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Synopsis 
 

Rpb1, the largest subunit of eukaryotic RNA Polymerase II (Pol II), contains a highly 

flexible structure at its C-terminus. This carboxyl-terminal domain (CTD) of Rpb1 is 

unique to eukaryotic organisms and consists of multiple tandemly repeated 

heptapeptides with the consensus sequence Y1S2P3T4S5P6S7. Interestingly, the 

number of repeats differs from organism to organism and seems to correspond to 

genomic complexity, from 26 repeats in the yeast Saccharomyces cerevisiae to 52 

repeats in the mammalian CTD (Chapman et al., 2008; Liu et al., 2010). 

Remarkably, five out of seven residues within the consensus sequence of the CTD 

can be potentially phosphorylated. In line with this, the production of monoclonal 

antibodies in our laboratory, against all different phosphosites within the heptad 

repeat confirmed the phosphorylation of Y1, S2, T4, S5 and S7 in vivo. Additionally to 

phosphorylation, other posttranslational modifications, such as cis-trans 

isomerisation of the two proline residues can also take place (Egloff et al., 2008).  

The potential of the CTD to be modified at each residue can create a wide range of 

distinct combinations which could carry information that is essential at different steps 

of the transcription cycle, where the modifications can be recognized as a readable 

code, the so-called ‘CTD code’. In this respect, the CTD might serve as a dynamic 

platform constantly signalling between the transcription machinery and factors that 

interact with Pol II (Buratowski et al., 2003; Corden et al., 2007).  

In this work, in order to gain new insights into the CTD code, CTD mutants were 

established to make the whole sequence accessible to mass spec (MS) analysis and 

to map phosphosites within the CTD in vivo. MS results showed that the CTD can be 

phosphorylated within all 52 repeats revealing the existence of the full repertoire of 

possible phosphosites within the CTD in vivo. Moreover, individual CTD peptides 

displayed many different phosphorylation patterns reflecting the great diversity of 

phosphorylation signatures existing in parallel within the same CTD. Data produced 

in this thesis showed that mono-phosphorylated CTD repeats represent the 

prevailing phosphorylation form in vivo. Additionally, dominant phosphorylation 

signatures in di-phosphorylated (2P) CTD repeats could be mapped along the CTD 

by MS analysis. Tri- and tetra-phosphorylated (3P and 4P) CTD peptides were 
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detected as well, but only in very low amounts. By analysing 2P-signatures in more 

detail it was demonstrated that different 2P-combinations predominated within 

distinct repeats along the CTD, suggesting that CTD phosphorylation is location 

dependent. Finally, known CTD-protein binding motifs could be mapped and linked 

to specific CTD repeats. 

In conclusion, this work has established an approach for identifying high numbers of 

CTD-phosphosites, as well as high abundant CTD signatures along the whole CTD 

molecule, that contribute towards a better understanding of the ‘CTD code’ and open 

ways to yet undiscovered specific CTD-binding protein interactions. 
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1. Introduction 
 
 
Three nuclear structurally related DNA-dependent RNA polymerases are responsible 

for transcribing DNA into RNA in eukaryotes (Cramer et al., 2008). RNA Polymerase 

I (Pol I) synthesizes most of the ribosomal RNAs (rRNAs), while RNA Polymerase III 

(Pol III) produces tRNAs, 5S rRNA, and other small RNAs, comprising 75% and 15% 

of transcripts in the cell, respectively (Grummt et al., 2003; Russell et al., 2005; Dieci 

et al., 2007; Werner et al., 2009). 

The best studied polymerase is RNA Polymerase II (Pol II), which transcribes not 

only all protein-coding genes, but also a variety of small non-coding RNAs, including 

small nuclear and nucleolar (sn/sno) RNAs, cryptic unstable transcripts (CUTs), 

stable unannoted transcripts (SUTs) and XRN1-dependent unstable transcripts 

(XUTs) (Neil et al., 2009; Tisseur et al., 2011). 

Five out of the twelve Pol II subunits are common in all three polymerases and the 

specific functions attributed to each polymerase are probably based on the combined 

action of the remaining non-identical subunits and other co-/factors (Young et al., 

1991; Woychik et al., 1994; Shpakovski et al., 1995). In this respect, only the largest 

subunit of Pol II, Rpb1, contains a unique long and flexible carboxy-terminal domain 

(CTD). The CTD can be divided into three parts: (1) a flexible linker region, (2) a 

region consisting of tandem repeats of the consensus sequence tyrosine-serine-

proline-threonine-serine-proline-serine (Y1S2P3T4S5P6S7), and (3) a divergent C-

terminal part. This unique structure is conserved from fungi to humans, although 

there is a variation in the number of repeats (15 repeats in amoeba; 26 repeats in 

budding yeast; 29 repeats in fission yeast; 52 repeats in human) as well as their 

deviation from the consensus sequence, reflecting to a large degree the complexity 

of the organism (Corden et al., 1985 and 1990; Chapman et al. 2008; Liu et al. 2010) 

(Figure 1). The ability of this repetitive sequence to interact with a wide range of 

nuclear factors is related to the dynamic plasticity of its structure and the diversity of 

binding surfaces generated by the multitude of posttranslational modifications it can 

accommodate. The association of specific posttranslational modifications of the CTD 

with particular events of the transcription cycle gave rise to the concept of the CTD 

code (Buratowksi et al., 2003). Tyrosine, threonine, and serine can all be 
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phosphorylated, threonine and serine can be glycosylated, and proline can undergo 

isomerisation (Egloff et al., 2008; Zeidan et al. 2010; Fuchs et al. 2009). In 

mammals, non-consensus repeats of the CTD predominantly involve substitution of 

S7 of the heptad-motif by arginine or lysine, which are, therefore, excluding a 

phosphorylation on this position, while introducing the possibility for a broad array of 

additional modifications; lysine can be mono-, di-, or trimethylated, acetylated, 

ubiquitinylated and sumoylated, while arginine can be mono- or dimethylated 

(dimethylation can be asymmetric or symmetric). Sims and co-workers detected 

asymmetric dimethylation of arginine1810 within the CTD of Pol II in mammalian 

cells (Sims et al., 2011), while six out of seven lysines of the Mus musculus CTD 

were shown to be ubiquitinylated (Li et al., 2007). The combinatorial nature of these 

modifications, which is reminiscent of the histone code, is the key element of the 

CTD code that is generated by CTD-modifying enzymes and ‘read’ by CTD-

associated protein factors (Buratowksi et al., 2003; Jenuwein et al., 2001).  

 
 
 
 
 

 

 

The timely and precise combination of these factors leads to spatially and temporally 

controlled events that mediate transcription and RNA processing. A detailed 

Figure 1 Comparison of CTD sequences in budding yeast, fission yeast and 
human. All-consensus YSPTSPS heptad repeats are shown in red, human residues that 
deviate from the consensus sequence are in blue, and the numbers next to the parentheses 
indicate the repeat number (Hsin and Manley, (2012), The RNA polymerase II CTD 
coordinates transcription and RNA processing; Genes & Development 26:2119-2137). 
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introduction to various aspects of the CTD and its interactions, CTD-modification 

patterns, genetic studies, as well as its role during transcription follows below. 

 
 
 
1.1  The role of Pol II CTD in transcription and  

    RNA processing 
 
 
1.1.1  The role of CTD in transcription initiation 
 
Initiation of transcription starts with the recruitment of gene-specific transcription 

factors (TFs), general transcription factors (GTFs), the Mediator complex, and Pol II. 

These factors form the pre-initiation complex (PIC) at the promoters of Pol II 

transcribed genes (Buratowski et al., 2009; Nechaev et al., 2010). The Mediator 

complex plays a predominant role by linking the PIC to assemblies of transcription 

factors bound at the upstream regulatory (activating/repressing) sequences 

(UAS/URS) (Svejstrup et al., 1997; Myers et al., 2000; Kornberg et al., 2005; Malik et 

al., 2005). The Mediator complex binds the unphosphorylated form of Pol II CTD, but 

when incorporated into the PIC, it strongly stimulates the CTD kinase (Kin28 in 

yeast, CDK7 in metazoans) of the basal transcription factor TFIIH. It has been 

shown, that Kin28/CDK7 and the Mediator complex subunit Srb10/CDK8 

phosphorylate S5 in vivo with Kin28/CDK7 being the predominant kinase (Phatnani 

et al., 2006; Hengartner et al., 1998; Dahmus et al., 1996; Bensaude et al., 1999; 

Palancade et al., 2003; Feaver et al., 1994; Rickert et al., 1999; Gebara et al., 1997).  

In turn, the serine-5 phosphorylation (S5P) is a prerequisite for coordinating the 

placement of several key posttranslational modifications on chromatin like 

trimethylation of histone H3 at lysine 4 (H3K4me3) by Set1 and subsequent 

trimethylation of histone H3 at lysine 79 (H3K79me3) by Dot1 (Venters et al., 2009; 

Ng et al., 2003; Nakanishi et al., 2008; Wood et al., 2003). Set1 establishes two 

distinct chromatin zones on genes, H3K4me3 found at promoter regions and 

H3K4me2 located further downstream in the body of the gene (Kim and Buratowski 

2009). Eventually, H3K4me2 and CTD S5P trigger the recruitment of the histone 

deacetylase complexes Set3 and Rpd3C(S), leading to reduced histone acetylation 

levels at the 5’ ends of genes, which promotes the association of Pol II and inhibits 
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CUT initiation at promoters (Kim and Buratowski 2009; Govind et al., 2010; Drouin et 

al., 2010). 

The key role of S5P, however, is the binding of the capping enzyme complex and 

therefore promoting transition of transcription to elongation. The CTD repeats 

proximal to the core Pol II are ideally located near the RNA exit tunnel to facilitate the 

capping reaction (Cramer et al., 2001; Ghosh et al., 2011). Although capping 

enzyme recognition by CTD is structurally different in mammalian and yeast (see 

also part 1.2.3), both organisms require S5P for binding (Fabrega et al., 2003; Ghosh 

et al., 2011). In this context, specific inhibition of Kin28 has little effect on 

transcription of protein-coding genes, but causes a striking reduction of capping (Liu 

et al., 2004; Kanin et al., 2007). Interestingly, Kin28/CDK7 is also the primary kinase 

for CTD serine-7 phosphorylation (S7P) (Akhtar et al., 2009; Glover-Cutter et al., 

2009; Kim et al., 2009) (Figure 2). S7P seems to be Mediator complex-dependent, 

but the role of this phosphorylation at promoters remains elusive and will be 

discussed further below (Boeing et al., 2010).  

 
 
1.1.2   The role of CTD in Pol II pausing and transcription   
           elongation 
 
Following promoter release, transcription initiation factors are exchanged by 

elongation factors, playing an important role in RNA processing by moving through 

chromatin, and suppressing cryptic transcripts. In mammalian cells, the positive 

elongation factor P-TEFb kinase subunit, CDK9, phosphorylates both CTD S2 and 

the DRB-sensitivity-inducing factor (DSIF), thus allowing Pol II to overcome the 

promoter-proximal pausing induced by the negative elongation factor (NELF) 

complex (Sims et al., 2004; Peterlin et al., 2006). Interestingly, about one-third of 

genes in both fly and human cells appear to contain a paused Pol II downstream of 

the transcription start site (Core et al., 2008; Nechaev et al., 2010). Pausing seems 

to allow rapid and coordinated transcription during development, or in response to 

external stimuli (Muse et al., 2007). It is unclear if promoter-proximal pausing exists 

in yeast, but it is known that Bur 1, the yeast homolog of CDK9, promotes elongation 

through phosphorylation of Spt5, the yeast homologue of DSIF (Zhou et al., 2009). 

Additionally, Bur1 also phosphorylates CTD S2 downstream of the promoter and 

triggers the ubiquitylation of histone H2B lysine 123 (H2BK123ub) by the ubiquitin 
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conjugating enzyme Rad6 and Bre1 (Wood, 2003 and 2005). H2BK123ub promotes 

subsequent Set1 trimethylation of histone H3K4 and subsequent trimethylation of 

H3K79, both of which represent important marks of transcription activation (Venters 

et al., 2009; Ng et al., 2003; Nakanishi et al., 2008; Wood et al., 2003).   

The S5P mark is a prerequisite for the recruitment of Bur1 to the transcription 

complex at the promoter. It then phosphorylates S2, priming the CTD for the 

recruitment of Ctk1, the major S2 kinase which then phosphorylates S2 further 

downstream in the coding region (Keogh et al., 2003; Qiu et al., 2009). Recent 

studies in Drosophila and human cells have shown that CDK12 can phosphorylate 

the CTD on S2 and proposed, based on phylogenetic relationships, that the ortholog 

of Bur1 is CDK9, whereas CDK12 is the counterpart of Ctk1 (Guo and Stiller 2004; 

Bartkowiak et al., 2010) (Figure 3a). Indeed, CDK12 is required for most S2 

phosphorylation in vivo and is associated with elongating Pol II. Interestingly, Bur1 

has been identified as an ‘internal’ S7 kinase ‘travelling’ with Pol II and 

phosphorylating S7 in later phases of the transcription cycle. Although the exact role 

of this modification is unclear, it is likely to be a mark that promotes elongation as 

genes with uniformly high levels of S7P are transcribed at significantly higher levels 

(Tietjen et al., 2010).  

The newly characterized CTD phosphatase Rtr1 associates with Pol II and removes 

S5P marks immediately after promoter clearance (Figure 2; Figure 3a). The S2P 

phosphatase Fcp1 is also recruited during elongation, but S2P levels remain high 

across the transcript due to the opposing action of the S2P kinase Ctk1 (Mosley et 

al., 2009; Kobor et al., 1999; Cho et al., 2001). Increasing levels of S2P, in 

combination with the residual S5P, lead to the recruitment of the Set2 

methyltransferase, which di- and trimethylates H3K36, followed by the removal of 

acetylation from histones H3 and H4 by the histone deacetylase complex Rpd3C(S) 

and thus, preventing cryptic transcription initiation within open reading frames in 

yeast (Kizer et al., 2005; Vojnic et al., 2006; Krogan et al., 2003; Li et al., 2002; 

Govind et al., 2010; Carrozza et al., 2005; Keogh et al., 2005). Similarly, the splicing 

factor Prp40 and U2AF65 recognize the S2P-S5P double mark followed by the 

recruitment of Prp19 to activate splicing (Egloff et al., 2008; Phatnani et al., 2004; 

David et al., 2011). Splicing in turn triggers the binding of the yeast export factor, 

Yra1, to S2P-S5P CTD repeats (MacKellar et al., 2011). S2P is also bound by the 

serine/arginine rich protein Npl3, which functions in elongation, 3’-end processing, 
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hnRNP formation, and mRNA export (Gilbert et al., 2001; Bucheli and Buratowski 

2005; Bucheli et al., 2007). Additionally, the RNA binding factor, Ssd1, the mitotic 

kinase, Hrr25, and RecQ5 genome stability helicase also bind to S2P-S5P CTD 

repeats (Kanagaraj et al., 2010; Phatnani et al., 2004). However, the precise role 

that Ssd1 and Hrr25 play during transcription cycle remains unclear. 

 
 
1.1.3   The role of CTD in 3’ RNA processing and transcription  
   termination 
 
The CTD also plays an important role in 3’ end processing of Pol II-produced 

transcripts and it has been shown that several 3’ processing factors like CPSF, CstF 

and Pcf11 interact with the CTD (Shi et al., 2009; McCracken et al., 1997). Pcf11, for 

instance, contains an N-terminal CTD interaction domain (CID) and binds the CTD in 

a S2P-dependent manner (Barilla et al., 2001; Licatalosi et al., 2002; Meinhart and 

Cramer 2004) (see also part 1.2.3). Indeed, S2P is critical to the 3’ end processing, 

as genome-wide chromatin immunoprecipitation (ChIP) experiments showed that 

peaks of 3’ processing factors coincide with S2P peaks, suggesting that both poly(A) 

sites and S2P are a prerequisite for subsequent recruitment/assembly of the 

polyadenylation complex in the newly processed RNA (Kim et al., 2010; Mayer et al., 

2010, 2012).  

Importantly, the 3’ ends of several types of Pol II transcribed RNAs, comprising 

snRNA and histone mRNA, are not polyadenylated, but here tight regulation of CTD 

phosphorylation/dephosphorylation is important to the cleavage complex recruitment. 

Proper snRNA 3’ end formation needs the promoter and 3’ box, located just 

downstream from the snRNA-encoding region. A multi-subunit RNA 3’ end 

processing complex, the Integrator, is associated to the 3’ box of snRNA genes. 

Interestingly, the RPAP2 phosphatase is recruited to snRNA genes via S7P, close to 

the promoter region where S7P is most frequent. The combined action of 

dephosphorylation of S5 by RPAP2 and phosphorylation of S2 by P-TEFb, as 

transcription progresses, creates a double mark consisting of S7P on one repeat and 

S2P on the following repeat which is then specifically bound by Int11, the catalytic 

cleavage subunit of the Integrator (Baillat et al., 2005; Egloff et al., 2010). These 

results support the idea that S5P dephosphorylation is a prerequisite for 3’ end 

formation in both, snRNA and mRNA genes (Xiang et al., 2010). In this context, 
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RPAP2 is also recruited to protein-coding genes but in a S7P independent way. Two 

proteins, RPRD1A and RPRD1B, which interact both with RPAP2 and the CTD, 

could help recruit the S5 phosphatase to mRNA genes in the absence of S7P (Ni et 

al., 2011). 

 

 
 

 
 

 
 

A number of 3’ cleavage factors have been shown to be critical for Pol II termination, 

while a functional polyadenylation signal is required for subsequent termination 

(Proudfoot et al., 1989; Birse et al., 1998; Dichtl et al., 2002; Ganem et al., 2003; 

Nedea et al., 2003; Kim et al., 2010; Zhang et al., 2012). In this line, one CTD-

binding cleavage factor, Pcf11, seems to play a key role; mutated yeast Pcf11 that 

retains 3‘ cleavage activity, but is defective in CTD binding, was found to be 

defective in terminating Pol II mediated transcription (Sadowski et al., 2003). Two 

models have been suggested for Pol II termination, but most probably a combination 

Figure 2 Transcription cycle of RNA polymerase II in yeast. Recruitment of 
primary RNA processing factors concomitant with dynamic modifications within both, the 
Pol II CTD and chromatin, along the transcription cycle are shown (Zhang and Ansari, 
(2011) Emerging Views on the CTD Code; Genetics Research International; Volume 
2012, Article ID 347214). 
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of the two models could best explain the mechanism. In the first model, termed the 

‘allosteric’ model, after transcribing the poly-(A) site, Pol II undergoes conformational 

changes that lead to an exchange of elongation factors for termination factors. In 

support to this proposition, Pcf11 has been shown to directly bind the CTD of Pol II 

causing breakdown of the whole transcription complex (Zhang and Gilmour, 2006; 

Mayer et al., 2010; Kim et al., 2004).  

In the second model, called the ‘torpedo’ model, it is proposed that cleavage of the 

transcript at the cleavage and polyadenylation site (CPS) creates an entry site for the 

5’-3’ exonuclease Rat1 (Xrn2 in mammals), which degrades the 3’ RNA and triggers 

Pol II release by ‘chasing’ the complex (Kim et al., 2004; Connelly and Manley 1988; 

West et al., 2004). Importantly, recruitment of Rat1 seems to be indirect, probably via 

its partner Rtt103 which has been shown to bind S2P CTD in a cooperative manner 

with Pcf11 (Lunde et al., 2010), an essential component of the cleavage factor IA 

(CFIA) complex that also promotes Pol II release (Zhang et al., 2005). ChIP 

experiments revealed that Pcf11 is located at both protein-coding and non-coding 

genes and Pcf11 mutations lead to transcript read-through due to inefficient 

cleavage, indicating that it probably plays a key role in termination, as well as 

processing of coding and non-coding genes (Figure 3b) (Meinhart and Cramer 2004; 

Licatalosi et al., 2002; Zhang et al., 2005; Sadowski et al. 2003; Kim et al., 2006; Kim 

et al., 2010).  

In yeast, Pol II transcript processing is exerted through two different gene class-

specific pathways (Figure 3b). The majority of small mRNAs (<550 bp), CUTs, 

snRNA, and snoRNAs are processed through the Nrd1-Nab3 pathway, while longer 

mRNAs are processed in a polyadenylation-dependent process (Lykke-Andersen et 

al., 2007; Arigo et al., 2006; Thiebaut et al., 2006; Egloff et al., 2008; Richard and 

Manley 2009; Buratowski et al., 2005; Kim et al., 2006; Birse et al., 1998; Gudipati et 

al., 2008; Steinmetz et al., 2001). The pathway selection is dependent on the CTD 

phosphorylation state, with Nrd1 preferentially binding to S5P and its recruitment is 

additionally enhanced through histone H3me3K4 (Vasiljeva et al., 2008; Terzi et al., 

2011). The helicase Sen1 (senataxin in humans), which exists in a complex with 

Nrd1 and Nab3, associates with the exosome complex, linking transcription 

termination to 3’ exonuclease activity that can ‘trim’ snoRNA ends, or completely 

degrade cryptic transcripts. Remaining in yeast, interestingly, while transcription 

proceeds, phosphorylation of S2P CTD blocks the use of the Sen1/Nrd1/Nab3 
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termination pathway, providing a mechanism by which S2 phosphorylation could 

enhance downstream elongation (Gudipati et al., 2008). Senataxin, the Sen1 

homolog in higher eukaryatoes, has not been implicated to date in termination and it 

therefore still remains to be proven whether a similar early termination pathway 

exists in higher animals too. No functional homologs of Nrd1 and Nab3 have been 

identified yet, and there is no evidence for the existence of a Nrd1-like complex in 

human cells. SCAF8, which shares sequence similarity with Nrd1, specifically binds 

to CTD via its CID domain, however, its function is unknown and does not appear to 

involve termination (see also part 1.2.3) (Yuryev et al., 1996; Patturajan et al., 1998; 

Becker et al., 2008). 

The second pathway, responsible for the processing of most mRNA transcripts, 

includes the cleavage and polyadenylation factor (CPF) complex, cleavage factor IA 

and IB (CFIA and CFIB) complexes, and the exosome (Richard and Manley 2009; 

Kim et al., 2006; Birse et al., 1998) (Figure 3b). Importantly, the majority of 

termination and 3’ processing factors involved in this pathway tend to preferentially 

bind to S2P or S2P/S5P enriched CTD including: Npl3, Rtt103, Rna14, Rna15, Ydh1, 

Yhh1, Pta1, and Pcf11. Binding of Rna15 to nascent RNA triggers endonucleolytic 

cleavage followed by polyadenylation by the polyadenylate polymerase (Pap1). 

Subsequently, polyadenylation–binding proteins (PAB) protect the mature transcript 

from exonucleolytic degradation (Birse et al., 1998; Minvielle-Sebastia et al., 1994).  

In both pathways, the CTD is hypophosphorylated by the combined action of two 

essential phosphatases at the end of transcription, Ssu72 and Fcp1. Ssu72 which is 

primarily localized at the 3’ end of genes, is the main S5P phosphatase and its 

activity is enhanced by the prolyl isomerase Ess1 (Pin1 in humans) and by 

interacting with Pta1 (Figure 2, Figure 3a) (Nedea et al., 2003; Krishnamurthy 2004 

and 2009; Ghazy et al., 2009; Singh et al., 2009). In contrast to Ssu72, Fcp1 is found 

across the entire transcribed region and mainly dephosphorylates S2P CTD (Kobor 

et al., 1999; Cho et al., 2001; Archambault et al., 1997; Kong et al., 2005; Hausmann 

et al., 2004; Ghosh et al., 2008). Recent data showed that Ssu72 may be the 

phosphatase that removes S7P at both 5’ and 3’ ends of genes (Zhang et al., 2012). 

Global dephosphorylation of the CTD promotes the release of Pol II from DNA, which 

can then bind to promoters for a new round of transcription (Steinmetz and Brow 

2003; Cho et al., 1999; Dichtl et al., 2002). Interestingly, it has been suggested that 

transcription termination and subsequent dephosphorylation of the CTD is coupled to 
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transcription re-initiation via gene looping, during which the promoter and terminator 

regions come in close proximity, allowing Pol II to form a new PIC more rapidly 

(O’Sullivan et al., 2004; Singh et al., 2009). In line with this, Ssu72 and TFIIB have 

been shown to be essential in gene looping (Ansari and Hampsey 2005; Singh et al., 

2007). 

 

 
 

 
 
 
 
 
 
 
 
 
 

In summary, the phosphorylation and dephosphorylation of the CTD is a complex 

and highly controlled mechanism, which is clearly involved in every stage of 

transcription, from initiation, to elongation, to termination, and possibly re-initiation. 

Phosphorylated residues may be individually conceived as marks, but in a broader 

sense, waves of phosphorylation and simultaneous waves of dephosphorylation of 

Figure 3 
a) Dynamic modifications of the CTD during transcription cycle in mammals. 
Dynamic phosphorylation pattern of CTD due to the recruitment of CTD kinases, CTD 
phosphatases, prolyl isomerase Pin1 at different stages (initiation, elongation and 
termination) within the transcription cycle is shown.  
b) Different pathways for transcription termination for protein-coding and 
noncoding genes. Left: poly(A)-dependent termination: RNA is cleaved by 3’ end 
processing factors at the polyadenylation site. The CTD with S2P is involved in recruiting 
factors like Pcf11, Rtt103, p54/PSF, and Sen1, to facilitate termination of long 
polyadenylated transcripts. Right: Nrd1-dependent termination: The Nrd1 complex (Nrd1-
Nab3-Sen1) interacts via Nrd1 with S5P CTD which is present at the 3’ ends of short genes, 
such as snoRNAs and CUTs (Hsin and Manley, (2012), The RNA polymerase II CTD 
coordinates transcription and RNA processing; Genes & Development 26:2119-2137).  
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specific residues create combinatorial platforms that highly coordinate every step of 

the transcription cycle. 

 
 
1.2 CTD- a closer look 
 
 
The largest subunit of eukaryotic RNA Polymerase II, Rpb1, consists of a unique 

structure at its C-terminal domain, the CTD, with tandem repeats of the heptapeptide 

sequence Y1-S2-P3-T4-S5-P6-S7 (Allison et al., 1985; Corden et al., 1985). The length 

of the domain is a direct link to the genetic complexity of the organism where it is 

encountered. The CTD is dispensable for Pol II activity in vitro, (West and Corden 

1995; Bartolomei et al., 1988), however, deletion of the entire CTD in mice, 

drosophila and yeast is lethal (Egloff et al., 2008). Moreover, it is well proven that the 

CTD plays a direct and major role in coupling transcription with co-transcriptional 

nuclear processes, such as chromatin modification and RNA processing (see also 

part 1.1) (Egloff et al., 2008). The CTD has been also implicated in a variety of 

transcription-extrinsic processes like mRNA export and stress response. The 

process of mRNP export is controlled by the protein Sus1. This key player in mRNA 

export directly interacts with S5P and S2P/S5P CTD, Ub8 subunit of the SAGA 

complex, Yra1 subunit of the TREX1 complex, and Sac3 subunit of the TREX2 

complex at the nuclear pore (Stewart et al., 2010; Pascual-Garcia et al., 2008; Jani 

et al., 2009). Interestingly, in response to DNA damage, the ubiquitin ligase Rsp5 

binds the CTD and ubiquitylates Pol II (Huibregtse et al., 1997; Beaudenon et al., 

1999). Similarly, UV-induced DNA damage in mammalian fibroblasts leads to 

hyperphosphorylation of the CTD by P-TEFb, which then promotes Pol II 

ubiquitylation and subsequent degradation (Heine et al., 2008). Additionally, S5P 

CTD can also recruit the Asr1 ubiquitin ligase, promoting ejection of the Rpb4/7 

heterodimer from the core polymerase that may provide a mechanism for stopping 

polymerases engaged in abortive or cryptic transcription (Daulny et al., 2008). 

