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Summary 
 

The main objective of this thesis is to develop an integrated approach for the 

computation of Height Reference Surfaces (HRS) in the context of GNSS positioning. For this 

purpose, the method of Digital Finite Element Height Reference Surface software (DFHRS) is 

extended, allowing the use of physical observations in addition to geometrical observation 

types. Particular emphasis is put on (i) using Adjusted Spherical Cap Harmonics to locally 

model the potential, (ii) developing a parameterization of coefficients for a least squares 

estimation, and (iii) optimizing the combination of data needed to calculate the coefficients. In 

particular, the selection of the terrestrial gravity measurements, height fitting points with 

known ellipsoidal and normal heights, and the use of the available global gravity models as 

additional observations are investigated. One of the main motivations is the need to compute a 

high precise local potential model with the ability to derive all components related to the 

potential W. These observation components are gravity g , quasigeoid height   , the geoid 

height GN , deflections of the vertical in the east and north direction ( , ), the fitting points 

)H|h,,(   and the apriori information in terms of coefficients of a local potential model 

derived from the developed methods of a mapping of a global one. 

 

This thesis provides a method for local and global gravity and geoid modelling. The Spherical 

Cap Harmonics (SCH) for modeling the Earth potential are introduced in detail, including 

their relationship to the normal Spherical Harmonics (SH). The different types of Spherical 

Cap Harmonics, such as Adjusted Spherical Cap Harmonics (ASCH), Translated-Origin 

Spherical Cap Harmonics (TOSCH) and the Revised Spherical Cap Harmonics (RSCH) are 

discussed. The ASCH method was chosen in further for modeling the local gravitational 

potential due to its simple principle, that the integer degree and order Legendre functions are 

preserved and lead to faster implementation algorithms. The ASCH are used in this thesis to 

transform the global gravity models like EGM2008 or EIGEN05c to local gravity models, 

guaranteeing a much smaller number of coefficients and making the calculations faster and 

easier.  

 

Tests are applied to validate the use of ASCH for local gravity and potential modelling, with 

ASCH coefficients calculated in test areas. These coefficients were used to calculate the 

values of potential or the gravity for new points and then compared with the real measured 

values and reference values from global models. The tests include the transformation of global 

gravity models like EGM2008 and EIGEN05c to ASCH models and the integrated solution of 

heterogeneous groups of data including terrestrial gravity data, height fitting points and the 

locally mapped global gravity models. 

 

The region of the federal state of Baden-Württemberg in Germany was used as a test area for 

this thesis to prove the concept. Nearly 15000 terrestrially measured gravity observations were 

used to implement an ASCH model in degree and order of 300 in order to achieve a resolution 

of 0.01 mGal
1
that corresponds to the measurement accuracy. 

 

 

  

                                                 
1
 1 mGal = 25101  ms  
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Zusammenfassung 
 

Die Zielsetzung dieser Thesis ist die Integration physikalischer Beobachtungen mit der 

geometrischer Beobachtungen und die Implementierung dieses Ansatzes in die DFHBF 

Software zur Berechnung einer Digitalen Finiten Höhenbezugsfläche, um die Berechnung von 

Höhenbezugsflächen zu ermöglichen. Die Schwerpunkte liegen insbesondere auf (i) der 

Verwendung von Adjusted Spherical Cap Harmonics (ASCH) zur Modellierung des lokalen 

Potenzials, (ii) der Berechnung einer Kleinste-Quadrate-Ausgleichung zur Bestimmung der 

ASCH-Koeffizienten und (iii) einer zur Berechnung notwendigen, optimalen Datenfusion 

unterschiedlicher Beobachtungkomponenten, die sich aus terrestrischen Schweremessungen, 

Höhenpasspunkten mit bekannter, ellipsoidischer Höhe und Normalhöhe und der aus globalen 

Schwerefeldmodellen in die regionalen ASCH-Modelle abgebildeten apriori Information. Die 

Motivation zu dieser Arbeit besteht in der Notwendigkeit, ein integriertes Modell zu 

entwickeln und daraus alle Komponenten, die sich auf das Potenzial W beziehen abzuleiten. 

Diese sind u. a. die Gravitationsbeschleunigung g , Quasigeoidhöhen , die Geoidhöhe GN

,und die Lotabweichungen in Nord und Ost ( , ) und die Höhenpasspunkte )H|h,,(  . 

 

Die Thesis stellt einige der weit verbreiteten Methoden für lokale und globale Schwerefeld- 

und Geoidmodellierung vor. Im Anschluss werden Spherical Cap Harmonics (SCH) zur 

Modellierung des Schwerepotentials und ihre Beziehung zu normalen Spherical Harmonics im 

Detail präsentiert. Die verschiedenen Arten für Spherical Harmonics wie Adjusted Spherical 

Cap Harmonics (ASCH), Translated-Origin Spherical Cap Harmonics (TOSCH) und die 

Revised Spherical Cap Harmonics (RSCH) werden diskutiert. Die ASCH werden deshalb für 

die Modellierung des lokalen Schwerepotentials favorisiert, weil sie einem einfacheren 

Algorithmen und Design unterliegen und Legendre-Funktionen mit ganzzahliger Grad und 

Ordnung verwenden. Mithilfe der ASCH werden globale Schweremodelle wie EGM 2008 und 

EIGEN05c zu einem lokalen Schweremodell transformiert, sodass eine deutlich geringere 

Anzahl an Koeffizienten bestimmt werden muss und die Berechnung vereinfacht und 

beschleunigt werden kann. 

 

Verschiedene Tests werden herangezogen, um die Verwendung von ASCH zur lokalen 

Schwerefeld- und Schwerepotentialmodellierung zu validieren. Dabei werden die ASCH-

Koeffizienten in den Testbereichen berechnet. Diese Koeffizienten werden dazu verwendet, 

Potential- und Schwerewerte für neue Punkte zu generieren, die mit den realen gemessenen 

Werten als Referenzwerte und mit den globalen Modellen verglichen werden konnten. Die 

Tests beziehen sich auf einem neuen Ansatz zur Transformation globaler Schweremodelle, 

wie EGM2008 und EIGEN05c, in ASCH-Modelle zur Integration hybrider Datentypen wie 

terrestrische Schweredaten, Höhenpasspunkte und lokal transformierter globaler 

Schweremodelle. 

 

Zur Verifizierung des Konzepts wurde in Rahmen dieser Arbeit das Bundesland Baden-

Württemberg in Deutschland als Testgebiet ausgewählt, in dem nahezu 15000 terrestrisch 

gemessene Schwerebeobachtungen mit Grad und Ordnung von 300 parametrisiert wurden, um 

eine der Messgenauigkeit entsprechende Auflösung von 0.01 mGal  zu erreichen.  
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1. Introduction 
 

 

The availability of GNSS related code- and phase-measurement, differential GNSS (DGNSS) 

RTCM correction messages, as well as precise point positioning (PPP), which are provided by 

different by GNSS-positioning services worldwide lead to the replacement of classical terrest-

rial geodetic reference frames for the georeferencing of positions. E.g. in Germany, several 

millions of trigonometric plane and height positions have been replaced by different online 

GNSS services operating in the GNSS and International Terrestrial Reference Frame 

(ITRF)consistent frame ETRF89 (Jäger et al., 2006).  

 

The station coordinates of these GNSS-online positioning services are given in the ITRF-frame 

or regional adoptions of it, like the time invariant ETRF89 for the stable part of Europe. 

Examples in Germany are the SAPOS (www.sapos.de), AXIONET (www.axio.net), VRSNow 

(www.trimble.com/positioning-services/vrs-now.aspx), and SMARTNET (de.smartnet-eu.com) 

services, with 150-250 stations nation-wide (Jäger, 2011). Further networks in European states 

and others round the world are available. Such services can provide the end user with highly 

accurate real time positions at a relatively low cost. In corresponding GNSS online processing, 

the positioning problem is divided into two parts: horizontal positioning and vertical positioning 

(Jäger, 2011). The horizontal position is transformed to the local coordinate systems through 

geometrical datum transformations and residuals interpolation followed by a specific map 

projection. In this way the horizontal positions can easily be merged with other traditional 

horizontal positioning techniques (Jäger et al., 2010).  

 

For the vertical position (height), the situation is different, because the GNSS height is the 

geometric height measured along the normal above the ellipsoid’s surface (ellipsoidal height h). 

The so-called physical heights H (or “sea-level heights”), which can also be measured with 

leveling instruments, refer to the Earth gravity field (Jekeli, 2007). They are based on potential 

differences to the reference potential W0 and the zero level (geoid). The vertical datum is fixed 

in modern height reference systems by the geopotential number of one or more datum reference 

points. 

 

 

 
 

Figure (1.1): The principle of GNSS-based height determination: H = h – N (Jäger et al., 2012). 
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In Europe, the Normaal Amsterdam’s Peil (NAP) is the reference point for the European 

vertical reference system (EVRS2007). Depending on the detailed and slightly different 

physical definition of the basic height system types, these heights H are called orthometric 

heights, normal or spheroid normal heights (NN-heights). The respective height reference 

surface (HRS) is described with the symbol N in figure (1.1), and it is called the geoid, 

quasigeoid or NN-surface, depending on the kind of the above gravity field based height system 

(Schneid, 2006). 

 

The aim of the DFHRS research project at the Institute of Applied Research (IAF) of the 

Hochschule Karlsruhe - University of Applied Sciences (HSKA) is the parametric modeling and 

computation of HRS from geometric and physical observation components in a hybrid 

adjustment approach (DFHRS). Access to the  parametric HRS model is enabled by  DFHRS 

databases (DFHRS-DB), which allow the direct conversion of GNSS-heights h into physical 

standard heights H. DFHRS databases are used for online GNSS-height determination in 

DGNSS-networks (SAPOS, AXIONET, etc.) directly on the GNSS controllers and via RTCM 

transformation messages in the real time GNSS positioning, and in GIS. The DFHRS databases 

have been computed for different states in Germany, as well as for several nations and regions 

in Europe, Africa and in USA. In most of these areas, the DFHRS-DB are used as the official 

vertical reference surface. The accuracy of the obtained results varies from 0.01-0.1 meter 

(Jäger et al., 2006). Recently, the terrestrial gravity measurements have been integrated in the 

DFHRS using the Spherical Cap Harmonics (SCH) to model the disturbing potential T and the 

related quantities like gravity anomalies, gravity disturbances, geoid heights and deflections of 

the vertical (Schneid, 2006). 

 

The main objective of this thesis is to further develop the SCH-modeling, started by Schneid 

(2006), and to find more stable parameterizations, either by modifying the present Spherical 

Cap Harmonics or by using alternatives, for the physical observations.  

 

Among the different types of SCH models, the Adjusted Spherical Cap Harmonics (ASCH) 

models have advantages over the other types of SCH (De Santis et al., 1997). ASCH do not 

require a search for the roots of Legendre function and its derivatives to satisfy the 

orthogonality requirements. The roots of the Legendre functions in the case of ASCH can be 

calculated easily using a direct formula with no need for complex and iterative solutions DE 

Santis et al., 1997). In addition, the Legendre functions of integer degree and order are used in 

the principle of ASCH. This enables the use of the well-known recursive and non-iterative 

formulas of Legendre functions similar to the ordinary Spherical Harmonics (SH) (De 

Franceschi et al., 1994). For these reasons, the ASCH have been chosen for modeling gravity 

and potential in regional areas. 

 

One goal of this thesis is to find an optimal way for the combination of the geometric 

observations (e.g. fitting points with known ellipsoidal and normal heights and deflections of 

the ) and physical observations (e.g. gravity data) for the HRS-representation using the Adjusted 

Spherical Cap Harmonics (ASCH). In the solution, the recent global gravity models presented 

by means of Spherical Harmonics (e.g. EIGEN05c and EGM2008) are transformed to local 

ASCH models and used as additional input in the adjustment of the combined ASCH solution. 

Another objective of this study is to compute a high precise height reference surface (1cm 

accuracy) for the state of Baden-Württemberg using the ASCH model for the combination of 

global gravity models, terrestrial gravity data and height fitting points. 
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In the following, Chapter (2) the general methods for global and local potential modeling using 

Spherical Harmonics, the Stokes formula, least squares collocation and the Finite elements 

methods are introduced. The principle of Integrated Geodesy is also introduced, and a general 

overview of the state-of-the-art of the latest global and local gravity and geoid models is 

provided. 

 

Chapter (3) introduces the local gravity potential modeling using SCH and ASCH. The 

derivations of SCH and ASCH are explained in detail. Other modifications of SCH, as well as 

other carrier functions for local modeling of the potential are treated. 

 

Chapter (4) describes the principles and results of the transformations of the global gravity 

models, presented by SH to local ASCH-models, and the results are discussed and validated. In 

addition, the design of the observations in the horizontal and vertical directions is discussed and 

tested. 

 

The use of Integrated Geodesy for gravity potential modeling using ASCH is explained in 

chapter (5). Solution algorithms using direct least squares solutions are introduced. The required 

reductions and transformations of the different observation types are explained. The observation 

equations as well as stochastic models are discussed in detail. Additionally, numerical methods 

and aspects are discussed. The methods of Cholesky decomposition, block matrix Cholesky-

decomposition and parallel processing are also presented. 

 

Chapter (6) discusses the results and analysis of the Quasigeoid computations based on gravity 

data by the developed ASCH approach for the state of Baden-Württemberg. Different data types 

of geometric and physical observations combinations are introduced. The results of these 

different data combinations are presented. 

 

Chapter (7) summarizes the thesis and its final results. In addition, conclusions and 

recommendations for further research are given. 
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2. Global and local gravity field modeling 
 

 

This chapter introduces the potential of the Earth and its applications based on Newton’s law of 

attraction, the relationship between the potential and the attraction force is explained. This 

chapter shows the solution of Laplace’s equation using the SH model, which is applied to 

gravity field modeling of the Earth. The relationship between the actual gravity field and the 

normal gravity field of the Earth is also explained, whereby the anomalous gravity field is 

introduced. 

 

The common way to represent the potential of the Earth is by SH, but the related methods 

require a global modeling. There is always a need to model the potential by other methods with 

local support for national and regional needs. Here, some of the common methods for local 

modeling of the potential of the Earth are discussed. Such suitable methods are the Stokes 

integral for gravimetric geoid modeling, the least squares collocation and the DFHRS developed 

at the Karlsruhe University of Applied Sciences. 

 

The so called Integrated Geodesy principle, where combination of different data types of 

observations  ,p),W(ll xx


  are modeled in the gravity and geometry space, is also briefly 

discussed. In addition, the state-of-the-art of the latest global and local geoid and gravity models 

is presented. 

 

 

2.1. The gravity field of the Earth 

 

The attraction force F between two mass points   and    [kg], separated by a distance l [m], 

can be calculated according to Newton’s law of attraction (equation 2-1) (Hofmann-Wellenhof 

& Moritz, 2005). The attraction force F reads: 

 

2

21GF
l

mm



               (2-1) 

 

Here, G is Newton’s gravitational constant with the value of                    . The 

attraction force F is symmetric. To study how a mass m attracts other masses, the attracted 

masses assumed to be a unit mass (    ). The force attracting the unit mass at point P(X,Y,Z) 

by the mass  m at P0 (X0,Y0,Z0 )separated by a distance l is (Heiskanen & Moritz, 1967): 

 

2
GF

l

m
                 (2-2) 

 

The force F


is represented by a vector from P0 to P. The vector of the gravitational force F


can be defined by its magnitude F and 3D components of the unit vector (Fan, 2004). F


is given 

by 
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
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0

0

0

2

0

0

0

F


      (2-3) 
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The gravitational potential is a conservative, which satisfies the Laplace differential equation 

outside the Earth (see chapter2.1.1). A scalar force generating potential exists. This function is 

called the gravitational potential V (X, Y, Z) (Fan, 2004), where V reads: 

 

 
l

GM
 Z)Y,V(X,               (2-4) 

 

The unit mass related force vector F


in equation (2-3) can be rewritten in terms of V as follows: 

 

)(VgradF


               (2-5a) 
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
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





































Z

V

Y

V

X

V

F

F

F

Z

Y

X

F


              (2-5b) 

 

Assuming a system of point masses m1, m2... mn are attracting the point P, and separated from 

the point P by distances l1 , l2 ,...,ln, then the gravitational potential V is the summation of all 

single potentials (Hofmann-Wellenhof & Moritz, 2005). The total gravitational potential is: 

 

 
 


n

i

n

i i

i
i

l

Gm
V

1 1

  Z)Y, V(X,            (2-6) 

 

If the point P is influenced by a solid body with a volume v and a density of ),,( ZYX , then 

the potential V is calculated by a superimposing infinite number of point masses dm.  The point 

mass can be calculated by the volume of point mass dv and the density ρ, reading: 

 

dvdm                 (2-7) 

 

The total gravitational potential by the solid body is calculated by the integration over the whole 

volume of the solid body (Torge, 2001). V is given by: 

 

  
V

l

dvZYX
GdV

),,(
V


           (2-8) 

 

2.1.1. Laplace differential equation and Spherical Harmonics (SH) 

 

For a function V(X, Y, Z), the Laplace equation for this function is the Laplace operator ∆(.)=0 

and reads (Fan, 2004): 
 

 0)(
2

2

2

2

2

2

















Z

V

Y

V

X

V
V            (2-9) 

 

Using spherical coordinates ),,( r  as defined in fig (2.1), Laplace’s equation can be 

transformed to: 
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


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


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













VVV

r

V
r

r

V
r        (2-10) 

 

 

 

Figure (2.1): Geographic coordinates (     )and the spherical coordinates(     ̅). 

 

Assuming that the density ρ is constant (ρ is given the value of the average density of the Earth) 

and dv is the same for all elements, then only l is changing for each element. The Laplace 

operator for the gravitational potential in equation (2-8) is given by: 

 

 0)
1

()( 







  


d

l
G

l

d
GV

vv
        (2-11)    

As 0)
1

( 
l

, V is a harmonic function. The solution of Laplace’s equation is found by 

separating the variables           ̅   using the substitution in equation (2-12) (Fan, 2004), 

reading: 

 

 )()()(),,( 321  ffrfrV             (2-12a) 

11

1
)(




nr
rf      n = 0,1,2,…        (2-12b)    

)(sin)(2  nmPf     n=0,1,2,…    and  m=0,1,2…,n-1,n   (2-12c) 

 msin orm cos3 )(f
     

m=0,1,2,….n-1,n       (2-12d) 

 

In equation (2-12), )(sinnmP are the Legendre functions of degree n and order m. Assuming 

tsin , the Legendre function is generally defined by the differential formula in equation (2-

13) (Hofmann-Wellenhof & Moritz, 2005): 

 

    ( )  
 

    
(   )   n

m

n

m

t
dt

tPd
)1(

)( 2           (2-13) 
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As the differential equation (2-10) is linear, for each integer n there is a solution. The 

summation of all solutions is also a solution for Laplace’s equation     . The potential V can 

be written in terms of surface Spherical Harmonics (SH) in equation (2-15) (Hofmann-

Wellenhof & Moritz, 2005). 

