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ABSTRACT 

 

Complex phenotypes are the result of a complex interplay between genes and 

environmental factors. Extensive linkage, candidate and genome-wide association 

studies (GWASs) have been carried out to unravel genetic risk variants for human 

diseases. The identification of genes, involved in the pathomechanism of a disease, 

might be beneficial for its diagnosis, treatment and prognosis. While GWASs allowed the 

identification of a large number of common variants robustly associated with common 

complex diseases [1,2], the heritability, which can be explained by these variants, is 

small [3]. The discrepancy between the estimated heritability from twin, family and 

adoption studies and the heritability obtained from GWAS was termed “missing 

heritability” and led to the investigation of additional factors that might also contribute to 

disease susceptibility, including gene-environment interactions, gene-gene interactions, 

structural variants and rare variants. 

In this thesis, the role of less common and rare variants in susceptibility to common 

complex diseases was investigated. In order to accomplish this, a candidate gene for 

panic disorder (PD) and a possible risk gene for major depressive disorder (MDD) were 

screened for the presence of common and rare variants using next-generation 

sequencing in a pooled approach. In a previously published GWAS, a haplotype 

containing two common intronic variants in the transmembrane protein 132D 

(TMEM132D) gene was associated with PD [4]. Another GWAS identified solute carrier 

family 6 member 15 (SLC6A15), which encodes an amino acid transporter, as a risk 

gene for MDD [5]. A common intergenic variant about 600 kilobase downstream of this 

gene was shown to decrease SLC6A15 gene expression in lymphoblastoid cell lines and 

hippocampus. Susceptibility genes for complex diseases, identified in GWAS, are 

promising candidates for the search of rare variants as genes harbouring common 

variants are likely to contain also rare variants [6].  

Pooled targeted re-sequencing of the exonic regions of TMEM132D in 300 anxiety 

disorder patients, mostly suffering from PD (84.7%), and 300 healthy controls allowed 

the detection of 371 genetic variants. Of these variants, 24.0% were common (minor 

allele frequency (MAF) > 5.0%), whereas the vast majority was less common (MAF 1.0 – 

5.0%) to rare. 247 variants had not been reported before, including 12 novel non-

synonymous variants leading to an amino acid exchange in the protein. While common 

variants associated with PD were not identified, an overrepresentation of non-

synonymous variants and variants with predicted changes on splicing in healthy controls 
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compared to PD patients was observed. These putatively functional relevant variants 

were distributed along a broad MAF spectrum, ranging from 0.17 to 30.0%. In addition, a 

higher rate of private non-synonymous variants, which were only present in either cases 

or controls in this study, but not in over 7,500 individuals with different ethnic 

backgrounds from other publicly available re-sequencing datasets, in patients compared 

to controls was seen. Combined with the data from the previous GWAS study in which 

the association with PD was carried by common variants [4], this pooled re-sequencing 

study suggests that not only common or rare variants alone, but a combination of both 

contributes to the development of anxiety-related phenotypes.  

Re-sequencing the whole SLC6A15 locus in 400 MDD patients and 400 healthy controls, 

405 genetic variants were identified, including twelve non-synonymous variants. Only 

15.0% of the detected variants were common. While none of the non-synonymous 

variants was significantly associated with MDD, two rare non-synonymous variants were 

identified to influence protein function. In contrast to the TMEM132D protein whose 

molecular function has still to be discovered, SLC6A15 is known to transport neutral 

amino acids into predominantly neuronal cells [7]. The cellular uptake of neutral amino 

acids such as proline is thus a measurable property that associates with function. The 

uptake experiments identified two rare variants to be associated with a significant 

increase in proline uptake in HEK cells. This result suggests that rare variants in 

SLC6A15 might influence the biochemical function of its amino acid transporter and thus 

downstream neuronal function and possibly the risk for MDD and other stress-related 

psychiatric disorders. In addition, this study highlights that functional exploration of 

genetic variants might be promising to identify putatively disease-relevant variants as 

statistically significant associations for rare variants might only be achieved in extremely 

large samples.   
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ZUSAMMENFASSUNG 

 

Komplexe Phänotypen sind das Ergebnis eines komplexen Zusammenspiels von Genen 

und Umweltfaktoren. Umfangreiche Linkage-, Kandidatengen- und genomweite 

Assoziationsstudien wurden durchgeführt um genetische Risikovarianten für humane 

Erkrankungen zu entdecken. Die Identifizierung von Genen, die am Pathomechanismus 

einer Erkrankung beteiligt sind, könnte förderlich sein für deren Diagnose, Behandlung 

und Prognose. Obwohl genomweite Assoziationsstudien viele häufige Varianten 

identifiziert haben, die mit häufigen komplexen Erkrankungen assoziiert sind, ist die 

Erblichkeit, die durch diese Varianten erklärt werden kann, klein. Die Diskrepanz 

zwischen der Erblichkeit, die in Zwillings-, Familien- und Adoptionsstudien geschätzt 

wurde, und der Erblichkeit, die in genomweiten Assoziationsstudien ermittelt wurde, 

wurde als „fehlende Erblichkeit“ bezeichntet. Diese „fehlende Erblichkeit“ führte zu der 

Untersuchung von zusätzlichen Faktoren wie seltenen Varianten, strukturellen Varianten, 

Gen-Umwelt Interaktionen und Gen-Gen Interaktionen, die ebenfalls zu der 

Suszeptibilität für eine Erkrankung beitragen könnten. 

In dieser Arbeit wurde die Rolle von seltenen Varianten in der Suszeptibilität für häufige 

komplexe Erkrankungen untersucht. Dazu wurde unter Verwendung der neusten 

Sequenziertechnologie (Next-Generation Sequencing) nach häufigen und seltenen 

Varianten innerhalb eines Kandidatengens für Panikstörung und eines möglichen 

Risikogens für Depression gesucht. In einer kürzlich veröffentlichten genomweiten 

Assoziationsstudie war ein Haplotyp, der aus zwei häufigen intronischen Varianten im 

Transmembranprotein 132D (TMEM132D) Gen besteht, mit Panikstörung assoziiert. In 

einer anderen genomweiten Assoziationsstudie wurde das SLC6A15 Gen, das für einen 

Aminosäuretransporter kodiert, als Risikogen für Depression identifiziert. Eine häufige 

Variante, die ca. 600 Kilobasen von diesem Gen entfernt ist, führte zu einer verringerten 

SLC6A15 Genexpression in lymphoblastioden Zelllinien und dem Hippocampus. 

Suszeptibilitätsgene für komplexe Erkrankungen, die in genomweiten 

Assoziationsstudien identifiziert wurden, sind erfolgversprechende Kandidaten für die 

Suche nach seltenen Varianten da in Genen, die häufige Varianten tragen, 

wahrscheinlich auch seltene Varianten vorhanden sind.  

Das gezielte Re-Sequenzieren der exonischen Regionen des TMEM132D Gens in 300 

Angstpatienten, die größtenteils unter Panikstörung litten (84.7%), und 300 gesunden 

Kontrollen, die jeweils in Pools zusammengefasst wurden, ermöglichte es 371 

genetische Varianten zu identifizieren. Von diesen Varianten waren 24.0% häufig 
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(Frequenz des veränderten Allels > 5.0%), wohingegen der Großteil der Varianten 

geringere Frequenzen hatte. 247 Varianten wurden zuvor noch nicht berichtet, darunter 

12 nicht synonyme Varianten, die zu einem Aminosäureaustausch im Protein führen. 

Während keine häufigen Varianten identifiziert wurden, die mit Panikstörung assoziiert 

sind, konnte in gesunden Kontrollen eine Überrepräsentierung von nicht synonymen 

Varianten und Varianten mit möglichen Veränderungen auf das Spleißen („Splicing“) im 

Vergleich zu Panikpatienten beobachtet werden. Die Frequenz der veränderten Allelle 

dieser möglicherweise funktionell relevanten Varianten war zwischen 0.17 und 30.0%. 

Zusätzlich konnte eine höhere Rate von „private“ nicht synonymen Varianten in 

Patienten im Vergleich zu Kontrollen beobachtet werden. „Private“ Varianten waren 

ausschließlich in Patienten oder Kontrollen dieser Studie und nicht in über 7500 

Individuen unterschiedlichster ethnischer Herkunft, die in anderen Re-

Sequenzierungsprojekten untersucht wurden, vorhanden. Kombiniert mit den Daten der 

genomweiten Assoziationsstudie, in der eine Assoziation von häufigen Varianten mit 

Panikstörung identifiziert wurde, zeigt diese Re-Sequenzierungsstudie, dass nicht nur 

häufige oder seltene Varianten alleine sondern eine Kombination aus beidem zu der 

Entstehung von Phänotypen, die mit Angst assoziiert sind, beiträgt. 

Das Re-Sequenzieren des gesamten SLC6A15 Lokus in 400 depressiven Patienten und 

400 gesunden Kontrollen identifizierte 405 genetische Varianten einschließlich zwölf 

nicht synonymer Varianten. Nur 15.0% der detektieren Varianten waren häufig. Während 

keine der nicht synonymen Varianten mit Depression assoziiert war, wurden zwei 

seltene nicht synonyme Varianten identifiziert, die die Funktion des Proteins 

beeinflussen. Im Gegensatz zum TMEM132D Protein, dessen Funktion noch 

entschlüsselt werden muss, ist  für SLC6A15 bekannt, dass es neutrale Aminosäuren in 

überwiegend neuronale Zellen transportiert. Die zelluläre Aufnahme von neutralen 

Aminosäuren wie beispielsweise Prolin ist somit eine messbare Größe, die die Funktion 

des Proteins wiederspiegelt. Die Aufnahmeexperimente identifizierten zwei seltene 

Varianten, die mit einer signifikant erhöhten Prolinaufnahme in HEK-Zellen assoziiert 

waren. Dieses Ergebnis zeigt, dass seltene Varianten in SLC6A15 die biochemische 

Funktion des Aminosäuretransporters und somit die neuronale Funktion und 

möglicherweise das Risiko für Depression und andere stressbezogene psychiatrische 

Erkrankungen beeinflussen könnten. Zusätzlich zeigt diese Studie, dass die funktionelle 

Untersuchung von genetischen Varianten erfolgversprechend sein könnte um 

krankheitsrelevante Varianten zu identifizieren, da signifikante Assoziationen von 

seltenen Varianten nur in extrem großen Studienkohorten beobachtet werden können. 
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1. INTRODUCTION 

 

1.1 Genetics of complex diseases 

1.1.1 Genotype-phenotype relationship 

The aim of genetics is to understand the relationship between genotypes and 

phenotypes [8]. The extent to which the phenotype of an individual is determined by the 

genotype is different between traits. Some traits are highly influenced by genetic factors 

and rather independent of the environment, whereas other traits are more determined by 

the environment and only to a less extent by the genotype (Figure 1).  

Monogenic disorders are the classical examples of traits which are highly determined by 

the genotype, whereas environmental influences play a minor role. This class of 

disorders which are often referred to as Mendelian diseases due to their Mendelian 

pattern of inheritance is assumed to be caused by genetic variants in one single gene 

(monogenic) irrespective of environmental exposures. Furthermore, the penetrance, 

which is the proportion of individuals who carry a disease causing variant of a gene and 

develop the associated phenotype, is expected to be high. Prominent examples for these 

relatively rare monogenic diseases are Huntington disease [9], cystic fibrosis [10], 

phenylketonuria [11] and fragile X syndrome [12]. 

Complex diseases are characterized by a contribution of multiple genes (polygenic) and 

environmental factors to the phenotype. Mostly, the penetrance is incomplete as the 

presence of one altered gene alone is not sufficient to develop the associated disease. 

Therefore, altered genes which are related to complex traits are referred to as 

susceptibility, vulnerability or risk genes instead of causal genes. The substantial 

influence of the environment on a phenotype has been demonstrated by Caspi et al. 

among others. In their study, individuals carrying a risk gene for depression showed 

more depressive symptoms compared to individuals who did not carry the risk gene, but 

only in the presence of stressful life events [13]. Other examples of highly prevalent 

complex diseases are diabetes [14,15], cardiovascular disease [15] and psychiatric 

diseases, including schizophrenia [16] and bipolar disorder [15,17]. 

For a long time, diseases were subdivided in the two classes described above. 

Nowadays, it is becoming more and more obvious that the line between Mendelian and 

complex disease is not always clear. For instance, it is known that the monongenic 

disease phenylketonuria manifests only in individuals with variants in the disease 

causing gene that are exposed to a distinct environment, which in this case is 

phenylalanine in the diet. Furthermore, it has been shown that the severity of the 
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monogenic diseases cystic fibrosis and sickle cell anemia is modulated by additional 

genes [18,19]. The scenario in which a single gene causes a complex disorder does also 

exist. Genetic variants in the BRCA1 [20] and BRCA2 [21] gene were reported to cause 

breast cancer in families, although in most cases breast cancer is a multifactorial 

disease. These examples show that the phenotype of an individual is always the result of 

a complex interplay between nature (genotype) and the nurture (environment) [22].  

 

Figure 1 Influence of genotype and environment on an individual’s phenotype.  

In most cases the phenotype is determined by a complex interplay between both genes and 

environment to different proportions. Adapted from Murken [23]. 

 

1.1.2 Genetic epidemiology  

One measure to quantify the contribution of genes to the determination of a phenotype is 

the heritability. It is the proportion of total variance in a population that can be explained 

by genetic variation among the individuals in the population [24]. High heritability scores 

imply a strong correlation between genotype and phenotype, whereas lower scores 

suggest a higher impact of environmental factors. 

The heritability of a disease can be estimated by family, twin and adoption studies [25-

27]. In family studies the prevalence of a disorder among relatives of an affected or 

unaffected family member is examined. Especially siblings or half-siblings are often used 

as study subjects since they share 50% or 25% of their genes respectively. The ratio 

between the prevalence of a disease among relatives of an affected family member and 

the prevalence among relatives of a healthy individual is a measure for the influence of 

genetic components on the disease, with high ratios indicating high heritability.  

Twin pairs are valuable study subjects as they share both genetic and environmental 

factors. Monozygotic (MZ) twins are derived from one fertilized egg and are thus genetic 
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identical, whereas dizygotic (DZ) twins share only 50% of their genes since they 

originate from two different zygotes. In addition, uterus, birth date, age and parts of the 

early and late environment are shared in both MZ and DZ twin pairs [28]. Heritability is 

estimated by comparing the concordance rate for a disease in MZ and DZ twins. As MZ 

twins have the same genetic background they also share the same susceptibility genes 

which leads to the assumption that the disease manifests in both twins. Thus, a higher 

concordance rate in MZ twins compared to DZ twins indicates that the disease is highly 

influenced by genetic factors. MZ twins that are discordant for a disease offer the 

opportunity to estimate the degree to which non-genetic effects determine the 

phenotype. 

Adoption studies are another method to estimate heritability. Children separated from 

their biological parents and raised in the home of their adoptive parents have an 

environmental, but not a genetic change so that the genetic similarity of the children to 

their biological as well as to their adoptive parents can be investigated. If similar risks for 

a disorder can be observed in adopted children and their biological parents, a genetic 

influence is suggested, whereas similar risks for adoptees and adoptive parents indicate 

that the shared environment might be the main disease causing factor.  

 

1.1.3 Classes of human variation in the genome 

The human genome consists of 2.85 billion nucleotides and harbours 20,000 – 25,000 

genes [29]. About 1% of the nucleotides are located in exons and 24% in introns, 

whereas the vast majority of the genome consists of intergenic DNA [30]. In 2001, the 

first human reference genomes were published. First, an assembly of sequences from 

different donors was released by the Human Genome Sequencing Consortium [31]. 

Second, Celera Genomics published a consensus sequence derived from five individuals 

[30]. In 2007, the first complete genome of an individual, Craig Venter, was released 

[32]. Individual sequences can thus be mapped to a reference genome which allows the 

identification of nucleotides that differ among individuals.  

Genetic variants are usually subdivided into common and rare, depended on the 

frequency of the minor allele in the human population. Common variants, which are also 

referred to as polymorphisms, are variants with a minor allele frequency (MAF) of at least 

1% in the general population, whereas rare variants have a MAF less than 1% [33]. 

Furthermore, genetic variants can be subdivided into single nucleotide variants (SNVs) 

and structural variants, based on the class of variation [34]. SNVs are DNA sequence 

variants in which a single nucleotide is affected. SNVs within coding regions of the 
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genome might, but do not necessarily have to, have effects on the function of the gene 

product. The genetic code is redundant which means that an amino acid is encoded by 

several codons. A nucleotide substitution which does not change the amino acid is called 

synonymous or silent variant. In contrast, non-synonymous variants might have an 

influence on protein function as they either lead to an amino acid exchange which is 

referred to as missense variant, or a premature stop codon which is called nonsense 

variant.  

SNVs are the most prevalent class of genetic variation among individuals. Recently, the 

1000 Genomes Project sequenced the genomes of about 1,100 individuals from 14 

different populations [35]. This sequencing effort allowed the identification of 38 million 

SNVs in the human population and 3.7 million per individual. Thus, on average, there is 

about one SNV every 75 base pairs (bp) throughout the human genome, while in an 

individual genome every 770 bp a SNV is present. Information about SNVs can be 

gained from the Single Nucleotide Polymorphism Database (dbSNP) which catalogues 

all variants throughout the genome of different species that have been submitted, 

regardless of their frequency and functional consequences [36].  

The second class of genetic variation is structural variation which was originally defined 

to affect more than 1 kb of DNA sequence [37]. Structural variants include insertions, 

deletions, inversions, translocations and copy number variants (CNVs) as described in 

Table 1.  

 

Table 1 Structural variation in the human genome. 
 
Class of structural variation Definition 

  
Insertion Incorporation of extra bases into the DNA 

Deletion Removal of DNA bases from the genome 

Inversion Chromosomal break at two places of the DNA, incorporation of 
the reversed DNA segment into the same chromosome  

Translocation Exchange of DNA segments between different chromosomes 

CNV Repeat of identical DNA sequences 
    

 

In the past, the insight into location, frequency and functional consequences of structural 

variants was rather low due to the lack of adequate detection methods. Recently 

developed massive parallel sequencing methods [38,39] and complement microarray-

based methods [40] allowed the discovery of a large number of structural variants, even 

smaller variations with a length of > 50 bp, leading to a novel definition for structural 

variants [40].  
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This class of variants contributes to a larger extent to differences in the human genome 

than SNVs. Although only 20% of all genetic variants are structural variants, these 

account for more than 70% of the altered nucleotides, implicating an important role of 

structural variants in human health and diseases [33,41-43]. 

 

1.1.4 Approaches for mapping genetic variants 

To identify genetic variants that either increase the risk for a disease or protect against it, 

two prerequisites have to be fulfilled: first, the disease of interest has to be heritable. For 

complex psychiatric disorders, the estimated heritability ranges from moderate to high, 

with heritability scores of 0.28 for panic disorder (PD) [44], 0.37 for depression [45], 0.67 

for schizophrenia [46] and 0.75 for attention deficit hyperactivity disorder (ADHD) [47]. 

Second, a dense set of genetic variants spanning the whole genome is necessary. As 

the genome harbours one SNV per every 75 bp, this class of genetic variation is 

commonly used for genetic dissection of diseases. The two pivotal methods to 

accomplish this are linkage and association analyses. 

 

1.1.4.1 Linkage analysis  

Linkage is defined as “the existence or establishment of connection of two things” [48]. In 

the context of genetics, linkage is the co-segregation of a genetic marker and a disease 

which requires that the genetic variant responsible for the disease is located in the region 

where the marker is located (Figure 2).  

 

 

 

 

 

                                            

 

 

 

 

   

 

Figure 2 Linkage study design. 

Marker allele B1 cosegregates with disease in a family consisting of three generations. The squares 

indicate males and the circles females. The grey squares and circles denote affected individuals. 

Adapted from Kullo and Ding [49]. 

Cosegregation of marker allele B1 with disease  

 B2B4 B1B3 B2B4 

B3B4 B1B2 

B3B2 B3B4 B1B4 B1B2 
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The prerequisite for this is that the order of the genetic markers on a chromosome is 

known. In 1910, Morgan observed that the recombination rate (crossover) between two 

markers in gametes differs leading to the idea that the frequency of crossover events 

indicates the distance between markers on the chromosome [50]. Sturtevant confirmed 

that the greater the crossover rate the greater the distance between two loci as the 

probability that these loci are separated by an exchange of genetic material between two 

homologue chromosomes is increased [51,52]. This idea built the basis for the first 

linkage map. As recombination events occur in gametes, the effects become first visible 

in the next generation. Thus, linkage analyses can only be carried out in families and 

requires information about the disease status in all family members.  

Genome-wide linkage studies usually use 300 – 600 genetic markers, with marker to 

marker distances of 10 and 5 centimorgan (cM) respectively [53]. cM is defined as the 

distance between two loci where the expected number of crossover events in a single 

generation is 0.01. The markers of choice for linkage analyses are simple tandem 

repeats (STRs) which are also referred to as variable number tandem repeats (VNTRs). 

STRs are di-, tri- or tetranucleotide repeats widely and evenly distributed across the 

genome [54]. The variable number of repeats indicates high mutation rates [55] making 

them so useful for studying co-segregation of marker and disease.  

Linkage analyses have been traditionally performed to map genes responsible for 

monogenic disorders. Unfortunately, linkage studies have only sufficient power to detect 

genes with large effects on the phenotype. As complex disorders are comprised of 

multiple genes with small effect sizes, the recruitment of an extremely large sample 

would be necessary to reach adequate statistical power [56]. Nevertheless, linkage 

studies can also play a role in mapping susceptibility genes for complex disorders. The 

Mendelian subtypes of complex diseases described in section 1.1.1 are caused by one 

single gene with a large effect which can be detected much easier than multiple genes 

with subtle effects. Although such subtypes are rare, several linkage studies were 

successful in identifying disease-relevant genes, for instance the Alzheimer’s disease 

relevant genes beta-amyloid precursor protein [57] and presenilin 1 and 2 [58,59]. Such 

findings could give new insights into the pathomechanism of the Mendelian subtype and 

as implication also into the more common forms of the disease. 
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1.1.4.2 Association studies 

The term association derives from the medieval Latin word “associare” which means “to 

connect”. Genetic association is the simultaneous occurrence of a genetic variant and a 

trait. If an association is present then an allele or a genotype of a variant will be seen 

more often than expected by chance in individuals carrying the trait. Association differs 

from linkage in that the frequency of a genetic marker is compared between unrelated 

affected individuals and unaffected controls, while linkage is based on the investigation 

of co-inheritence of chromosomal regions with a phenotype in families [60]. Although the 

commonly used approach to test for association is a case-control design in which 

unrelated individuals are investigated, association testing can also be performed in 

families. Association studies have greater power than linkage studies so that genes with 

small effects can be detected, however, a much higher number of markers has to be 

examined. Computer simulations have been estimated that 500,000 markers are 

necessary for a genome-wide analysis [60]. The higher number of required markers can 

be explained by the fact that in population-based studies the order of the genetic 

markers on the chromosomes varies as a result of many recombination events over a 

high number of generations. In linkage studies, only three or four generations of 

pedigrees are examined and thus much less recombination occurs resulting in a relative 

stable marker map [54].  