Recent studies have identified new posttranslational modifications of the CTD 

repeats, new CTD-binding factors and there are new insights into the relation 

between the different sites within the CTD based on genetic studies and ChIP data 

mainly performed in yeast. Some of these new exciting data linked to Pol II CTD will 

be discussed below. 
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1.2.1   Posttranslational modifications within the CTD of Pol II 
 
 
Serine-5 and Serine-2 phosphorylation: As discussed above, dynamic 

phosphorylations of the three serine residues are the best-characterized CTD 

modifications and in particular the exchange between S2P and S5P patterns play a 

pivotal role in the mediation of transcription and RNA processing. In ChIP 

experiments it has been shown that S5P marks are highly abundant at TSSs 

(transcription start sites) and strongly decline in the body of active genes (Kim et al., 

2010; Mayer et al., 2010; Tietjen et al., 2010; Bataille et al., 2012; Koch et al., 2011; 

Brookes et al., 2012) (Figure 4). The two main functions of this mark described to 

date are the recruitment of the capping machinery during transcription initiation and 

the interaction with Nrd1 that plays an important role in the 3’ end formation and 

early termination of non-polyadenylated transcripts (Cho et al., 1997; McCracken et 

al., 1997; Gudipati et al., 2008; Vasiljeva et al., 2008). In contrast to S5P, S2P is 

absent at TSS, progressively increases within the body of active genes while its peak 

is found in proximity to the poly(A) site (Kim et al., 2010; Mayer et al., 2010; Tietjen 

et al., 2010; Bataille et al., 2012; Koch et al., 2010; Brookes et al., 2012) (Figure 4). 

Interestingly, in S.cerevisiae, S2 phosphorylation is controlled by two different 

kinases, Bur1, which directly binds to S5P CTD, and Ctk1. Most S2P sites on 

elongating Pol II seem to be catalyzed by Ctk1 (Buratowski et al., 2009; Qiu et al., 

2009). Similarly, S. pombe has two S2 kinases equivalent to Ctk1 and Bur1, CDK9 

and Lsk1 (Viladevall et al., 2009). In metazoans, CDK9, the kinase subunit of P-

TEFb, phosphorylates both elongation factor Spt5 and CTD S2 (Bres et al., 2008). 

Due to the dual functionality of CDK9, it was thought that P-TEFb combines the 

activities of both yeast Bur1/CDK9 and Ctk1/Lsk1 homologues, respectively. 

However, recent studies in Drosophila and human cells have discovered two 

additional S2 CTD kinases, CDK12 and CDK13 (Blazek et al., 2011; Bartkowiak et 

al., 2010; Bartkowiak and Greenleaf 2011). ChIP data showed that CDK12 

contributes the majority of S2P sites on elongating Pol II and that its abundance at 

the 5’ end of genes is rather low (Bartkowiak et al., 2010; Bartkowiak and Greenleaf 

2011). In addition, CDK12 can promote the expression of a subset of human genes, 

including the DNA damage response genes. The function of CDK13 during the 

transcription cycle remains elusive (Kohoutek et al., 2012). A recent study has 
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revealed the existence of yet another S2 kinase, bromodomain protein Brd4, which is 

an atypical CTD S2 kinase that can phosphorylate S2 in vitro and in vivo (Devaiah et 

al., 2012). Brd4 is able to recruit P-TEFb but can also activate transcription of a 

subset of genes independent of P-TEFb (Devaiah et al., 2012; Rahman et al., 2011). 

The identification of these new metazoan S2 kinases emphasizes that the 

maintenance of distinct homologues in yeast species between Bur1- and Ctk1-type 

kinases has also been preserved in higher organisms. Apart from their role in gene 

transcription, CTD S2 and S5 phosphorylation has been implicated in other 

processes. For instance, S2P has been shown to be essential for additional cellular 

pathways, like sexual differentiation in S.pombe (Coudreuse et al., 2010), whereas 

the mitotic phosphatase Cdc14 has been shown to remove S2P and S5P and thereby 

repressing transcription during mitosis (Clemente-Blanco et al., 2011) (see also part 

1.2.2.2 and Table 2). 

 
Serine-7 phosphorylation: Next to S2P and S5P, other CTD posttranslational 

modifications, such as S7P, have been discovered more recently and fulfil gene 

class-specific tasks. The requirement for S7 phosphorylation was the first example of 

a specifically modified form of Pol II involved in expressing a particular type of gene 

and therefore strengthening the idea of a gene-specific CTD code (Chapman et al., 

2007; Egloff et al., 2007). S7P is required for expression of snRNA genes in 

mammalian cells and mutations of this residue leads to a marked defect in 

transcription of human snRNA genes and 3’ processing of the transcripts (Egloff et 

al., 2007). S7P specifically recruits the RPAP2 S5P phosphatase and the RNA 3’ 

processing integrator complex to snRNA genes, ensuring proper transcription and 

processing of transcripts (Egloff et al., 2012). Surprisingly, CDK7/Kin28, the kinase 

responsible for S5 phosphorylation turned out to be critical for S7 phosphorylation in 

yeast and humans (Boeing et al., 2010; Akhtar et al., 2009; Glover-Cutter et al., 

2009; Kim et al., 2009). Consequently, S7P ChIP-profiles at the beginning of snRNA 

and protein-coding genes generally resemble those of S5P, and knockdown of CDK7 

dramatically decreases both S5 and S7 phosphorylation (Akhtar et al., 2009). 

However, a very important finding is that, in contrast to S5P, the S7P levels remain 

high toward the 3’ end of coding and non-coding genes, suggesting that CDK7 is not 

the only S7- specific kinase. Indeed, it has been shown that the inactivation of Bur1 

kinase reduces the levels of S7P within coding regions and CDK9, the Bur1 homolog 
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in humans, is capable of phosphorylating S7 in vitro (Tietjen et al., 2010; Glover-

Cutter et al., 2009). Interestingly, Ssu72 has recently been shown to also remove 

phosphates from S7P (Zhang et al., 2012) underlying the close connection between 

the S5P and S7P marks that share a common kinase, as well as a phosphatase. 

 

Modulation of residue-specific serine phosphorylation pattern during 
transcription 
Distinct patterns of CTD phosphorylation are detected between non-coding and 

protein-coding genes. S5P marks the initiation site and is also detected on paused 

genes. High levels of S7P along transcribed regions suggest an important function of 

this mark in transcription elongation (Figure 4). Indeed, high levels of S7P are 

present on highly transcribed genes (Kim et al., 2010; Tietjen et al., 2010). S2P 

levels are lower on non-coding genes whereas S7P is equivalent to, or higher, on 

non-coding genes than on protein-coding genes (Kim et al., 2010; Tietjen et al., 

2010). The reason for this could be the short length of non-coding genes, since S2P 

generally occurs later in the transcription cycle. Accordingly, S2P is important for 

elongation and in activating splicing and 3’ end processing in protein-coding genes. 

Because snRNA genes are intronless, the requirement for a high level of S2P might 

be bypassed. S7P specifically recruits the RPAP2 S5P phosphatase and the RNA 3’ 

end processing integrator complex to snRNA genes for accurate transcription and 

processing of transcripts (Egloff et al., 2012).  
In yeast, short genes also exhibit a lower level of S2P for non-coding snoRNAs, 

compared to protein-coding genes. In respect of this, termination factors are 

recruited to protein-coding genes at S2P sites, whereas in snoRNAs the termination 

factor Nrd1 specifically binds to S5P CTD. Additionally, S7P levels can be found at 

high levels on non-coding genes (Kim et al., 2010; Tietjen et al., 2010; Vasiljeva et 

al., 2008). In yeast, it is not known, whether this could also be a positive signal for 

the recruitment of gene-specific factors to non-coding genes. In summary, a low level 

of S2P and an abundance of S7P at non-coding genes could stand for a CTD gene-

type specific signal. 

 
Threonine-4 phosphorylation: T4P was the fourth identified posttranslational 

modification in the CTD heptad repeat (Hsin et al., 2011; Hintermair et al., 2012). In 

ChIP analysis, T4P signals are very weak or absent at the TSS, remain low in the 
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gene body, but strongly rise downstream of the poly(A) site (Hintermair et al., 2012) 

(Figure 4). Interestingly, in mammalian cells, T4P peaks at about 300 bp downstream 

of S2P, suggesting that the increase of S2P might be a prerequisite for the 

subsequent phosphorylation of T4 (Hintermair et al., 2012). Likewise, T4P is tightly 

associated with S2P in co-IP experiments and no T4P can be detected in a serine-

2/alanine (S2/A) mutant. Moreover, the S2/A mutant promotes a global defect in RNA 

elongation, while few genes become activated, and show an enrichment of Pol II 

within the gene body (Hintermair et al., 2012). Additionally, the elongation defect was 

concomitant with a local accumulation of polymerases immediately downstream of 

the initiation site in mutant cells (Hintermair et al., 2012). In contrast, no enrichment 

of T4P at 3’ regions of genes can be detected in yeast, which correlates with the 

finding that T4P would block the binding of the termination factor Pcf11 (Mayer et al., 

2012; Meinhart et al., 2004). In a recent study in chicken cells, it has been shown 

that T4P is crucial for processing, but not transcription, of the intron-less replication-

activated histone genes, whereas expression of other protein-coding genes or non-

coding RNA genes remains unaffected by T4 mutation (Hsin et al., 2011). This 

observation reflects another example of a gene-specific role of the Pol II CTD. In 

human cells, Plk3 can phosphorylate T4 CTD under physiological conditions, as well 

as under stress conditions, leading to the contribution of a new class of CTD-specific 

kinases (Hintermair et al., 2012). Accordingly, inhibition of CDK9, the known S2P 

kinase, by DRB and flavopiridol also leads to diminished T4P levels, suggesting that 

T4 phosphorylation is also CDK9-dependent (Hsin et al., 2011). However, this could 

be an inhibitory effect caused by the lack of S2P, which has been shown to be a 

prerequisite for priming T4 phosphorylation. Finally, to date, no specific T4 CTD 

kinase has been identified in yeast and no T4 CTD phosphatase has been described 

in any species. 

 
Tyrosine-1 phosphorylation: Recently, the CTD code has been expanded by 

another CTD posttranslational modification, tyrosine-1 phosphorylation (Y1P), which 

plays an important role in the regulation of transcription termination (Baskaran et al., 

1993; Mayer et al., 2012). Y1 is phosphorylated in yeast and ChIP data showed that 

this modification can be found at all active genes. Importantly, Y1P levels drop before 

reaching the poly(A) site, whereas S2P levels still remain high (Figure 4). This led to 

the discovery that Y1P has a key function in suppressing termination during 
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elongation by blocking the recruitment of Rtt103 and Pcf11 (Mayer et al., 2012). Y1P 

blocks CTD binding to the conserved CTD-interacting domain (CID) of termination 

factors in vitro, whereas within the gene body, the CTD binding of elongation factor 

Spt6 through its CTD-binding domain is maintained and accompanied by high Y1P 

levels. 

This fundamental role of Y1P in gene expression might also explain the lethal 

phenotype of the tyrosine-1/phenylalanine (Y1/F) mutant in yeast and human. 

Nevertheless, an in vivo kinase screen including the CTD kinases Kin28, Srb10, 

Bur1 and Ctk1 has not led to the discovery of the responsible Y1P kinase in yeast, 

suggesting that Y1 phosphorylation of the yeast CTD depends on a kinase other than 

the known CTD kinases (Mayer et al., 2012). Concurrently, Y1 phosphorylation in 

human is performed by c-Abl, a kinase that lacks a yeast homolog (Baskaran et al. 

1999). 

 
 

 
 
 
 
 
 
 
Phosphospecific CTD antibodies: Hallmarks and considerations  
Monoclonal antibodies against CTD Y1P, S2P, T4P, S5P and S7P have also been 

established successfully in our lab and are a powerful tool for the study and 

identification of new phosphoresidues in ChIP experiments, as well as in vivo cell 

Figure 4 Average profile of CTD phosphorylation profiles along genes from 
ChIP experiments. Schematic graph of genome-wide distribution for all CTD 
phosphorylation marks (Heidemann et al., (2012), Dynamic phosphorylation patterns of 
RNA Polymerase II CTD during transcription; Biochim Biophys Acta. 2013 Jan; 
1829(1):55-62). 
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studies. However, it is very important to be aware of limitations in the epitope 

recognition capacities of these antibodies, due to epitope masking. Furthermore, the 

epitope specificity of antibodies is also an issue, as it can change at high antigen, as 

well as high antibody concentration. Additionally, the signal strength of antibodies in 

western blotting or ChIP analysis reflects the number of accessible CTD-marks and 

not the overall number of existing modifications, which are physically present in the 

CTD under investigation. Accordingly, the absence of a signal can be explained 

either with its physical absence or with the masking of the targeted epitope by other 

modifications. Consequently, in order to get a more detailed insight into how other 

adjacent modifications can influence or inhibit epitope recognition, our CTD 

antibodies were tested in enzyme-linked immunosorbent assays (ELISA) using a 

panel of di-heptad CTD peptides with various combinations of modifications. With 

this analysis we obtained a comprehensive overview of inhibitory modifications that 

interfere with binding of specific antibodies to the CTD (Figure 5). 

The results of this investigation demonstrate that all CTD-specific antibodies underlie 

specific restrictions in recognition of their respective epitope (Hintermair et al., 2012; 

Heidemann et al., 2012). For example, Y1P in the same repeat together with S2P 

influences the recognition by the S2P specific antibody 3E10 (Figure 5). In another 

case, phosphorylation of S2 or S5 next to T4P inhibits the epitope recognition of the 

T4P specific antibody 6D7 (Hintermair et al., 2012; Heidemann et al., 2012). 

Consequently, the T4P specific antibody cannot distinguish between de-novo 

phosphorylation of a T4 residue and the unmasking of pre-existing T4P marks, which 

leaves us for the interpretation of the strong increase of T4P in the 3’ region of genes 

either or both options (Figure 4) (Hintermair et al., 2012). Nevertheless, T4P-linked 

structural changes occur in the CTD downstream of the poly(A) site. Additionally, the 

CTD-specific antibodies were used to purify and define different fractions of the 

hyperphosphorylated form of Pol II (IIO form) biochemically. IP-experiments showed 

that three different populations of Pol IIO regarding their CTD marks exist. A 

population associated preferentially with (i) S5P marks, (ii) S5P and S2P marks, and 

(iii) S2P and T4P marks. The S7P mark can be found in all three populations 

(Hintermair et al., 2012). These data indicate that T4P is strictly associated with the 

S2P mark and that S5P/S7P and S2P marks are associated with different populations 

of Pol IIO in human cells. Importantly, recent ChIP studies in yeast revealed that the 

phosphoserine marks are placed and removed as a function of the distance from 
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transcription start site (TSS) and termination site, respectively, with no significant 

detectable difference between genes (Mayer et al., 2010; Bataille et al., 2012). In 

other words, the CTD cycle is very similar at all genes including the fact that short 

genes will have higher levels of S5P and lower levels of S2P than long genes when 

they reach the termination site. In line with this, short genes, such as snoRNAs and 

genes coding for small proteins tend to use an alternative mechanism for termination 

compared to most class II genes (Kim et al., 2006; Lykke-Andersen and Jensen, 

2007) (Figure 3b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Arginine methylation: Interestingly, in addition to 21 consensus repeats, the 

mammalian CTD consists of 31 non-consensus repeats that are mainly found in the 

distal part of Pol II CTD. Recently, for the first time, a specific role in CTD function 

within non-consensus repeats has been discovered. In human cells, the CTD of Pol 

II is methylated at arginine1810 (R1810) of CTD repeat 31 by the methyltransferase 

CARM1 in vitro and in vivo (Sims et al., 2011). This specific modification is linked to 

the regulation of snRNA and snoRNA expression since substitution of R1810 to 

alanine, as well as genetic knockout of CARM1, lead to a specific up-regulation of 

these classes of RNA species (Sims et al., 2011). Contrary to the inhibitory effect on 

snRNA gene expression of the S7 mutation, expression of snRNA and snoRNA were 

up-regulated when R1810 was mutated to alanine, indicating a repressive rather 

 
αTyr1-P (3D12)   T4S5P6S7Y1S2P3T4S5 
 
        
αSer2-P (3E10)   S5P6S7Y1S2P3T4S5 
 
                
αThr4-P (6D7)   Y1S2P3T4S5P6S7Y1 
 
        
αSer5-P (3E8)   Y1S2P3T4S5P6S7Y1 
 
        
αSer7-P (4E12)   P3T4S5P6S7Y1S2P3 
 

Figure 5 Overview of the characteristics in epitope recognition of 
monoclonal phospho-specific-CTD antibodies established in our lab. Blue 
circle indicates phospho-specific epitope of each antibody. Red amino acid residues 
reveal full or partial inhibition of antibody binding. 
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than activating function of this mark (Egloff et al., 2007; Sims et al., 2011). Thus, 

methylation of R1810 by CARM1 controls the expression of a subclass of RNAs, 

further expanding the gene-specific functions associated with the CTD. Interestingly, 

R1810 methylation is inhibited by S5P and S2P marks in vitro, suggesting that the 

methylation is placed before early initiation. However, this novel CTD mark can be 

detected within the actively transcribed Pol IIO form in vivo showing that arginine 

methylation is maintained within Pol II CTD during transcription (Sims et al., 2011). 

Additionally, the Tudor domain of TDRD 3 specifically binds to dimethylated R1810 

(Sims et al., 2011). However no specific role of this novel interaction has been yet 

found. Although the mechanism of how this new CTD mark of R1810 interferes with 

the expression of short transcripts is unknown, this and maybe other modifications 

within the non-consensus repeats of the distal part of mammalian CTD may play a 

key role in recruiting the transcription machinery to certain gene loci or keep it away. 

In addition to R1810, eight lysines are located within the distal part of the CTD and 

are potential residues for acetylation, methylation, sumoylation and ubiquitylation. 

Mass spectrometry might be a powerful tool for mapping new additional 

posttranslational modifications within non-consensus repeats of the distal part of Pol 

II CTD. 

 

Proline isomerisation: Proline-3 (P3) and proline-6 (P6) are totally conserved in all 

52 repeats of mammalian CTD and are surrounded by phosphorylation sites on each 

side. Prolines can be in either cis or trans orientation, resulting in four possible 

configurations of each repeat further expanding the complexity of the CTD code 

(Egloff et al., 2008). The peptidyl proline isomerase Ess1 in yeast and Pin1 in 

mammals can isomerize the prolines at position 3 and 6 of each CTD repeat (Egloff 

et al., 2008). CTD-protein binding studies revealed that the 

polyadenylation/termination factor Pcf11 binds exclusively to repeats with S2P and 

prolines in the trans configuration whereas the Ssu72 S5P phosphatase recognizes 

repeats with S5P and the downstream proline in the cis configuration (Noble et al., 

2005; Werner-Allen et al., 2011) (see also part 1.2.3). These findings show that the 

isomerisation status of prolines interferes with the CTD phosphorylation pattern 

directly and vice versa suggesting a further regulatory mechanism in regulating 

recruitment and binding of CTD-interacting factors. Furthermore, Ess1 and Pin1 can 

activate Ssu72 to promote S5P dephosphorylation (Noble et al., 2005; Werner-Allen 
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et al., 2011; Xiang et al., 2010). In addition, Pin1 is also involved in the 

hyperphosphorylation of the CTD during the mitotic (M) phase performed by 

Cdc2/cyclin B (Xu et al., 2003). 

 

Serine and threonine glycosylation: Serine and threonine residues within the CTD 

can be glycosylated by the addition of a monosaccharide N-acetylglucosamine (O-

GlcNAc) to their hydroxyl groups (Kelly et al., 1993). Importantly, phosphorylation 

and O-GlcNAcylation of single CTD residues are mutually exclusive proposing a role 

for CTD glycosylation in inhibiting CTD phosphorylation (Comer et al., 2001). In line 

with this, a recent study showed that dynamic glycosylation of CTD S5 and S7 

mediated through O-GlcNAc transferase (OGT) and O-GlcNAc aminidase (OGA) 

exists during the assembly of the pre-initiation complex. A reduction in the 

transcription and Pol II occupancy at several B-cell promoters could be observed by 

the knockdown of OGT (Ranuncolo et al., 2012). These data suggest that the 

glycosylated form of Pol II is recruited to the promoter and that OGA acts at this 

stage to selectively remove the O-GlcNAc group before phosphorylation occurs. 

However, so far, no clear evidence has been demonstrated that glycosylation within 

the CTD plays an important role in gene expression. 

 
 
 
1.2.2   Genetic analysis of the CTD of Pol II 
 
The CTD is dispensable for polymerase activity in vitro, but deletion of the entire 

CTD in mice or yeast is lethal. In mammals, CTD with only 31 repeats interferes with 

cell viability (Meininghaus et al., 2000) whereas mice homozygous for a CTD 

containing 39 repeats show a high degree of neolethality (Litingtung et al., 1999). In 

yeast, but not in mammals, cells expressing Rpb1 with CTDs consisting of only ~ 

50% of the original numbers of heptads are viable. In line with this, the CTD of 

budding yeast contains 26 repeats, but only eight heptads are required for cell 

viability and 13 are needed for wild-type-like growth (West and Corden, 1995). 

Genetic studies in mammalian cells revealed that a CTD composed of 55 consensus 

repeats can fulfil all essential functions for proliferation (Chapman et al., 2005). 

Moreover, a mutant consisting of only non-consensus repeats showed a severe 

growth defect compared to mutants of similar length, containing consensus repeats 
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(Chapman et al., 2005). Interestingly, these repeats differ from the consensus 

sequence mainly at S7 suggesting an important role for this position within the CTD. 

These data also imply that the highly conserved composition of the mammalian CTD 

consensus and non-consensus repeats is probably not entirely essential for life but 

rather ‘optimized’ for efficient function or other, as yet unknown, purposes that could 

come along with a survival advantage e.g. in response to cellular stress. In addition, 

non-consensus repeats may play an important role in the expression of specific 

genes as shown for R1810 in regulating the expression of snRNA and snoRNA 

genes (Sims et al., 2011). Furthermore, it has been shown that the effect on cell 

viability and growth appears to be dependent on the number of repeats. In other 

words, the greater the number of consensus repeats, the greater the rate of 

proliferation and cell survival (Litingtung et al., 1999: Meininghaus et al., 2000: 

Chapman et al., 2005). The number of repeats that comprise the Pol II CTD in 

different organisms may reflect the requirement for complex pre-mRNA processing 

events and transcriptional control. In this line, by both increasing the number of 

repeats and diverging their sequence, a greater number and diversity of factors can 

bind the CTD. Chapman et al. could show that both the last repeat 52 that contains a 

unique site for the binding of the CTD tyrosine kinases Abl1 and Abl2 as well as 

repeats 1-3 serve to regulate the stability of Pol II by preventing its degradation to 

the CTD-less RNA Pol II form (IIb form). Interestingly, all other repeats could be 

deleted without inducing degradation (Chapman et al., 2004 and 2005). In more 

detail, mutagenesis of CTD repeat 52 showed a requirement for acidic amino acids 

at its C-terminus independent of their specific sequence. In addition, repeats 1-3 can 

not be replaced by consensus repeats suggesting that these repeats may serve as a 

spacer between the Linker region and the CTD rather than being a binding site for a 

specific factor (Chapman et al., 2004 and 2005). 

A CTD-less RNA polymerase II can stimulate capping but the presence of the CTD 

increases the efficiency of this reaction fourfold (Mortillaro et al., 1996). However, a 

CTD-less RNA polymerase II is not able to initiate on the endogenous chromatin 

template (West and Corden, 1995; Bartolomei et al., 1988; Meininghaus et al., 

2000). In a different study it has been demonstrated that the CTD independently 

stimulates each of the three major pre-mRNA processing events in vivo (Fong and 

Bentley, 2001). Interestingly, there is a difference between the amino- and carboxy-

terminal halves of the CTD in the ability to stimulate different processing steps. While 
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the proximal part of the CTD can support capping without efficient splicing or 3’ 

processing, the distal part of the CTD supports all of the three pre-mRNA processing 

steps (Fong and Bentley, 2001). Moreover, the CTD carboxyl-terminus (repeat 27-

52) was sufficient for 3’ processing and splicing concluding that although the CTD is 

a highly repetitive structure, there seems to be functional specialization of different 

segments within it (Fong and Bentley, 2001). In different studies, mutants where the 

positions S2, T4, S5 or S7 of the CTD had been replaced by alanine were transfected 

into mammalian cells and the viability of these Pol II CTD mutants was measured 

over a period of 4 days. As a result, mutants containing replacements of S2/A, T4/A, 

and S5/A in 48 out of 52 CTD repeats revealed a strong growth defect with a 

dramatically reduced cell count after 4 days. Additionally, the T4/S and S7/A mutants 

showed an attenuated phenotype with almost constant cell numbers (Chapman et 

al., 2007; Hintermair et al., 2012). 

Most genetic studies of CTD have been performed in yeast and the next chapter will 

focus on different aspects of yeast CTD mainly focussing on deciphering the CTD 

code in both budding yeast and fission yeast. 
 

 
1.2.2.1 Genetic analysis of the budding yeast CTD  
 
In a recent genome-wide ChIP study in budding yeast new insights in the complex 

interplay between the CTD-modifying enzymes have been gained. In a kin28 mutant 

strain the levels of both S5P and S7P are strongly reduced at the 5’ end of genes as 

expected, however, a dramatic increase of these phospho marks could be detected 

throughout the ORF compared to wild-type cells (Bataille et al., 2012). Consequently, 

the distribution but not the overall level of S5P and S7P is affected in the absence of 

Kin28. This result can be explained by the fact that Bur1 is a potent S5 and S7 kinase 

but its activity is repressed in the presence of a functional Kin28 complex. Another 

interesting finding is that Kin28 and Bur1 seem to have opposing roles during early 

transcription as the accumulation of Pol II at the 5’ end of genes in a kin28 mutant 

can be rescued by simultaneous knockout of Bur1. Bataille et al. also showed that 

the depletion of CTD phosphatase Ssu72 led to a similar pattern in both S5P and S7P 

marks extending further to the end of the gene, implying that Ssu72 

dephosphorylates S5 and S7 prior to termination. In line with this, new data also 

revealed that the Ess1 isomerase can specifically stimulate the dephosphorylation of 
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both S5 and S7 at the 3’ end of genes. Ess1 catalyzes the cis/trans inter-conversion 

of the peptidyl-proline bond between S5-P6 and the cis-isomer form is known to be 

the preferred substrate of Ssu72. Therefore Ess1 plays a crucial role in CTD 

dephosphorylation by Ssu72 (Bataille et al., 2012). 

Bataille et al. also suggests that distinct variants of the same phosphoserine can be 

found within the CTD. They observed that S5P is removed in two waves, first by Rtr1 

and later by Ssu72. The same is true for S2P by removing one part of it prior to 

termination whereas the rest is dephosphorylated after termination. These different 

subclasses of the same phosphoserine may arise because of trans versus cis 

conformations of the S-P bonds or due to differential phosphorylation of 

neighbouring residues. Another explanation would be that the degenerate repeats 

located within the distal part of the CTD might be functionally distinct from consensus 

repeats located mainly in the proximal part of the CTD with respect to targeting by 

the different CTD modifying enzymes. 