 

),(
1

),,V(
0

1
 nm

n

nm

nm

n
n

YA
r

r 







           (2-14) 












0,)(sinsin

0,)(sincos
),(

mPm

mPm
Y

nm

mn

nm




         (2-15a) 










0,

0,

mb

ma
A

nm

nm

nm
             (2-15b)             

 

Equation (2-14) can be reformulated as double summation. In this case V reads: 

 

 


 



0 0

1
)(sin)sincos(

1
),,(

n

n

m

nmnmnmn
Pmbma

r
rV       (2-16) 

 

 

2.1.2. The normalized SH 

 

As shown above, the gravitational potential V satisfies the Laplace equation. In equation (2-14), 

V was modeled to solve the Laplace equation in terms of SH. When higher degrees and orders 

Legendre functions )t(Pnm  are calculated, instability problems appear in the calculations (Fan, 

2004). To avoid these issues, a normalized form of equation (2-14) is introduced in equation (2-

17) using the normalized Legendre functions )t(Pnm  (Sneeuw, 2006). 

 

 ),(
1

),,(
0

1
 nm

n

nm

nm

n
n

YA
r

rV 







           (2-17a) 

),(),(  nmnmnm YfY              (2-17b) 

)()( tPftP nmnmnm                (2-17c) 

nm

nm
nm

f

A
A                 (2-17d) 

 

Finally, the potential V reads: 

 

 


 



0 0

1
)(sin)sincos(

1
),,(

n

n

m

nmnmnmn
Pmbma

r
rV       (2-18) 

 

The normalizing function  nmf  in equation (2-17) reads (Torge, 2001): 
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The coefficients nma and nmb  are constants, which have to be determined. They are generally 

called the spherical harmonic coefficients.  

 

 

2.1.3. The normalized Legendre functions 

 

Substituting the normalizing function nmf  in equation (2-19) in the recursive formula of 

Legendre function  nmP  in equation (2-13), the fully normalized Legendre function in equation 

(2-20) is realized. )(sinnmP is the fully normalized associated Legendre function. )(sinnmP

can be calculated by the recursive formulas (2-20), with the abbreviations   sint  and  

cosu  (Holmes & Featherstone, 2002) as follows: 

 

m,nnmm,nnmm,n PbPtaP 21               (2-20a) 

)mn)(mn(

)n)(n(
anm






1212
            (2-20b) 

)n)(mn)(mn(

)mn)(mn)(n(
bnm

32

1112




          (2-20c) 

 uPtPP 3,3,1 1,10,10,0            (2-20d) 

 

If n=m, then m,nP reads: 

 

1,1,
2

12



 mmmm P

m

m
uP             (2-20e) 

The first derivative of the fully normalized Legendre polynomial  


 mnP ,
 can be calculated using 

the calculated values of the recursive formulas in equations (2-20). There is no need for new 

recursive formulas to calculate the derivatives of the Legendre functions; the calculated value of 

the Legendre polynomial mnP , can be applied directly to calculate the derivatives of the Legendre 

polynomial (Tscherning et al., 1983), reading: 

 

)
12

)12)((
(

1
,1

22

,

,

mnmn

mn
P

n

nmn
Ptn

u

P












 for mn        (2-21a) 

mn

mn
Ptn

u

P
,

, 1







     for mn          (2-21b) 

 

 

2.1.4. Harmonic expansion of the Earth gravitational potential 
 

Equations (2-17) and (2-18) are used to evaluate the gravitational potential V at a point 

),,r(P   attracted by the solid body of the Earth. Equations (2-20a) to (2-20e) are used to 

calculate the Legendre functions. The coefficients (anm, bnm) in equation (2-18) can be used to 

evaluate the gravitational potential V at the point P created by the mass of the Earth (Hofmann-
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Wellenhof & Moritz, 2005).Depending on the orthogonality conditions, the coefficients nma and 

nmb  are given by (Fan, 2004): 

 

dvPmr
n

G
a nm

v

n
nm  )(sincos)(

12



          (2-22a) 

dvPmr
n

G
b nm

v

n
nm  )(sinsin)(

12



          (2-22b) 

 

By substituting m=0 and n=0, we find 00b =0, and 00a is given by (Fan, 2004): 

 

GMpdvGa
v

 00             (2-23) 

 

Substituting 00a  in equation (2-18) results in: 

 

r

GM
V 00

               (2-24) 

 

To find 111110 ,, bandaa , we have: 

 

dmr
G

a
v

  sin3
3

10             (2-25a) 

dmr
G

a
v

   cos3cos
3

11           (2-25b) 

dmr
G

b
v

   cos3sin
3

11           (2-25c) 

 

Geographic coordinates of the point element can be transformed to the Cartesian coordinates 

using equations (2-26a) to (2-26c). 

 
zr  sin                (2-26a) 

xr   coscos              (2-26b) 
yr   sincos              (2-26c) 

 

Then 111110 ,, bandaa  read: 

 

  dmz
G

a
3

10               (2-27a) 

  dmx
G

a
3

11               (2-27b) 

  dmy
G

b
3

11               (2-27c) 

 

In mechanics, the coordinates of the center of mass of a rigid body are (Torge, 2001): 
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dmx
M

x
V 

1
0

              (2-28a)                                          

 dmy
M

y
V 

1
0

              (2-28b) 

 dmz
M

z
V 

1
0

              (2-28c) 

 

Inserting equations (2-28a) to (2-29c) in equations (2-27a) to (2-28c) results in: 

 

010

3
z

GM
a                 (2-29a)  

011

3
x

GM
a                 (2-29b) 

011

3
y

GM
b                 (2-29c) 

 

For a properly chosen reference frame, the origin of the coordinate system coincides with the 

center of mass of the Earth. Therefore, x0, y0 and z0 are equal to zero, meaning that the related 

coefficients are zero as well. 

 

 011101110  bbaa              (2-30) 

 

Inserting equation (2-24) and (2-30) in equation (2-25) results in:  

 

)(sin)sincos(
1

),,(
02

1




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




   nmnm

n

m

nm

n
n

Pmbma
rr

GM
rV    (2-31) 

 

The spherical harmonic coefficients nma and nmb in equation (2-31) can be normalized using the 

gravitational constant GM and the semimajor axis of the reference ellipsoid a as shown in 

equations (2-32a) and (2-32b) to get new normalized coefficients nmC and nmS (Fan, 2004). 

 

nm
n

nm a
GMa

C



.

1
              (2-32a) 

nm
n

nm b
GMa

S



.

1
              (2-32b) 

 

Inserting (2-32) in equation (2-31) results in equation (2-33a) or equivalently (2-33b). 

 

 )(sin)sincos()(),,V(
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 )(sin)sincos()(),,V(
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2.1.5. Derivatives of the potential of the Earth 

 

A point P on the Earth’s surface is subjected to two types of acceleration (see figure3.1). The 

first type is the gravitational acceleration part 
1g


 due to the Earth’s mass M. The second type z


 

is the centrifugal acceleration due to the Earth’s rotation. The total acceleration g


 is the vector 

summation of both gravitational and centrifugal accelerations (Fan, 2004), which represent the 

actual gravity vector: 

 

zgg 1




 
              (2-34) 

 

The relationship between the accelerations in equation (2-34) and their related potential is given 

in equation (2-35). The total gravity potential W, created by the total acceleration, g


, is the 

summation of the gravitational potential V and the centrifugal potential   . This total gravity 

potential is given by: 

 
VW

               (2-35) 

 

 
Figure (2.2): The gravitational and centrifugal accelerations of the Earth (Fan, 2004). 

 

The centrifugal potential is caused by rotation of the Earth around its minor axis. The 

centrifugal acceleration vector will therefore have only two components in the X and Y 

directions. As the angular velocity   of the Earth around its minor axis is 14100.7292115  s

as defined by the GRS80 (Torge, 2001), the centrifugal potential reads: 

 

 )(
2

1
cos5.0 22222 YXr             (2-36) 

 

Its related centrifugal acceleration vector and magnitude are: 
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The total gravity vector is the gradient of the gravity potential W ( Wgradg


).This can be 

formulated in equation (2-38) in 3D-cartesian coordinates (Torge, 2001). 
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             (2-38) 

 

In spherical coordinates, equation (2-38) reads: 
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Substituting equation (2-35) in equation (2-39) results in: 

 


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         (2-40) 

 

The derivatives of the gravitational potential V in equation (2-40) are given by: 
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The derivatives of the centrifugal potential read: 
 

 22 cos




r
              (2-42a) 
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The magnitude of gravity reads: 
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By using the SH formulas, it is easy to derive any other functional quantities related to the 

potential (Heiskanen & Moritz, 1967).The most referred functional quantities in equation (2-44) 

are the gravity vector Sphere_LGVg


 in spherical-LGV, LGVg


 in LGV, quasigeoid heights (height 

anomalies)  , the geoid height N , and deflections of the vertical in the east and north 

directions ( , ) (Fan, 2004). 
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where the absolute value g at a position P(x,y,z) is both the same. The following quantities (2-

44b) to (2-44e) are referring to the ellipsoid, a modern ellipsoidal georeferencing, and the 

respective reference gravity field (at present GRS80): 
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With γ and g  the integrated quantities of the reference and the true gravity field (2-44a), 

respectively, along the plumb line (practically and without loss of validity computed along the 

ellipsoidal normal) are introduced. T is the disturbing potential, defined as the difference 

between the gravity potential W and the ellipsoidal normal potential U (see chapter 5.2.2). Q is 

the ellipsoidal normal gravity for a point Q on the so-called telluroid with the same latitude and 

longitude as the calculation point and an ellipsoidal height of  PP
*

Q hHh . The telluroid 

is defined as the surface whose normal potential 
QU is equal to the actual potential at point 

PW  

(Hofmann-Wellenhof & Moritz, 2005) (see figure 2.3). The telluroid is not an equipotential 

surface. Norths
 

and Easts  are the differential distance elements towards North and East, 

respectively. M and N are the ellipsoidal radii of curvature in the directions of longitude and 

latitude, respectively. The geoid (N) coincides with the mean sea level and was earlier used 

height reference surface by measuring the tide gauges at the coast of a country. The difference 

in the definitions between the geoid (N) and the quasigeoid ( ) is discussed in details in 

chapter (5.2.2). 
 

 

 

Figure (2.3): Height anomaly  vs. geoid height N. 
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2.1.6. The spherical harmonic expansion of the Earth’s gravity field 

 

The common way for representing the gravitational potential V in a global model is to use the 

SH (Hofmann-Wellenhof & Moritz, 2005).Presently, there are many global gravity potential 

field models available from various sources and with different spatial resolutions. The 

International Center for Global Gravity Models (ICGEM) provides access to the various 

satellite only or combined models on behalf of the International Association of Geodesy 

(http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html) (ICGEM, 2012). Examples of these models 

are shown in table (2.1). 

 

 
Table (2.1): Some of the common global gravity models with their data sources. 

Model Year Degree Data 

EIGEN06c 2011 1420 S(GOCE,GRACE,LAGEOS),G,A 

EIGEN051c 2010 359 S(GRACE, CHAMP),G,A 

EIGEN05c 2008 360 S(GRACE,LAGEOS),G,A 

EGM2008 2008 2190 S(GRACE),G,A 

EIGEN-GL04c 2006 360 S(GRACE,LAGEOS),G,A 

GGM02c 2004 200 S(GRACE),G,A 

EIGEN-CG01c 2004 360 S(CHAMP,GRACE),G,A 

PGM2000A 2000 360 S,G,A 

EGM96 1996 360 S,G,A 

Data: S=Satellite gravity data, G = Gravity data, A = Altimetry data 

 

 

The calculation of the SH coefficients can only be solved by means of global data coverage. 

This could only be achieved after the first geodetic satellite missions (like the LAGEOS, 

GRACE, GOCE and CHAMP missions). The satellite missions are utilizing different types of 

measurement principles. The LAGEOS satellites apply the principle of Satellite Laser Ranging 

(SLR), while the CHAMP mission uses the principle of Satellite-to-Satellite tracking in high-

low mode, where the residual gravity accelerations are additionally measured by means of an 

accelerometer. The GRACE Satellite mission uses the principle of Satellite-to-Satellite tracking 

in low-low mode, where the gravity differences between two satellites separated by hundreds of 

kilometers are observed. The most modern GOCE mission uses the principle of gravity 

gradiometry using a group of accelerometers fixed on the three axes of the satellite. The 

combination of satellite observations with terrestrial measurements led to the combined gravity 

models (e.g. EGM98A, EGM96, EIGEN06c and EGM2008). The SH can be calculated by two 

methods: the first is the integration method that keeps the orthogonality conditions of the SH, 

and second is the least squares estimation (Fan, 2004). 

 

The integration methods have several problems. One is that the data have to be downward 

continued to the zero level (geoid) resulting in the so-called surface SH; the other is that 

weighting of observations of different sources is not possible. The integration formulas to 

calculate the spherical harmonic coefficients using the gravity anomalies g  and the geoid 

heights N are given by Torge (2001): 
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In the least squares solution, the introduction of the variance and covariance matrices is possible 

for each group of data or for any single observation (Hofmann-Wellenhof & Moritz, 2005). 

 

The solutions have always been applied in two modes: the satellite-only models and the 

combined models. The advantage of satellite-only methods is that they use direct gravity or a 

potential function as input without the need for any reductions or corrections. On the other hand, 

there is always mixing related to the terrestrial gravity data in the combined methods. 

Sometimes the terrestrial gravity data are free air gravity and sometimes Bouguer anomalies. 

The geoid/quasigeoid heights at the height fitting points may also be related to different vertical 

datums. They can also be in different types of heights like the orthometric, normal or dynamic 

heights. For these reasons, it is more desirable to have the satellite-only models alone without 

the combination with terrestrial data (Tscherning, 2001). 

 

The satellite-only models use data measured over long time periods. This provides information 

about time dependent changes of the Earth like plate tectonics, ocean circulation, ice mass 

variations, tides, etc. Each of these time dependent effects will affect the measured gravity 

values. For these reasons they are suitable to be used in defining the global physical reference 

surface (Hofmann-Wellenhof & Moritz, 2005) 

 

The satellite-only methods have a limited resolution which leads to lower degree and order of 

the SH model. In addition, there are always some gaps in the data, especially near the poles, but 

the representation of the quasigeoid requires high degrees and orders with global coverage of 

data (Tscherning, 2001). For these reasons terrestrial data are required to achieve higher 

accuracy in the combined models. 

 

 

2.2. The local potential modeling 

 

Here, different principles of local potential and gravity modeling are introduced. The methods 

discussed in this chapter are the Stokes formula including the remove-restore method, 

GNSS/Leveling, the Finite Elements Methods and the Least Squares Collocation. Other 

functional principles like SCH and its different modifications, Spherical Radial Basis Function 

and Spherical Harmonic Splines are introduced in chapter (3). There are many other principles 

available, like the astrogeodetic methods, …, etc. 

 

 

2.2.1. Stokes formula and remove-restore method 

 

The Stokes formula (Stokes Integral),derived by Stokes (1849), is one of the most commonly 

used methods for the computation of highly accurate geoid models by means of a grid of surface 

gravity anomalies  . Here,   is the difference between the real gravity on the geoid surface    

observation and the ellipsoidal normal gravity on the ellipsoid surface  . The gravity anomaly 

   reduced to geoid level to get      to calculate the geoid using free correction and terrain 

corrections. Where   and      read: 

 

     -                 (2-46a) 

       -                 (2-46b) 

 

The point P, P0, Q and Q0are explained in fig (2.3). The Stokes formula reads: 
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            (2-47) 

 

Here, a is the semimajor axis of the reference ellipsoid, The Stokes function )(S   is given by: 

 

  ( )  ∑
    

 - 
  ( )

 
               (2-48) 

 

In equation (2-47),   is the spherical distance between the point of interest and a grid point 

with given gravity anomaly   .   ( ) is the zero order Legendre function related to  .For the 

implementation of Stokes integral, the scattered gravity anomalies gravity points have to be 

gridded over the complete Earth’s surface to enable calculation of the geoid heights. 

 

As the Stokes formula has to be applied globally in principle, an enhancement to this formula 

has commonly been used to model the geoid height locally using the long-wavelength effect, 

which is introduced by the available global gravity models. In addition, the combination of the 

global models with dense gravity data and high resolution Digital Terrain Models (DTM) leads 

to the so-called remove-restore technique.  

 

In the remove-restore technique, the gravity anomaly grid points    are reduced by the gravity 

anomalies computed from a global gravity model        . The effect of the terrain then has to 

be reduced     . The resultant gravity anomalies (residual anomalies)            are applied in 

the Stokes formula to obtain the residual geoid heights           (Torge, 2001).The final geoid 

height is given by: 

 

                                     (2-49) 

 

The use of remove-restore method enables the application of Stokes formulas over smaller 

areas. This makes it possible to work with planar approximations, enabling application of the 

FFT. The use of the Stokes formula is not possible by combination of different data types with 

different accuracy measures. Furthermore, a grid of gravity anomalies must always be used. In 

this way, the single gravity observations cannot be statistically weighted and tested according to 

the measurement accuracy (Torge, 2012). 

 

 

2.2.2. GNSS/Leveling 

 

The GNSS/GPS leveling can be directly used in the defining the eight reference surface (HRS) 

by measuring the ellipsoidal heights (h) of points with known orthometric height (H) or normal 

height (H*). The ellipsoidal heights are measured directly by means of GPS/GNSS. The height 

anomaly (ζ=h-H*) or the geoid height (N=h-H) at a given point is directly determined (Fan, 

2004). 

 

 

2.2.3. Digital finite elements height reference surface (DFHRS) 

 

The finite-element method has been used for modeling the height reference surface (HRS) in the 

Digital Finite Element Height Reference Surface (DFHRS) project (www.dfhbf.de).The 

DFHRS research project at IAF of the Hochschule Karlsruhe - University of Applied Sciences 
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aims to implement a parametric modeling and computation of height reference surfaces for the 

geometric and the physical observation components in a hybrid adjustment approach (DFHRS). 