For association analyses the markers of choice are single nucleotide polymorphisms 

(SNPs). This class of genetic variation is very frequent in the human genome and more 

stable than STRs due to a lower mutation rate [61]. Furthermore, SNPs might have 

functional consequences if they are located in coding or regulatory regions of the 

genome, whereas variations in STRs rarely contribute to the trait [54].  

Genetic association can be subdivided into two classes: direct and indirect association. 

Direct association means that the genotyped SNP itself is the causal variant contributing 

to disease susceptibility (Figure 3a). Testing variants for direct association is indicated 

when information about possible consequences of the associated variant on gene 

function is available. Variants leading to amino acid exchanges or truncated proteins are 

the most reasonable variants for direct association analyses. However, only about 1% of 

the human genome consists of protein-coding sequences and coding variants account 

for only 20% of the associated variants, the vast majority falls outside coding regions [1]. 

Non-coding variants may influence gene regulation [61-63], differential splicing [64,65] or 

gene expression [66,67]. So far, the evaluation of intronic and intergenic variants is a 

particular challenge as the non-coding genome is poorly annotated [68]. Thus, direct 
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association testing might only discover a small proportion of genetic variants associated 

with disease.  

The second class of association is indirect association, which describes the scenario, in 

which the genotyped markers are not themselves involved in disease risk, but variants in 

close proximity to the genotyped ones (Figure 3b). In this context, association is based 

on the principle of linkage disequilibrium (LD) which is the non-random association of 

alleles at two or more loci [69]. Generally, loci that are physically close together have a 

stronger LD than loci that are far away on a chromosome which means that the stronger 

the LD the higher the association between the two loci. If a marker and a causal variant 

are in LD and the sample size is adequate, significant association can be detected by 

only genotyping the marker, although directly genotyping the causal variant should have 

a higher power to unravel associations [70].  

 

         
 

 

 

 

 

 

 

Figure 3 Direct and indirect genetic association. 

A A genotyped SNP (green) in a candidate gene (orange box) is directly tested for association with a 

disease phenotype. This strategy is indicated when prior knowledge about possible functional 

consequences of a variant is available. B The blue SNP is tested for association indirectly as it is in 

LD with the two genotyped SNPs (green). Adapted from Hirschhorn and Daly [71]. 

 

Indirect association testing has the advantage that a priori candidate variants are not 

required as the decision which marker to genotype is based on information about LD 

structure. Several studies revealed that the human genome is structured into discrete LD 

blocks [72,73]. Regions with high LD are separated by smaller regions containing hot 

spots of recombination which breakdown the LD. Markers for indirect association studies 

are choosen in that way that all LD blocks in  the region of interest are sufficiently 

covered by the so called tagging SNPs. The International HapMap Project sequenced 

individuals from four geographically different human populations in order to characterize 

the genome-wide LD structure and thus to identify an optimized panel of tagging SNPs 

for association studies by avoiding redundant SNPs [74]. The HapMap Consortium 

showed that 1.09 million SNPs are required to capture all common SNPs with LD 

 Direct association Indirect association 

A B 
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strength r2 ≥ 0.8 in Africans (r2 = 1 perfect LD), whereas 500,000 tagging SNPs are 

sufficient in Europeans and Asians which is consistent with the number calculated by 

computer simulations [60].  

For genetic association studies two approaches exist: a candidate gene approach and a 

genome-wide approach. Candidate gene approaches are hypothesis-driven in which 

genes are examined which have already been suggested to be involved in the 

pathophysiology of a disease, obtained from blood, biopsy or post-mortem gene 

expression studies in humans or behavioural animal models. This approach has been 

proven to be extremely powerful for gene-disease search and biomarker and drug target 

selection [75]. Nevertheless, candidate gene studies are limited by their reliability on 

existing information about the known or presumed biology of the investigated phenotype 

and unfortunately, the molecular mechanisms of most biological traits are unknown so 

far [76]. For instance, if clear information about proteins involved in a specific psychiatric 

disorder are missing, all genes expressed in the human brain, which is estimated at tens 

of thousands, are possible candidate genes and have to be investigated [53]. 

Genome-wide association approaches have the advantage that they are hypothesis-free 

and thus prior knowledge about candidate genes is not required. The first smaller 

genome-wide association studies (GWASs) were reported in 2005 [77] and 2006 [78] 

The first large and well-designed GWAS for complex disorders was performed by the 

Wellcome Trust Case Control Consortium (WTCCC) in 2007 [15]. Since then, over 1,500 

GWAS have been published (see the National Human Genome Research Institute 

(NHGRI) Catalog of Published Genome-Wide Association Studies) and thousands of 

common SNPs robustly associated with common complex traits have been identified. 

Examples include 71 detected susceptibility loci for Chron’s disease [79], 18 vulnerability 

loci for type 2 diabetes [80] and 40 loci associated with height [81]. 

 

1.1.5 Missing heritability and possible explanations 

GWASs are one of the most popular study approaches since the last five years and have 

emerged to be powerful for investigating the genetic architecture of complex diseases 

[71,82]. Although thousands of common variants associated with common traits and 

disorders have been turned up and brought light into their genetic complexity [1], most of 

the variants have small effect sizes and the proportion of heritability explained by these 

variants is small [3,83]. One prominent example, which illustrates this issue, is human 

height. This complex trait can be explained by the height of the parents of an individual 

and thus, the heritability is estimated to be in the range of 80 – 90% [81]. Three large-



 14 
 

scale GWASs identified more than 40 variants associated with differences in height [84-

86]. Unfortunately, the associated loci have tiny effects and explain only about 5% of the 

heritability [81]. Currently, the proportion of heritability that can be explained by common 

variants is less than 10% for almost all complex traits [33]. Now the question arises, 

where the missing variants are that underlie these heritable traits. The difference in 

heritability between estimates from twin, family and adoption studies and estimates 

derived from association studies is also termed missing heritability and is currently one of 

the big topics in the genetics of common complex diseases [3,83,87]. Several 

explanatory models have been suggested and the most important ones are reviewed in 

the following sections.  

 

1.1.5.1 Rare variants 

GWASs are based on the assumption that complex traits can largely be explained by 

common variants with small to modest effect sizes which is also referred to as common 

disease-common variant (CDCV) hypothesis [88-90]. Due to the case of missing 

heritability, the focus has been shifted to the possible role of rare variants in disease 

susceptibility. The common disease-rare variant (CDRV) hypothesis postulates that 

multiple rare variants with higher effect sizes contribute to the susceptibility to common 

complex diseases [91-93].  

Traditionally, variants with a MAF below 1% are declared to be rare, but the definition in 

the literature is arbitrary and varies across studies. In this thesis, rare variants are 

denoted according to the original definition with 1% as cut-off, variants with a MAF 

ranging from 1 - 5% are defined as low-frequency or less common variants and common 

variants are expected to be in 5% of the general population. These rare and low-

frequency variants are not sufficiently frequent to be captured by commercial available 

GWAS genotyping arrays [90,94]. New high-throughput sequencing technologies, which 

are referred to as next-generation sequencing (NGS), can overcome this limitation as 

genetic variants of the whole frequency spectrum can be identified. Since their 

development in 2008, NGS techniques play an important role in numerous fields of 

application, including genomics, transcriptomics and proteomics. Details on NGS are 

described in section 1.3. 

Irrespective of the MAF, rare variants differ from common polymorphisms in several 

points which can be explained by population processes in the human lineage [90]. 

Spontaneously occurring de novo mutations can be constantly and rapidly introduced in 

a population. All de novo mutations are initially private which means that they only occur 
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in the individual harbouring the de novo variation, but they can be inherited to the 

following generations. Originally, rare variants can become common if they are not lost 

by random genetic drift or filtered out by purifying selection against vulnerability variants 

over many generations. This leads to two assumptions: First, variants reaching high 

frequencies in the population are likely to be older than rare variants as the variant 

frequency is proportional to the number of generations. Thus, the human genome 

harbours only a few common but many rare variants. It is suggested that on average, 

only about one common variant per 500 bp in the European population exists [95]. In 

contrast, population expansion in the past few centuries has resulted in the presence of 

many rare alleles. The number of de novo point mutations is estimated to be around 40 

per individual indicating the mass of rare variation within a population [96]. The second 

assumption is that rare variants have more likely negative effects on the phenotype than 

common variants [97]. Given that a variant has a high effect size leading to a disease 

this variant would be negatively selected which corresponds to the low frequency in the 

population (Figure 4). Indeed, rare variants are twice as much often expected to be non-

synonymous and thus potential deleterious than more frequent ones [95]. Common 

variants have survived negative selection and are thus supposed to have only, if at all, 

small to modest effects on the phenotype.  

The question which often arises in this context is, why some variants conferring to 

disease risk escaped negative selection and some not. Several explanations exist, both 

for the persistence of common and rare deleterious variants in the human genome. First, 

variants associated with disease might survive negative selection when they do not alter 

the evolutionary fitness. Decreased reproductive rate is one of the most important criteria 

for negative selection to save the survival of the population. One example is a common 

variant that confers the risk for nicotine dependence which does not influence the 

reproduction rate [98]. Furthermore, late-onset disorders such as Alzheimer’s disease 

are also not correlated with a reduction in fitness as the onset of such diseases is after 

the time of reproduction [99]. In contrast, several neuropsychiatric diseases are 

characterized by decreased reproduction rates, including schizophrenia, autism and 

anorexia nervosa [100,101]. Second, variants might cause a disease and protect against 

another one simultaneously. A common variant in  the ApoL1 gene confers to an 

increased risk to develop chronic kidney disease in African Americans and protects from 

Trypanosoma brucei rhodesiense infection at the same time [102]. With regard to rare 

variants, a third explanation for their persistence in the human gene pool might be that 

since such variants are so new, for instance only a few generations old, they have not 
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been subjected to negative selection over a long time. The continued high prevalence of 

autism and schizophrenia, despite the strong negative selection due to reduced fitness, 

suggests that de novo mutations may be maintaining these disorders in the population 

[101]. Finally, the mutation rates within a population might be so large that purifying 

selection can not remove all deleterious variants, so that variants with small to modest 

effects can drift to higher frequencies in the population [89,103]. As already mentioned, 

the number of de novo mutations is estimated to be around 40 per individual [96] so that 

it is unlikely that all deleterious variants are removed from a gene pool. For the future, it 

is suggested that the prevalence of disease will further increase as the selection criteria 

to remove a variant might be relaxed due to the changed life style in modern humans so 

that deleterious variants might accumulate [104]. 

Another characteristic of rare variants is that they are likely to be population specific, 

while common variants are mostly present in all populations [92]. In addition, rare 

variants are not in LD with common variants [92]. Overall, investigating rare variants 

might offer novel insights into disease mechanisms of complex traits [105].  

 

 

 

 

 

  

                        

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Correlation between allele frequency and effect size. 

Effect size and allele frequency are inversely proportional. Rare alleles are assumed to have high 

effect sizes, while with increased allele frequency the expected effect sizes decrease. Adapted from 

Manolio et al. [83]. 
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1.1.5.2 Structural variants 

Although the human genome is rich on structural variants, the discovery and genotyping 

of this type of genetic variation is far behind those of SNVs [106,107]. Until now, 

structural variants have not been explicitly examined in most GWASs, although re-

sequencing studies have shown that CNVs with a length of at least 1 kb are responsible 

for the largest variation of the genome between individuals [32]. Variation due to CNVs 

has been successfully demonstrated to have a functional impact on levels of gene 

expression [108] and several complex clinical phenotypes. A common 20 kb deletion 

upstream of the IRGM gene was identified to be associated with Crohn’s disease [109]. 

Additional associations could be observed between a common 45 kb deletion upstream 

of the NEGR1 gene and body mass index [110] and between a common 32 kb deletion 

removing the LCE3B and LCE3C genes and psoriasis [111]. This data lead to the 

assumption that structural variation might contribute to a considerable proportion of 

phenotypic variation and thus account for some of the unexplained heritability. 

Genetic variation due to CNVs is characterized by a combination of common and rare 

variants. Similar to SNVs, the majority of variants is rare, but most of the differences 

between two individuals can be explained by a limited number of common copy number 

polymorphisms (CNPs) with MAFs ≥ 5% [107]. These CNPs have modest effects on the 

phenotype and small sizes, ranging from 20 to 45 kb in the above mentioned diseases 

[83]. In contrast, rare CNVs have higher effect sizes and are much larger than CNPs, 

ranging from 600 kb to 3 Mb so that they affect many genes [83]. Recently, two studies 

investigated the distribution of several hundreds of CNVs in healthy individuals and 

patients suffering from schizophrenia. In these studies, a 1.6 Mb rare deletion with an 

effect size of 12 associated with disease could be identified [112,113]. Another study 

identified a rare 600 kb deletion with an OR of 100 and a 600 kb duplication with an OR 

of 16, both associated with autism [114].  

With the increased interest in structural variants as possible explanation for the missing 

heritability, several approaches have been developed for integrating CNV analysis into 

GWAS. This includes the design of appropriate genotyping arrays and the use of LD 

between SNPs and common CNPs. The latter point was initially highly controversial as it 

was not clear if structural variants are in LD with SNPs at all. However, several studies 

have shown that common short insertions or deletions with 1 – 5 bp [115-117] and larger 

common structural variants in unique regions [43,107] of the genome are in LD with 

tagging SNPs. If CNPs occur in segmental duplications the identification is complicated 

as the LD with tagging SNPs is low [118]. Segmental duplications are repetitive DNA 
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sequences that are more than 5 kb in size and have more than 90% inter-copy sequence 

identity [119]. Low LD in segmental duplications can be explained by the fact that 

compared with the rest of the genome a small number of validated SNPs that can serve 

as tagging SNPs exist in such regions [107]. Interestingly, there is a strong relation 

between structural variation and segmental duplication. 25 – 50% of all nucleotides in 

large structural variants are located in segmental duplications, which account for only 

5.3% of the genome [42]. One explanation for this phenomenon might be that segmental 

duplications are associated with high rates of non-allelic homologous recombination 

(NAHR) which occurs when two DNA sequences are to a high extent identical, making 

these regions more susceptible for rearrangements in general [120]. Thus, it can be 

concluded that segmental duplications might have an increased probability to harbour 

disease-relevant variants due to the increased rate of structural variants in these regions.  

 

1.1.5.3 Gene-gene interactions 

It has long been recognized that interactions between genes are an important 

component of genetic architecture of complex traits. In the last years, identification of 

gene-gene interactions was mostly driven by the failure to identify or to replicate 

significant associations between variants and a phenotype obtained from linkage or 

association studies [121,122]. The interplay of several genes is also postulated to 

explain, in part, the case of missing heritability.  

The concept of epistasis or gene-gene interaction describes a masking effect where a 

variant at one locus prevents the manifestation of the effect of a variant at another locus 

[123]. An example for gene-gene interactions, which demonstrates the influence on the 

phenotypic outcome, derives from a study of Cordell (Table 2) [124]. 

 

Table 2 Example for gene-gene interaction. 

The hair color in mice is determined by the two loci G and B. G encodes grey hairs while B encodes 

black hairs. Loci G and B have two possible alleles, G/g and B/b. Mice with any copies of the G allele 

are grey, independent on the genotype of the B locus. The effect of locus B is masked by that of locus 

G and it is said that locus G is epistatic to locus B. Black mice can only be observed if at least one 

copy of the dominant B allele, but no G allele is present. Adapted from Cordell [124]. 

 

 

 

 

 

 Genotype locus G 

Genotype locus B g/g g/G G/G 

    
b/b white grey grey 
b/B black grey grey 
B/B black grey grey 
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The investigation of gene-gene-interactions might give valuable insights into the 

pathomechanism of complex diseases as biomolecular interactions are ubiquitous in an 

organism, comprising gene regulation, signal transduction, biochemical networks and 

homeostatic developmental and physiological pathways [121]. Under evolutionary 

aspects, gene-gene interactions are also very meaningful due to the fact that alleles with 

negative effects can be tolerated as alleles at other loci prevent the manifestation of 

these negative effects on the phenotype [125]. An example, which illustrates the 

tolerance of variants with deleterious effects, comes from a study of Gregersen et al. 

who investigated the genetic interactions underlying multiple sclerosis [126]. To 

accomplish this, transgenic mice expressing either DR2a or DR2b antigen or both were 

generated. It was found that mice, which only produce DR2b, were highly susceptible to 

multiple sclerosis, whereas mice only producing the DR2a antigen did not develop the 

disease. Interestingly, mice in which both gene loci were present showed a reduced 

disease susceptibility which leads to the assumption that DR2a modulates the effect of 

DR2b. A possible model for this epistatic effect might be that DR2b stimulates the 

production of T-cells which are sensitive to the antigen that induces multiple sclerosis, 

while the DR2a antigen suppresses the T-cell proliferation or induces cell death of these 

cells. Under normal conditions, the effects of the two antigens balance each other so that 

the disease-susceptibility antigen DR2b could survive natural selection as only in the 

absence of DR2a its negative effect manifests in an increased susceptibility risk.  

In the literature, many different definitions for the term “epistasis” exist which can be 

summarized into three main categories [127]. Compositional epistasis is the most similar 

definition to the original one, representing the prevention of an effect of one allele by an 

allele at another locus. Functional epistasis describes the molecular interaction of a 

protein with another one. These protein-protein interactions can be either between 

proteins that directly interact with each other or between proteins within the same 

pathway [128]. This definition of epistasis is solely a functional one without a direct 

genetic link, although a genetic consequence would be predicted in the case of disrupted 

interactions between proteins [127]. The last definition is statistical epistasis which is 

used in a quite different sense compared to its original usage. Statistical epistasis looks 

at differences between the expected and observed ORs, when comparing the combined 

ORs derived from two variants with the ORs for the two variants individually [129]. Given 

that two variants contribute to the risk to develop a disease. If a case-control study 

identifies variant A to have an OR = 2 and variant B to have an OR = 3, it is expected 

that for individuals carrying both variants the effects of these two variants are additive 
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resulting in an OR = 5 and thus a 5 fold increased risk for disease. If the observed OR = 

10 for instance, statistical epistasis is present as the additive character of the two 

variants can not be observed. An example for statistical epistasis derives from a study of 

Keck et al. [130]. In their study, multiplicative effects of exonic polymorphisms in the 

CRHR1 and AVPR1B genes in a case-control sample for PD were identified. While the 

p-values for association with PD were 0.001 for rs878886 in CRHR1 and 0.015 for 

rs28632197 in AVPR1B, the p-value for the multilocus effect was 0.00057. Several 

statistical methods for the detection of epistasis exist. Unfortunately, statistical models do 

not necessarily correlate with biological models for epistasis and thus, performing a 

statistical test and concluding from statistical interactions that also biological interactions 

exist, is not possible [131]. 

 

1.1.5.4 Gene-environment interactions 

The aim of GWASs is to discover genetic variants that have direct main effects on 

disease susceptibility [71]. However, variants that show no association with the 

investigated disease may nevertheless contribute to the risk to develop the disease 

through hidden gene-environment interactions. If the risk for a disease is increased in 

individuals, who both carry a susceptible genotype to the condition under investigation 

and are exposed to a specific environmental risk factor compared to individuals, who are 

either exposed to the risky environment or are genetically susceptible, gene-environment 

interactions are present (Figure 5).   

A variety of environmental risk factors for mental disorders exist, including maternal 

stress during pregnancy, maternal substance abuse during pregnancy, low birth weight, 

birth complications, deprivation of normal parental care during infancy, childhood 

physical maltreatment, childhood neglect, premature parental loss, exposure to family 

conflict and violence, stressful life events involving loss or threat, substance abuse, toxic 

exposures and head injury [132]. The hypothesis of genetic moderation assumes that 

differences between individuals regarding their genomic background result in differences 

in their vulnerability or resilience to environmental factors so that environmental 

influences are considered to be only contributing to a disease and not causing it [133]. 

Pharmacogenetic studies confirm the hypothesis of genetic moderation as different 

genotypes were identified to be associated with different drug responses [134]. 
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Figure 5 Model of gene-environment interaction. 

Both the genotype is dichotomous (carrier versus non-carrier of a genetic variant) and the exposure 

with a specific environmental factor is dichotomous (exposed versus non-exposed). Out of the four 

possible genotype-exposure combinations only individuals, who are both carrying the risk variant and 

have been exposed to a distinct environment (pink), show an increased relative risk to develop the 

disease. Adapted from Hunter [135]. 

 

The first study describing the role of the genotype in moderating the effects of 

environmental factors to develop a mental disease was published in 2002. In this study, 

the hypothesis that a functional SNP in the promoter region of the MAOA gene, which 

encodes for a neurotransmitter-metabolizing enzyme, influences the effects of 

maltreatments in childhood on violent behaviour was investigated [136]. The results 

showed that children who were maltreated in childhood and carried the genotype 

conferring to low levels of MAOA expression suffered more often from conduct disorder, 

antisocial personality and adult violent crime than maltreated children with the genotype 

associated with higher MAOE expression.  

The contribution of genetic and shared and individual environmental factors to the 

phenotype can be estimated by comparing the disease concordance rate between MZ 

and DZ twins. As already mentioned in section 1.1.2, a higher concordance rate in DZ 

twins indicates that shared environmental factors contribute to a high degree to the 

investigated disease while genetic factors play a major role in disease susceptibility 

when the concordance rate is increased in MZ twins. Family-based designs such as 

sibling pairs or case-parent designs allow also the estimation of the proportion to which 

the phenotype is determined by environmental factors.  
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Studies, which investigate the penetrance of a genetic variant, can also unravel the 

extent of environmental contribution to a phenotype. Changes in penetrance over time 

lead to the suggestion that changes in the environment have been occurred. One 

example for a changed penetrance comes from a study investigating 333 women, who 

carry the BRCA1 gene [137]. The penetrance was increased in more recent birth cohorts 

indicating that the influence of novel environmental and lifestyle factors increase the risk 

for breast cancer.  

A challenge for the investigation of gene-environment interactions is the need for large 

sample sizes. It has been estimated that for the detection of joint effects, a four times 

larger sample is needed compared to the sample size that would be necessary to detect 

the main effects of genetic or environmental factors individually [138]. Thus, studies that 

were designed to capture the main effects of individual factors are mostly underpowered 

to examine interactions.  

 

1.2 Genetics of anxiety and mood disorders 

1.2.1 Classification and clinical characteristics of anxiety disorders 

Anxiety disorders (ADs) are among the most common psychiatric disorders in children 

[139], adolescents [140] and adults with a combined life-time prevalence of 28.8% [141]. 

Substantial impairment [142], loss in work productivity [143] and the use of primary care 

services [144] indicate a high burden of this disorder. 

The International Statistical Classification of Diseases and Related Health Problems 

(ICD-10) Manual of the World Health Organization (WHO) classifies ADs in phobic 

anxiety disorders and other anxiety disorders. In the first class, anxiety is only caused by 

well-defined situations or objects. Phobic anxiety disorders are further subdivided into 

three forms: the first is agoraphobia, the fear of having a panic attack in places or in 

situations where the person feels unable to escape. Social phobia is associated with low 

self-esteem and fear of criticism leading to the avoidance of social situations such as 

talking in the public, visiting parties or meeting friends. Specific or isolated phobia is the 

most prevalent form of ADs, with a lifetime prevalence of 12.5% in the general population 

[141]. Such phobias are restricted to highly specific situations, including particular 

animals, closed spaces, height, flying, darkness or the seight of blood.  

