDA 

regulations (Vunnum, Vedantham, and Hubbard, 2009). 

Although these levels are low, protein A can lead to immunogenic reactions in a patient, therefore 

removal needs to be monitored. To-date, leached protein A is detected using immunoassays, such as 

ELISA with limits of detection less than 1ng per mg mAb. Although these assays have the potential for 

at-line analysis, using appropriate automation procedures, alternative non-invasive techniques would 

be beneficial (Flatman et al., 2007; Dertzbaugh et al., 1985).  

Yet, not with that low limit of detection, protein A can therefore, in principle, be differentiated from 

antibody, using FT-MIR, due to structural differences and thus differences in the absorbance spectra. 

This is done similar to the above described mAb quantification procedure. Amide I regions associated 

to alpha-helix and beta-sheet secondary structures are used which allow differentiation of the 

proteins. The advantage for protein A quantification is, that it does not contain beta-sheet structures 

as mentioned before, but is mainly composed of alpha-helix secondary structures (figure 10).  

Therefore, FT-MIR can in principle be used for monitoring leaching protein A levels after applying 

protein A chromatography (Vunnum, Vedantham, and Hubbard, 2009). 

This has been shown in a feasibility experiment, spiking aqueous protein A into aqueous mAb 

solution, allowing protein A quantification down to 0.01mg ml-1 with low prediction errors down to 

either 0.05mg ml-1and even 0.01mg ml-1 (figure 11 A and B).  

Unfortunately the quantified Prot A levels are much higher as usually observed after Prot A affinity 

step thus not enabling direct FT-MIR application. Even though, sample enrichment to concentrate 

protein A within the sample can be a way to enable its use. These techniques include using 

centrifugal filters, allowing to enrich protein A levels and thus visualize residual protein A levels in  

purified product after affinity chromatography. By these approaches, FT-MIR can be an alternative to 

conventional ProtA Elisa although more investigations are necessary. 
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Figure 10: A mAb (Pdb accession code 1igt) secondary structure with low amount of alpha-helices (in 

grey) and high beta-sheet content (in black). B: secondary structure of B domain of staphylococcus 

aureus protein A (Uniprot ID P38507) only showing alpha-helices (in grey) and absence of beta-sheet. 
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Figure 11: A: Results by Capito et al. (unpublished): protein A quantification in mAb2 solution after 

spiking protein A to mAb.  Rank 3. Protein A levels between 0.01mg ml-1 to 9.0mg ml-1 were spiked to 

mAb solution with CmAb = 0.33 mg ml-1. First derivative of spectra used encompassing Amide region 

between 1,600-1,700cm-1. R² 97.85, RMSECV 0.313mg ml-1 and RPD 6.84, indicating model to be 

reliable. Low prediction error only possible down to 0.05 mg ml-1 protein A in cell culture fluid. B: 

model optimized for predicting protein A in range of 0.1-0.4mg ml-1, using portions of wavenumber 

range 1,700-1,600cm-1. Rank 3. Quantification possible to 0.01mg ml-1 protein A. 
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3. Other possible applications 

Quantification of endotoxins, lipids and polysaccharides by FT-MIR 

Another parameter to be controlled and its presence in the drug product to be minimized are 

endotoxins which are lipolysaccharides or pyrogens. Endotoxins are composed of three, chemically 

different, parts:one part is so-called lipid A, being exposed to the cell interior, the other part is so-

called core-oligosaccharide and the third part is the O-antigen, being the surface antigen, composed 

of a heteropolysaccharide (Petsch and Anspach, 2000) (see figure 12). The O-antigen thereby differs 

between different bacterial strains while the core-polysaccharide is more conserved and lipid A being 

very conserved among different strains (Petsch and Anspach, 2000). Both, core-structure and lipid A 

are additionally phosphorylated. 

 

Figure 12: Schematic view of the chemical structure of endotoxin from E. coli O111:B4.  

Reprinted from Journal of biotechnology, 76(2), Petsch, D., & Anspach, F. B., Endotoxin removal from 

protein solutions, p.99, © 2000, with permission from Elsevier.  

 

They originate from the outer cell membrane of gram negative bacteria, forming about 75% of their 

surface, are responsible for stability but also interaction with other bacteria and can lead to harmful 

effects in humans (Varaa and Nikaido, 1984). 
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Such effects may be fever, modified hemodynamics, shock, organ and cell changes. Thus, their 

presence in drug products is limited (European Pharmacopea, 3rd Edition, 1997; Rietschel et al., 

1994; Martich, Boujoukos, and Suffredini, 1993).  

Currently, endotoxin levels in E. coli cell culture supernatant can vary between 10ng ml-1 to 100,000ng 

ml-1 (Horenstein et al., 2003; Petsch and Anspach, 2000). Removal is usually accomplished using ion-

exchangers, phase-extraction systems, as well as tailor-made selective endotoxin adsorbers, 

however, all with different efficacy and applications (Petsch and Anspach, 2000). In some cases, the 

level of endotoxin can be high as shown by Rantze (1996), who measured more than 2300ng ml-1 

endotoxin after applying ion exchange chromatography during purification of basic fibroblast growth 

factor from high density E. coli cultivation. 

The state-of-art way of endotoxin level monitoring is use of either the Limulus amoebocyte lysate 

assay, the galactosamine-primed mice lethality assays or the chicken embryo lethality assay with the 

first showing a sensitivity of 0.02 endotoxin units ml-1, similar to a detection limit of 2pg ml-1 (Galanos 

and Freudenberg, 1993; Galanos et al., 1971). However, these assays may suffer from interference 

by many substances and they can fail in samples with complex matrix, e.g. blood and biological fluids 

with certain proteins (Petsch and Anspach, 2000), thus requiring alternative techniques. 

In principle, FT-MIR can be applied to detect endotoxin levels as well, however, at higher 

concentrations, e.g. within the bioreactor, shortly after harvesting or within the early phases of 

downstream processing. As endotoxins are composed of polysaccharides and lipid, they can, in 

principle, be quantified by specific absorbance bands of these compounds within IR spectroscopy. 

These absorbance bands have already been used within FT-MIR, e.g. to classify micro-organisms 

according to their lipopolysaccharides (Kim, Reuhs, and Mauer, 2005), and study the interaction of 

lipopolysaccharides with different surfaces (Parikh and Chorover, 2008; Reiter et al., 2002). Synthetic 

lipid A and glycolipids were analyzed by FT-MIR (Brandenburg and Seidel, 1998; Brandenburg, 

Kusumoto, and Seydel, 1997) as well as endotoxins and their interaction with lipoproteins 

(Brandenburg et al., 2002; Petsch and Anspach, 2000). 

 

Following the line of lipid quantification, the C-O groups of lipid esters can be identified between 

1,700-1,750cm-1 and lipid acyl chains at 2,800-3,000cm-1 (table VII) (Chapman et al., 1967). As lipids 

differ vastly in their structure and biochemical composition, they can also be differentiated due to 

unique IR absorbance signature. Polysaccharides can also be quantified, thereby allowing possible 

detection of endotoxins. This has been shown by Marcotte et al. (2007) who used FT-MIR to quantify 

different polysaccharides present on bacterial biofilm, using the wavenumber range of 970-1,182cm-1 

(Marcotte et al., 2007). The limit of detection was 17,000ng ml-1 for different dried polysaccharide 

samples, including xanthan, alginate and mannan. Using a similar wavenumber range between 1,180-

1,133cm-1, Pistorius et al. (2008) used C-O and C-O-C stretching vibrations to quantify carbohydrates 

(Pistorius, DeGrip, and Egorova-Zachernyuk, 2009; Tewari and Irudayaraj, 2004; Hineno, 1977). 
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Therefore, all through no direct endotoxin quantification during downstream processing has been 

described, these impurities may be monitored using FT-MIR, combining the knowledge and 

applications described above.  

 

Table VII: wavenumber ranges to be used for lipid quantification in MIR. 

Vibration wavenumber range in cm-1 

CH3 asymmetric stretch 2,956 

CH2 asymmetric stretch 2,920 

CH3 symmetric stretch 2,870 

CH2 symmetric stretch 2,850 

C=O stretch 1,740 

CH2 scissoring 1,463-1,468; 1,472-1,473 

CH3 asymmetric bend 1,460 

CH3 symmetric bend 1,378 

PO2- asymmetric stretch 1,228 

PO2- symmetric stretch 1,085 

CH2 rocking 720-730 

 

Quantification of nucleic acids by FT-MIR 

Nucleic acids are one of the impurities which also require monitoring. They can arise from cell 

disrupture within the bioreactor and levels may vary depending on cell type and density, harvesting 

time and conditions (Flatman et al., 2007). Regulations state, that the amount of cellular DNA should 

not exceed 100pg per dose of a therapeutic protein (Flatman et al., 2007), employing methods which 

can detect DNA down to 10pg. Typically, DNA levels after using ion exchange chromatography as 

initial purification step, are less than 3pg DNA per mg of antibody. 

To date, residual nucleic acid amounts are determined using quantitative polymerase chain reaction 

(QPCR) as method of choice, allowing detection of 0.1 pg DNA per mg mAb within reasonable 

amount of time (Gijsbers et al., 2005). As this technique does not allow for at-line measurements, lab-

on-the chip methods, e.g Agilent's Bioanalyzer allow for even faster data acquisition and thus faster 

process development. These techniques are also able to perform at- and on-line analysis of nucleic 

acids based on microfluidic systems and can detect DNA down to the nanogram scale (Flatman et al., 

2007). 

As for FT-MIR, it can, in principle, also be used to detect and quantify nucleic acids, although not with 

that high sensitivity: FT-MIR has been used to study single-stranded, double-stranded and triple-

stranded nucleic acid structures, at higher concentrations in the double-digit milligram scale, or at 

least, using a total amount of nucleic acids of more than 0.2mg per sample (Banyay, Sarkar, and  
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Gräslund, 2003; Lindqvist and Gräslund, 2001; Geinguenaud et al., 2000; Lindqvist et al., 2000; 

Gousset et al., 1998; Mohammadi et al., 1998; Dagneaux, Liquier, and Taillandier, 1995a; Dagneaux, 

Liquier, and Taillandier, 1995b; White and Powell, 1995; Ouali et al., 1993; Akhebat et al., 1992; 

Liquier et al., 1991; Urpi et al., 1989; Miles, 1964). 

Dovbeshko et al. (2000) have shown the ability of FT-MIR to detect changes within the primary, 

secondary and tertiary structure of nucleic acids, linked to base and sugar modifications as well as 

alterations of the hydrogen-bonding pattern. The wavenumber ranges between 1,350-1,000cm-1 were 

used to elucidate phosphate vibrations, 1,800-1,550cm-1 to see changes in the base structure and 

3,800-2,300cm-1 to elucidate OH-NH-CH stretching vibrations. Having assigned specific wavenumber 

ranges to the four different bases, sugar and phosphate backbone, relative concentration differences 

of the four bases between different samples were detected.  

Additionally, nucleic acids can also be quantified via the wavenumber range 1,700-1,400cm-1 and 

1,120-940cm-1 however only at high concentrations of about 1mg ml-1 (Amara et al., 2012). In 

contrast, DNA levels after protein A affinity chromatography vary usually between 0.01- 1ng per mg 

mAb (Eriksson et al., 2009), thus not allowing FT-MIR-based monitoring. While semi-selective 

enrichment of DNA within samples might pave the way for using IR also for nucleic acid impurity 

quantification within process monitoring, the enrichment factor would be very high, also introducing 

errors. Thus, although FT-MIR can be used for nucleic acid quantification and analysis, to date it 

cannot be used successfully within the scope of bioprocess monitoring of residual nucleic acid 

contamination. 

 

Detection of glycosylation patterns by FT-MIR 

At the position of Asn297, a well conserved amino acid in IgG- type mAbs, an oligosaccharide chain is 

usually attached via N-linkage (Janeway et al., 2001). The composition of this oligosaccharide and 

thus glycosylation can vary, depending on the chosen cell line for mAb production, the bioreactor itself 

as well as the chosen downstream purification scheme (Harris, Shire, and Winter, 2004; Roque, 

Lowe, and Taipa, 2004; Wright and Morrison, 1997). 

Correct glycosylation as well as composition of glycosylation is important for mAb efficacy and can 

also influence mAb conformation (Shinkawa et al., 2003; Wright and Morrison, 1997; Tao and 

Morrison, 1989). 

Besides above described applications of using FT-MIR for monitoring of various critical process 

parameters, it can, in principle, also be used to analyze glycosylation, mainly differentiating highly 

glycosylated protein from non-glycosylated protein. This has been shown by Natalello et al. (2005) 

that used the so-called fingerprint region for carbohydrate detection between 1,200-900cm-1. 

The authors employed a normalization step based on the intensities within the Amide I region before 

comparing the carbohydrate-associated spectral range between 1200-900cm-1. Comparing the band 

intensities between glyosylated samples as well as samples being treated by glycosidase PNGase F,  
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the latter samples exhibited a strongly reduced band intensity compared to the glycosylated protein 

(figure 13). 

These results were confirmed by orthogonal techniques such as SDS-PAGE, MALDI-MS and GC-MS 

and the authors also concluded, that differences within the glycosylation pattern might be visible 

within the IR spectrum (Natalello et al., 2005). Although they used a protein concentration of their 

investigated lipase of 10-20 mg ml-1, this can also be performed at lower concentrations. Khajehpour 

et al. (2006) confirmed their results, showing the suitability of FT-MIR to detect protein glycosylation, 

using mucin, soybean peroxidase, collagen IV, cytochrome c and avidin at concentrations of 5mg ml-1 

(figure 14). Additionally they were able to distinguish different sugars if no blends were used and 

identified a band at 1,050cm-1, within the carbohydrate fingerprint region, which allowed comparing 

the relative glycosylation of proteins after normalization to the Amide I region. Thus they were able to 

detect protein glycosylation even lower than 10%.  

Consequently, both groups show the principal suitability of FT-MIR for detecting the presence as well 

as relative concentration of glycosylation among different proteins. While Khajehpour et al. (2006) 

additionally were able to elucidate the approximate composition of glycosylation in their investigated 

proteins, this can only be regarded as a helpful indication for further analysis, however is difficult to 

perform for complex glycosylation patterns. Yet, general monitoring of protein glycosylation using FT-

MIR is a useful application, allowing differentiation between glycosylated and non-glycosylated 

protein. Thus, it can also be used within process monitoring, e.g. for verification of successful 

treatment after incubation with a glycosidase.  
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Figure 13: Carbohydrate region (1,200-900cm-1) shows differences in band intensity after treatment of 

samples with glycosidase. Reproduced and adapted with permission, from Natalello A., Ami D., 

Brocca S., Lotti M., Doglia S.M., 2005, Biochemical Society, 385, 511-517. © the Biochemical Society. 
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Figure 14: Comparison of spectra of proteins with different degrees of glycosylation as measured on a 

ZnS plate in dried state. SBP: soybean peroxidase. Reprinted from Analytical Biochemistry, 348, 

Khajehpour, Mazdak, Jennifer L. Dashnau, and Jane M. Vanderkooi, Infrared spectroscopy used to 

evaluate glycosylation of proteins, p.46, © 2006, with permission from Elsevier. 