Access to the parametric HRS model is enabled by DFHRS databases (DFHRS-DB), which 

allow the direct conversion of GNSS-heights (h) into physical heights (H). DFHRS data-bases 

are used for online GNSS-height measurements in DGNSS-networks (SAPOS, AXIONET etc.) 

and in the Geographic Information Systems (GIS). The DFHRS-DB have been computed for 

different states in Germany as well as several nations and regions in Europe, Africa and the 

USA. The accuracy of the obtained results varies from 0.01-0.1 meter (Jäger et al., 2006). 

 

The direct conversion of the ellipsoidal GNSS height h (Ellipsoidal height), determined at the 

Earth surface, into the physical Earth gravity field based physical height H, is necessary for 

GNSS-based height measurements in modern GNSS-positioning services (Ghilani & Wolf, 

2008). The basic relation between the GNSS-based height h and the standard height 

(orthometric height H) in figure (2.4) reads: 

 

 H = h –N                                                                   (2-50) 

 

 

 
 

Figure (2.4): The relation between orthometric height H, ellipsoidal heights h and geoid undulation N. 

 

 

2.2.3.1 Principles of DFHRS 

 

The geoid is represented by its height above the Ellipsoid or the so-called geoid undulation (N). 

In DFHRS, N is represented by the Finite Element Method (FEM) with polynomial parameters 

p. These describe a finite element HRS called NFEM(p| h,, ). If a scale difference m is 

considered for old reference systems, then the HRS is represented by NFEM (p, m | h,, ) 

(Jäger & Schneid, 2002). Equation (2-50) can therefore be written as: 

 

 ),,|,( hmDFHRShH  p            (2-51) 

 

Or equivalently, 

 

 ),, |  ,NFEM( hmhH  p            (2-52) 
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The finite element representation NFEM(p|x,y) is carried out by bivariate polynomials of degree 

n, which are set up in regular or irregular meshes (Jäger & Kälber, 2000).  If we describe with p
i
 

the polynomial coefficients (a00, a10, a01, a20, a11, a02,...) of the i-th mesh of n meshes in total, the 

height NFEM(p
i
|x,y) of the HRS over the ellipsoid is: 

 

 
ii

pp
T)y,x()y,x|(NFEM f           (2-53) 

 
  1  and  00i ²,...)y,xy²,x,y,x,()y,x(n,k;n,j;]p[ TTi

jk  fp     (2-54) 

 

The principle of the DFHRS is to divide an area or region of a continuous HRS into a number of 

patches, with each patch further divided into a number of meshes as shown in figure (2.5). Each 

patch has a datum and associated transformation parameters (d) and each mesh has HRS 

parameters (p). Continuity condition must also be considered. The NFEM for a point in the 

boundary between two meshes should be the same depending on the two meshes (the so-called 

C0- continuity), as should the slope at the boundary for both meshes (so-called C1-continuity) so 

that the meshes represent the whole area. The DFHRS parameters (p) and the mesh information 

are stored in the DFHRS-DB. 

 

The DFHRS geometrical observations include points with ellipsoidal (h) and normal or 

orthometric heights(H) as identical points, geoid heights form global or regional geoid models, 

astronomical  deflections of the vertical (  , ) from geoid models and the points with observed 

ellipsoidal heights(h) or orthometric heights (H). 

 

The parameters stored in the DFHRS-DB are (p, m ) and are related to the projected 

coordinates (x,y). The polynomial representation of the DFHRS is written in terms of design 

matrix f and parameters vector p: 

 

 pp
T)y,x(fNFEM  y)x,|(             (2-55) 

 

The observation equation for an ellipsoidal normal height in the i-th mesh with covariance 

matrix hC has the following observation equation: 

 

 iT)y,x(mhHvh pf            (2-56a) 

 

The observation equation of a global potential model (GPM) geoid height in the i-th mesh and 

the j-th patch is: 

 

 )(),( jiT

GPM NyxvN dpf             (2-56b) 

 

The deflections of the vertical in the i-th mesh and j-th patch observation equations are: 
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The observation equation for the physical (orthometric or normal) heights reads: 
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 HvH                 (2-56e) 

 

The continuity conditions between different neighbour meshes are considered as additional 

observation equations: 

  

 )( pCvC                 (2-56f) 

 

 
 

 
 

Figure (2.5): DFHRS patches and meshes, where thick lines represent the patch boundary and thin lines represent 

the meshes. 

 

 

In the equations (2-56a) to (2-56f), )(dN is the datum parameterization of the GPM quasigeoid 

or geoid grid heights in the patch. )(d and )(d are datum parameterizations of the 

deflections of the vertical. f  is the partial derivative of f(x,y) with respect to the latitude. And 

finally, 
Lf  is the partial derivative of  f(x,y) with respect to the longitude. 

 

To reduce the effect of medium- or long-wave length systematic shape deflections, specifically 

the natural and stochastic “weak shapes” (Schneid, 2006), in the observations N and (,) from 

geoid or GPM models, these observations are subdivided into a number of patches; see the thick 

blue in figure(2.5).  

 

 

2.2.3.2 Extension of DFHRS to physical observations 

 

The DFHRS physical observations include terrestrial, airborne and space borne gravity 

measurements. In addition, physical observations from a global or regional geopotential model 

(GPM) of the Earth gravitational potential V for limited size cap area and cap pole, represented 
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by the so-called SCH (
'' , nmnm CS ) (see figure3.1) may be integrated by use of Spherical Cap 

Harmonic (SCH) approach developed by Schneid (2006). 

 

The advantage of SCH is that the number of parameters for the local cap area is significantly 

less than that needed in an ordinary global SH model. The disturbing potential using SCH in a 

cap coordinates system, as defined in chapter (3.1), can be written as (Schneid, 2006): 
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The DFHRS model can be used in SCH as a condition so that NFEM=N(SCH). 

 

 pf
T )S,C(Nv '
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'

m)k(nN            (2-58) 

 

The gravity observation 
Pg  at the Earth surface, taken with a gravity meter, refers to the local 

astronomical vertical system (LAV). The respective observed three-dimensional gravity vector 

in total is given by: 

 

 
T

P

LAV g ],0,0[ g              (2-59a) 

 

The related gravity anomaly is QPgg  . The gravity vector can be rotated using the 

deflections of the vertical ),(  or equivalently by the astronomical latitude and longitude (

  , )cos(/   ) to the Earth-centered Earth-fixed system (ECEF) using ),(  , 

(see chapter 5.2.1).Following this rotation, the centrifugal parts are removed, and the original 

observation in equation (2-59a) is strictly reduced with respect to deflections of the vertical and 

the centrifugal acceleration. After a further rotation to the local geodetic vertical system (LGV) 

related to the cap sphere, the reduced observation (2-59a) is: 
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In the SCH frame (2-59b) using the transformation equations (5-10) to (5-17) is written as: 
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The harmonic expansion of the radial component of equation (2-59c) is: 
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The SCH have an integer order m and a real degree nk. The real degree nk satisfies the property 

of orthogonality of the function in the cap area (Haines, 1985a). These represent the roots of 

Legendre function and its derivatives according to the following conditions: 

 

 
0)(cosP )m(nk    for   k-m=odd         (2-60a) 
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 for   k-m=even        (2-60b) 

 

This principle has disadvantages, because of the need to search for the real degrees nk according 

to the conditions in equations (2-60a) and (2-60b).The different algorithms for calculating the 

roots of Legendre functions introduce additional errors, because they are mostly iterative with 

certain approximations or complicated algorithms(see chapter 3.1.2). Furthermore, the 

computation of the real degree nk is time consuming (De Santis, 1997). The calculations of 

Legendre functions and their derivatives with non-integer degrees, where no recursive formulas 

are given in the literature, is also a time consuming process making use of approximations 

(Haines, 1985b). More detailed information about SCH and their different modification of SCH 

are given in chapter (3). 

 

 

2.2.4. Least Squares Collocation 

 

The basic principle of the Least Squares Collocation (LSC) is that the disturbing potential T 

satisfies Laplace’s equation. It is represented a by a group of suitable harmonic base functions 

  at given positions with their related coefficients  . In this case, the disturbing potential reads: 
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               (2-61) 

 

The measurements are assumed to be linear functionals L(T) of the disturbing potential T. The 

linear operators of deflections of the vertical, gravity anomalies and gravity disturbances related 

to the disturbing potential are given in table (2.2) (Hofmann-Wellenhof & Moritz, 2005). 

 

 
Table (2.2):  The potential related observations and their linear operators L(T). 

Variable Relation to the potential L(T) 

Deflection of vertical east-west 
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Gravity anomalies  
  

  
 
 

 
   

 

  
 
 

 
 

Gravity disturbance  
  

  
  

 

  
 

 

 

For a given observation I, we have: 
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                    (2-62) 

 

The coefficients    read: 
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In equation (2-62), we can solve for q coefficients by using q observations. This method is 

called collocation. If we consider a harmonic covariance propagation function (K) that is 

symmetric with respect the point P and the reference point Q, the base function    related to the 

observation type of Q is : 

 

     
  (   )                  (2-64) 

 

Substituting (2-64) in (2-63) results in: 
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Solving (2-62) for    and substituting in (2-61)results in: 
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The covariance propagation function K as given by Torge (2001) reads: 
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            (2-67) 

 

In equation (2-67),   
  is the n-th degree variance that can be theoretically calculated by the 

Tscherning & Rapp method or from the global gravity models.     is the spherical distance 

between the points P and Q (Hofmann-Wellenhof & Moritz, 2005). 

 

The greatest advantage of LSC is the flexibility in estimating any kind of the potential related 

quantities using a combination of all available geodetic physical and geometrical observations, 

in addition to its proper use for local and global implementation. The primary problem, 

however, is that for huge areas a large amount of data would be required. This requires extended 

computation time of the new points. 

 

 

2.3. Integrated Geodesy 

 

High speed computers allowed the processing of large amounts of data of different types to 

solve a large system of equations.  The integrated data processing for a unified model for three 

dimensional geodesy is called “Integrated Geodesy”. In the classical geodesy, only one type of 

observation is used for gravity field modeling. An example of the classical geodesy is the 

Stokes formula for geoid modeling, where only the gravity anomalies are used to compute the 

disturbing potential T (Hein, 1986). 

 

The principle of Integrated Geodesy is that any time independent observation l  can be 

expressed as a function with parameters vector p depending on the position (Geometry) 

)Z,Y,X(x


and the Earth potential W (Heck et al., 1995): 

 

 )p,(W,ll xx


               (2-68) 
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In most cases, the position (geometry) is assumed to be fixed. The parameterization is to model 

the potential and its related quantities. The quantities introduced in chapter (2.1.5) are all 

functions of the potential that apply to equation (2-68). Examples of Integrated Geodesy are 

each of the modeling principles introduced in chapter (3). The DFHRS described in chapter 

(2.2.2) also qualifies as Integrated Geodesy. 

 

 

2.4. State of the art in the gravity field modeling 

 

There currently exist many published global, regional and local geoids. In the global models, 

they are mostly modeled by means of SH as described in chapter (2.1).EGM2008 is the global 

combined gravity model with the highest degree and order presently available, with a maximum 

degree and order of 2190. The EGM2008 would satisfy a 5cm geoid height accuracy, in case it 

would be free of “weakshapes” (Pavlis et al., 2008). Other combined global gravity models 

were calculated and introduced by GFZ-Potsdam (EIGEN models). The most recent of these is 

the EIGEN06c, which has a maximum degree and order of 1420. In the geoid heights, the 

accuracy of the EIGEN06c is comparable to the EGM2008. Other combined models with less 

degree and order (EIGEN01-05c) are up to degree and order of 360.  

 

The estimation of high degree and order models like EGM2008 and EIGEN06c have introduced 

new calculation methods. In these methods, the parameters are calculated using a combination 

of integrals and least squares (Shako et al., 2010). Figure (2.6) shows the use of different data 

types, and how they contribute to finding the harmonic coefficients of the EIGEN06c model. 

 

 

 

Figure (2.6): The principle of harmonic coefficients calculation in EIGEN06c model. (Förste et al., 2011)  

 

 

For modeling the satellite-only gravity data, which are free of datum and zero level, satellite- 

only models are always introduced. One of the most common applications is the satellite orbit 

determination. These models, however, suffer from problems associated with ground geoid 

determination. This is because of low degrees and orders due to the loss of data, especially in 

pole areas. Table (2.3) shows selected combined and satellite-only models and their related 

maximum degree and order with the accuracy of the model.  
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Table (2.3): Examples of satellite only and combined global geoid models. (GFZ-website, 2012) 

Model Publishing 

date 

N-max Data geoid accuracy 

in Europe (m) 

EGM2008 2008 2190 S(GRACE),G,A 0.208 m 

EIGEN06c 2011 1420 S(GOCE,GRACE,LAGEOS),G

,A 

0.214 m 

EIGEN06s 2011 240 S(GOCE,GRACE,LAGEOS) 0.449 m 

GGM03c 2009 360 S(GRACE),G,A 0.515 m 

GGM03s 2008 150 S(GRACE) 1.416 m 

S= Satellite data, G=Terrestrial gravity, A=height fitting points 

 

 

The EGG07,computed by IfE-Hannover, is one the latest regional gravity models in Europe, 

and has supplanted the European quasigeoid EGG97 (Torge & Denker, 1999). The EGG07 was 

calculated by the remove-restore method with updated terrestrial gravity, marine gravity and 

airborne gravity data. When compared to GPS/leveling heights the EGG07 has a RMSE of 0.01-

0.06 m. The worst results were in high mountains in Austria and France (Denker et al., 2008). 

Another regional geoid model was calculated by the DFHRS software for the Baltic countries 

(Latvia, Estonia, and Lithuania). The achieved accuracy of the Baltic geoid was 1-3cm (Jäger et 

al., 2012). For Europe, a geoid model using DFHRS software was calculated in 2004 with an 

accuracy of better than 10 cm. 

 

In terms of local geoid models, the USGG09 and GEOID09 were introduced in 2010 for the 

United States of America by the NGS (National Geodetic Survey). The USGG09 is an absolute 

gravimetric geoid model using the remove-restore method using millions of land and ocean 

gravity data points with EGM96 support for long wave geoid heights. The combined geoid 

model (GEOID09) is applied by combining the USGG09 with nearly 20000 GPS/leveling 

points using Multi-Matrix Least Squares collocation (MMLSC). In the GEOID09 six LSC 

matrices were applied to achieve 2km geoid resolution with RMSE of 1.5cm (Roman et al., 

2010).  

 

In Germany, the German Combined Quasi geoid 2011(GCG2011) was introduced by the 

Bundesamt für Kartographie und Geodäsie (BKG) and IfE-Hannover. The GCG2011 was 

calculated by the remove-restore method combined with point mass method using terrestrial 

gravity, GOCE gravity and GPS/leveling points. The GCG2011 accuracy is 1-2 cm in flat and 

hilly areas, but is reduced to approximately 3-4 cm in the high mountains. In ocean areas, the 

accuracy of the GCG2011 geoid is in the range of 4-10cm (BKG, 2011).  

 

In 2010, the DFHRS software was used to calculate the Height Reference Surface (Quasigeoid) 

for the State of Moldova. The solution was applied using a mesh design of 5x5km. In Moldova, 

there are two height systems in use. One system is for urban areas, while the other is for rural 

areas. For this reason the solution was done twice by preparing two DFHRS-DBs. Field tests 

have shown an average accuracy of 1-2 cm over the entire country (Jäger et al., 2010). 
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3. Local potential modeling using Spherical Cap Harmonics 
 

 

In this chapter, the modeling of the Earth’s gravitational potential using Spherical Cap 

Harmonics (SCH) is presented. The derivations and applications to the potential modeling of 

SCH are explained, as well as different modifications to the model, including the ASCH model, 

Translated Origin Spherical Cap Harmonics (TOSCH) and Revised Spherical Cap Harmonics 

(R-SCH) are discussed. Other methods to represent the potential with local support are 

introduced as well. The Spherical Radial Basis Functions (SRBF) and the harmonic Spline 

functions are briefly explained. 

 

The ASCH have many advantages over standard SCH models and are discussed in this chapter. 

The derivation of the ASCH and their principles are explained. The application of ASCH for 

modeling the gravitational potential and the calculations of the derived functional quantities 

including gravity, geoid/quasigeoid and deflections of the vertical are introduced. 

 

A special case of application of SCH or ASCH is to represent the gravitational potential V of 

the Earth. In this case, the ordinary SH are used. The SH representation is only valid for a global 

modeling. The relationships between SH, SCH and ASCH are explained in this chapter.  

 

 

3.1. Spherical Cap Harmonics 

 
A method for modeling the gravity potential was introduced by G. Haines (1985a). This method 

is to be used in a local area for modeling the gravitational potential V using the so-called SCH (
'' , nmnm CS ). These SCH are suitable for the area of a local cap covering a region of interest on the 

sphere instead of the whole sphere (see figure3.1). The cap position is described by the vector to 

the cap center with spherical coordinates ( R,, 00  ). The position of points in the cap region is 

described by a spherical coordinates ),,( r  related to the cap pole. Here,  is the azimuth of 

the spherical line from the cap pole to point.  is the spherical distance from the cap pole (

R,, 00  ) to point P. Finally, r is the radial distance from the Earth center to the point P. The 

relationship between global coordinates and local coordinates reads: 
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In equation (3-1), ),(   are the spherical longitude and latitude of the point. ),( 00  are the 

spherical longitude and latitude of the cap pole. R  is the radius of the reference sphere. The 

gravitational potential V in terms of SCH for a point P ),,( r within the cap reads (Haines, 

1988): 
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Figure (3.1): Spherical cap area with its own pole located at the origin of the area of interest. 

 

 

The SCH equation (3-2) looks similar the SH equation (2-33). The difference is the use of   

instead of  ,   instead of  , and power of n(k) instead of n. The advantage of SCH in 

equation (3-2) is that the number of coefficients  '' , nmnm SC necessary for a particular resolution 

for the local cap area is much smaller than that  nmnm SC ,  needed in ordinary global SH for the 

same resolution (Haines, 1988). 