Other ADs, which are further subdivided into PD and generalized anxiety disorder 

(GAD), are characterized by a sudden appearance of anxiety without any particular 

environmental stimuli. The main symptoms of GAD are worries and anxieties in the daily 

life. Fears that the patient itself or relatives become ill or have an accident are often 
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expressed. The quality of life of patients suffering from permanent anxieties is severely 

impaired, often leading to suicidal ideation [145]. PD is characterized by recurrent and 

unexpected attacks of intense fear that last for several minutes. Additionally, four of the 

following somatic symptoms occur: heart palpitation, accelerated heart rate, xerostomia, 

tremor, dyspnea, nausea, sweating. PD is often accompanied by agoraphobic behaviour. 

ADs are characterized by early onset, the tendency to have a chronic course and high 

comorbidity with each other [146] and other psychiatric disorders such as bipolar 

disorder [147] and depression [148]. The median age at onset was reported to be six 

years in an adolescent population-based study [140] and eleven years in a population-

based sample of adults [141]. Furthermore, age at onset varies within the different forms 

of ADs. Specific phobias often occur in childhood [141], social phobia in early and late 

adolescence [149], PD with or without agoraphobia in late adolescence and early 

adulthood [150] and GAD in early adulthood [141]. Children and adolescents, suffering 

from ADs, have an increased risk to suffer either from the same or a different form of AD 

in adulthood [151].  

 

1.2.2 Genetic epidemiology of ADs 

There is substantial evidence that ADs are familial and heritable. Family studies showed 

that the risk to develop PD was significantly increased (7.9 - 17.3%) in first-degree 

relatives of PD patients compared to relatives of unaffected subjects [152-155]. 

Furthermore, the risk of first-degree relatives of PD patients to develop PD is depended 

on the age at onset of the PD patient. An onset before the age of 20 increases the 

disease risk by 17 fold, whereas the risk is only increased by 6 fold when PD occurred 

after the age of 20 [156]. Familial aggregation has also been observed for GAD and 

phobias [157].  

Twin studies revealed a 2 – 3 times higher concordance rate for PD in MZ twins 

compared to DZ twins [158]. The Virginia Adult Twin study, comprising 5000 twin pairs, 

reported a genetic proportion of variance in liability to different ADs as followed: PD 0.28, 

GAD 0.23, animal and situational phobia 0.24 and social phobia 0.1 [44]. The remaining 

variance in liability could be attributed to individual-specific environmental influences. 

These heritability estimates indicate that ADs are moderately heritable compared to 

other psychiatric disorders such as schizophrenia and bipolar disorder, with heritability 

scores of 0.67 and 0.62 respectively [46].  
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1.2.3 Genetic studies in ADs 

Many linkage studies have been undertaken to identify chromosomal regions that 

harbour susceptibility genes for mainly PD, yielding a variety of potential risk loci on 

chromosomes 1q [159], 2q [160], 4q31-q34 [161], 7p [162], 9q [163], 12q [164], 13q 

[165], 14q [166] and 22q [167]. However, linkage analyses have shown little consistency. 

The candidate gene literature in ADs is extensive, but only a few associations could be 

replicated [168,169]. The three most studied genes are catechol-O-methyltransferase 

(COMT), brain-derived neurothropic factor (BDNF) and solute carrier family 6 member 4 

(SLC6A4, also known as serotonin transporter 5-HTT) [170]. The COMT gene encodes 

an enzyme which methylates catecholamines, including the neurotransmitters dopamine, 

epinephrine and norepinephrin, leading to its degradation. A SNP in this gene causes a 

substitution of valine (Val) with methionine (Met) at codon 158 (Val158Met 

polymorphism) which is associated with a 40% [171] or even three to four fold lower 

COMT activity [172]. A meta-analysis of six case-control studies identified the Val allele 

and the associated increased activity of the COMT enzyme as possible risk factor for 

PD, although the effects are different in European and Asian populations and female-

specific [173]. 

The BDNF gene is known to be involved in the actions of the serotonergic [174], 

glutamatergic [175] and dopaminergic [176] neurotransmitter systems. High gene 

expression levels in the hippocampus and the involvement in neurotransmission 

suggested that this gene might contribute to different neuropsychiatric traits such as 

anxiety [177]. The most investigated variant in BDNF leads to an amino acid exchange 

from Val to Met at codon 66 (Val66Met polymorphism). In a mouse model, a higher 

anxiety-like behaviour could be observed in homozygous Met/Met BDNF mice when 

exposed to stress (results not normalized by the antidepressant fluoxetine) [178]. In 

contrast, a meta-analysis of seven case-control studies on AD in humans could not find 

an association between the BDNF Val66Met polymorphism and AD [179]. 

To date, one of the most frequently studied polymorphisms in psychiatric research has 

been the serotonin transporter length polymorphic region (5-HTTLPR) within the SLC6A4 

loci. This length polymorphism in the promoter region results in two alleles which are 

distinguishable by a 44 bp insertion (long allele) or deletion (short allele) [180]. The short 

allele is associated with a decreased SLC6A4 gene expression and reduced serotonin 

uptake [180,181]. While an association between the short allele and anxiety traits could 

be observed in healthy subjects [182], a meta-analysis, comprising ten case-control 



 25 
 

studies on PD, could not identify an association between the 5-HTTLPR polymorphism 

and this class of AD [183]. 

So far, the number of GWASs for anxiety-related phenotypes is very small, with only two 

publications reporting data from a GWAS for PD. The first study identified two genome-

wide significant SNPs in the transmembrane protein 16B (TMEM16B) and plakophilin 1 

(PKP1) gene which, however, could not be replicated in another Asian PD sample 

[184,185]. In a second GWAS, the transmembrane protein 132D (TMEM132D) locus 

was identified as a possible novel candidate gene for PD [4]. A two SNP haplotype was 

associated with PD in three independent German samples. These risk alleles were also 

associated with higher TMEM132D messenger RNA (mRNA) expression in human 

postmortem cortex samples. Moreover, in a mouse model of extremes in trait anxiety 

[186], a higher Tmem132d expression in the anterior cingulated cortex was observed in 

high versus low anxiety animals. This collected evidence suggests that an increase in 

TMEM132D expression may be associated with the development of pathological anxiety. 

The initial results could be replicated in additional European cohorts, assembled as part 

of the Panic International Consortium (PanIC) [187]. 

 

1.2.4 Clinical characteristics of major depressive disorder 

In 2030, major depressive disorder (MDD) is projected to be one of the three leading 

causes of burden of disease [188]. MDD, which is also known as unipolar depression, is 

a complex and severe psychiatric disorder associated with high rates of morbidity and 

mortality. The lifetime prevalence in the general population is estimated to be 13 – 16%, 

with a ~ 1.8 higher rate in women than in men [148,189]. The risk of mortality due to 

suicide is substantial and the lifetime risk estimates are 3.4%, with a higher risk for males 

than females (7% versus 1%) [190].  

MDD is characterized by a variety of symptoms along several biological and 

psychological systems, including the endocrine, affective, immune, autonomic-vegetative 

and cognitive system [191]. The ICD-10 classification system defines a major depressive 

episode by depressed mood and/or loss of interest in usual activities, combined with 

three or more additional symptoms, including appetite and sleep disturbances, loss of 

energy, feelings of worthlessness and guilt, lack of emotional reactions, diminished 

ability to think or concentrate, suicidal thoughts and ideation for a duration of two weeks 

or longer. Depending on the number of depressive episodes, the ICD-10 manual further 

subdivides MDD into single depressive episode and recurrent depressive disorder.  
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An early age at onset is one characteristic of MDD. The National Comorbidity Survey 

(NCS), which studies the prevalence of mental disorders in the US population, reported 

that the half of all lifetime cases of mood disorders starts at age 14 and 75% by 24 years 

[141]. Furthermore, it has been shown that age at onset is associated with course and 

severity of disease. Earlier age at onset is associated with greater illness burden 

compared to patients developing the disease later which is manifested in a greater 

number of depressive episodes with increased severity of symptoms, social and 

occupational impairment, poorer quality of life, greater medical and psychiatric 

comorbidity, a more negative outlook, increased suicidal ideation and attempted suicide 

[192]. 

MDD is highly comorbid with other mental disorders. The NCS study showed that 75% of 

depressed individuals suffer at least from one other mental disorder [193]. These 

patients are reported to have significantly poorer psychosocial functioning and poorer 

recovery rates compared to patients with only depression diagnosis [194]. The strongest 

comorbidity is with AD which is present in 50% of individuals suffering from MDD [195]. 

 

1.2.5 Genetic epidemiology of MDD 

The number of epidemiological studies investigating MDD is limited as, especially in 

older studies, both unipolar and bipolar depressed individuals were included into the 

investigations. The latter subjects are characterized by changes between manic and 

depressive phases. Only five family studies, five twin studies and none adoption study 

meet the stringent inclusion criteria for a meta-analysis, although two out of three 

adoption studies pointed out that genetic factors influence the risk for MDD [45]. 

Family studies indicated that MDD is aggregated in families as first-degree relatives of 

depressed individuals have a 2.84 increased risk to develop MDD itself compared to 

relatives of a healthy individual [45]. In addition, some other family studies suggest that 

prepubertal onset depression is largely influenced by environmental factors, while 

depression, which occurs after adolescence, is more influenced by genetic components 

[196,197]. 

Twin studies argued for a substantial genetic and unique environmental component of 

MDD, while shared environmental factors contribute to little or no extent to the 

phenotype. The meta-analysis of five twin studies estimated the heritability to 37% and 

the influence of the individual specific environment to 63% [45]. 
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1.2.6 Genetic studies in MDD 

In the past, numerous linkage studies were performed to identify susceptibility regions for 

MDD. Unfortunately, results obtained in these mainly smaller linkage studies with less 

than 100 affected individuals were inconsistent [198-200]. In contrast, studies 

investigating several hundreds of affected individuals identified two genomic regions that 

present evidence for linkage with MDD. In the Genetics of Recurrent Early-Onset Major 

Depression (GenRED) study, which comprises 415 affected sibling pairs, genome-wide 

linkage was observed on chromosome 15q [201]. Two independent large-scale studies, 

the European-US Depression Network study [202] and a study from Utah [203], provided 

also support for chromosome 15q as susceptibility region for MDD. The second region, 

identified in the combined first and second wave European-US Depression Network 

study [204] and another independent MDD sample [205], was on chromosome 3p.  

Candidate gene studies suggested SLC6A4, HTR2A, BDNF, TPH2, APOE, GNB3 and 

MTHFR to be associated with MDD [206]. Among possible MDD candidate genes, 

serotonin-related genes are the most investigated ones as changes in serotoninergic 

function regarding receptor density, metabolism and reactivity have been observed in 

MDD, and pharmacological effects of serotoninergic drugs in MDD are well documented 

[207]. Furthermore, genes controlling other biochemical substances such as gamma-

aminobutyric acid (GABA), glutamate, and norepinephrin have been investigated as 

these substances are also assumed to play a major role in MDD [208]. Overall, only a 

small number of candidate genes could be replicated in independent studies. Therefore, 

several meta-analyses were conducted to increase the power to detect risk alleles for 

depression. One of the largest meta-analysis in depression included 183 studies 

covering 393 genetic variants in 102 possible candidate genes [209]. This 

comprehensive study identified variants in the genes APOE (apolipoprotein E), GNB3 

(guanine nucleotide-binding protein ß-3), MTHFR (methylene tetrahydrofolate 

reductase), and SLC6A4 to influence the susceptibility for depression. For the latter 

gene, it was found that carriers of the short allele of the 5-HTTLPR polymorphism have a 

slightly increased risk for MDD with an OR of 1.11 [209], while another meta-analysis 

reported that neither the genotype of the serotonin transporter alone nor in interaction 

with stressful life events is associated with an increased risk for MDD [210]. 

In the last years, several GWASs for MDD have been published. None of these studies 

reported genome-wide significant results and their findings were difficult to replicate 

[211-216]. In 2011, a GWAS identified SLC6A15 as novel susceptibility gene for MDD 

[5]. rs1545843 risk allele carrier status was associated with a decreased SLC6A15 gene 
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expression in the hippocampus. This brain region, which modulates the hypothalamic-

pituitary-adrenocortical (HPA) axis, is dysregulated in depressed patients [217]. 

Furthermore, the same SNP showed an association with reduced hippocampal volume 

and reduced hippocampal neuronal integrity. Environmental factors such as chronic 

stress were also associated with a reduced Slc6a15 gene expression in stress-

susceptible compared to stress-resilient mice (1.9 fold in CA1 region).  

 

1.3 Detection of genetic variants using NGS 

1.3.1 Introduction into NGS technologies 

The introduction of DNA sequencing by chain termination coupled with size separation of 

the obtained DNA fragments via gel electrophoresis was one of the most important 

technological developments in the field of genetics. This sequencing technique, which 

was invented by the Nobel laureate Sanger and which is thus also referred to as Sanger 

sequencing method, uses chemically modified dideoxynucleotide triphosphates 

(ddNTPs) to terminate the DNA strand during chain elongation [218]. Since the 

development of automated capillary sequencers, which are based on the Sanger 

sequencing method, identification of whole genome sequences became feasible [219].  

Although this first-generation sequencing method led to a revolution in biological science, 

time and costs remained the major limitations for large-scale sequencing studies for 

single research laboratories. For instance, in the framework of the Human Genome 

Project estimated 300 million dollars and ten years of time were necessary to generate 

the first draft of the human reference genome [29-31]. NGS methods, which are often 

also referred to as massively parallel sequencing (MPS) techniques, lead to a drastic 

decrease in costs per sequenced base pair and increase in speed compared to capillary 

sequencing [220,221]. Using these NGS technologies, an individual genome can be 

sequenced within a few weeks with costs currently less than 10,000 dollars [222]. 

Although NGS technologies were originally designed to sequence whole genomes 

(whole genome sequencing), they can also be used in a more restricted way 

investigating only the entity of exonic regions in the genome, also called exome 

sequencing [223,224], or clearly defined genetic regions, for instance single genes. 

Targeted re-sequencing approaches are the most feasible ones for single laboratories 

[225].  
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1.3.2 NGS workflow 

The optimal NGS design is dependent on the individual scientific question which is 

aimed to be answered by the sequencing project. If a study is focussed on the detection 

of rare variants in one ore more single genes, whole genome sequencing is not 

indicated, but targeted re-sequencing is sufficient. When performing a targeted re-

sequencing experiment the question which genomic region to sequence arises. Genes, 

which were identified in earlier performed GWASs to be associated with the investigated 

phenotype, are often chosen for sequencing studies. While in GWASs only a limited 

number of common variants within a gene can be detected directly or indirectly via LD, 

NGS offers the possibility to identify, in theory, all common and rare genetic variants in 

the investigated gene and thus, NGS is often used as follow-up experiment of GWASs. 

Furthermore, results from the literature can also influence the choice of candidate genes. 

In case of unknown candidate genes for a disease, sequencing the entire exome offers 

an unbiased approach.  

After defining the target region, enrichment of DNA in this region has to be performed 

using either methods based on polymerase chain reaction (PCR) or hybridization-based 

technologies which are carried out either in solution or on microarrays. The best-suited 

enrichment technology depends on the size of the target region and the sample size. In 

general, enrichment using PCR is attractive for studies with small target sizes and small 

sample sizes, while hybridization-based methods are indicated for whole exome 

sequencing projects or targeted re-sequencing studies with large sample sizes [222]. For 

whole genome sequencing studies the target enrichment step can be omitted. 

In the next step, genomic or enriched target DNA has to be prepared for the sequencing 

experiment. The preparation process is dependent on the used sequencing platform. 

Currently, three major NGS platforms are available namely Illumina with the Genome 

Analyzer, Life Technologies with the sequencing by oligonucleotide ligation and 

detection (SOLiD) sequencer and Roche with the 454 FLX sequencer. In this thesis, both 

targeted re-sequencing projects were performed using the SOLiD sequencer. Therefore, 

the description of the further sequencing workflow in the following sections is based on 

this sequencing platform. An overview of other NGS technologies is given elsewhere 

[226]. 
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1.3.2.1 Library preparation 

Library preparation is the first of two sections of sample preparation for sequencing and 

starts with randomly breaking the enriched target DNA into smaller fragments comprising 

hundreds of base pairs using ultrasound treatment. The sheared DNA has 5’ and/or 3’ 

protruding ends which are converted into blunt-ends with repair enzymes. After the end-

repair step, the DNA is purified using column or bead purification. Then, P1 and P2 

adaptors, which are short double-stranded oligonucleotides, are ligated to the ends of 

the end-repaired and purified DNA. Adaptor-ligated DNA is run on a size selection gel 

and the ligation products with the desired size are extracted (150 – 200 bp). The size-

selection step is recommended as DNA fragments with similar lengths result in more 

uniform library amplification due to the fact that shorter fragments are more likely to be 

amplified than longer ones which introduce an amplification bias. In addition, size 

selection removes possible adaptor dimers. The size-selected fragments are quantified 

and, if necessary, amplified with library PCR Primer 1 and 2. These primers are specific 

to the P1 and P2 adaptor sequences so that only DNA fragments to which a P1 or P2 

adaptor was ligated are amplified. After amplification, the PCR products are column or 

bead-purified and the final library is quantified.  

 

1.3.2.2 Bead enrichment 

In the second section of sample preparation DNA obtained after library preparation is 

clonally amplified onto DNA beads using emulsion PCR (ePCR) [227]. Clonal 

amplification, which results in a population of identical templates, is required as most 

NGS technologies have not been designed to detect single fluorescence signals emitted 

from one single DNA template in the sequencing reaction. The emulsion is created by 

mixing an oil phase with an aqueous phase so that droplets of aqueous phase are 

distributed in the oil phase. The aqueous phase contains all components which are 

required to perform the ePCR, including library template DNA, P1 and P2 primers, 

nucleotides, DNA polymerase and P1 DNA beads. It is desired that each droplet in which 

the clonal amplification takes place contains one single bead and one single template 

DNA so that monoclonal micro-reactors are present. During ePCR, which results in 

approximately 30,000 copies of template per bead, the P1 adaptor of the template DNA 

binds complementary to the P1 adaptor which is attached to the DNA beads. Therefore, 

only P1 adaptor carrying DNA templates are amplified. After ePCR, the emulsion is 

broken by adding alcohol and the beads are washed to remove the oil. Then, a bead 

enrichment step is necessary as not all beads carry a template. For this reason, 
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enrichment beads with a P2 adaptor are added to the amplified and purified beads. 

These enrichment beads can only build a complex with beads carrying a template as the 

template harbours the P2 adaptor sequence. Enrichment results in a two phase solution 

with enrichment beads with or without template beads in the upper layer and beads 

without templates at the bottom. The upper layer is extracted and denatured to isolate 

the template beads from the enrichment beads. In the last step, the template beads are 

extended with a Bead Linker which is necessary for deposition on the sequencing glass 

slide. 

 

1.3.2.3 SOLiD sequencing by ligation 

The actual sequencing reaction is initiated by the binding of a sequencing primer to the 

P1 adaptor of the templated beads. Fluorescently labelled two-base-encoded probes 

hybridize to the complementary sequence of the template and a DNA ligase joins the 

probe to the primer [228]. Two-base-encoded probes are oligonucleotide sequences in 

which the two first bases are associated with a particular fluorescence dye, while the 

following six bases are either degenerated (N = 3) or universal (N = 3). The incorporation 

of a probe leads to the emission of a fluorescence signal which can be imaged by the 

sequencer to determine the ligated probe [229]. After fluorescence imaging, the three 

universal nucleotides and the fluorescent dye are cleaved and the next probe can be 

incorporated into the growing strand. The SOLiD cycle, which comprises ligation, 

fluorescence imaging and cleavage, is repeated nine more times. As from each 

incorporated probe only the first two bases are associated with a colour, the remaining 

three degenerated nucleotides are not detectable. For this reason, the primer extension 

product is removed from the template strand after ten ligation cycles, and a second 

primer binds to the P1 adaptor of the template however, in comparison to the position 

where the first primer bound, shifted by one base position. Five rounds of primer re-

setting, each with ten ligation cycles is required to determine a DNA fragment. Through 

the primer reset process, every base is interrogated in two independent ligation reactions 

by two different primers.  

The generated sequencing reads are denoted in color space which is the ordered 

sequence of the detected fluorescence signals from the five ligation rounds (5 x 10 

cycles). Thus, a direct determination of the DNA sequence is not possible. To convert 

the sequence of the colour calls into the DNA sequence, information about the two-base 

code is necessary (Figure 6). Assuming that two bases encode for a green fluorescence 

signal and that the last base of the sequencing primer is an A, then a green color can 
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only be observed when the first incorporated base is a C. If the next fluorescence signal 

is blue, the following base has to be a C as only the combination CC decodes for blue 

and so on. Raw reads in color-space are subjected to quality control procedures and the 

reads, which survived this quality control, are aligned to a known color-space reference 

sequence to identify genetic differences between template and reference. 

 
 

                                                                 

 

Figure 6 Two-base encoding scheme. 

In the two-base encoding scheme, four dinucleotide sequences are associated with a fluorescence 

color respectively. Adapted from Metzker [226]. 
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1.4 Aims of the investigation 

Complex traits are known to be influenced by a complex interplay between multiple 

genes and environmental factors. To identify the genes which contribute to the 

manifestation of a disease, linkage and association studies have been extensively 

carried out. The understanding of the genetic architecture of a disease could be 

beneficial for its diagnosis, treatment and prognosis.  

In the last years, GWASs have identified thousands of common genetic variants 

associated with common complex diseases (see the NHGRI Catalog of Published 

Genome-Wide Association Studies). Unfortunately, the heritability explained by these 

factors is small [3]. The most prominent explanations for the case of missing heritability 

are the contribution of multiple rare variants, structural variants, gene-gene interactions 

and/or gene-environment interactions to a phenotype. With regard to the role of rare 

variants, several studies have been shown that a combination of common and rare 

genetic variants contributes to the risk to develop common diseases [230-232]. 

Therefore, the debate whether the CDCV hypothesis postulating that common variants 

with small effects are disease causing or the CDRV theory, which suggests that multiple 

rare variants with larger effects contribute to a disease, is true should not longer seen as 

an either/or debate, but should be shifted to the question to which extent common and 

rare variants are involved in the aetiology of a disease.    

 

1.4.1 Genetic and in silico functional characterization of the TMEM132D locus 

In 2011, a GWAS identified TMEM132D as novel candidate gene for PD [4]. TMEM132D 

on chromosome 12 encodes a single-pass type 1 membrane protein belonging to the 

TMEM132 protein family. A haplotype, containing two common variants within the 

intronic regions of the TMEM132D locus, was associated with PD in three independent 

samples. This initial finding could be replicated in additional European cohorts derived 

from the PanIC consortium [187]. In addition, three independent common SNPs in 

TMEM132D were associated with the severity of anxiety symptoms in patients with a 

number of different primary psychiatric disorders. Susceptibility genes for a disease, 

which were identified in GWASs, are amenable for follow-up studies as genes 

harbouring common variants are likely to contain also rare variants [6]. Therefore, the 

question arises whether besides common variants also rare variants play a role in the 

susceptibility to anxiety-related phenotypes.  