 

CONCLUSION 

This chapter shows the potential of mid infrared spectroscopy to be used for critical process 

parameter estimation during various phases in downstream processing, allowing the quantification of 

target protein titer, impurity protein levels, aggregation amount. While these parameters are directly 

applicable and were shown in case studies, additional parameters might be measured, however 

requiring further development and sample preparation. 

The principal suitability of FT-MIR to differentiate protein A from mAb,  and thus allowing potential 

leaching protein A quantification, was shown as well as examples of how to analyze effects of process 

steps on e.g. mAb secondary structure. 
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Other parameters which can, in principle, be monitored by FT-MIR include the presence of 

glycosylation and differentiation of glycosylated as well as non-glycosylated protein; detection of 

endotoxin and nucleic acid, both however at high concentrations only. 

Although FT-MIR exhibits a lower sensitivity, when compared to conventional tools such as ELISA 

and western blotting, the use of infrared spectroscopy within process development, especially within 

the early downstream processing phases, serves as a fast and cost-effective monitoring technique 

without extensive sample preparation. FT-MIR can simplify screening in the initial and intermediate 

steps of downstream processing, involving capture, recovery, product isolation and partly, purification. 

So far, FT-MIR is not fully suitable for HCP quantification of samples after using affinity 

chromatography in the late purification phase and the polishing phase of downstream processing due 

to higher LOD and LOQ, compared to other techniques. However, the use of selective sample 

enrichment techniques, e.g. centrifugal filters, can help to further extend its applicability, even for 

monitoring leaching protein A levels. 

Compared to HPLC for target protein titer monitoring, it is faster, does not require costly equipment 

and no solvent consumption, otherwise leading to higher waste load. Although SEC and DLS are well-

accepted techniques for aggregate quantification, the use of FT-MIR can hereby replace these 

techniques, allowing aggregate quantification below the FDA's limit of 5% with the ability to quantify 

less than 1%.  

The unique advantage of FT-MIR is its ability to determine multiple critical process parameters within 

a single simple measurement. Thereby, instead of using several instruments, these critical process 

parameters can be determined by just one FT-MIR instrument, reducing maintenance and investment 

costs. Although higher LOD and LOQ are the drawbacks of current IR instruments, their applicability 

might be increased by concentrating samples before measurement. Development of disposable 

equipment with connecting devices to allow for simple IR analysis as well as quality by design 

developments, can help to enhance the usage of FT-MIR within process development and process 

monitoring. Additionally, development of new IR instrumentation with higher sensitivity can help to 

obtain even lower quantification limits in the future, enabling the wide-spread acceptance of FT-MIR 

within these disciplines.  
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3. Experimental part 

 

3.1. Synthesis and characterization of copolymers 

 

Paper: Synthesis and characterization of 2-acrylamido-2-methylpropane sulfonic acid - 
benzylacrylamide /acrylamidobenzoic-acid copolymers for semi-selective protein purification 
 
Florian Capito, Johann Bauer, Almut Rapp, Harald Kolmar and Bernd Stanislawski 
 
Short summary:  
 
This part describes synthesis and composition analysis of copolymers to be used for selective protein 
precipitation. 
These copolymers are composed of 2-acrylamido-2-methylpropane sulfonic acid and either 
acrylamidobenzoic-acid or benzylacrylamide. Use of chain transfer agent allowed control of 
copolymer chain length while different ratios of monomers were employed to obtain copolymers with 
different composition. Additionally, an ATR-based method is described which allowed fast and 
relatively accurate copolymer composition analysis, similar to 1H-NMR-based analysis but with the 
potential of being more cost- and work-effective. Obtained copolymers were used for trial experiments 
within protein precipitation to confirm their suitability for the later intended use as precipitants. 
Compared to homopolymers, these copolymers showed increased precipitation yields and higher salt 
tolerance, thus being likewise superior to homopolymer-driven protein purification.  
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Synthesis and characterization of 2-acrylamido-2-methylpropane sulfonic acid - 
benzylacrylamide /acrylamidobenzoic-acid copolymers for semi-selective protein purification 
 

Florian Capito*1 2, Johann Bauer*2, Almut Rapp*2, Harald Kolmar1 and Bernd Stanislawski2 
*These authors contributed equally to this project and should be considered co-first authors 
 

1 Clemens-Schöpf Institute, Technische Universität Darmstadt, Germany 

2 Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany 
 

Abstract 

2-acrylamido-2-methylpropane sulfonic acid (AMPS) as strongly charged polyelectrolyte has recently 

gained interest in protein precipitation, due to its permanently dissociated sulfonic acid group. 

However, polymers with conjoint hydrophobic and electrostatic properties showed increased 

precipitation yield and higher salt tolerance, being likewise superior in protein precipitation. This 

contribution describes characterization of copolymers, consisting of either acrylamidobenzoic-acid 

(ABZ) and AMPS or benzylacrylamide (BzAAm) and AMPS, synthesized by radical polymerization. 

These copolymers may be used for protein purification, modulating their selectivity towards different 

target proteins by changing weight average molecular weight (Mw) or composition of the copolymer, 

thereby obtaining copolymers with difference in hydrophobicity, chain length and charge density. 

Synthesized copolymers were analyzed using attenuated total reflection infrared spectroscopy (ATR-

IR) and 1H-NMR regarding their composition as well as gel permeation chromatography to elucidate 

Mw distribution. Subsequent results show comparable applicability of 1H-NMR and ATR-IR for 

analyzing these copolymers. A wide variety of customized copolymers for different target proteins in 

precipitation was obtained; AMPS composition (w/w) in both copolymer types varied between 20- 95 

%, with Mw ranging from 9,000- 140,000 g mol-1. These copolymers showed increased precipitation 

yields and higher salt tolerance, thus being likewise superior to homopolymer-driven protein 

purification. 
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Introduction 

Nowadays, polymers find widespread use in biotechnological and biomedical applications. Examples 

are biodegradable polymers [1], polymers for water treatment purposes [2] and for pharmaceutical 

applications as drug delivery [3-7]. In recent years, in addition to long known usage of e.g. poly-

(ethylene glycol) as precipitant [8], electrically conductive homopolymers, so-called polyelectrolytes 

have gained increasing interest to be used for protein purification purposes [9-10]. Copolymers, 

consisting of more than one type of monomer subunit are expected to have the intrinsic benefit of 

modulating defined copolymer properties, e.g. hydrophobicity, charge density and flexibility [11-13]. 

This is particularly important since a conjoint effect of hydrophobic interactions together with 

electrostatic attraction has been shown to be beneficial for protein precipitation [12-13]. 2-acrylamido-

2-methylpropane sulfonic acid (AMPS) as polymer has recently gained interest because of its fully 

deprotonated sulphonate group, which is dissociated over nearly the entire pH- range [14]. Thus 

AMPS serves as a polyelectrolyte with strong charge densities similar to poly- (styrene sulfonic acids). 

This allows for strong electrostatic interactions to occur between polyelectrolyte and target protein, 

resulting in good precipitation behavior [15-17]. AMPS being a strong polyelectrolyte, does however 

not exhibit dedicated hydrophobic properties. In this paper we describe the synthesis of copolymers 

with electrostatic and hydrophobic properties. The copolymers consist of AMPS and either 

acrylamidobenzoic acid (ABZ) or benzylacrylamide (BzAAm). In this way, hydrophobic properties are 

introduced into the copolymer. BzAAm is easily available and synthesis can be scaled- up with 

relatively little effort [18]. Recently, copolymers comprising AMPS and BzAAm have been employed in 

cation exchange chromatography due to their increased binding capacity compared to homopolymeric 

stationary phases [19]. ABZ was chosen for copolymer synthesis because of its exceptionally good 

precipitation performance in protein purification screening experiments, previously conducted by our 

group.
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NMR as non-invasive technique has the advantage of giving qualitative and quantitative results on 

polymer analysis. It requires however a certain infrastructure and purchase of the rather expensive 

spectrometers with costs > 600,000 €. Additionally, high operation costs due to liquid helium and 

liquid nitrogen consumption prevent the wide applicability of NMR for small start-up companies with 

restricted budget. Low concentration impurity quantification is difficult due to its limited sensitivity and 

operation expenses [20-21]. 

Deuteron NMR spectroscopy is widely used, especially for polymer analysis, however, requires 

additional sample preparation in D2O or other deuterated samples [22]. 

Polymer composition can be studied in aqueous solution without extensive preparation steps, e.g. by 

vibrational spectroscopy such as Fourier transform infrared spectroscopy (FTIR), which simplifies 

analysis costs and time [23-28]. FTIR spectrometers can be purchased for reasonably lower costs, 

and are widely used even in smaller companies and laboratories. This means that samples do not 

have to be shipped to service analytics laboratories and analysis time is shortened. Similar to NMR, 

FTIR allows multi-component analysis with a single measurement, enabling on-line monitoring [20]. 

Thus it has been used for process control during polymerization, analyzing physical properties of 

polymers or copolymer composition [29-33]. Once a calibration is established, FTIR has the 

advantage of simple and fast composition analysis, similar to NMR but with considerably lower 

operation costs. 

Attenuated total reflection infrared spectroscopy (ATR-IR) as one FTIR technique has been widely 

used to elucidate bioadhesion at polymer films [34], analyze polyelectrolyte multilayers [35], or to 

characterize carboxylate terminations as well as poly- (4-vinylpyridine) polymer [36-38]. 

Comparing composition analysis of poly[3-[2-(methacryloylethyl)dimethylammonium] propane 

sulfonate], using ATR-IR and 1H-NMR, ATR-IR estimation errors were < 1.5 % with absolute errors < 

10 %, showing the applicability of ATR-IR for composition analysis similar to NMR [39].  

The goal of this work is to design customized copolymers with defined hydrophobicity and charge 

density to be used for semi-selective protein precipitation within purification processes. Additionally, 

NMR and ATR-IR, both being suitable tools for copolymer composition analysis, are compared to 

obtain detailed information on copolymer composition. 

 

Materials and methods 

Chemicals 

All chemicals including the monomers 4-aminobenzoic acid, acrylic acid chloride, 2-acrylamido-2-

methylpropane sulfonic acid, the solvent dimethylformamide, acid neutralizer triethylamine, initiator 

disodium sulfonatooxy sulfate and chain transfer agent 1-butanthiol were used as obtained from 

Merck KGaA, Darmstadt, Germany. 
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Synthesis 

ABZ-AMPS 

In a first step 4-aminobenzoic acid and acrylic acid chloride were used to synthesize ABZ at 3°C 

during three hours reaction time, using triethylamine (TEA) as acid neutralizing agent during the 

reaction (figure 1 A step 1). 

82.29 g (0.6 mol) 4-aminobenzoic acid were dissolved in 600 mL dimethylformamide (DMF) while 

cooling to below 5 °C. Maintaining that temperature, 59.49 g (0.588 mol) TEA and 52.68 g (0.582 mol) 

acrylic acid chloride were slowly added over a period of 80 minutes. 

Temperature was kept below 5 °C for an additional 3 hours and the precipitate was removed by 

vacuum filtration. The reaction solution was added to 10 °C cold water, and cooled to 8 °C for 14 

hours for the product to precipitate. Solvent was evaporated using a vacuum drying oven at 30 °C and 

40 mbar for 48 hours.  

In a second step, AMPS, used as obtained, was copolymerized with ABZ (see above) (figure 1 A step 

2). The ratio of the monomers was varied to synthesize copolymers consisting of varying amounts 

ABZ and AMPS. 50 % (v/v) dimethylformamide- water (DMF/H2O) was used as solvent and Na2O8S2 

as initiator (table I).  

Copolymer chain length was controlled by using initiator at different amounts of either 0.035 mmol or 

0.915 mmol, respectively. 

Additionally, 1-butanthiol as chain transfer agent (CTA) was added during some reactions to elucidate 

whether this would enable control of chain length distribution and polydispersity. Molar ratio of overall 

monomer concentration vs. CTA within these samples was varied between 1: 0.0075- 1: 0.06. The 

reaction was performed using inert conditions at pH 9.0 and 50 °C for 5 h before cooling to room 

temperature. Additionally, AMPS homopolymer was synthesized using the above described process 

without using a second type of monomer, also not using CTA. Residual solvent DMF was removed 

using gel filtration (PD-10 column; Sephadex G25 column material; Amersham Biosciences AB, 

Uppsala) and polymers adjusted to pH 5.0 before further analysis. 

Exemplary, the synthesis of pol15 is described: 10.89 g (52.55 mmol) AMPS were dissolved in 215 

mL H2O, after degassing with N2, maintaining a temperature < 10 °C. 6.72 g (35.15 mmol) ABZ were 

dissolved in 225 mL DMF and added to the AMPS solution, after degassing with N2. The pH was 

adjusted to pH 9.0, using NaOH. CTA was added at a molar ratio of 1: 0.03 compared to overall 

monomer concentration. 0.22 g (0.915 mmol) Na2S2O8, dissolved in 10 mL H2O was added. The 

reaction system was under N2 atmosphere and heated to 50 °C. After 5 hours, the reaction solution 

was cooled to room temperature and purified using gel filtration (PD-10 column; Sephadex G25 

column material; Amersham Biosciences AB, Uppsala), according to the manufacturers instructions. 

AMPS- BzAAm 

Copolymers consisting of varying amounts of BzAAm and AMPS (figure 1 B), were synthesized, using 

DMF/H2O as solvent and Na2S2O8 as initiator (table I). Reaction was performed using inert conditions 

at pH 9.0 and 50 °C for 5 h before cooling to room temperature. By varying the ratio of the two 



tttt 
 

Cumulative part- Experimental   68  

monomers, copolymers with different composition were obtained. Copolymer chain length was 

controlled by using different amounts of initiator of either 0.16 mmol or 0.915 mmol, respectively. 

Residual solvent DMF was removed using gel filtration (PD-10 column; Sephadex G25 column 

material; Amersham Biosciences AB, Uppsala) and copolymers adjusted to pH 5.0 before further 

analysis. 