Genetic studies in budding yeast have shown that Y1, S2, and S5 are essential for 

CTD function (West and Corden, 1995; Pei et al., 2001) and that A-insertions 

between adjacent repeats are lethal whereas individual residues inserted between 

pairs of heptapeptides are well tolerated (Liu, 2010; Stiller et al., 2004). These 

findings propose that the minimal function unit of CTD lies within a di-heptad. Based 

on this, Stiller and colleagues discovered the irreducible unit of CTD function in 

budding yeast performing genetic analyses of CTD mutants (Table 1). The two 

essential sequence motifs defining the functional unit are paired tyrosines placed 7 

amino acids apart (Y1-Y8) as well as three potential phosphoserines in a 2-5-9 

orientation with respect to the Y8 residue to a given di-heptapeptide (Liu, 2008 and 

2010). Since these two essential elements are somewhat independent the final 

functional unit consists of the sequence Y1-S2-P3-X4-S5-P6-X7-Y8 that is either linked 

to a proximal S2-P3-X-S5-P6-X or to a distal S2-P3. In this line, yeast mutants are 

viable with repeats containing only a minimal sequence of these two essential 

elements (Y1-S2-P3-T4-S5-P6-S7-Y1-S2-P3-T4) or by replacing the right-hand S5-P6-S7 

residues by alanines (mutant ‘252’ and ‘AR’; Table 1). Additionally, 9 or more tandem 

copies of this 11-mer sequence unit were sufficient for wild-type growth (Liu, 2008 

and 2010). Since this mutant contains a row of non-overlapping individual minimal 

functional units it seems like that the overall sequence required for most or all CTD 

functions is not based on tandemly repeated heptads but is rather defined within 
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repeated units of three consecutive S-P pairs interspersed with Y residues that are 

spaced at a heptad interval. In a different approach it has been shown that additional 

distance between essential units results in a progressive decline in CTD efficiency. A 

very slow growth phenotype could be detected in mutants with five A insertions 

between every diheptad and complete lethality was obtained when units were 

separated by seven A residues (mutant ‘5A’ and ‘7A’; Table 1) (Liu et al., 2010). 

Importantly, the lethal phenotype could be rescued by replacing alanine with proline 

in position 3 and 6 suggesting that the quality of the inserted sequence rather than 

the physical distance between functional units is important for CTD function (mutant 

‘AP’; Table 1). The long stretch of alanine residues tends to form stably secondary 

structure like α-helices and by replacing alanine with proline disrupts this structure 

leading to a more structurally unordered sequence around each given functional unit. 

In this line, a CTD mutant where seven alanine insertions are placed between every 

tri-heptad instead of every di-heptad grows vigorously explained by the fact that the 

amount of normal, structurally unordered sequence around the essential sequences 

has been increased (mutant ‘A7’; Table 1) (Liu et al., 2010). This leads to the 

conclusion that placing ordered structures directly next to essential CTD units 

negatively influences the interactions between these units and binding partners. In 

this respect, CTDs with only two heptads between each 7 alanine stretch are not 

recognized as substrate for any tested CTD kinase (human Cdk7 and Cdk9, yeast 

Ctk1), whereas CTDs with three heptads between each 7 alanine stretch showed 

efficient substrate specificity for all three tested kinases. In an experiment focussing 

on the question what is most important for optimal CTD function: the total overall 

length of the CTD, the absolute number of essential units present, or the spacing of 

the essential elements along the CTD? It turned out that independent of the 

sequence repeated, the length variant in each strain set revealing the highest growth 

rate always contained the CTD with closest to normal length, rather than the CTD 

with a WT-equivalent number of essential functional units. These genetic studies in 

budding yeast show that on the one hand CTD repeats are functionally redundant 

but on the other hand overall length of the CTD is most important and also strongly 

conserved within species. One idea based on this observed CTD characteristics is 

that a certain length is required to establish an optimal ‘loading platform’ for CTD- 

and phospho CTD-associating proteins (PCAPs) (Liu, 2008 and 2010). In more 

detail, binding of protein factors needed for key functions determines the minimum 
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number of repeats and is responsible for the strong purifying selection on CTD 

towards overlapping tandem functional units. Next, length beyond the minimum 

gains extra space to bind proteins involved in additional or accessory functions and 

finally non-consensus repeats provide landing platforms for proteins that play a role 

in more taxon-specific functions. In conclusion, the need for maintenance of a 

dynamic microenvironment around each functional CTD unit in combination with an 

optimized macroenvironment for overall binding across the full CTD length probably 

led to the highly conserved evolution of CTD across many species (Liu et al., 2010).  

 
 

 
 
 
 
 
 
 
1.2.2.2 Genetic analysis of the fission yeast CTD  
 
In Shuman’s lab, recent genetic studies in fission yeast shed light into the key rules 

that govern the CTD code in this organism by manipulating the composition and 

structure of the Rpb1 CTD. The fission yeast is an ideal model system for CTD 

studies as the native heptad repeat array is relatively homogeneous consisting of 29 

repeats of which 24 follow the consensus sequence (Figure 1). First they 

investigated the importance of all individual amino acids within the canonical repeat 

by introducing alanine in lieu of Y1, S2, P3, T4, S5, P6, and S7 of every heptad of the 

The ‘+’ marks for each viable CTD mutant indicate the relative vigor of the yeast cells 
bearing the mutants, compared to WT cells (WT is labeled as five pluses). Adapted from: 
(Liu and Greenleaf, (2010), Genetic Organization, Length Conservation, and Evolution of 
RNA Polymerase II Carboxyl-Terminal Domain; Mol. Biol. Evol. 27(11):2628-2641. 2010). 

Table 1 Overview of CTD mutants used in genetic studies in budding yeast. 
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Rpb1 CTD array (Table 2). The key results from this approach were that Y1, P3, S5, 

and P6 are essential for viability whereas S2, T4, and S7 are not (Table 2) (Schwer 

and Shuman, 2011). Interestingly, the S2/A mutant grew well at 30°C revealing that 

S2 phosphorylation is not essential and this observation contrasts clearly with the 

situation in budding yeast, where the same mutant was lethal (Table 2). In line with 

this, a similar result was obtained by studying a different mutant where Y1 was 

replaced by phenylalanine along the whole CTD. This Y1/F mutant was viable, 

though cold sensitive in fission yeast, whereas the analogous mutant in budding 

yeast is lethal. The Y1/F phenotype in fission yeast suggests that the Y1 hydroxyl 

group and therefore any tyrosine phosphorylation are not essential for the growth 

but, instead, the phenyl ring of Y1 is indispensable at this position within the CTD. 

The lethal phenotype of both, the S5/A mutant and the S5/E mutant occurs in both 

yeast strains and the negative outcome of replacing S5 with glutamate indicates that 

a state simulating constitutive S5 phosphorylation is detrimental across species 

(Table 2) (Schwer and Shuman, 2011). Additionally, the finding that replacing S5 with 

threonine is lethal, too, might be explained by the fact that the extra methyl group of 

threonine is directly deleterious due to steric hindrance with CTD binding proteins in 

fission yeast. The dominant role of S5 as the sole serine phosphorylation source for 

the Pol II CTD code regarding vegetative growth was underlined by the viability of 

the double mutant S2/A-S7/A at 30°C in fission yeast (Table 2). Another interesting 

finding of the Shuman group was the requirement of S2 for transcription during 

sexual differentiation and that this specific function of this CTD residue could be 

bypassed by subtracting S7. They found out that the S7P signal was higher in the 

S2/A mutant compared to wildtype even though the total Rpb1 signal was higher in 

WT than in the S2/A background. Based on this, Shuman and co-workers proposed 

that an imbalance in the CTD phosphorylation array and not the absence of a 

particular phospho-CTD residue reflects a CTD-associated pathology in this specific 

case and thereby adding a new aspect in how to read a CTD code (Schwer and 

Shuman, 2011).  

On top of this, Shuman’s lab could show in a very exciting experiment that the 

lethality of S5/A is rescued by the fusion of the Mce1 capping protein in-frame to the 

mutant S5/A cassette. The key finding of this experiment is that the essentiality of the 

S5P mark reflects its singular requirement for capping enzyme recruitment, which 

can be bypassed by fusing the capping enzyme to the S5/A CTD. In a similar 
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approach the Mce1 coding region was fused to mutant Y1/A, P3/A, P6/A, and S2/A-

S5/A CTD cassettes showing that the need for P6 as an essential letter is withdrawed 

when the capping enzyme is directly tethered to the CTD. Additionally, S2 does not 

turn into an essential factor regarding viability in the absence of S5. Finally, the 

requirement for Y1 and P3 could not be bypassed by Mce1 fusion suggesting that Y1 

and P3 might be used as recognition sites for CTD binding factors other than the 

capping enzymes (Schwer and Shuman, 2011). 

Following the pioneer work performed in the labs of Stiller and Greenleaf focussing 

on the discovery of the minimal essential CTD unit in budding yeast Shuman’s lab 

set up similar approaches for getting first insights in the grammar and punctuation of 

the CTD code in fission yeast. First, they confirmed that the essential CTD 

information lies within a di-heptad repeat in fission yeast, too. In genetic studies 

using CTD mutants where blocks of alanine insertions replaced the native amino 

acid residues at the distal end of each di-heptad unit they found out that the essential 

S5-P6 dipeptide need not to be located in consecutive heptad repeats. Additionally, 

the deca-peptide unit Y1-S2-P3-T4-S5-P6-S7-Y1-S2-P3 is the minimal coding unit of the 

CTD and the spacing between adjacent units is flexible (Schwer and Shuman, 2012). 

Moreover, Y1 must be present in consecutive heptads and proper spacing between 

consecutive tyrosines is important for CTD function, a common feature of Y1 in both, 

budding yeast and fission yeast. Interestingly, knockout of Ssu72 in fission yeast is 

not lethal, in contrast to its essentiality in budding yeast suggesting that a 

phosphatase other than Ssu72 is mainly responsible for dephosphorylating S5P and 

S7P in fission yeast.  

Shuman’s lab investigated the effect of CTD mutations on CTD phosphorylation in 

vivo. One result of this study is that independent pathways exist for S2 and S5 

phosphorylation in fission yeast. Furthermore, S2P and S5P marks can be placed in 

T4/A and S7/A cells as well as in Y1/F cells implying that neither S2 nor S5 

phosphorylation requires concomitant phosphorylations of Y1, T4, or S7. On the 

contrary, the P6/G mutant directly influences the Rpb1 S5P mark strengthening the 

idea that P6 plays a specific role in the recognition of S5 residues by cyclin–

dependent kinases in vivo (Schwer and Shuman, 2012). 

In summary, genetic studies of the Rpb1 CTD in both, budding yeast and fission 

yeast share important common features defining the minimal functional unit in 

respect of the need of an adjacent pair of tyrosines spaced 7 amino acids apart and 
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the essentiality of three consecutive serine residues in a 2-5-2 configuration. These 

results correlate with  findings based on crystal structures of proteins complexed with 

the CTD showing e.g. that paired tyrosines anchor binding of the CTD to several 

associated protein partners (see  also part 1.2.3). In addition, CTD-protein binding 

studies emphasize the importance of contiguous and properly spaced 

phosphoserines and that specific protein-CTD contacts although highly variable, tend 

to occur over relatively short stretches within the CTD (see  also part 1.2.3). The last 

chapter of the introduction part will discuss the structural features of the CTD and will 

summarize the basic rules that govern the CTD-specific recognition of several CTD 

binding proteins. 

 
 
 
 

 
 
 
 
 
   

 
1.2.3   Structural view of the CTD of Pol II 
 
The CTD of yeast spans up to 650 Å in an extended conformation and is located 

near the RNA exit channel of Rpb1. Consequently, both the location and the flexible 

nature of the CTD support the binding of many protein factors in close proximity of 

Table 2 Overview of CTD mutants used in genetic studies in fission yeast. 

A summary of the mutational effects on growth and mating in fission yeast is shown. The 
alleles are named according to the amino acid substitutions introduced into all 14 
consensus heptads appended to the ‘rump’ that connects the CTD to the body of Pol II 
(Schwer and Shuman, (2011), Deciphering the RNA Polymerase II CTD Code in Fission 
Yeast; Molecular Cell 43, 311-318, July 22, 2011). 
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the nascent transcript (Phatnani et al., 2006; Munoz et al., 2010). Multiple 

phosphorylations of the CTD create not only new recognition sites, but also lead to 

an overall structural change of the CTD. The CTD structure becomes more extended 

upon phosphorylation due to charge repulsion between phosphate groups (Zhang 

and Corden 1991: Cagas and Corden 1995; Cramer et al., 2001; Noble et al., 2005). 

In line with this, phosphorylations and other modifications not only change the 

chemical structure of the CTD but also increase or restrict the conformational 

variability on the domain and effect recognition by other factors. For example, the 

phosphate group of phosphoserine contains a double negative charge and can form 

multiple hydrogen bonds and salt bridges. In contrast, a methyl group, linked to 

arginine or lysine, deletes the possibility for the formation of H-bonds but promotes 

hydrophobic interactions instead. Importantly, phosphorylation and glycosylation 

occurs on the same hydroxyl groups of serine and threonine residues, causing the 

modifications to be mutually exclusive. Glycosylation inserts a relatively large sugar 

rest to the peptide chain serving as a steric block to prevent aberrant 

phosphorylation (Kelly et al., 1993; Comer et al., 2001). In the same line, 

ubiquitination and sumoylation would lead to even more drastic changes to the CTD 

structure. The addition of carbohydrate, ubiquitin, and SUMO likely inhibit access to 

the neighbouring amino acids and might prevent or control the dynamic exchange of 

other posttranslational modifications and binding factors. However, no detailed 

information about the functional relevance of these modifications within the CTD is 

available yet. Another important feature of the CTD code is the cis/trans 

isomerisation of the S2-P3 and S5-P6 peptide bonds (Lu et al., 2007; Shaw 2002 and 

2007). The majority of peptide bonds in the cis conformation appears in surface-

accessible bend, coil, or turn motifs (Lu et al., 2007). Switches between the cis and 

trans isomers induce large structural changes, leading to sharp turns into the 

backbone that destroys previous interactions and also creates new epitopes for 

recognition. Due to its flexibility, the CTD has not been detected in the crystal 

structures of Pol II. Nuclear magnetic resonance (NMR) spectroscopy data, however, 

imply that the free CTD is largely flexible, although it also contains some residual 

structure and shows a tendency to form ß-turns at two SPXX motifs (S2-P3-T4-S5 and 

S5-P6-S7-Y1) (Suzuki et al., 1989).  Importantly, available structures of bound CTD 

peptides demonstrate how complex and diverse the recognition of basically the 

same peptide sequence may be implying that no simple rules of the CTD code exist. 
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In other words, the specificity of binding depends on different modification isoforms, 

modification patterns, length of bound CTD peptides, and cis or trans conformations 

of the phosphoserine-proline peptidyl-prolyl bonds. A combination of steric 

constrains, intramolecular and intermolecular hydrogen bonds, van der Waals forces, 

and electrostatic and stacking interactions contribute to the specific recognition and 

binding of protein factors to the CTD. Based on this, each CTD-binding protein has 

its own minimal requirement for the functional unit of a CTD peptide, which can be as 

long as three repeats (Cgt1; Figure 6c), or as short as four residues, similar to Scp1 

(Figure 6b) (Fabrega et al., 2003; Zhang et al., 2006). 

 
CIDs (CTD-interacting domains) are the best studied family of the CTD binding 

domains and can be found in Rtt103, SCAF8, Pcf11, and Nrd1 (Figure 6a) (Meinhart 

and Cramer 2004; Becker et al., 2008; Lunde et al., 2010; Kim et al., 2004; 

Patturajan et al., 1998; Barilla et al., 2001; Sadowski et al., 2003; Steinmetz et al., 

1998; Vasiljeva et al., 2008). This domain contains eight α-helices and binds from 8 

to 11 residues of the CTD. The CTD forms a classical ß-turn conformation which is 

positioned in the binding groove of the CID. The ß-turn consists of S2b-P3b-T4b-S5b 

and is always stabilized by three intramolecular H-bonds independent from the 

phosphorylation pattern (Figure 6a) (Becker et al., 2008). Contacts of the CTD-CID 

interaction are made by H-bonds between the CID and P6a,b, S7a, Y1b, and S5b. In 

addition, the side chain hydroxyl group of Y1b forms an H-bond with a conserved 

aspartate of CID (Figure 6a). Interestingly, both the Rtt103 and SCAF8 CID binds the 

S2P CTD with a higher affinity than the Pcf11 CID due to the presence of a 

conserved arginine that creates a salt bridge interaction with the phosphate group of 

S2P (Lunde et al., 2010; Noble et al., 2005). In all CTD-CID complexes the S-P 

peptidyl-prolyl bonds are in trans conformation with the exception of Nrd1 that binds 

to S5P CTD favouring a cis conformation of the S5aP-P6a peptidyl-prolyl bond (Figure 

6a) (Kubicek et al., 2012). A common feature shared by all CTD-CID interactions 

involves the Y1 residue. Its hydroxyl group forms an H-bond with a conserved 

aspartate of the CID and its aromatic ring is tightly placed in the hydrophobic pocket 

of the CID. In line with this, recently it has been demonstrated that the 

phosphorylation of Y1 impairs the binding to all three yeast CID-containing proteins, 

Nrd1, Pcf11, and Rtt103 (Mayer et al., 2012). 
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Both, fission yeast CTD phosphatase Fcp1 and human small CTD phosphatase 

Scp1 belong to the family of Mg2+ dependent S-P/T-P-specific phosphatases (Zhang 

et al., 2006; Ghosh et al., 2008). Scp1 contains a FCPH (FCP homology) domain 

and binds the CTD in a CID-CTD similar way. In more detail, the peptide forms a ß-

turn-like structure spanning residues S2b-P3b-T4b-S5bP and one intramolecular H-

bond is formed between the hydroxyl groups of S2b and T4b (Figure 6b). Additionally, 

P3b is placed in a hydrophobic pocket while the S2b and T4b backbone carbonyls 

develop H-bonds with arginine178 (Figure 6b) (Zhang et al., 2006). 

Fcp1 instead needs the minimal CTD peptide stretch of S5a-P6a-S7a-Y1b-S2bP-P3b-T4b 

for binding and in contrast with Scp1, Y1b and P3b residues flanking S2bP are 

important for the phosphatase activity (Ghosh et al., 2008; Hausmann et al., 2004). 

These differences in positioning the CTD peptide within the structure of Scp1 and 

Fcp1 respectively, might explain that Scp1 preferentially dephosphorylates S5, 

whereas Fcp1 favours S2P residues as a substrate (Hausmann et al., 2002; Yeo et 

al., 2003).  

Interestingly, mouse capping enzyme Mce1, and Candida albicans 

guanyltransferase Cgt1 use distinct CTD binding interfaces to read the same pattern 

of modification (Fabrega et al., 2003; Ghosh et al., 2011). Both enzymes bind the 

CTD peptides that contain S5P in an extended ß-like conformation. However, the 

structure of Cgt1 covers almost three CTD heptads with S5P in each whereas Mce1 

interacts with a short doubly phosphorylated S5aP-P6a-S7a-Y1b-S2bP-P3b peptide 

(compare Figure 6c and 6d) (Fabrega et al., 2003; Ghosh et al., 2011). In the Cgt1-

CTD interaction, the two terminal phosphoserines are anchored in two positively 

charged pockets whereas the central S5bP is not recognized. In more detail, 

interactions take place with Y1b,c, P3b, P6a, and the terminal S5a,cP side chains 

whereas the middle heptad forms an exposed loop and may serves as a binding 

platform for other CTD-protein interactions (Figure 6c). In other words, the Cgt1 

protein is associated with two distinct functional units, with the intervening CTD 

segment looped out suggesting that efficient CTD-Cgt1 interaction requires contact 

with more than one minimum CTD unit and enough flexibility between them to 

support cooperative binding. Similar to the Cgt1 structure, the most important 

residues that are involved in Mce1-CTD binding are Y1b and S5aP. While S5P is 

placed in a positively charged pocket and forms several H-bonds, Y1b is located in a 
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hydrophobic pocket forming an H-bond via its side chain hydroxyl group (Figure 6d) 

(Fabrega et al., 2003; Ghosh et al., 2011). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The human peptidyl-prolyl cis-trans isomerase PIN1 binds the CTD via its WW 

domain forming a compact triple-stranded anti parallel ß-sheet (Verdecia et al., 

2000). Its WW domain belongs to the class IV group that specifically recognizes 

compact S-P motifs within peptide sequences. The binding interface includes one 

canonical heptad repeat of the CTD, which is phosphorylated at positions S2aP and 

S5aP. Main contacts in the Pin1-CTD complex originate from P3a, S5aP, and P6a and 

Figure 6 Overview of crystal structures between CTD-interacting proteins 
and CTD peptides.  
a) Nrd1 CID-CTD complex; b) Scp1-CTD complex; c) Cgt1-CTD complex; d) 
Mce1-CTD complex; e) Pin1 WW-CTD complex; f) Ssu72-CTD complex; The 
CTD residues forming the ß-turn conformation are highlighted in orange, the phosphate 
group of serine is shown in magenta, the serine-proline peptide bonds are highlighted in 
blue, and the dashed lines indicate H-bonds. CTD peptide sequence below: blue boxes 
indicate residues involved in the intermolecular H-bonds, dashes lines indicate residues 
forming the intramolecular H-bonds, green asterisks indicate a direct recognition of the 
phosphorylated serine, red circles indicate other types of electrostatic interactions 
contributing to the binding. Alphabetical subscripts indicate the sequential number of the 
heptads. (Jasnovidova and Stefl, (2012), The CTD code of RNA Polymerase II: a 
structural view; WIREs RNA 2013, 4:1-16. Doi: 10.1002). 
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the specificity towards S5P recognition can be explained by the generation of several 

H-bonds between the phosphate group and aginine17 and serine16 of the WW 

domain (Figure 6e) (Verdecia et al., 2000). 

Recent crystal structures of human and fruit fly Ssu72 revealed that this CTD-

phosphatase requires the cis conformation of the S5P-P6 for placing the S5P residue 

into the catalytic side of Ssu72 (Werner-Allen et al., 2011; Xiang et al., 2010). Upon 

cis-configuration, the phosphate group is attached to the active side via multiple H-

bonds and additional interactions include intramolecular H-bonds between T4a and 

P6a, H-bonds of S5aP and S7a backbone amides and Ssu72 residues. Additionally, 

van der Waals forces, electrostatic and stacking interactions take part in the binding 

of P3a, T4a, P6a and Y1b residues (Figure 6f) (Werner-Allen et al., 2011; Xiang et al., 

2010).  

In summary, extensive structural studies have shown an enormous diversity of 

interactions within CTD-protein complexes, however, contacts to CTD Y1 and 

phosphorylated S5 side chains predominate in most of these complexes which is 

consistent with the fact that these two positions within the CTD heptad array are the 

least degenerate in Nature. In the future, it will be important to combine the structural 

and dynamic data of the CTD interactions which may then lead to the deciphering of 

how the CTD code is written, read, and erased. 

  
 
Aim of present study: 
 
Mammalian RNA polymerase II (Pol II) largest subunit Rpb1 contains a unique and 

highly repetitive domain at the carboxy-terminus (CTD) with the consensus heptad 

Y1-S2-P3-T4-S5-P6-S7. As discussed earlier (see Introduction) each single residue of 

the consensus sequence can potentially be modified. Whereas phosphorylation of 

serine-2, serine-5 and serine-7 have already been extensively characterised, the role 

of tyrosine-1 and threonine-4 phosphorylation are poorly understood. Several CTD 

modification specific antibodies have been raised in our laboratory, providing 

valuable information while mapping these modifications in vivo by ChIP analyses. 

However, in spite of the availability of all these CTD-specific antibodies, many 

questions about the modification pattern of the CTD in vivo still remain elusive and a 

number of questions remain unanswered. For example, how extensively are 
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individual repeats modified? Are there distinct phosphorylation marks excluding each 

other? Are there distinct ’signatures’ marking the proximal or the distal part of the 

CTD? Do these ‘signatures’ form platforms for specific recruitment of CTD-binding 

proteins?  And finally, is there a difference in the degree of phosphorylation among 

the different CTD heptad repeats? 

So far, several CTD-phosphosites have already been published (e.g. 

http://www.phosphosite.org) and accordingly, the first part of this work was to set up 

a protocol for mapping phosphosites in order to confirm existing patterns. Of note 

here, is that the distal part of the wild-type (WT) CTD of Pol II is accessible to mass 

spectrometry analysis (MS) due to lysine (K) and arginine (R) residues at the 

seventh position of the non-consensus heptad repeats. However, the main part of 

WT CTD-sequence is inaccessible. The main reason for this is that the mass 

spectrometer is most efficient at obtaining sequence information from peptides that 

are up to 30 residues long, rather than from longer peptides or whole proteins. 

Therefore, in a second step, CTD mutants were established to make the whole 

sequence accessible to MS and to map phosphosites within the entire CTD in vivo. 

MS analysis of four CTD mutants showed that it was difficult to ‘read’ longer peptides 

with more than 28 amino acids in length and thus, the sequence coverage of the 

proximal part of the CTD was still incomplete. Consequently, a second round of CTD 

mutants was created, where the proximal part of the CTD can be fragmented into 

only di- and tri-heptads that are readily assessable by MS.  

This work has established a workflow for identifying abundant CTD signatures that 

define a so-called ‘CTD-code’ and can finally be linked to specific CTD-binding 

protein interactions. 
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2. Results 
 
 
The establishment of a reliable protocol for mapping phosphosites within the CTD of 

Pol II using tandem mass spectrometry (MS/MS) was attained in this work. 

Additionally, development of a standardized procedure summarized in the workflow 

scheme in Table 3 was attempted and the initial results appear very promising in 

opening new ways to the evaluation of phosphorylation patterns within the CTD of 

Pol II in vivo. 

  

 
 

2.1  Mapping phosphosites of WT CTD peptides of Raji  
       cells 
 
 

In order to map posttranslational modifications of proteins via MS the protein of 

interest has to be digested into peptides using a sequence-specific protease, such 

as trypsin. The aim of producing optimally up to 30 amino acid long peptidic 

Table 3 The principle of my workflow. 
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fragments is imposed by the detection limit of the mass spectrometer, which can 

provide sequence information up to this size. Here, trypsin is used for the digestion 

of Rpb1 proteins into peptides. Trypsin is an aggressive and stable protease, which 

very specifically cleaves proteins on the carboxy-terminal side of R and K residues. 

For the case of the Rpb1, this creates peptides both in the preferred mass range for 

sequencing and with a basic residue at the carboxyl terminus of the peptide. Such 

peptides are ‘information-rich’ and provide easily interpretable peptide-fragmentation 

spectra. 
 
2.1.1  Closer look to the mammalian WT CTD sequence 
 
Mammalian WT CTD of Rpb1 of Pol II consists of a long stretch of consensus heptad 

repeats with the sequence YSPTSPS in its proximal part, whereas the last 26 

repeats contain only three consensus repeats (see Figure 7). Among the non-

canonical repeats, position 7 is the most variant residue. Importantly, eight lysines 

and one arginine can be found at this position which makes the distal part of 

mammalian CTD accessible to MS analysis.  
 