In order to answer this question, a pooled targeted re-sequencing experiment using the 

SOLiD sequencing platform was performed. Until the development of NGS technologies, 
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the investigation of rare variants was complicated. The combination of low frequency and 

low LD between common and rare variants makes this type of genetic variation 

unsuitable for the analysis with microarrays which are used in GWAS [233]. The exonic 

regions and the exon-intron boundaries of the TMEM132D gene were re-sequenced in 

300 AD patients and 300 controls which were arranged in four DNA pools. A subset of 

the detected common and rare variants was re-genotyped in all 600 subjects using 

matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass 

spectrometry on the Sequenom platform. Validated variants were then subjected to 

association analysis. For common variants with a MAF > 5%, PLINK was used for 

association testing. To test whether rare variants are associated with AD, these were 

collapsed and the combination of variants was subjected to association analysis. 

In addition to the detection of associations between common and/or rare variants and 

AD, it was also focussed on the assessment of functional relevance of these variants. 

Functional characterization is important as genetic association does not necessarily have 

to mean causation. Unfortunately, the function of the TMEM132D protein is still unknown 

so that only in silico annotation could be performed in order to detect possible functional 

relevant variants. 

 

1.4.2 Genetic and experimental functional characterization of the SLC6A15 gene 

In 2011, another GWAS suggested SLC6A15 as candidate gene for MDD [5]. A common 

variant about 600 kb downstream of this gene was identified to decrease SLC6A15 gene 

expression in lymphoblastoid cell lines as well as hippocampus. Furthermore, the same 

SNP showed an association with reduced hippocampal volume in patients with 

depression and reduced hippocampal neuronal integrity in healthy controls. In this thesis, 

it was focussed on the question whether common and rare variants within the SLC6A15 

locus lead to the symptoms of MDD.  

To accomplish this aim, the whole SLC6A15 locus, including 10 kb up- and downstream 

of the gene, was re-sequenced in 400 MDD patients and 400 controls which were 

combined in eight DNA pools. After the pooled targeted re-sequencing run, which was 

also performed on the SOLiD sequencer, a subset of the detected variants was 

individually re-genotyped using MALDI-TOF mass spectrometry. Validated variants were 

then tested for association with MDD using the same statistical methods as for the 

TMEM132D study (section 1.4.1). 

As it is known that SLC6A15 encodes an amino acid transporter which is highly 

expressed in the brain [7], amino acid uptake is a measurable property that associates 
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with function. Therefore, functional characterization was not restricted to computational 

annotation, but experimental assessment of functional relevance of genetic variants 

could also be performed. Non-synonymous variants were incorporated into the SLC6A15 

protein using site-directed mutagenesis. Then, the uptake of proline was measured in a 

SLC6A15 uptake assay which was developed by the Chemical Genomics group of Felix 

Hausch at the Max Planck Institute of Psychiatry.  
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2. MATERIALS AND METHODS 

 

2.1 Recruitment and sample characterization 

2.1.1 AD sample  

300 patients (122 males, 178 females) from the Anxiety Disorders Outpatient Clinic of 

the Max Planck Institute of Psychiatry (MPIP) in Munich were included in the study. The 

mean age was 37.9 ± 11.9 years (males: 37.3 ± 10.9 years, females: 38.3 ± 12.5 years). 

Of the included patients, 84.7% presented PD with or without agoraphobia as their 

primary psychiatric diagnoses (Table 3). The diagnosis was ascertained by trained 

psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders 

(DSM)-IV criteria. All patients underwent the Structured Clinical Interviews for DSM-IV 

(SKID I and II). AD due to medical or neurological condition or a comorbid Axis II 

disorder was an exclusion criterion. All patients underwent a thorough medical 

examination including EEG, ECG and detailed hormone laboratory assessment. The 

mean age at onset was 27.3 ± 11.4 years (males: 26.9 ± 11.1 years, females: 27.6 ± 

11.6 years). Severity of anxiety and depression was measured using the 14-item 

Hamilton Anxiety Scale (HAM-A), the 21-item Hamilton Depression Scale (HAM-D) and 

the Bandelow Panic and Agoraphobia Scale (PAS) [234-236]. A mean HAM-A score of 

23.9 (SD: 9.4) and a mean HAM-D score of 13.8 (SD: 6.2) indicated moderate anxious 

and low depressed patients. The severity of panic and agoraphobia symptoms was 

moderate to high with a mean PAS score of 29.8 (SD: 9.4). Ethnicity was recorded using 

a questionnaire for nationality, mother language and ethnicity of the subject itself and all 

four grandparents. All included patients were Caucasian, 82.7% of German origin. 17.3% 

were from countries other than Germany, mostly from countries in Eastern Europe and 

Mediterranean countries. 

 

300 controls were recruited at the MPIP. Individuals were selected randomly from a 

Munich-based community sample and screened for the absence of the following 

psychiatric disorders: mood disorders, psychotic symptoms, AD, alcohol dependence, 

drug abuse, obsessive/compulsive disorders, Post-Traumatic Stress Disorder (PTSD), 

dissociative disorders, somatoform disorders and eating disorders using the Munich 

version of the Composite International Diagnostic Interview (M-CIDI) [237]. M-CIDI is an 

updated version of the World Health Organization’s CIDI version 1.2 (WHO-CIDI) which 

incorporates questions to cover DSM-IV (American Psychiatric Association) and ICD-10 

(WHO) diagnostic criteria. Only subjects with a negative life-time history of the above-
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mentioned disorders were included in the study, representing a group of individuals from 

the general population who has never been mentally ill. The controls were matched for 

ethnicity (using the same questionnaire as for patients), age and gender. All controls 

were Caucasian with 91.3% of German origin and the remaining controls mostly from 

Eastern or Western European countries.  

 

Table 3 Demographic and clinical characteristics of the investigated AD sample. Adapted from Quast 

et al. [238]. 

 

Characteristics  Cases Controls 

   
N 300 300 
   
Sex    
     male 40.7% (122) 44.7% (134) 
     female 59.3% (178) 55.3% (166) 
      
Age (SD) 37.9 (11.9) 38.8 (11.0) 
   
Diagnosis PD with agoraphobia 66.0% none 
 PD without agoraphobia 18.7%   
 Social phobia 8.7%  
 GAD 4.0%  
 Agoraphobia 1.7%  
 Specific phobia 0.7%  
   
HAM-A (SD) 23.9 (9.4) NA 
HAM-D (SD) 13.8 (6.2) NA 
PAS (SD) 29.8 (9.4) NA 
      
SD, standard deviation; PD, panic disorder; GAD, generalized anxiety disorder; 

HAM-A, Hamilton Anxiety Scale Score; HAM-D, Hamilton Depression Scale 

Score; PAS, Bandelow Panic and Agoraphobia Scale Score; NA, not assessed 

 

 

2.1.2 MDD discovery sample 

400 unipolar depressed patients (166 males, 234 females) from the Munich 

Antidepressant Response Signature (MARS) of the MPIP were subjected to the study 

[239,240]. The mean age was 46.9 ± 12.9 years (males: 46.6 ± 11.7 years, females: 37.2 

± 13.7 years). Of the included patients, 88.0% suffered from recurrent depressive 

disorder, 12.0% presented a single depressive episode (Table 4). Patients were included 

in the study within 1 – 5 days of admission to the clinic and diagnosed from trained 

psychiatrists according to the DSM-IV criteria. Exclusion criteria were the presence of 

alcohol or substance abuse or dependence (including eating disorders with laxative 

abuse), comorbid somatization disorder, and depressive disorders due to medical or 
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neurological conditions. The mean age at onset was 31.9 ± 12.2 years (males: 33.7 ± 

11.9 years, females: 30.7 ± 12.2 years). Severity of depression and anxiety was 

measured using the HAM-D and HAM-A score. Patients fulfilling the criteria of a HAM-D 

score ≥ 18 for recurrent depressive disorder or ≥ 20 for single depressive episode and an 

age at onset ≤ 55 were included in the study. Ethnicity was recorded using a self-report 

questionnaire for nationality, mother language and ethnicity of the subject itself and all 

four grandparents. All included patients were Caucasian, 78.0% of German origin. 22.0% 

were of European descent, mostly from Eastern and Western Europe. 

 

400 controls were selected randomly from the Munich general population and screened 

for the absence of the in section 2.1.1 mentioned psychiatric disorders. The included 

individuals were matched for ethnicity, age and gender. All controls were Caucasian, 

91.8% of German origin. 

 

2.1.3 MDD replication sample 

905 patients (294 males, 611 females) were recruited at the MPIP and psychiatric 

hospitals in Augsburg and Ingolstadt, both in Germany. The mean age was 50.9 ± 13.8 

years (males: 50.0 ± 13.6 years, females: 51.6 ± 13.8 years). All patients suffered from 

recurrent major depression (Table 4) [213,241]. The mean age at onset was 36.0 ± 13.9 

years (males: 36.7 ± 14.0 years, females: 35.6 ± 13.9 years). Diagnoses were 

ascertained by trained psychiatrists according to the DSM-IV criteria using the WHO 

Schedule for Clinical Assessment in Neuropsychiatry (SCAN, version 2.1). Only patients 

over 18 years with at least two moderately severe depressive episodes were included in 

the study. Individuals with a positive life-time history of the following psychiatric disorders 

were excluded: presence of manic episodes, psychotic symptoms, presence of 

intravenous drug abuse and depressive symptoms only secondary to alcohol or 

substance abuse or to medical illness or medication. Ethnicity was recorded using a self-

report sheet for nationality, mother language and ethnicity of the subject itself and all four 

grandparents. All included patients were Caucasian, 89.5% of German origin. 10.5% 

were from countries other than Germany, mostly from countries in Eastern and Western 

Europe. 

 

1029 controls, matched for age, gender and ethnicity to the patient sample, were 

selected randomly from a Munich-based community sample and screened for the 

absence of anxiety and affective disorders using the Composite International Diagnostic-
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Screener. Only individuals without the above mentioned disorders were included, 

representing a healthy control group regarding anxiety and depression.  

 

All studies were approved by the local ethics committee of the Ludwig-Maximilians-

University (LMU) in Munich. Written informed consent was obtained from all individuals. 

 

Table 4 Demographic and clinical characteristics of the MDD discovery and replication sample. 

Adapted from Quast et al. [242]. 

 

Characteristics Discovery sample Replication sample 

  Patients Controls Patients Controls 

     
N 400 400 905 1029 
     
Sex      
     male 41.5% (166) 41.8% (167) 32.5% (294) 32.7% (336) 
     female 58.5% (234) 58.3% (233) 67.5% (611) 67.3% (693) 
     
Age (SD) 46.9 (12.9) 46.9 (15.1) 51.1 (13.8) 50.7 (13.9 
     
Diagnosis     
     recurrent depressive disorder 88.0% (352) none 100.0% (905) none 
     single depressive episode 12.0% (48)  -  
     
HAM-D (SD) 27.4 (5.0) NA NA NA 
HAM-A (SD) 25.5 (8.2) NA NA NA 
age at onset (SD) 31.9 (12.2) NA 36.0 (13.9) NA 
      
SD, standard deviation; HAM-D, Hamilton Depression Scale Score; HAM-A, Hamilton Anxiety Scale 

Score; NA, not assessed 

 

2.2 DNA enrollment 

On enrollment in the study, up to 40 ml blood were drawn from each patient or control. 

DNA was extracted from whole blood using a standardized extraction procedure 

(Puregene whole blood DNA-extraction kit, Gentra Systems Inc). Genomic DNA was 

quantified using picogreen based fluorometry and adjusted to 50 ng/µl. 

 

2.3 DNA amplification and pooling design 

For the TMEM132D study, equal amounts of genomic DNA from 50 patients or 50 

controls were combined in a DNA pool (Figure 7). Thus, six pools comprising DNA from 

AD patients and six pools including DNA from control subjects were prepared for the 

following amplification step. In order to amplify all nine exons of the TMEM132D gene on 

chromosome 12 (129,556,271-130,388,212, hg19) and the boundaries from exon to 
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intron, eight oligonucleotide primer pairs were designed which covered target regions of 

approximately 5 kb in length (40 kb in total). Primer sequences are listed in the 

supplement section (Table S1). DNA amplification of each amplicon in each pool was 

performed using Long Range-PCR (LR-PCR) resulting in 96 individual PCR reactions 

(twelve pools x eight amplicons). LR-PCR was carried out in a 96 well plate in a reaction 

volume of 50 µl. Each PCR reaction contained 200 ng genomic DNA, 0.8 µM of each 

primer, 300 µM of each deoxynucleotide and 2.5 units of LongAmp Taq DNA polymerase 

(New England Biolabs (NEB)). The cycling protocol was as follows: 94°C for 3 minutes, 

then 94°C for 30 seconds, 61°C for 40 seconds and 65°C for 5 minutes for 30 cycles. 

The final extension was carried out at 65°C for 10 minutes.  

 

                                                

 

Figure 7 Pooling design used for the TMEM132D project. 

Combining 50 AD patients and 50 controls in a DNA pool reduces the number of individual PCR 

reactions from 4800 (600 individuals x 8 amplicons) to only 96. After amplification mixing the DNA 

fragments which derived from the same pool and combining three mixed pools reduces the number of 

pools for the following NGS experiment to only four. 

 

In order to check the success of the amplification step, all PCR products were loaded on 

a 0.8% agarose gel. In the next step, the concentrations of the obtained DNA fragments 

NGS 

2 pools (DNA from 150  
AD patients) 

Long Range-PCR  
amplification of each pool in 8 separate 

 reactions, one for each amplicon 

   300 AD patients 300 healthy controls 

  6 pools (DNA from 
50 patients) 

6 pools (DNA from  
50 controls) 

2 pools (DNA from 150 
healthy controls) 

8 amplicons from the same pool are mixed   together, 
3 mixed pools are pooled again 
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were measured using the Qubit High Sensitivity dsDNA Kit on the Qubit 1.0 fluorometer 

(Invitrogen). All eight amplicons which were generated from the same pool were mixed 

together at an equimolar ratio resulting in twelve DNA pools. To remove undesired DNA 

fragments and primer dimers, the pools were loaded on a 0.8% agarose gel and the 

corresponding DNA band was extracted using the QIAQuick Gel Extraction kit (Qiagen). 

The DNA concentration of the purified DNA pools was measured using the same 

quantification method as described above. In the last step, equimolar amounts of three 

pools were mixed together (Figure 7). Finally, two pools containing amplified DNA from 

150 AD patients and two pools comprising DNA fragments from 150 controls were 

subjected to preparation for NGS.  

                                  

For the SLC6A15 project, the same DNA amplification method and pooling strategy was 

used with exception of the following changes. Genomic DNA from 50 MDD patients or 50 

controls was arranged in pools at an equimolar ratio resulting in eight case pools and 

eight control pools for amplification. Eleven primer pairs generating amplicons between 2 

and 11 kb were designed to amplify the whole SLC6A15 locus on chromosome 12 

(85,253,267-85,306,608, hg19) and 10 kb upstream and downstream of the gene (70 kb 

in total). With exception of a 3.5 kb intronic region for which a working primer pair could 

not be designed, the whole gene was covered. The sequences of the used primer pairs 

are listed in the supplement section (Table S2). Each LR-PCR reaction was carried out in 

a volume of 25 µl and contained 100 ng DNA, 0.8 µM of each primer, 300 µM of each 

deoxynucleotide and 2.5 units of LongAmp Taq DNA polymerase. Depending on the 

melting temperature of the primer pair and the amplicon length the cycling protocol was 

as follows: 94°C for 3 minutes as initial denaturation, then 94°C for 30 seconds, 59 - 

61°C for 40 seconds and 65°C for 2.5 - 11 minutes for 32 cycles. The final extension was 

carried out at 65°C for 10 minutes. After mixing all eleven DNA fragments from the same 

pool, equal amounts of DNA from two pools (two case pools and two control pools 

respectively) were combined. Performing this pooling strategy four pools comprising 

DNA from 100 MDD patients and four pools including DNA from 100 controls were 

generated for the subsequent NGS experiment. 

 

2.4 Library preparation and bead production 

For the TMEM132D study, fragment library preparation was performed according to the 

SOLiD 3+ System Library Preparation Guide (P/N 4442697 Rev. A; 01/2009). DNA 

amounts between 860 and 1000 ng from each of the four generated pools were used as 
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starting material. After adaptor ligation and size selection, seven cycles of up-scale PCR 

resulted in library concentrations between 364 and 983 pg/µl. Quality control as well as 

quantification of the libraries was performed using the high sensitivity DNA Kit on the 

Agilent 2100 Bioanalyzer.  

According to the SOLiD 3+ System Templated Bead Preparation Guide (P/N Part 

Number 4442695 Rev. A 10/2009), bead production and enrichment was carried out 

manually as a full-scale reaction. From each library, a final concentration of 0.5 pM was 

subjected to the ePCRs. Finally, the quality and the amount of the templated beads were 

checked with a workflow analysis run (WFA). 87 to 110 million beads per pool were 

deposited on a 4-well sequencing slide which was physically separated into four equal 

compartments, one compartment for each pool. The sequencing run was performed 

using SOLiD Opti sequencing chemistry for a single F3 Tag with a read length of 50bp. 

Primary data analysis was done on the SOLiD 3+ instrument with default settings. The 

generated .csfasta and .qual files were exported for further analysis.  

 

For the SLC6A15 project, two sequencing runs were performed as in the first run the 

coverage of two amplicons was low. For the first run, DNA amounts between 300 and 

500 ng from each of the eight pools were subjected to barcoded standard fragment 

library preparation with size selection, following the SOLiD 4 System Library Preparation 

Guide (P/N 4443045 Rev. B. 04/2010). After 10-12 cycles of up-scale PCR, amplified 

libraries were quantified with a TaqMan assay. 

Equal amounts of all eight barcoded libraries were combined in a multiplex and 

subjected to bead production and enrichment which was carried out using the EZ bead 

system according to the SOLiD 4 System Templated Bead Preparation Guide (P/N Part 

Number 4442695 Rev. A 10/2009). For the ePCR, a final concentration of 1.5 pM of the 

generated multiplex was used as DNA template. Enriched template beads were quality 

checked and quantified performing a workflow analysis run (WFA). Each, approximately 

476 million beads were deposited on two full slides. The SOLiD sequencing run was 

performed using SOLiD TOP Fragment Barcoding Sequencing chemistry for a single F3 

Tag with a read length of 50 bp. Primary data analysis was done on the instrument with 

default settings. For further analysis .csfasta and .qual files were exported.  

For the second SLC6A15 run, library and bead preparation were performed in the same 

way as for the first run. For library preparation, 500 ng DNA from each pool were used as 

input material. Library amplification was carried out with 7 cycles of upscale-PCR. 

Amplified libraries were quantified using the Qubit High Sensitivity dsDNA Kit on the 
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Qubit 1.0 fluorometer. For emulsion PCR, a final concentration of 0.8 pM of the 

multiplexed library consisting of equal amounts of eight DNA pools was used as DNA 

template. Beads were deposited on two lanes of a six lane Flow Chip for sequencing on 

the SOLiD 5500xl Sequencer using SOLiD FWD SR sequencing chemistry for a single 

F3 Tag with a read length of 75bp. 

 

2.5 Variant validation 

In order to confirm variants which were detected in the NGS experiment, individual re-

genotyping using MALDI-TOF mass spectrometry on the Sequenom platform (San 

Diego, USA) was performed. The MassARRAY Assay Designer software was used for 

primer selection, multiplexing, assay design and mass-extension for generating primer 

extension products. For genotype calling, the MassARRAY Typer 3.4 software was used. 

All Sequenom experiments were performed at the Helmholtz Zentrum in Munich, 

Germany. 

From the detected variants in the TMEM132D locus, a subset of 151 variants was re-

genotyped in the 300 AD patients and the 300 control subjects. Variants were selected 

based on the following criteria: synonymous and non-synonymous variants, variants with 

high and low ORs (OR > 2 and OR < 0.5) and variants located in 5’ and 3’ untranslated 

regions (UTRs), transcription factor binding sites (TFBSs) and evolutionary conserved 

regions. 

69 variants in the SLC6A15 gene, which were detected in the two NGS runs, were 

individually re-genotyped in the MDD discovery sample comprising 400 patients and 400 

controls. Selection criteria for variants to re-genotype were the same as for the 

TMEM132D study. Non-synonymous variants, which could be confirmed in the discovery 

sample, were also re-genotyped in the MDD replication sample, including 905 depressed 

patients and 1092 controls. In addition, 22 non-synonymous variants from the Exome 

Sequencing Project (ESP) database (Exome Variant Server, 

http://evs.gs.washington.edu/EVS/) were re-genotyped in the replication sample. 

Currently, the ESP database incorporates exome sequencing data from 6,503 individuals 

from European, African and Asian populations (accessed in April 2013).  

 

2.6. Functional characterization 

2.6.1 In silico functional analysis 

An easy and convenient possibility to assess the functional relevance of a genetic variant 

is in silico annotation. Several computational tools were used in this work. In order to 
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identify variants in regulatory regions of the gene, all detected variants were mapped to 

Encyclopedia of DNA Elements (ENCODE) TFBSs (http://genome.ucsc.edu) [243] which 

were determined by chromatin immunoprecipitation sequencing (Chip-Seq). In addition, 

variants were mapped to ENCODE/Duke DNaseI hypersensitivity sites in several brain 

regions, including cerebellum, frontal cerebrum and frontal cortex 

(http://genome.ucsc.edu) [243]. Furthermore, it was investigated whether variants were 

located in micro RNA (miRNA) regulatory target sites in the 3' UTRs of genes, predicted 

by TargetScanHuman 5.1 (http://targetscan.org) [244]. For the identification of variants 

with putative effects on splicing such as disrupting existing exonic splicing enhancer 

(ESE) or silencer (ESS) motifs or creating new splice sites, FASTSNP was used 

(http://fastsnp.ibms.sinica.edu.tw/) [245]. Variants located in genomic regions with high 

degree of nucleotide conservation were identified using PhastCons [246] and PhyloP 

[247]. The computational annotation tools Sorting Intolerant From Tolerant (SIFT) [248], 

PolyPhen2  [249] and Panther [250] were used to predict the effects of non-synonymous 

coding variants on the function of the gene product, based on amino acid conservation 

across different organisms. 

 

2.6.2 Experimental functional analysis 

2.6.2.1 Site-directed mutagenesis 

While the function of the TMEM132D protein is still unknown, SLC6A15 was identified to 

transport neutral amino acids into predominantly neuronal cells [7]. Thus, nine validated 

non-synonymous coding variants within the long isoform of the SLC6A15 locus could be 

experimentally tested for alterations on protein function. The first step of the 

experimental functional characterization was the insertion of the human SLC6A15 cDNA 

(clone name IRAKp961L15168Q; ImaGenes) into the pEGFP-C1 vector (Clonetech) 

using restriction enzymes specific to BgIII and SaII sites. In the generated eGFP-

hSLC6A15 construct, hSLC6A15 cDNA is fusioned with the sequence encoding the 

enhanced green fluorescent protein (eGFP) at the N-terminus. Variants of the eGFP-

hSLC6A15 construct, containing one of the nine non-synonymous variants, were 

generated using the site-directed mutagenesis technique (Table 5).  