Exemplary, synthesis of pol21 is described: 5.79 g (27.94 mmol) AMPS were dissolved in 105 mL 

H2O, after degassing with N2, maintaining a temperature < 10 °C. 3.00 g (18.61 mmol) BzAAm were 

dissolved in 115 mL DMF and added to the AMPS solution, after degassing with N2. pH was adjusted 

to pH 9.0, using NaOH. 0.218 g (0.915 mmol) Na2S2O8, dissolved in 10 mL H2O was added. The 

reaction system was under N2 atmosphere heated to 50 °C. After 5 hours, the reaction solution was 

cooled to room temperature and purified using gel filtration (PD-10 column; Sephadex G25 column 

material; Amersham Biosciences AB, Uppsala), according to the manufacturers instructions. 

Table 1: Synthesis overview of AMPS- ABZ and AMPS- BzAAm copolymers. parameters 

kept constant for all reactions: reaction duration 5 h; reaction pH 9.0; solvent: 50 % (v/v) 

DMF- H2O; intiatior Na2S2O8. 

(co-) polymer 

polymer 

designation 

AMPS 

(w/w %) 

ABZ/ 

BzAAm 

(w/w 

%) 

chain 

transfer 

agent 

used 

ratio overall 

monomer vs 

CTA mM 

Na2S2O8 initiator 

(mmol) 

AMPS 

homopolymer 

AMPS 

homopolymer 100 0 no  - 0.915 

AMPS- ABZ pol1 44 56 no  - 0.035 

AMPS- ABZ pol2 44 56 no  - 0.915 

AMPS- ABZ pol3 29 71 no  - 0.915 

AMPS- ABZ pol4 76 24 no  - 0.915 

AMPS- ABZ pol5 62 38 no  - 0.915 

AMPS- ABZ pol6 45 55 no  - 0.915 

AMPS- ABZ pol7 44 56 no  - 0.915 

AMPS- ABZ pol8 44 56 yes 1:0.0075 0.915 

AMPS- ABZ pol9 44 56 yes 1:0.015 0.915 

AMPS- ABZ pol10 44 56 yes 1:0.03 0.915 

AMPS- ABZ pol11 44 56 yes 1:0.06 0.915 

AMPS- ABZ pol12 62 38 no - 0.915 

AMPS- ABZ pol13 62 38 yes 1:0.0075 0.915 

AMPS- ABZ pol14 62 38 yes 1:0.015 0.915 

AMPS- ABZ pol15 62 38 yes 1:0.03 0.915 
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AMPS- 

BzAAm 

pol16 

95 5 no - 0.160 

AMPS- 

BzAAm 

pol17 

93 7 no - 0.160 

AMPS- 

BzAAm 

pol18 

82 18 no - 0.160 

AMPS- 

BzAAm 

pol19 

49 51 no - 0.160 

AMPS- 

BzAAm 

pol20 

46 54 no - 0.915 

AMPS- 

BzAAm 

pol21 

66 34 no - 0.915 

 

 

Figure 1: Synthesis steps of A: AMPS- ABZ copolymer in a two-step reaction, using TEA as 

acid neutralizing agent; B: AMPS- BzAAm copolymer in a single-step reaction.  



tttt 
 

Cumulative part- Experimental   70  

Copolymer characterization 

Gel permeation chromatography 

Weight average molecular weight (Mw) and number average molecular weight (Mn) of copolymers 

and AMPS homopolymer were determined using gel permeation chromatography on a LaChrom Elite 

system (VWR-Hitachi, Darmstadt, Germany) employing LaChrom refractive index detector L-2490, 

Licrograph L-2400 UV detector, isocratic pump L-2130 and autosampler L-2200, using a set of 10 μm 

MCX columns (pre-column, 103 Å, 106 Å). The system was run at a flow rate of 1 mL min-1 at 40 °C 

with an injection volume of 200 μL, using an elution buffer prepared of 20 % acetonitrile (AcCN), 50 

mM NaNO3 and 10 mM Na2HPO4 after calibration with Polystyrenesulfonate (Polymer Standard 

Service, Mainz, Germany) in 20 % AcCN. Molecular weight determination was performed with 

WinGPC software package (Polymer Standard Service, Mainz, Germany). 

 

1H- NMR spectroscopy 

1H-NMR analysis of copolymers was performed using a Bruker DRX 400 MHz NMR spectrometer with 

Bruker NMR JCAMP-DX v2.0 software (Bruker Biospin GmbH, Ettlingen, Germany).  Dried copolymer 

samples were dissolved in D2O and tetramethylsilane- salt was used as standard. 

 

Attenuated total reflection infrared spectroscopy 

Copolymer composition was determined using attenuated total reflection infrared spectroscopy (ATR-

IR) and compared to defined monomer blends of BzAAm and AMPS or ABZ and AMPS. 20 μL of 

each polymer sample as well as monomer blends (all C = 5 mg ml-1) were analyzed with 

GoldenGate™ MkII series ATR (Specac Inc, Cranston, RI, USA), using a diamond (type IIa, 45°C, 

refractive index at 1000 cm-1: 2.4; 0.8 mm diameter of active sampling area; 2 μm penetration depth 

for a sample of refractive index 1.5 at 1,000 cm-1; diameter 2 mm x 2 mm) at 20 °C. For ABZ-AMPS 

copolymers and monomer blends, H2O was used as background.  

Since BzAAm monomer is insoluble in water, corresponding AMPS- BzAAm monomer blends as well 

as AMPS- BzAAm copolymers were dissolved in dimethyl sulfoxide (DMSO) before ATR-IR 

measurements, also using DMSO as background.  

All spectra were recorded with a Bruker Tensor 27 (Bruker Optik GmbH, Ettlingen, Germany); 

samples were scanned in absorbance mode with 120 scans at a spectral resolution of 4.0. Detector 

was a Bruker LN-MCT photovoltaic internal detector (Bruker Optik GmbH, Ettlingen, Germany), 

aperture was set to 6 mm. Atmospheric compensation was performed and samples smoothed using 

17 smoothing points.  

Copolymer solutions were adjusted to pH 11-12, using defined molarity of NaOH solution and different 

composition analysis methods for AMPS- ABZ and AMPS- BzAAm copolymers were evaluated using 

OPUS software v. 6.5 (Bruker Optik GmbH, Ettlingen, Germany). 

Quant 2 software package within OPUS software was used for multivariate calibration to allow for 

copolymer composition analysis. This was achieved using  multivariate data analysis and partial least 
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squares regression (PLS) to compress the information from factors (in this case spectral intensities of 

several peaks within spectra) and the reference values (AMPS, ABZ or BzAAm amount in 

copolymers), respectively, while removing irrelevant information [40]. The PLS algorithm thereby 

makes use of ranks to explain the covariance between the factors and the reference values, with first 

ranks explaining lots of covariance and latter ranks explaining less covariance [41]. Therefore, the risk 

of overfitting is reduced, using PLS models with lower ranks. Errors due to wrong determination of 

monomer amount within a copolymer or interference of other substances, having a potential impact 

on the predictability of e.g. univariate calibration, are significantly reduced in Quant 2 as several 

factors are correlated with several reference values, thereby leading to robust models.   

 

Copolymer composition analysis by ATR-IR 

AMPS-ABZ copolymers 

Copolymer composition analysis was done using Quant 2 multivariate analysis software package 

simultaneously for peaks associated to AMPS as well as to ABZ. To simplify spectral peak 

identification, first derivative with 17 smoothing points was applied. For AMPS quantification, the 

sulfonic acid associated peak between 1,045- 1,040 cm-1 was used. As Poly-AMPS did not exhibit any 

peak at 1,389 cm-1, in contrast to a distinct peak with poly-ABZ, this peak at 1,389 cm-1, likely 

originating from C-O stretching vibration of carboxylic acid functionalities, was used for ABZ 

quantification. 

 

BzAAm-AMPS copolymers 

Monomer blends showed an increase in peak height of 1,690- 1,650 cm-1 peak, if relative AMPS 

concentration was decreased and amount of BzAAm within monomer blend was increased. This likely 

originated from overtone and combinatorial vibrations of the benzyl ring within BzAAm. The distinct 

sulfonic acid associated peak at 1,045- 1,040 cm-1, which we chose for AMPS quantification in AMPS-

ABZ copolymers, was very close to a peak also visible in BzAAm spectra (figure 2). Thus, for AMPS 

quantification, another peak around 1,244- 1,217 cm-1 was chosen [42], also including the 

wavenumber range 1,230 cm-1, previously used by Durmaz et al.  [14] for AMPS quantification. 

Copolymer solutions were analyzed using these peaks for Quant 2 multivariate data analysis, after 

first derivative with 17 smoothing points, to simplify spectral peak identification. 

 

Pilot experiments elucidating suitability of copolymers for polymer- based protein purification 

strategies 

In pilot experiments, the above copolymers (table I) were used for polymer- based protein 

precipitation, elucidating precipitation efficiency, yield and selectivity for later intended use in protein 

purification processes. As protein purification processes are also performed at high salt 

concentrations, including physiological ionic strength, the precipitation efficiency of the above 

copolymers was analyzed at various ionic strengths, elucidating copolymer salt tolerance. This salt 
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tolerance or ionic strength tolerance was then compared to AMPS homopolymer. Experiments were 

carried out using a monoclonal antibody (mAb), obtained from Merck Millipore, Bedford, USA as well 

as BSA (Merck KGaA, Darmstadt, Germany), labelled with the fluorescent dyes Alexa 546 and 488 

(Molecular Probes, Carlsbad, USA), respectively, according to the manufacturers protocol. Unbound 

fluorophore was removed using gel filtration (PD-10 column; Sephadex G25 column material; 

Amersham Biosciences AB, Uppsala), according to the manufacturers instructions. mAb and BSA 

solutions were then adjusted to pH 5.0. For salt tolerance experiments, mAb solution was used 

without added BSA solution. Salt concentration within mAb solution was adjusted, using different 

amounts of NaCl in 20 mM sodium-acetate buffer at pH 5.0. Gel filtered and pH- adjusted copolymer 

stock solutions as well as AMPS homopolymer stock solution were then added to mAb samples, 

leading to a final salt concentration between 125- 225 mM NaCl, final mAb concentration of 1 mg ml-1 

and (co-) polymer concentration of 0.1- 1.5 mg ml-1. Samples were incubated on a lab shaker for 1 

hour at 300 rpm to allow for precipitation and then centrifuged for 15 minutes at 2500 rcf. Relative 

fluorescence in supernatant was then compared to mAb standards, using a Tecan reader M200 

(Tecan Instruments, Männedorf, Switzerland). Thus, the relative amount of mAb, present in the 

supernatant was determined and the percentage of precipitated mAb could be calculated.  

For precipitation selectivity experiments, the procedure was similar to the above described procedure. 

However, mAb and BSA were mixed before the experiments, yielding final mAb concentration of 1 mg 

ml-1 and BSA concentration of 1 mg ml-1. After the precipitation steps, the relative amounts of mAb 

and BSA in supernatant were determined, using the corresponding excitation and emission maxima of 

Alexa 546 and 488, respectively, in comparison to mAb and BSA protein standards. 

 

Results and Discussion 

Gel permeation chromatography 

Molecular weight analysis of copolymers and homopolymer was carried out by GPC. Copolymers with 

polydispersity between 1.06 and 3.86 were obtained (table II), with Mw ranging from 9,200 to 141,000 

g mol-1 and polydispersity < 2.00 for > 90 % of all obtained copolymers. Using copolymers with 

specific chain length and low polydispersity for polymer-based protein precipitation experiments 

facilitates the modulation of selectivity as well as ionic strength tolerance [10, 12, 43-49]. However, 

variation of copolymer chain length by using different initiator concentrations did not result in expected 

chain length distributions. For pol1 and pol2, a higher amount of initiator resulted in shorter chain 

lengths, as expected. Yet, comparing pol2- pol7, all with same amount of initiator, Mw varied between 

75,000 and 114,000 g mol-1; thus control of chain length distribution by using different amounts of 

initiator did not lead to satisfactory results. In contrast, use of chain transfer agent reduced polymer 

chain length; a higher concentration of CTA during the reaction resulted, for most of the copolymers, 

in lower Mw and Mn, as expected and also enabled a control of polymerization products. Increasing 

amount of CTA resulted in polydispersity index reduction from 1.29- 1.42 down to 1.06- 1.08 

(compare pol7- pol11 and pol12- pol15), analyzing AMPS- ABZ and BzAAm- AMPS copolymers 
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(table II). Observed discrepancies with pol7 and pol8 are due to Mw determination errors of SEC. 

Therefore, to obtain copolymers with narrow polydispersity, the use of CTA was clearly beneficial, 

with smallest polydispersities obtained for those copolymers, synthesized using CTA. For BzAAm- 

AMPS copolymers, CTA was not used during synthesis; instead it was attempted to control chain 

length distribution by adding different amount of initiator only. While pol16- pol19, exhibited Mw 

between 56,000- 99,000 g mol-1, despite using same amount of initiator, the use of higher amount of 

initiator during synthesis of pol20 and pol21 resulted in significantly reduced Mw and Mn of those 

copolymers. Therefore, adding different amounts of initiator during synthesis still leads to some 

control of polymer chain length distribution, however, not at acceptable levels. 

Table II: Comparison Mw and Mn of different copolymers as determined by GPC. Ratio 

overall monomer vs. chain transfer agent only given, if chain transfer agent used. 

type of (co-) 

polymer 

polymer 

designation 

Mw (g mol-

1) 

Mn (g mol-

1) polydispersity 

ratio overall monomer vs 

chain transfer agent( mM) 

AMPS 

homopolymer 

AMPS 

homopolymer   50,000 25,000 2.00 - 

AMPS- ABZ pol1 141,000 76,000 1.86 - 

AMPS- ABZ pol2   75,000 56,000 1.34 - 

AMPS- ABZ pol3 108,000 74,000 1.46 - 

AMPS- ABZ pol4 111,000 68,000 1.63 - 

AMPS- ABZ pol5 114,000 79,000 1.44 - 

AMPS- ABZ pol6   95,000 62,000 1.53 - 

AMPS- ABZ pol7   81,000 57,000 1.42 - 

AMPS- ABZ pol8   84,000 61,000 1.38 1:0.0075 

AMPS- ABZ pol9   59,000 47,000 1.26 1:0.015 

AMPS- ABZ pol10   54,000 44,000 1.23 1:0.03 

AMPS- ABZ pol11   35,000 33,000 1.06 1:0.06 

AMPS- ABZ pol12   67,000 52,000 1.29 - 

AMPS- ABZ pol13   64,000 50,000 1.28 1:0.0075 

AMPS- ABZ pol14   49,000 42,000 1.17 1:0.015 

AMPS- ABZ pol15   39,000 36,000 1.08 1:0.03 

AMPS- BzAAm pol16   56,000 17,000 3.24 - 

AMPS- BzAAm pol17   99,000 50,000 1.98 - 

AMPS- BzAAm pol18   78,000 63,000 1.25 - 

AMPS- BzAAm pol19   63,000 43,000 1.47 - 

AMPS- BzAAm pol20     9,200   2,500 3.68 - 

AMPS- BzAAm pol21                      9,800   5,500 1.78 - 
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1H- NMR spectroscopy 

1H-NMR spectra of 15 AMPS- ABZ and six AMPS- BzAAm polymers were analyzed. Exemplary 

spectra of pol7 and pol20 can be seen in figure 2. 