1  YSPTSPA
2  YEPRSPGG
3  YTPQSPS
4  YSPTSPS
5  YSPTSPS
6  YSPTSPN
7  YSPTSPS
8  YSPTSPS
9  YSPTSPS
10 YSPTSPS
11 YSPTSPS
12 YSPTSPS
13 YSPTSPS
14 YSPTSPS
15 YSPTSPS
16 YSPTSPS
17 YSPTSPS

18 YSPTSPS
19 YSPTSPS
20 YSPTSPS
21 YSPTSPS
22 YSPTSPN
23 YSPTSPN
24 YTPTSPS
25 YSPTSPS
26 YSPTSPN
27 YTPTSPN
28 YSPTSPS
29 YSPTSPS
30 YSPTSPS
31 YSPSSPR
32 YTPQSPT
33 YTPSSPS
34 YSPSSPS

35 YSPTSPK
36 YTPTSPS
37 YSPSSPE
38 YTPTSPK
39 YSPTSPK
40 YSPTSPK
41 YSPTSPT
42 YSPTTPK
43 YSPTSPT
44 YSPTSPV
45 YTPTSPK
46 YSPTSPT
47 YSPTSPK
48 YSPTSPT
49 YSPTSPKGST
50 YSPTSPG
51 YSPTSPT
52 YSLTSPAISPDDSDEEN

32-35 YTPQSPTYTPSSPSYSPSSPSYSPTSPK
36-38 YTPTSPSYSPSSPEYTPTSPK
39    YSPTSPK
40    YSPTSPK
41-42 YSPTSPTYSPTTPK
43-45 YSPTSPTYSPTSPVYTPTSPK
46-47 YSPTSPTYSPTSPK
48-49 YSPTSPTYSPTSPK
50-52 GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN

Trypsin

1  YSPTSPA
2  YEPRSPGG
3  YTPQSPS
4  YSPTSPS
5  YSPTSPS
6  YSPTSPN
7  YSPTSPS
8  YSPTSPS
9  YSPTSPS
10 YSPTSPS
11 YSPTSPS
12 YSPTSPS
13 YSPTSPS
14 YSPTSPS
15 YSPTSPS
16 YSPTSPS
17 YSPTSPS

18 YSPTSPS
19 YSPTSPS
20 YSPTSPS
21 YSPTSPS
22 YSPTSPN
23 YSPTSPN
24 YTPTSPS
25 YSPTSPS
26 YSPTSPN
27 YTPTSPN
28 YSPTSPS
29 YSPTSPS
30 YSPTSPS
31 YSPSSPR
32 YTPQSPT
33 YTPSSPS
34 YSPSSPS

35 YSPTSPK
36 YTPTSPS
37 YSPSSPE
38 YTPTSPK
39 YSPTSPK
40 YSPTSPK
41 YSPTSPT
42 YSPTTPK
43 YSPTSPT
44 YSPTSPV
45 YTPTSPK
46 YSPTSPT
47 YSPTSPK
48 YSPTSPT
49 YSPTSPKGST
50 YSPTSPG
51 YSPTSPT
52 YSLTSPAISPDDSDEEN

32-35 YTPQSPTYTPSSPSYSPSSPSYSPTSPK
36-38 YTPTSPSYSPSSPEYTPTSPK
39    YSPTSPK
40    YSPTSPK
41-42 YSPTSPTYSPTTPK
43-45 YSPTSPTYSPTSPVYTPTSPK
46-47 YSPTSPTYSPTSPK
48-49 YSPTSPTYSPTSPK
50-52 GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN

Trypsin

1  YSPTSPA
2  YEPRSPGG
3  YTPQSPS
4  YSPTSPS
5  YSPTSPS
6  YSPTSPN
7  YSPTSPS
8  YSPTSPS
9  YSPTSPS
10 YSPTSPS
11 YSPTSPS
12 YSPTSPS
13 YSPTSPS
14 YSPTSPS
15 YSPTSPS
16 YSPTSPS
17 YSPTSPS

18 YSPTSPS
19 YSPTSPS
20 YSPTSPS
21 YSPTSPS
22 YSPTSPN
23 YSPTSPN
24 YTPTSPS
25 YSPTSPS
26 YSPTSPN
27 YTPTSPN
28 YSPTSPS
29 YSPTSPS
30 YSPTSPS
31 YSPSSPR
32 YTPQSPT
33 YTPSSPS
34 YSPSSPS

35 YSPTSPK
36 YTPTSPS
37 YSPSSPE
38 YTPTSPK
39 YSPTSPK
40 YSPTSPK
41 YSPTSPT
42 YSPTTPK
43 YSPTSPT
44 YSPTSPV
45 YTPTSPK
46 YSPTSPT
47 YSPTSPK
48 YSPTSPT
49 YSPTSPKGST
50 YSPTSPG
51 YSPTSPT
52 YSLTSPAISPDDSDEEN

32-35 YTPQSPTYTPSSPSYSPSSPSYSPTSPK
36-38 YTPTSPSYSPSSPEYTPTSPK
39    YSPTSPK
40    YSPTSPK
41-42 YSPTSPTYSPTTPK
43-45 YSPTSPTYSPTSPVYTPTSPK
46-47 YSPTSPTYSPTSPK
48-49 YSPTSPTYSPTSPK
50-52 GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN

Trypsin

 
 
 
 
 

 

The first step was to set up a protocol that allows the efficient mapping of 

phosphosites within the distal part of the WT CTD. The analysis of the WT CTD 

served as an original ‘internal control’ of this protocol, by comparing and confirming 

Figure 7 Human CTD sequence. Left: Scheme of the 52 repeats of human CTD. 
Amino acids that diverge from the consensus sequence are marked in blue. Repeat 
number is shown in front of each corresponding sequence. Right: Predicted fragmented 
CTD peptides after trypsin digestion. Repeats 39 and 40 as well as repeats 46-47 and 48-
49 can not be separated in the MS analysis due to identical masses.  
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the outcome of the spectra with published data of phosphorylated CTD peptides 

originating from whole phosphoproteomic approaches. 
 
2.1.2  Purification of the WT Rpb1 protein  
 
A key point for the purification of the Rpb1 protein was to use phospho-CTD specific 

antibodies that purify the hyperphosphorylated Pol IIO form very efficiently. 

Importantly, our lab has established monoclonal antibodies against all different 

phosphorylated epitopes within the consensus sequence of CTD-heptad repeats.  

These antibodies were all tested individually as well as in all different combinations 

to find the CTD-antibodies with the highest IP-efficiency. The combination of CTD α-

S2-P/α-S5-P (view also Figure 5, Introduction) in a 1:1 ratio turned out to be the best 

choice resulting in the purification of approximately 80-90% of the Pol IIO form using 

whole Raji cell lysates (Figure 8). Whole cell lysate extracts of Raji cells growing 

under normal cell culture conditions were used for the IP reaction and the western 

blot analysis using a specific Rpb1 antibody (Pol3.3) for detection was performed via 

the ECL-detection system applying two different exposure time points (view also 

4.4.5.3 in Material and Methods).  

 

 

 

 

 
 

 

 

 

On the membrane with the longer exposure duration (30 seconds) saturation of the 

signal of the Rpb1 antibody is obtained and about 10% of the Pol IIO form can be 

found left in the supernatant fraction of the IP reaction. Interestingly, although the IP 

Figure 8 ECL-Western blot analysis of WT Raji Rpb1 purification. Left: Exposure 
time of membrane for 10 seconds. Right: Exposure time of membrane for 30 seconds. 
Rpb1 (IIO and IIA form) was purified with α-S2P/ αS5P in a 1:1 ratio and detected on the 
ECL blot via α-Rpb1. SN=Supernatant fraction of IP. 
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antibodies used (α-S2-P/α-S5-P) are specifically recognising the Pol IIO form they 

also purify a large amount of the hypophosphorylated Pol IIA form when using high 

amounts of cells in the IP-reaction (Figure 8). 

Next step was to isolate enough Rpb1 protein for subsequent MS analysis. The 

detection of the protein of interest after Coomassie gel staining served as a 

quantitative assessment of the amount of isolated protein. Consequently, 80 Mio 

cells were needed to visualize both the Pol IIO and Pol IIA form on the Coomassie 

geI (~ 50 ng of protein) following IP and SDS-PAGE (Figure 9). 

 

 

 
 

 
 

 
 
 
 
 
 
 
Both Rpb1 forms (IIO+IIA) were analysed via MS/MS analysis and the results are 

summarized in Figure 10. When using 80 Mio cells as starting material the MS 

output was rather low, detecting only five phosphorylated CTD peptides. Due to this 

weak outcome the protein amount was increased using 300 Mio cells, instead of 80 

Mio cells, for every MS run. An additional phosphopeptide purification step using 

TiO2 beads was included. The TiO2 enrichment strategy is based on the general 

affinity of phosphorylated peptides towards metal oxides and reduces the 

underrepresentation of phosphorylated peptides in a high ‘background’ of non-

phosphorylated peptides. These improvements led to a 10-fold increase in the MS 

outcome and not yet described to date, new phosphorylated CTD peptides, that 

could be found in several positions within the WT CTD of Pol II (Figure 10). 
 

Figure 9 Coomassie gel after WT Raji Rpb1 purification. 80 Mio cells were used for 
the IP and Rpb1 (IIO and IIA form) was purified with α-S2P/ αS5P in a 1:1 ratio and detected 
on the SDS-PAGE gel after Coomassie staining. Both forms of Rpb1 (IIO and IIA) can be 
detected in the IP lane (Lane 3). SN=supernatant fraction of IP. 
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41-42 (1)
YSPTSPTYSPTTPK
43-45 (1)
YSPTSPTYSPTSPVYTPTSPK
46-47, 48-49 (6)
YSPTSPTYSPTSPK(2)
YSPTSPTYSPTSPK(3)
YSPTSPTYSPTSPK

36-38 (17)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(6)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
40-42 (5)
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK(2)
YSPTSPKYSPTSPTYSPTTPK
41-42 (10)
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(3)

43-45 (26)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
46-47, 48-49 (10)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(4)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(2)

40 Mio cells: 300 Mio cells:

41-42 (1)
YSPTSPTYSPTTPK
43-45 (1)
YSPTSPTYSPTSPVYTPTSPK
46-47, 48-49 (6)
YSPTSPTYSPTSPK(2)
YSPTSPTYSPTSPK(3)
YSPTSPTYSPTSPK

36-38 (17)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(6)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
40-42 (5)
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK(2)
YSPTSPKYSPTSPTYSPTTPK
41-42 (10)
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(3)

43-45 (26)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
46-47, 48-49 (10)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(4)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(2)

40 Mio cells: 300 Mio cells:

41-42 (1)
YSPTSPTYSPTTPK
43-45 (1)
YSPTSPTYSPTSPVYTPTSPK
46-47, 48-49 (6)
YSPTSPTYSPTSPK(2)
YSPTSPTYSPTSPK(3)
YSPTSPTYSPTSPK

36-38 (17)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(6)
YTPTSPSYSPSSPEYTPTSPK
YTPTSPSYSPSSPEYTPTSPK(2)
40-42 (5)
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK
YSPTSPKYSPTSPTYSPTTPK(2)
YSPTSPKYSPTSPTYSPTTPK
41-42 (10)
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(2)
YSPTSPTYSPTTPK
YSPTSPTYSPTTPK(3)

43-45 (26)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK
YSPTSPTYSPTSPVYTPTSPK(2)
YSPTSPTYSPTSPVYTPTSPK(4)
46-47, 48-49 (10)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(4)
YSPTSPTYSPTSPK
YSPTSPTYSPTSPK(2)

40 Mio cells: 300 Mio cells:

 
 
 
 
 
 
 
 
  
Preliminary results of the MS analysis of WT CTD showed that 101 phosphosites 

could be mapped within 184 heptad repeats, which is a rather low average 

phosphorylation frequency of 0.55 phosphosites / CTD-heptad. Most abundant 

phosphorylated residues within the CTD were T4 and S5 with 26 and 32 

phosphorylation counts, respectively. As depicted in figure 10, most frequent 

phosphorylated CTD peptides contained three phosphorylation sites and the 

preferred distribution of these triple-phosphosites was one phosphosite per heptad 

repeat. 
  
 
2.2  Mapping phosphosites of mutated CTDs of Pol II  
 
 

To get insights into phosphorylation patterns of the entire CTD of Pol II in vivo, CTD 

mutants were established for optimal mapping of phosphosites via MS. Mutated CTD 

sequences were synthesized by Geneart in Regensburg, subcloned into a final Rpb1 

Figure 10 MS analysis of WT CTD of Pol II. Left: Detected phospho-CTD peptides 
using 80 Mio cells in one run. Right: Detected phospho-CTD peptides using 300 Mio cells 
and including a phosphopeptide purification step. Repeat numbers and detection counts 
are indicated for corresponding phospho-CTD peptide (shown in brackets). Amino 
residues diverging from the consensus sequence are marked in blue and amino acid 
residues that are found to be phosphorylated are marked in red. 

80 Mio cells:  300 Mio cells + Phospopeptide purification:
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expression vector and transfected into Raji cells. Recombinant Rpb1 was then 

purified with CTD-specific antibodies and phosphosites of mutated CTD sequences 

were finally mapped in a MS/MS approach. 
  
 
2.2.1  Designing CTD mutants to obtain  complete sequence  
          coverage for  subsequent MS analysis 
 
In order to obtain MS data including the complete CTD, K and R residues were 

introduced at position 7 of heptad repeats mainly within the proximal part of the CTD. 

K and R residues are a prerequisite for subsequent peptide fragmentation using 

trypsin for protein digestion. To receive full sequence coverage, it is essential that all 

fragmented peptides have different masses based on their length and amino acid 

composition. Consequently, additional amino acid residues next to K and R were 

strategically inserted into the CTD sequence. All in all, 9 different CTD mutants have 

been designed according to different numbers and lengths of fragmented peptides 

and different numbers of CTD mutations. The length of the different CTD peptides 

ranged from mono-heptads (7 residues) to hexa-heptads (42 residues). 

Subsequently, CTD mutants that comprise longer CTD peptides are less mutated 

and vica versa. Figure 11 shows one example of how the CTD can be mutated for 

achieving CTD peptides comprising the whole CTD sequence that can be then 

analysed MS. In this CTD mutant (M-8K4R), eight lysines and four arginines were 

inserted at the seventh position of CTD heptad repeats via amino acid substitutions 

leading to the fragmentation of 20 CTD peptides each containing a unique mass. In 

the M-8K4R, the longer CTD peptides cover four heptad repeats (28 residues) with 

the longest peptide covering 34 residues (repeat 50-52), whereas the shortest CTD 

peptides can be found with repeat 39 and 40 including only 7 residues. The majority 

of mutations were introduced into the CTD via amino acid substitutions, however, in 

CTD peptide 19-21 an alanine was placed into the CTD in an additive manner 

expanding the overall CTD length. Importantly, while most mutations were placed in 

the proximal part of the CTD, two lysines were replaced by arginine at position seven 

of repeat 40 and repeat 47 in the distal part of the CTD in order to avoid peptides 

with identical sequences and, therefore, to obtain different masses for CTD peptide 

39 and 40, as well as for CTD peptides 46-47 and 48-49. For the same reason, 

further amino acid substitutions (alanine in peptide 13-15; serine in peptide 16-18; 
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leucine in repeat 19-21), next to arginine and lysine, were created by using aliphatic 

non-polar amino acids (Figure 11). 

1  YSPTSPA
2  YEPRSPGG
3  YTPQSPS
4  YSPTSPK
5  YSPTSPS
6  YSPTSPN
7  YSPTSPK
8  YSPTSPS
9  YSPTSPK
10 YSPTSPS
11 YSPTSPS
12 YSPTSPK
13 YSPTSPS
14 YSPTSPS
15 YSPASPK
16 YSPTSPS
17 YSPTSPS

18  YSPSSPK
19 AYSPTSPS
20  YSPTSPS
21  YSPLSPR
22  YSPTSPN
23  YSPTSPN
24  YTPTSPK
25  YSPTSPS
26  YSPTSPN
27  YTPTSPN
28  YSPTSPK
29  YSPTSPS
30  YSPTSPS
31  YSPSSPR
32  YTPQSPT
33  YTPSSPS
34  YSPSSPS

35 YSPTSPK
36 YTPTSPS
37 YSPSSPE
38 YTPASPR
39 YSPTSPK
40 YSPTSPR
41 YSPTSPT
42 YSPTTPK
43 YSPTSPT
44 YSPTSPV
45 YTPTSPK
46 YSPTSPT
47 YSPTSPR
48 YSPTSPT
49 YSPTSPKGST
50 YSPTSPG
51 YSPTSPT
52 YSLTSPAISPDDSDEEN

1-2    YSPTSPAYEPR
2-4 SPGGYTPQSPSYSPTSPK
5-7 YSPTSPSYSPTSPNYSPTSPK
8-9 YSPTSPSYSPTSPK
10-12 YSPTSPSYSPTSPSYSPTSPK
13-15 YSPTSPSYSPTSPSYSPASPK
16-18 YSPTSPSYSPTSPSYSPSSPK
19-21 AYSPTSPSYSPTSPSYSPLSPR
22-24 YSPTSPNYSPTSPNYTPTSPK
25-28 YSPTSPSYSPTSPNYTPTSPNYSPTSPK
29-31 YSPTSPSYSPTSPSYSPSSPR
32-35  YTPQSPTYTPSSPSYSPSSPSYSPTSPK
36-38  YTPTSPSYSPSSPEYTPASPR
39     YSPTSPK
40     YSPTSPR
41-42  YSPTSPTYSPTTPK
43-45  YSPTSPTYSPTSPVYTPTSPK
46-47  YSPTSPTYSPTSPR
48-49  YSPTSPTYSPTSPK
50-52  GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN

Trypsin
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18  YSPSSPK
19 AYSPTSPS
20  YSPTSPS
21  YSPLSPR
22  YSPTSPN
23  YSPTSPN
24  YTPTSPK
25  YSPTSPS
26  YSPTSPN
27  YTPTSPN
28  YSPTSPK
29  YSPTSPS
30  YSPTSPS
31  YSPSSPR
32  YTPQSPT
33  YTPSSPS
34  YSPSSPS

35 YSPTSPK
36 YTPTSPS
37 YSPSSPE
38 YTPASPR
39 YSPTSPK
40 YSPTSPR
41 YSPTSPT
42 YSPTTPK
43 YSPTSPT
44 YSPTSPV
45 YTPTSPK
46 YSPTSPT
47 YSPTSPR
48 YSPTSPT
49 YSPTSPKGST
50 YSPTSPG
51 YSPTSPT
52 YSLTSPAISPDDSDEEN

1-2    YSPTSPAYEPR
2-4 SPGGYTPQSPSYSPTSPK
5-7 YSPTSPSYSPTSPNYSPTSPK
8-9 YSPTSPSYSPTSPK
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16-18 YSPTSPSYSPTSPSYSPSSPK
19-21 AYSPTSPSYSPTSPSYSPLSPR
22-24 YSPTSPNYSPTSPNYTPTSPK
25-28 YSPTSPSYSPTSPNYTPTSPNYSPTSPK
29-31 YSPTSPSYSPTSPSYSPSSPR
32-35  YTPQSPTYTPSSPSYSPSSPSYSPTSPK
36-38  YTPTSPSYSPSSPEYTPASPR
39     YSPTSPK
40     YSPTSPR
41-42  YSPTSPTYSPTTPK
43-45  YSPTSPTYSPTSPVYTPTSPK
46-47  YSPTSPTYSPTSPR
48-49  YSPTSPTYSPTSPK
50-52  GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN

Trypsin
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2.2.2  Establishing cell lines expressing Pol II CTD mutants 
 
All 9 CTD mutants were successfully cloned into the final expression vector RX4-267 

(Meininghaus et al., 2000). This vector contains the full length, haemagglutinin-(HA)-

tagged, mouse Rpb1 gene comprising 28 exons (Figure 12). The CTD is encoded by 

exon 28 and can be exchanged for any given CTD sequence using flanking 

restriction sites on both ends (AgeI and NotI) as insertion points. The Rpb1 gene 

contains a point mutation (N793D) conferring α-amanitin resistance (Bartolomei and 

Corden, 1987). Consequently, in the presence of α-amanitin, the endogenous  Pol II 

is effectively, chemically ‘knocked-out’, thereby allowing the properties of the mutant 

RNA polymerases to be examined in vivo. Since the Rpb1-expression vector uses 

the replication origin of the Epstein-Barr virus (EBV-oriP), it is episomally maintained 

instead of being integrated into the genome, when using human cells expressing the 

EBV-nuclear antigen 1 (EBNA1). Episomes replicate like extra chromosomes 

thereby offering a great advantage of avoiding position effects within the genome, as 

well as allowing cell lines to be produced as a ‘batch-culture’.  

Figure 11 CTD sequence and predicted CTD peptides after trypsin digestion of 
CTD mutant M-8K4R. Left: Scheme of the 52 repeats of CTD mutant M-8K4R. Amino 
acids that diverge from the consensus sequence are marked in blue and mutated residues 
are marked in red. Repeat number is shown in front of each corresponding sequence. Right: 
Predicted CTD peptides after trypsin digestion. CTD peptides cover whole CTD sequence 
(all repeats) and contain unique masses.  
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Rpb1-expression     
vector

(pRX4-267/25837bp)

Rpb1-expression     
vector

(pRX4-267/25837bp)

 
 

 
 

 

The Rpb1-expression vector containing the mutated CTD was transfected into Raji 

cells via electroporation and was positively selected due to its neomycin resistance. 

After 2-4 weeks under neomycin selection, cell viability of 80-90% was obtained and 

α-amanitin was added thereby knocking out the endogenous Pol II within the next 24 

hours.  

 

 

 
 
 
 
 

 

 

Viability of WT Raji cells dramatically decreases after 5-7 days under α-amanitin 

Figure 12 Scheme of the final Rpb1 expression vector. This vector encodes the 
whole mouse Rpb1 gene containing 28 exons. CTD is encoded by the last exon and can be 
easily exchanged using the restriction sites AgeI and NotI on both ends, respectively. For 
more detailed informations view text above. 

Figure 13 Western blot analysis showing stable expression of all 9 CTD 
mutants. Cell lysates of CTD mutants were produced after 2 weeks under α-amanitin 
treatment and stably expressed recombinant Rpb1 containing hyperphosphorylated and 
hypophosphorylated mutated CTDs, respectively. IIO- and IIA-forms were detected via α-
HA. WT Raji lysate (second lane) was used as a negative control obtaining no signal with α-
HA. 
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selection. All 9 CTD mutants showed full viability and stable expression of their 

recombinant polymerases over months under treatment with α-amanitin using normal 

cell culture conditions and therefore all CTD mutants were included in the final MS 

analysis (Figure 13). 
 
2.2.3  Purification of Rpb1 CTD mutants 
 
Compared to WT Rpb1 immunoprecipitation from Raji cells and subsequent band 

isolation, for the recombinant Rpb1 proteins there was an additional option, due to 

an HA-tag inserted in their sequence. Therefore, in this case, both purification 

schemes were adopted, either with the combination of the α-S2P/α-S5P-IP, or with an 

α-HA antibody (3F10) and their efficiencies were compared by western blot analysis 

(Figure 14).   
 
 
 

 
 

As it can be seen in Figure 14, in both α-S2P/α-S5P and α-HA immunoprecipitates 

recovery of the hyperphosphorylated Pol IIO, as well as the hypophosphorylated Pol 

IIA form can be observed. The α-S2P/α-S5P IP appears to enrich CTD mutant M-

3K5R as efficiently as it has been shown for WT cells (see Figure 8), purifying 80-

90% of the hyperphosphorylated Pol IIO form and the results were consistent for all 

9 CTD mutants. The α-HA IP seems to be less efficient in the recovery of the 

hyperphosphorylated form, apparently due to the fact that the amounts of the 

overexpressed unmodified recombinant protein are more abundant in the cell and in 

this case there is no phospho-selection of the precipitates. 

For subsequent MS analysis, 450 Mio cells were used for one experimental round for 

Figure 14 Odyssey-Western blot analysis of CTD mutant M-3K5R purification. 
Left: IP purification of IIO and IIA form using α-S2P/α-S5P. Detection antibody: α-HA; Right: 
IP purification of IIO and IIA form using α-HA. Detection antibody: α-Rpb1; SN=Supernatant 
fraction of corresponding IP. 
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each CTD mutant comprising IP purification either with α-S2P/α-S5P or α-HA and 

subsequent band isolation after SDS-PAGE and Coomassie staining (Figure 15). 

Interestingly, after Coomassie staining, a third RNA Pol II form, termed IIO low, 

located between the IIO and IIA form could be detected in the α-HA 

immunoprecipitates. The reason why this intermediate Rpb1-form was not observed 

in the western blot analysis might be due to several causes, such as the different 

amount of cells used in western blot and coomassie stained gel as well as the 

arbitrary resolution of the gel bands in each case. For western blot analysis lower 

cell amounts are preferred in order to avoid saturated signals in the antibody 

detection reaction, whereas in the final purification destined for subsequent MS 

analysis more material is used to obtain a more informative MS data outcome. These 

results concerning the differences between the two IP procedures and what they 

recover will be discussed in more detail later (see Discussion).  
 

 
 
 
 
 

 
 
 
 
 
 
 
Following Coomassie staining, the IIO form and IIA form purified from the α-S2P/α-

S5P-IP as well as the IIO form, IIO low form and the IIA form purified from the α-HA-

IP were excised from the gels and further processed as described before (see 

Material and Methods) for final MS analysis. Massive MS data from the 9 different 

CTD mutants were collected, performing multiple replicate rounds of each mutant 

and the final results were implemented into bioinformatics evaluations. 

 

Figure 15 Coomassie gel after purification of recombinant Rpb1 of M-9K4R 
and M-12K2R. Left: Coomassie staining of IP-purified IIO and IIA form of M-9K4R and M-
12K2R using α-S2P/α-S5P. Right: Coomassie staining of IP-purified IIO, IIO low and IIA 
form of M-9K4R and M-12K2R using α-HA. Purified recombinant Rpb1 extracted from 450 
Mio cells were loaded in each well. 
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2.3  Mass spec results of Pol II CTD mutants 
 
All data obtained for the same CTD mutant independent from the origin of the probe 

(IP-approach; different Pol II forms) were collected as one data set for the 

corresponding mutant. The raw MS data were further processed using the computer 

software Sequest. Sequest is a MS/MS database search program originally 

developed in 1993 in the Yates lab at the University of Washington. It correlates 

MS/MS spectra of peptides against peptide sequences from a sequence database. 

Classical Sequest applies a two-stage scoring method for each search. The first 

stage applies the preliminary score to filter through all candidate peptides in the 

sequence database. The best scoring candidate peptides are then re-scored using 

the cross correlation algorithm. The sensitivity of the cross correlation algorithm is 

enhanced by the correction factor that is applied in its calculation (copied from: 

http://proteomicsresource.washington.edu/sequest.php). 

Sequest data files of each CTD mutant were then used for further more detailed 

bioinformatics analysis addressing the degree and patterns of modifications in 

specific heptad repeats of each individual mutant. 