The incorporation of the genetic variant into the hSLC6A15 cDNA was done via PCR 

with oligonucleotides containing the desired mutation. All primer sequences are listed in 

the supplement section (Table S3). PCR was carried out in a reaction volume of 50 µl 

with 10 ng of plasmide DNA, 125 ng of each primer, 200 µM of each deoxynucleotide 

and 1.0 unit of Phusion High Fidelity DNA Polymerase (NEB). The cycling protocol was 
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as follows: 98°C for 30 seconds, then 98°C for 30 seconds, 55°C for 1 minute and 72°C 

for 9 minutes for 25 cycles. The final extension was carried out at 72°C for 15 minutes.  

After amplification, 1 µl restriction endonuclease DpnI (NEB) was added and the 

samples were incubated for 1 h at 37°C. 5 µl of each PCR product were transformed into 

E.Coli DH5α cells performing a heat shock for 1 minute at 42°C. Transformed cells were 

suspended in LB Medium, plated on agar plates containing the antibiotic kanamycin (50 

µg/ml) and incubated over night at 37°C. The next day, three colonies were picked from 

each agar plate and inoculated in LB Medium with kanamycin (50 µg/ml) overnight at 

37°C. Plasmid DNA was isolated and purified using the HiYield Plasmid Mini Kit (Real 

Biotech Corporation). Success of the site-directed mutagenesis was verified by Sanger 

sequencing of the plasmid DNA.  

 

Table 5 Overview of the mutant plasmids created by site-directed mutagenesis. Adapted from Quast 

et al. [242]. 

 

Mutant name 
Nucleotide 
exchange 

Amino acid 
exchange 

Position 
in protein 

    
hSLC6A15 T49A A → G Thr → Ala 49 
hSLC6A15 K227N G → C Lys → Asn 227 
hSLC6A15 A400V C → T Ala → Val 400 
hSLC6A15 L421P T → C Leu → Pro 421 
hSLC6A15 I500T T → C Ile → Thr 500 
hSLC6A15 N591D A → G Asn → Asp 591 
hSLC6A15 A601T G → A Ala → Thr 601 
hSLC6A15 E684D G → C Glu → Asp 684 
hSLC6A15 G710R G → A Gly → Arg 710 
     

 

 

2.6.2.2 
3
H proline uptake assay 

Human embryonic kidney (HEK) 293 cells were transfected with wild type or one of the 

nine mutated plasmids using Lipofectamine (Invitrogen). HEK293 cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco) containing 10% of fetal calf serum 

(FCS) and 5% Penicillin/Streptomycin at 37ºC in a humidified incubator (5% CO2). For 

transfection, 24 µg of each plasmid were mixed with 1.5 ml complete DMEM. In a 

second preparation, 60 µl Lipofectamine and 1.5 ml DMEM were mixed together. 

Lipofectamine contains lipid subunits which can build liposomes entrapping genetic 

material. These liposomes easily merge with membranes and thus inject their content 

into cells. After five minutes of incubation at room temperature, the lipofectamine/DMEM 

mixture was added to the plasmid preparation and incubated for further 20 minutes at 
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room temperature. Finally, the plasmid/lipofectamine mixture was added to the cells. The 

following day, transfected cells were detached, counted and plated in 96 well plates. In 

order to increase the adhesion of the cells, wells were pre-coated with Poly D-Lysine 

(PDL). After two hours, PDL was removed and wells were washed with Phosphate 

Buffered saline (PBS) solution. Each well contained 60,000 transfected cells in 150 µl 

complete DMEM respectively.  

In preparation of the cellular uptake experiment, DMEM was removed from each well 

with five washing steps using the Deep-Well Microplate Washer ELx405 from Biotek. 

Then, to the 100 µl remained from the washing steps, 50 µl of the non-labeled neutral 

amino acid L-proline were added to each well, followed by adding 50 µl proline with a 

final concentration of 20 nM which was labeled with radioactive tritium (3H) (Perkin 

Elmer). The  cellular uptake of 3H proline was measured in dependence of different 

concentrations of the non-labeled L-proline (final concentrations of 3 µM, 12 µM, 48 µM, 

195µM, 781 µM, 3.1mM, 12.5 mM and 50.0 mM) so that for wild type and each mutant 

eight uptake measurements were performed respectively. After 10 minutes of incubation, 

the proline/3H proline mixture was removed with six washing steps. To lyse the cells, 10 

µl of NaOH (1M) were added to each well and the plate was shaked for five minutes. 

Finally, 200 µl scintillation cocktail (Perkin Elmer), which amplifies the radioactive signal, 

was added to each well. The plate was shaked for 20 minutes and then incubated for two 

hours in the dark. 3H proline uptake was measured using the Wallac MicroBeta 

luminescence counter (Perkin Elmer). Transfected HEK cells containing wild type or 

altered eGFP-hSLC6A15 plasmids were measured in triplicates. 

 

2.6.2.3 Fluorescence imaging 

While the cellular uptake assay offers the possibility to investigate whether point 

mutations in the SLC6A15 gene affect the function of the amino acid transporter, 

information about possible quantitative changes are missing. In order to assess altered 

protein levels and/or a changed cellular localization of the protein, fluorescence imaging 

was performed. For that purpose, HEK293 cells were plated on cover slips which were 

precoated with PDL. After one day, the medium was removed and cells were fixed with 

4% paraformaldehyde (PFA). Excess of PFA was removed performing two washing 

steps with PBS solution. The cover slips were mounted on slides using 4µl mounting 

medium containing DAPI which stains cell nuclei blue. After few hours of incubation, 

samples were analysed at the confocal microscope. 
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2.7 Statistical analysis 

2.7.1 Statistical analysis of NGS data 

In the framework of statistical analysis of the generated NGS data, which was performed 

in collaboration with the Biostatisticians of the research group, raw reads were subjected 

to the following quality control (QC) procedure: reads with more than four colors who 

have a phred-like quality value of <= 10 were trimmed before the fifth color of insufficient 

quality occurs. Trimmed reads, which were shorter than 30 colors, were excluded from 

further analysis. For further details of the QC process, see Altmann et al. [251]. QC 

filtered reads were aligned to the reference sequence on chromosome 12 of the human 

genome (NCBI Build 36.1 for TMEM132D and the first SLC6A15 run and GRCh37 for 

the second SLC6A15 run) using the Burrows-Wheeler aligner (BWA) version 0.5.7 [252] 

and the Short Read Mapping Package (SHRiMP) aligner version 2.2.0 [253]. Four 

mismatches between sequencing read and reference were allowed. 

VipR, which was developed to call variants in pooled samples, was used for variant 

detection in both projects [251]. Briefly, vipR counts how often the minor allele (MA) of a 

variant at a given base position occurs in a DNA pool and compares the number with the 

MA calls at the same position obtained from the remaining pools. Then, vipR assesses 

the likelihood that the base calls originate from sequencing errors. Only if the likelihood is 

sufficiently small, then the altered allele at that position is reported as a true genetic 

variant. This variant caller is freely available at http://sourceforge.net/projects/htsvipr/. A 

prerequisite for the inclusion of a sequenced base into variant calling was a minimum in 

coverage at that position of at least 5,000 in each pool.  

After variant calling, annotation of these variants was performed using the Annotation 

variant (ANNOVAR) tool, freely available at http://www.openbioinformatics.org/annovar/ 

[254]. 

 

2.7.2 MAF correlation 

Correlation between MAFs obtained in the NGS experiment and in the re-genotyping 

stage was assessed using SPSS version 18.0. The same tool was used to compare the 

MAFs derived from the validation experiments and the MAFs denoted in the public 

available ESP database for European Americans. 
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2.7.3 Association testing 

2.7.3.1 Association analysis of common variants 

In both studies of this thesis, association of common variants with AD or MDD was 

tested using the PLINK tool (http://pngu.mgh.harvard.edu/~purcell/plink/) [255]. Variants 

who were not validated in the re-genotyping experiment or who had a MAF below 5%, a 

genotyping rate below 90% and a deviation from Hardy-Weinberg equilibrium at a 

significance level below 0.05 were excluded from this analysis. Applying these selection 

criteria, 32 out of 36 common variants within the TMEM132D gene and two out of 2 re-

genotyped SNPs within the SLC6A15 locus were included into allelic association testing. 

Furthermore, individuals with a genotyping rate < 90% were excluded as well. An alpha 

level of 0.05 after correction for multiple testing using the Benjamini-Hochberg method 

correcting for all tested common variants was considered statistically significant. 

 

2.7.3.2 Association analysis of rare and/or putatively functional variants 

Power calculations were performed using Quanto version 1.2.3 

(http://hydra.usc.edu/gxe/) [256]. Single-marker testing tools such as PLINK are 

unsuitable for association analysis involving rare variants as the power to detect an 

association with a single rare variant is low [97,257]. An alternative approach is to test 

whether a combination of multiple rare and/or putatively functional relevant variants is 

associated with disease. In more detail, the presence of minor alleles (PMA) and the 

sum of minor alleles (SMA) was compared between patients and controls. For the 

investigation of the PMA, an individual who harboured any of the variants included into 

the collapsed marker set, independent of the total number of variants and the number of 

altered alleles per variant (heterozygous or homozygous carriers of a variant) was 

encoded with 1. Subjects without any of the tested variants were encoded with 0. To test 

for differences in the SMA between cases and controls, homozygous carriers of a variant 

were encoded with 2 and individuals with one altered minor allele were encoded with 1. 

Subjects in which the variant was not present were encoded with 0. The SMA is thus a 

quantitative or numeric variable, while the PRA has a qualitative or categorical character 

as it gives only information whether an individual carriers one or more variants or not. 

In the TMEM132D study, three different SNV sets were tested for differences in the PMA 

and the SMA between AD patients (N = 300) and controls (N = 300) or between PD 

patients (N = 252) and controls. The first set contained all SNVs with a MAF <= 1% (N = 

66). In the second set, all coding SNVs (N = 25) were included. Finally, all non-

synonymous variants and all coding variants with predicted effects on splicing (N = 20) 
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were tested for association. For the putatively functional SNVs, no MAF cut-off was 

used. Statistical significance was assessed using linear regression models implemented 

in R and following 1000 permutation of the case-control status.  

In the SLC6A15 project, the tested SNV set contained all non-synonymous variants 

which were discovered in the NGS experiment (N = 9). This marker set was investigated 

for differences in the PMA and SMA between MDD patients (N = 1305) and controls (N = 

1429) of the combined sample. Statistical significance was assessed using independent 

samples t-test for the SRA and contingency tables for the PRA in SPSS version 18.0. 

For both studies, p-values were not corrected for the multiple comparisons. The level of 

significance was set to 0.05 for these tests.  

 

2.7.3.3 Population stratification 

To correct for allele frequency differences between cases and controls due to different 

ethnic backgrounds, the method of genomic controls was performed using PLINK. 

Genomic control is based on the idea that unlinked genetic markers which are distributed 

across the human genome can be used to test for the proportion of allelic diversity 

between cases and controls [258]. If population stratification is present then the Chi 

square association statistic is increased by a factor which is proportional to the extent of 

population stratification. This factor is referred to as lambda (λ) and is defined as the 

quotient between the median observed Chi square association statistics across all tested 

SNPs between cases and controls and the theoretical median under the null-hypothesis 

of no stratification [259,260].  

For genomic control, a set of unlinked variants, which was genotyped in 272 cases and 

300 controls of the AD sample using the Illumina Human-1 100k, Illumina 

HumanHap300-Duo and Illumina Human610-Quad BeadChips, was tested for 

differences in allele frequency. SNPs with a genotyping rate < 98% and/or showing 

deviation from Hardy-Weinberg equilibrium at an error level of below 10-5 were excluded 

from the analysis. Rare variants with a MAF < 5% were also excluded, resulting in 

287,515 SNPs for the analysis. Included SNPs were genotyped in all individuals. For all 

SNPs passing the quality criteria as mentioned above, Chi square values for allelic case-

control association were calculated. The distribution of these Chi square values was 

compared with the theoretically expected Chi square distribution.  

In addition, principal components analysis (PCA) was performed to assess population 

differences [261,262]. This method attempts to structure individuals in subgroups 

according to their similarity of allele frequencies of tested unlinked markers and to 
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compare each subgroup. If population stratification is not present only one subgroup 

exists which comprises both cases and controls. Possible outlying individuals were 

visualized in a multidimensional scaling (MDS) plot. 

 

2.7.4 Statistical analysis of 
3
H proline uptake assay 

The maximal uptake of 3H proline, which occurs in the absence of antagonists (non-

labeled L-proline), and the IC50, which is the concentration of non-labelled proline where 

the inhibition of the 3H proline uptake is 50%, were assessed using Sigma Plot. 

Differences in the mean 3H proline uptake between wild type and mutant were assessed 

using general linear models in SPSS version 18.0. Transfection efficiency was included 

as covariate into the analysis. An alpha level of 0.05 after correction for multiple testing 

using the Bonferroni method was considered statistically significant. 
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3. RESULTS 

 

3.1 Results of the genetic and in silico functional characterization of the 

iTMEM132D locus 

3.1.1 Data from the pooled targeted re-sequencing experiment 

Re-sequencing all nine exons and exon-intron boundaries of the TMEM132D gene (40 

kb in total) in four pools, each comprising DNA from 150 AD patients or healthy controls, 

resulted in 328 million raw reads with a length of 50 bp (Table 6). Thus, approximately 82 

million reads per DNA pool were generated. From the obtained raw reads 200 millions 

(61.0%) had a sufficient quality and survived the QC procedure. Of these, 93.2% could 

be mapped to the reference sequence (NCBI Build 36.1, UCSC hg18). For each DNA 

pool, an average of 46.6 million reads was thus subjected to the subsequent variant 

calling step. Overall, 56.9% of the generated raw reads were mappable and could be 

used for further analyses.  

 

Table 6 Number of reads generated in the TMEM132D re-sequencing experiment.  

Reads were mapped to the reference sequence using the BWA aligner. The numbers of the raw, 

quality filtered and mappable reads are given in millions. Adapted from Quast et al. [238]. 
 

 

 

 

 

 

    

 

 

The average sequencing depth in this NGS run was approximately 50,000 fold per base 

position per DNA pool and therefore theoretically 330 fold per subject (150 patients or 

controls per pool) and 165 fold per allele (300 alleles per pool). 90.0% of the whole 

sequenced region, 96.0% of the exonic region and 100.0% of the protein coding 

sequence were sequenced with a mean coverage > 5,000 in each pool. Hence, 10.0% of 

the sequenced DNA bases were excluded from subsequent variant calling procedure. 

While the average coverage per pool was 50,000 fold, the actual coverage at a given 

base position showed large variations, ranging from 300 to 400,000 fold. Especially the 

ends of the amplicons were more often covered by sequencing reads than sequences in 

DNA pool raw reads 
QC filtered 

reads  
mappable 

reads 

    

Cases 1 82.2 48.9 45.1 
Cases 2 77.5 48.6 45.4 
Controls 1 86.5 53.3 50.1 
Controls 2 81.7 49.2 45.8 
    
total 327.9 200.0 186.4 
QC, quality control  
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the middle of the amplified DNA fragment. Although the coverage distribution within a 

pool was uneven, the pattern of sequencing depth was highly conserved across all four 

DNA pools (Figure 8).  

 

                    

 

Figure 8 Coverage distribution within and across the four sequenced DNA pools.  

The orange box denotes the position of the 5 kb amplicon which covers exon nine of the TMEM132D 

gene. The individual coverage of each pool is plotted from 5,000 to 300,000 reads per base. Regions 

with a coverage less than 5,000 reads/base in any pool were excluded from variant calling. Due to the 

similar coverage distribution in all eight sequenced DNA fragments of a pool, only one single amplicon 

is shown. The figure was generated using the Integrative Genomics Viewer (IGV) [263]. Taken from 

Quast et al. [238]. 

 

3.1.2 Detection of variants in TMEM123D 

Using the VipR algorithm [264], 371 genetic variants in the TMEM132D locus on 

chromosome 12 were identified. Of these, 53.9% (N = 200) were novel and had not been 

previously reported in the dbSNP137 database (accessed in April 2013). For three of the 

variants, which were at positions of the genome at which a genetic variant was already 

published in dbSNP137, discrepancies regarding the minor allele were observed. For 

instance, rs12815188 was listed in dbSNP137 as a base exchange from G to C, 

whereas the NGS as well as the subsequent re-genotyping experiment showed a G to A 
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conversion. Thus, the number of novel variants in TMEM132D increased from 200 to 203 

SNVs. Of the 371 detected SNVs, 151 (40.7%) have also been identified in the 1000 

Genome Project database (April 2012 release) [35].  

120 and thus approximately one third of the detected variants in TMEM132D were 

extremely rare, with MAFs <= 0.5%. Of these variants, only 22.5% (N = 27) were 

recorded in dbSNP137, whereas almost all common SNPs (95.2%) with MAFs above 5% 

were previously detected. 

From the variants, which were identified in the NGS experiment, 8.1% (N = 30) were in 

the coding region of the gene, 4.0% in the 3' UTR and only one variant (0.3%) was 

located in the 5' UTR. Hence, the vast majority (87.6%, N = 325) of the variants in 

TMEM132D were located outside the exonic regions. Of the 30 coding SNVs, 17 were 

non-synonymous variants which lead to amino acid exchanges in the gene product 

(Figure 9). From these missense variants, only five have been previously published in 

dbSNP137.  
 

 

 

Figure 9 Detected variants in the coding region of the TMEM132D locus.  

The blue boxes denote the coding regions of the gene, the grey boxes the untranslated regions. A 

genetic variant is indicated as vertical black line. Variants annotated in green are synonymous SNVs, 

variants annotated in blue lead to amino acid exchanges in the protein. Note that exons but not introns 

are drawn to scale. Adapted from Quast et al. [238]. 

 

3.1.3 Variant validation using MALDI-TOF mass spectrometry 

From the subset of genetic variants (N = 150), which was subjected to individual re-

genotyping using MALDI-TOF mass spectrometry as an independent method, 144 

variants (95.4%) could be sucessfully re-genotyped (Figure 10). Out of these variants, 

119 (83.2%) could be confirmed as polymorphic, including 25 coding variants (Table 7). 

 
 
amino acid 
exchanges 
 
 
 

 
gene structure 
and variants 
 

 

exon 
 

 

exon length 

(bp) 



 54 
 

For validated variants with a MAF < 15.0% (N = 101), the correlation between the MAFs 

estimated in the NGS experiment and verified by individual re-genotyping was excellent 

(r = 0.974). However, the comparison of the MAFs for validated variants with a MAF 

higher than 15.0% (N = 18) showed a low correlation (r = 0.435). 

From the 25 validated coding variants in table 7, seven were only present in patients and 

three were only observed in controls. Interestingly, six of the variants restricted to 

patients and one SNV exclusively found in controls were neither previously reported in 

dbSNP137 nor present in any sequences from the 1000 Genomes Project or the ESP 

database, currently incorporating 6503 individuals (accessed in April 2013). Fur further 

information, see table 7 in which these SNVs were highlighted in bold. 
 

 

 

Figure 10 Validation of variants in TMEM132D using MALDI-TOF mass spectrometry.  

Denoted MAF was estimated from NGS discovery stage. Adapted from Quast et al. [238]. 

 

3.1.4 In silico functional annotation of coding and non-coding variants in 

TMEM132D  

In silico functional analysis of all validated coding variants identified 14 variants to have 

putatively effects on splicing (Table 7). Nine variants were predicted to create new ESE 

or ESS motifs, four to disrupt already existing splice sites and one variant to disrupt an 

ESS motif and to create a new ESE site simultaneously. For nine of the non-

synonymous SNVs, the evolutionary nucleotide conservation tools phastCons and 

phyloP showed consistent results and predicted four variants to be located in 

- 4 non-synonymous variants

- 1 synonymous variant

- 9 variants with MAF < 1 %

- 15 variants with MAF > 1 %

NGS detected variants

N = 371

re-genotyped using MALDI

N = 150

Re-genotyping failed

N = 7

Re-genotyping successful

N = 143

Not polymorphic

N = 24

Polymorphic

N = 119

- 13 non-synonymous variants

- 12 synonymous variant

- 67 variants with MAF < 1 %

- 52 variants with MAF > 1 %

- 4 non-synonymous variants

- 1 synonymous variant

- 9 variants with MAF < 1 %

- 15 variants with MAF > 1 %

NGS detected variants

N = 371

re-genotyped using MALDI

N = 150

Re-genotyping failed

N = 7

Re-genotyping successful

N = 143

Not polymorphic

N = 24

Polymorphic

N = 119

- 13 non-synonymous variants

- 12 synonymous variant

- 67 variants with MAF < 1 %

- 52 variants with MAF > 1 %
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evolutionary conserved regions (Table 7). The prediction of the functional relevance of 

the validated non-synonymous variants was inconsistent across the used evolutionary 

amino acid conservation tools SIFT, PolyPhen2 and Panther. For none of the tested 

variants (N = 13), a deleterious effect on protein function was predicted in all three tools 

(Table 7). Subjecting all 371 detected variants to TFBS and miRNA analysis identified 18 

variants in predicted TFBS (Table 8). Two of these SNVs, were located in exon 3. 

Variants disrupting miRNA target sites were not observed. 

 

Table 7 In silico functional characterization of validated coding variants in TMEM132D. Adapted from 

Quast et al. [238]. 
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Table 8 TMEM132D variants located in ENCODE TFBSs.  

TFBSs were identified using CHIP-Seq (chromatin immunoprecipitation with antibodies against the 

transcription factor and sequencing of the precipitated DNA). As TFBSs might overlap a genetic 

variant can be located in two or more sites. Adapted from Quast et al. [238]. 

 

Location SNV on 
chr12 

Location SNV 
within gene 

Location TFBS 
(Start) 

Location TFBS 
(End) 

TFBS for 
Length 
TFBS 

      

129564524 intron7 129564363 129564593 PU.1 194 

129565100 intron7 129564992 129565336 GATA-2 333 

129565175 intron7 129564992 129565336 GATA-2 333 

129821986 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129821988 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129821990 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129821994 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129822017 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129822019 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129822051 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

129822129 intron4 129821939 129822223 STAT2 312 

 intron4 129821896 129822186 STAT1 254 

130015176 intron3 130015173 130015398 PU.1 889 

 intron3 130015160 130015430 IRF4_(M-17) 292 

130015328 intron3 130015173 130015398 PU.1 889 

 intron3 130015160 130015430 IRF4_(M-17) 292 

130015383 intron3 130015173 130015398 PU.1 889 

 intron3 130015160 130015430 IRF4_(M-17) 292 

130015620 exon3 130015615 130015975 STAT1 142 

130015622 exon3 130015615 130015975 STAT1 142 

130015810 intron2 130015615 130015975 STAT1 142 

 intron2 130015636 130015912 Max 590 

 intron2 130015641 130015877 FOSL2 233 

 intron2 130015652 130015916 USF2 117 

 intron2 130015687 130015958 STAT3 1000 

 intron2 130015693 130015869 JunD 468 

 intron2 130015710 130015814 USF-1 261 

130385879 intron1 130385868 130386161 STAT3 143 

      

SNV, single nucleotide variant; chr, chromosome; TFBS, transcription factor binding site 

Location is according to the February 2009 Human Reference Sequence (UCSC Genome Browser). 
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3.1.5 Association analysis of variants in TMEM132D with AD 

3.1.5.1 Association analysis of common variants 

None of the tested common variants with a MAF higher than 5.0% (N = 32) showed an 

association with AD that survived correction for multiple testing. rs61945413 in intron 3 

(p = 0.0016, OR = 0.65) and rs11060404 in intron 2 (p = 0.0017, OR = 0.66) showed a 

nominally significant association. While these two SNPs were in strong LD with each 

other (r2 = 0.957), they were not in LD with the two common SNPs previously identified 

to be associated with PD (rs61945413: rs11060369 r2 = 0.008 / rs7309727 r2 = 0.019; 

rs11060404: rs11060369 r2 = 0.01 / rs7309727 r2 = 0.022). 