 

 

Figure 2: NMR spectra of pol7 (above) and pol20 (below). 

 

 

Attenuated total reflection infrared spectroscopy 

ATR-IR was used for copolymer composition analysis, comparing different composition analysis 

models. Defined monomer blends were used to identify characteristic peaks (figures 3 and 4). These 

peaks were then used for quantification of relative monomer amounts using multivariate calibration 
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and quantification based on corresponding PLS models for simultaneous quantification of AMPS and 

either BzAAm or ABZ, thus allowing copolymer composition analysis (figure 5 A and B) as described 

above. 

 

Figure 3: Comparison unmodified IR spectra of BzAAm, ABZ and AMPS. 
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Figure 4: First derivative IR- spectra of defined monomer blends as calibration standards. 

Highest relative AMPS amount labelled in red, followed by intermediate AMPS 

concentrations in orange and yellow. Lowest AMPS amounts labelled in light green and dark 

green if 0- 10 % AMPS. A: spectral overview and focus on relevant wavenumber range for 

AMPS- ABZ composition analysis using Quant 2 method; B: spectral overview and focus on 

relevant wavenumber range for AMPS- BzAAm composition analysis. 
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Figure 5: Determination of relative AMPS content using defined monomer blends. A: 

multivariate PLS model (Quant 2) for copolymer composition analysis in AMPS- BzAAm 

copolymers; B: multivariate PLS model (Quant 2) for copolymer composition analysis in 

AMPS- ABZ copolymers. 

  

Composition analysis by ATR-IR revealed relative AMPS amounts between 20- 83 % within AMPS- 

ABZ copolymers as well as 36- 95 % within AMPS- BzAAm copolymers (tables III- IV). These results 

show that copolymers with different charge density as well as various hydrophobicity, both important 

in modulating and optimizing target protein precipitation conditions, were obtained [12-13, 43]. 

To simplify comparison with ATR-IR results, molar ratios obtained by 1H-NMR analysis were 

transferred to weight ratios, using the corresponding molar masses of AMPS and ABZ. Comparing 

relative AMPS amounts determined by ATR-IR and by 1H-NMR shows similar results (table III).  

Taking copolymer “pol6” as an example, ATR-IR composition analysis revealed 43 % AMPS 

compared to 46 % AMPS as determined by NMR. Generally, for AMPS- ABZ copolymer analysis, 

ATR-IR measurements resulted in 90-126 % of AMPS determination compared to reference values 

determined by NMR.  

Although these deviations are slightly higher than those obtained by Bomfim et al. [39], two-thirds of 

tested samples showed ATR-IR results being between 90- 110 % of NMR results, thus showing that 

both techniques are comparable (table III). Comparison of monomer ratios used during synthesis and 

final composition showed similar ratios for most of obtained samples. 

Copolymer composition analysis of AMPS- BzAAm copolymers using ATR-IR was also compared to 

NMR. Taking copolymer “pol20” as an example, ATR-IR analysis resulted in 36 % AMPS content 

compared to 39 % as determined by NMR. Except for one sample, ATR-IR results were between 90- 

110 % of those composition results obtained by NMR, showing that both techniques are comparable 

regarding composition determination. Monomer ratios employed during synthesis and final 

composition were similar for most of obtained samples. 
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Table III: comparison of initial AMPS monomer amount in reaction solution and relative (w/w) 

AMPS amounts in AMPS- ABZ copolymers determined by ATR-IR. 

 polymer 

designation 

initial AMPS monomer 

ratio (w/w %) in reaction 

solution 

experimental  AMPS 

ratio (w/w %)       

multivariate model 

NMR AMPS ratio (w/w %) 

pol1 44 39 41 

pol2 44 40 37 

pol3 29 20 19 

pol4 76 83 86 

pol5 62 65 61 

pol6 45 43 46 

pol7 44 44 35 

pol8 44 46 41 

pol9 44 49 42 

pol10 44 53 42 

pol11 44 59 50 

pol12 62 59 59 

pol13 62 59 58 

pol14 62 63 58 

pol15 62 63 70 

 

Table IV: comparison of initial AMPS monomer amount in reaction solution and relative (w/w) 

AMPS amounts in AMPS- BzAAm copolymers determined by ATR-IR. 

polymer 

designation 

initial AMPS 

monomer ratio (w/w 

%) in reaction 

solution 

experimental  AMPS ratio (w/w 

%) multivariate model 

NMR AMPS ratio (w/w 

%) 

pol16 95 85 94 

pol17 93 92 88 

pol18 82 82 74 

pol19 49 49 35 

pol20 46 36 39 

pol21 66 54 54 

 

 



tttt 
 

Cumulative part- Experimental   79  

 

Precipitation efficiency of obtained copolymers 

Salt tolerance of tested copolymers and AMPS homopolymer 

Pilot experiments, analyzing mAb precipitation yield, using different copolymers as well as AMPS 

homopolymer, were carried out. As precipitation behavior of different polymers within one type (e.g. 

within AMPS- BzAAm or AMPS- ABZ copolymer type) was similar, a summary of precipitation results, 

showing selected polymers of these different types is shown in figure 6 A. Generally, precipitation 

yields of AMPS- BzAAm and AMPS- ABZ copolymers were in a comparable range and were found to 

depend on the composition and length of the respective copolymer as well as the polymer 

concentration. 

Both the AMPS- BzAAm and the AMPS- ABZ copolymers gave precipitation yields > 70 % at salt 

concentrations of 225 mM which corresponds to an ionic strength of 22.5 mS cm-1. Precipitation yield 

increased further to > 80 %, if salt concentration was reduced to 175 mM NaCl and  yields of 85- 90 

% and higher were obtained at salt concentrations of 150 mM NaCl, similar to physiological ionic 

strength. In contrast to these results, AMPS homopolymer clearly showed low precipitation yields at 

salt concentrations of 150 mM NaCl, which decreased to almost no precipitation at all, using higher 

salt concentrations than 150 mM NaCl. Thus AMPS homopolymer does not exhibit an adequate 

physiological ionic strength tolerance, in contrast to the higher salt tolerance of the here synthesized 

copolymers. 

 

Precipitation selectivity of tested copolymers and AMPS homopolymer 

Copolymers as well as AMPS homopolymer were used for precipitation selectivity studies using an 

monoclonal antibody as target protein and BSA as model impurity protein. For later anticipated 

precipitation in cell culture fluid samples, a high precipitation yield for mAb and low precipitation yield 

for impurity proteins would be desirable. 

Clear differences in the protein precipitation capablility of AMPS homopolymer and synthesized 

copolymers were seen. At 125 mM NaCl the AMPS homopolymer precipitated almost no BSA and 

mAb precipitation yields were only around 30 %. In contrast, AMPS- ABZ as well as AMPS- BzAAm 

copolymers displayed high precipiation yields, likely due to conjoint electrostatic and hydrophobic 

interactions. However, while BSA impurity protein co-precipitation for AMPS- ABZ copolymers was 

around 10 %, co-precipitation of BSA increased to up to 45 %, using similar long BzAAm-AMPS 

copolymers (figure 6 B). This is likely due to the more hydrophobic nature of this copolymer compared 

to ABZ which has an additional carboxylic acid group, resulting in enhanced hydrophobic interaction 

with BSA during precipitation.  
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Figure 6: A: precipitation strength of similar long (Mw 59,000- 63,000 g mol-1) AMPS- ABZ 

and AMPS- BzAAm copolymers at at pH 5.0, depending on ionic strength and copolymer 

composition, in comparison to AMPS homopolymer (Mw 50,000 g mol-1). All polymers were 

used at a concentration of 0.6 mg ml-1. B: precipitation selectivity of AMPS- ABZ and AMPS- 

BzAAm copolymers as well as AMPS homopolymer at pH 5.0, using mAb- BSA protein 

mixture at different ionic strength with polymer concentration of 0.6 mg ml-1. 

 

Conclusion 

Obtained set of copolymers was synthesized aimed at customizing semi-selective protein 

precipitation. These copolymers showed higher salt- tolerance compared to AMPS homopolymer and, 

besides lower selectivity, overall higher mAb precipitation yields, performing initial pilot experiments. 

Unlike expected, copolymer chain length could not be largely varied by using different concentrations 
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of initiator. However, the use of different concentrations of chain transfer agent 1-butanthiol clearly 

helped to obtain copolymers with small polydispersity index and control copolymer Mw. Copolymer 

composition as determined by ATR-IR and NMR revealed relative AMPS content between 36- 95 % 

(w/w) for AMPS- BzAAm copolymers as well as 20- 83 % (w/w) AMPS for AMPS- ABZ copolymers. 

Direct comparison of copolymer composition, determined by ATR-IR and NMR, showed good 

agreement for most of obtained results, using a multivariate composition analysis method within 

OPUS software. Although some samples showed larger deviations between both techniques, 

requiring further method refinement, ATR-IR seems promising as a simple, cost-effective and fast 

copolymer analysis technique. 

 

Acknowledgement 

The authors thank Merck KGaA for financial support. We thank central analytics department, Merck 

KGaA for performing NMR analysis of copolymers. Part of this work was performed in the frame of the 

project BIOPUR and IOLIPRO, funded by the German Federal Ministry of Education and Research 

(BMBF). 

 

Conflict of interest 

The authors declare that there is no conflict of interest regarding this work and publication. 

 

References 

[1] Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803-807 

[2] Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301-2324 

[3] Nart Z, Kayaman-Apohan N (2011) Preparation, characterization and drug release behavior of poly 

(acrylic acid–co-2-hydroxyethyl methacrylate-co-2-acrylamido-2-methyl-1-propanesulfonic acid) 

microgels. Journal of Polymer Res 18:869-874 

[4] Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 

58:1655-1670 

[5] Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug discovery 

today 10:35-43 

[6] Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818-

1822 

[7] Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-

delivery systems. Nature 388:860-862 

[8] Hönig W, Kula MR (1976) Selectivity of protein precipitation with polyethylene glycol fractions of 

various molecular weights. Anal Biochem 72:502-512 

[9] Peram T, McDonald P, Carter-Franklin J, Fahrner R (2010) Monoclonal antibody purification using 

cationic polyelectrolytes: an alternative to column chromatography. Biotechnol Prog 26:1322-1331 



tttt 
 

Cumulative part- Experimental   82  

[10] McDonald P, Victa C, Carter‐Franklin JN, Fahrner R (2009) Selective antibody precipitation using 

polyelectrolytes: a novel approach to the purification of monoclonal antibodies. Biotechnol Bioeng 

102:1141-1151 

[11] Capito F, Skudas R, Stanislawski B, Kolmar H (2013) Polyelectrolyte–protein interaction at low 

ionic strength: required chain flexibility depending on protein average charge. Colloid Polym Sci 1-11 

[12] Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Polyelectrolyte–protein complexes. Curr 

Opin Colloid Interface Sci 10:52-78 

[13] Tribet C (2001) In: Radeva T (ed) Physical chemistry of polyelectrolytes, surfactant science 

series, 10th edn. Marcel Dekker Inc., New York 

[14] Durmaz S, Okay O (2000) Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-

based hydrogels: synthesis and characterization. Polymer 41:3693-3704 

[15] Mattison KW, Dubin PL, Brittain IJ (1998) Complex formation between bovine serum albumin and 

strong polyelectrolytes: effect of polymer charge density. J Phys Chem B 102:3830-3836 

[16] Xia J, Dubin PL, Kim Y, Muhoberac BB, Klimkowski VJ (1993) Electrophoretic and quasi-elastic 

light scattering of soluble protein-polyelectrolyte complexes. J Phys Chem 97:4528-4534 

[17] Fisher LW, Sochor AR, Tan JS (1977) Chain Characteristics of Poly (2-acrylamido-2-

methylpropanesulfonate) Polymers. 1. Light-Scattering and Intrinsic-Viscosity Studies. 

Macromolecules 10:949-954 

[18] Yahaya GO, Ahdab AA, Ali SA, Abu-Sharkh BF, Hamad EZ (2001) Solution behavior of 

hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide. 

Polymer 42:3363-3372 

[19] Graalfs H, Patent US2010/0181254A1, Merck KGaA 

[20] Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223-1270 

[21] Hyde TM, Gladden LF, Mackley MR, Gao P (1995) Quantitative nuclear magnetic resonance 

imaging of liquids in swelling polymers. J Polym Sci, Part A: Polym Chem 33:1795-1806 

[22] Spiess HW (1983) Molecular dynamics of solid polymers as revealed by deuteron NMR. Colloid 

Polym Sci 261:193-209 

[23] Su YL, Liu HZ, Wang J, Chen JY (2002) Study of salt effects on the micellization of PEO-PPO-

PEO block copolymer in aqueous solution by FTIR spectroscopy. Langmuir 18:865-871 

[24] Inoue T, Kawamura H, Matsuda M, Misono Y, Suzuki M (2001) FT-IR and ESR Spin-Label 

Studies of Mesomorphic Phases Formed in Aqueous Mixtures of Heptaethylene Glycol Dodecyl 

Ether. Langmuir 17:6915-6922 

[25] Maeda Y, Nakamura T, Ikeda I (2001) Changes in the hydration states of poly (N-

alkylacrylamide) s during their phase transitions in water observed by FTIR spectroscopy. 