 

The SCH have an integer order m and a real degree n(k), where the real degree n(k) are the root 

of the Legendre functions. Legendre functions and their derivatives have to satisfy the 

orthogonality conditions in the cap area according to equations (3-3a) and (3-3b) (Haines, 

1985). In equation (3-3), k is the integer degree, and m is the order. 0  
is the angular spherical 

distance from the pole of the cap area to the boundary of the area of interest. 
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dP mkn
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0
0
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 )(cosP m),k(n    for k-m=odd        (3-3b) 

 

The Legendre function with the real degree n(k) and the integer m cannot be done by direct and 

recursive formulas, as it is in the case of integer degree and order (see chapter 3.1.2).  It is 

instead defined by an infinite power series (Haines, 1988), which must be elaborated iteratively 

introducing certain approximations; these will introduce additional errors, otherwise, complex 

algorithms must be used (Oliver & Smith, 1983).  
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When applying SCH, certain issues must be considered. First, a search for the real degrees n(k) 

according to the conditions in equation (3-3) must be performed. The algorithms to search for 

the roots of the Legendre functions are non-direct or iterative resulting on additional errors. 

These algorithms are also time consuming (De Santis et al., 1999). Furthermore, the calculations 

of Legendre functions and their derivatives with non-integer degrees are again a time 

consuming iterative process (Schneid, 2006).Such algorithms introduce errors due to certain 

approximations used(Haines, 1985b).Another difficulty in SCH is the use of Legendre functions 

of real degree and integer order, which are not so commonly used given their limited 

availability in the geodetic literature in comparison to easily found Legendre functions with 

integer degree and order. 

 

In addition to the proper use for local modeling of the gravity field, an advantage of SCH over 

the other methods is their ability to model the potential itself instead of the disturbing potential. 

Furthermore, there is no need to interpolate a grid of data to calculate the Spherical Cap 

Harmonic coefficients; the directly observed data can be used to set up observation equations in 

a least squares solution. 

 

 

3.1.1. Derivation of SCH 

 

Haines (1985a) has developed a method to use the Spherical Harmonics principle in a local cap 

area through a basis carrier function, referred to previously as SCH. Here, the coordinate system 

is defined by a local pole and the opening angle of the cap area in figure (3.1). This principle 

has been widely applied in geomagnetic as well as gravity potential field modeling (Haines, 

1985b). The SCH model given in equation (2-2) is equivalently written as: 
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The gravitational potential V representations (3-4) and (3-5) satisfy Laplace’s equation. The 

values n(k) and m are the single eigenvalues of equation (3-5) calculated using the boundary 

conditions of equation (3-5) given in (3-6a, b) and (3-7a-d) for α, θ and r (Schneid, 2006). 

 

As α can reach any numerical value between α  and  2 , the boundary conditions for α are: 
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These conditions force m to be real and integer valued and the value of 
'

0,kS  to be zero (Korte, 

1999). The boundary condition for θ are at the cap pole θ=0 and the cap boundary θ=θ0. The 

boundary values for θ are: 
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0)0,,( 0, rV mk             (3-7a) 

0
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            (3-7d) 

 

The boundary conditions (3-7a) and (3-7b) permit an arbitrary potential that is independent of α. 

The functions ),r(f   and ),r(g  are arbitrary functions, that are independent of  . Haines 

(1985) has shown that the conditions (3-7c) and (3-7d) can be satisfied in the conditions given 

in equations (3-8a) and (3-8b) by taking all values of m in the boundary condition in equations 

(3-6a) and (3-6b) (Haines, 1985a). 
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These conditions can be satisfied using a Legendre function of the first kind. The roots n(k) are 

real values and m are integer values. The conditions (3-8a) and (3-8b), however, cannot be 

simultaneously satisfied. Haines (1985a) has shown that the conditions (3-8a) and (3-8b) can be 

satisfied if the Legendre function and its derivative apply for the condition separately (Schneid, 

2006). The Legendre function of first kind and its derivative apply for the conditions (3-8a) and 

(3-8b), when the conditions (3-9a) and (3-9b) are satisfied, respectively: 
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The boundary condition in the direction of r reads: 
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The boundary condition (3-10) can be satisfied as n(k)≥0. Also, Haines (1985a) has shown that 

the boundary condition can be satisfied when k is not less than (-1) (Haines, 1985a).It can 

therefore be generalized that the SCH functions are orthogonal (Haines, 1985a). 

 

To find roots n(k) (roots of first kind Legendre function), the condition equations (3-9a) and (3-

9b) have to be fulfilled. Chapter (3.1.3) introduces different methods to find the roots of 

functions. An approximate formula for the roots of Legendre function reads (Haines, 1988): 
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3.1.2. Legendre function of real degree and integer order 

 

The calculation of the Legendre function of real degree n and integer order m can be calculated 

in terms of heterogeneous functions (Oliver & Smith, 1983). The general formula for 

calculating the Legendre function reads: 
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Where F is a heterogeneous function which reads: 
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The factor mnK ,  is the normalizing factor. When the so-called Schmidt normalizing principle is 

used (Haines, 1985a), then mnK ,  reads: 
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For n>m>0 an approximate formula of mnK , can be used by applying the so called Stirlings-

formula. Here, mnK ,  is defined as: 
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The heterogeneous function F in equation (3-13a) can be calculated by a recursive method 

depending on the normalizing factor mnK ,  (Haines, 1988). Then )(cos, mnP reads: 
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The derivative of the Legendre function in equation (3-16) reads: 
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The value of the upper limit of the power series (J) is not constant in all calculations, but it can 

be limited when the required rounding accuracy is achieved. The term J is also called the 

truncation factor. The incurred relative error introduced by the truncation approximately reads 

(Oliver & Smith, 1983): 

 

 
J

e
J

truncation


32 

               (3-18) 

 

3.1.3. Roots of Legendre function 

 

To calculate the gravitational potential V in equation (3-2), the roots nk(m) of the Legendre 

function are required. These roots are calculated by satisfying the conditions (3-9a) and (3-9b).  

As equations (3-16) and (3-17) are used to calculate the Legendre function and its derivative, it 

would be difficult to calculate the roots nk(m) with direct formulas. 

 

An iterative method is normally used to find the roots nk(m). In this way, an approximate value 

of nk(m) is used to calculate the function in an iterative process. A small increment is then added 

or subtracted to nk(m). nk(m) is changed until the function is sufficiently close to zero (Press et 

al., 2002). To limit the iterations a good approximation for the initial value of nk(m) is needed; 

this is given by equation (3-19) (Haines, 1988), reading: 
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Another method to find nk(m) is to use the so-called Regula-Falsi procedure. The root of a 

function f(x) is x~ . x~  is in the interval )~( bxa  and )0)(,0)((  bfaf . The root is found 

initially by linear interpolation (Lang & Pucker, 2005); x~  reads: 
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Using the x~ calculated by equation (3-20), (see figure3.2), )~(xf is calculated. If )~(xf  is 

negative and larger than a, then a= )x~(f . Otherwise, the result is b= )x~(f . In this way, the 

interval will be reduced each time. Even if this method converges better than the previously 

described methods, it is still for many functions slowly converging (Lang & Pucker, 2005). 
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Figure (3.2): The principle of Regula Falsi for determining the root of a function. 

 

 

Most often, Newton’s method using the derivative of the function )~(' xf  converges faster than 

many other methods.  In this method, the intersection of the tangent at the initial value x~  with 

x-axis gets closer to root of the function (Lang & Pucker, 2005). The recursive formula for 

calculating x~  is given by: 
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3.1.4. Spatial resolution of SCH model 

 

The spatial resolution of a spherical harmonic model is a function of the maximum degree used 

in the model.  For the global modeling, the minimum wavelength represented by SCH is a 

function of nmax. The minimum wavelength wmin (in radians) reads (De Santis & Torta, 1997): 
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The minimum spatial distance Lmin, i.e. the sampling interval in space domain or simply the 

resolution in this case is 
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In the case of SCH, the system is modified. When m=0, the root nk(m) is used to calculate the 

maximum degree K to get the required spatial resolution. Inserting (3-22) in (3-23) produces 

(Haines, 1988): 
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The spatial resolution of the SCH model is given as: 
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In comparison with global gravity models, the SCH model can have the same spatial resolution 

if a proper number of coefficients are chosen. The required number of coefficients in the SCH 

model reads (De Santis & Torta, 1997): 
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Here, NSH is the number of spherical harmonic coefficients ),( nmnm SC  that represent the Global 

model
2

max )1(  nNSH . NSCH is the number of SCH coefficients )','( nmnm SC . SEarth is the 

spherical surface area of the Earth )4( 2RSEarth  . capS is the spherical surface area of the cap 

))cos1(2( 0

2   RScap .  Then maximum degree K to get a SCH model with same resolution 

of the global model reads: 
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3.1.5. Derivatives of the Potential in SCH 

 

Similar to the representation of ordinary SH, the gravitational acceleration is the gradient of the 

gravitational potential ( Vgradg '


). To formulate the gravity in terms of SCH, we define a 

3D-cartesian coordinate system (cap_e-frame), see fig (3.1). The origin of the system is the 

center of the mass of the Earth. The Z-axis coincides with the line passing the zenith from the 

center of the mass of the Earth and the cap’s pole, the X-axis is defined in the direction of the 

meridian of the cap’s pole and finally the Y-axis is perpendicular to the XZ-plane. The gravity 

vector in terms of the potential then reads (Hofmann-Wellenhof & Moritz, 2005): 
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In spherical cap coordinates, equation (3-28) for the gravity vector related to the cap local 

spherical Local Geodetic Vertical (cap_LGV) following the transformation formulas in chapter 

(5.2.1) reads: 
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The derivatives of the gravitational potential V in equation (3-29) are (Korte, 1999): 

 



 

 

 

33 

)(cos))sin(')cos('()1)(( ,

0 0

,,

1)(

2
 mnk

K

k

k

m

mnmnk

mn

PmSmCmn
r

R

r

GM

r

V
k

 
 
















 

(3-30a) 

)(cos))sin(')cos('( ,

0 0

,,

)(




mnk

K

k

k

m

mkmk

mn

PmCmSm
r

R

r

GMV
k

 
 














    (3-30b) 




 
















 
 

mnk
K

k

k

m

mnmn

mn
P

mSmC
r

R

r

GMV
k

,

0 0

,,

)(

))sin(')cos('(      (3-30c) 

 

The magnitude of the gravity acceleration reads: 
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To calculate the quasigeoid ( ) and the geoid height (N), the disturbing potential at the point P 

must also be calculated (T=W-U or T=V-V’). The gravitational potential V is calculated using 

equation (3-11). The normal gravitational potential V’ is calculated through the reference 

ellipsoid coefficients. The quasigeoid and geoid height respectively read (Torge, 2001): 
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The deflections of the vertical can be calculated in the cap coordinate system with spherical 

approximations in two components: the direction of the cap pole ( ' ), and the direction of the 

azimuth ( ' ). The quantities '  and '  are (De Santis & Torta, 1997): 
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The deflections of the vertical explained in equations (3-33) and (3-34) are with spherical 

approximation in the spherical cap system. The relationship to the ellipsoidal deflections of the 

vertical   and  are explained in chapter (5.2.3) in detail. 

 

 

3.2. Adjusted Spherical Cap Harmonics 

 

As previously discussed, the SCH use the Legendre functions of real degrees n(k) and integer 

order m. The calculations of these functions and their derivatives are time consuming processes 

due the iterative and approximate algorithms implemented (Schneid, 2006). In addition, the 

roots of the Legendre functions n(k) must be calculated according the conditions in equations 

(3-9a) and (3-9b). 

To avoid the iterative and approximate methods, a modified approach of SCH was introduced 

by De Santis (1992), referred previously as ASCH. This approach uses the well-known integer 



 

 

 

34 

order and degree Legendre functions. The principle enlarges the cap area in figure (3.1) to a 

hemisphere using equations (3-35a) to (3-35d), where the pole of the hemisphere is also the pole 

of the cap itself (Franceschi & De Santis, 1994).  
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According to the ASCH definition (3-35), equation (3-5) is modified, resulting in the formula in 

equation (3-36). The new formula is similar to the conventional SH model, but there is now no 

need to calculate the Legendre functions with real degree and integer order: 
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3.2.1. Derivation of the ASCH 

 

Equation (3-36) is similar to equation (3-2). The only difference is that the angle  s  

contains the scaling factor s. Therefore it is only needed to proof, that the part of   is harmonic 

by applying it in the Laplace equation. The most common form for the part of   in Laplace’s 

equation is (Hofmann-Wellenhof & Moritz, 2005): 
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Here, P is the solution of equation (3-37), the Legendre function of degree n and order m (

)(nmPP  ). To avoid the complication of transforming sin  to sin , it is assumed that

 sin . This assumption is valid as 
200   (De Santis, 1992). Equation (3-37) then reads: 
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This can simply be rewritten as: 
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As   s  the following relationships are valid: 

  









d

dP
s

d

dP )()(
               (3-39a) 



 

 

 

35 

2

2

2

2 )()(









d

dP
s

d

dP
              (3-39b) 

s
d

d





                (3-39c) 

 

Substituting (3-39) in (3-38b) results in: 
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To transform equation (3-40) to a similar form of equation (3-38), one sets 
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Here, the result is: 
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The Legendre function of integer degree k and order m is a solution of equation (3-42) (De 

Santis, 1992). In equation (3-40), n is a real number. It can be calculated as function of k  

(n=n(k)). Using equation (3-41), n(k) reads:  

 

 5.025.0)1()( 2  kkskn       (3-43) 

 

In equation (3-43), s is the scale factor computed from equation (3-35a). k is the degree 

parameter in the ASCH model. There is an approximate formula of equation (3-43) that may be 

used for low degree and order ASCH models; following De Santis et al., (1997), reading:   
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The ASCH in equation (3-36) have the following advantages compared to the normal SCH in 

equation (3-2): First, the well-known Legendre function with its recursive formulas is used. 

Second, there is no need to search for the roots n(k) of Legendre functions and their derivatives 

according to the conditions in equations (3-9a) and (3-9b), which is time consuming (De Santis, 

1992). The conditions in equations (3-9a) and (3-9b) are no longer required to find the roots of 

Legendre functions. 

 

 

3.3. Relationship between SCH and SH 

 

Different methods have been developed and proposed in the past to transform the spherical 

harmonic coefficients of global potential models of type (2-33) to the local SCH of type (3-2). 

When the SH and SCH have the same pole, only a transformation of the Legendre function with 

integer degree and order to the Legendre function with real degree and integer order is required, 

as shown in equation (3-45) (De Santis et al., 1999). This leads to: 
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The coefficients mn

kA ,  are then the parameters for the transformation from the global to the cap 

system. These parameters can be calculated on a grid of points over the cap area. In this case, 

the local SCH ( '' , nmnm CS ) can be directly calculated from the coefficients of the global SH 

)C,S( nmnm
 with the transformation parameters mn

kA ,  using equation (3-46). 
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In the general case, the transformation of SH coefficients to SCH coefficients requires 

consideration of different poles (De Santis et al., 1996). Generally, a SH function in terms of SH 

in a coordinate system ( , ) is a linear combination of another SH in another coordinate system 

(  , ). The transformation equation of the coefficients from global SH to local SCH reads:  
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In equation (3-47), a, b, c and d are the transformation parameters, which can be calculated 

using a grid of points distributed over the entire cap area. It is worth noting that the 

transformation parameters can be separately calculated for each degree n. using these 

parameters. The SCH parameters are given by: 
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3.4. Other modifications of SCH 

 
3.4.1. Translated-Origin Spherical Cap Harmonics (TOSCH) 

 

De Santis (1991) introduced the concept of TOSCH, which is generally applied by moving the 

origin of the cap coordinate system in the direction of the cap pole (see figure3.3). This enables 

a smaller minimum wavelength compared to the conventional SCH model (De Santis, 1991). 

 



 

 

 

37 

 
Figure (3.3): The shift of the origin in the TOSCH. 

 

 

With this new definition of the system origin, a point P with spherical coordinates ),,( r will 

have new coordinates ),,( 111 r depending on the origin shift r . The new spherical 

coordinates are: 
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By substituting 
0  and Rr  in equation (3-49a), the radius of the cap boundary in the new 

system 
1R is derived: 
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According to the new system, the opening angle for the new cap reads: 
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The potential in equation (3-36) in the new system reads: 

 

  )(cossincos),,( 1),(

max

0 0

1

'

1

'

1)(

1

1
111  mkn

k

k

k

m

kmkm

kn

PmSmC
r

R

r

GM
rV  

 









   (3-52) 



 

 

 

38 

To find the minimum wavelength represented at the original sphere surface, the distance at the 

pole from the sphere surface to the new origin SR  is required. SR
 
reads: 

 

 rRrRRS  222             (3-53) 

 

The minimum spatial resolution reads: 
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Where, 1kn  reads: 
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By equation (3-54), it is clear, that the spatial resolution of the model is enhanced by the 

implementation of the TOSCH. This means that a small degree and order of the model can be 

applied (De Santis, 1991). It is still difficult, however, to determine the optimal translation of 

origin needed to achieve the required accuracy. Additionally, the physical interpretation of the 

potential and related quantities such as the gravity and deflections of the vertical are not clear, 

since the typical definition of the potential and its related quantities are commonly referred to 

the origin of the Earth. E.g. the first derivative of the gravitational potential V should be the 

radial gravity component   in the direction of the Earth centre not the translated center as it is 

in the case of TOSCH. 

 

 

3.4.2. Revised Spherical Cap Harmonic (R-SCH) 

 

Thebault et al. (2004) proposed a new modification of the SCH model to enable the upward 

continuation of the geomagnetic field and established a relationship to the global SH, referred to 

previously as R-SCH. The principle is to add more boundary conditions depending on a cone 

bounded radially between the surface of the Earth (the cap area) and another surface suitable for 

satellite data (Thebault et al., 2004). The general form of the R-SCH for modeling the 

geomagnetic field reads: 
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In equation (3-56), the function )(rRP
is a radial function representing the radial change of the 

magnetic field in the cone. The functions )(pmK  are basis functions known as Mehler 

functions that contain only one set of Legendre basis functions. P is an integer index. The 

functions )(rRP
 and )(pmK  are completely derived and proved Thebault and Pique (2008). 
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The R-SCH have been widely applied in geomagnetic field research. Unlike SCH, R-SCH 

includes additional functions to represent the radial change of the geomagnetic field by applying 

flux correction (Thebault et al., 2006). In addition to the doubled number of unknowns in 

equation (3-56), the R-SCH converge very slowly compared to SCH. The R-SCH also do not fit 

different types of data in a solution (Thebault & Pique, 2008). For these reasons, the R-SCH are 

not commonly applied for gravity potential and the gravity modeling in an integrated solution. 