 

2.3.1 CTD sequence coverage by MS/MS analysis 
 

The MS outcome clearly showed that CTD peptides consisting of di- or tri-heptads 

exhibited by far the highest total count numbers in the MS detection. A massive drop 

in data acquisition could be observed when analysing very short CTD peptides (i.e., 

one heptad repeat). Similar weak results were obtained when increasing the length 

of CTD peptides beyond three heptad repeats. Consequently, 100% CTD sequence 

coverage could be obtained in three CTD mutants (M-13K2R, M-9K4R and M-

12K2R), for which protein digestion led to the fragmentation of only di- and tri-

heptads. Furthermore, in these three mutants, all potential phosphosites within the 

CTD were found to be phosphorylated (Figure 16). Interestingly, all CTD repeats 

were also found in the unphosphorylated state except repeat 52. 
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The CTD phosphosite graph of M-12K2R shows that next to the well described 

phosphorylation residues S2P and S5P, also the remaining three Y1, T4 and S7 are 

frequently highly phosphorylated. In more detail, a tendency towards equal 

distribution of phosphorylation counts among phosphosites could be observed in 

Figure 16 CTD sequence coverage and CTD phosphosites of M-12K2R All 52 
repeats of M-12K2R are shown with repeat number in front of corresponding repeat. Each 
box represents a residue with corresponding position within the repeat written at the 
bottom. Repeat 2 lies on two different peptides due to an arginine at position 4. Left: Blue 
color code refers to total coverage count of each repeat. Right: Red color code refers to 
total phosphorylation counts of each phospho-residue within the CTD.  
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most of the CTD repeats. In addition, phosphorylated residues in heptad repeats 

diverging from the consensus CTD sequence and mainly located in the distal part of 

the CTD were found to be strongly phosphorylated as well.  

 

2.3.2 Different phosphorylation patterns in adjacent heptad repeats 
 

Analysing adjacent CTD repeats one interesting observation was that in some cases 

neighbouring repeats were phosphorylated on the same residue reflecting 

synchronised phospho-heptad repeats (Figure 17A+D). However, the majority of 

adjacent heptad repeats displayed different phosphorylation patterns (Figure 

17B+C). 

 
 

 
 
 
 
 

 

Figure 17 Comparison of phosphorylation patterns detected within the adjacent 
repeats 8-10 of M-9K4R. Each row corresponds to one specific amino acid annotated at the 
bottom, whereas red boxes indicate phosphosites. Blue squares divide the detected CTD 
peptide in the three adjacent heptad repeats 8-10. A+D: Identical phosphorylation patterns can 
be found between adjacent repeats. B+C: Different phosphorylation patterns can be found 
between adjacent repeats. C: Central CTD heptad (repeat 9) is in the unphosphorylated state, 
while the flanking heptad repeat on each side is phosphorylated. 364 = all possible 3P-
combinations of repeat 8-10; 43 = detected 3P-combinations of repeat 8-10; 53 = total counts 
of detected 3P-peptides comprising repeats 8-10. Dark red: 3P-combinations found three 
times; red: 3P-combinations found twice; light red: 3P-combinations found once. 
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Additionally, the MS analysis detected unphosphorylated CTD heptads flanked by 

phosphorylated neighbour CTD repeats at both ends as well (Figure 17C). All 14 

potential phosphorylation-sites participated in the formation of specific patterns. 

 
 
2.3.3 Phosphorylation frequencies within mono-, di- and tri- 

heptads 
 
Interestingly, the highest phosphorylation frequency found within CTD peptides 

detected in the mass spectra, were four phosphosites (4P) in parallel and this 

appeared to be independent from the length of the peptide.  

 
 

 

 

 

 

 

 

Figure 18 Phosphorylation frequencies within mono-, di- and tri-heptads 
shown for adjacent CTD repeats 5-7 of M-12K2R. Each row corresponds to one 
specific amino acid annotated at the bottom, whereas red boxes indicate phosphosites. Blue 
squares divide the detected CTD peptide in the three adjacent heptad repeats 5-7. A+B: 
Four phosphosites in parallel can be found within di-heptads. C+D: Four phosphosites in 
parallel can be found within mono-heptads. Majority of detected 4P-combinations are found 
within tri-heptads (16 out of 20). 715 = all possible 4P-combinations of repeat 5-7; 20 = 
detected 4P-combinations of repeat 5-7; 30 = total counts of detected 4P-peptides 
comprising repeats 5-7. Dark red: 4P-combinations found three times; red: 4P-combinations 
found twice; light red: 4P-combinations found once. 
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In other words, mono-heptad repeats (Figure 18C+D) showed the same highest 

degree of phosphorylation as that observed for di- and tri- heptad repeats, although 

the longer CTD peptides tended to carry more 4P-combinations than shorter ones. 

More specifically, to date, 4P-combinations have been detected either in mono-, or in 

di- or in tri-heptads in 4 out of 9 CTD mutants. All 13 potential phosphorylation-sites 

contributed to the formation of specific 4P-signatures (Figure 18). 

However, the average counts of detected 3P- and 4P-peptides were rather low in the 

MS analysis. A much better outcome was achieved when analysing mono- and 

double-phosphorylated (2P/3P) di- and -tri-heptads. In more detail, in the CTD 

mutants, M-13K2R, M-9K4R and M-12K2R, from which CTD peptides were detected 

that covered their whole CTD sequence, on average, 80% of possible 2P-

combinations have been found within di-heptads and 63% of possible 2P-signatures 

within tri-heptads. Moreover, all possible mono-phosphorylated-forms of all CTD 

peptides originating from these three mutants were found except for the last CTD 

repeat. 

 

2.3.4 Phosphorylation patterns within the consensus heptad 
sequence 

 
A profound and to date unclarified question in the field of CTD research addresses 

the actual phospho-combinations occuring within the highly conserved CTD-

consensus sequence consisting of the residues Y1S2P3T4S5P6S7 in vivo. Importantly, 

the total count numbers (absolute abundance) of consensus heptads containing only 

one phosphosite (1P) are dominant compared to the higher P-levels (2P, 3P and 

4P), with total counts ranging between 3000 and 5000, taking into account the data 

obtained with all 9 CTD mutants. 2P-heptad consensus repeats were found between 

100 and 500 times, whereas detection counts of 3P- and 4P-levels were very low 

(Figure 19A).  

In these analyses, at the mono-phospho level (1P) all 5 potential phosphosites were 

found to be phosphorylated in rather equal amounts comparing the relative 

abundance (ranging from 15-20%) among all 1P-signatures (Figure 19B). 

Furthermore, all possible 2P-combinations (10 out of 10) were mapped within the 

CTD-consensus sequence. Among the 2P-combinations, the two most abundant 
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ones were S2-P/S7-P (more than 20%) and Y1-P/S7-P (13%) whereas the 

combination Y1-P/S2-P displayed the lowest relative abundance (3%) among all ten 

possible 2P-signatures (Figure 19B). Additionally, all possible 3P-combinations (10 

out of 10)  with their relative abundance ranging from 5-17%  could also be identified, 

with the two most relative abundant 3P-combinations being S2-P/S5-P/S7-P (17%) 

and Y1-P/S2-P/S7-P (17%). On the contrary, at the 4P-level of consensus heptads, 

only 2 out of 5 possible combinations could be observed in very low equal counts 

with S2-P/T4-P/S5-P/S7-P and Y1-P/T4-P/S5-P/S7-P (relative abundance 50% each). 

In this analysis all consensus heptad repeats of all mutants were included 

independent from their location within the CTD, as well as from variations in 

sequence of adjacent repeats (Figure19). 

 
 

 

 

 

2.3.5 Phosphorylation patterns within di-consensus heptad repeats 
 

Next to mono-consensus repeats, di-consensus repeats were also scanned for 

phosphorylation patterns extracting data form all 9 CTD mutants (Figure 20). Similar 

Figure 19 Phosphorylation patterns of the CTD consensus sequence. A: 
Absolute abundance (total counts form 0-4000 counts) of all detected 1P- , 2P-, 3P- or 4P-
combinations found within consensus heptads. B: Relative abundance (0-50%) among all 
detected 1P- (5 out of 5/red), 2P-(10 out of 10/blue), 3P-(10 out of 10/green) or 4P- (2 out of 
5/violet) signatures within consensus heptads. Each row corresponds to one specific amino 
acid annotated at the bottom, whereas black boxes indicate phosphosites. 
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to mono-heptad repeats, in di-heptad consensus repeats all possible 1P- (10/10) and 

2P-combinations (45/45) could be detected. However, in contrast to 100% saturation 

of 3P-combinations within mono heptad repeats, in di-heptad consensus sequences 

only 83 out of 120 3P-combinations could be found (69%). Additionally, 16 different 

4P-di-consensus heptads were mapped in this approach (16 out of 210, 7,6%). 

Interestingly, when performing the same analysis deleting position 14 (S7 in second 

repeat) of the di-consensus heptad mapping phosphosites within the sequence 

YSPTSPSYSPTSP, higher percentages of different combinations of detected 3P- 

and 4P-levels were obtained (3P: 81 out of 84, 96%; 4P: 40 out of 126, 31%) (Figure 

20).  

 
 

 

 

 

 

Figure 20 Phosphorylation patterns of the CTD consensus sequence containing 
14 (left) and 13 residues (right). Left: Relative abundance (0-6%) among all detected 2P- 
(45 out of 45/blue) and 3P- signatures (83 out of 120/green) within CTD di-consensus heptad 
sequences. Right: Relative abundance (0-7%) among all detected 2P- (36 out of 36/blue) and 
3P- signatures (81 out of 84/green) within CTD di-consensus heptad sequences missing 
residue 14. Each row corresponds to one specific amino acid annotated at the bottom, 
whereas black boxes indicate phosphosites. Numbers of detected 1P- and 4P-combinations 
for both sequences are additionally indicated in a text box. 
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The reason for higher 3P-and 4P-levels in the consensus sequence, comprising 13 

residues instead of 14 residues, might be explained by the fact that all CTD peptides 

with consensus sequences containing a lysine or arginine in position 14 were 

included in this second analysis. 

Consequently, higher data input led to higher percentages of 3P-and 4P-

combinations in the 13 consensus sequence stretch compared to the di-consensus 

heptads. In line with this, more dominant 3P-patterns could be observed within the 

YSPTSPSYSPTSP sequence. The three most abundant 3P-combinations included 

S2a-P/S7a-P/S5b-P, S2a-P/S7a-P/T4b-P and S2a-P/Y1b-P/S5b-P (Figure 20). 

 

2.3.6 Mapping phosphosites within the minimal functional unit of 
CTD  
 

It has been shown that in yeast the minimal functional unit of CTD requires three 

consecutive serine residues in a row in the configuration 2-5-2, as well as paired 

tyrosines spaced 7 amino acids apart (Y1-Y8). These requirements lead to two 

possible sequences comprising the minimal functional unit of CTD, either 

YSPTSPSYSP or SPTSPSYSPTSPSY. These two newly defined CTD consensus 

sequences were analysed in order to obtain data on highly abundant phospho-

patterns within these sequences in mammalian cells (Liu et al., 2008 and 2010: 

Schwer et al., 2012; see also chapter 1.2.2 of Introduction) (Figure 21). 

The three most abundant 2P-combinations found within the short functional unit of 

CTD (YSPTSPSYSP) were S5a-P/S2b-P, T4a-P/S2b-P and S2a-P/S2b-P. Within the long 

version of the minimal functional unit of CTD (SPTSPSYSPTSPSY) 5 predominant 

2P-combinations could be observed with S5a-P/S5b-P, T4a-P/S5b-P, T4a-P/T4b-P, S2a-

P/S5b-P and S2a-P/T4b-P. Interestingly, although the same three residues (S2, T4 and 

S5) were found in all of these high abundant 2P-combinations there was no overlap 

of these combinations between the two differently defined functional units. 

Accordingly, no interference between the most abundant 3P-combinations of the 

short functional unit (S2a-P/Y1b-P/S2b-P, S2a-P/S7a-P/S2b-P, S2a-P/S5a-P/S2b-P and 

Y1a-P/S7a-P/S2b-P) and the long functional unit (S7a-P/S2b-P/S5b-P, S5a-P/S2b-P/Y1c-P 

and T4a-P/S2b-P/Y1c-P) could also be found (Figure 21). 
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However, most of the 3P-combinations contained two CTD residues, Y1 and S7, 

which were absent in all dominant 2P-combinations within the two functional units. 

Interestingly, in the short functional unit, two out of three of the most dominant 2P-

combinations could  be again detected within some of the corresponding most 

abundant 3P-combinations (S2a-P/S2b-P integrated in S2a-P/Y1b-P/S2b-P, S2a-P/S7a-

P/S2b-P, S2a-P/S5a-P/S2b-P and S5a-P/S2b-P integrated in S2a-P/S5a-P/S2b-P), 
whereas in the long functional unit, none of the most frequent 2P-combinations were 

recovered in any of the related most abundant 3P-combinations (Figure 21).  
 

S5a/S2b 

T4a/S2b 

S2a/S2b 

S2a/Y1b/S2b 
S2a/S7a/S2b 

S2a/S5a/S2b 

Y1a/S7a/S2b 

S5a/S5b 
T4a/S5b 
T4a/T4b 
S2a/S5b 

S2a/T4b 

S7a/S2b/S5b 

S5a/S2b/Y1c 

T4a/S2b/Y1c 

Figure 21  2P- and 3P- combinations of defined functional units within CTD. 
Left: Total counts (0-700) of all 2P- and 3P- combinations within the defined sequence 
YSPTSPSYSP. Right: Total counts (0-80) of all 2P- and 3P- combinations within the defined 
sequence SPTSPSYSPTSPSY. Most abundant phospho-signatures within 2P- and 3P-levels 
are indicated. Green letters within 3P-combinations mark phospho-residues absent in the 
dominant 2P-combinations. Each row corresponds to one specific amino acid annotated at 
the bottom, whereas black boxes indicate phosphosites. 
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2.3.7 Dominant phosphorylation signatures in non-consensus 
repeats within the distal part of CTD. 

 
Since the distal part of the CTD was less mutated compared to the proximal part 

containing most of the consensus sequences, many WT-repeats can be found in the 

last 26 repeats of all 9 CTD mutants. These non-consensus repeats consisting of 

WT-sequences were scanned for dominant phosphorylation signatures within 2P-

and 3P-combinations.  

 

 
 

 

 

 

 

 

S5a/T4b 
T4a/S2b 

S2a/S2b 

S2a/T7a/S2b 
S2a/S5a/S2b 

S5a/S2b 
T4a/T4b 

S2a/T7a/S5b 
S2a/T7a/T4b 

Figure 22  2P- and 3P- combinations of non-consensus repeats 41-42 and 48-
49. Left: Relative abundance (0-8%) among all detected 2P- (34 out of 36/blue) and 3P- 
signatures (44 out of 84/green) of repeat 41-42 (YSPTSPTYSPTTPK) is shown. Right: 
Relative abundance (0-7%) among all detected 2P- (36 out of 36/blue) and 3P- signatures 
(57 out of 84/green) of repeat 48-49 (YSPTSPTYSPTSPK) is shown. Most abundant 
phospho-signatures within 2P- and 3P-levels are indicated. Each row corresponds to one 
specific amino acid annotated at the bottom, whereas black boxes indicate phosphosites. 
Portions of detected 1P-, 2P-, 3P- and 4P-combinations are shown as text. 
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In Figure 22 two different di-heptad repeats with defined location within the CTD 

(repeat 41-42 and repeat 48-49) are shown displaying all mapped 2P- and 3P-

combinations found within these sequences.  

In repeat 41-42 (YSPTSPTYSPTTPK) the three most abundant 2P-combinations 

were S5a-P/T4b-P, T4a-P/S2b-P and S2a-P/S2b-P whereas two predominant signatures 

regarding 2P-levels could be detected in repeat 48-49 (YSPSPTYSPTSPK) including 

S5a-P/S2b-P and T4a-P/T4b-P. Although these two sequences only differ in one 

position, residue number 12, and their most frequent 2P-combinations shared the 

same residues including S2, T4 and S5, no overlap among the most dominant 2P-

levels of repeat 41-42 and repeat 48-49 could be found. The two most abundant 3P-

signatures of repeat 41-42 and repeat 48-49 were S2a-P/T7a-P/S2b-P, S2a-P/S5a-

P/S2b-P and S2a-P/T7a-P/S5b-P, S2a-P/T7a-P/T4b-P, respectively. When comparing the 

most abundant 2P-and 3P-signatures, only one phospho-combination could be 

detected within both forms (S2a-P/S2b-P integrated in S2a-P/T7a-P/S2b-P and S2a-
P/S5a-P/S2b-P of repeat 41-42). Although no crossover between the most frequent 

3P-signatures of  repeat 41-42 and repeat 48-49 could be observed as well, the non-

consensus residue T7 (instead of S7) was found in three out of the 4 most abundant 

3P-combinations (S2a-P/T7a-P/S2b-P in repeat 41-42; S2a-P/T7a-P/S5b-P and S2a-

P/T7a-P/T4b-P in repeat 48-49). 

 

 

2.3.8 Phosphorylation patterns within the CTD are location 
dependent 

 

In a further approach, comparison of phosphorylation patterns of an identical 

sequence located within different repeats along the CTD was addressed. In more 

detail, the consensus sequence YSPTSPS was analysed regarding detectable 2P- 

and 3P-combinations facing different repeat numbers. In Figure 23, consensus 

heptad repeats 11 and 13 show very similar phosphorylation patterns. Both repeats 

are predominantly phosphorylated at S2/S7 and Y1/S7 concerning 2P-levels. 

However, repeat 9 and repeat 25 of the same sequence showed different dominant 

2P-signatures, indicating that phosphorylation of CTD is location dependent.   
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Figure 23  Total counts of 2P- and 3P- combinations of consensus heptad 
repeats 9, 11, 13 and 25. Repeat number and corresponding total counts (n) are shown 
on top of each graph. The two most abundant 2P-signatures of each repeat are indicated. 
Each row corresponds to one specific amino acid annotated at the bottom, whereas black 
boxes indicate phosphosites. All found 2P-and 3P-combinations are counted.  

Figure 24  Total counts of 2P- and 3P- combinations of consensus heptad 
repeats 5 and 16. Repeat number and corresponding total counts (n) are shown on top 
of each graph. Each row corresponds to one specific amino acid annotated at the bottom, 
whereas black boxes indicate phosphosites. All found 2P-and 3P-combinations are 
counted. Blue square marks 3P-combination part of the graph of both repeats. 
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Although repeat 25 revealed the same most abundant 2P-combination (S2-P/S7-P) 

compared to repeat 11 and 13 other high frequent 2P-signatures like Y1-P/S5-P could 

be observed in this repeat that was only detectable at very low abundance within the 

other three repeats.  Moreover, in repeat 9, other most abundant 2P-signatures were 

mapped comprising T4-P/S5-P and S2-P/S5-P, which seem to play only a minor role 

in the repeats 11, 13 and 25. 

Comparing consensus repeat 5 and 16 reflected another example of location 

dependency of phosphorylation patterns within the CTD (Figure 24). While the 

frequency of detected 2P-signatures was rather similar among these two repeats, big 

differences could be observed at the 3P-levels between these two locations. No 3P-

combinations could be found in repeat 5, whereas several 3P-signatures were 

mapped in repeat 16. 

 
 
 
 
 
 
 
 

Figure 25 Total counts of 2P- and 3P- combinations of neighbouring 
consensus heptad repeats 28, 29 and 30. Repeat number and corresponding total 
counts (n) are shown on top of each graph. Each row corresponds to one specific amino 
acid annotated at the bottom, whereas black boxes indicate phosphosites. All found 2P-
and 3P-combinations are counted. Blue arrows indicate the right order of repeat 28, 29 
and 30. 
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Additionally, differences in phosphorylation patterns could also be found within 

neighbouring consensus heptad repeats within the CTD. By comparing adjacent 

repeats 28, 29 and 30, it became apparent that repeat 28 and 30 shared a very 

common pattern at the 2P-levels, comprising all possible 2P-combinations, whereas 

repeat 29, located in between the two, displayed a very unique pattern including only 

two 2P-combinations in total (Figure 25). 

 
 
 

2.3.9 Scanning for known CTD-binding motifs of CTD-interacting 
proteins 

 
 
Ghosh et al. revealed the crystal structure capturing the interaction of the human 

capping enzyme Mce1 with the CTD. It has been shown that both the N-terminal 

nucleotidyl transferase domains (NTD) of the two Mce1 protomers interact with a 6 

amino acid long CTD segment that is connected via T4 and phosphorylated at 

residues S5 and S2. The CTD binding motif for this interaction is, therefore, S5a-
PP6aS7aY1bS2b-PP3bT4bS5b-PP6bS7bY1cS2c-PP3c., where a, b, c correspond to the 

residues originating from the three consecutive heptad repeats (Ghosh et al., 2011). 

Our MS data confirmed the existence of the Mce1 binding motif in vivo (Figure 26). 

All in all, 30 out of 126 possible 4P-combinations could be detected within the 

defined sequence SPSYSPTSPSYSP among which the 4P-combination S7a-P/S2b-

P/S5b-P/S2c-P showed the highest frequency (8%). Additionally, the Mce1 CTD-

binding motif could be mapped to repeat 9 (repeat number refers to the central 

heptad repeat), whereas all other repeats containing the defined sequence lack the 

specific 4P–combination essential for binding of Mce1 to the CTD (Figure 26). 

Interestingly, when comparing different repeats within the CTD comprising the Mce1-

CTD binding sequence SPSYSPTSPSYSP a tendency towards lower frequent 

phosphorylated repeats within the distal part of the CTD could be observed. In more 

detail, several 4P-combinations could be mapped within the repeats 12 and 14, 

whereas repeats 25 and 30, located more distal within the CTD, did not carry any 

4P-signatures. The comparative study of phosphorylation patterns within the Mce1-

binding sequence of different repeats along the CTD revealed again that CTD 

phosphorylation signatures tend to be location dependent (Figure 27). 
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The most common CTD-binding domain is the CTD interacting domain (CID) and 

crystal structures of CTD peptides and the CID-domains of Rtt103, Pcf11 (both 

yeast), SCAF8 and SCP1 (both human) have been obtained (Lunde et al., 2010; 

Meinhart and Cramer, 2004; Becker et al., 2008; Zhang et al., 2006). The CTD-

binding motif of the CID domain comprises 8 residues of the sequence 

PSYSPTSPS. Rtt103 and Pcf11 bind the S5-P form, whereas SCAF8 is recruited to 

the S2-P form of PSYSPTSPS. In contrast, SCP1 binds the double-phosphorylated 

PSYS2-PPTS5-PPS CTD sequence. The CTD binding motifs of all four proteins could 

be found in the MS analysis (Figure 28). 

Figure 26  Mapping of the Mce1 CTD-binding motif within the CTD. Left: 
Relative abundance (0-12%) among all detected 4P-combinations (30 out of 126/purple) of 
the defined Mce1 sequence binding motif SPSYSPTSPSYSP is shown. Right: Total counts 
of all detected 2P-, 3P- and 4P-combinations of the defined Mce1 sequence binding motif 
SPSYSPTSPSYSP in repeat 9 (repeat number refers to central heptad repeat) are shown. 
Each row corresponds to one specific amino acid annotated at the bottom, whereas black 
boxes indicate phosphosites. Blue squares in both graphs mark the detected specific 4P-
CTD binding motif of human capping enzyme Mce1. 
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In general, all possible 1P- and 2P-combinations were mapped within the CTD 

sequence PSYSPTSPS. Additionally, 11 out of 20 possible 3P-combinations could 

be detected as well. Furthermore, the S2-P binding motif of Rtt103 and Pcf11, as well 

as the S5-P binding motif of SCAF8 could be mapped in all repeats containing the 

defined sequence motif PSYSPTSPS. In contrast, the 2P-binding motif S2-P/S5-P of 

SCP1 was found in only 8 out of 15 possible CTD repeats indicating that CTD-SCP1 

binding might be restricted to specific CTD repeats (examples are shown in Figure 

28). 

Figure 27  Total counts of 2P-, 3P- and 4P-combinations of  CTD repeats 12, 
14, 25 and 30 containing the Mce1-binding sequence. Repeat number (refers to 
central heptad repeat) and corresponding total counts (n) are shown on top of each graph. 
Each row corresponds to one specific amino acid annotated at the bottom, whereas black 
boxes indicate phosphosites. All found 2P-, 3P- and 4P-combinations are counted. Blue 
square marks 4P-combination part of repeat 12 and 14. 
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Figure 28  Mapping of the CID CTD binding motifs of Rtt103, Pcf11, SCAF8 
and SCP1. Left: Relative abundance (0-20%) among all detected 1P- (6 out of 6/red), 
2P- (15 out of 15/blue) and 3P- signatures (11 out of 20/green) of the defined CID 
sequence binding motif PSYSPTSPS is shown. Specific binding motifs of Rtt103, Pcf11, 
SCAF8 and SCP1 are indicated. Blue square marks SCP1 binding motif. Right: Repeat 
number (refers to the consensus heptad repeat) and corresponding total counts (n) are 
shown on top of each graph. Each row corresponds to one specific amino acid annotated 
at the bottom, whereas black boxes indicate phosphosites. All found 1P-, 2P- and 3P-
combinations are counted. Blue squares mark SCP1-binding motif found in repeat 10 and 
11. 
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3. Discussion 
 
 

3.1  Phosphopeptide analysis by mass spectrometry (MS) 

 

In order to obtain a successful phosphopeptide detection and phosphosite 

localization by MS one has to overcome several barriers. The primary goal is to 

detect the phosphopeptide of interest in a typically enormous pool of non-modified 

peptides. Generally, phosphopeptides are present at sub-stoichiometric amounts 

when compared to the unmodified peptides of the protein of interest. Additionally, the 

ionization efficiency of phosphopeptides in positive ion mode MS is lower than in 

unphosphorylated peptides due to the negative phosphate group (Boersema et al., 

2009). Consequently, to overcome the underrepresentation of phosphorylated 

targets in a high background of non-phosphorylated species, several enrichment 

strategies have been established. Enrichment is based on two main features that 

distinguish phosphorylated from non-phosphorylated peptides: the negative charge 

of the phosphate group due it its low pKa in combination with its steric structure. In 

this work, metal oxide affinity chromatography, in particular titanium dioxide (TiO2), 

was used for phosphopeptide purification taking in advantage the strong affinity of 

negatively charged phosphate groups towards metal ions (Larsen et al., 2005). 

However, enrichment of phosphopeptides using TiO2 can be influenced by the 

presence of acidic and basic residues and is known to preferentially purify low 

phosphorylated peptides. In contrast, immobilized metal affinity chromatography 

(IMAC) enriches multiphosphorylated peptides better than TiO2 (Thingholm et al., 

2009; Bodenmiller et al., 2007).  Consequently, the combined and consecutive use of 

IMAC and TiO2 should lead to the separation of mono-phosphorylated (TiO2) from 

multi-phosphorylated peptides (IMAC), thereby decreasing sample complexity 

(Thingholm et al., 2008). In more detail, acidic buffers mainly elute mono-

phosphorylated peptides from IMAC material, whereas subsequent basic elution 

recovers multiply phosphorylated peptides that are normally hard to detect. Thus, 

this two step purification procedure should enable separation of non-, mono- and 

multi-phosphorylated peptides in distinct fractions. However, in this work, a single 

purification step using only TiO2 turned out to be the most efficient method in yielding 

both low and high phosphorylated CTD peptides. Nevertheless, mono-



Discussion 
 
 

 

63

phosphorylated peptides were the dominant detected form as shown by the MS data 

and synthetic peptides carrying different numbers of phosphate groups will be tested 

in the near future in order to exclude a technical bias towards low phosphorylated 

CTD peptides leading to falsified MS results. Additionally, other phosphopeptide 

purification methods will also be tested or optimized, like the capacity and binding 

efficiency of TiO2 beads, e.g. by repeated incubation of the same sample with fresh 

TiO2 beads have rarely been investigated yet. An interesting approach comes from 

Mamone and co-workers who have recently developed an efficient method for the 

separation of mono- and multi-phosphorylated peptides called hydroxyapatite (HAP) 

affinity chromatography (Mamone et al., 2010).  A strong interaction of HAP with 

phosphate and calcium ions takes place and due to the higher affinity of multi-

phosphorylated peptides to the HAP surfaces, stepwise elution with a phosphate 

buffer gradient allows the selective isolation of mono- and multi-phosphorylated 

peptides. Thus, optimization of the phosphopeptide purification step might lead to 

higher detectable numbers of mutliphosphoylated CTD-peptides in the near future. 