Macromolecules 34:1391-1399 

[26] Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of 

aqueous solutions of poly (N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 

16:7503-7509 



tttt 
 

Cumulative part- Experimental   83  

[27] Wong PTT, Mantsch HH (1989) Effects of internal and external pressure on the structure and 

dynamics of micelles: A FTIR study of sodium and potassium decanoates in D2O. J Colloid Interface 

Sci 129:258-269 

[28] Yang PW, Mantsch HH (1986) The critical micellization temperature and its dependence on the 

position and geometry of the double bond in a series of sodium octadecenoates. J Colloid Interface 

Sci 113:218-224 

[29] Ngadaonye JI, Cloonan MO, Geever LM, Higginbotham CL (2011) Synthesis and 

characterisation of thermo-sensitive terpolymer hydrogels for drug delivery applications. Journal of 

Polymer Res 18:2307-2324 

[30] Fei M, Jin B, Wang W, Liu L (2010) Synthesis and characterization of AB block copolymers 

based on polyhedral oligomeric silsesquioxane. Journal of Polymer Res 17:19-23 

[31] Lee RS, Huang YT (2010) Synthesis and characterization of amphiphilic triblock-graft PEG-(b-

PαN3CL-g-Alkyne) 2 degradable copolymers. Journal of Polymer Res 17:697-706 

[32] Bunding Lee KA, Johnson SC (1993) Comparison of mid-ir with nir in polymer analysis. Appl 

Spectrosc Rev 28:231-284 

[33] Toft J, Kvalheim OM, Karstang TV, Christy AA, Kleveland K, Henriksen A (1992) Analysis of 

nontransparent polymers: mixture design, second-derivative attenuated total internal reflectance FT-

IR, and multivariate calibration. Appl Spectrosc 46:1002-1008 

[34] Chittur KK, Fink DJ, Leininger RI, Hutson TB (1986) Fourier transform infrared 

spectroscopy/attenuated total reflection studies of protein adsorption in flowing systems: Approaches 

for bulk correction and compositional analysis of adsorbed and bulk proteins in mixtures. J Colloid 

Interface Sci 111:419-433 

[35] Müller M (2002) In: Tripathy SK, Kumar J, Nalwa HS (eds) Handbook of Polyelectrolytes and 

Their Applications, American Scientific, Stevenson Ranch 

[36] Sukhishvili SA, Dhinojwala A, Granick S (1999) How polyelectrolyte adsorption depends on 

history: a combined Fourier transform infrared spectroscopy in attenuated total reflection and surface 

forces study. Langmuir 15:8474-8482 

[37] Cheng SS, Scherson DA, Sukenik CN (1995) In Situ Attenuated Total Reflectance Fourier 

Transform Infrared Spectroscopy Study of Carboxylate-Bearing, Siloxane-Anchored, Self-Assembled 

Monolayers: A Study of Carboxylate Reactivity and Acid-Base Properties. Langmuir 11:1190-1195 

[38] Frantz P, Granick S (1995) Infrared dichroism, chain flattening, and the bound fraction histogram 

in adsorbed poly (methyl methacrylate) layers. Macromolecules 28:6915-6925 

[39] Bomfim JA, Mincheva R, Beigbeder A, Persenaire O, Dubois P (2009) Quaternized/betainized) 

amino-based amphiphilic block copolymers: quantitative composition characterization via FTIR and 

thermogravimetry. e-Polymers 35. http://www.e-polymers.org/journal/abstract.cfm?abstract_Id=2843. 

Accessed 05 May 2013 

[40] Naes T (2002) Multivariate Calibration and Classification. NIR Publications, Chichester 



tttt 
 

Cumulative part- Experimental   84  

[41] Wold S, Martens H, Wold H (1983) The multivariate calibration problem in chemistry solved by 

the PLS method. Matrix pencils 973:286-293 

[42] Huglin MB, Rego JM (1990) Study of polymer blends based on poly (vinylpyridines) and acidic 

polymers. Polymer 31:1269-1276 

[43] Carlsson F, Malmsten M, Linse P (2003) Protein-polyelectrolyte cluster formation and 

redissolution: A monte carlo study. J Am Chem Soc 125:3140-3149 

[44] Izumrudov VA, Galaev IY, Mattiasson B (1998) Polycomplexes–potential for bioseparation. 

Bioseparation 7:207-220 

[45] Houska M, Brynda E (1997) Interactions of proteins with polyelectrolytes at solid/liquid interfaces: 

sequential adsorption of albumin and heparin. . J Colloid Interface Sci 188:243-250 

[46] Pergushov DV, Izumrudov VA, Zezin AB, Kabanov VA (1995) Stability of interpolyelectrolyte 

complexes in aqueous saline solutions: effect of the degree of polymerization of polyions. J Polym 

Sci, Part A: Polym Chem 37:1081-1087 

[47] Shieh JY, Glatz CE (1994) In: Dubin PL (ed) Macromolecular Complexes in Chemistry and 

Biology. Springer, Berlin 

[48] Papisov IM, Litmanovich AA (1989) Conducting Polymers/Molecular Recognition. Springer, Berlin 

[49] Tsuchida E, Abe K (1986) In: Wilson AD (ed) Developments in Ionic Polymers, 2nd edn. Elsevier, 

New York 

 
  



tttt 
 

Cumulative part- Experimental   85  

Preparative work for development of a precipitation process 

 

3.2. Effects of ionic strength on precipitation 

 

Paper: Polyelectrolyte-protein interaction at low ionic strength: 
Required chain flexibility depending on protein average charge 
 
Florian Capito, Romas Skudas, Bernd Stanislawski and Harald Kolmar  
 
Colloid and Polymer Science, 
Volume 291, Issue 7, Pages 1759-1769 
doi: 10.1007/s00396-013-2911-3 
 
Received: 12.10.2012 
Revised: 14.11.2012 
Accepted: 18.01.2013 
Copyright © Springer-Verlag Berlin Heidelberg, 2013 
 
Short summary:  
 
In order to understand protein-polyelectrolyte interactions and find ways to optimize precipitation 
efficiency, experiments were carried out at very low as well as very high salt concentrations. These 
findings of lower precipitation efficiency at both ionic strength regimes led us analyze precipitation 
depending on polymer chain flexibility at the very low salt concentration range. It is known that 
polymer chains obtain a more rigid-like structure at these conditions, due to the absence of shielding 
charges between polymer units. Using three different antibodies and lysozyme, a qualitative 
correlation between required chain flexibility and protein hydrophobicity as well as protein charge 
density was discovered. Antibodies with lower average charge and less hydrophobicity required more 
flexible polyelectrolytes to have sufficient precipitation compared to more hydrophobic antibodies with 
higher charge density. 
These highlights are useful for the intended development of a polymer-driven protein precipitation 
process, as polymers with specific chain flexibility could help to improve precipitation behavior 
towards specific target proteins. 
 
Reproduced by permission of Springer-Verlag Berlin Heidelberg 2013.kkkkkkkkkkkkkkkkkkkkkkkkkkkk
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3.3. Effects of polymer chain length on precipitation 

 

Paper: Determining the defined length of a polymer chain required per precipitated protein 
molecule: studying interactions between anionic polymers and four physicochemically 
different proteins 
 
Florian Capito, Harald Kolmar, Bernd Stanislawski and Romas Skudas 
 
Submitted to 
Journal of Polymer Research, 
Springer-Verlag Berlin Heidelberg, 2013 
 
Short summary:  
 
In order to understand effects of polymer chain length on precipitation, different polymer standards 
with defined chain lengths were used for precipitation of four different proteins. The polymer chain 
length required per precipitated protein molecule (Ldef) during protein-polymer interaction was found to 
be up to 25-times larger than the diameter of the corresponding protein, depending on the surface 
charge distribution of the protein, its isoelectric point as well as the charge density of the polymer. 
Electrophoretic light scattering showed a qualitative correlation of the zeta potential of analyzed 
polymers with their corresponding Ldef values. If polymer chain length fell below a certain threshold, 
precipitation was sub-optimal and Ldef required for precipitation was larger compared to polymers of 
same type with longer chain lengths. These findings support proposed mechanisms of polymer 
wrapping and loop formation for optimal charge neutralization during precipitation and are helpful for 
developing the later intended protein precipitation process.  
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Determining the defined length of a polymer chain required per precipitated protein 

molecule: studying interactions between anionic polymers and four physicochemically 

different proteins 
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ABSTRACT  

Protein precipitation using non-charged and charged polymers is a common method for protein 

purification, gaining broader interest among manufacturers in downstream processing. While during 

polymer- surface interactions, the formation of loops, tails and trains has been known for quite a long 

time, details of polymer conformation and chain length, interacting with the protein during protein 

precipitation are not fully discovered. Our research presents deeper understanding of polymer-protein 

interaction, combining fluorescence and infrared spectroscopic measurements of proteins and well- 

defined polymer standards with well defined chain length to confirm different models of protein-

polymer interaction. Lysozyme, chymotrypsinogen A, myoglobin and a monoclonal antibody, all of 

different molecular weight, isoelectric point and charge distribution at the protein surface, were used 

for protein-polymer precipitation. The use of polymers of various charge density and chain length 

showed that the polymer chain length required per precipitated protein (Ldef) is up to 25-times larger 

than the diameter of the corresponding protein, depending on the surface charge distribution of the 

protein, its isoelectric point as well as the charge density of the polymer. Our results support proposed 

mechanisms of polymer wrapping and loop formation for optimal charge neutralization during 

complexation and imply the involvement of several polymer chains per precipitated protein molecule. 

Electrophoretic light scattering showed a qualitative correlation of the zeta potential of analyzed 

polymers with their corresponding Ldef values. Comparing protein precipitation behavior of long and 

short polymer chains, the latter exhibited reduced precipitation efficiency, visible as elevated Ldef.  

 

 

 

 

 

 

 

 

 

KEYWORDS protein-polymer interaction, chain length, precipitation conditions, zeta potential 
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INTRODUCTION 

The formation of an initial protein-polymer complex with several proteins bound per polymer chain at 

a specific pH depends on ionic strength, polymer charge density, flexibility as well as polymer chain 

length and charge distribution of the protein [1-7]. The complexity of this interaction is being 

explained by various in silico simulations, indicating a winding of polymers around macroions of 

opposite charge, while other results show a gel-like structure with polymers connecting proteins which 

act as cross-linkers [8-11]. Additional studies showed the formation of trains, loops and tails in 

polymer conformation, the loops interacting with the macroion, e.g. protein while the latter are 

extending from the macroion surface [12-15]. It was shown that in cases where polymer chain length 

was significantly longer than the diameter of the macroion, only few monomers are binding to the 

macroion, associated with a high degree of tail formation of the polymer chain [16-17]. Deeper 

insights into polymer- protein interaction are vital to improve understanding of precipitation processes 

[18-19]. Therefore, an investigation of various bioactive molecules, different in size as well as in the 

surface charge distribution would be of great value and importance. For a better understanding of 

complex formation during protein-polyelectrolyte precipitation, electrophoretic light scattering (ELS) 

and mobility measurement of protein-polyelectrolyte complexes can be applied [5, 20], as the 

electrophoretic mobility of polymers correlates qualitatively with their charge density [20]. 

Additionally as FTIR can e.g. be used to analyze polymers [21], it has been used to quantify polymer 

amounts in protein-polymer pellet after precipitation. 

Thus, we show protein-polymer precipitation applications, combining fluorescence measurements, 

infrared spectroscopy, modeling and ELS to determine polymer-protein ratios during precipitation and 

get deeper insights into polymer and protein conformation, relating precipitation strength to polymer 

chain length, polymer charge density, the isoelectric point (pI) of the protein as well as protein surface 

charge distribution. 

 

EXPERIMENTAL 

Proteins 

Lysozyme (Mw 14.3 kDa) was obtained from Merck KGaA, Darmstadt, Germany; IgG1 monoclonal 

antibody mAb A (Mw 150 kDa) was obtained from Merck Millipore, Bedford, USA; myoglobin (Mw 

17.05 kDa) from horse skeletal muscle was obtained from Calbiochem, Merck KGaA, Darmstadt, 

Germany; chymotrypsinogen A (Mw 25 kDa) from bovine pancreas was obtained from Biotrend 

Chemikalien, Cologne, Germany. Lysozyme, myoglobin and chymotrypsinogen A were obtained as 
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lyophilized powder after purification via repeated crystallization (purity > 98 % as determined by 

SDS-PAGE), mAb A was derived from drug substance solution to ensure high degree of purity). 

 

Polymers 

Polymers poly- (styrenesulfonic acid) (PSS) with weight average molecular weights of Mw = 1,360 g 

mol
-1

, 2,260 g mol
-1

, 6,530 g mol
-1

, 10,600 g mol
-1

, 15,200 g mol
-1

, 43,300 g mol
-1

 and 976,000 g mol
-

1
, respectively, as well as polymers poly- (acrylic acid) (PAA) with weight average molecular weights 

of Mw = 1,930 g mol
-1

, 3,800 g mol
-1

, 8,300 g mol
-1

 ,18,100 g mol
-1

, 36,900 g mol
-1

, 123,000 g mol
-1

 

and 958,000 g mol
-1

 respectively, were obtained as polymer standards with polydispersity indices < 

1.20 from Polymer Standard Service, Mainz, Germany. Poly- (vinylsulfonic acid) (PVS) with weight 

average molecular weight of Mw = 2,100 g mol
-1

 was obtained from Polysciences, Warrington, USA; 

poly- (anetholesulfonic acid) (PASA) with weight average molecular weight of 30,537 g mol
-1

 as 

determined by SEC, was obtained from Sigma Aldrich, Steinheim, Germany. 

 

Buffers 

Precipitation was performed in 20 mM Na-acetate buffer pH 5.0 with a salt concentration of 20 mM 

NaCl.  

 

Labeling of proteins 

Proteins lysozyme, myoglobin, chymotrypsinogen A and mAb A were labeled using the succinimidyl 

ester Alexa fluor® 546 from Invitrogen, Carlsbad, USA. Labeling was done by dissolving the 

fluorophore in 500 μL DMSO and adding it to 1g protein, dissolved in Milli-Q water. Unbound 

fluorophore was removed using a PD-10 column (Amersham Biosciences, Uppsala, Sweden) with 

Sephadex G25 column material for gel filtration. pH of labeled proteins was then adjusted to pH 5.0 

and concentration adjusted to 2 mg ml
-1

 protein. Ionic strength of adjusted labeled protein solutions 

was in the range of 0.1- 0.4 mS cm
-1

. 

 

Labeling of poly- (acrylic acid) 

Poly- (acrylic acid) was labeled using fluorophore Cascade ® Blue (Invitrogen, Carlsbad, USA) and 1-

Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (Merck KGaA, Darmstadt, Germany) 

coupling according to manufacturers protocol to obtain a degree of labeling of approximately two 

fluorophores per polymer chain. 

Unbound fluorophore was removed using gel filtration and a PD-10 column (Amersham Biosciences, 

Uppsala, Sweden), before adjusting pH of PAA polymer to pH 5.0. 
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Determination of accumulating PSS, PVS and PASA using Fourier transform infrared 

spectroscopy (FTIR) 

Accumulation of PSS, PVS or PASA within protein-polymer pellet was determined using FTIR to 

measure peak intensities within the spectrum attributed to sulphonic acid groups in comparison to 

polymer standards of the same polymer. Supernatant of samples was measured using attenuated total 

reflection- FTIR using GoldenGate™ ATR MkII series (Specac Inc, Cranston, RI, USA). Spectra were 

measured at 20 °C with 20 mM Na-acetate buffer and 20 mM NaCl as background. Spectra were 

recorded in absorbance mode on Bruker Tensor 27 (Bruker Optik GmbH, Ettlingen, Germany) using a 

120 scans at spectral resolution of 4.0, employing a Bruker LN-MCT photovoltaic internal detector 

(Bruker Optik GmbH, Ettlingen, Germany), with an aperture set to 6 mm. After spectra recording and 

subtraction of the background spectrum, automatic atmospheric compensation was performed and 

samples smoothed using 17 smoothing points. Data were merged as mean values of multiple 

measurements. Residual polymer in supernatant was determined using Quant 1 method within OPUS 

spectral processing software v. 6.0 (Bruker Optik GmbH, Ettlingen, Germany), measuring the height 

of peaks corresponding to: PSS (1,024- 1,035 cm
-1

); PVS (1,195- 1,180 cm
-1

) and PASA (1,180 and 

1,100 cm
-1

). Thereby residual polymer within supernatant was determined, allowing quantification of 

the polymer fraction of initial polymer, which accumulated within the pellet. 