 

3.1.5.2 Association analysis of rare and/or putatively functional relevant variants 

None of the tested SNV sets showed a significantly different PMA in the TMEM132D 

locus between AD patients (N = 300) and controls (N = 300). In order to investigate 

patients with a more homogeneous phenotype, association analysis was restricted to 

patients suffering from PD with or without agoraphobia (N = 252). Although patients with 

specific or social phobias or GAD were excluded, significant associations could not be 

observed (Table 9).  

 

Table 9 Association of the presence and the sum of rare and/or putatively functional alleles in the 

TMEM132D locus with AD and PD. Adapted from Quast et al. [238]. 

 

Marker set (N) Presence of rare/functional alleles (N/%) p-value
1 

 
Controls       
(N = 300) 

Cases         
(N = 300) 

PD patients 
(N = 252) 

all cases 
controls 

PD patients 
controls 

      

MAF < 1% (N = 66) 57 (19.0) 53 (17.7) 46 (18.3) 0.678 0.800 

coding (N = 25) 215 (71.7) 206 (68.7) 176 (69.8) 0.381 0.666 

non-synonymous/splicing (N = 20) 180 (60.0) 165 (55.0) 138 (54.8) 0.202 0.209 

      

Marker set (N) Mean number of rare/functional alleles (N/SD) p-value
1 

 
Controls       
(N = 300) 

Cases         
(N = 300) 

PD patients 
(N = 252) 

all cases 
controls 

PD patients 
controls 

      

MAF < 1% (N = 66) 0.22 (0.480) 0.21 (0.505) 0.22 (0,519) 0.874 0.912 

coding (N = 25) 1.39 (1.237) 1.25 (1.181) 1.22 (1.127) 0.167 0.090 

non-synonymous/splicing (N = 20) 1.14 (1.227) 0.98 (1.161) 0.94 (1.106) 0.097 0.044 

      
MAF, minor allele frequency; PD, panic disorder 
1 permutation p-value (1000 permutations), not corrected for multiple testing 

 

 

For the SMA, no significant difference could be observed between AD patients and 

controls (Table 9). When testing only patients with PD, a significant association in the 
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SNV set, including non-synonymous and splicing variants could be identified (p empirical 

= 0.044). The SMA was higher in the control sample indicating a protective effect of this 

combination of variants. While PD patients carry more often none or one functional 

allele, individuals with more than two functional alleles are overrepresented in controls 

(Figure 11).  

No significant association between any of the tested rare and/or putatively functional 

SNV sets and the previously identified common risk haplotype TA from rs7309727 and 

rs1106369 could be observed. 

 

                             
 

Figure 11 Distribution of rare and/or functional alleles in PD patients (N = 252) and controls (N = 300). 

The proportion of rare and/or functional allele carrier within each group is denoted on the y-axis. The 

shown data are based on the marker set containing non-synonymous and splicing variants (N = 20). 

Adapted from Quast et al. [238]. 

 

Besides the PMA and the SMA, the distribution of private coding variants between cases 

and controls was investigated. Private variants were defined as variants that only occur 

in either cases or controls of this study, but not in any other re-sequencing experiments 

such as ESP and 1000 Genomes Project. The rate of private variants was significantly 

increased in cases as nine patients compared to one control carried such variants (0.01 

< p < 0.05, McNemar test). These nine patients had a nominally higher rate of relatives 

suffering from the same or any other form of AD than the remaining patients (66.6% 

versus 33.4%). Other phenotypic differences could not be observed (Table 10). 



 59 
 

The most interesting private variant was chr12_128129066 which leads to an amino acid 

exchange from alanine to glycine in the extracellular domain of the TMEM132D protein. 

This variant was exclusively found in four unrelated patients of this study cohort, but not 

in any of the matched controls or in over 7,500 other individuals from the European, 

African and Asian population which were re-sequenced in the 1000 Genomes Project 

and the ESP. 

 

Table 10 Clinical characteristics of AD patients with and without private coding variants. Adapted from 

Quast et al. [238]. 

 

Characteristics 
Cases with private 

variants (N = 9) 
Cases without private 

variants (N = 291) 
p-value

1 

    
sex    
    male 22.2% (2) 41.2% (120)  
    female 77.8% (7) 58.8% (171) 0.319 
    
HAM-A (SD) 18.3 (8.0) 24.1 (9.4) 0.069 
HAM-D (SD) 13.2 (8.2) 13.8 (6.1) 0.784 
PAS (SD) 26.1 (11.2) 30.0 (9.4) 0.258 
    
age of onset (SD) 26.0 (9.2) 27.4 (11.5) 0.738 
    
family history (any AD)    
    yes 66.6% (6) 39.5% (115)  
    no 33.4% (3) 60.5% (176) 0.165 
    
additional psychiatric diagnosis    
    yes 44.4% (4) 33.7% (98)  
    no 55.6% (5) 66.3% (193) 0.495 
    
HAM-A, Hamilton Anxiety Scale Score; HAM-D, Hamilton Depression Scale Score; PAS, Bandelow 

Panic and Agoraphobia Scale Score; AD, anxiety disorder 1 calculated using the Fisher exact test 

 

3.1.5.3 Population stratification 

In order to assess spurious associations due to population stratification, the method of 

genomic control was performed. A genomic inflation factor (λ) of 1.00594 was calculated. 

This implies that the associations observed in this study are indeed based on differences 

in case-control status and not on differences in allele frequencies due to different ethnic 

backgrounds. While λ did not suggest large effects of population stratification, a MDS 

plot identified three subjects outside from the main cluster of subjects (Figure 12). 

Therefore, these three subjects (two patients and one control) were excluded from the 

study sample and the association analyses involving rare variants were repeated. 
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However, all previous significant associations remained significant after removing these 

subjects. 
 

                                  

 

Figure 12 MDS plot based on genome-wide genotype data of 572 subjects.  

Each data point indicates a sample. The first and second dimensions, which show the best 

segregation of the outliers, are represented. Taken from Quast et al. [238]. 
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3.2 Results of the genetic and experimental functional characterization of 

the SLC6A15 gene 

3.2.1 Pooled targeted re-sequencing of the SLC6A15 locus 

Using the SOLiD 4 sequencer in order to re-sequence the whole SLC6A15 gene, 

including 10 kb upstream and downstream (70 kb in total), in 400 MDD patients and 400 

controls, 669 million raw reads with a length of 50 bp were generated in the first 

sequencing run (Table 11). 66.4% of these raw reads survived the QC and 85.1% of the 

quality filtered reads could be aligned to the reference sequence (NCBI Build 36.1, 

UCSC hg18). The average number of reads, which was included into the subsequent 

variant calling procedure, was thus 47 millions per DNA pool. The overall inclusion rate 

of the generated raw reads into variant calling was 56.2%. 

Due to low coverage, two amplicons (12 kb in total) were re-sequenced in a second run 

using the SOLiD 5500xl machine. In this run, 253 million raw reads with 75 bp in length 

were generated. 89.3% of the raw reads had a sufficient quality for inclusion into the 

mapping step. From the QC filtered reads, 87.2% were mapped to the reference 

(GRCh37, UCSC hg19), resulting in approximately 24.6 million mappable reads per pool. 

Overall, 77.9% of the generated raw reads were mappable and could be used for further 

analyses.  

 

Table 11 Number of reads obtained in the two SLC6A15 re-sequencing runs.  

Reads were mapped using the BWA aligner. All reads are given in millions. Adapted from Quast et al. 

[242]. 

 

DNA Pool NGS Run 1 NGS Run 2 

 
raw 

reads 
QC filtered 

reads 
mappable 

reads 
raw 

reads 
QC filtered 

reads 
mappable 

reads 

       
Cases 1 84.6 57.6 51.0 26.6 23.8 20.7 
Cases 2 83.6 56.0 46.8 33.1 29.6 25.7 
Cases 3 84.0 56.3 48.0 26.6 23.9 20.9 
Cases 4 90.8 59.0 49.3 42.9 38.4 33.6 

Controls 1 79.4 52.6 45.4 28.3 25.2 21.7 
Controls 2 96.4 62.6 54.1 23.0 20.6 17.8 
Controls 3 64.6 43.1 36.0 38.1 34.0 29.8 
Controls 4 85.3 56.7 47.2 34.1 30.5 26.5 

       
Total 668.6 443.9 377.7 252.8 226.0 196.8 

NGS, next-generation sequencing; QC, quality control 

 

In the first NGS run, the average coverage was approximately 33,000 fold per base 

position per DNA pool and therefore theoretically 330 fold per subject (100 MDD patients 
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or controls per pool) and 165 fold per allele (200 alleles per pool). 81.4% of the whole 

sequenced region and 96.3% of the protein coding sequence were included into the SNV 

calling procedure due to a mean coverage > 5,000 at a given base position in each pool. 

With an average sequencing depth of 140,000 per base per DNA pool, 1,400 per 

individual and 700 per allele, the coverage in the second NGS run was approximately 

four times higher than in the first run. This can be explained by the fact that only 12 kb 

instead of 70 kb of the SLC6A15 locus were sequenced in the second run. A mean 

coverage above 5,000 in each pool was obtained for 74.3% of the sequenced bases and 

99.2% of the bases in protein coding regions. 

 

3.2.2 Genetic variants in the SLC6A15 gene 

In total, 405 genetic variants were detected in the two re-sequencing runs. Of these 

variants, 218 (53.8%) have not been previously published in the dbSNP137 database 

(accessed in April 2013). Furthermore, almost the same number of variants (N = 225, 

55.6%) has not been identified in the 1000 Genomes Project database (April 2012 

release). More than 50% (N = 225) of the detected SNVs were rare, with a MAF <= 

0.5%, i.e. four or less occurrences among the 800 screened individuals. Of these 

extremely rare variants, 61.8% (N = 139) were novel and not already present in 

dbSN137. In contrast, from the 60 common variants with a MAF > 5.0% only one variant 

was not previously published in the dbSNP137 database. 

Comparable with the TMEM123D re-sequencing study, the vast majority of the detected 

variants was located in non-coding regions of the gene. Three variants (0.7%) were in 

the 5‘ UTR, 44 (10.9%) in the 3’ UTR and 257 (63.4%) in intronic sequences. 85 variants 

(21.0%) were 5’ or 3’ of the gene locus. 16 variants (4.0%) were in the protein coding 

regions of the gene, twelve of those leading to amino acid exchanges in the protein. Of 

these tweleve non-synonymous variants, seven have been previously reported in 

dbSNP137 and eight have been identified in the ESP database (accessed in April 2013). 

 

3.2.3 SLC6A15 variant validation using Sequenom re-genotyping 

In the case-control MDD discovery sample (N = 800), 71.2% of the successfully re-

genotyped SLC6A15 variants (N = 66) could be confirmed as polymorphic (Figure 13). 

The set of validated variants included nine non-synonymous variants, five of them only 

present in the long isoform of the gene (NM_182767) and three of them restricted to the 

shorter isoform (NM_018057) (Table 12). For the validated 47 variants, the correlation 

between the MAFs estimated from the NGS experiment and verified by individual re-

genotyping was excellent with r = 0.996. 
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The nine non-synonymous variants, which were polymorphic in the discovery sample, 

were re-genotyped in the replication sample which consists of 905 MDD patients and 

1029 controls. The set of variants for the replication stage was supplemented by 22 

additional non-synonymous SNVs from the ESP database which have not been detected 

in the discovery sample (Table 13). Six of the non-synonymous variants detected in the 

NGS experiment were also polymorphic in the replication sample. However, for these six 

variants no consistent direction for overrepresentation in cases versus controls could be 

observed (Table 13). From the ESP variants, only three were polymorphic in the 

replication sample, two of them only in a single individual. 

For the validated non-synonymous variants (N = 12), which were also present in the ESP 

database (N = 11), the correlation between the MAFs denoted in the ESP for the 

European American population and obtained from the re-genotyping experiment in either 

the discovery, the replication or the combined sample was excellent (r = 0.999).  

 

           
 

Figure 13 Validation of detected SLC6A15 variants performing Sequenom re-genotyping.  

Non-synonymous variants which were polymorphic in the discovery sample and additional non-

synonymous variants from the ESP database were re-genotyped in the replication sample. Denoted 

MAF was estimated from NGS discovery stage. Adapted from Quast et al. [242]. 
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Table 12 Validated non-synonymous variants in the SLC6A15 locus combined with potential 

functional effects assessed by in silico analysis. Adapted from Quast et al. [242]. 
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Table 13 Summary of the re-genotyping of all non-synonymous variants in the discovery sample, 

replication sample and combined sample. Adapted from Quast et al. [242]. 
 

   
Discovery sample 

(N = 800) 
Replication sample 

(N = 1934) 
Combined sample 

(N = 2734) 

SNV 
Location 
SNV on 
chr12 

initially 
found in 

MAF 
Case 
(%) 

MAF 
Con 
(%) 

OR 
MAF 
Case 
(%) 

MAF 
Con 
(%) 

OR 
MAF 
Case 
(%) 

MAF 
Con 
(%) 

OR 

          

chr12_85285806 85285806 ESP not re-genotyped np np     

chr12_83809886 85285755 NGS 0.13 0.13 1.0 0.06 0.10 0.6 0.08 0.11 0.7 

chr12_85285676 85285676 ESP not re-genotyped np np     

chr12_85279737 85279737 ESP not re-genotyped np np     

chr12_85277713 85277713 ESP not re-genotyped 0.06 np     

chr12_85277622 85277622 ESP not re-genotyped np np     

chr12_83801746 85277615 NGS 0.25 0.13 2.0 0.11 0.24 0.5 0.15 0.21 0.7 

chr12_83801723 85277592 NGS 0.25 0.13 2.0 0.11 0.24 0.5 0.15 0.21 0.7 

chr12_85277576 85277576 ESP not re-genotyped np np     

chr12_85277573 85277573 ESP not re-genotyped np np     

chr12_83801692 85277561 NGS 17.50 19.25 0.9 assay failed    

chr12_85266930 85266930 ESP not re-genotyped np np     

chr12_85266927 85266927 ESP not re-genotyped np np     

chr12_85266902 85266902 ESP not re-genotyped np np     

chr12_85266562 85266562 ESP not re-genotyped np np     

chr12_83790615 85266484 NGS 1.75 0.63 2.8 0.72 0.98 0.7 1.04 0.88 1.2 

chr12_85266469 85266469 ESP not re-genotyped np np     

chr12_83790552 85266421 NGS np 0.13 np np np     

chr12_85264301 85264301 ESP not re-genotyped np np     

chr12_85264278 85264278 ESP not re-genotyped np np     

chr12_85264267 85264267 ESP not re-genotyped np np     

chr12_83785100 85260969 NGS 0.13 0.13 1.0 0.06 0.05 1.1 0.08 0.07 1.1 

chr12_85260925 85260925 ESP not re-genotyped np np     

chr12_85257357 85257357 ESP not re-genotyped np np     

chr12_85257265 85257265 ESP np np  0.22 0.1 2.3    

chr12_85257235 85257235 ESP not re-genotyped np 0.05     

chr12_83779683 85255552 NGS 0.5 0.25 2.0 0.22 0.2 1.1 0.31 0.21 1.5 

chr12_85255550 85255550 ESP not re-genotyped np np     

chr12_85255544 85255544 ESP not re-genotyped np np     

chr12_83779607 85255476 NGS 0.1 np  np np     

chr12_85255472 85255472 ESP not re-genotyped np np     

          
SNV, single nucleotide variant; chr, chromosome; NGS, next-generation sequencing; ESP, Exome Sequencing 

Project; MAF, minor allele frequency; OR, odds ratio 
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3.2.4 Case-control association analysis 

As the selection of variants for validation was biased towards putatively functional 

relevant variants, which are mostly skewed to lower frequencies, only three common 

variants were individually re-genotyped. From these variants, only two were validated to 

be polymorphic in the discovery sample. Testing both variants for association with case-

control status did not show any significant results. For the tested SNV set, including nine 

non-synonymous variants, no significant differences in the SMA and PMA between 

depressed patients (N = 1305) and controls (N = 1429) of the combined sample could be 

observed. 

 

3.2.5 In silico functional annotation of non-coding variants in SLC6A15 

Mapping all 405 detected variants to ENCODE TFBSs of different tissues, including five 

neuroblastoma cell lines, 15 intronic and three intergenic variants with potential 

influences on gene transcription were identified (Table 14). Interestingly, these 18 

variants were also identified to overlap with DNaseI hypersensitivity sites in brain, 

including cerebellum, frontal cerebrum and frontal cortex. From these variants, one 

variant with an OR of 2 and three variants, which were also identified to be located in 

conserved regions of the genome (see below), were re-genotyped in the discovery 

sample. Two variants, which were previously reported in dbSNP137, could be validated. 

Variants, which disrupt putative miRNA target sites in the 3’UTR of genes, were not 

observed. Using PhastCons, seven non-coding variants in conserved regions of the 

genome were annotated. These variants were re-genotyped in the discovery sample and 

one variant upstream, one variant in intron 1 and two variants in the 3’UTR of the gene 

could be validated. While the intronic and the upstream variant were already reported in 

dbSNP137, the two 3’ UTR variants were unknown so far. As the ORs of the validated 

variants were around 1, they were not re-genotyped in the replication cohort.  
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Table 14 SLC6A15 variants located in ENCODE TFBSs which were identified using ChiP-Seq. 

Adapted from Quast et al. [242]. 
 

Location SNV 
on chr12 

Location SNV 
within gene 

Location TFBS 
(Start) 

Location TFBS 
(End) 

TFBS for Length TFBS 

      

85304592 intron 1 85304469 85304733 YY1_(C-20) 264 

85304667 intron 1 85304469 85304733 YY1_(C-20) 264 

 intron 1 85304649 85305085 Pol2 436 

85304707 intron 1 85304469 85304733 YY1_(C-20) 264 

 intron 1 85304649 85305085 Pol2 436 

85304824 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304823 85305027 TAF7_(SQ-8) 204 

85304851 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304823 85305027 TAF7_(SQ-8) 204 

85304862 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304823 85305027 TAF7_(SQ-8) 204 

85304863 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304823 85305027 TAF7_(SQ-8) 204 

85304936 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304823 85305027 TAF7_(SQ-8) 204 

85305066 intron 1 85304649 85305085 Pol2 436 

 intron 1 85304978 85305278 TBP 300 

85305115 intron 1 85304978 85305278 TBP 300 

85305172 intron 1 85304978 85305278 TBP 300 

 intron 1 85305117 85305387 TAF1 270 

 intron 1 85305119 85305458 Pol2 339 

 intron 1 85305126 85305382 NRSF 256 

 intron 1 85305138 85305744 ZNF263 606 

 intron 1 85305140 85305384 PRDM1_(Val90) 244 

 intron 1 85305148 85305324 JunD 176 

 intron 1 85305161 85305425 YY1_(C-20) 264 

85305575 intron 1 85305138 85305744 ZNF263 606 

85305903 intron 1 85305644 85305914 TAF1 270 

 intron 1 85305677 85305981 Pol2 304 

85306174 intron 1 85306100 85306333 ZNF263 233 

85306191 intron 1 85306100 85306333 ZNF263 233 

85306844 upstream 85306425 85306903 Pol2 478 

85306884 upstream 85306425 85306903 Pol2 478 

85306903 upstream 85306425 85306903 Pol2 478 

      
SNV, single nucleotide variant; chr, chromosome; TFBS, transcription factor binding site 

 

3.2.6 Translation of non-synonymous coding variants in SLC6A15 into function 

3.2.6.1 In silico functional annotation 

The functional relevance of the nine non-synonymous NGS variants, which were present 

in either the discovery sample only or in the combined sample, and the three ESP 

variants, which were polymorphic in the replication cohort, was first investigated 

performing computational analyses. Splicing analysis using FastSNP predicted seven 

non-synonymous variants to create new ESE or ESS sites, or to disrupt already existing 
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splicing motifs (Table 12). For only two non-synonymous variants, deleterious effects on 

the function of the gene product were predicted using SIFT, PolyPhen2 and Panther. For 

all other variants, the three amino acid conservation tools showed inconsistent results. 

The evolutionary nucleotide conservation prediction tools PhastCons and PhyloP 

identified five non-synonymous variants to be located in evolutionary conserved regions 

of the genome (Table 12).  

 

3.2.6.2 Experimental functional annotation 

In order to assess the functional consequences of all nine non-synonymous variants in 

the long human SLC6A15 isoform, a proline uptake experiment was performed in HEK 

cells (see Table 5 in the methods section 2.6.2.1). The IC50 values for 3H proline uptake 

did not differ between HEK cells transfected with plasmids containing the wild type (WT) 

SLC6A15 sequence, and cells transfected with plasmids harbouring one of the nine non-

synonymous variants in the SLC6A15 gene (Figure 14).  
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Figure 14 Inhibition of 3H proline transport by the non-radioactive labeled amino acid L-proline.  

Concentration of non-labeled L-proline is plotted on the x-axis, 3H proline uptake as counts per minute 

(cpm) on the y-axis. Each datapoint represents the mean transport activity of triplicate samples. Taken 

from Quast et al. [242]. 

 

While the IC50 values were not affected by non-synonymous variants in the SLC6A15 

gene, the maximal uptake of 3H proline showed large differences, ranging from 

approximately 8600 to 12400 cpm (Figure 15). In order to confirm these findings, the 

three mutants with the largest alterations in maximal 3H proline uptake (T49A, A400V 
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and L421P mutants) compared to HEK cells harbouring the WT plasmid were re-tested 

in a second independent uptake experiment. 
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Figure 15 Maximum in 3H proline uptake of WT and mutant HEK cells.  

The maximum in uptake was measured in the presence of 3 µM non-labeled L-proline. Data are 

expressed as means ± standard deviation (SD) obtained from triplicate samples. Mutants with a circle 

were tested in a second independent experiment. Taken from Quast et al. [242]. 

 

In the repeated uptake measurement, the results obtained in the first experiment could 

be replicated for all tested mutants (Figure 16). Significant differences in 3H proline 

uptake could be observed across all concentrations (3 µM, 12 µM and 780 µM) of the 

non-labelled L-proline (p = 1.8e-7, in a two way ANOVA with mutant and non-labeled 

proline concentration as the two predictors and transfection efficiency as covariate (F = 

18.9, df = 2). Mutant T49A and mutant A400V showed a significantly increased 3H 

proline uptake compared to the WT, withstanding correction for multiple testing using the 

Bonferroni method (p = 8.4e-9 and p = 0.001 respectively). While mutant L421P showed 

a decrease in 3H proline uptake as in the first experiment, this result was not significant 

after adjustment for multiple comparisons (p nominal = 0.016, p corrected = 0.158).  
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Figure 16 Repeated uptake measurement of mutants with large differences in maximal 3H proline 

uptake compared to WT.  