 

 

3.5. Other carrier functions for local potential modeling 

 
3.5.1. Spherical Radial Basis Functions (SRBF) 

 

The previously mentioned SRBF are radial symmetric functions, which are localizing in space. 

The radial basis functions support modeling of the potential in the local or global domain 

(Jekeli, 2004). A sphere σR with radius R is defined so that the sphere is completely inside the 

topographic masses (Bjerhammar sphere). If two points i and j are considered, then the SRBF of 

location j evaluated at i reads (Wittwer, 2009): 
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In equation (3-57), )( ijlP   is the Legendre polynomial of degree l.  ij is the angular spherical 

distance between points i and j. l are the Legendre coefficients of the basis function. Different 

types of SRBF are used for gravity field modeling, depending on the choice of l , which 

generate different forms.  Selected Legendre coefficients are introduced in table (3.1), (Klees et 

al., 2008). 
 

Table (3.1) : Examples of Legendre coefficients . 

Coefficient name Coefficient formula 
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The representation of a harmonic function like the disturbing potential T of point P using SRBF 

reads (Schmidt et al., 2007): 
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In equation (3-58), j are the SRBF coefficients that have to be calculated to model the 

disturbing potential using a grid of observations. 

 

 

3.5.2. Spherical Harmonic Splines 

 

The Spherical Harmonic Splines are essentially constructed by spherical basis functions. Their 

basic advantage over the SH is their ability to represent the geoid or potential in local or global 

areas (Jekeli, 2004). The potential can be modeled using a grid of points on the latitude and 

longitude lines. The employed Legendre coefficient in equation (3-59) reads (Wittwer, 2009): 
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l are the SH degree variances. Different methods are used to calculate the degree variances,   

and they can be directly calculated using existing gravity models. Torge (2001) has given the 

Kaula’s rule to estimate of degree variance. According to the Kaula’s rule  
2

l  reads: 
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Tscherning and Rapp (1974) introduced a covariance function, where 
2

l  reads (Torge, 2001): 
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In equation (3-61), A=42528, B=24 and s=0.999617. 

 

To find the unknowns j  (SRBF or Spline coefficients), a grid of points with known quantities 

as functions of the latitude and longitude must be interpolated. These quantities can be gravity 

anomalies, gravity disturbances or height anomalies. The grid of points can be used as 

observation equations to calculate the unknowns j  of each grid point. Here, each point is to be 

modeled using the other grid points (Freeden, 1984). 

 

Many kinds of Harmonic Splines have been introduced. Jekeli (2004) introduced several forms 

and demonstrated their application to the disturbing potential. Another modified spine was used 

to calculate the geoid height using a grid of gravity anomalies; see Kling et al. (1987) for 

details. 

 

The use of splines and SRBF has advantages over the SH. First, both support local and global 

modeling of the gravity potential. Secondly, the calculations are only affected by local errors. 
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On the other hand, SH models are more easily employed. Furthermore, the calculation of 

spherical harmonic coefficients is less complicated using integrals and least squares. An 

important disadvantage in using splines or SRBF is that each grid point j has an unknown j , 

resulting in no redundancy of data for quality control. Finally, the reference points in each 

model must be in a grid, leading to additional interpolation errors (Jekeli, 2004).  
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4. Transformation of global SH gravity models to local ASCH 
 

 

The application of global based space methods for gravity field determination leads to global 

SH models at first instance. At present, there are several global gravity models freely available 

on the internet which can be used by the public. The newer and recent models are represented 

with increasingly high degrees and orders like EIGEN06C with maximum degree and order of 

1420 and the space based terrestrially combined EGM2008 model with maximum degree and 

order of 2190. For several reasons, it is advantageous to represent the regional or local gravity 

field with a smaller number of parameters and to develop a parameter transformation from the 

global model to a local ASCH model.  An example is the frequent use of a global model for a 

specific area of interest. The transformation of the global SH model to the local ASCH allows 

the modelling of regional gravity potential with fewer coefficients and is less demanding in 

terms of computer memory requirements and the time consumption for computation and 

storage. 

 

In this chapter, the local ASCH are introduced for the regional gravitational potential 

representation related to a local pole and a local spherical coordinate system in a cap. In this 

way, the global gravity models can fully be exploited and mapped to a regional ASCH model, 

respectively, in the context of the computation of regional geoid models with equivalent 

resolution.  

 

The adjustment principle is also presented in this chapter. The convergence of unknowns 

(ASCH coefficients) with respect to the maximum degree and order of the calculated ASCH 

model is discussed. The area size as well the behavior of the ASCH modeling at the boundaries 

and their effects on the accuracy are explained. The design of the observations with respect to 

the extension to the vertical direction is also tested. Finally, a practical application transforming 

the EGM2008 model to a local ASCH model for the study area of Baden-Württemberg state in 

Germany is presented and discussed. 

 

 

4.1. Functional models 

 

The methods of transformation of SH to SCH discussed in chapter (3.3) do not apply for 

transforming SH models to the ASCH models in an analytical way. The reason is that the 

coordinates are not only related to different poles but also scaled according to equation (3-35).  

 

A straightforward method for transforming SH to ASCH is to set up a linear equation system for 

a number of positions ),,( rP with known potential values (V) by means of the global model, 

as given in equation (4-1): 
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The solution of the system of equations based on (4-1) is linear with respect to q coefficients

 '

nm

'

nm C,S  by using at least m number positions i),,r(  21)k(q max  . This method is derived 

in Jäger (2010). The extension of that approach, presented here, takes into account that both SH 

of type (2-33) and ASCH of type (3-36) are truncated series. This means that V in equation (2-



 

 

 

43 

33) and VASCH in equation (4-1) are inconsistent. The computation of the coefficients ( '' , nmnm CS ) 

therefore has to be controlled and optimized at the same time. This is done by a least squares 

estimation of ( '' , nmnm CS ) related to (4-1) set up in the following way:  A 3D grid of points is 

generated over the cap area, where the minimum number of required grid points is the same or 

more than the number of unknown parameters 2

max )1( k . Figure (4.1) shows an example of grid 

points distributed all over a cap covering the state of Baden-Württemberg in Germany. 

 

 

 
Figure (4.1):  Distribution of a sample grid points over the cap area for the example of Baden-Württemberg state in 

Germany. 

 

The potential value irV ),,(   for the grid point iP  are taken from a global model GlobalV  using 

equation (2-33), and used as  an observation in equation (4-1).The ASCH coefficients ( '' , nmnm CS ) 

are the unknown parameters to be estimated. The number of unknowns in a SCH model is 
2

max )1( k (Schneid, 2006). The least squares solution of the over-determined problem related to 

(4-1) reads (Younis et al., 2011):  
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The design-matrix A reads: 
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The vector of unknowns x̂ , the vector of observations l  and the observations covariance 

matrix lC  are: 

 

 TnnSCSCCC  2011111000x̂         (4-2c) 

 

 TmVVVVV 4321l          (4-2d) 
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Each observation leads to a row in the so-called design matrix A (4-2a), and the elements of 

each row are the coefficients of the unknown parameters x̂ (4-2c). The column vectorlare 

observations computed from the input GlobalV  . lC is the fully correlated covariance matrix of the 

observations irV ),,(  , which must be computed by applying the law of error-propagation 

using the covariance matrix  
nmnm SC ,

C of the coefficients of the global model spherical harmonic 

model (Migliaccio et. al, 2010). Here the covariance matrix of the observations lC  reads: 
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Where F reads: 
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For an observation point i, 

 

    
ijki

j

ii
ijk Pk

r

a

r

GM
a  sincos










           (4-3c) 

   
ijki

j

ii
ijk Pk

r

a

r

GM
b  sinsin










           (4-3d) 

 

The covariance matrix of the Spherical Harmonics 
nmnm SC ,

C  reads: 
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In equation (4-3c) and (4-3d), GM is the gravitational constant of the global gravity model and a 

is the reference radius of the spherical harmonic model.   is the longitude of the point.   is the 

spherical latitude of the point. ir  
is the radial distance from the origin of the model’s ellipsoid to 

the point. The parameters j and k are the degree and order of the spherical harmonic model. 

 

The full covariance matrix of the Spherical Harmonics 
nmnm SC ,

C  in equation (4-3e) is not always 

available for public use. Some can be requested from the publisher (e.g. EIGEN05c). 

Furthermore, they mostly have only the diagonal elements (the variances) without the 

covariances. In this case, the covariances are assumed to be zero. 

 

 

4.2. Result of Transforming global SH to local ASCH 

 

To provide a better background about the usability of transformed ASCH models in local areas 

and to discuss the behavior of this model, different tests were applied to transform the global SH 

to ASCH models. In the following, the convergence of parameters related to the maximum 

degree and order is studied to see how the values of the ASCH coefficients would change by 

altering the maximum degree and order of the model. The convergence of the standard 

deviations is also observed.  

 

The accuracy of the calculations is studied according to the spatial distribution of the test points 

in the cap area. The accuracy of the model is dependent on the distance from a point to the cap 

center (the angle ).  This is discussed to examine the behavior of the model in the inner area of 

the cap area, as well as on the cap boundaries. 

 

 

4.2.1. The convergence of coefficients 

 

Different ASCH coefficients were randomly chosen to monitor their convergence under the 

change of the maximum degree and order of calculations. A test area with a fixed maximum 

opening cap angle of 1°was chosen to apply the tests; all calculations applied over this cap area.  

 

The calculations were applied over this cap with different maximum degree and order. These 

maximum degrees and order were 10, 20, 30 ... to 90.  Randomly selected coefficients were also 

analyzed. These coefficients are
0,0C , 

5,5S  ,
10,30C  and 

1020,C  . The values of the coefficients and 

their standard deviations related to different values of the maximum degree and order are 
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registered to be analyzed with respect to their convergence. The results of the calculations are 

shown in figure (4.2). 

 

In general, the coefficients have shown fewer changes with higher maximum degrees and 

orders. The coefficient
0,0C converges towards the value of of 1 but does not actually reach this 

value. The reason for this is that the integral formula for calculating the SH coefficient in 

equation (2-23) is applied all over the whole sphere of  Earth due to the orthogonality conditions 

of SH, while in the ASCH this is not valid, because the cap covers only a partial part of the 

sphere. In addition, the coefficient
0,0C  is changing as the cap and input change.  

 

The other coefficients were consistently around the same value with only small changes.The 

standard deviations also had fewer changes. The coefficients consistently had smaller standard 

deviation, as the maximum degree and order of the calculated ASCH got higher. These were the 

expected results, as when the degree and order gets higher, smaller standard deviations of the 

coefficients should appear. The reason for this is that the errors in the observations will be 

distributed over more coefficients. 

 

 

4.2.2. The boundary problem 

 

Because the ASCH models are applied in a local area with a maximum opening angle, the 

behavior of ASCH on the boundary of this cap area is unknown. The reason is that the 

observation data applied in the adjustment according to equation (4-1) are only available inside 

this boundary and on the other side of the boundary there is no control in the adjustment.  

 

To test the behavior of ASCH on the boundary of the area of interest, data in a local cap with a 

maximum opening angle of 1° were predicted using EIGEN05c global model. The ASCH 

model was calculated over this area. To examine the effect on the boundary, the ASCH model 

in the test area was calculated using different maximum opening angle sizes larger than the area 

of interest. The calculations were applied by adding 0.1°, 0.2°, 0.3° and 0.4° to the original 

opening angle of the test area. Higher degrees and orders were used in the calculations to keep 

the same spatial resolution. The results of the different calculations in the original test area are 

shown in figure (4.3). 

 

It is clear that the solution shows deteriorated residuals at the boundary of the cap. Furthermore, 

by an examination of the relationship between the residuals and the opening angle, it can be 

easily seen that the accuracy has an inverse relationship to the angle θ (see figure4.4). By 

making the maximum cap size larger than the area of interest and with increasing the maximum 

degree and order, the accuracy within the area of interest could be enhanced. In the test, the 

residuals in the area of interest were getting smoother by applying solutions with a maximum 

cap size larger than the area of interest with 0.2° or higher. It is important always to consider the 

need for higher maximum degree and order in the adjustment to keep the same accuracy and 

resolution. 
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a.1) The coefficient
0,0C  

 

a.2) the standard deviation of  
0,0C  (

0,0Cs ) 

 

b.1) the coefficient
5,5S  

 

a.2) the standard deviation of 
5,5Ss  

 
c.1) the coefficient

10,30C  

 

a.2) the standard deviation of 
10,30Cs  

 
d.1) the coefficient

1020,C  

 

a.2) the standard deviation of 
1020,Cs  

 

Figure (4.2): The relation between the calculated coefficients and the maximum degree and order. 
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a. max =1.0° and maxn =45. 

 

b. max =1.1° and maxn =50. 

 

c. max =1.2° and maxn =55. 

 

d. max =1.3° and maxn =58. 

 

e. max =1.4° and maxn =63. 

 

 
 

 

Figure (4.3): The behavior of ASCH at the boundary of the cap area with opening angle 
max =1.0°, the figure shows 

the residuals of the potential (V) in 
22 sm  . 
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a. The relation between the residuals and the cap coordinates ( ) with max =1.0° and maxn =45. 

 

 

b. The relation between the residuals and the cap coordinates ( ) with max =1.1° and maxn =50. 

 

 

c. The relation between the residuals and the cap coordinates ( ) with max =1.2° and maxn =55. 

 

 

d. The relation between the residuals and the cap coordinates ( ) with max =1.3° and maxn =58. 

 

 

e. The relation between the residuals and the cap coordinates ( ) with max =1.4° and maxn =63. 

 

 

Figure (4.4): The behavior of ASCH at the boundary of the cap area, the figure shows the residuals of the potential 

(V) in 
22 sm with respect to the angle θ. 
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4.2.3. Design of the observations in the vertical direction 

 

It is necessary to find the optimal design of the observations in the vertical direction. Different 

tests were applied using three dimensional grids of observations. Each grid was designed in 

layers above the spherical surface of the cap. The observations were predicted using the 

EIGEN05c model. To test the results, 15000 topographic points in the state of Baden-

Württemberg were used. The heights of these points lie within the range of 100m to 1500m. The 

original height anomaly for each point was predicted using the EIGEN05c model. These height 

anomalies were then compared with the height anomaly predicted using ASCH. In table (4.1), 

the different grids and the results are shown. 

 

 
Table (4.1): Tests of observations design in the vertical direction using the height anoalies. 

Nr. Min h Max h 
(m) 

Nr. Layers 
(m) 

Max 
degree 

RMSE 
(cm) 

Min error 
(cm) 

Max error 
(cm) 

1 0 1000 2 45 0.31 -1.66 1.47 

2 0 2000 2 45 0.55 -3.13 2.16 
3 0 2000 4 45 0.55 -3.13 2.16 
4 0 2000 4 60 0.35 -1.76 1.08 

5 0 5000 2 45 1.35 -7.70 5.68 
6 0 5000 4 45 0.53 -2.81 1.88 
7 0 5000 4 60 0.40 -1.98 1.64 

8 0 10000 2 45 3.62 -18.27 8.84 
9 0 10000 4 45 4.61 18.75 16.40 

10 0 10000 4 60 3.47 -12.96 10.33 
11 0 10000 4 80 2.72 -7.52 6.87 

 

 

The results in table (4.1) show that the grids of observations arranged in layers very close to the 

topography of the area of interest will provide the best results. The tests using maximum heights 

of between 1000m and 2000m above the sphere of the cap also provide good results, as they are 

very close to the actual topography. The grids with a maximum height of 5000m in two layers 

above the sphere provide worse results, but those with a maximum height of 5000m in four 

layers above the sphere provide good results. The reason is that the grids have layers of 

observations near the topography. Finally, the solution can always be enhanced in the vertical 

direction by adding a higher degree and order in solution of the ASCH; this is clearly 

demonstrated by the test results using 3D grids within the range of 0m to 10000m. 

 

 

4.3. Transformation of EGM2008 to a local ASCH 

 

A practical example of the transformation of a global SH model to a local ASCH model is to 

transform the EGM2008 model to a local ASCH in the state of Baden-Württemberg. The 

EGM2008 has a maximum degree and order of 2190, which contains 4800481spherical 

harmonic coefficients. The defining elements of the EGM2008 are shown in table (4.2). For 

frequent application of the model in this specific area, using such a large number of coefficients 

will result in significant computing time and memory costs. 
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Table (4.2): The defining parameters of the EGM2008. 

Parameter Description Value 

 GM Earth’s gravitational constant 238 /10415.3986004 sm  

  Semi-major axis of the EGM2008 

reference ellipsoid 

6378136.3m 

 n_max Maximum degree and order of the model 2190 

 
  

The transformation was applied in the State of Baden-Württemberg with proper ASCH model 

defining parameters, chosen so that the cap area covers the whole area of interest (see table 4.3). 

The area size could be covered by an opening angle of 1.35°, which was rounded up to 1.5°. 

The radius was selected as the distance to the geocentre of the origin of the cap area using 

ellipsoidal height equal to zero. 

 
 

Table (4.3): The defining parameters of the ASCH model in Baden-Württemberg with a cap size of 1.5°. 

Parameter Description Value 

GM Gravitational constant of the Earth
2
 238 sm103986005   

R Selected reference radius 6366166.378729511 m 

0  
Latitude of origin 48°.6112600518 

0  
Longitude of  origin 9°.0410298719 

  Scale  0.605.1/90 
 

 n_max Maximum degree and order of the model 70 

 

 

The input data from EGM2008 were calculated at ellipsoidal height levels of 0m, 1000m and 

2000m. This enabled area coverage in the vertical direction, where the topography varies from 

between 100m and 1500m above the GRS80 ellipsoid (ellipsoidal heights). The calculations 

were applied with ASCH with maximum degree and order of 70 with a grid spatial resolution of 

0.03°. The results representing the EGM2008 in Baden-Württemberg are shown in figure (4.5). 

The residuals of the calculated gravitational potential V in figure (4.5) are essentially larger at 

the boundary of the cap than of those in the inside the boundary. To achieve better results in the 

area of interest, the cap was oversized to an opening angle of 1.7°. To keep the spatial resolution 

the calculations were applied with a maximum degree and order of 80. The results of the same 

area are shown if figure (4.6). It is clear that at the boundary the residuals are less deteriorated 

as compared to those in figure (4.5). 

 
Table (4.4): The defining parameters of the ASCH model in Baden-Württemberg with cap size of 1.7° . 