In this approach, collision-induced dissociation (CID) technique was used for gas 

phase fragmentation of the peptides and the identification of phosphorylated 

peptides and subsequent phosphosite localization has been achieved by tandem MS 

(MS/MS) linked to MS3 and multistage activation (MSA).  

Trypsin generally produces double positive charged (2+) peptides (Steen et al., 

2004). In CID, protonated peptides are accelerated by an electric potential in the 

vaccum of the MS and then forced to collide with an inert neutral gas (helium in this 

approach). Due to the collisions, the kinetic energy of the peptide ion is partially 

converted into internal energy that is spread over the molecule, breaking bonds and 

causing the peptide ion to fragments (Roepstorff et al., 1984; Biemann et al., 1988). 

Importantly, the phosphate group of a phosphopeptide is relatively labile providing a 

low-energy pathway like CID that competes with backbone fragmentation. 

Consequently, a CID spectrum of a phosphopeptide typically shows an intense 

neutral loss peak that locates at 98 Da or 80 Da lower than the precursor mass, 

reflecting the loss of H3PO4 and HPO3, respectively (Boersema et al., 2009). 

Generally, peptides are fragmented at the amid bonds along the backbone which 

results in the appearance of amino acid sequence-informative b- and y-ions with the 

charge retained at the N- or C-terminal end, respectively. Therefore, if a population 

of precursor peptide ions dissociate to produce a series of consecutive b- and y-ions, 
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the amino acid sequence of the peptide can be determined from the difference 

between these consecutive ions, including the mapping of the phosphorylation site. 

Since the residue masses of phosphorylated serine (167 Da), phosphorylated 

threonine (181 Da), and phosphorylated tyrosine (243 Da) are unique, the sequence 

ions of phosphorylated peptides are directly indicative of the existence of 

phosphopeptides and the location of the phosphorylation sites within the peptide 

(Palumbo et al., 2010). Figure 29 shows how phosphosites are mapped using b- and 

y-ions.  For phosphorylation site localization, fragmentation spectra of the non-

phosphorylated peptide and its phosphorylated analogue are compared (compare 

Figure 29A and 29B). Fragment ions that contain the same masses in both spectra 

indicate that these peptide fragments are not phosphorylated, thereby excluding Y3, 

S4, T6 and S7 as phosphosites (b3 to b9 in Figure 29A and 29B). Analysing the C-

terminal fragment ions, y3-y6 have masses corresponding to the fragment ions that 

are unmodified implying that these peptide fragments are not phosphorylated as 

well.  

Consequently, the determination of the backbone fragment ion series leaves T10 as 

the only option for containing the detected phosphorylation group within the 

phosphorylated peptide. Additionally, the site-determining ions b10 and y7 show 

shifted mass peaks compared to the corresponding fragment ions in the unmodified 

peptide either due to the  carriage of the phosphate group (+ 80 Da) or due to the 

loss of the phosphate group (- 18 Da) confirming the phosphorylation site to be T10. 

Figure 29C gives an example where no clear phosphosite determination can be 

achieved. In more detail, fragment ions y6-y9 reflect unphosphorylated peptide 

fragments restricting the phosphorylation site to S6, S7 or S8. With the additional 

dissection of the ion b-series b2-b6 residues Y1, S3, S4 and S6 can be excluded as 

potential phosphosites. However two residues, S7 and S8 remain as potential carriers 

of the phosphate group, since no complete b-and y-ion series are obtained and no 

site-determining ions with an intact phosphate group for direct validation are found 

for this phosphopeptide (Figure 29C). 
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In this work, to minimize incorrect phosphosite mapping within CTD-peptides, at 

least six replicates for each mutant were analysed leading to large MS data 

outcome.  Moreover, to gain more complete b- and y-ion series of corresponding 

CTD-peptides, MS3 and multistage activation were performed. The initial CID-

MS/MS 98 Da neutral loss product ion was automatically subjected to either 

multistage CID-MS/MS (i.e. MS3) or ‘pseudo-MS3’ in ion trap mass spectrometers in 

Figure 29 Phosphorylation site localization. A) CID spectrum of a non-
phosphorylated peptide compared to the CID spectrum of its phosphorylated counterpart. 
B) Indicated on the peptide sequence are the fragment ions that were found, including ions 
that lost 98 Da or were 80 Da heavier than in the non-phosphorylated peptide. Highlighted 
in red are the site-determining ions and the corresponding peaks in the spectrum. In blue 
are indicated fragment ions that confirm the site localization. C) A CID spectrum of a 
phosphopeptide for which a precise phosphorylation site could not unambiguously be 
determined. Highlighted in blue are fragment ions that indicate that the phosphorylation is 
on either S7 or S8 (copied from Boersema et al., (2009), Phosphopeptide fragmentation and 
analysis by mass spectrometry; J. Mass. Spectrom. 2009, 44, 861-878). 
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a data dependent mode of operation. Accordingly, CID-MS3 involved isolation and 

further fragmentation of the neutral loss species, whereas pseudo MS3 provided 

simultaneous activation of the precursor ion and the resultant 98 Da neutral loss 

product ion during a single CID-MS/MS event. In more detail, the stepwise MS 

procedure in this work included that the three most intense peptide ions with charge 

state higher than 1 were sequentially isolated to a target value of 10,000, fragmented 

in the linear ion trap by collision induced dissociation (CID). The pseudoMS3 (pdMS3) 

or multistage activation (MSA) was selected to automatically select and further 

fragment the fragment ion originating from the loss of one or two phosphate groups 

from the parent ion (see also Material and Methods).  

 

 

3.2  Different Pol II forms 

 

The human genome comprises approximately of 25000 genes which are transcribed 

by only a small fraction out of about 300000 Pol II molecules found in one single cell 

(Kimura et al., 1999). Theoretically, every single active or inactive Pol II molecule 

could feature a diverse phosphorylation profile along its CTD. However, Pol II 

accumulates in only two main forms as shown in SDS-PAGE electrophoresis, 

suggesting that the majority of Pol II within a cell is divided into only a few sub-

populations carrying similar modifications patterns. In this work, however, many 

different phosphorylation patterns have been identified within every single CTD 

peptide, implying a great diversity of possible phosphorylation signatures along every 

single CTD of Pol II in vivo.  The two main Pol II forms are Pol IIA form containing a 

hypophosphorylated CTD and Pol II0 form consisting of a hyperphosphorylated CTD, 

respectively. It has been suggested that the mammalian Pol II0 form carries on 

average one phosphate per repeat (Payne and Dahmus, 1993) although the number 

of phosphosites of the CTD at a certain stage during the transcription cycle remains 

elusive.  

Pol IIA preferentially associates with the preinitiation complex at the promoter site 

and, therefore, any phosphorylation of the CTD before this site would potentially 

block the recruitment of Pol II and subsequent transcription initiation. It has been 

proposed that the hyperphosphorylation of CTD triggers the massive shift from IIA to 
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IIO (Palancade and Bensaude, 2003). However, the appearance of only a few Pol II 

subpopulations in the SDS-PAGE suggests that CTD-phosphorylation rather 

contributes to the shift of IIA to IIO in an indirect way by influencing the cis-/trans-

isomerization of P3 and P6 within each single heptad repeat. Accordingly, different 

phosphorylation patterns might either stabilise a certain conformation of the proline 

residues or serve as binding motifs for corresponding proline isomerases. 

In this work both IIO and IIA forms were analysed via MS and surprisingly many 

phosphorylated CTD peptides were found in the hypophosphorylated IIA form. 

Moreover frequently, highly phosphorylated CTD repeats carrying three or even four 

phosphosites at the same time were detected within the IIA form, as well. However, 

our MS data cannot decipher if the overall phosphorylation frequency along the 

whole CTD is different between IIO and IIA forms, as only small CTD fragments, 

mainly 14 or 21 amino acids long, originating from the same CTD could be analysed. 

Since many phosphorylated CTD peptides were found in both forms all data were 

collected and implemented in the subsequent bioinformatic analysis as one big data 

set. However, it will be interesting to investigate the phosphorylation signatures 

obtained from both forms in more detail in order to find out if possible variations in 

phosphorylation patterns between these two forms might explain the separation into 

these two main Pol II forms in the SDS-PAGE. Nevertheless, one reason for 

detecting similar highly phosphorylated CTD peptides in both forms could be that no 

complete separation of both forms had taken place in the SDS-PAGE. Instead, both 

forms might accumulate in both bands due to the high amount of material used in 

this approach. Therefore, next to the comparison of distinct phosphorylation 

signatures among both forms the total amount of detected peptides within the 

different phosphorylation levels (1P, 2P, 3P and 4P) of both forms should be 

analysed as well. 

Interestingly, in the SDS-PAGE of the α-HA-IP a third Pol II form arose, IIO low, 

which was located between IIO and IIA (see also Figure 15 in results part). Since the 

α-HA recognizes Rpb1 outside of the CTD this antibody had no preference towards 

IIO or IIA during the purification step. This enrichment is most probably attributed to 

the fact that a greater amount of the IIA form was purified with this antibody, as the 

IIA form consists the inactive Pol II pool that was over-expressed in the CTD 

mutants. Both, IIO and IIO low gave weaker signals than the IIO form purified with 

the α-S2/S5 (see also Figure 15 in results part). Less amount of purified material of 
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the hyperphosporylated Pol II form might explain the further separation into two 

subpopulations both carrying a hyperphosphorylated CTD. Another reason of the 

occurrence of two different IIO forms could be that the CTD was more accessible to 

CTD-phosphatases as the α-HA binds outside the CTD. Consequently, the IIO low 

form might carry a slightly lower phosphorylated CTD form due to dephosphorylation 

by CTD phosphatases. Data obtained from the IIO low form revealed that the same 

phosphorylation frequencies within CTD peptides could be found in this form. 

A more detailed analysis of phosphorylation signatures and overall phosphorylation 

counts of the IIO low form might uncover differences in phosphorylation patterns 

compared to the other two Pol II forms obtained in this work. 

 

 

3.3  The most distal CTD repeat (repeat 52) exhibits unique 
       features 

 

In this work, MS analysis of recombinant CTDs that were mutated, in order to obtain 

information of phosphosites along the whole CTD sequence, revealed the existence 

of the full repertoire of possible phosphosites in the CTD in vivo. In more detail, MS 

data obtained from three different mutants that displayed 100% sequence coverage 

impressively showed that, indeed, all possible phosphosites were found to be 

phosphorylated in vivo. In other words, next to all potential phosphosites within the 

consensus repeats, S and T residues found in different positions within non-

consensus repeats were all phosphorylated as well. Another interesting observation 

was that all repeats were also detected in their unphosphorylated state, with the 

exception of repeat 52, the most distal to its core subunit (Rpb1). This result 

suggests with the possible exception of repeat 52, that no constant phosphorylation 

state is maintained within distinct CTD repeats and highlights the importance of 

phosphorylation/de-phosphorylation cycles for the Pol II progression through 

transcription.   

Comparative studies of different organisms revealed the development of divergent 

sequences following the most distal CTD repeat (Allison et al., 1988). The 

mammalian most distal CTD repeat consists of a total of 17 amino acids, containing 

two potential casein kinase II (CKII) sites, and is essential for mediating the binding 
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and phosphorylation of the CTD by the Abl1/c-Abl and Abl2/Arg tyrosine kinases 

(Pinna et al., 1990; Baskaran et al., 1997 and 1999). The consensus sequence for 

CKII phosphorylation is (S/T)XX(D/E) and found once in the non-consensus repeat 

37 and twice in the most distal repeat of the Pol II CTD (Pinna et al., 1990; Chapman 

et al., 2004). Accordingly, it has been shown that CKII phosphorylates CTD (Dahmus 

et al., 1981), but not a stretch of consensus repeats (Bregman et al., 2000). 

Interestingly, stoichiometric analysis suggested that only one of these sites is being 

phosphorylated in vivo, most likely the outermost C-terminal serine (serine 13) of the 

CTD most distal repeat, as it was concluded due to the preference of CKII for sites 

surrounded by acidic residues (Kuenzel et al., 1987; Payne et al., 1989). Bensaude 

and co-workers established polyclonal antibodies that specifically recognized the 

CKII-phosphorylated or non-phosphorylated most distal CTD repeat 52, respectively. 

The CKII-phospho-specific antibody positively reacted with all forms of the largest 

subunit of Pol II under all conditions, whereas no reactivity was observed with the 

non-phospho specific antibody (Chapman et al., 2004). These results suggested that 

the most distal CTD repeat 52 is permanently phosphorylated by CKII in vivo and 

that CKII phosphorylation of this repeat takes place soon after translation of Rpb1, 

since a non-CKII-phosphorylated form could not be found in vivo (Chapman et al., 

2004). Mass spec data of CTD mutants produced in this thesis, confirmed the 

detection of a permanent phosphorylated most distal repeat of the CTD of Pol II in 

vivo. However, whereas previous mutation studies suggested that the serine in 

position 13 and not serine in position 9 within the last repeat is constitutively 

phosphorylated (Chapman et al., 2004), the new obtained mass spec data showed 

both residues to be phosphorylated in vivo. Interestingly either serine 9 or serine 13 

were found to be phosphorylated at a time and no double phosphorylated form of  

repeat 52 could be observed via MS analysis. 
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3.4 Phosphorylation frequencies within CTD-peptides 
 

To date, the profound question on whether individual CTD repeats are independently 

phosphorylated, remains yet unanswered. Regarding the similarity of sequence 

among most of the CTD repeats, it has been doubted that kinases and 

phosphatases are capable of distinguishing these repeats sufficiently in order to 

modify adjacent heptad repeats individually. However, obtained mass spec data 

generated during this work demonstrated that neighbouring heptad repeats 

originating from the same CTD exhibit different phosphorylation patterns, while 

unphosphorylated and phosphorylated repeats have been detected as well. 

When analysing phosphorylation frequencies of different peptides of CTD fragments 

it turned out that the coexistence of four phosphosites displayed the upper detection 

limit in the MS analysis. In contrast, in MS analysis of yeast CTD mutants only mono- 

and di-phosphorylated CTD peptides have been detected so far (data not shown). 

The yeast data suggested that the complexity of a so-called CTD code in yeast might 

be simpler, containing less phosphorylation combinations among different CTD 

residues and lower phosphorylation frequencies along the overall length of CTD 

compared to a CTD code existing in higher eukaryotic organisms like mammals. 

Interestingly, the MS data presented here show that the same highest 

phosphorylation frequency could be found in mono-, di- and tri-heptads, where no 

more than four phosphosites were scored at the same time, suggesting that there 

could be a limit to the extent of phosphorylation within a certain sequence length. 

One reason for that could be that too many phosphosites located in close proximity 

to each other would lead to unfavoured structural changes due to strong charge 

repulsions between the negative charged phosphate groups. Moreover, it would be 

expected that longer CTD peptides, e.g. tetra- or penta-CTD heptads, would be 

found to carry more than four phosphosites explained by the longer distances 

between the individual phosphorylation residues. However, no highly phosphorylated 

tetra- or penta-CTD peptides could be detected, although there is an apparent weak 

data outcome of longer peptides in the MS analysis. Accordingly, CTD peptides 

containing two or three heptad repeats provided by far the highest amount of 

obtained MS information.  
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3.5 Establishment of CTD mutants 
 

Two different sets of CTD mutants were established during this work. In the first 

round, four different CTD mutants were designed (M-6K; M-3K5R; M-8K; M-4K2R; 

see also Appendix) and the obtained fragmented CTD peptides after protein 

digestion ranged from mono- to hexa-peptides. In designing the CTD mutants it was 

important to find a balance on the one hand, not making too many mutations within 

the CTD sequence, in order to avoid risking cell viability, while, on the other hand, 

obtaining CTD peptides after trypsin digestion that did not exceed a certain length 

which could lead to weak MS output.  Accordingly, CTD mutant M-8K, for instance, 

carried most mutations (13 mutations) leading to the highest number of fragmented 

peptides (18) ranging from mono- to penta-heptads. However, since it turned out that 

only di- and tri- heptads led to high MS data output, mapping of phosphosites did not 

cover the whole CTD length of the CTD mutants established by this first approach. 

Consequently, in a second round, five new mutants with even more mutations were 

designed, in order to retrieve shorter CTD peptides along the whole CTD sequence 

after protein digestion. Three out of five CTD mutants of round 2 were fragmented in 

only di-and tri-heptads after trypsinization and high numbers of phosphorylation sites 

could be mapped along the whole CTD. Importantly, although these mutants were 

frequently mutated within their CTD sequences, they all displayed full viability under 

normal cell culture conditions.  

 

3.6  Minimal functional unit of the CTD 

 

One reason for the high plasticity of the mammalian CTD of Pol II could originate 

from the genetic studies performed by Stiller and Greenleaf regarding the minimal 

functional unit of CTD in yeast. Results from yeast CTD mutants revealed that the 

minimal functional unit of CTD requires three consecutive serine residues in a 2-5-2 

configuration, as well as paired tyrosines spaced 7 amino acids apart (Y1-Y8). 

Accordingly, the functional unit in yeast is embedded within di-heptads. Based on 

these findings in yeast, mutations that were introduced in the CTD mutants used in 

this work are not interfering with the minimal functional unit of the CTD. More 

specifically, the minimal distances between single mutations lay within di-heptads 
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along the whole CTD sequence of all newly established CTD mutants. In order to 

confirm that the same requirements of a minimal functional unit within the CTD is 

needed in both yeast and mammals, our lab is working towards this end. The project 

aims to establish two CTD mutants that display the minimal functional unit by either 

deleting residues 12-14 or by replacing residues 12-14 with alanine in every second 

CTD repeat in accordance to the genetic studies previously performed in yeast.  

When comparing dominant phosphorylation patterns within the defined functional 

units of the CTD, one interesting observation was that newly identified 

phosphorylated residues, like Y1-P and S7-P, arose after the transition from highly 

abundant di-phosphorylated signatures to highly tri-phosphorylated signatures. 

Therefore, some phosphosites might be redundant in a low phospho-frequent 

background, but turn into dominant phosphosites when the overall phosphorylation 

frequency along a certain length of the CTD has increased. Accordingly, 

phosphorylation of distinct residues within the CTD might be triggered or enhanced 

by surrounding phosphosites of adjacent CTD residues. In the short functional unit 

(YSPTSPSYSP) the most dominant 2P-combination was also observed in 3 out of 

the 4 most abundant 3P-combinations suggesting an additive ‘switching’ mechanism 

between the different phosphorylation states within the CTD. However, in the longer 

version of the defined functional unit comprising of 14 residues, none of the five most 

abundant 2P-combinations could be found within the three most frequent 3P-

signatures. These findings suggest that next to an additive pathway a two direction 

‘switching’ mechanism including a dephosphorylation step followed by 

phosphorylation of new CTD residues might exist as well. Certainly, more data are 

required to decipher distinct mechanisms for switching between different 

phosphorylation states within defined CTD sequences, since the total count numbers 

of higher phosphorylated CTD peptides were much lower compared to the numbers 

obtained for mono- and di-phosphorylated CTD repeats. 

 

3.7  Phosphorylation signatures within the consensus   
        heptad repeat 
 

Posttranslational modifications could have evolved in order to offer diversity to the 

otherwise evolutionary highly conserved CTD sequence/structure. The existence, 
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frequency and distinct combinations of phosphorylation sites across specific CTD 

lengths could offer valuable insights into unravelling possible different functional 

states of Pol II. In this MS analysis, all possible 1P-, 2P- and 3P-combinations within 

the consensus heptad sequence Y1S2P3T4S5P6S7 could be found, suggesting the 

occurrence of highly dynamic phosphorylation and dephosphorylation processes of 

CTD residues in vivo. At the 1P-level all 5 possible phosphosites were mapped in 

comparably high amounts, providing the idea that all potential phosphosites play 

equally important roles in contributing to a ‘so called’ CTD code. Towards this end, it 

would be interesting to investigate if T4-P and S7-P residues could also be part of 

distinct binding motifs that serve in specific protein-CTD binding interactions. So far 

only CTD peptides containing S2 and S5 phosphosites have been mainly used in the 

assembly of crystal structures of specific CTD-protein interactions. At the 2P- and 

3P-levels all possible phoshorylation combinations were found, implying that there 

are no phosphosites excluding each other and that the CTD uses its full repertoire of 

possible phosphorylation signatures within consensus repeats at different 

phosphorylation levels in vivo. Importantly, total count numbers of detected 1P-, 2P- 

and 3P-signatures showed that the 1P-CTD peptides were the dominant 

phosphorylation form within the CTD. The predominant existence of 1P-signatures 

could imply that mono-phosphorylated heptad repeats resemble the main scaffold of 

phosphorylated CTD and the addition of further phosphorylation groups, leading to 

2P-or 3P-CTD repeats, are more likely transient stages in response to certain stimuli 

within the cell fulfilling transient tasks, like binding to specific factors at a certain 

stage during the transcription cycle. 

 

 

3.8 Dominant phosphorylation signatures within CTD       
      repeats 

 

On big goal of this study was to identify dominant phosphorylation patterns within 

CTD repeats along the whole CTD domain. The proximal part consists mainly of 

consensus repeats and phosphorylation signatures were analysed within mono- and 

di-consensus repeats, as well as within defined functional units that originated from 

genetic studies of the CTD performed in yeast. Additionally, non-consensus WT-CTD 
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repeats located in the distal part of the CTD were also included in the mapping of 

highly abundant phosphorylation signatures. Accordingly highly abundant 2P-

signatures and to a lesser extent dominant 3P-signatures could be found within the 

CTD. The obtained data of dominant CTD signatures within defined areas of the 

CTD could be used for subsequent CTD binding studies in order to identify highly 

specific novel protein-CTD interactions. In more detail, our lab is working on the 

establishment of a far western-approach, where biotin labeled synthetic CTD-

peptides containing specific phosphorylation patterns will be used as bait proteins for  

‘fishing’ interacting proteins originating from mammalian cell extracts. Subsequently, 

IP experiments will be performed followed by MS analysis to identify cellular factors 

that interact with the synthetic modified peptides. Consequently, non-consensus 

CTD peptides located in the distal part of the CTD will also be included in the binding 

assays. It has been speculated that proteins with core functions in the transcription 

cycle bind to consensus sequences within the proximal part of the CTD, whereas the 

distal part of the CTD, with its non-consensus repeats, most likely serves as a 

binding platform for protein factors activated upon cellular stress responses or might 

have tissue specific tasks. It would be of profound interest to determine whether 

such stress-related or tissue specific protein factors tend to bind to non-consensus 

CTD peptides containing dominant phosphorylation signatures using a pull-down 

binding approach. 

 

 

3.9  Phosphorylation profiles are location dependent 

 
When comparing identical CTD sequences, like mono-consensus heptads 

originating from different repeats along the CTD, a high variability of the abundance 

of distinct phosphorylation signatures has been documented. These data suggest 

that CTD repeats positioned at different locations within the CTD are preferentially 

differently phosphorylated. Accordingly, it could, therefore, be hypothesized that both 

CTD-kinases and phosphatases might recognize, or are specifically recruited by 

additional protein factors, to distinct areas along the CTD upon which they exert their 

catalytic activity. Interestingly, this hypothesis could be further supported by 

differences observed in the phosphorylation patterns between CTD repeats located 
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in great distances to each other, as well as between adjacent CTD repeats. These 

distinct phosphorylation profiles of individual CTD repeats might be linked to the 

recruitment of specific CTD-interacting protein factors. It appears that the more 

complex the binding motif of a CTD-binding factor is, the more restricted its binding 

area within the CTD is. In line with this, the binding motif of mammalian capping 

enzyme Mce1 contains four phosphosites and was found at only one position along 

the whole CTD, whereas CID-binding motifs of several CTD-interacting factors 

requiring only one or two CTD phosphosites could be mapped within several CTD 

repeats located at different areas along the CTD. A noteworthy study showed that 

mammalian cells containing only 31 CTD repeats were capable of transcription, 

splicing and polyadenylation, but exhibited defects in the transport of the matured 

mRNAs, suggesting that the missing CTD repeats are responsible for the binding of 

protein factors responsible for this specific function (Custodio et al., 2007). These 

data implied that the requirement of a certain length of CTD is dependent from the 

respective protein factor the CTD is interacting with. Accordingly, in mammalian 

cells, about 20 repeats were necessary for correct splicing and cleavage of the 3’ 

end, whereas 16 repeats were sufficient for Pol II to support its own expression (de 

la Mata and Kornblihtt, 2006; Rosonina and Blencowe, 2004; Chapman et al., 2007). 

Consequently, a certain length of CTD might be the prerequisite for serving as an 

optimal binding platform for CTD-kinases, as well as for CTD- or phospho-CTD-

associated factors. In line with this, the core protein complexes that have evolved to 

interact with canonical essential units define the minimal CTD length whereas 

additional CTD repeats more distal to the core CTD region might serve as binding 

sites for proteins with accessory functions that are not essential to cell viability. 

Consequently, genetic studies in yeast have shown that cells containing shortened 

CTDs revealed higher temperature sensitivity, implying that additional CTD repeats 

are necessary for optimal survival under stress conditions (West and Corden, 1995). 

The highly conserved CTD length, e.g. 52 repeats in human and mouse, might be 

determined by the highest possible number of CTD-interacting factors that can bind 

the CTD at the same time. The native length of CTD provides an optimal binding 

platform for core factors mainly bound to its proximal part, as well as for additional 

protein complexes that might play an important role in cell growth, differentiation or in 

cellular responses upon stress signals and which preferentially interact with the distal 

part of the protein. Accordingly, changes in the sequence or length of the CTD could 
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influence single CTD-protein interactions as well as the overall composition of CTD-

associated proteins along the CTD. 

 

3.10 New insights into the CTD code 
 

One key finding in this work was the predominant occurrence of mono-

phosphorylated CTD repeats. In more detail, the portion of 1P-populations among all 

detected phosphoforms (1P, 2P 3P and 4P) within mono- and di-consensus repeats 

was 94,2% and 83,1%, respectively. Consequently, 1P-CTD repeats most probably 

reflect the main scaffold upon which higher phosphorylated forms are built up in a 

more temporary fashion. Especially, the switch between 1P- and 2P-levels seems to 

appear quite often whereas 3P- and 4P-combinations were found in only very low 

amounts (Figure 30A). Accordingly, at the 1P- and 2P-levels of mono- and di-

consensus heptads, all possible phosphorylation patterns could be found reflecting 

how dynamic and diverse CTD phosphorylations are in vivo. CTD residues Y1, S2, 

T4, S5 and S7 were found to be phosphorylated in similar amounts in a 1P-

background suggesting that all phosphosites within a CTD repeat fulfil important 

tasks in vivo. On the contrary, at the 2P-level, both low and high abundant 

phosphorylation patterns were detected and subsequently predominant 2P-

signatures could be mapped. Interestingly, the majority of the dominant 2P-

combinations contained two out of the three phosphosites S2P, T4P and S5P. At the 

3P-level, only a few more abundant phosphorylation signatures were found 

displaying much lower detection counts compared to the most abundant 2P-

signatures. Interestingly, when analysing the more abundant 3P-combinations, new 

phosphosites like Y1P and S7P were implemented that played only a minor role in 

high abundant 2P-signatures. 4P-combinations within mono- and di-consensus 

heptads were only found in substoichiometric amounts (0,005% in mono-heptads 

and 0,1% in di-heptads) and no predominant 4P-signatures could be assigned. 