The uptake was measured under four different experimental conditions. Each bar represents the 3H 

proline uptake (mean ± SD) obtained from triplicates for the buffer solution, six samples for the 3µM 

and 12 µM L-proline solution respectively, and nine samples for the 780 µM L-proline solution. 

Bonferroni corrected p-values, which are given in brackets, are based on the difference in mean 3H 

proline uptake between WT and tested mutant across all concentrations of non-labelled L-proline. 

Taken from Quast et al. [242]. 

 

Fluorescence microscopy indicated that the sub-cellular localization of the SLC6A15 

transporter to the cell membrane was not changed in any of the mutants harbouring a 

non-synonymous variant in the SLC6A15 gene (Figure 17). In addition, these imaging 

experiments did not show any alterations in the level of the transporter at the cell 

membrane, indicating similar SLC6A15 expression levels in WT and mutant HEK cells. 
 

             

Figure 17 Sub-cellular localization of the SLC6A15 protein in WT (left) and T49A mutant cells (right). 

The localization of the eGFP-hSLC6A15 fusion product is indicated in green. Cell nuclei are stained 

with DAPI (blue). For all other mutants, fluorescence imaging showed similar expression patterns. 

Taken from Quast et al. [242]. 
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4. DISCUSSION 

 

4.1 Role of common and rare variants in the susceptibility to complex 

diseases  

For more than a century, genetic epidemiology studies the question to which extent 

genetic variation contributes to the expression of a phenotype. GWAS have been 

successful in identifying thousands of common variants associated with complex 

diseases [2]. Despite this success, the majority of genetic variants contributing to 

complex traits have still to be discovered, as only a small proportion of the estimated 

heritability can be explained by these common variants [3]. The case of missing 

heritability has been the major motivation for the investigation of rare variants. Since the 

development of novel high-throughput sequencing technologies, which allow the 

identification of variants across the whole allelic frequency spectrum, many susceptibility 

genes for complex diseases have been screened for rare variants.  

 

4.1.1 Importance of common and rare variants in disease susceptibility 

While common variants have long been assumed to be the major factor for the 

susceptibility to develop common diseases, several arguments in favour for an essential 

role of rare variants were previously discussed. Besides evidence from evolutionary 

theory (see section 1.1.5.1 of the introduction), population genetic data further support 

the crucial role of rare variants in disease susceptibility. It has been shown that the 

distribution of genetic variants along the frequency spectrum is skewed towards rare 

variants, with over one third having MAFs below 5% [265]. In addition, the number of 

putatively functional relevant variants also increases with decreased MAF. Non-

synonymous variants were identified to be significantly skewed towards low frequencies, 

while presumably non-functional variants segregate at higher frequencies, reflecting the 

purification selection of deleterious variants [266,267]. In the TMEM132D study, only 

24.0% of the detected variants had MAFs above 5%. From the 13 non-synonymous 

variants, only one had a MAF higher than 5%. Similar, from twelve non-synonymous 

variants in the SLC6A15 gene, only one was common, with a MAF of about 20.0%, and 

only 15.0% of all detected SLC6A15 variants were common. These data confirm the 

skew of variants towards lower frequencies and the enrichment of putatively functional 

variants in low frequency ranges so that the investigation of rare variants in order to 

uncover novel disease causal variants is warranted. 
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Another argument in favour of the importance of rare variants in common complex 

diseases comes from family studies. It has been shown that many rare Mendelian 

disorders, which accumulate in families, are caused by highly penetrant rare alleles with 

large effects. Several recent studies have been demonstrated that numerous complex 

disorders also have Mendelian subtypes in which rare variants with large effects cause 

the phenotype. Examples include rare variants promoting atherosclerosis through 

hypercholesterolemia [268], rare variants in the BRCA1 and BRCA2 breast cancer genes 

[269] and rare coding variants which are responsible for 25.0% of the cases with X-

chromosomal linked intellectual disability [270].  

The important role of rare variants in the susceptibility to common complex diseases 

could be further supported in the TMEM132D study. An increased number of private 

non-synonymous variants in AD patients compared to healthy controls could be 

observed (nine patients versus one control). The most interesting variant, which leads to 

an alanine to glycine exchange in the protein, was present in four non-related AD 

patients of the sample, but in none of the other samples, including samples of different 

ethnic origin. Interestingly, these patients had a nominally higher rate of family members 

with the same or another form of AD (66.6 versus 33.4%) than patients without private 

non-synonymous variants. The fact that these private variants are so rare (present in 1 – 

4 individuals only) leads to the assumption that they are too new to be selected against 

due to deleterious effects on fitness. Therefore, extremely rare variants are highly likely 

to be functional and phenotypically relevant [271].  

Besides an increased rate of private non-synonymous variants in AD patients, an 

overrepresentation of non-synonymous variants and variants with predicted changes on 

splicing in healthy controls as compared to PD patients was identified. In contrast to 

private variants, which are per definition extremely rare, these putatively functional 

relevant variants were distributed along a broad MAF spectrum, ranging from 0.17 to 

30.0%. Combined with the data from the previous GWAS study, in which two common 

intronic variants were identified to be associated with PD [4], this pooled re-sequencing 

study suggests that not only common or rare variants alone, but a combination of both 

contributes to the development of anxiety-related phenotypes. Other studies in medical 

and psychiatric disorders have also begun to show that a combination of common and 

rare variants contributes to the susceptibility to common diseases [230-232].  

The increased presence of common and rare functional variants in healthy controls leads 

to the suggestion that the combination of these presumably functional relevant variants 

in TMEM132D has a protective effect on PD. Variants leading to the protection against a 
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disease have also been identified for other disorders. Multiple rare coding variants were 

observed to contribute to low triglyceride and High Density Lipoprotein (HDL) cholesterol 

plasma levels which are associated with a protection against coronary atherosclerosis 

[272,273]. A decreased risk for type 1 diabetes was associated with four rare functional 

variants in IFIH1 [274] and low IF1H1 levels have been found to be protective against 

this disorder [275].  

In contrast to the overrepresentation of functional variants in controls, the increased rate 

of private non-synonymous variants in AD patients indicates that these variants have 

deleterious effects and increase thus the risk to develop AD. Hence, variants within the 

same gene can confer both increased risk as well as protection against a disease. In line 

with this suggestion, rare variants within the PCSK9 gene were identified to be 

associated with higher levels of Low Density Lipoprotein (LDL) cholesterol, while others 

are associated with lower levels of LDL cholesterol [276]. 

In conclusion, the TMEM132D study demonstrates that both common and rare genetic 

variants contribute to the risk to develop common complex diseases. Hence, perhaps 

both of the long debated CDRV and CDCV hypotheses might be correct in some aspect. 

Although multiple rare variants were shown to play an important role in disease 

susceptibility, high effect sizes, which were postulated by the CDRV hypothesis, were 

not observed. Newer data from exome re-sequencing projects also indicated that rare 

variants do not contribute to disease risk with much higher ORs than common variants 

[277].  

 

4.1.2 Additional factors contributing to the susceptibility to complex diseases 

Although genetic variants play an important role in disease susceptibility, they are not the 

only factors which contribute to the manifestation of a disease. Gene-environment 

interactions, epigenetic factors and gene-gene interactions are also suggested to 

contribute to susceptibility to disease. Although these factors were not investigated in 

this thesis, a short description will be given in the following sections.  

 

4.1.2.1 Gene-environment interactions in disease susceptibility 

Several papers have begun to show that not distinct genetic or environmental causes 

alone are involved in the aetiology of physical and mental diseases, but an interaction 

between the two [13,135,136,278]. Hidden gene-environment interactions might be one 

possible explanation for the lack of significant associations of rare and/or common 

variants in SLC6A15 with MDD. It might be possible that the detected variants are per se 
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not deleterious by themselves, but distinct environmental exposures, including sexual, 

physical or emotional abuse in childhood, premature parental loss or exposure to family 

conflict might be deleterious. Indeed, it has been shown that the presence of a 

depression susceptibility gene is not sufficient to develop the disease in the absence of 

environmental stressors [279]. In the reverse case, the occurrence of a severe traumatic 

event has little effect in the absence of a genetic susceptibility background, although 

stressful life events are among the strongest predictors of depression [279].  

 

4.1.2.2 Epigenetic influences on disease susceptibility 

Besides environmental influences, epigenetic factors, including DNA methylation and 

acetylation, also play a role in susceptibility to disease. The influence of methylation 

status on disease risk has been demonstrated by Klengel et al. among others [280]. In 

their study, a functional variant in the FK506 binding protein 5 gene (FKBP5), which is 

important for the regulation of the stress hormone system, was shown to increase the 

risk for stress-related psychiatric disorders in adulthood, when glucocorticoid response 

elements of FKBP5 were de-methylated [281]. Interestingly, de-methylation could only 

be observed in individuals who experienced traumatic events in childhood. This is an 

impressive example for the importance of early environment for the later life. Early in the 

development of an individual, the expression of specific genes can be conditioned in a 

tissue specific manner [282,283]. It has been assumed that this developmental 

programming is based on early experiences in order to prepare an individual for the life 

under the experienced conditions [284]. Thus, negative experiences in early life are likely 

to predict later adversity in life. This programming of gene expression is maintained 

through the whole life by epigenetic modifications of the DNA and chromatin [282,285]. 

In the study of Klengel et al., de-methylation of glucocorticoid response elements in the 

FKBP5 gene might thus be caused by traumatic events in early life. While early 

environmental factors were already assumed to be involved in gene-environment 

interactions [279], the FKBP5 study suggests a possible mechanism how genes and 

environment interact and thus contribute to depression and other stress-related 

phenotypes. 

 

4.1.2.3 Contribution of gene-gene interactions to complex diseases 

Another form of multifactorial contribution to complex diseases, and a possible 

explanation for the lack of significantly associated variants in the SLC6A15 locus with 

MDD, is gene-gene interaction. Evidence for epistatic effects and its implications for 
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depressive disorders came among others from a linkage study which has been 

demonstrated that epistasis between SLC6A4 and a so far unknown gene on 

chromosome 4 is a risk factor for MDD [286]. In a neuroimaging study involving healthy 

subjects, an interaction between the 5-HTTLPR polymorphism and the BDNF Val66Met 

polymorphism could be observed [287]. The methionin allele of the BDNF gene was 

identified to be protective against the adverse effects of the short allele of the SLC6A4 

gene which has been reported to increase the risk for depression [288]. In contrast, the 

BDNF wild type allele was identified to support the depressiogenic effects of the short 

form of the SLC6A4 locus. In a subsequent study, the BDNF-SLC6A14 interaction could 

only be observed in individuals with childhood abuse, indicating a relevant impact of 

gene-gene-environment interactions on complex diseases [289]. In another study, the 

effects of child abuse on depressive symptomes were observed to be moderated by the 

interaction of genetic variants in the CRHR1 locus and the 5-HTTLPR polymorphism 

[290].  

 

4.2 Practical and statistical challenges of the novel NGS technologies 

Compared to traditional Sanger sequencing, NGS technologies have an increased 

sample throughput which has led to dramatically reduced sequencing costs [221,291]. 

Due to this reduction in sequencing costs and the variety of possible applications, the 

NGS technique was selected by Nature Methods as the method of the year in 2007 

[291]. Nevertheless, several major challenges of these novel NGS technologies exist. 

 

4.2.1 Indications for and challenges of pooling approaches 

Although NGS technologies have led to reduced sequencing costs, these costs are only 

one proportion of the overall costs which occur within the scope of a sequencing 

experiment. In addition, costs for DNA extraction, enrichment and preparation for 

sequencing have to be included into each cost calculation. Especially the costs for DNA 

preparation should not be neglected as, depending on the number of samples, these 

costs can easily exceed the sequencing costs. For instance, for a SOLiD barcoded 

fragment library preparation, costs of about 150 € per library can be estimated. In 

contrast, the costs for the SOLiD ToP sequencing chemistry account for about 1,200 € 

per run. Given that the library preparation in the SLC6A15 project would have to be 

performed for each of the 400 MDD patients and 400 controls individually, a budget of 

120,000 € would be required solely for this first section of sample preparation.  
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The use of pooled DNA has been suggested to be an attractive cost-effective method to 

identify genetic variants in targeted re-sequencing approaches [292]. Here, DNA from 

different individuals is quantified, and equimolar amounts of the measured DNAs are 

mixed together. Especially for this type of NGS design, which is aimed on the detection 

of as much genetic variants as possible, pooled samples are highly recommended as the 

number of detectable variants increases with the number of samples. In contrast, whole 

genome or exome sequencing studies have mostly relatively small sample sizes so that 

the costs for sequencing are probably higher than the costs for sample preparation. In 

this case, individual sequencing may be more appropriate than DNA pooling.  

A major drawback of DNA pooling is that the information, which genetic variant is present 

in which individual, is missing although this information is often required for further 

analyses. Therefore, DNA pooling is used as initial screening tool in the context of a two-

stage design. In the first stage, DNA pools are sequenced in order to discover, in theory, 

all genetic variants within the target region. In the second stage, a subset of the identified 

variants, including for instance potentially functional relevant variants, is re-genotyped in 

all individuals of the discovery sample using an independent method.  

The question, which often arises in the context of pooling approaches, is how many 

individuals to combine in a pool. The extraction of as much statistical information as 

possible, at cost and work load as low as possible, is the most important factor for 

determining the pool size. Statistical information can be defined as the power to detect a 

genetic variant in a pool. When the size of a DNA pool increases, the number of alleles 

also increases which leads to a higher probability to detect a variant. However, the 

frequency of a variant decreases with increased pool size, so that rare variants might fall 

under the detection threshold which decreases the variant detection probability [293]. 

The detection threshold, which is given by the sequencing error rate of the sequencer, is 

the major factor that limits the size of DNA pools in which a single heterozygous allele 

remains detectable. Given that a pool of 50 individuals is sequenced with a sequencing 

error rate of 1%, one can not decide any more whether one altered allele is due to a true 

variant or a sequencing error at that position. A high error rate can be specifically critical 

for analysing pooled samples, because sequence analyses of pools derived from a large 

number of individuals is prone to erroneous variant calling [294]. To address the problem 

of erroneous variant detection, a minimum in coverage at a given base position in each 

of the sequenced pools for inclusion of a base into variant calling procedure, is 

recommended.  
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4.2.2 Uneven coverage distribution and its implication for variant discovery 

The base composition of the human genome has already been a challenge to Sanger 

sequencing and it has continued to be a major problem for NGS methods [295]. It has 

been demonstrated that DNA amplification performing PCR is biased towards regions 

with balanced base composition and that less complex regions with high AT or GC 

content are less or not amplified [296,297]. This bias, which occurs during library 

amplification, leads to an uneven coverage as the generated reads are not uniformly 

distributed along the sequenced region. In the TMEM132D study, the mean coverage 

across the whole sequenced region was about 50,000 fold per base per pool. However, 

the actual coverage at a given base position within each pool varied dramatically, 

ranging from 300 to 400,000 fold. In contrast, the overrepresentation of reads at the ends 

of the amplicons, compared to the middle of the amplified DNA fragments, is not a 

sequence specific problem, but results from DNA fragmentation where nucleotides 

located at amplicon ends are fragmented more frequently than nucleotides in the middle 

[298,299]. 

The large fluctuations in sequencing depth demonstrate its implication for variant 

discovery. As already described in section 4.2.1, a minimum in coverage is required for 

inclusion of a base into variant calling. Uneven coverage distribution increases the 

likelihood that bases are insufficient covered by reads and thus excluded from 

subsequent variant analyses, although these positions might harbour genetic variants. In 

the TMEM132D project, about 10.0% of all sequenced bases had a coverage below the 

required minimum of 5,000 in each pool. However, none of the bases in the coding 

region of the TMEM132D locus was excluded. This might be explained by the fact that 

the sequence complexity of introns is expected to be reduced compared to exons since 

more repetitive elements are present in non-coding regions [300]. Further evidence for a 

sequence specific bias in coverage came from the comparison of the coverage patterns 

of the DNA pools. While the sequencing depth varied dramatically within each pool, the 

coverage distribution was highly conserved across all four TMEM132D pools.   

To overcome the problem of uneven coverage, it is recommended to use as much 

starting material as possible for library preparation in order to avoid the amplification 

step. If PCR amplification can not be avoided, it is suggested to keep the number of PCR 

cycles as low as possible. 
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4.2.3 Alignment of short sequencing reads as a statistical challenge 

The most fundamental step for almost all NGS applications is the mapping of sequencing 

reads to the reference genome [301]. Alignment, which is the finding of the most credible 

source for the sequenced DNA fragment, is challenging due to the length of the 

generated sequencing reads. While the Sanger-based sequencing method provides 

reads with up to 900 bp, sequences, which are provided by a NGS sequencer, are much 

shorter, ranging from 30-700 bp. The length of a DNA sequence is a crucial factor for the 

uniquely alignment. The shorter a read, the higher the probability that the sequence will 

align equal to multiple chromosomal locations. Especially reads, which derive from 

regions with low complexity, map not only to the targeted region, but also to a high extent 

to genomic regions outside the investigated one. This alignment bias towards regions 

with higher complexity is another reason for an uneven coverage distribution across the 

sequenced region.  

Mapping tools, which are commonly used for Sanger sequencing, are not adapted for 

NGS purposes as these tools are not designed to align reads with 700 bp at maximum. 

To meet this challenge, many mapping tools have been introduced flooding the market 

until now [302]. In this thesis, read alignment was performed using BWA [252] and 

SHRiMP [253]. Consistent with the results of a study in which several aligners were 

compared with each other, BWA clearly outperformed SHRiMP regarding mapping 

speed and memory capacity [303]. In this comparison study, BWA was shown to require 

approximately ten times less memory occupancy than SHRiMP for mapping, and 

processes the data approximately 30 times faster than SHRiMP. These disadvantages of 

the SHRiMP aligner can be outbalanced by a higher mapping sensitivity and accuracy. 

Both the percentage of reads, which can be mapped to the reference (sensitivity), and 

the percentage of reads, which were mapped correctly (accuracy), are increased when 

using the SHRiMP aligner [303]. After SHRiMP alignment, about 600 variants within the 

sequenced TMEM132D region were discovered, while only about 400 variants were 

called after mapping the reads using BWA, confirming the higher sensitivity of SHRiMP. 

An increased number of called variants due to a higher mapping rate could also be 

observed in the SLC6A15 project (600 called variants using SHRiMP versus 500 variants 

using BWA). Increased accuracy of the SHRiMP aligner was shown by comparing the 

validation rate from a subset of called variants which was individually re-genotyped on 

the Sequenom platform. 95.0% of the SHRiMP aligned variants in TMEM132D could be 

validated, while only 83.0% could be verified in the re-genotyping experiment as true 

variant when they were called after BWA alignment, indicating a lower false-positive rate 
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of SHRiMP. On the other hand, the percentage of falsely not called variants was 

increased in SHRiMP as it did not detect 21 already validated variants. Finally, despite 

the increased rate of false positives, the BWA aligner was used for the TMEM132D 

project as this disadvantage was accepted for a lower false negative rate, higher 

mapping speed and lower memory capacity. For the SLC6A15 project, both aligners 

were used and only variants, which were called in both approaches, were included for 

further analyses in order to minimize the false discovery rate.  

 

4.3 Rare genetic variants as a challenge for genetic association studies 

Since the establishment of high throughput sequencing methods, the identification of 

genetic variants, even those with a private character, has become a standard method in 

human genetics. While the detection of rare variants has become increasingly easy, 

association analysis and sample recruitment remain difficult. 

 

4.3.1 Association testing of rare variants as a statistical challenge  

Statistical methods for the detection of associations of common variants have been 

extensively developed and successfully applied to numerous studies of complex 

diseases. These methods are based on single-marker tests, whereby an individual 

marker is tested for an association with disease using univariate statistical tests. 

Unfortunately, most of these single-marker testing tools are unsuitable for association 

analysis involving rare variants, as the power to detect an association with a single rare 

variant is low, even in very large samples [97,257]. In general, the sample size, which is 

required to detect an associated variant, increases linearly with 1/MAF [83]. With 300 AD 

patients and 300 controls, the sample of the TMEM132D study was only sufficiently 

powered (power > 0.8) to detect associations of variants with a MAF of 1% and an OR of 

3.5 (additive model, uncorrected alpha level 0.05). To detect the non-synonymous 

variant T49A (MAF 0.1%, OR 0.7), which was identified to significantly increase the 

activity of the SLC6A15 amino acid transporter, with a power of 0.8 at an alpha level of 

0.05, a case-control sample of over 70,000 would be required. Both examples highlight 

the difficulty to detect associations of rare variants. 

To overcome the problem of low power, several alternative association approaches have 

been developed, suggesting the assessment of the collective effects of multiple rare 

variants within and across genomic regions [257,304]. This collapsing method, which is 

also referred to as burden testing, counts individuals who carry one of the variants of a 
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marker set, calculates the frequencies of these individuals in different groups such as 

cases and controls, and tests then the two groups for frequency differences.  

Different approaches, which variants to include into a marker set and to test this 

combination of variants for association, exist. First of all, variants might be selected 

based on their location within the genome. Second, different frequency thresholds can 

be used for selection. Third, rare variants can be grouped according to their functionality. 

Combining variants according to their functional consequenes is a very popular approach 

as it has been demonstrated that testing a marker set, which comprises possible 

functional relevant variants, is highly advantageous for the identification of disease 

susceptibility variants [223,305]. In this thesis, a significant association between genetic 

variants in TMEM132D and PD could only be observed, when testing the marker set, 

including non-synonymous variants and variants with predicted effects on splicing. 

Collapsing variants with a MAF below 1%, irrespective of possible functional effects, did 

not show any significant associations. Similar results have been reported by Davis et al. 

who investigated the association of variants in the TTC21B locus with human ciliopathies 

[306].  An overrepresentation of rare alleles in controls compared to cases could only be 

observed when restricting the coding variants to those with predicted function. This study 

also demonstrates the advantage of testing functional relevant variants in order to detect 

disease susceptibility variants. Information about putatively functional effects can be 

gained by different approaches which are described in section 4.4.  

Several statistical analysis tools can be used to test the hypothesis that a combination of 

variants is associated with a disease. The simplest approach, which was also used in 

this work, is the Cohort Allelic Sum Test (CAST) which compares the number of 

individuals who carry one or more variants of the tested marker set between case and 

control group. The Combined Multivariate and Collapsing (CMC) method is an extension 

of the CAST method [257]. In this method, all rare variants with a MAF < 1% are 

collapsed, and the collapsed variants are treated as a single common variant which is 

then analysed together with other common variants in a multivariate analysis. A 

combined analysis of common and rare variants is recommended as a number of studies 

have been shown that variants within a wide range of frequencies are involved in 

disease aetiology [307-309]. For example, for HDL cholesterol, common and rare 

variants were detected to have modifying effects on HDL cholesterol levels [310]. 

Another extension of the original CAST method is the weighted sum collapsing approach 

[311]. In this approach, rare variants are given more weight because stronger effects are 

expected for rare variants than for more frequent variants. 
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While none of the described approaches differentiate between protective, neutral or 

deleterious variants, Han and Pan developed a method which considers the direction of 

the effects of the variants [312]. This approach is highly recommended as all above 

mentioned methods assume that the effects of all variants, which are included into a 

collapsed marker set, have the same direction. However, this assumption is rather 

unlikely, unless the number of variants is low. For instance, it has been shown that rare 

variants within the PCSK9 gene are associated with higher levels of LDL cholesterol, 

while others in the same gene are associated with lower levels of LDL cholesterol [276].  