Parameter Description Value 

GM Gravitational constant of the Earth 238 sm103986005   

R Selected Reference Radius 6366166.378729511 m 

0  
Latitude of origin 48°.6112600518 

0  
Longitude of  origin 9°.0410298719 

  Scale  52.94117657190 ./ 
 

 n_max Maximum degree and order of the model 80 

                                                 
2
 (GRS80). 
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a. The spatial distribution of the residuals 

 

 
 

b. The relation between the residuals and the cap coordinates ( ) 

 

 

Figure (4.5): The residuals of the gravitational potential (
22 sm ) for the transformation of EGM2008 to a local 

ASCH model with cap opening angle of 1.5°. 
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a.  the spatial distribution of the residuals 

 

 
 

b) the relation between the residuals and the cap coordinates ( ) 

 
 

Figure (4.6): The residuals of the gravitational potential (
22 sm ) for the transformation of EGM2008 to a local 

ASCH model with cap opening angle of 1.7°. 
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In figure (4.6), the residuals in the area of interest were all less than           or equivently 

less than 1 cm in the height anomalies. The covariance matrix of the coefficients was calculated, 

and the standard deviations of the ASCH-coefficients ),( nmnm SC  are shown in figure (4.7). 

 

 

 
Figure (4.7): The standard deviations of the ASCH coefficients. The positive sign indicates Cnm and the negative 

sign indicates Snm. 

 

 

To test the reliability of the solution, 15000 topographic points distributed over the State of 

Baden-Württemberg (the gravity network points) were used to test the model. These points were 

not used in the adjustment. The points have known horizontal position ,( ) and normal heights 

(H*). To calculate the spherical coordinates ),,( r  the ellipsoidal height is needed. The 

ellipsoidal heights of the points were calculated by adding the height anomalies (ζ) from the 

official Height Reference Surface of Baden-Württemberg, which was calculated using the 

DFHRS-Software with 1-2cm accuracy (www.dfhbf.de). The topographic model of Baden-

Württemberg above the GRS80 ellipsoid (ellipsoidal heights) is shown in figure (4.8). 

 

In modern surveying procedures, the ellipsoidal heights (h) are directly measured by means of 

GNSS. For points with only normal heights (H*), height anomalies (ζ) must always be 

considered; these can be calculated existing using precise geoid models or iteratively by ASCH.  

 

 



 

 

 

55 

 
Figure (4.8): The ellipsoidal height (m) in Baden-Württemberg above the GRS80 ellipsoid in meters. 

 

 

The calculated height anomalies of the Quasigeoid over Baden-Württemberg using the 

developed integrated ASCH approach are shown in figure (4.9). The differences between the 

height anomalies calculated by the EGM2008 and the ASCH model in Baden-Württemberg are 

shown in figure (4.10). In all 15000 points, the maximum difference was less than 5mm, 

indicating that the local ASCH model could accurately model the EGM2008 in the local area 

without effect of the heights or positions. A direct advantage of using ASCH modeling is that 

during the calculations of the 15000 test points, the EGM2008 model requires 

4800481SHcoefficients, while the ASCH model needs only 6561 coefficients. The large 

difference in the number of coefficients leads to significant differences in required computer 

memory and calculation times. For example, calculating the 15000 points using the original 

EGM2008 and a single CPU needed more than one hour of time; in contrast, less than 5 minutes 

of calculation time was needed for the ASCH model with a maximum degree and order of 80. 
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Figure (4.9): The height anomalies heights in Baden-Württemberg calculated by means of ASCH model with 

maximum degree and order of 80 in meters. 

 

 

Figure (4.10): The difference between the height anomalies calculated by the EGM2008 with Nmax=2190 and the 

height anomalies calculated by means of ASCH with a maximum degree and order of 80. 
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5. Integrated Solution for ASCH modeling 
 

 

The different types of SCH were discussed in chapter (3). The parameterization of ASCH has 

advantages over the other types of SCH, since they do not require the search for the roots of 

Legendre function and its derivatives (n(k),m)to satisfy the orthogonality requirements in 

equations (3-9a) and (3-9b). In ASCH, equation (3-43) is used to find the roots of Legendre 

function and its derivative to satisfy the Laplace equation. Another advantage of ASCH is that 

the Legendre function of integer degree and order are used, enabling the use of the well-known 

recursive and non-iterative formulas. 

 

The advantages discussed above made it simple and easy to implement the ASCH model for 

local gravity/potential representation, making it ideal for this study. The principles of 

adjustment, observation equations and the required reductions and transformations of different 

types of observations are discussed in detail in this chapter. 

 

To accomplish a complete solution, the observation equations for each type of observation are 

also discussed in detail in this chapter. All required reductions needed for each type of 

observation are introduced. The solution algorithms and the applied numerical methods are also 

explained. 

 

 

5.1. Solution introduction 

 

The ASCH parameterization can be used to model the potential V of the Earth according to 

chapter (3.2). The potential V in terms of ASCH reads: 
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According equation (5-1), an ASCH model has a group of defining parameters that are chosen 

so that the cap covers the whole area of interest. The following are the defining parameters of 

ASCH (Younis et al., 2011): 

 

GM : Geocentric gravitational constant of the Earth. 

R : The mean radius of the cap area. 

0  : The maximum opening angle of the cap area, where the scale factor of the 

ASCH model in equation (3-35) is 090 os   

00 ,  : The latitude and longitude of the cap’s origin. They are used to calculate the 

cap coordinates as shown in figure (3.1). 

 

The task of modeling the gravity potential using ASCH requires the computation of the 

unknown coefficients (
'' , nmnm CS ) in equation (5-1) using different types of observations 

available in the area of interest. These observations are terrestrial gravity measurements, height 

fitting points, deflections of the vertical and the available global gravity models GGM (e.g. 

EGM2008, EIGEN05c).  
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The prior information of ASCH coefficients is achieved by solving a linear equation system for 

a number of direct observations with positions ),,( rP as shown in chapter (5.2)and the 

mapped global SH to ASCH using the approach in chapter (4). The solution of the system of 

equations based on (5-1), or one of its derivatives, is linear with respect to the unknown 

coefficients (
'' , nmnm CS ) by using a number of observations with positions ir ),,(  at least equal 

to the number of unknown coefficients; the minimum number of required observation points is 

therefore equal to or greater than the number of unknown coefficients
2

max )1( k  (Younis et al., 

2011). For an observation il  with a residual iv  at the position ir ),,(  , the observation 

equation reads: 

 

 xAi
ˆvl ii                 (5-2) 

 

The column vector of unknowns reads: 

 

 TnnSCSCCC  2011111000x̂         (5-3) 

 

The row vector iA  is a row in the design matrix A. the elements of  iA  are the coefficients of 

the unknown parameters in an observation equation, which are explained in the following parts 

of this chapter. 

 

The least squares solution for the system of linear equations according to (5-2) reads: 

 

lWAA)W(Ax ll

T1

ll

T ˆ            (5-4) 

 

The square matrix 
12

0

 llCWll   is the weight matrix of the observations with covariance matrix 

llC . l is the column vector of the observations. Using the solved unknowns in equation (5-4), 

the residuals vector v of the observations reads: 

 

 lxAv  ˆ                (5-5) 

 

The reference variance of the adjustment with r redundant observations reads: 
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Using the error propagation, the covariance matrix of the unknowns xxC  reads: 
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The covariance matrix 
ll

C ˆˆ of the adjusted observations is given by: 
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5.2. Observations 

 
5.2.1. Terrestrial gravity observation 

 

Many countries have constructed national gravimetric networks with high accurate surface 

gravity measurements. By the year 2000, the USA was covered by more than 150 absolute 

gravity stations used as a reference for geodetic and geodynamic applications (Torge, 2001). In 

Germany, the first gravity network was built in the 1930s with relative pendulum gravimeters 

tied to the Potsdam absolute gravity value. The achieved accuracy was mGal1.001.0  . In 

1976/1977 a base network (Deutsche Schweregrundnetz DSGN76) of absolute/relative gravity 

stations was built in Western Germany, and extended in 1994/1995 to the eastern region 

including 30 absolute gravity points. The 30km space network of relative gravity points over the 

entire country has the accuracy of mGal01.0 . The network is called the German Primary 

Gravity Network (DHSN96) (BKG, 2011). Depending on the DHSN96, a densification of 

nearly 15000 gravity points using relative gravimeters has been established in Baden-

Württemberg by the year 2010 (see figure 5.1). 

 

 

 

Figure (5.1): First order gravity network in the state of Baden-Württemberg (BW) and the neighboring states in 

Germany (BKG, 2011). 

 

The modern positioning equipment (GNSS+gravity) enabled the use of the directly 

measured gravity (g) with its ellipsoidal height instead of using the gravity anomaly 

(∆g)/disturbance (δg) which need the physical height (H/H*). The directly measured 

gravity value (apparent gravity) g takes the down direction of the plumb line without tangential 

components (Local Astronomical Vertical system -LAV) (Chatfield, 1997) (see figure5.2). The 

gravity vector in LAV-system reads: 
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Figure (5.2): The direction of the measured gravity vector. 

 

 

The gravity vector is )W(gradg


. The gravity potential W=V+Ωcontains of the gravitational 

part V and centrifugal part Ω (Torge, 2001). The centrifugal part Ω is related to the Earth 

rotation and must be reduced in the observations, in order to use the parameterization of V. 

Further observed gravity vectors have also to be transformed to the local cap system for 

modeling the gravitational potential V using ASCH. The following steps must be performed to 

get the final observation equation: 

 

Step-1: The gravity vector is to be transformed from the Local Astronomical Vertical 

frame (LAV) to the Local Geodetic Vertical System (LGV). Here, the deflections of the 

vertical in the north-south direction ( ) and the east-west direction ( ) are required to 

calculate the astronomical position. The astronomical latitude and longitude are given by 

Fan (2004): 
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 The transformation from LAV to LGV reads: 
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 The rotation matrix 
LGV

LAVR between LAV and LGV systems is (Chatfield, 1997): 
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Step-2: The gravity from the LGV-system is transformed to Earth-Cantered-Earth-Fixed 

system (e-system). The transformation reads: 
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The rotation matrix between LGV and e-system reads (Jekeli, 2001): 
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Step-3: centrifugal gravity vector  z


 related to the rotation of the Earth is removed to 

generate a reduced gravity vector related to V in the e-system eg


. The centrifugal 

gravity vector reads (Torge, 2001): 
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Accordingly, the reduction of the centrifugal acceleration reads: 
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Step-4: As the ASCH in equation (5-1) need a spherical coordinate system )r,,(  , the 

reduced geocentrical gravity vector eg


has to be transformed back again, but now to the 

spherical-LGV of the Cap system. The transformation reads (Seeber, 2003): 
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The rotation matrix 
e

LGV_sphereR  reads (Becker and Hehl, 2012): 
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The accuracy of tangential gravity components 


g  and g  is too heavily influenced by the 

accuracy of the deflections of the vertical. The tests have shown that 1 second accuracy in 

deflections of vertical leads to nearly 0.4 mGal in 


g
 
and g , but less than 0.001 mGal in the 

radial component
rg . For this reason, the tangential components are excluded from the 

adjustment, while the radial component 
rg  appears to be free of vertical errors and suits the 

accuracy of (0.01-0.02) mGal of terrestrial gravimeters. 

 

 

 

Figure (5.3): The gravity vector in the LGV-system and its radial component (after the reduction of the centrifugal 

acceleration part). 

 

 

The radial component of the gravity 
rg in (5-18) is the first radial derivative of the gravitational 

potential V (Hofmann-Wellenhof & Moritz 2005): 
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Inserting equation (5-20) in equation (5-1), it is seen that the terrestrial gravity has the 

observation equation (5-21). The geographic coordinates ),,( r  have to be transformed to the 

cap coordinates ),,r(  , the cap coordinates ),,r(  are the adjusted coordinates (scaled) to 

the adjusted Cap system ),,r(  using equation (3-35). 
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5.2.2. Height fitting points 

 

As the conventional methods deal with points on the geoid W0, there is now a need to obtain the 

gravity anomalies and disturbance above or below the geoid because of the new methods of 

positioning (e.g. GNSS). Molodensky (1945) introduced a new approach. The point P, with 

ellipsoidal h in figure (5.4), is located on an equipotential surface W=Wp. There exists other 

surface called the telluroid whose normal potential 
QU

 
is equal to the actual potential at the 

point 
PW . The distance between the two surfaces through the normal line is the height anomaly 

ζ. This difference defines the quasigeoid. Where the ellipsoidal height of point Q in figure (3.8) 

is called the normal height, this height is the normal height of the point P (Hofmann-Wellenhof 

& Moritz, 2005). 

 

 
Figure (5.4): Definitions of Molodensky’s approach (Hofmann-Wellenhof & Moritz, 2005). 

 

 

The height fitting points with both normal height H* and ellipsoidal height h in a country can be 

used to model the gravitational potential by means of ASCH. According to Molodensky’s 

theory, the quasigeoid height (height anomaly) reads: 

 

 
QP

*

pP hhHh              (5-22) 

 

By the definition of Molodensky’s theory, the normal gravity potential of the point Q ( QU ) on 

the telluroid is the same of the gravity potential of point P (
PW ) on the Earth’s surface.  

 

 PQ WU                 (5-23) 

 

The ellipsoidal normal potential of a point reads (Moritz, 1967): 
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The quantity q  is an arbitrary quantity. 0q is )( buq  . The values of q  and 0q are given by: 
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These coordinates ),,( u are the harmonic coordinates (Hofmann-Wellenhof & Moritz, 2005). 

The formulas to calculate harmonic coordinates using the Cartesian coordinates are given by: 
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In terms of the potential, the quasigeoid height  using Molodensky theory reads: 

 

q

pT


                  (5-26) 

 

T is the disturbing potential, reading: 
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Here, Ω is the centrifugal potential due to the Earth rotation   .where Ω reads: 
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Using equations (5-26) and (5-27), the gravitational potential V of point P is derived as follows: 

 

   qPPP UWV           (5-29) 

 

When the height fitting points have orthometric heights instead of normal heights, the 

orthometric heights have to be transformed to normal heights(see figure5.5).The relationship 

between orthometric height H and normal height H* reads: 
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g  is the mean gravity along the plumb line of point P, and can be calculated using the global 

gravity models. Alternatively, it can be approximately assumed to be equal to the Bouguer 

gravity correction. In this context, g  reads (Sneeuw, 2006): 
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Figure (5.5): The normal height H* and the orthometric height H (Hofmann-Wellenhof & Moritz, 2005). 

 

 

  is the mean ellipsoidal normal gravity from the point Q down to the ellipsoid along the 

normal line of point P.   can be calculated strictly in an iterative procedure using the reference 

ellipsoid GRS80.   can be calculated with lower accuracy by applying half of free air 

correction to the normal gravity at point Q.  then reads (Sneeuw, 2006): 
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In modern geodesy and the definition of reference frames, the height reference surface is related 

to reference potential value 0W  of the Earth gravity field. To achieve consistency the normal 

gravity potential of the reference ellipsoid surface is set equal to 0W (Wahr, 1996). 

 

 00 UW                  (5-33) 

 

The height is related to the difference between the reference gravity potential 0W  and the actual 

gravity potential
PW at the point P. The difference is called the geopotential number

PC . 

 

 PP WWC  0                (5-34) 

 

Then the normal height *H reads (Fan, 2004): 
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An example of a vertical reference system is the European Vertical Reference System 

(EVRS2000). The reference point for its realization is the Normaal  Amsterdam Peil NAP. The 

reference ellipsoid is GRS80 with 0NAPC . The EVRS2007, however, is defined by a fixed 

geopotential number of  220259.7 sm  or equivalently m.7160 .  The latest EVRS developed in 
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Europe is the EVRS2007, which was defined using 13 points distributed keeping the level 

datum of EVRS2000.   The national height reference surfaces in Europe must also be realized 

using different tide gauges. This introduces differences of height systems in the neighboring 

countries, which are different from the EVRS2000. Figure (5.6) shows the differences between 

the national height reference surfaces and the EVRS2007 ( V ) (BKG, 2011). 

 

The use of different tide gauges (height datums) requires adding the datum difference between 

the local area height reference surface and the gravity reference by referencing the height fitting 

points to gravity. This implies an additional unknown parameter ( V ) to the functional model 

of the integrated adjustment approach, which has to be applied for the computations of the 

observation equations of the height fitting points. For the i-th gravity point, we have: 
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Figure (5.6): Differences between the EVRF2007 and national reference tide gauges in cm (BKG, 2011). 

 

 

5.2.3. Deflections of the vertical 

 
The directly measured deflections of the vertical using astronomical methods like zenith 

cameras can be used as direct input in the integrated adjustment approach. The measured 

deflections of the vertical are given in the east and north directions. As the deflections of the 

vertical are functions of the disturbing potential, they can be related to the potential W. The 

east-west   direction reads (Torge, 2001): 
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The north-south component of the deflections of the vertical  reads: 
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Here, M and N are radii of curvature of the ellipsoid in longitude and latitude directions. 

 

 

5.2.3.1.  First method of deriving the observation equations 

 

To integrate the deflections of vertical in (5-37) and (5-38) in the ASCH model, the direction of 

the plumb line is transformed to the spherical cap system. This can be achieved using the 

astronomical latitude and longitude ),(  .  The relationship between the astronomical and 

geographic latitude and longitude reads: 
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The direction vector of the plumb line r


 in the e-system reads (Hofmann-Wellenhof et al., 

2001): 
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The transformation of the direction vector r


 in the cap system capr


 reads: 
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The rotation matrix 
e

LGV_sphereR  reads: 
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In equation (5-43), 0  and 0  are the spherical latitude and longitude of the cap pole. The 

direction vector of the plumb line in the cap system capr


 in terms of astronomical cap 

coordinates ),(  reads: 
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In equation (5-44), the angle   between the cap pole and the direction of the plumb line at 

point and the cap astronomical azimuth   are: 
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The transformed deflections of the vertical in the local spherical cap system '  and '   are: 
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 ),,,|h,,|,(''  00          (5-48) 

 

The relationships between the transformed ' , '  and the potential read: 
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To model the gravitational potential part, (5-49) and (5-50) can be rewritten as follows: 
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In equation (5-52), the derivative of the potential 


V
is in terms of , but the ASCH model 

depends on the scaled angle  s . 