Another important finding in this work was that different predominant 2P-signatures 

were detected within consensus repeats located at different regions within the CTD. 

Since these repeats have identical sequences these results suggest that CTD 

phosphorylation is location dependent. In other words, the CTD is divided into many 
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sub-compartments revealing different phosphorylation patterns defined by their 

position within the CTD (Figure 30B). 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 30 Key findings of this work. A) Different phosphorylation levels (1P/red, 
2P/blue, 3P/green and 4P/purple) of di-consensus heptad YSPTSPSYSPTSPS are shown. 
Portion of different phosphorylation forms are indicated (1P: 83,1%, 2P: 14,8%, 3P: 2,0%, 
4P: 0,1%). Detected and possible phosphorylation combinations within each 
phosphorylation state are shown (1P: 10/10, 2P: 45/45, 3P: 83/120, 4P: 16/210). 
Abundance of different phosphorylation (P-) signature profiles within the four possible 
phosphorylation levels are displayed and described. B) Different 2P-signature profiles 
obtained from consensus repeats located within different regions along the CTD (CTD 
repeat 9, 16, 28, 29, 30) are shown. 
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3.11  Outlook 

 

This work provides new insights into phosphorylation signatures of Pol II CTD in 

vivo. For the first time CTD phosphosites could be mapped along the whole CTD 

molecule. In this study CTD peptides have been extracted from a total Pol II pool 

originating from cells cultured under normal cell conditions. In a future attempt, it will 

be interesting to compare CTD patterns that are linked to different cell states during 

cell cycle. Additionally, investigation of possible dynamic changes in phosphorylation 

patterns along the CTD upon cellular stress induction might contribute to a more 

detailed understanding of how a specific CTD code is defined upon a certain 

‘demand’. Furthermore, the MS approach established in this work could also be used 

for the mapping of CTD phosphosites in other mammalian cell culture cells other 

than Raji cells. Accordingly, insights into the CTD code of different tissue-specific 

cells, e.g. in mouse, might further expand the repertoire of distinct phosphorylation 

signatures within the CTD.  

ChIP data revealed that different CTD phosphosites reach their peaks at different 

regions along actively transcribed genes suggesting that distinct phosphorylation 

patterns of CTD are related to specific transcription states. One big challenge for the 

future will be to extract Pol II located at specific sites denoting actively transcribed 

genes and subsequently map phosphosites of CTDs that are linked to transcription 

initiation, transcription elongation or transcription termination. However, one aspect 

wherein a great deal of improvement is still desired is the volume of sample needed 

since approximately 300 million cells are required for efficiently mapping hundreds of 

phosphosites by MS analysis.  

Another noteworthy aspect of future research is the lack of information on the 

stoichiometry of phosphorylation of distinct CTD peptides. There are several 

established MS-based approaches available for analysing the stoichiometry of 

phosphorylation. In an isotope-free approach the big challenge is to calculate the 

‘flyability’ ratio for each of the phosphopeptide versions with respect to that of their 

unphosphorylated counterpart. The flyability ratio can be analysed by using the 

corresponding set of synthetic peptides (Steen et al., 2005). In a different approach, 

the use of a known amount of stable isotope-labeled standard peptides to quantify 

the abundance of different versions of the phosphopeptide might be the most 
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accurate existing method for measuring stoichiometry of phosphorylation (Mayya et 

al., 2006a; Mayya et al., 2006b). However, the cost of synthesizing thousands of 

stable isotope-labeled standard peptides that have been purified and quantified 

accurately is a substantial limitation in performing such experiments. 

One important point which is currently under investigation is how different 

neighbouring amino acid residues influence nearby phosphosites within the CTD. In 

this approach, identical sequences located within the same CTD repeats of different 

CTD mutants that differ in adjacent CTD residues will be analysed. Moreover, it is 

important to show that consensus repeats located at the same position in different 

mutants display similar 2P-signatures profiles and thereby strengthening the idea of 

a location dependency of CTD phosphorylation obtained by comparing consensus 

heptads along the CTD in this work. Additionally, the key finding in this work, that 

mono-phosphorylated CTD peptides are the predominant phosphorylation form in 

vivo, has to be confirmed by the analysis of synthetic peptides containing one to four 

phosphosites thereby excluding a technical bias towards low phosphorylated CTD 

peptides.  

Furthermore, separated data sets linked to the different Pol II forms which were 

detected by SDS-PAGE will be created. In this way useful information on possible 

dominant Pol II forms could be acquired. Last but not least, high abundant 

phosphorylation signatures will be used for pull down experiments ‘fishing’ for novel 

specific CTD-protein interactions by implementing synthetic peptides carrying the 

corresponding phosphosites. 
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4. Material and Methods 
 

4.1 Materials 
 

4.1.1 Chemicals 

 

1,4-Dithiothreitol (DTT)   Carl Roth GmbH&CoKG, Karlsruhe 

1 kb DNA ladder    Invitrogen, Karlsruhe 

3-(N-Morpholino)-propanesulfonic Acid  

(MOPS)     Sigma-Aldrich Chemie, GmbH, Deisenhofen 

Agarose     Invitrogen, Karlsruhe 

Albumin Fraktion V (BSA)   Carl Roth GmbH&CoKG, Karlsruhe 

α−Amanitin     Roche Molecular Biochemicals, Mannheim 

Bromophenol Blue (BPB)   Sigma-Aldrich Chemie GmbH, Deisenhofen 

Dimethyl Sulfoxide (DMSO)  Sigma-Aldrich Chemie GmbH, Deisenhofen 

Ethanol (EtOH), absolute   Merck, Darmstadt 

Ethidium Bromide (EtBr)   Fluka Chemie GmbH, Buchs 

Ethylendiaminetetraacetic Acid (EDTA) Carl Roth GmbH&CoKG, Karlsruhe 

Fetal Bovine Serum (FBS)   PAA Laboratories, Pasching, Österreich 

Formaldehyde (37 %)   Carl Roth GmbH&CoKG, Karlsruhe 

Glycerol 86%    Carl Roth GmbH&CoKG, Karlsruhe 

Glycine     Carl Roth GmbH&CoKG, Karlsruhe 

Isopropanol, absolute   Carl Roth, Karlsruhe 

L-Glutamine 200mM (100x)  Gibco BRL Life Technologies, Eggenstein 

Methanol (MeOH), absolute  Merck KGaA, Darmstadt 

Neomycin (G148)    Promega Corp., Wisconsin, USA 

Orange G     Sigma-Aldrich Chemie GmbH, Deisenhofen 

Peniciline/Streptomycin 10.000 U/ml Gibco BRL Life Technologies, Eggenstein 

Phenylmethanesulfonyl Fluoride   ICN Biomedicals Inc., Fountain Pkwy, USA 

(PMSF) 
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Polyacrylamide 30% (PAA)  Carl Roth GmbH&CoKG, Karlsruhe 

Powdered Milk, blotting grade  Carl Roth GmbH&CoKG, Karlsruhe 

Prestained Protein Ladder Plus  Fermentas, St. Leon-Rot 

RPMI Medium 1640    Gibco BRL Life Technologies, Eggenstein 

Sodium Dodecyl Sulfate (SDS)  Carl Roth, Karlsruhe 

Tetramethylethylenediamine (TEMED) Carl Roth GmbH&CoKG, Karlsruhe 

Tetracycline     Promega Corp., Wisconsin, USA 

Tris(hydroxymethyl)aminomethane Merck KGaA, Darmstadt 

(TRIS)  

Triton X-100     Sigma-Aldrich Chemie GmbH, Steinheim 

Tryphan Blue    Invitrogen, Karlsruhe 

Tween-20     Sigma-Aldrich Chemie GmbH, Deisenhofen 

 

4.1.2 Consumables and kits  

 

Agar plates     Greiner GmbH, Frickenhausen   

Cover Slides     Menzel, Braunschweig 

Cyrovials 1.5 ml    Nunc GmbH, Wiesbaden 

DNA Mini/Maxi kits    Qiagen GmbH, Hilden 

Electroporation cuvettes   Peqlab, Erlangen 

Gel Blotting Paper GB003   Schleicher & Schuell, Deutschland 

Hybond N+ Nylon Membrane  GE Healthcare, München 

Laboratory Glassware   Duran Productions GmbH & Co. KG, Mainz 

Nitrile Gloves    Kimberly-Clark, Koblenz 

Parafilm     Carl Roth GmbH&CoKG, Karlsruhe 

Pasteur Pipettes    Hirschmann Laborgeräte, Eberstadt 

Phosphataseinhibitor cocktail  Roche Diagnostics, Penzberg 

Pipette Tips ART 10, 20, 200, 1000) MolecularBio-Products, San Diego 

Plastic ware for cell culture  Greiner Bio-One,Frickenhausen 

Proteaseinhibitor cocktail   Roche Diagnostics, Penzberg 

Protein A-Sepharose beads  GE Healthcare, München 

Protein G-Sepharose beads  GE Healthcare, München 



Materials and Methods 
 
 
 

 

82

Reaction Tubes 1.5 ml, 2 ml  Eppendorf, Hamburg 

Reaction Tubes 15 ml, 50 ml  Becton Dickinson Biosiences, Heidelberg 

Scalpel     Braun, Tuttlingen 

Sterile filters     Milipore GmbH, Eschborn 

 

4.1.3 Technical Instruments 

 

-80°C freezer    Colora Messtechnik GmbH, Lorch 

-20°C freezer    Siemens, München 

Bacteria incubator    Heraeus Sepatech GmbH, Osterode 

Bacteria shaker (Series 25)  New Brunswick ScientificCo., NJ, USA 

Biofuge 13     Heraeus Sepatech GmbH, Osterode 

Bio-Rad PowerPac 300   Bio-Rad Laboratories GmbH, München 

Blotting chamber    Bio-Rad Laboratories GmbH, München 

Branson Sonifier 250   Heinemann Ultraschall- und Labortechnik 

Electrophoresis equipment  Bio-Rad Laboratories GmbH, München 

Electroporator (eukaryotic cells)  Bio-Rad Laboratories GmbH, München 

Eppendorf Centrifuge 5417R  Eppendorf, Hamburg 

Eppendorf Thermomixer 5436  Eppendorf-Netheler-Hinz GmbH, Hamburg 

Fridge KU 171    Liebherr, Biberach 

Fuchs-Rosentahl chamber   GLW Gesellschaft für Laborbedarf GmbH 

Gilson Pipettes 2,10, 20, 200,1000 Gilson, Bad Camberg 

Hypercassette    Amersham Pharmacia Biotech, Freiburg 

Inkubator Heraeus 6000   Heraeus Sepatech GmbbH, Osterode 

Laminar Flow Hood    BDK Luft-und Reinraumtechnik GmbH 

Magnet stirer M23    GLW, Würzburg 

Megafuge 2.0    Heraeus Sepatech GmbH, Osterode 

Microwave     Panasonic, Hamburg 

Multi-calimatic pH-meter   Knick GmbH & Co. KG, Berlin 

Nanodrop 1000    Thermo Scientific, Braunschweig 

Odyssey Infrared Imaging System Odyssey LI-COR 

PipetMan P     Gilson, Bad Camberg 
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Rollermixer SRT 2    Dunn GmbH, Augsburg 

SDS-PAGE gel tank   Amersham Pharmacia Biotech, Freiburg 

ST305 Electrophoresis Power Supply Gibco BRL Life Technologies, Eggenstein 

Telaval 31 Lichtmikroskop   Carl Zeiss Jena GmbH, Göttingen 

UV lamp VL-4. LC    PeqLab Biotechnologie GmbH, Erlangen 

Vortexer Vortex Genie 2   Bender & Hobein GmbH, Ismaning 

Waterbath     Thermo Fisher Scientific, Karlsruhe 

 

4.1.4 Buffer and Solutions 

 

0,7% Agarose-TAE-Gel for DNA   2,1 g Agarose 

       300 ml 1x TAE 

       boil in microwave 

       cool to 65°C 

       EtBr (375 ng/µl) 

 

10 x DNA Loading Dye    20 g Sucrose 

       100 mg Orange G 

       ad 50 ml H2O   

  

PBS       137 mM NaCl 

       2,7 mM KCl 

       4,3 mM Na2HPO4*6H2O 

       1,4 mM KH2PO4 

 

Lämmli-Buffer (2x)     2% SDS 

       100 mM DTT 

       10 mM EDTA 

       10% Glycerol 

       60 mM Tris/HCl pH 6,8 

       0,01% BPB 

       1 mM PMSF 
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Milk powder solution    5% powdered milk in 1 x TBST 

 

NP40-Lysisbuffer     50 mM Tris-Cl, pH 8,0 

       1% NP40 

       150 mM NaCl 

       Phosphataseinhibitor (1:200) 

       Proteaseinhibitor (1:200) 

 

IP-Washingbuffer     50 mM Tris-Cl, pH 8,0 

       150 mM NaCl 

 

TiO2-Loading Buffer     80% Acetonitrile 

       5% TFA 

       1 M Glycolic acid 

 

TiO2-Washing Buffer 1    80% Acetonitrile 

       1% TFA 

 

TiO2-Washing Buffer 2    10% Acetonitrile 

       0,2% TFA 

 

TiO2-Elution Buffer     40 µl Ammonium solution (28%)  

       in 960 µl H2O, pH 11,3   

       

2xTris/SDS pH 8,8     22,68 g Tris/Base 

       2,5 ml SDS 20%  

       add 250 ml H2O 

       pH 8,8 (with HCL) 

 

2xTris/SDS pH 6,8     7,56 g Tris/Base 

       2,5 ml SDS 20% 

       add 250 ml H2O 

       pH 6,8 (with HCL) 
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Running-gel (6,5%)     8,6 ml PAA 30% 

       20 ml 2xTris/SDS pH 8,8 

       11 ml H2O 

       334 µl APS 

       20 µl TEMED 

 

Stacking-gel (3%)     1,5 ml PAA 30% 

       7,5 ml 2xTris/SDS pH 6,8 

       5,9 ml H2O 

       90 µl APS 

       20 µl TEMED 

 

SDS-PAGE-running buffer (10x)   60,4 g Tris/Base 

       288 g Glycin 

       5 ml SDS 20% 

       add 2 l H2O 

 

Western-transfer buffer (10x)   60,4 g Tris/Base 

       288 g Glycin 

       5 ml SDS 20% 

       200 ml Methanol 

       add 2 l H2O 

 

Western-blocking-reagent    10% (v/v) TBS 

       0,1% (v/v) Tween 20 

       5% (w/v) Magermilchpulver  

 

PBS/T ween      99,9% (v/v) PBS 

       0,1% (v/v) Tween 20 
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4.1.5 Antibodies 

 
Primary antibodies: 
Pol3.3: 

Monoclonal antibody (mouse) that recognizes a conserved epitope of the large 

subunit of Pol II (Rpb1) outside of the CTD.  

(originally produced from E.K. Bautz, Universität Heidelberg. Received as a 

supernatant solution from E. Kremmer, Helmholtz Zentrum, München) 

 

8WG16: 

Monoclonal antibody (mouse) that recognizes the unphosphorylated CTD of the 

large subunit of Pol II (Rpb1).  

(Received as a supernatant solution from E. Kremmer, Helmholtz Zentrum, 

München) 

 

1C7: 

Monoclonal antibody (rat) that recognizes the unphosphorylated CTD of the large 

subunit of Pol II (Rpb1).  

(Received as a supernatant solution from E. Kremmer, Helmholtz Zentrum, 

München) 

 

3F10 (HA): 

Monoclonal antibody (rat) that recognizes an epitope contained in the 

haemagglutinin polypeptide of the human influenza virus (Roche Diagnostics, 

GmbH, Mannheim) 

 

α-Tyr-1-P, α-Ser-2-P, α-Ser-5-P, α-Ser-7-P, and α-Thr-4-P: 

Monoclonal antibodies (rat) that recognize the phosphorylated form of their 

respective amino acids within the CTD of the large subunit of Pol II (Rpb1). 

(Received as a supernatant solution from E. Kremmer, Helmholtz Zentrum, 

München) 
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Secondary antibodies: 
 

Alexa Fluor 680 Goat α-Rat IgG (H+L)   Molecular Probes 

IR Dye 800 CW α-Rat IgG (H+L)    Rockland Inc, Rockland 

Alexa Fluor 680 Goat α-Mouse IgG (H+L)  Molecular Probes 

IR Dye 800 CW α-Mouse IgG (H+L)   Rockland Inc, Rockland 

 

4.2 Materials for cloning 

 
4.2.1 Oligonucleotides 
Newly synthesized CTD sequences: 
All mutated CTD sequences as well as the wildtype-CTD sequence were 

synthesized by GeneArt Regensburg. 

 

Primers for CTD sequencing in the final expression vector LS*mock: 
 

wt fwd: 5’CTCCTGCTGACGCACCTGTTCT3’ 

 

CTD fwd: 5’CCTTTGTCTTTTCCTATAGGTGGTGC3’ 

 

CTD rev: 5’GTCAGACAACCTCGGTGGCCTGTGTG3’ 

 

4.2.2 Plasmids used during this work 
 
RX2-287 vector (subcloning vector): 

Vector containing last exon (CTD) of the α-amanitin resistant Pol II Rpb1 gene. 

 

RX4-267 (LS*Mock - expression vector): 

A tetracycline-regulated expression vector containing the α-amanitin-resistant and 

HA-tagged mouse Rpb1 gene. 
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4.2.3 Cloning strategy 
 

All synthesized CTD must be flanked by an AvrII restriction site upstream to the CTD 

sequence and by a NotI restriction site downstream to the CTD sequence.  

Synthesized CTDs must not contain AvrII, NotI, AgeI, BspEI, NgoMIV, NheI, SpeI 

and ClaI restriction sites within the sequence. 

First the newly synthesized CTD cassette will be cloned into the subcloning vector 

RX2-287 vector using the restriction sites AvrII and NotI. RX2-287 will be cut with 

BspEI and NotI and cloned into the AgeI/NotI site of RX4-267 (Figure 31).  
 

 
 

 

   

 

 
 
 
 
 

Figure 31 Cloning strategy. Schematic view of the two step cloning procedure 
using two different vectors and different restriction sites. In red letters: recognition sites 
of AvrII (left) and NotI (right). AvrII recognition site encodes proline and arginine (P and 
R). NotI recognition site encodes two alanines (A). These two sites flank the CTD open 
reading frame. Restriction sites in red circles are used for the first cloning step into the 
subcloning vector (RX 287) and restriction sites in green circles are used for the 
second cloning step into the final expression vector (RX4 267). All cloning steps and 
vectors used in this work have been established by Chapman et al. 
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4.2.4 Bacteria 
 

DH10B: E.coli strain purchased from Invitrogen GmbH, Karlsruhe. Used for the 

cloning of all plasmid DNA. 

4.3 Human cell lines 
 

4.3.1 Basic cell lines 
Raji: 

Cell type: human Burkitt lymphoma  

DSMZ no.: ACC 319  

Origin: established from the left maxilla of a 12-year-old African boy with Burkitt 

lymphoma in 1963; first continuous human hematopoietic cell line; classified as risk 

category 1 according to the German Central Commission for Biological Safety 

(ZKBS)  

References: Pulvertaft, Lancet: 238-240 (1964), PubMed ID 14086209 

 

 (1965), PubMed ID 4284655 

  

 

4.3.2 Stably transfected cell lines 

Name  Plasmid  Cell line    Resistance 

WT rec  LS*mock  Raji   neomycine 

M-6K   --   --   -- 

M-3K5R  --   --   -- 

M-8K   --   --   -- 

M-4K2R  --   --   -- 

M-13K2R  --   --   -- 

M-9K4R  --   --   -- 

M-12K2R  --   --   -- 

M-8K4R  --   --   -- 

M-9K2R  --   --   -- 
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4.4 Methods 
 

4.4.1 Bacterial cell culture 

 

4.4.1.1 The maintenance and preparation of bacterial plasmids 
 

Bacteria were cultured either on LB-agar plates in a bacterial incubator, or in liquid 

LB medium in a thermoshuttler at 37°C overnight. Liquid cultures were produced 

through infection of 200-400 ml LB medium with a single bacterial colony picked from 

an agar plate. Transformed bacteria were selected for the antibiotic resistance of the 

transformed plasmid through the addition of antibiotic (Ampicillin, Kanamycin or 

Spectionomycin) to growth media: liquid culture medium, 100 µg/ml; agar plates, 

50µg/ml. 

 

LB-medium:    20 mM MgSO4; 10 mM KCL; 1% Bacto-Tryptone; 0,5% Bactoyeast   

    extract; 0,5% NaCl 

LB-agar: 20 mM MgSO4; 10 mM KCL; 1% Bacto-Tryptone; 0,5% Bactoyeast 

extract; 0,5% NaCl; 1,2% Bacto-agar 

 

4.4.1.2 Preparation of competent bacteria 
 

To increase the efficiency of plasmid DNA uptake (transformation), bacteria were 

treated with solutions of di-valent cations. An LB plate was first inoculated with a 

probe from a bacterial stock and grown overnight at 37°C. A single colony was then 

used to inoculate 2.5 ml of LB medium, which was then incubated overnight in a 

loose-capped vessel, with shaking. The following day, the entire overnight culture 

was used to inoculate 250 ml of LB medium containing 20 mM MgSO4. Bacteria 

were grown in a 1 dm3 flask, with shaking, at 37°C until the absorbance at 600 nm 

(A600) reached 0,4-0,6 (approx. 5-6 h). 

Bacteria were pelleted at 4,500 x g, 5’ at 4°C. Medium was discarded and the 

bacteria re-suspended in 0,4 volume (of the original culture volume) of ice-cold 

TFB1. Bacteria were incubated a further 5’ on ice before centrifugation (as above), 
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and re-suspension in 1/25 of the original culture volume of ice-cold TFB2 and 

incubated a further 15-60’ on ice. Aliquots of 50-100 µl bacteria were snap-frozen in 

liquid nitrogen and removed to storage at -80°C. 

NOTE: All vessels and pipettes should be pre-chilled. 

 

TFB1:  30 mM Potassium acetate; 10 mM CaCl2; 50 mM MnCl2; 100 mM RbCl;   

  15% glycerol. Adjust to pH 5,8 with 1 M acetic acid; sterile filter  

                      (0,2 µm)    

TFB2:  10 mM MOPS pH 6,5; 75 mM CaCl2; 10mM RbCl; 15% glycerol.  

  Adjust to pH 6,5 with 1 M KOH; sterile filter (0,2 µm) 

 

 

4.4.1.3 Transformation of bacteria 
 

For standard sub-cloning and production of large amounts of cloned DNA, the 

recombination-deficient Escherichia Coli strain, DH10B was used. For 

transformation, 1 ng to 0,1 µg of plasmid DNA or 10 µl of ligation mixture was added 

to 50-100 µl of competent bacteria suspension and incubated on ice for 30’.  Cells 

were then subjected to heat shock at 42°C for 30’’ before returning to ice for 2’. 200-

400 µl (4 volumes) of LB recovery medium was added to the cells and incubated at 

37°C for 1h for cells to express resistance genes conferred by the plasmid. 

Finally, 50-200 µl of suspension was plated onto LB-agar plates containing 

ampicillin, kanamycin or spectinomycin and grown at 37°C for 16-18 h. 

 

4.4.1.4 Miniprep of plasmid DNA 
 

Single colonies obtained from transformation of bacteria following ligation reactions 

were used to inoculate 2 ml LB, and grown overnight. Using the alkaline lysis method 

(Birnboim, 1983), plasmid DNA was isolated from a bacteria culture. This method 

relies on the fact that high molecular weight linear chromosomal DNA will be 

denatured when cells are lysed at pH 12-12,6, whereas low molecular weight 

supercoiled plasmid DNA remains unaffected. Neutralisation of pH in the presence of 

high salt concentrations subsequently precipitates chromosomal DNA, which can be 
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separated from the mix. The following protocol was routinely used: 2 ml of LB media 

containing appropriate antibiotic was inoculated with a single colony of transformed 

bacteria in a 20 ml loose-capped tube. The culture was incubated overnight at 37°C 

with vigorous shaking. 1,5 ml of culture was then decanted into a microfuge tube and 

centrifugated at maximum speed for 1’ in a microfuge. Medium was removed from 

the pellet and re-suspended in 150 µl of alkaline lysis solution 1 by vigorous pipetting 

up and down, ensuring complete dispersal of bacterial cells. 150 µl of alkaline lysis 

solution 2 was added, and mixed gently by inverting 5 times before incubation at 

room temperature for 5’. To precipitate, 150 µl of pre-chilled alkaline lysis solution 3 

was added, and then mixed by inverting, before incubation on ice for 20’. After 

centrifugation at maximum speed for 10’, the resulting supernatant was transferred 

to a fresh microfuge tube and mixed with 450 µl isopropanol (1:1) to precipitate 

plasmid DNA, and centrifuged at maximum speed for 10’. The pellet was then 

washed once with 5 ml of 70% ethanol and centrifuged at maximum speed for 5’. 

Supernatant was thoroughly removed and pellets re-suspended either in 200 µl H2O 

or in 100 µl TE buffer. 

For screening of these crude preparations with restriction enzymes, master mixes of 

enzymes and appropriate restriction enzyme buffers (New England Biolab/Promega) 

containing RNase A were prepared, such that 10 µl of mix could be added to 10 µl of 

miniprep to give 0,5-3 units of enzyme (depending on efficiency), 1x restriction 

enzyme buffer and 20 µg/ml RNase A. Digests were incubated at appropriate 

temperatures for at least 2 h before separation on agarose gels. 

 

Solution 1: 50 mM Tris-Cl; pH 8; 10 mM EDTA 

Solution 2: 0,2 M NaOH; 1% SDS 

Solution 3: 3M potassium acetate; 2M glacial acetic acid 

 

4.4.1.5 Maxiprep of plasmid DNA 
 

Large quantities of plasmids were purified using Qiagen Maxiprep protocols based 

on a modified alkaline lysis procedure. Plasmid DNA is recovered by running the 

bacterial lysate through an anion exchange column under appropriate low-salt and 

pH conditions. Following washing, the DNA can be eluted by a high-salt buffer.  
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A single colony was picked from a freshly streaked selection plate and incubated in 

200-400 ml of selective LB medium overnight at 37°C on an orbital shaker. Cells 

were harvested by centrifugation at 6000 x g for 15’ at 4°C. Supernatant was 

discarded and pellets were re-suspended in 10 ml of chilled alkaline lysis solution 1 

containing 100 µg/ml RNAase A.  10 ml of alkaline lysis solution 2 was added to the 

suspension and mixed gently by inverting. Cells were lysed for 5 min at room 

temperature before stopping the reaction by addition of 10 ml alkaline lysis solution 3 

and mixed again by inverting. Mixtures were incubated on ice for 20’ to aid 

precipitation of cell debris, genomic DNA and SDS. The sample was then centrifuged 

at 20.000 x g for 30’ at 4°C. The supernatant was then passed through a filter paper 

to remove any residual precipitate and applied to a Qiagen column equilibrated with 

10 ml of equilibration buffer and washed twice with 30 ml wash buffer. The bound 

plasmid was eluted in 15 ml elution buffer and precipitated by adding 10.5 ml (0,7 

volumes) of room temperature isopropanol, followed by centrifugation at 20.000 x g 

for 30’ at 4°C. Pellets were re-suspended in 300 µl TE or H2O and transferred to a 

microfuge tube. 