 

4.3.2 Rare variants as a challenge for the study design 

The recruitment of individuals for an association study involving rare variants is a crucial 

issue, as rare variants are more likely to be population specific than common variants so 

that allele frequencies might vary drastically between different populations, independent 

of disease status [92,313,314]. Hence, differences in ethnic background can lead to 

spurious associations [315,316]. The problem of population stratification in association 

analyses occurs both in case-control studies and in studies, examining individuals from 

the extreme end of a phenotype [273,276,317], while the investigation of related 

individuals is not affected by spurious associations due to population stratification. 

In order to avoid spurious associations due to population stratification, carefully 

performed matching of cases and controls is essential. In general, the population, from 

which the controls are derived, should be the same, from which the cases came from. 

Similarly, the population, from which the individuals with extremes in phenotype are 

derived, should be the same population, in which detected variants are planned to be 

validated. Recruitment of individuals from the same geographical region, or self-reports 

regarding family ancestry are attempts to keep the level of population stratification low. 

Nevertheless, it is impossible to match for all genetic differences and thus, statistical 

methods are required to detect population stratification. 

In the TMEM132D study, the method of genomic control identified a genomic inflation 

factor (λ) of 1.00594 which implies no effects of population stratification. Values of λ < 

1.05 are generally considered to be benign [318]. If λ is above 1.05, all association test 

statistics should be corrected for background population stratification by the genomic 

inflation factor [259]. The method of PCA identified three individuals (two patients and 

one control) which were outside of the main cluster of individuals. However, after 

excluding these three subjects and repeating asociation testing, the previous observed 

significant association remained significant. Thus, the overrepresentation of putatively 
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functional relevant variants in controls compared to PD patients was indeed associated 

with case-control status and not with differences in allele frequencies due to different 

ethnic backgrounds.  

 

4.4 Functional characterization of genetic variants in association studies  

While thousands of significant associations have been turned up in GWASs in the last 

years, only very few of the variants identified to be correlated with a disease have been 

shown to be the actual risk variant [319]. This can be explained by the fact, that 

association does not mean causation and that association alone does not imply 

functional relevance. Therefore, functional characterization of genetic variants is highly 

recommended in association studies, in order to check whether the associated variant 

itself or another variant in LD is responsible for the investigated phenotype. Furthermore, 

burden testing has been shown to be more powerful when marker sets, containing 

functional relevant variants with the same direction of effect, are tested for association.  

While the functional annotation of genetic variants is of paramount interest, the 

accomplishment of this task is challenging. A human individual is estimated to carry 

about 3.7 million SNVs distributed across the whole genome [35]. The number of 

variants in the coding regions of the genome is estimated to 20,000 – 24,000, including 

10,000 – 11,000 non-synonymous variants that could negatively, but also positively 

influence the function of a gene [95]. Indeed, coding variants, resulting in amino acid 

substitutions, premature stop sites or deleted parts of a gene, are heavily enriched 

among disease causing variation in Mendelian disorders [8]. Variants in the non-coding 

genome, which accounts for 99% of the total human genome, might also be of functional 

relevance. Variants in regulatory regions such as TFBSs, enhancers and promoters have 

been shown to predominate as risk factors for common disorders [320]. The large 

number of putatively functional relevant variants makes functional characterization 

laborious and the identification of the causal variant for a disease often comparable with 

the finding of a needle in a haystack.  

 

4.4.1 Computational functional annotation 

Computational approaches provide an easy and fast possibility to predict whether a 

genetic variant is functional relevant or not. In the last years, a number of tools, which 

are based on the principle of sequence homology between organisms, have been 

developed [321]. It is assumed that deleterious variants are more likely at positions of the 

genome that are evolutionary conserved and have not been removed by natural 
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selection [247,322]. One major disadvantage of these prediction methods is that results 

obtained from different tools can not be compared directly. Direct comparisons are 

problematic as each tool uses different algorithms and sequence databases as reference 

for their deleteriousness estimation. In addition, some tools include information about the 

structure of the protein into their predictions [323,324]. Variants in the interior of a protein 

are suggested to have larger effects on protein function than variants at the outer side of 

the gene product. Other tools additionally incorporate biochemical data such as positions 

of active sites and disulfide bridges or charge of amino acids [325]. The integration of 

structural and biochemical information to comparative sequence analysis is suggested to 

significantly improve predictions of deleteriousness [326,327]. 

In this thesis, the three protein-sequence based prediction tools SIFT, PolyPhen2 and 

Panther were used. From twelve validated non-synonymous variants in the SLC6A15 

locus, only two were predicted to be deleterious in all three tools. For all other variants, 

the interpretation was difficult due to inconsistent predictions. A similar picture could be 

observed, when subjecting all 13 non-synonymous variants in TMEM132D to 

computational functional annotation, as none of the variants was predicted to have a 

deleterious effect in all three tools. A possible explanation for these inconsistent results 

might be that PolyPhen2 integrates information about protein structure and biochemical 

properties into their predictions of deleteriousness while SIFT and Panther do not.  

Inconsistent predictions were also observed when using the nucleotide-sequence based 

tools PhastCons and PhyloP. Consistent results were obtained for nine and eight non-

synonymous variants in TMEM132D and SLC6A15 respectively. While PhyloP considers 

each nucleotide independently to estimate the evolutionary conservation score at that 

position, PhastCons considers also the scores of its neighboured nucleotides. These 

different approaches might result in different predictions of deleteriousness. 

 

4.4.2 Experimental functional annotation 

Experimental functional characterization of genetic variants can only be carried out when 

the function of the protein is known. This prerequisite sounds trivial, but unfortunately, a 

large number of human proteins are lacking sufficient functional annotation to design an 

experimental assay. For instance, the molecular function of TMEM132D is still unknown. 

It has been suggested that TMEM132D may serve as cell surface marker for the 

differentiation of oligodendrocytes [328]. Other data have been shown that TMEM132D 

is predominantly expressed in neurons and co-localized with actin filaments [329]. Due to 
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the lack of a measurable property that associates with function, experimental 

assessment of functional consequences of genetic variants was not possible. 

In contrast, the SLC6A15 protein is known to transport neutral amino acids into 

predominantly neuronal cells so that an uptake assay could be performed [7]. The two 

rare non-synonymous variants T49A and A400V in the SLC6A15 gene were shown to be 

associated with a significantly increased 3H proline uptake in HEK cells. High levels of 

proline were identified to be neurotoxic and have been associated with symptoms of the 

central nervous system (CNS) such as seizures and mental retardation [330]. Although 

the uptake measurements were only performed using proline, this amino acid is, of 

course, not the only substrate for SLC6A15. For instance, the neutral amino acids 

leucine and methionine are also transported into the cell via the SLC6A15 transporter. 

Leucine is a major donor of nitrogen for the synthesis of the amino acid glutamate and 

the neurotransmitter GABA [331]. Therefore, an alteration in leucine uptake could have 

impact on glutamatergic transmission which is connected to psychiatric disorders [332]. 

A previously published study, which showed that SLC6A15 is expressed in glutamatergic 

and GABAergic neurons, supports this hypothesis [333]. Methionine is a precursor of S-

adenosylmethionine (SAM) which is the major methyl group donor in humans. SAM 

transfers methyl groups to different substrates, including DNA nucleotides and histones. 

SAM metabolism has been associated with different diseases, including psychiatric 

disorders such as MDD [334].  

Alterations in amino acid uptake might be explained by several cellular mechanisms, 

including altered transporter velocity, gene expression, membrane localization or protein 

stability. The fact that fluorescence imaging showed no alterations in cellular sub-

localization of the protein, and no differences in protein levels between WT and mutant 

cells, supports the assumption that rare non-synonymous variants in SLC6A15 lead to 

functional rather than quantitative changes of the transporter. 

Although the proline uptake experiments demonstrated that T49A and A400V 

significantly increase the level of this amino acid in HEK cells, for T49A only Panther and 

PhyloP, and for A400V only PhastCons did predict any influence on protein function. 

This discrepancy is not surprising, as the ENCODE project showed that the correlation 

between deleterious estimates derived from computational evolutionary annotation, and 

estimates obtained from experiments is only modest [243,335]. One reason for this 

modest correlation might be that genetic variants that are biochemically functional do not 

necessarily have to be biologically relevant so that the phenotype of interest does not 

have to be affected [243,336]. Indeed, even though variants in SLC6A15 alter proline 
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uptake, it can not automatically be concluded that altered protein function is associated 

with increased or decreased risk for MDD.  

 

4.5 Overall conclusion and outlook 

In this thesis, genetic and functional characterization of two candidate genes for common 

complex psychiatric disorders was performed. For the TMEM132D locus, an 

overrepresentation of putatively functional relevant rare and common variants in controls 

compared to PD patients could be observed. These results confirm that both rare and 

common variants within the same gene contribute to disease susceptibility and that rare 

variants might indeed explain a proportion of the missing heritability. Unfortunately, 

burden testing is prone to erroneous association, with false positive rates between 50 

and 98% [337-339]. Thus, replication in larger independent samples will be required to 

confirm the robustness of the reported associations of PD with common and rare 

functional relevant variants in TMEM132D.  

In addition, an increased number of private variants in TMEM132D was present in AD 

patients compared to controls. This result leads to the suggestion that variants within this 

gene might be both protective against and risk-increasing for anxiety-related disorders. 

Unfortunately, case-control studies can only determine associations of genetic variants 

with a disease, but not which of the associated variants the causal one is. To test the 

causal relationship between these private variants and AD, this study needs to be 

supplemented by family studies. The fact that the function of the TMEM132D protein is 

still unknown further complicates in vitro and in vivo experimental functional analysis so 

that, currently, biochemical relevance of these private variants in TMEM132D can not be 

assessed. 

For the SLC6A15 locus, significant associations with MDD were not observed, neither for 

common or rare variants alone nor for a combination between both. However, two rare 

non-synonymous variants were identified to increase the activity of the amino acid 

transporter without changing the sub-cellular localization of the SLC6A15 protein. These 

data lead to the suggestion that rare variants in SLC6A15 might influence the 

biochemical function of the amino acid transporter. In order to assess the putative 

relevance of these observed biochemical differences in SLC6A15 transporter activity on 

neurobiological phenotypes and ultimately MDD, additional experiments in neuronal cells 

lacking endogenous SLC6A15, or humanized transgenic animals are suggested. 

Additional experimental functional analyses are highly recommended as variants, which 
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were identified to be biochemically relevant, do not automatically have to be biologically 

relevant and may not affect the phenotype of interest.  

In the future, larger sample sizes are required to detect significant associations of 

common and rare variants with disease susceptibility for case-control association 

studies. Although burden testing increases the power to detect genome-wide significant 

associations, the required sample size is still high, comprising at least several thousands 

of cases and controls which is only feasible in cooperation with multiple research 

institutes [340]. Furthermore, studies investigating gene-environment interaction, gene-

gene interaction and the epigenome will be necessary to fully understand the 

mechanisms underlying complex diseases. The risk, which is conveyed by a specific 

variant, may only be unmasked with exposure to stress or trauma, so that a strict case-

control design may be insufficient. This thesis also highlights the need for functional 

characterization of genetic variants as association alone does not have to mean 

causality. If possible, experimental validations should be performed to assess possible 

functionality as computational tools only give insufficient information. In addition, 

combining variants with regard to their functional relevance and testing this marker set 

for association with disease has been shown to be the most promising approach for the 

identification of disease susceptibility variants. For all studies, which will be performed in 

future, it should always be kept in mind that the phenotype of an individual is the result of 

a complex interplay between genome, epigenome and environment so that multiple 

factors are likely to contribute to disease susceptibility.  
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6. SUPPLEMENTARY TABLES 

 

Table S1 Oligonucleotides used for amplification of the exons and exon-intron boundaries of the 

TMEM132D locus. Adapted from Quast et al. [238]. 

 

Primer 
name 

Primer sequence 
Amplicon position in 

genome (hg19) 
Amplicon 

length (bp) 

    

1fwd AGCACACCCACAGTGCTAACTTTATGT chr12:130383217-130388188 4972 

1rev GAAAGGAAATACCCCCTGTGGATTAAA   

2fwd AAAAGCAGCCATAAATCCCATATGAAG chr12:130183383-130188435 5053 

2rev AGTCCACATAGGGGAAAACTGAGAGTC   

3fwd AGCATTATACATGCAGCTATGCACCTT chr12:130013162-130018171 5010 

3rev GAAACATCATCTGAATTCCACATAGCC   

4fwd TTGCTGGTCTGCAGAATATAGATGTGA chr12:129820476-129825414 4939 

4rev TTCCTGAAGGTTGGTATAGTCCTGGAT   

5fwd AAGAATAGAGCAGCAAACAAAGTGGAC chr12:129691713-129696521 4809 

5rev TTTTGATCCTCCCCCTTTAGAGTAGAA   

6fwd ATTCTCATCACATCATTACATGGCTTG chr12:129565819-129570797 4979 

6rev TTAAGAAATGTCCTCACCACAACACAC   

7fwd TCCTTCAGCTCAGCCAAGAAATACTTA chr12:129561074-129565875 4802 

7rev CTAGACCCCATCTCAGACAAAACCA   

8fwd GATTCCATGCATCTTCTTGTTTCGTAG chr12:129555786-129560718 4933 

8rev TTATATGTGCCCCCACTACACATCTTC   
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Table S2 Primer pairs used for LR-PCR amplification of the SLC6A15 gene. Adapted from Quast et 

al. [242]. 

 

Primer 
name 

Primer sequence 
Amplicon position in 

genome (hg19) 
Amplicon 

length (bp) 

    

1fwd TTTTCTCCCCACCAGCCCCCAATCTGCT chr12:85302558-85313254 10697 

1rev AACAGCTGAGAAAGCCAGGCCCAAACATCA   

2fwd AAAACGTCTGCTTCTCCTGCTAGAAACCCCA chr12:85297924-85308787 10864 

2rev CTCCCACACCAATCCCATGTTGGCCATTTT   

3fwd GTGATCTGTCAGTTCCAAGAAGGTGTT chr12:85292757-85303571 10815 

3rev AAAAGAGAGCTTGGTGGCTATCAAAAG   

4fwd AGCCCAAGAATTCCGCCCTTCATTTCTGGAA chr12:85287367-85297848 10482 

4rev ACTGCTGCTACCTTCTGGTCAAAGCAAACCA   

5fwd TGATTTGTGAGAAACAAAAAGCAGGAT chr12:85284231-85293396 9166 

5rev GATGCTGGATAAGAGGCAAAGAAAAGT   

6fwd CACAACTTGCAAATCCAATCCCGCCCAGTT chr12:85279692-85289950 10259 

6rev TCTTCGGTGCAGATGAAGTGCAGTGAGTGAT   

7fwd TGGGTTCCATGAGGACAGACTGTGGCCTATTA chr12:85273578-85283585 10008 

7rev ACACTACCCATGTGACCTTTCACAGGCTACCT   

8fwd AGGCAGCCGCCAGGAGTGACAAAGAAT chr12:85269233-85271176 1944 

8rev AAACCAAGGGGCAGCCAGCAATTCAGTT   

9fwd ACATATGCTCGGGGCAGAGCACAAACGTAA chr12:85257053-85268042 10990 

9rev AGAGGACACGCCATTTGCCATTGTTTGCA   

10fwd ATTTCCTTATCTGCCAAGTGAAACCAT chr12:85252553-85263883 11331 

10rev TTCCTATCCAAAAAGTGCATAGCTGAA   

11fwd AGGCACCACATGGCACGTTTTTGCTGT chr12:85243329-85253392 10064 

11rev TCTTCTCTCACTCTCTTGCCATGGGGGC   
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Table S3 Oligonucleotide primers used for site-directed mutagenesis.  

The sequence encoding the substituted amino acid is underlined. The changed nucleotide is bold. 

Adapted from Quast et al. [242]. 

 

Mutant Primer name Primer sequence 

   

hSLC6A15 T49A hSLC6A15 T49A-fwd 5'-GGCCAGGAAGAGAAAGATGCAGATGTTGAAGAAGG-3' 

 hSLC6A15 T49A-rev 5'-CCTTCTTCAACATCTGCATCTTTCTCTTCCTGGCC-3' 

hSLC6A15 K227N hSLC6A15 K227N-fwd 5'-GGGGGCTTAAACTGGAACATGACCATCTGCTTG-3' 

 hSLC6A15 K227N-rev 5'-CAAGCAGATGGTCATGTTCCAGTTTAAGCCCC-3' 

hSLC6A15 A400V hSLC6A15 A400V-fwd 5'-CAACCTTTCAACTGTTACTGTAGAAGATTATCATTTAGTTTATGAC-3' 

 hSLC6A15 A400V-rev 5'-GTCATAAACTAAATGATAATCTTCTACAGTAACAGTTGAAAGGTTG-3' 

hSLC6A15 L421P hSLC6A15 L421P-fwd 5'-GAAGAGTTTCCTGCTCCTCATCTCAATTCCTGTAAAATTG-3' 

 hSLC6A15 L421P-rev 5'-CAATTTTACAGGAATTGAGATGAGGAGCAGGAAACTCTTC-3' 

hSLC6A15 I500T hSLC6A15 I500T-fwd 5'-GAGGAAAGAAATTCTTACTGTTACCTGTTGTCTTCTGGC-3' 

 hSLC6A15 I500T-rev 5'-GCCAGAAGACAACAGGTAACAGTAAGAATTTCTTTCCTC-3' 

hSLC6A15 N591D hSLC6A15 N591D-fwd 5'-GCTAGTGTTGTGGATATGGGATTAAGTCCTCCT-3' 

 hSLC6A15 N591D-rev 5'-AGGAGGACTTAATCCCATATCCACAACACTAGC-3' 

hSLC6A15 A601T hSLC6A15 A601T-fwd 5'-CTCCTGGCTATAACACATGGATTGAAGATAAGG-3' 

 hSLC6A15 A601T-rev 5'-CCTTATCTTCAATCCATGTGTTATAGCCAGGAG-3' 

hSLC6A15 E684D hSLC6A15 E684D-fwd 5'-GGAAAAATACCGAGCGACATGCCATCTCCAAATTTTG-3' 

 hSLC6A15 E684D-rev 5'-CAAAATTTGGAGATGGCATGTCGCTCGGTATTTTTCC-3' 

hSLC6A15 G710R hSLC6A15 G710R-fwd 5'-GGATACTGCTCCCAATAGACGGTATGGAATAGG-3' 

 hSLC6A15 G710R-rev 5'-CCTATTCCATACCGTCTATTGGGAGCAGTATCC-3' 
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7. LIST OF ABBREVIATIONS 

 
3H   tritium 

°C   degree Celsius 

µg   microgram 

µl   microliter 

µM   microMolar 

AA   Amino Acid 

AD   Anxiety Disorder 

ADHD   Attention Deficit Hyperactivity Disorder 

ANNOVAR  ANNOtation VARiant 

bp   base pair 

BWA   Burrows-Wheeler Aligner 

CAST   Cohort Allelic Sum Test 

CDCV   Common Disease-Common Variant 

cDNA    complementary DeoxyriboNucleic Acid 

CDRV   Common Disease-Rare Variant 

Chip-Seq  Chromatin immunoprecipitation-Sequencing 

chr   chromosome 

cM   centiMorgan 

CMC   Combined Multivariate and Collapsing 

CNP   Copy Number Polymorphism 

CNS   Central Nervous System 

CNV   Copy Number Variant 

Con   Control 

cpm   counts per minute 

ddNTP  dideoxyNucleotide TriPhosphate 

DMEM   Dulbecco’s Modified Eagle Medium 

DNA   DeoxyriboNucleic Acid 

DSM-IV  Diagnostic and Statistical Manual of Mental Disorders IV 

DZ   DiZygotic 

eGFP   enhanced Green Fluorescent Protein 

ENCODE  ENCyclopedia Of DNA Elements 

ePCR   emulsion Polymerase Chain Reaction 

ESE   Exonic Splicing Enhancer 
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ESP   Exome Sequencing Project 

ESS   Exonic Splicing Silencer 

FCS   Fetal Calf Serum 

GABA   Gamma-AminoButyric Acid 

GAD   Generalized Anxiety Disorder 

GenRED  Genetics of Recurrent Early-Onset Major Depression 

GWAS   Genome-Wide Association Study 

HAM-A  HAMilton Anxiety scale 

HAM-D  HAMilton Depression scale 

HDL   High Density Lipoprotein 

HEK   Human Embryonic Kidney 

HPA   Hypothalamic-Pituitary-Adrenocortical 

IC50   Inhibition Concentration (Inhibition 50%)  

ICD International Statistical Classification of Diseases and Related 

Health Problems 

IGV   Integrative Genomics Viewer 

kb   kilobase 

LB   Lysogeny Broth 

LD   Linkage Disequilibrium 

LDL   Low Density Lipoprotein 

LMU   Ludwig-Maximilians-University 

LR-PCR  Long Range-Polymerase Chain Reaction 

M   Molar 

MA   Minor Allele 

MAF   Minor Allele Frequency 

MALDI-TOF  Matrix-Assisted Laser Desorption/Ionization-Time Of Flight 

MARS   Munich Antidepressant Response Signature 

Mb   Megabase 

M-CIDI  Munich version of the Composite International Diagnostic Interview 

MDD   Major Depressive Disorder 

MDS   MultiDimensional Scaling 

miRNA  micro RiboNucleic Acid 

mM   millimolar 

ml   milliliter 

MPIP   Max Planck Institute of Psychiatry 
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MPS   Massively Parallel Sequencing 

mRNA   messenger RiboNucleic Acid 

MZ   MonoZygotic 

NA    Not Assessed 

NAHR   Non-Allelic Homologous Recombination 

NaOH   sodium hydroxide 

NCS   National Comorbidity Survey 

ng   nanogram 

NGS   Next-Generation Sequencing 

NHGRI  National Human Genome Research Institute 

np   not polymorphic 

NT   NucleoTide 

OR   Odds Ratio 

PanIC   Panic International Consortium 

PAS    Panic and Agoraphobia Scale 

PBS   Phosphate Buffered Saline 

PCA   Principal Component Analysis 

PCR   Polymerase Chain Reaction 

PD   Panic Disorder 

PDL   Poly D-Lysine 

PFA   ParaFormAldehyde 

pg   picogram 

pM   picoMolar 

PMA   Presence of Minor Alleles 

PTSD   Post-Traumatic Stress Disorder 

QC   Quality Control 

SAM   S-AdenosylMethionine 

SCAN   Schedule for Clinical Assessment in Neuropsychiatry 

SD   Standard Deviation 

SHRiMP  SHort Read Mapping Package 

SIFT   Sorting Intolerant From Tolerant 

SKID   Structured Clinical Interview for DSM-IV 

SMA   Sum of Minor Alleles 

SNP   Single Nucleotide Polymorphism 

SNV   Single Nucleotide Variant 
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SOLiD   Sequencing by Oligonucleotide Ligation and Detection 

STR   Simple Tandem Repeat 

TFBS   Transcription Factor Binding Site 

UTR   UnTranslated Region 

VNTR   Variable Number Tandem Repeat 

WFA   Workflow Analysis Run 

WHO   World Health Organization 

WT   Wild Type 

WTCCC  Wellcome Trust Case Control Consortium 
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