V
in equation (5-52) then reads: 
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Inserting (5-53) in (5-52) gives in: 
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The derivatives of the gravitational potential with respect to   and   in ASCH are: 
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In equations (5-55) and (5-56), )(, mnP  and 






 )(,mnP
 are the fully normalized Legendre 

functions of degree n and order m and their derivatives, as shown in chapter (2.1.3).  Finally, the 

observation equations related to the deflections of the vertical are built using equations (5-55) 

and equation (5-56): 
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5.2.3.2. Second method of deriving the observation equations 

 

Another method for transforming the deflections of the vertical in equations (5-37) and (5-38) to 

derivatives of the potential V in equations (5-55) and (5-56) is to apply direct derivatives. 

Equations (5-37) and (5-38) can be rewritten as: 
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Using equations (5-59a and b), the derivatives of the gravitational potential with respect to   

and   read: 
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The final derivatives of the potential in equations (5-55) and (5-56) read: 
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5.2.3.3. Third method of deriving the observation equations 

 

The new CCD technologies (Charged Coupled Devices) enable the foundation of imaging 

sensors to track the celestial objects. These sensors are known as “zenith cameras”. One purpose 

of the zenith cameras is to determine the deflections of the vertical (Hirt et al, 2010). Generally, 

the observations of deflections of the vertical are reading 
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  astr
                (5-62a) 

 cos)( astr                (5-62b) 

 

Here (   ) are observed by GNSS with high accuracy, and can be regarded as fixed 

parameters. And (Ф, Λ) are the result of astronomical observations using zenith cameras based 

on the fundamental equation for celestial navigation (Hofmann-Wellenhof et al, 2003). 
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In equation (5-63a), (r=raw, p=pitch and y=yaw) are the rotation angles between the body-frame 

and the navigation-frame. b

SIr   is the normalized image vector of the celestial object. In the case 

of zenith camera observation situation, we rewrite equation (5-63a) for a LAV-horizontal zenith 

camera as 
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Due to horizontalation, 0 LAVLAV pr , while 
LAVr is occurring as an auxiliary unknown. ),(   

are the further and essential unknowns in the nonlinear observation equation (5-63b). With 

   TT

zyx sinsincoscoscosgWWW g  , we directly arrive at the observation 

equations for resultant deflections of the vertical (η, ξ) reading 
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The GNSS-positions   ,  on the right side can be regarded as fix parameters. Based on the 

location (x,y,z) of the observations (η, ξ), all components on the right side are also to be 

parameterized (e.g.    (     ),    (     ) and    (     ) in case of the CAP 

coordinates and V-ASCH) directly or implicitly by (x,y,z). So the occurring partial 

derivatives in the nonlinear observation equations (5-64a,b) can be set up directly or by using 

the chain rule. 

 

 

5.2.4. Global gravity models 

 

The global gravity model (GGM) can be integrated in the local ASCH model in different ways. 

One method is to use the locally transformed coefficients described in chapter (4).The 

transformed parameters of global SH models to ASCH model can be used as additional 

observations in the adjustment. The observation equation then reads: 

 

EGM_ASCHiii xvl               (5-65) 

 

In matrix form, equation (5-65) reads: 
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EGM_ASCHAxvl               (5-66) 

 

The block of the design matrix A related to the global model reads: 
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The block of the observation matrix L related to the global model reads: 

 

 TnnSCSCCC  2011111000ASCH_EGMEGM xl      (5-68) 

 
5.3. Numerical Methods 

 
5.3.1. Storage Usage 

 

The solution of a least squares problem using a system of linear equations (5-4) is (Ghilani & 

Wolf, 2006): 
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Here, N is the normal equations matrix, and c is the constants matrix. N and c read: 
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In the case of a large number of observations and unknowns, significant memory would be 

required to store the matrices A, W, N and L. The Matrix N and the vector matrix c can be 

calculated directly using the observations and their weights (Jäger et al., 2005). In this way, the 

size required to store the matrices A will be reduced to only one row of the matrix. As the 

normal matrix N is symmetric, only the upper or the lower part of the N matrix must be saved. 

The calculations for the elements of the upper part of N and the elements of the c vector using 

only one row of the design matrix A related to the i-th observation read (Niemeier, 2001): 

 

 inmn,mn,m waann               (5-72) 
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In the case of a very large number of unknowns, it is possible to get Software/System-failure 

through the calculation of (5-70) due to computer memory limits. To avoid this problem, the 

matrix N is divided into sub-matrices (blocks). Only one or a limited number of blocks are then 
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loaded in the memory (Smith, 2001). The other blocks are stored in the hard drive in ASCII or 

Binary files. The block matrix form of the normal equations matrix N reads (Okrah, 2005): 
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5.3.2. Cholesky block matrix decomposition 

 

The calculation time required to find the solution to a system of linear equations (5-4) can be 

reduced by implementing the Cholesky decomposition, in which a positive symmetric definite 

matrix N can be represented by a lower triangle L matrix or an upper triangle matrix U 

multiplied by its transpose (Rothberg & Gupta, 1994). 
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The factorization of the lower triangle matrix L according to the Cholesky Decomposition 

reads: 
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By having the factorized L matrix, the solution with respect to the unknowns can be obtained 

without the need to invert the normal equations matrix N. The matrix form of the linear system 

of equations according to the Cholesky decomposition reads: 
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Equation (5-78) can be rewritten as follows: 
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This makes it easy to solve the system of equations without the need to invert the matrix L or 
T

L . This is because L is a lower triangle matrix (Aledeld & Mayer, 1993). Solving the system 

of equations cLy   with respect to y is called forward substitution. The elements of the vector 

matrix y are: 
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The solution of the system of equations xyL
T   with respect to the unknowns vector x is called 

backward substitution. The values of the elements of the unknowns’ vector x are: 

 

 jj

n

ji

iijjj lxlyx 












 

 1

            (5-82) 

 

The implementation of the block matrix Cholesky decomposition is applied similarly to the 

normal Cholesky decomposition. Each block is handled as an element of a matrix (Nool, 1992). 

The factorization of the block lower triangle matrices reads (Schaefer, 2003): 
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In equation (5-83), the term  ADecomp  is the application of Cholesky factorization of Matrix 

A using equations (5-76) and (5-77). The term )(Bforsub BA,  is calculated by using the 

forward substitution in equation (5-81) of the matrix A and the columns of B in equation (5-85). 

Having iB  as the i’th column of matrix B, )(Bforsub BA,  reads: 

 

....)).........(Forsub),(Forsub),(Forsub()(Bforsub 321 BA,BA,BA,BA,   (5-85) 

 

The forward substitution to find the block element jY of the vector y using the block elements 

jC  of the vector c reads: 
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The backward substitution to find the block element jX of the unknowns’ vector x using the 

block elements jY  of the vector y reads: 
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The function  Backsub  is the implementation of backward substitution in equation (5-82). 
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5.3.3. Parallel processing 

 

In most modern computers, many processors are available (e.g. duo processor, quad processor, 

i3, i5, i7). Classical programming languages (e.g.: VC++, VB, java ... etc.) use only one 

processor at a time. Implementing the principle of threading enables the use of all processors or 

a customized number of processors (Schiebl, 1999) (see figure 5.7). The principle of calculating 

the normal matrix directly from the observations enables application of threading (Breymann, 

2005), meaning that many blocks can be calculated in simultaneously, with each block reserving 

a single processor (Nool, 2001). 

 

  
Figure (5.7): Flowchart for calculating ASCH coefficients using parallel processing. 
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6. Tests and Analysis of the Integrated Approach 
 

 

The ASCH were theoretically proven for their proper use to model the Earth gravity potential in 

a local area. In this chapter, the practical tests of ASCH and their proper use to model the 

gravity potential of the Earth in a local area are presented; the ASCH models are implemented 

with an integrated approach using groups of available heterogeneous data types, such as 

terrestrial gravity data, height fitting points and the available global gravity models. The 

accuracy of gravity representation and prediction using ASCH modeling, as well as the 

accuracy of the height anomalies, are demonstrated.  

 

Different tests were performed to validate the ASCH for Earth potential modeling by applying 

the solutions with different types of observations. The first test applied ASCH modeling using 

height fitting points only. In the second testing phase, the height fitting points in combination 

with the global SH gravity models were used to apply ASCH modeling in an integrated 

approach. Here, the global SH models transformed to ASCH models in chapter (4) were used. 

The final testing phase for ASCH modeling is the integrated solution using height fitting points, 

global gravity models and the terrestrial gravity observations. These tests were applied using 

data available in the state of Baden-Württemberg, which required higher maximum degrees and 

orders. For this reason, the tests were first applied over a smaller area with an opening cap angle 

of 0.5
o
; this was done to have smaller number of unknowns and observations and to save time 

when the tests were applied. The results of this test validate ASCH in an integrated solution. 

Finally, a combined solution for the state Baden-Württemberg with a maximum degree and 

order of 300 was applied. 

 

The convergences of the solution as well as the RMSE of the observations were studied. The 

reliability of the models is also tested by examining reference points that were not used in the 

adjustment. These points were predicted using the official height reference surface (DFHRS-

DB) of Baden-Württemberg. In addition, the ASCH predicted height anomalies in Baden-

Württemberg were compared with the German quasigeoid (GCG2011). 

 

 

6.1. ASCH modeling using height fitting points 

 

In Baden-Württemberg, 129 height fitting points were available. These points had the projected 

coordinates (E, N, h, H) according to the DHDN system. The easting and northing have been 

transformed from the DHDN system to the ETRF89 system by means of CoPaG database of 

Germany with 3-5cm accuracy (www.geozilla.de). These points are distributed over the state of 

Baden-Württemberg (see fig 6.1), and have a height accuracy of 7mm holding for the normal 

height (H*) and the ellipsoidal height (h), respectively. 

 

The ASCH are used to model the gravitational potential of the Earth. The height anomalies of 

the height fitting points are transformed to gravitational potential V. The gravitational potential 

V parameterization related to the height fitting points reads: 
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The transformation of V using the height fitting points in integrated approach reads: 

 

 )( HhUV qPi              (6-2) 

 

Here, 
PU is the ellipsoidal normal potential in equation (5-24).  is the centrifugal potential in 

equation (5-28). q is the ellipsoidal normal gravity at the ellipsoidal height on the telluroid 

(see figure 5.4). 

 

 

 
 

Figure (6.1): The distribution of the height fitting points in the state of Baden-Württemberg. 

 

 

The height fitting points were used to calculate the gravity potential model using ASCH in the 

study area. These points were sufficient only to obtain an ASCH model with a maximum degree 

and order of 10. The calculated height anomalies predicted by the ASCH models by means of 

the height fitting points only are shown in figure (6.2). 

 

To test the validity of the model, the ASCH was used to predict the height anomalies over 

15000 topographic test points. The points have known height anomalies by means of the 

DFHRS-DB, which is the official reference surface in Baden-Württemberg with accuracy of 

1cm. The results show that the maximum difference between the height anomalies by the ASCH 

model and the height anomaly by the DFHRS-DB was 1.7m (see figure 6.3). 
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Figure (6.2): The calculated height anomaly over the state of Baden-Württemberg using ASCH with maximum 

degree and order of 10. 

Figure (6.3): Difference between the reference DFHRS-DB and the ASCH model using height fitting points only. 
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6.2. The combination of height fitting points and global models 

 

To enhance the accuracy the ASCH models in chapter (6.1), a higher maximum degree and 

order is needed. The higher degrees and orders require more observations as input in the 

adjustment to find the ASCH coefficients.  These additional observations can be obtained from 

the available global models (e.g. EIGEN05c and EGM2008). These models first have to be 

transformed to a local ASCH models. The observation equations in the common adjustment of 

the EGM transformed ASCH coefficients are given in equations (5-65) to (5-67). 

 

The problem with such data is that the height fitting points do not have a direct potential value; 

rather, they represent the height above a given reference equipotential surface 
EW . The height 

anomaly calculated by the global models is referred to as a reference ellipsoid (e.g. GRS80). 

The GRS80 reference ellipsoid has a reference potential value of 22

00 85062636860  sm.UW . 

In contrast, the height fitting points in Baden-Württemberg are referred to the NAP reference 

point (Normaal Amsterdam’s Peil), which has a reference potential value of
2228062636857  sm.WE
 (Ihde et al., 2007). The difference between the reference potential 

value of the NAP and the reference normal potential of the GRS80 ellipsoid is 
22

0 573  sm.UWW E
.The value of W  has to be modeled in the adjustment as an additional 

unknown related to height fitting points observation equation (6-1). 

 

To test the utility of the combination of the global SH gravity models transformed to ASCH 

models with the height fitting points, two models (EIGEN05c and the EGM2008) were used to 

apply these tests. The global gravity models were transformed to local ASCH models as 

explained in Chapter (4). At this stage, height anomalies (or equivalently the potential values 

Grids from global models) were predicted with a 2km spatial resolution in 3 discrete layers with 

ellipsoidal heights of (h=0, h=750 and h=1500) with the given covariance matrix using error 

propagation. 

 

The calculated height anomalies over the entire state of Baden-Württemberg using a 

combination of height fitting points and the EIGEN05c are shown in figure (6.4). The height 

anomalies in Baden-Württemberg by the combined solution between the height fitting points 

and EGM2008 model height anomalies are shown in figure (6.5). The combined models were 

tested using 15000 topography points. These points had given height anomalies from the 

DFHRS-DB of Baden-Württemberg. The differences between the DFHRS-DB and the 

EIGEN05c with height fitting points in a combined solution are shown in figure (6.6). The use 

of the EIGEN05c model introduced errors up to 45cm. The differences between the DFHRS-DB 

and the combination of EGM2008 with height fitting points are shown in figure (6.7). The use 

of EGM2008 significantly improved the solution in comparison to the EIGEN05c. The 

maximum residual of the height fitting points was 3 cm, while the RMSE were less than 5mm. 

The standard deviations of the calculated ASCH coefficients and the degree variances of the 

EGM2008 and the height fitting points combined solution are shown in figure (6.8). 

 

 
Table (6.1): The results of ASCH modeling of height anomalies as compared to DFHRS-DB. 

Parameter FP+EIGN05c FP+EGM2008 

Nmax 80 80 

RMSE (cm) 16 1.8 

Max (cm) 43 3.4 

Min (cm) -41 -4.4 
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Figure (6.4): The height anomalies in BW by ASCH using the combining height fitting points and the EIGEN05c. 

 

 

 
Figure (6.5): The height anomalies in BW by ASCH using the combining height fitting points and the EGM2008. 
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Figure (6.6): The differences between DFHRS-DB and the combination of height fitting points and EIGEN05c. 

 

 
Figure (6.7): The differences between DFHRS-DB and the combination of height fitting points and EGM2008. 
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a. The standard deviations of the coefficients 

 

 

 

b. The degree variances of the coefficients 

 

 

Figure (6.8): The standard deviations and the degree variances of the ASCH coefficients for Baden-Württemberg 

using combination of EGM2008 and height fitting points. In figure (a) the negative sign represents Snm and the 

positive sign represents Cnm. 
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6.3. Gravity prediction by means of ASCH 

 

To test the accuracy of the gravity data predicted with the ASCH model, the EIGEN05c model 

was used. The resulting ASCH models were used to predict not only the gravitational potential 

(or equivalently the height anomalies), but also the gravity values. The 15000 topographic test 

points from Baden-Württemberg were used with the radial gravity component predicted by 

means of the original EIGEN05c model represented using the ordinary SH. These gravity data 

are compared to the gravity data predicted by the same model transformed to a local ASCH 

model according to the transformation principle explained in chapter (4). 

 

The solution was applied with different maximum degrees and orders, in order to determine 

how the accuracy of the predicted gravity data converges with the change of the maximum 

degree and order. The applied maximum degrees (Nmax) were 30, 45 and 80. The results by 

Nmax=30 had errors of up to ±70 mGal, see figure (6.9). These results were enhanced to a 

maximum error of better than ±30mGal with Nmax=45, see figure (6.10). Accuracy better than 

±15 mGal was achieved by using Nmax=80 in figure (6.11). Comparing these results with the 

accuracy of the height anomalies, the predicted gravity produced by the ASCH model using 

height anomalies only need much higher degree and order to get accuracy of sub-mGal. In 

contrast, the accuracy of the height anomalies were less than 5mm with Nmax=80, see figure 

(6.12). 

 

 

 

 
 

Figure (6.9): Gravity values differences between original EIGEN model predicted values and the ASCH model 

with maximum degree and order of 30. 
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Figure (6.10): Gravity values differences between original EIGEN model predicted values and the ASCH model 

with maximum degree and order of 45. 

 

 
Figure (6.11): Gravity values differences between original EIGEN model predicted values and the ASCH model 

with maximum degree and order of 80. 
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Figure (6.12): Height anomalies differences (m) between original EIGEN model predicted values and the ASCH 

model with maximum degree and order of 80. 

 

The use of height fitting points only in the adjustment of ASCH models with a maximum degree 

and order of 10didnot provide any information about the gravity. Figure (6.13) shows the 

differences between the 15000 terrestrially measured gravity points with 0.01 mGal and the 

calculated gravity by means of the ASCH model. Higher degrees and orders have been applied 

with the support of global models, resulting in better modeling of gravity. Table (6.2) shows the 

accuracy achieved by different solutions of ASCH model. The results were obtained by 

comparing the calculated and the measured gravity; see the results in figure (6.13), figure (6.14) 

and figure (6.15). 

 

The best results were achieved by combining the EGM2008 with the height fitting points, as the 

maximum error was within the range of -60 to 40 mGal. In contrast, the combination of 

EIGEN05c with height fitting points had errors within (-90 to 180 mGal). In all cases, the use of 

height anomalies only in the adjustment could not provide good accuracy of modeling the 

gravity compared to the measured gravity with accuracy of 0.01mGal.  

 

 
Table (6.2): The results of ASCH modeling related to real gravity measurements. 

Parameter FP 

only 

FP+EIGEN05c FP+EGM2008 

Nmax 10 80 80 

RMSE (mGal) 420 43 17 

Max (mGal) 1688 162 33 

Min (mGal) -1521 -74 -55 

FP = height fitting points 
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Figure (6.13): Gravity value using ASCH model depending on height fitting points only with maximum degree and 

order of 10. 

 

 

 
Figure (6.14): Gravity value using ASCH model depending on height fitting points combined with EIGEN05c 

model with maximum degree and order of 80. 
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Figure (6.15): Gravity value using ASCH model depending on height fitting points combined with EGM2008 

model with maximum degree and order of 80. 

 

 

6.4. ASCH modeling using terrestrial gravity observations in the integrated approach 

 

The 15000 terrestrially measured gravity points in the study area have a measurement accuracy 

of 0.02 mGal as a part of the Germany gravity network (DHSN96: Deutsches Hauptschwerenetz 

1996). These points, however, were measured over decades, resulting in a reduced average 

accuracy of approximately 0.05 mGal (Torge, 2001).  