 

Estimation of protein diameter and protein charge density at pH 5.0 

Protein diameters were calculated using Deep View version 4.0.1 (Swiss Institute of Bioinformatics) 

and used to estimate the end-to-end distance of proteins lysozyme (2lyz), myoglobin (1mbo) and 

chymotrypsinogen A (1ex3), using the pdb- files (pdb codes in brackets) from protein data bank. 

Protein diameters were estimated measuring the largest possible distance between two residues in the 

protein. mAb A diameter was estimated after performing a homology model based on the primary 

sequence of the antibody (known but not enclosed). The template for the homology model was a 

crystal structure of a monoclonal antibody from protein data bank (pdb code 1igt). A homology model 

was built performing an "iterative magic fit" in program Deep View using a PAM200 matrix and 

minimizing the RMS deviation of the carbon alpha and backbone atoms of model and template 

followed by a structural alignment to optimize the homology model using Swiss Model protein 

structure homology- modeling server [22-24]. Protein charge density at pH 5.0 was estimated using 

corresponding pdb-files, including homology model, from Swiss-Model homology- modeling server 

within program Adaptive Poisson- Boltzmann Solver (APBS), after assigning protonation states to 

residues at pH 5.0, using program propka within pdb-pqr converter [25-30]. Charge densities at pH 5.0 
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were presented using program Chimera, which enabled visualization of electrostatic calculations done 

by APBS [31-32]. 

 

Protein precipitation 

Pilot experiments were carried out to determine the optimum polymer amount to be added to achieve 

highest precipitation yields with a given protein- polymer pair. These experiments were set up at pH 

5.0 and 20 mM NaCl as standard conditions to adjust polymer concentration accordingly, allowing for 

determination of molar ratios of protein and polymer at optimum protein-polymer ratios. Experiments 

were conducted as follows: 

Precipitation was done by adding 300 μL of labeled protein solution (pH 5.0) to 120 μL of 120 mM 

(five-times concentrated) Na-acetate buffer pH 5.0 with 20 mM NaCl final concentration. To start 

precipitation, 180 μL of polymer solution, adjusted to pH 5.0, (labeled or non-labeled) were added to 

the mixture and placed on a shaker at 300 rpm for 60 minutes. Afterwards the sample was centrifuged 

at 2500 rcf for 15 minutes and the supernatant was transferred to microtiter plates (Nunc GmbH, 

Langenselbold, Germany). pH was measured immediately after mixing and additionally in the 

supernatant after centrifugation. Fluorescence counts of protein and, in case of labeled PAA polymer, 

of polymer were determined and compared to standards with known protein and polymer amount, 

using Tecan Reader Infinite M200 (Tecan Group Ltd., Männedorf, Switzerland). The amount of 

precipitated protein was calculated by comparing the fluorescence decrease from the supernatant after 

precipitation with the initial fluorescence. For fluorescently labeled polymer, the same procedure was 

applied to determine the amount of precipitated polymer.  

 

Calculation of molar ratios of protein to polymer 

Protein to polymer molar ratios were calculated for optimum polymer concentrations, corresponding to 

the highest precipitation yield, using polymer Mw and the protein Mw. Calculation was performed 

taking into account the overall polymer concentration, and the protein concentration within the pellet 

in the samples as determined by fluorescence count decrease in the supernatant, using labeled protein: 

Although an error was introduced in this calculation by using the overall polymer concentration for 

calculating the molar ratios, instead of using the fraction of polymer accumulated in the pellet, this 

error was minimized by calculating molar ratios at polymer concentrations, where most (> 80- 90 %) 

of initial polymer accumulated within the protein- polymer pellet (see results). 
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Calculation of the defined polymer chain length required per precipitated protein molecule (Ldef)  

Knowing the molecular weight of the monomers in each polymer, the number of monomers in an 

average polymer chain was calculated, dividing polymer Mw by the molecular weight of the monomer. 

Assuming a bond length of 154 pm per C-C bond and an angle of 108°, each monomer requires ~ 2.9 

Å of chain length in the polymer chain. ((sin108) * (1.54 + 1.54 * 0.5 + 1.54* 0.5)) = 2.93 Å 

The number of monomers in each polymer was multiplied with the length of each monomer to get the 

overall length based on 108° angles.  

 

Determination of polymer charge density using electrophoretic mobility measurements 

Electrophoretic mobility and zeta potential of polymer stock solutions (5 mg ml
-1

) of PASA, PSS, 

PAA and PVS of different Mw was measured using Zetasizer Nano (Malvern Instruments GmbH, 

Herrenberg, Germany) at pH 5.0 to compare charge density of different polymers at precipitation 

conditions. 

 

Determination of protein charge density using electrophoretic mobility measurements 

Electrophoretic mobility and zeta potential of proteins lysozyme, myoglobin, chymotrypsinogen A and 

mAb A was measured at a protein concentration of 2-5 mg ml
-1

, using Zetasizer Nano (Malvern 

Instruments GmbH, Herrenberg, Germany) at pH 5.0 to compare charge density of proteins at pH 

equal to pH during precipitation conditions with in silico surface charge distribution estimations. 

 

RESULTS AND DISCUSSION 

 

Pilot experiments to determine optimum ratio of protein and polymer 

Optimum polymer amounts to be added for a given protein-polymer pair were determined using pilot 

experiments. pH measurements of protein-polymer mixtures during precipitation and after 

centrifugation, using the supernatant, revealed no pH-change compared to protein and polymer 

solutions before starting precipitation. 

 

Precipitation conditions 

To analyze optimal precipitation conditions and allow calculation of molar ratios as well as polymer 

lengths per precipitated protein, protein diameters were estimated using Deep View and the 

corresponding crystallographic data of lysozyme, myoglobin, chymotrypsinogen A and, in case of 

mAb A, a homology model (Fig. 4). As a reference value the largest possible distance between two 

residues in the protein was considered. For lysozyme, 50 Å were measured, in contrast to the 31-32 Å 
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as stated in the literature [33-34], yet, considering that the longest distance was measured, instead of an 

average value, these numbers are still in acceptable agreement. For myoglobin, 44 Å were measured 

which were comparable to the 35 Å stated by Papadopoulos et al. [2000] [35]. For chymotrypsinogen 

A and mAb A, obtained diameters were also in acceptable agreement with reference values. For mAb 

A, measured diameter was 160 Å, compared to the stated 140 Å by Striemer et al. (2007) [36]. For 

chymotrypsinogen A, measured diameter was 42 Å, comparable to the 38.6 Å as determined by Roth 

and Lenhoff (1995) [33]. 

Determination of the optimum polymer concentration enabling highest precipitation yields, using PSS 

or PAA polymers was done. Maximum precipitation yields of 82- 90 %, at polymer concentrations of 

0.15- 0.75 mg ml
-1

, depending on the Mw of PSS or PAA, were obtained (data not shown).  Further 

increase of the polymer concentration led to a decrease in precipitation yield due to overcharging, 

observed during in silico and in vitro experiments [37-38].  

To calculate the molar ratios of protein vs. polymer within the pellet, the relative fraction of polymer 

accumulating within the pellet after precipitation, was determined. Results analyzing PAA 

accumulation when precipitating mAb A showed that the relative fraction of polymer in the pellet, 

compared to the initially added polymer concentration, decreased with increasing polymer 

concentration added to the reaction solution (Fig. 1). Additionally, measurements using FTIR and 

fluorescently labeled polymer to determine PAA, PSS, PASA and PVS accumulation in the pellet after 

precipitation with either lysozyme, mAb A, chymotrypsinogen A or myoglobin, respectively, showed a 

> 80- 90 % polymer accumulation within the pellet if polymer concentrations were below the pre-

selected optimum polymer concentration range for each of these polymers, corresponding to highest 

precipitation yields, respectively (Fig. 1, S1 in supplementary material). Therefore, molar ratios of 

polymer and protein were calculated based on polymer concentrations below the respective optimum 

concentration to minimize the error within the calculations due to overestimation of polymer within the 

pellet. The resulting error within calculations, based on the pre-selected polymer concentration range, 

was below 20 %, with most of the calculations showing an error below 10 % regarding polymer 

overestimation. 

Using polymer Mw and the molecular weight of proteins, the molar ratio of protein to polymer was 

calculated according to formula 1 (table 1). Potential errors due to polymer overestimation in the pellet 

could be minimized, taking only the amount of protein in the pellet into account and calculating molar 

ratios of protein and polymer at polymer concentrations below the optimum concentration as described 

above.  

Calculating the molar ratios of protein/polymer based on the procedures described above, a chain 

length dependent precipitation behavior of lysozyme, myoglobin, chymotrypsinogen A, and mAb A, 
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using PSS polymers, was observed. As soon as a threshold of Mw = 2,220g mol
-1

 is exceeded, the 

molar ratio is independent of the chain length. Below that threshold, the molar ratio of precipitated 

protein per polymer molecule is lower than expected. 

While a polymer chain of PSS with a weight average molecular weight of 43,300g mol
-1

 is around 

6.63- times longer than one of PSS with 6,530g mol
-1

, it led to approximately 5.8- 8.3 -times more 

protein per polymer chain compared to the shorter chain (Fig. 2a, 3a). These results, except for the low 

molecular weight PSS standard, are similar to findings, showing a PSS polymer chain length 

independent precipitation behavior, when titrating papain in the so-called "colloid titration" [39]. 

Likewise, PAA polymers with Mw of 8,300g mol
-1

 to 958,000g mol
-1

 showed chain length 

independent precipitation behavior, correlating with increasing polymer chain length (Fig. 2b, 3b), 

while low molecular weight PAA polymers showed a lower molar ratio than expected. 

Eventually, PAA958,000 is approximately 115 times longer than PAA8300, showing a 113- 123 fold 

higher ratio of protein per polymer chain. PVS2,100 in comparison with PSS2,220 and PAA1,930, all 

of similar Mw, showed an approximately 2.6-times higher ratio of lysozyme per polymer with strong 

anionic polymer PVS and a 10 % higher ratio of lysozyme to polymer with polymer PSS, compared to 

the weak anionic polymer PAA (table 1). While the former two polymers likely exhibit sufficient 

electrostatic attraction potential to precipitate the protein, PAA shows a weaker electrostatic potential 

and thereby lower yield of bound or interacting protein per polymer chain. Comparing PASA30,537 

(Mw determined by SEC) with hypothetical PAA and PSS polymer, all of same Mw, we saw ratios of 

lysozyme to polymer of 11.82 for PASA compared to 9.74 for PSS and 9.58 for PAA.  

Summarizing these findings, we concluded that for a polymer which exceeds a certain "threshold"- 

length, the amount of protein precipitated per defined polymer chain length Ldef, would be independent 

of the overall polymer chain length.  

 

Defined polymer chain length required per precipitated protein molecule (Ldef) 

The overall calculated average polymer chain lengths, based on (a) the weight average molecular 

weights, (b) the amount of monomers and (c) assuming bond angles of 108° at the backbone chain, are 

shown in table 2. Our calculation for a PSS70000 polymer yielded 99.5 nm which is comparable to 

102 nm published by Adamczyk et al. [40], based on results by Donath et al.
 
[41]. Thus, the error in 

our calculation is comparable to Adamczyk's approach. 

Dividing the overall polymer chain length by the number of bound protein per polymer chain, derived 

from the molar ratios in table 1, the defined polymer chain length required per precipitated protein 

molecule, Ldef was obtained (table 2). A comparison of these values with the estimated protein 

diameter as determined from crystallographic data showed similar or even larger Ldef than the actual 
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diameters of the corresponding proteins. This led us to the question why there were differences in Ldef 

between different polymer types and whether they correlated with polymer charge density or protein 

charge surface charge potential or protein isoelectric point. To elucidate this, Ldef of different polymer 

types was compared between mAb A and lysozyme. 

 

Comparison Ldef for lysozyme and mAb A 

Ldef for lysozyme 

While lysozyme has an estimated protein diameter of around 50 Å (Fig. 4), Ldef of PSS polymers tested 

was in the range of 48- 60 Å (table 2), implying the idea of PSS polymers to anneal linearly to the 

lysozyme molecule upon precipitation, leading to a necklace-like structure. Ldef for PSS polymers with 

Mw less than 6,530 Da increased compared to longer polymer chains and was even longer than the 

length of the polymer chains.  

This indicates reduced precipitation efficiency, also shown by Bohidar et al. [42], who analyzed 

coacervation and liquid-liquid separation depending on polyelectrolyte chain length, showing that 

polymers with Mw less than 1000 g mol
-1

 did not allow for coacervation. Although we did not employ 

copolymers of that small Mw in our studies, both, PAA1,930 and PSS1,360 exhibited much higher Ldef 

compared to longer polymer chains, indicating reduced precipitation ability of short polymer chains 

and thus strongly supporting results by Bohidar et al. 

For short polymer chains, chain length might not be long enough to achieve optimal annealing and 

interaction with the positively charged surface areas of the tested proteins seen in Fig. 5. Therefore, 

several polymer chains might be required to achieve strong interaction, form bridges and thus high 

precipitation yields, being reflected in the elevated Ldef values. Compared to PSS, PAA polymers had 

Ldef that was by a factor ~ 2.0- 2.8 higher (table 2). A reason might be that PAA is a weak polymer 

compared to the strong polyanion PSS, with only 82 % of carboxy-groups being deprotonated at pH 

5.0, according to Henderson-Hasselbalch equation. Thereby for an intimate contact between polymer 

and protein, a longer interaction distance might be required, reflected in a larger Ldef. Alternatively, 

more polymer chains interacting with the protein are required to achieve similar precipitation yields 

compared to PSS. Additionally, differences in persistence length of both polymer types also affect 

precipitation efficiency, explaining differences in observed Ldef. Compared to PAA, PSS exhibits a 

smaller persistence length, facilitating annealing of the polymer chain to the protein surface, allowing 

for more efficient precipitation [3, 43-45]. Similar results were shown by Bohidar et al., observing 

reduced DNA- polyion coacervation for polyions with increased persistence length [46]. 