 

Equilibration buffer:  50mM MOPS, pH 7; 750 mM NaCl; 15% ethanol 

Wash buffer:   50mM MOPS, pH 7; 1 M NaCl; 15% ethanol  

Elution buffer:  50mM Tris-Cl, pH 8,5; 1,25 M NaCl; 15% ethanol 

 

 

 

4.4.2 Eukaryotic cell culture 
 

4.4.2.1 Human cell culture methods 
 

Raji is a human, EBV positive Burkitt lymphoma cell line that is cultivated at 37°C in 

a 5% CO2-containing atmosphere in cell culture bottles under sterile conditions. The 

suspension cells were splitted in a 1:3 ratio with fresh media every three days, 

receiving a cell density of about 250000 cells/ml. 

 

Media for cell culture: RPMI-Medium with following additives: 10% FCS,  
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100 U Penicillin/ml, 100 µg Streptomycin/ml und 2 mM L-

Glutamine.  

Medium for the transfected cells additionally contained:   

1 mg G418/ml. 

 

α-amanitin (stock solution: 1mg/ml in H2O) was added in a final concentration of 2 

μg/ml to inhibit the endogenous Pol II. Protein extracts for western analysis were 

prepared 24 - 48 h after treatment with α-amanitin. 

 

 

4.4.2.2 Determination of the living cell number 
 

The living cell number was calculated using a Fuchs-Rosenthal-Zählkammer.  

40 μl of cell suspension was mixed with 0,5% Trypanblau-solution (w/v in PBS) 

containing the same volume. Dead cells absorb the stain over their membranes and 

can be distinguished from the colourless, living cells. The calculation of the living cell 

number results from the counting of four big squares using the formula: c (cells/ml) = 

average value of the cells per big square x 104. 

 
4.4.2.3 Unfreezing of cells 
To revive stocks from storage, cryotubes were thawed at room temperature for 3’ 

before transfer to 15 ml fresh RPMI medium. Cells and medium was mixed through 

inversion several times, before re-centrifugation (300 x g, 4’), and re-suspension in 

10 ml fresh culture medium containing 20% FCS. 

 

4.4.2.4 Refreezing of cells 
Cells were split 1:1 with fresh medium one day before storage. Cells were pelleted 

(300 x g, 4’), and medium discarded, before resuspension in storage medium and 

transfer of 1 ml aliquots to 1,5 ml cryotubes. The tubes were wrapped with paper 

avoiding shock freezing and first stored overnight at - 80°C before transfer to storage 

facilities in liquid nitrogen. 

 

Storage medium: 10% RPMI 1640; 10% DMSO; 80% FCS 
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4.4.2.5 Stable transfection of B-cells 
 
For the production of stable cell lines, plasmid vectors were introduced into cell lines, 

and a selection performed utilizing an antibiotic resistance gene expressed by the 

introduced vector. For best results, cells should be split 1:1 one day prior to 

transfection. 2 x 107 cells are required per transfection. Cells were collected by 

centrifugation (300 x g, 4’), and re-suspended at a density of 2 x 107 cells / 500 µl in 

PBS. Cells were transferred to a 4 mm electroporation cuvette, and gently mixed with 

10 µg of plasmid DNA through knocking against the wall of the cuvette. The 

cell/plasmid DNA mixture was incubated at room temperature for 20’ before starting 

the electroporation. Electroporation was performed using a voltage of 250 V and 

capacitance charge of 950 µF. Both pulse buttons were pushed simultaneously till 

the noise signal appeared and then immediately 1 ml FCS was added to the cuvette 

and mixed with the transfected cells through pipetting up and down. Transfected 

probes were incubated for 5’ at room temperature before transfer to a flask 

containing 5 ml fresh medium. It is important to leave the white smear (toxic) 

consisting of dead cell material behind. 

Two days following transfection, the appropriate selection reagent for the vectors 

used was applied to the cell culture medium. Selection typically requires 2 – 4 weeks 

to recover a viability of 95%. This technique produces a polyclonal cell line. 

 

Neomycin (G418): Stock: 100 mg/ml in PBS; Working concentration 1mg/ml 

 

 

4.4.3 Molecular techniques for cloning 
 

4.4.3.1 Digestion of DNA using restriction endonucleases 
 

Restriction enzymes were used as described by the manufacturer. For the analysis 

of plasmid ‘mini-prep’ DNA, multiple digests were performed in a compatible buffer. 

For subsequent gel extraction 5 µg of DNA was digested. 
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4.4.3.2 Ligation of DNA fragments 
 

Equimolar amounts of DNA fragments (100 – 200 ng) were mixed together and 

heated to 45°C for 5’, before transfer to ice. Ligase buffer and T4 DNA ligase were 

added, as recommended by the manufacturer, and incubated overnight at 16°C in 

the cold room. The entire ligation mixture was used for transformation. 

 

 
4.4.3.3 DNA agarose-gel electrophoresis 
 

For a 0.7 % DNA agarose-gel, 2,1 g agarose was boiled in 300 ml 1 x TAE buffer.  

3 µl/100 ml ethidium bromide (EtBr, stock: 10 mg/µl) was added after cooling of the 

gel to 65°C. DNA was mixed with 10 x DNA loading dye and loaded on the gel. The 

gel was run with a 1 kb DNA ladder in 1 x TAE buffer (80 V, 3 hours). A gel photo 

was taken under UV light. 

 

4.4.3.4 DNA-gel extraction for cloning 
 

Purification of a mixture of different-sized DNA was achieved via separation over a 1 

x TAE 0,7% agarose gel, containing ethidium bromide (0,5 µg/ml). A band of interest 

was removed from the gel using a scalpel, melted at 65°C and further processed by 

using the QIAquick gel extraction Kit. This kit provides spin column, buffers and 

collection tubes for silica-membrane-based purification of DNA fragments from gels. 

DNA ranging from 70 bp to 10 kb is purified using a simple and fast bind-wash-elute 

procedure and an elution volume of 30-50 µl. An integrated pH indicator allows easy 

determination of the optimal pH for DNA binding to the spin column. The procedure 

can be fully automated on the QIAcube. The final DNA concentration was measured 

by using the nanodrop system. 

For gel extraction of DNA bigger than 10 kb the QIAEX II gel extraction kit was used. 

This method provides a suspension of silica particles to which DNA fragments bind in 

the presence of chaotropic salts. QIAEX II suspension is added to solubilized 

agarose gel slices and binds DNA. The particles are collected by a brief 

centrifugation, washed, and DNA up to 50 kb is eluted in Tris buffer or water. 
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4.4.4 Methods for the analysis of protein 

 

4.4.4.1 Cell lysis 

 

For subsequent western analysis Raji cells were transferred to 15 ml falcons and 

centrifuged at 300 x g for 4’. The supernatant was removed and the cell pellet was 

washed with PBS. After a second centrifugation step (300 x g, 4’) 100 - 300 μl 2x 

Lämmli-buffer was added and the viscous lysate was repeatedly drawn through a 

narrow pipette tip to shear genomic DNA, before denaturing by boiling at 95°C for 5’. 

After briefly cooling on ice, samples were centrifuged (15000 x g, 4’) to clear 

insoluble contaminants. Finally the lysates were either directly loaded on to the gel or 

stored at –20°C. 

For subsequent immunoprecipitation, Raji cells were harvested by centrifugation 

(300 x g, 4’), washed twice with cold PBS, re-centrifuged and re-suspended in ice-

cold NP40 lysis buffer (100 μl lysis buffer/1,5 x 106 cells). Cells were mixed by 

sporadic vortexing while incubation on ice for at least 30’ before sonication (duration 

time 1’; output 7; duty cycle 70%) and subsequent incubation for another 20’ on ice. 

Cells were mixed before pelleting of the nuclei (472 x g, 15’, 4°C). The supernatant 

was carefully removed for following immunoprecipitation, or storage at -20°C. 

 

2 x Lämmli buffer: 2% SDS; 100 mM DTT; 10 mM EDTA; 10% Glycerol; 60 mM 

Tris/HCl pH 6,8; 0,01% Bromphenol Blue; 1 mM PMSF 

 

NP40 lysis buffer: 50 mM Tris-Cl, pH 8,0; 1% NP40; 150 mM NaCl 

  

        

4.4.4.2 Immunoprecipitation 

 

First, 4 ml of antibody solution (20-40 μg/ml) was incubated with 60 μl of Protein A 

sepharose beads (stored in 20% ethanol) for 3 – 4 hours in the cold room on a rotary 

shaker. After two washing steps with PBS 10 ml of lysates (100 μl lysis buffer/1,5 x 
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106 cells) was added to the antibody-beads mixture and incubated in the cold room 

on a rotary shaker overnight. After incubation time, the probes were centrifuged (300 

x g, 4’), the supernatant was removed and the specific protein-antibody-beads 

mixture was transferred to 1,5 ml eppendorf tubes. The samples were washed three 

times with washing buffer and finally resuspended in 30 μl Lysis buffer and 30 μl 2 x 

Lämmli buffer (final volume: 60μl). The probes were boiled at 95°C for 8’ under high 

shaking to separate the proteins from the protein-A beads. After centrifugation 

(15000 x g, 4’) the whole supernatant was loaded on to the SDS-PAGE.    

      

        

4.4.4.3 SDS-PAGE and transfer 
 

Lysate samples were loaded and separated on a denaturating SDS-polyacrylamide 

gel with a 6.5 % running gel and a 4 % stacking gel in 1 x SDS running buffer (SDS-

PAGE, 30 mA for 3 hours). 3.5 µl of a pre-stained protein ladder was used as a 

running marker. The gel was transferred to a nitrocellulose membrane by semi-dry 

blotting in 1 x transfer buffer (450 mA, 1.5 hours). The membrane was blocked in 

milk powder solution (1 hour at RT) and incubated with specific primary antibodies, 

diluted in antibody stock solution, on a roller mixer at 4°C over night. Primary 

antibodies were removed and membranes were washed three times with 1 x TBST 

for 5’. Membranes were then either incubated with horseradish peroxidase (HRP)-

conjugated secondary antibodies when the enhanced chemiluminescence (ECL) kit 

was used for signal detection or  incubated with fluorescent-tagged secondary 

antibodies when the the Odyssey-Licor-Scanner system was chosen for detection. 

Secondary antibodies were diluted in milk powder solution and hybridized to 

membranes for 1.5 hours at RT. Membranes were washed three times with 1 x TBST 

for 5’ and briefly poured in H2O. When using the ECL-detection method, reagents 

were mixed (1:1) and incubated with membranes for 2’. Membranes were transferred 

to a detection cassette, a film was exposed and signals were detected with a 

developing machine.  

Due to the use of fluorescent-coupled antibodies instead of peroxidase-linked 

antibodies, it is possible to check one and the same lysate with two different 

antibodies as long as they originate from different organisms (e.g. rat and mouse) 
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and are recognized by the appropriate secondary antibodies emitting different 

wavelenghts (680nm and 800nm). Since the membranes can be examined through 

the different channels either individually or simultaneously, both quantitative and 

qualitative conclusions can be made. In addition, varieties in the intensity of different, 

defined areas on the membrane can be visualized and therefore it is possible to 

make statements about e.g. the phosphorylation scale of Pol II (within the same 

channel) or about the amount of binding motifs of different antibodies comparing 

both channels. 

Finally, it is very important to test the different antibodies used in this system for 

possible cross-reactions that can occur between them and would falsify the results 

obtained with the Odyssey system.  

 

4.4.4.4 Coomassie staining 

For Coomassie staining of SDS-PAGE-gels the EZBlue™ Gel Staining Reagent from 

Sigma was used. EZBlue™ Coomassie Brilliant Blue G-250 colloidal protein stain 

improves protein electrophoresis results while significantly reducing staining time. As 

a colloidal stain, it reacts only with proteins, not the gel itself. Background staining is 

reduced, so protein bands can be visualized very fast. EZBlue is extremely sensitive, 

detecting as little as 5 ng of protein. 

Following electrophoresis the gel was placed in a tray and washed three times with 

water for 5’ each with agitation. 40 ml EZBlue was added and the gel was incubated 

for 1 hour under shaking. Coomassie stain was removed and the gel was rinsed with 

water several times up to 1 hour to intensify protein bands. Gel was stored in water 

in the fridge covered by parafilm. 

 

4.4.4.5 Protein in-gel digestion with trypsin 
 

In-gel digestion comprises the four main steps destaining, reduction and alkylation 

(R&A) of the cysteines in the protein, proteolytic cleavage of the protein and 

extraction of the generated peptides. 

After excision of the protein band of interest from the Coomassie stained gel, it was 

cut into three equal pieces and placed in a 96-well plate covered with water. For 
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destaining, the gel pieces were incubated with ammonium bicarbonate (ABC) and 

acetonitrile (ACN) in a 1:1 ratio three times for 20’ at 37°C under shaking. After 

washing with ABC and subsequent dehydration of the gel pieces with ACN, 

dithiothreitol (DTT) was added and the probes were incubated for 1 hour at RT. The 

reduction reaction was stopped by adding iodoacetamide (IAA) and the gel pieces 

were incubated 30’ at RT in darkness that led to the irreversible alkylation of the SH 

groups and the cysteines were transformed to the stable S-

carboxyamidomethylcysteine (CAM). The gel pieces were dehydrated by repeated 

treatment with ACN and after removing of all the supernatant the probes were dried 

by applying vacuum for 5’. For digestion of the proteins, the enzyme trypsin was 

used and diluted to approximately 10 ng/µl using 20mM ABC. Trypsin solution was 

added covering the gel pieces. The gel pieces were incubated at 4°C for 30’ taking 

up the trypsin solution. Supernatant was removed, 100 µl 20mM ABC were added 

and the probes were incubated at 37°C under shaking overnight. Next day, peptides 

were extracted by incubation with 50% ACN/ 0.25% TFA twice for 10’ followed by 

two subsequent incubation steps with 100% ACN for 10’ each. The supernatants 

containing the extracted peptides were transferred to a cool 1.5 ml tube on ice. 

 

 

4.4.4.6 Purification of phosphorylated peptides using titanium dioxid (TiO2) 
 

Solution containing the extracted peptides was evaporated to approximately 5 µl 

dryness and then incubated in 100 µl loading buffer for 1 hour. 10 µl of TiO2 beads 

slurry solution (slurry concentration: 0,03 mg/µl beads in 100% ACN) were added 

and the tubes were placed on the shaker (high shaking) at RT for 10’. TiO2 beads 

bound to the phosphopeptides were pelleted by centrifugation (table centrifuge < 1’) 

and supernatant (unbound fraction) was transferred to a new 1,5 ml tube and stored 

at -20°C. Beads were washed with 50 µl loading buffer, mixed for 15’’ by pipetting up 

and down and centrifuged (table centrifuge < 1’). After removing the supernatant 2 

additional washing steps were performed (washing buffer 1 + washing buffer 2). After 

the final washing step, the supernatant was completely removed without removing 

the beads and the lid of the tube was left open in the fume hood for at least 10’ to 

allow drying. For eluting the phosphopeptides, 50 µl elution buffer was added, mixed 
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well and the solution was left shaking for 10’ to allow an efficient elution. Probes 

were centrifuged for 1’ (table centrifuge) and the supernatant was transferred to a 

new 1,5 ml tube without any beads. Eluate containing the purified phosphopeptides 

was evaporated to 5-10 µl dryness. 30 µl 0,1% formic acid (FA) was added and the 

probes were stored at -20°C. 

 

 

4.4.4.7 Liquid chromatography– tandem mass spectrometry (LC-MS/MS) 
 

For LC-MS/MS purposes, ~ 28- 30 µl of purified phosphopeptides were injected in an 

Ultimate 3000 HPLC system (LC Packings) and desalted on-line in a C18 micro 

column (300 µm i.d. x 5mm cm, PepMap100 C18 5 µm, 100 Å from LC Packings). 

Desalted sample was then separated in a C18 analytical column (75 µm i.d. x 10 cm, 

packed in-house with Reprosil Pur C18 AQ 2.4 µm from Doctor Maisch) with a 60 

min gradient from 5 to 30% and 10 minutes from 30 to 95% acetonitrile in 0.1% 

formic acid. The effluent from the HPLC was directly electrosprayed into a LTQ 

Orbitrap XL mass spectrometer. The MS instrument was operated in data dependent 

mode to automatically switch between full scan MS and MS/MS acquisition. Survey 

full scan MS spectra (from m/z 300 – 2000) were acquired in the Orbitrap with 

resolution R=60,000 at m/z 400 (after accumulation to a ‘target value’ of 500,000 in 

the linear ion trap). The three most intense peptide ions with charge state higher 

than 1 were sequentially isolated to a target value of 10,000, fragmented in the linear 

ion trap by collision induced dissociation (CID). The pseudoMS3 (pdMS3) or 

multistage activation (MSA) was selected to automatically select and further 

fragment the fragment ion originating from the loss of one or two phosphate groups 

from the parent ion. For all measurements with the Orbitrap detector, 3 lock-mass 

ions from ambient air (m/z=371.10123, 445.12002, 519.13882) were used for 

internal calibration as described (Olsen 2005). Typical mass spectrometric conditions 

were: spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary 

temperature, 200ºC; normalized collision energy 35% for CID in LTQ. The ion 

selection threshold was 10,000 counts for MS2. An activation q = 0.25 and activation 

time of 30 ms were used. Mass spectrometry data was analyzed using Proteome 

Discoverer 1.3 (MS tol, 10ppm; MS/MS tol, 0.8Da, Variable modifications, Oxidation 
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(M) and Phosphorylation (S,T,Y); Fixed modifications, Carbamidomethyl (C); FDR 

Peptide, 0,01) using a DB including the sequences of the wild type and the mutated 

RNA polymerase II. 

 

 
4.4.4.8 Data analysis software program 

SEQUEST is a tandem mass spectrometry database search program originally 

developed in 1993 in the Yates lab at the University of Washington. It correlates 

tandem mass spectra of peptides against peptide sequences from a sequence 

database. Classical SEQUEST applies a two-stage scoring method for each search. 

The first stage applies the preliminary score to filter through all candidate peptides in 

the sequence database. The best scoring candidate peptides are then re-scored 

using the cross correlation algorithm. The sensitivity of the cross correlation 

algorithm is enhanced by the correction factor that is applied in its calculation (copied 

from http://proteomicsresource.washington.edu/sequest.php). 
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6. Appendix 
 
A  
Rpb1 CTD mutants with corresponding CTD peptide fragmentation 
pattern 
 
 
>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-6K 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPSYSPTSPK 
YSPTSPNYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPSYSPASPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPNYSPTSPNYTPTSPSYSPTSPK 
YSPTSPNYTPTSPNYSPTSPSYSPTSPSYSPTSPSYSPSSPK 
YTPQSPTYTPSSPSYSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
YSPTSPK 
YTPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
YSPTSPTYSPTSPK 
YSPTSPTYTPASPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-3K5R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPR 
YSPTSPSYSPTSPNYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYTPTSPSYSPTSPSYSPTSPR 
YSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPNYSPTSPNYTPTSPR 
YSPTSPSYSPTSPNYTPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPSSPR 
YTPQSPTYTPSSPSYSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
YSPTSPR 
YSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
YSPTSPTYSPTSPR 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-8K 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPK 
YSPTSPSYSPTSPNYSPTSPSYSPTSPK 
AYSPTSPSYSPTSPSYTPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPNYSPTSPNYTPTSPK 
AYSPTSPSYSPTSPNYTPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPSSPK 
YTPQSPTYTPSSPSYSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
AYSPTSPK 
YSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
AYSPTSPTYSPTSPK 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-4K2R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPSYSPTSPSYSPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPSSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPNYSPTSPNYTPTSPSYSPTSPK 
YSPTSPNYTPTSPNYSPTSPSYSPTSPSYSPTSPSYSPSSPR 
YTPQSPTYTPSSPSYSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
YSPTSPR 
YSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
YSPTSPTYSPTSPR 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-13K2R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPR 
AYSPTSPSYSPTSPK 
YSPTSPSYSPTSPK 
VYSPTSPSYSPTSPK 
LYSPTSPSYSPTSPK 
AAYSPTSPSYSPTSPK 
AVYSPTSPSYSPTSPK 
ALYSPTSPSYSPTSPK 
VVYSPTSPSYSPTSPK 
LLYSPTSPSYSPTSPK 
LYSPTSPNYTPTSPK 
LVYSPTSPSYSPTSPK 
YTPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPSSPR 
YTPQSPTYTPSSPK 
YSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
AALYSPTSPSYSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
AYSPTSPTYSPTSPK 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPR 
YSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-9K4R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPR 
YSPTSPSYSPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPASPK 
YSPTSPSYSPTSPSYSPSSPK 
YSPTSPSYSPTSPSYSPLSPK 
AYSPTSPSYSPTSPSYSPLSPR 
YSPTSPNYTPTSPSYSPTSPK 
YSPTSPNYTPTSPNYSPTSPK 
YAPTSPSYSPASPSYAPSSPR 
YTPQSPTYTPSSPK 
YSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPTSPK 
YSPTSPSYSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYTPTSPVYTPTSPR 
YSPTSPTYSPTSPK 
YSPTSPTYSPTSPR 
GSTYSPTSPGYSPTSPK 
YSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-12K2R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPR 
YSPTSPSYSPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPTSPK 
AYSPTSPSYSPTSPK 
AYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPK 
AAYSPTSPSYSPTSPSYSPTSPK 
AYSPTSPSYSPTSPNYSPTSPK 
YTPTSPSYSPTSPSYSPTSPK 
AYTPTSPNYSPTSPSYSPTSPK 
YSPTSPSYSPASPK 
YTPQSPTYTPSSPK 
YSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPR 
AAYSPTSPSYSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
AYSPTSPTYSPTSPK 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPK 
YSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-8K4R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPK 
YSPTSPSYSPTSPNYSPTSPK 
YSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPASPK 
YSPTSPSYSPTSPSYSPSSPK 
AYSPTSPSYSPTSPSYSPLSPR 
YSPTSPNYSPTSPNYTPTSPK 
YSPTSPSYSPTSPNYTPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPSSPR 
YTPQSPTYTPSSPSYSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPR 
YSPTSPK 
YSPTSPR 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
YSPTSPTYSPTSPR 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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>gi|6677795|ref|NP_033115.1| DNA-directed RNA polymerase II 
subunit RPB1 [Mus musculus]M-9K2R 
 
MHGGGPPSGDSACPLRTIKRVQFGVLSPDELKRMSVTEGGIKYPETTEGGRPKLGGLMDPRQGVIERT
GRCQTCAGNMTECPGHFGHIELAKPVFHVGFLVKTMKVLRCVCFFCSKLLVDSNNPKIKDILAKSKGQ
PKKRLTHVYDLCKGKNICEGGEEMDNKFGVEQPEGDEDLTKEKGHGGCGRYQPRIRRSGLELYAEWKH
VNEDSQEKKILLSPERVHEIFKRISDEECFVLGMEPRYARPEWMIVTVLPVPPLSVRPAVVMQGSARN
QDDLTHKLADIVKINNQLRRNEQNGAAAHVIAEDVKLLQFHVATMVDNELPGLPRAMQKSGRPLKSLK
QRLKGKEGRVRGNLMGKRVDFSARTVITPDPNLSIDQVGVPRSIAANMTFAEIVTPFNIDRLQELVRR
GNSQYPGAKYIIRDNGDRIDLRFHPKPSDLHLQTGYKVERHMCDGDIVIFNRQPTLHKMSMMGHRVRI
LPWSTFRLNLSVTTPYNADFDGDEMNLHLPQSLETRAEIQELAMVPRMIVTPQSNRPVMGIVQDTLTA
VRKFTKRDVFLERGEVMNLLMFLSTWDGKVPQPAILKPRPLWTGKQIFSLIIPGHINCIRTHSTHPDD
EDSGPYKHISPGDTKVVVENGELIMGILCKKSLGTSAGSLVHISYLEMGHDITRLFYSNIQTVINNWL
LIEGHTIGIGDSIADSKTYQDIQNTIKKAKQDVIEVIEKAHNNELEPTPGNTLRQTFENQVNRILNDA
RDKTGSSAQKSLSEYNNFKSMVVSGAKGSKINISQVIAVVGQQNVEGKRIPFGFKHRTLPHFIKDDYG
PESRGFVENSYLAGLTPTEFFFHAMGGREGLIDTAVKTAETGYIQRRLIKSMESVMVKYDATVRNSIN
QVVQLRYGEDGLAGESVEFQNLATLKPSNKAFEKKFRFDYTNERALRRTLQEDLVKDVLSNAHIQNEL
EREFERMREDREVLRVIFPTGDSKVVLPCNLLRMIWNAQKIFHINPRLPSDLHPIKVVEGVKELSKKL
VIVNGDDPLSRQAQENATLLFNIHLRSTLCSRRMAEEFRLSGEAFDWLLGEIESKFNQAIAHPGEMVG
ALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKELINISKKPKTPSLTVFLLGQSARDAERAKD
ILCRLEHTTLRKVTANTAIYYDPNPQSTVVAEDQEWVNVYYEMPDFDVARISPWLLRVELDRKHMTDR
KLTMEQIAEKINAGFGDDLNCIFNDDNAEKLVLRIRIMNSDENKMQEEEEVVDKMDDDVFLRCIESNM
LTDMTLQGIEQISKVYMHLPQTDNKKKIIITEDGEFKALQEWILETDGVSLMRVLSEKDVDPVRTTSN
DIVEIFTVLGIEAVRKALERELYHVISFDGSYVNYRHLALLCDTMTCRGHLMAITRHGVNRQDTGPLM
KCSFEETVDVLMEAAAHGESDPMKGVSENIMLGQLAPAGTGCFDLLLDAEKCKYGMEIPTNIPGLGAA
GRSGMTPGAAGFSPSAASDASGFSPGYSPAWSPTPGSPGSPGPSSPYIPSPGGAMSPR 
YSPTSPAYEPR 
SPGGYTPQSPSYSPTSPK 
YSPTSPSYSPTSPNYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPASPK 
YSPTSPSYSPTSPSYSPTSPSYSPTSPK 
YSPTSPSYSPTSPSYSPASPSYSPTSPK 
AYSPTSPNYTPTSPSYSPTSPK 
YSPTSPNYTPTSPNYSPTSPK 
YSPTSPSYSPTSPSYSPSSPR 
YTPQSPTYTPSSPK 
YSPSSPSYSPTSPK 
YTPTSPSYSPSSPEYTPASPK 
YSPTSPR 
YSPTSPK 
YSPTSPTYSPTTPK 
YSPTSPTYSPTSPVYTPTSPK 
YSPTSPTYSPTSPR 
YSPTSPTYSPTSPK 
GSTYSPTSPGYSPTSPTYSLTSPAISPDDSDEEN 
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