 

The gravity related to the mass of the Earth is modeled by ASCH. The centrifugal parts of the 

gravity have to be reduced. As the ASCH are presented in a spherical coordinate system, the 

measured observations have to be transformed from the LAV-system to the 
SphericalLGV  using 

the transformation steps in equations (5-10) through (5-19). Deflections of the vertical in the 

north-south direction ( ) and the east-west direction ( ) are required as input in equations (5-

10) and (5-11). The values of ( ) and ( ) were obtained from the DFHRS-DB (the official 

height reference surface of Baden-Württemberg with 1cm accuracy). 

 

As discussed in chapter (5.2.1), and after applying the transformations to the terrestrial gravity 

values g, the observation equation is then only the radial component of the transformed gravity 

vector. The tangential components of the gravity are not used as observations in the adjustment, 

since they are much too sensitive to the deflections of the vertical. As an example, the rule of 

error propagation was applied for the gravity values. Assuming the deflections of the vertical 

have a standard deviation of 1 arc second, this could produce errors in the tangential 

components of the gravity up to 0.4 mGal. The resulting standard deviation in the radial 

component of the gravity was less than 0.001 mGal. This shows that the radial component can 
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be assumed to be free of errors related to the deflections of the vertical. The observation 

equation for the radial component of the transformed gravity vector reads:  
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The use of the 15000 terrestrial gravity points as the only input in the ASCH model adjustment 

enabled a solution up to a maximum degree and order of 120. The results obtained by applying 

different degrees and orders of the adjustment are shown in table (6.3).The results of adjustment 

introduced a RMSE of 0.42 mGal. The maximum residual ware 3.87 mGal and the minimum is 

-4.26 mGal (see figure 6.16). This accuracy does not support the measurement accuracy. In 

addition, a very poor representation of the potential was achieved (or equivalently, the height 

anomalies). To achieve a higher accuracy, additional information and observations are required. 

In the following parts of this chapter, the combination of different observation types with 

terrestrial observations for ASCH modeling are tested and discussed. 

 

 
Table (6.3): The results of ASCH adjustment using terrestrial observations only. 

Maximum degree RMSE  (mGal) Min residual (mGal) Max residual (mGal) 

20 5.35 -18.68 20.41 

45 1.86 -12.92 13.74 

60 1.12 -8.98 9.34 

80 0.87 -6.29 6.83 

120 0.42 -4.26 3.87 

 

 
Figure (6.16): Residuals of ASCH adjustment using terrestrial gravity observations only. 
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6.5. Combined solution 

 

The modeling of the gravity field with an accuracy of up to 0.01 mGal using the ASCH would 

require higher maximum degrees and orders. For this reason, 15000 terrestrial gravity points 

and the 129 height fitting points are not enough for this degree of accuracy, and more 

observations are required to overcome this problem. The solution is applied using a combination 

of different available data types, including the terrestrial gravity points, the height fitting points 

and the global gravity models. 

 

In this principle, use of the global gravity models is advantageous. The global SH models were 

first transformed to local ASCH models as explained in chapter (4). These models provide very 

special advantages. First, they provide sufficient additional observations for successful 

modeling. Secondly, the EGM models are transformed from SH to ASCH with data gridded at 

different layers of height (see chapter 4.2.3). This supports the ASCH in the vertical direction. 

In contrast, the height fitting points and the terrestrial gravity points only define the ASCH 

model at the Earth surface.  

 

The observation equations of the global models in the least squares solution using the 

combination of data are presented by the locally transformed ASCH coefficients with their full 

covariance matrix in chapter (4). The observation equations are the transformed coefficients (
'

nmC , '

nmS ). The observation equations are: 

 

EGM_ASCHiii xvl               (6-3) 

 

The derivations of the observation equations of the terrestrial gravity points and the and the 

gravitational potential V transformed from height fitting points were explained in the previous 

chapters(5.2.1) and (5.2.2), respectively. Their observation equations are given in equation (6-4) 

and equation (6-5): 
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   (6-5) 

 

Due the huge number of observations and unknowns in the least squares solution for the area of 

Baden-Württemberg, a smaller test area was first selected for the validations of ASCH in an 

integrated solution using a cap size of 5.0max   . In this area there are 33 height fitting points 

in addition to 3900 terrestrial gravity points. The EGM2008 model transformed to an ASCH 

model of this cap were used as additional observation equations according to equation (6-3). 

The least squares solution was applied with a maximum degree and order of 120. The results of 

the adjustment are shown in table (6.4). 

 
Table (6.4): The results of ASCH modeling using combined solution. 

Parameter Height fitting points Gravity points 

Number of observations 33 3907 

RMSE 0.55 cm 0.001 mGal 

Maximum residual 1.52 cm 0.0413 mGal 

Minimum residual -1.96 cm -0.0382 mGal 
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In the results shown in table (6.4), the residuals in gravity observations were mostly in the 

expected accuracy in comparison with measurement accuracy, as the average accuracy in the 

German gravity network is about 0.05 mGal (Torge, 2001). In addition, the assumed 

measurement accuracy is 0.01-0.02 mGal. There were only seven gravity observations with 

absolute residuals larger than 0.01 mGal. This is less than 0.2% of the gravity observation. In 

contrast, the height fitting points all had absolute residuals of less than 2cm. 

 

The comparison of height anomalies calculated by means the ASCH model and the reference 

DFHRS-DB are shown in figure (6.17). It is clear that the differences in the internal area are 

less than 5cm, while higher residuals of up to 10cm exist on the boundary.  

 

Based on the results shown in figure (6.17) and table (6.4), it can be concluded that the ASCH 

are valid to model the potential and the gravity using a combination of heterogeneous groups of 

data types. Based on these results, the calculations over the entire state of Baden-Württemberg 

can be applied, with the caveat that a cap size larger than the area of interest must be used to 

avoid the boundary problem. The computations over the entire study area with combined 

heterogeneous data are discussed in the chapter (6.6). 

 

 

 

 
 

Figure (6.17): The comparison between the height anomalies by the DFHRS-DB and the ASCH model. 
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6.6. Combined ASCH model of Baden-Württemberg 

 

ASCH modeling was applied in the state of Baden-Württemberg in Germany. There exist 130 

height fitting points with known ellipsoidal height (h) and normal height (H*) in the study area. 

Another group of available data is the terrestrial gravity network composed of nearly 15000 

terrestrial gravity stations, which were measured over several years and even decades. The 

accuracy of these points varies between 0.01 mGal to 0.05 mGal (Torge, 2001). 

 

Prior tests of the input data were applied. For height fitting points, the measured height 

anomalies Hh were compared with the reference DFHRS-DB of Baden-Württemberg. 

129 points were in the range 0 to 3 cm, with one point having an error 1.25m. This point was 

removed as blunder. The terrestrial gravity points were tested for their positions, since there is 

no available reference data source for testing the values of the gravity with an accuracy of 0.01-

0.05 mGal. The gravity points were compared with a Digital Terrain Model of Baden-

Württemberg with height accuracy of better than 5cm. The test was directly applied by the 

Technicians/Engineers of the Land Surveying Department of Baden-Württemberg. Many points 

were found to have very large height differences, with some reaching an absolute error of up to 

30m. 13694 points were ultimately chosen due to their acceptable positional accuracy. An 

aposterior test was applied after the adjustment using the principle of data snooping. The 

summary of the blunders detection is given in table (6.5). 

 

 
Table (6.5): The detection of the blunders in the observations for Baden-Württemberg observations. 

Parameter Gravity points Height fitting points  

Number of points 15002 130 

Number of blunders using the apriori test 13694 1 

Number of blunders using the aposteriori test 23 0 

Number of observations used in the final solution 13671 129 

 

 

Additional observations from the global gravity model in the adjustment were used from the 

EGM2008, which is one of the most recent of these. It has a degree and order of 2190. This 

model first had to be transformed to a local ASCH model as explained in chapter (4.3). 

 

The calculations of the ASCH coefficients were finally applied using a combination of 

13671terrestrial gravity points, 129 height fitting points and EGM2008. The maximum degree 

and order of the calculations was 300. The selected cap opening angle was o.71 according to the 

test results presented in chapter (4.2.2).  The EGM2008 was first transformed to a local ASCH 

model with a degree and order of 300.  

 

The final solution was applied by combining the locally transformed EGM2008 model with the 

terrestrial gravity points and the height fitting points in the adjustment using observation 

equations (5-36), (5-65) and (5-21). The average residual of the gravity data was 0.0032mGal, 

the maximum gravity residual was 0.032mGal and the minimum residual was -0.041 mGal. The 

residuals of the terrestrial gravity observations are shown in figure (6.21). The residual of the 

height fitting points were less than 1 cm in most of areas in the study area. In the south-western 

part of the state, however, the residuals in some cases went up to 3 cm. Table (6.6) summarizes 

the residuals of the height fitting points and the gravity points.  
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Figures (6.18) and (6.19) show the relative frequency histograms of the height fitting points 

residuals and terrestrial gravity residuals, respectively. The shapes of the relative frequency 

histograms in figure (6.18) and (6.19) are approximately similar to the shape of the normal 

distribution curve, indicating that there are no systematic errors present in the observations. 

 

 

 

 
 

Figure (6.18): The relative frequency histogram of the height fitting points residuals. 
 

 

 

Figure (6.19): The relative frequency histogram of the terrestrial gravity points residuals. 
 

 
Table (6.6): The results of the final adjustment of the combined ASCH model in Baden-Württemberg 

with maximum degree of 300. 

Parameter Gravity points Height fitting points 

Number of points 13671 129 

RMSE 0.0032 mGal 0.8 cm 

Maximum residual 0.032 mGal 3.3 cm 

Minimum residual 0.041 mGal -2.4 cm 
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Finally, the ASCH model was calculated. The solution with respect to the unknown ASCH 

coefficients and their related covariance matrix was successfully applied. The standard 

deviations of the ASCH coefficients using the combined solution with a maximum degree and 

order of 300 are given in figure (6.20).  

 

 

a. Standard deviations of the ASCH coefficients 

 

 
 

b. The degree variance of the ASCH model  

 

Figure (6.20): The standard deviations and the degree variances of the ASCH coefficients using the combined 

solution of the state of Baden-Württemberg. The negative sign represents Snm and the positive sign represents Cnm. 
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Figure (6.21): The residuals of the terrestrial gravity points in Baden-Württemberg. 
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To validate the ASCH model of Baden-Württemberg, 15000 topographic points distributed over 

the state were used as test points. The height anomalies of these points were calculated using the 

official height reference surface of Baden-Württemberg (DFHRS-DB) (see chapter 2.2.2).  

These served to validate the height anomalies predicted by the ASCH model of the integrated 

solution. The RMSE of the difference in height anomalies was 0.013m. The differences were 

less than 1 cm in the most parts of the state, but the maximum difference was less than 3cm in 

the south-western part of the state. This area is characterized by mountainous terrain with 

several deep valleys, and has the most varied topography in the state. Even the DFHRS-DB of 

Baden-Württemberg had residuals in the height fitting points up to 4cm in this area. Figure 

(6.22) and table (6.7) show the differences of the height anomalies between the DFHRS-DB and 

the ASCH model. 

 

 
Table (6.7): The differences between the ASCH modeling and the DFHRS-DB in Baden-Württemberg. 

Parameter Value 

Number of test points 14842 

RMSE of the differences 1.3 cm 

Maximum difference 3.1 cm 

Minimum difference -2.5 cm 

 

 

The ASCH model was also compared with the German Combined Quasigeoid (GCG2011). The 

differences were in the range of (-6 to 5 cm) (see figure (6.23) and table (6.8)). By contrast, a 

comparison between the DFHRS-DB and the GCG2011 in Baden-Württemberg was applied, 

with differences between the two falling in the range of (-6 to 4 cm).  The abstract of the results 

is shown in table (6.9) and figure (6.24).  

 

 
Table (6.8): The differences between the ASCH modeling and the GCG2011 in Baden-Württemberg. 

Parameter Value 

Number of test points 14842 

RMSE of the differences 1.7 cm 

Maximum difference 4.5 cm 

Minimum difference -6.4 cm 

 

  
Table (6.9): The differences between theDFHRS-DBand the GCG2011 in Baden-Württemberg. 

Parameter Value 

Number of test points 14842 

RMSE of the differences 2.1 cm 

Maximum difference 4.0 cm 

Minimum difference -6.0 cm 
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Figure (6.22): The difference between height anomalies using ASCH combined model and the 1cm-DFHRS-DB. 
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Figure (6.23): The difference between height anomalies using ASCH combined model and the GCG2011. 
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Figure (6.24): The difference between height anomalies using DFHRS-DB combined model and the GCG2011. 
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7. Outlook and conclusions 
 

 

The objective of this thesis was to update and modify the existing SCH-modeling for local 

gravity and potential modeling applied in the DFHRS project at IAF of the Karlsruhe University 

of Applied Sciences (HS-Karlsruhe). This model was developed by Schneid (2006) and was 

based on the disturbing potential and related observational quantities (e.g. gravity anomalies, 

gravity disturbances, geoid heights, and the deflections of the vertical).  

 

The current further development of SCH modeling of the DFHRS software is founded on the 

SCH introduced by Haines (1985) given in equation (3-2). They use the real degree integer 

order Legendre functions. The calculations of Legendre functions of real degree and integer 

order are introduced in chapter (3.1.2). Their calculations are iterative and not recursive 

compared to the normal integer degree and order Legendre functions. The implementation of 

SCH also requires the search for the roots of Legendre function according to boundary 

conditions given in equations (3-3a) and (3-3b). The calculations of the real degree Legendre 

functions and the search for their roots are time consuming processes. Furthermore, the related 

formulas are not consistently presented in geodetic literature. The use of the disturbing potential 

T in equation (2-57) in the calculations introduces the problem of the definitions of the 

reference surface as they are restricted to a specific reference ellipsoid. Also, numerical 

problems were found in the current version of SCH modeling in the DFHRS-software. These 

numerical problems appear when calculating SCH with maximum degrees and orders larger 

than 120. For this reason, a highly accurate solution for an area like Baden-Württemberg was 

applied by dividing the area to more sub-areas. This division introduces questions about the 

continuity along the borders and is generally insufficient due to over parameterizations. Here, a 

single SCH model was calculated for each sub-area separately. 

 

In chapter (3), the different types and modifications of SCH were introduced. In addition, other 

types of carrier functions for modeling the potential of the Earth were briefly discussed, 

including ASCH. The concept of ASCH was validated so that they apply to Laplace’s equation 

(Harmonic function) (see chapter 3.2). The ASCH harmonics have many advantages over the 

other types of SCH. One is that they do not need the search for the roots of Legendre function, 

since they can be calculated by a direct formula as given in equation (3-43). This saves times 

and errors due to approximations used in the different iterative algorithms or through the use of 

complicated algorithms to find the roots of Legendre functions of real degree and integer order 

are reduced. Another advantage is that Legendre functions of integer degree and order are 

applied, which have common and recursive formulas proved in most geodetic literatures related 

to the gravity field of the Earth. 

 

A new method for mapping the global SH models to regional ASCH was presented and applied. 

The ASCH were used in Chapter (4) to transform the global gravity models represented by 

means of SH to a local area model. For example, the EGM2008 model represented by the SH of 

a maximum degree and order of 2190 could be modeled in the state of Baden-Württemberg by 

means of ASCH with a maximum degree and order of 80 as a first proof of concept. The geoid 

heights were compared by test points covering the entire state with a maximum difference of 

5mm. To compare computer memory requirements, the EGM2008 spherical harmonic 

coefficients with their standard deviations to the maximum degree and order of 2190 (4 800 481 

coefficients) were stored in a text file with the size of 240 MB; by contrast, the ASCH model 

with maximum degree and order of 80 (6561 coefficients) was stored in a text file with the size 

of 300KB. To implement ASCH with maximum degree and order of 80, a smaller number of 
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loops was needed to calculate the double summation to obtain the gravitational potential, the 

gravity or other related quantities using the model, saving considerable time and computer 

memory. For example, 15000 points geoid heights calculated using the original EGM2008 

spherical harmonic coefficients by a single CPU-PC needed nearly one hour of calculation time, 

while the same points needed less than 5 minutes using the transformed ASCH model. The 

differences between the calculated height anomalies values using the original EGM2008 SH 

model and its transformed ASCH model were less than 5mm. 

 

A new integrated approach, using ASCH as functional model of the Earth gravity field, was 

derived to implement the solution for the combination of heterogeneous data sets (e.g. terrestrial 

gravity data, height fitting point global gravity models). In chapter (5), the derivations of the 

observation equations as well the required reductions and transformations related to each set of 

data were presented. The results of different types of observations and the combination of 

different observations are explained in chapter (6). In a combined solution in the test area with 

maximum cap size of o.50 , the RMSE in the height fitting points was less than 5mm and the 

maximum residual was 2cm. By contrast, the maximum RMSE in the terrestrial gravity 

observations was than 0.01 mGal with a maximum residual of 0.04 mGal (see chapter 6.5). 

These results prove the utility of ASCH for highly accurate gravity field modeling, Quasigeoid 

and Geoid computations in regional areas scalable to any size. 

 

As the ASCH were proven for adequately modeling the potential of the Earth in an integrated 

solution in chapter (6.5),  an ASCH model with accuracy of 1cm in the height anomalies was 

calculated using the combination of height fitting points and the EGM2008 in the state of 

Baden-Württemberg. The solution achieved 1cm accuracy using a maximum degree and order 

of 80. The results are shown in chapter (6.2). As the gravity data could be integrated with height 

fitting points and EGM2008 without encountering problems in a test area in chapter (6.5), the 

combined solution of the complete state of Baden-Württemberg achieved 1cm accuracy using a 

maximum degree and order of 300. The validation of the ASCH model in chapter (6.6) is 

explained in figure (6.22) and figure (2.23) by using the DFHRS-DB and the GCG2011 as 

reference models in the validation process. 

 

Finally, it can be stated based on the results of the solutions shown in chapter (4) and chapter (6) 

that the ASCH can be properly used to model the gravity potential of the Earth and Quasigeoid 

and geoid computations regionally with high accuracy. Nevertheless, it is clear that the need to 

model gravity with high accuracy requires a significantly higher maximum degree and order 

when compared with the modeling of the height anomalies alone (or equivalently the potential). 

It must also be noted that the ASCH modeling encounters problems on the boundary, requiring 

application of the solution using an oversizing of the cap area with respect to the area of 

interest. 
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