PAA958,000 showed a slightly reduced Ldef, however, the difficulty in obtaining the exact molar ratio 

of protein per polymer using high molecular weight species, due to measurement errors, might account 
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for this finding. Comparing similar long polymers PVS2,100, PSS2,220 and PAA1,930, Ldef of PVS 

was 68 % of the Ldef of PSS and only 27 % of the Ldef of PAA, when using lysozyme as target protein. 

This reflects the strength of the polyanions, and the amount of length required to achieve precipitation 

of a protein molecule. Comparing polymer chains of similar length, PASA with Mw 30,357, 

PSS43,300 and PAA36,900, PASA displayed a lower Ldef than PSS and PAA, implying that the 

interaction strength between PASA and lysozyme is higher compared to the latter polymers and thus 

revealed an Ldef value that is smaller than the diameter of lysozyme.  

Considering a polymer- protein interaction as a wrapping and winding of the polymer around the 

protein as predicted in Monte Carlo simulations [10, 47], the distance between positively charged 

residues in lysozyme was measured, starting from one side and circulating around the protein several 

times while passing as many positively charged residues as possible until all positively charged 

residues which were most likely available to the polymer, were passed (Fig. 4, Fig. 5a and b), leading 

to a path length of approximately 150 Å.  

Considering PAA covering most of the positively charged residues in lysozyme by wrapping around 

the protein as well as forming loops, tails and trains as seen in simulations, leading to rosette-like 

multiloop conformations [13, 15], a similar Ldef than the assumed 150 Å from model calculations could 

be required. Thus, our experimental results with an Ldef of ~ 130 Å for PAA fit into this proposed 

model of protein-polymer interaction. 

According to the molar ratio calculations and considering the length of a PAA 1,930 g mol
-1

 polymer 

chain equaling 79 Å, approximately two PAA-polymer molecules of this length are required to achieve 

precipitation of one lysozyme molecule. While one molecule might wrap or anneal to the protein, the 

other one might be required to build a gel like-network connecting proteins which may serve as cross-

linkers as seen in other experiments [8-9, 11].
 
For PASA and PVS, the Ldef required was less than the 

diameter of the protein, indicating that only part of the protein is interacting with the polymer chain, 

most likely due to the higher charge density of these polymers compared to PAA and the resulting 

stronger interaction. 

Ldef for mAb A 

While the diameter of mAb A is approximately 160 Å, all polymers, except of PASA showed Ldef -

values of at least 264 Å or even higher per precipitated mAb A molecule (table 2). The longer Ldef 

might be due to annealing of the polymers to positively charged protein areas (marked in blue in Fig. 

5c) as well as due to required space between two mAbs interacting with the same polymer chain. 

Another explanation might be the formation of trains, loops and tails of the polymer when annealing to 

the antibody as seen in other experiments [13, 15]. In comparison, PASA showed a Ldef of 173 Å, 

equal to the diameter of the protein. 
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While PSS polymers above 10,600g mol
-1

 showed Ldef of ~270 Å, this value increased if polymer 

chain length decreased below a certain threshold (table 2). Ldef increased already for PSS6,530 and 

even further for PSS1,360, again, to our understanding, supporting results by Bohidar et al., indicating 

a chain length of less than 1,000g mol
-1

 being insufficient for successful precipitation. Similar results 

were obtained with PAA polymers, showing an increase of Ldef if polymer Mw is below 8,300g mol
-1

. 

The minor deviations of Ldef with PAA123,000 and PAA36,900 might be due to experimental 

inaccuracy and difficulty in determining the optimum molar ratio of mAb A to polymer. The effect of 

increasing Ldef with small PAA polymer chains is also reflected when plotting the molar ratio of mAb 

A to PAA vs. the chain length, showing a lower ratio of mAb A per polymer chain than expected for 

PAA1,930 and PAA3,800. Reason might be that the polymer chain length of "short" PAA as well as 

PSS polymers is not long enough to achieve optimal annealing to positively charged protein surface 

areas at pH 5.0, depicted in Fig. 4 and 5c and thus several chains are required. 

Comparing Ldef of PVS2,100, PSS2,220 and PAA1,930, PVS needs a shorter Ldef compared to 

PSS2,220 to achieve precipitation. PAA required an even longer interaction distance between the 

polymer and mAb A. Similar to results observed with lysozyme, mAb A precipitation displayed a 

factor 1.6 higher Ldef for PSS compared to PASA and a factor 3.0 times higher Ldef for PAA compared 

to PASA.  

 

Dependence of Ldef on polymer and protein charge density 

The zeta potential of polymer solutions was measured (S2 supplementary material) to compare 

polymer charge density with required Ldef values. As zeta-potential measurements were affected by 

chain-length of the polymers, likely changing viscosity and thereby influencing calculations, zeta 

potential of polymers of similar chain length was compared. While strong polymer PSS2,220 obtained 

a zeta potential of -21.9 mV, revealing a high charge density, polymer PVS2,100 with a zeta potential 

of -29.3 mV showed an even higher charge density, also visible in electrophoretic light scattering 

measurements by Xia et al. [20], all at pH 5.0. The charge density of PAA1,930 was lower, shown by a 

less negative zeta potential of -14.2 mV at pH 5.0. Comparing the similar long polymers PASA with 

Mw 30,537 g mol
-1

, PAA36,900 and PSS43,300, the zeta potential of PSS43,300 was more negative 

than the one of PAA, with PASA obtaining the most negative zeta potential, indicating a higher charge 

density. A general comparison between PSS and PAA polymers at similar chain length showed a more 

negative potential for PSS compared to PAA polymers. 

A comparison of the estimated Ldef for mAb A or lysozyme, respectively, with zeta potential 

measurements was done. Although no quantitative correlation can be seen, it is obvious that an 

increase of Ldef qualitatively correlates with a decrease in the zeta potential of the corresponding 
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polymer (table 3). This is clearly indicated when comparing the precipitation results of mAb A and 

lysozyme with different polymers. Therefore, we were able to qualitatively correlate obtained Ldef with 

polymer charge densities determined by ELS.  

Furthermore, comparing the ratio of Ldef/ estimated protein diameter (table 4), the precipitation 

strength depending on the protein could be determined. While the ratio was lowest for lysozyme, it 

increased with chymotrypsinogen A and mAb A and was highest with myoglobin. This tendency was 

seen with PSS and to a less pronounced extent also with PAA polymers, the latter showing a higher 

ratio, most likely due to the lower charge density and thus requiring a longer distance to anneal and 

interact with positive surface charge areas of the protein. For PSS polymers, the increase of the ratio 

Ldef/ estimated protein diameter correlated with the decrease of the pI of the corresponding proteins, 

i.e. proteins with a lower pI showed less positive surface charge and thus the polymer required a longer 

Ldef to achieve sufficient precipitation. The ratio of Ldef/ estimated protein diameter correlated also 

with the measured zeta potential of the proteins, confirming the dependence of protein precipitation 

strength on protein charge density and distribution (table 4). For PAA polymers, this was also true, 

however, the difference in Ldef/ estimated protein diameter was less straight-forward for mAb A and 

chymotrypsinogen A. Although their pI and zeta potential showed differences, both proteins obtained 

Ldef/ estimated protein diameter values of around 3.2. Nevertheless, for mAb A this value was slightly 

higher, being 3.22, while chymotrypsinogen A exhibited 3.18. 

Fig. 4 shows protein surface charge distributions at pH 5.0, to compare charge distribution at 

precipitation conditions. While lysozyme is mainly positively charged, chymotrypsinogen A shows a 

positively charged frontside and a negatively charged backside. Thus, it can be precipitated in a 

necklace-like precipitation, exhibiting its positive surface to the negatively charged polymer chain. 

mAb A shows a large stretch of negative surface charge at the Fc part. Although the variable part of 

the antibody is mainly positively charged, it also exhibits negatively charged stretches, mainly at one 

side of the mAb. The polymer chain likely anneals in a similar fashion compared to myoglobin, 

however might also anneal in such a conformation, that it achieves strong interaction with the 

positively charged surface area while at the same time circumnavigating the negatively charged area 

by loop formation, which could explain the larger Ldef/ protein diameter values compared to lysozyme 

and chymotrypsinogen A. While myoglobin does also exhibit negative and positive charged surface 

areas, those are evenly distributed, and not separated in a front and backside unlike chymotrypsinogen 

A and mAb A. Therefore, the Ldef and subsequently the ratio of Ldef/ diameter of myoglobin are higher 

compared to the other proteins as the polymer putatively needs to build large loops to anneal only to 

the positively charged areas and "circumnavigate" the negatively charged areas (Fig. 4, table 4). 
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CONCLUSION 

Precipitation results using various anionic polymers showed a polymer-type dependent precipitation 

behavior. Comparing polymer standards PAA and PSS, molar ratios of protein per polymer were less 

than expected, also leading to higher Ldef, if polymer chain lengths were below a threshold. Above this 

value PSS and PAA polymers exhibited a chain-length independent precipitation behavior. A 

comparison of Ldef showed differences between PVS, PSS and PAA polymers of same molecular 

weight. The weak polyanion PAA required a significantly larger Ldef for precipitating a single protein 

compared to the strong polyions PVS and PSS. This difference was most likely due to charge density 

differences of the polymers, indicated by electrophoretic light scattering measurements of the zeta 

potential. Weak polymers are most likely required to have a longer and thereby stronger interaction 

with the protein to achieve similar precipitation yields compared to strong polymers. With some 

polymers, Ldef was longer than the corresponding protein diameter. We concluded the formation of 

polymer trains, tails and loops as seen on charged surfaces, as a cause for these results.  Another 

explanation might be that polymers precipitate by wrapping around the protein and build a network 

consisting of several polymer chains per precipitated protein. Comparing the ratio of Ldef to estimated 

protein diameters, we were able to measure precipitation strength and correlate this to the pI and 

surface charge distribution of the corresponding proteins at precipitation pH as well as to protein 

charge density determined by electrophoretic light scattering.  
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List of tables: 
 
Table 1: Molar ratio of protein to polymer and precipitation yield of proteins depending on the 

chain length and type of polymer as well as type of protein. n.d. means not determined 
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PSS1360 0.36 93.9 0.15 71.8 0.07 25.0 0.04 90.5 

PSS2220 0.67 93.6 0.24 69.4 0.39 46.0 0.07 96.8 

PSS6530 2.15 94.2 0.90 62.6 2.04 62.4 0.30 94.5 

PSS10600 3.48 94.5 1.40 54.2 3.00 67.8 0.61 92.4 

PSS15200 4.90 94.2 2.00 57.9 4.76 69.3 0.91 92.7 

PSS43300 13.82 93.1 5.50 55.5 11.90 70.5 2.51 92.4 

PSS976000 320.5 
94.3 129.58 56.6 307.30 71.6 56.25 92.3 

PAA1930 0.6 91.4 0.14 53.2 0.10 18.2 0.02 91.2 

PAA3800 1.20 93.9 0.42 78.3 0.50 37.7 0.13 95.9 

PAA8300 2.72 93.9 1.00 76.7 2.40 54.3 0.66 96.5 

PAA18100 5.80 93.9 2.20 74.1 5.40 66.2 1.43 97.3 

PAA36900 11.58 93.6 4.46 77.3 11.16 69.6 2.93 96.5 

PAA123000 39.14 91.0 14.40 79.2 38.31 70.5 9.93 97.4 

PAA958000 308.84 94.6 114.00 78.5 296.00 69.5 74.39 97.9 

PVS2100 1.6 94.4 n.d. n.d. n.d. n.d. 0.15 95.0 

PASA30537 11.82 93.0 n.d. n.d. n.d. n.d. 2.25 94.1 
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Table 2: Overall average polymer chain length and Ldef to achieve optimal interaction with proteins. 

n.d.: not determined 
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PSS1360 21.6 60.00 144.00 308.57 540.00 

PSS2220 35.2 52.54 146.67 90.26 502.86 

PSS6530 103.5 48.14 115.00 50.73 345.00 

PSS10600 168.0 48.28 120.00 56.00 275.41 

PSS15200 240.9 49.16 120.45 50.61 264.73 

PSS43300 686.2 49.65 124.76 57.66 273.39 

PSS976000 15,466.7 48.26 119.36 50.33 274.96 

PAA1930 78.8 131.33 562.86 788.00 3,940.00 

PAA3800 155.2 129.33 369.52 310.40 1,193.85 

PAA8300 339.0 124.63 339.00 141.25 513.64 

PAA18100 739.3 127.47 336.05 136.91 516.99 

PAA36900 1,507.2 130.16 337.94 135.05 514.40 

PAA123000 5,023.9 128.36 348.88 131.14 505.93 

PAA958000 39,129.6 126.70 343.24 132.19 526.00 

PVS2100 57.5 35.94 n.d. n.d. 383.33 

PASA 388.4 32.86 n.d. n.d. 172.62 
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Table 3: Comparison of polymer charge density of similar long polymers, expressed as zeta 

potential at pH 5.0, with required Ldef of those polymers for precipitating mAb A and lysozyme 

(Lys) 

high charge density Ldef mAb A Ldef Lys Zeta potential [mV] 

PASA 172.6 32.9 -58.5 

PVS 383.3 35.9 -29.3 

PSS 502.9 52.5 -21.9 

PAA 3,940.0 131.3 -14.2 

low charge density    
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Table 4: Ratio of Ldef to estimated protein diameter as mean value for PSS and PAA 

polymers, respectively, in comparison to pI and measured zeta potential at pH 5.0 of 

corresponding protein. The ratio is indicative for the precipitation strength and correlates with 

the pI as well as with the zeta potential of the protein at pH 5.0 

Polymer lysozyme chymotrypsinogen A mAb A myoglobin 

Ldef/ protein diameter 

PSS 

1.0 1.3 1.8 2.7 

Ldef/ protein diameter 

PAA 

2.6 3.2 3.2 7.8 

isoelectric point (pI) 10.7 8.8- 9.6 8.5 7.5 

zeta potential at pH 

5.0 [mV] 16.71 5.48 5.22 1.16 
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List of figures: 
 
Fig. 3 Relative accumulation of polymer in the pellet and protein precipitation yield of mAb A, 

depending on initial polymer concentration and type of polymer added to the sample. 

Concentrations for calculating molar ratios of protein and polymer were taken in the "red" 

area, below the optimum precipitation conditions (highlighted in green) to minimize the error 

of overestimating polymer concentrations within the pellet. Error bars represent triplicate 

experiments 

Fig. 2 Plot of molar ratio of lysozyme molecules per PSS polymer molecule (a) or PAA 

polymer molecule (b) vs. the precipitation yield achieved at this ratio. Polymer designation 

according to weight average molecular weight in g mol-1. Ratio was calculated for overall 

reaction solutions 

Fig. 3 Plot of molar ratio of mAb A molecules per PSS polymer molecule (a) or PAA polymer 

molecule (b) vs. the precipitation yield achieved at this ratio. Polymer designation according 

to weight average molecular weight in g mol-1. Ratio was calculated for overall reaction 

solutions  

Fig. 4 Surface charge distribution of proteins lysozyme, myoglobin, chymotrypsinogen A and 

homology model of mAb A at pH 5.0, Snapshots taken from different angles to compare 

protein frontside with backside. Red: negative surface charge; blue: positive surface charge. 

Pink: largest measured distances for diameter estimation in Deep View, for clarity not directly 

shown in protein structure but added as schematic overlay. Proteins sorted according to 

degree of positive surface charge with lysozyme showing most of positive charge and 

myoglobin showing least positive charge (according to isoelectric point and zeta potential at 

pH 5.0). Contour plot using +/- 2 kBT e-1; proteins not to scale 

Fig. 5 (a): lysozyme surface overview in Deep View, positively charged amino acids labeled 

in blue. (b): Stick view of lysozyme carbon alpha and backbone atoms, positively charged 

residues labeled in blue. Distance between residues measured and labeled in white. (v): mAb 

A homology model surface overview in Deep View, positively charged amino acids labeled in 

blue. Distance in residues measured and labeled in white 
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Figure 1 
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Figure 2 

 
  

 

Figure 3 
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Figure 4 
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Figure 5 
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3.4. Effects of copolymer composition on protein precipitation: mAb-BSA protein model systems 

to optimize precipitation yield and selectivity 

 

Paper: Customization of copolymers to optimize selectivity and yield in polymer-driven 
antibody purification processes 
 
Florian Capito, Romas Skudas, Harald Kolmar and Bernd Stanislawski 
 
Biotechnology Progress 
in press 
doi: 10.1002/btpr.1813 
 
Received: 21.05.2013 
Revised: 09.09.2013 
Accepted: 16.09.2013 
Copyright © American Institute of Chemical Engineers (AIChE), 2013 
 
Short Summary:  
 
After preparatory work, elucidating how ionic strength and polymer chain length affect protein 
precipitation behavior, a test-system was established, analyzing how polymer composition would 
affect precipitation, using two different proteins per system. While one of several mAbs served as 
target protein, BSA was used as an impurity protein for analyzing precipitation yield and selectivity. 
Depending on the physico-chemical properties of the protein, different copolymer compositions were 
required to obtain maximum precipitation yields and alter selectivity. Results revealed copolymer 
composition as the major driving force for precipitation selectivity. By adjusting composition and chain 
length of the precipitant for each of the mAbs, conditions were found that allowed for high precipitation 
yield and selectivity. These findings do also help in the final development of the protein precipitation 
process. 
 
Reproduced by permission of American Institute of Chemical Engineers (AIChE)
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3.5. Mid infrared spectroscopy as tool in protein precipitation process development and aided 

monitoring of critical process parameters in protein production 

 

3.5.1 Host cell protein quantification using MIR 

 
Paper: Host cell protein quantification by fourier transform mid infrared spectroscopy (FT-MIR) 
 
Florian Capito, Romas Skudas, Harald Kolmar and Bernd Stanislawski 
 
Biotechnology and Bioengineering, 
Volume 110, Issue 1, Pages 252-259. 
doi: 10.1002/bit.24611 
 
Received: 11.06.2012 
Revised: - 
Accepted: 11.07.2012 
Copyright © Wiley Periodicals, Inc., 2012 
 
Short Summary:  
 
Mid infrared spectroscopy (MIR) was evaluated the first time as tool for quantifying host cell impurity 
proteins in samples containing polymer, representing polymer-treated process samples. Promising 
results were obtained for a host cell protein level between 20,000- 200,000 ng ml-1, comparable to an 
ELISA assay. Yet, this concentration range makes the application only partly suitable for use within 
the development of a precipitation process. However, the use of MIR for host cell protein 
quantification is suitable especially for monitoring of process development steps with higher host cell 
protein concentrations, allowing direct measurement without further dilution and dilution-errors as with 
ELISA.  

 
 
Fig. 4: Typical mammalian cell culture process in a small-scale bioreactor. Source: Figure taken at 
Merck Site Martillac. 
 
Reproduced by permission of Wiley Periodicals, Inc., 2013 
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3.5.2 mAb titer and host cell protein level quantification using MIR 

 

Paper: Matrix effects during monitoring of antibody and host cell proteins using attenuated 
total reflection spectroscopy 
 
Florian Capito, Romas Skudas, Bernd Stanislawski and Harald Kolmar 
 
Biotechnology Progress, 
Volume 29, Issue 1, Pages 265-274 
doi: 10.1002/btpr.1643 
 
Received: 21.06.2012 
Revised: 10.10.2012 
Accepted: 16.10.2012 
Copyright © American Institute of Chemical Engineers (AIChE), 2012 
 
Short summary:  
 
MIR spectroscopy was further advanced for quantification of host cell protein levels as well as 
antibody titer in samples containing polymer. The underlying idea was to use MIR spectroscopy as a 
cost-effective tool for quantification of target protein level (mAb) and host cell impurity proteins when 
performing polymer-driven protein purification. Especially for host cell protein quantification, costly 
ELISA assays could be replaced by this new application for MIR. Compared to the previous 
publication, limit of quantification for host cell proteins could be improved. However, results suggest 
that only part of the precipitation process development samples can be analyzed by MIR, due to the 
relatively high limit of quantification for host cell proteins of 2,000 ng ml-1 and the only acceptable 
accuracy for mAb quantification. Yet, though not mentioned explicitly in this paper, this technique is 
still helpful when estimating the precipitation yield and selectivity during development of a protein 
precipitation process. 
 
Reproduced by permission of American Institute of Chemical Engineers (AIChE)hhhhhhhhhhhhhhhhh
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3.5.3 Antibody aggregate quantification using MIR 

 
Technical Report: Mid-infrared spectroscopy-based antibody aggregate quantification in cell 
culture fluids 
 
Florian Capito, Romas Skudas, Harald Kolmar and Christian Hunzinger 
 
Biotechnology Journal, 
Volume 8, Issue 8, Pages 912-917 
doi: 10.1002/biot.201300164 
 
Received: 04.04.2013 
Revised:   06.05.2013 
Accepted: 24.05.2013 
Copyright © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 
 
 
Short summary:  
 
The feasibility of using MIR for antibody aggregate quantification is shown, using different antibodies 
and process samples. The idea is to use the knowledge of this paper and employ MIR, in a similar 
manner, for analysis of mAb structure and aggregate formation, when performing protein precipitation 
using copolymers. By that, harmful effects of precipitation on protein structure can be elucidated. 
 

 
 

Fig. 5: Graphical abstract; Reproduced by permission of WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. 
 
 
Reproduced by permission of WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 
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3.6. Development and cost-comparison of a precipitation process for industrial protein 

purification 

 
Paper: Feasibility study of semi-selective protein precipitation with salt-tolerant copolymers 
for industrial purification of therapeutic antibodies 
 
Florian Capito, Johann Bauer, Almut Rapp, Christian Schröter, Harald Kolmar and Bernd Stanislawski 
 
Biotechnology and Bioengineering, 
Volume 110, Issue 11, Pages 2915-2927 
doi: 10.1002/bit.24950 
 
Received: 18.02.2013 
Revised:   15.04.2013 
Accepted: 26.04.2013 
 
Copyright © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013 
 
Short summary:  
 
A polymer-driven antibody purification strategy is described. Results of all other, in this thesis included 
papers were used to implement a system, allowing direct precipitation of antibodies from cell culture 
fluid, even at ionic strength of 22.5 mS cm-1. This can be achieved without dilution of the cell culture 
fluid, in contrast to previously published results. Precipitation selectivity and yield can be fine-tuned 
and protein be up-concentrated between 40-100 fold when redissolving it. No harmful effects of 
precipitation on protein structure and no aggregate formation are visible, as shown by Biolayer 
Interferometry and MIR analysis. Compared to protein A, yield and purity are lower and loss of mAb is 
higher. Yet, precipitation was shown to be more cost-effective than protein A chromatography for 
high-titer mAb systems. While main costs with precipitation are because of mAb loss, protein A costs 
originate mainly from media costs. Comparing a 10 g l-1 batch, precipitation was shown to decrease 
costs by 30-50% compared to protein A – based mAb purification. 
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4. Summary and conclusion 

 
The studies presented in the cumulative part of this thesis illustrate the different steps to develop a 
polymer-driven antibody purification process. These peer-reviewed reports show in detail fundamental 
research, additional method development useful in the development of such a purification process as 
well as implementation of the final process. A strategy for analyzing copolymers, synthesized by a lab 
in house, was implemented with particular emphasis on copolymer composition analysis. This was 
especially important in the context of understanding how copolymer composition affects precipitation 
yield and selectivity. Compared to 1H-NMR composition analysis, the use of ATR infrared spectro-
scopy enabled a cost-effective and fast analysis of copolymers and according adjustment of synthesis 
parameters.[55] Besides the benefits for this project, the similar analytical power of IR compared to 
NMR was shown, also allowing small-scale companies to use such a technique. Following synthesis 
and synthesis optimization, basic research experiments were conducted, elucidating how ionic 
strength, polymer chain length, polymer chain flexibility, pH, pyhsico-chemical properties of copolymer 
and protein as well as copolymer composition affect precipitation behavior.  Similar to relevant work in 
the literature, cited in the introduction section, increasing ionic strength led to reduced precipitation 
yields. Additionally to these known aspects, low ionic strength also resulted in reduced precipitation 
yield.[56] We concluded polyelectrolyte chain conformation being rather stiff at low ionic strength to be 
the reason for these findings. At low ionic strength, charges at polyelectrolyte sub-units are not 
sufficiently shielded anymore, leading to a more expanded conformation of the polyelectrolyte. This 
would then impede interaction with the proteins. Comparing precipitation behavior of different anti-
bodies, the required polyelectrolyte flexibility to allow for high precipitation yields depended on the 
charge density of the protein.[56] These new insights could also help in the design of polyelectrolytes 
with defined flexibility to control precipitation selectivity. Another important factor is polymer chain 
length, which does not only influence yield and selectivity. It also affects precipitation efficiency, 
meaning the number of polymer chains required to obtain precipitation of an antibody molecule.[57] 
The use of polymer standards with defined molecular weight distribution revealed that the polymer 
chain length required per precipitated protein molecule is up to 25-times larger than the actual 
diameter of the specific protein. Moreover, comparing different types of polymers within this context, 
the defined length of polymer chain length differed among these copolymers. Under precipitation 
conditions strongly charged polymers allowed precipitation even with short defined lengths, meaning 
they enabled efficient precipitation.[57] Moreover, a further adjustment of selectivity and yield can be 
achieved altering the copolymer composition. Compared to results by other working groups, cited in 
the introduction section, the use of these copolymers allowed higher salt tolerance and higher yields 
without prior dilution of the cell culture fluid.[58] 

Simultaneously, infrared spectroscopy was used as a process-assessment tool, determining the 
amount of antibody, host cell proteins as well as aggregated antibody before and after precipitation to 
analyze selectivity and yield.[59-61] This was particularly important, as e.g. the use of ELISA-assays for 
HCP quantification is quite costly, especially during process development which requires a large 
number of these assays to be used. Regarding aggregation analysis and quantification, IR has 
already been used in the past, as shown by literature cited in the introduction section and was further 
advanced not only to provide information about the presence of aggregation but also to quantify the 
amount of aggregates in a sample. The results of these peer-reviewed reports were suitable in the 
context of this thesis and precipitation process development. Additionally as the here developed 
quantification procedures for antibody titer, aggregate level and host cell protein amount may also find 
suitable application as a general fast and cost-effective process-monitoring technique, they are 
currently under consideration for a patent application. Some further experiments were conducted 
showing that infrared spectroscopy can be used to distinguish antibodies from other proteins based 
on differences in secondary structure. These findings were, together with additional denaturation 
monitoring experiments, submitted for a book chapter. Moreover, they allowed comparison of the 
secondary structure of monoclonal antibodies before and after precipitation, to elucidate any changes 
to the protein secondary structure and thus harmful effects of this process.[48] Integration of all these 
findings helped to implement a protein purification process based on precipitation. This process was 
then compared to protein A chromatography with respect to costs and effectiveness.[48] The 
developed process can be used within the purification cascade and may replace at least in part 
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existing initial chromatography-based purification processes. Compared to protein A affinity 
chromatography, costs are lower for future high titer cell culture systems used for antibody 
production.[48] Yet, additional applications beyond antibody production are also feasible.kkkkkkkkkkkkk
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Chapter 3.3 
 

Supplementary material to 

Determining the defined length of a polymer chain required per precipitated protein molecule: 

studying interactions between anionic polymers and four physicochemically different proteins 

– Colloid and Polymer Science 

Florian Capito12, Harald Kolmar1, Bernd Stanislawski2 and Romas Skudas2 

1Clemens-Schöpf Institute, Technical University of Darmstadt, Germany 
2 Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany 
florian.capito@external.merckgroup.com 
 
1 Relative accumulation of polymer in protein-polymer precipitate

 

S1. Exemplary overview of relative accumulation of polymer in the pellet, when precipitating 

different proteins, depending on initial polymer concentration. Polymer accumulation was 

determined using either FTIR (all polymers except PAA) or fluorescently labelled polymer 

(PAA) for residual polymer determination after precipitation with different proteins. 

Determination error was 10- 20 % for polymer concentrations less than 0.15 mg ml-1, which 

were used for pre-selected optimum polymer concentrations. As error was higher for polymer 

concentrations between 0.15 mg ml-1 to 0.4 mg ml-1, this polymer concentration range was 

not used to calculate molar ratios. 
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2 Zeta potential of polymers 

S2. Zeta potential of polymers measured at pH 5.0. 

Polymer and corresponding Mw in g mol-1 Zeta potential [mV] 

PASA -58.5 

PSS 1360 -18.1 

PSS 2220 -21.9 

PSS 6530 -30.2 

PSS 10600 -35.6 

PSS 15200 -33.3 

PSS 43300 -34.4 

PSS 976000 -55.2 

PVS 2100 -29.3 

PAA 1930g mol-1 -14.2 

PAA 3800g mol-1 -28.8 

PAA 8300g mol-1 -28.1 

PAA 18100g mol -27.6 

PAA 36900g mol -24.5 

PAA 123000g mol -29.2 

PAA 958000g mol -29.4 
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Chapter 3.7 
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Anhang  186 
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