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We investigate the two-proton capture reaction of the prominent rapid proton capture waiting point 
nucleus, 68Se, that produces the borromean nucleus 70Kr (68Se + p + p). We apply a recently formulated 
general model where the core nucleus, 68Se, is treated in the mean-field approximation and the three-
body problem of the two valence protons and the core is solved exactly. We compare using two 
popular Skyrme interactions, SLy4 and SkM*. We calculate E2 electromagnetic two-proton dissociation 
and capture cross sections, and derive the temperature dependent capture rates. We vary the unknown 
2+ resonance energy without changing any of the structures computed self-consistently for both core and 
valence particles. We find rates increasing quickly with temperature below 2–4 GK after which we find 
rates varying by about a factor of two independent of 2+ resonance energy. The capture mechanism 
is sequential through the f5/2 proton-core resonance, but the continuum background contributes 
significantly.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The abundance of most stable nuclei above iron in the universe 
can be understood as produced by various types of neutron cap-
ture [1,2]. However, production of about 40 stable isotopes cannot 
be explained in this way, but only through similar proton capture 
processes [3–7]. The basic ignition fuel is a large proton flux aris-
ing from a stellar explosion. The sequence of these reactions are 
then one proton capture after another until the proton dripline 
is reached and further captured protons are immediately emitted. 
This dripline nucleus usually must wait to beta-decay to a more 
stable nucleus which in turn can capture protons anew. This is the 
“rp-process” [8,9]. These p-nuclei are also believed to be produced 
by other methods: gamma-proton [4,10] and neutrino-proton pro-
cesses [11,12].

The beta-decay waiting time is large for some of these nu-
clei along the dripline, which for that reason are denoted waiting 
points [13]. However, another path is possible to follow for bor-
romean proton dripline nuclei where two protons, in contrast to 
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one, are necessary to produce a bound nucleus. Then two pro-
tons can be captured before beta-decay occurs [14,15]. The capture 
time and the corresponding mechanism are therefore important 
for the description of the outcome of these astrophysical processes 
[16,17].

We focus in this letter on one of these two-proton capture re-
actions leading from a prominent waiting point nucleus, 68Se [18,
19], to formation of the borromean proton dripline nucleus, 70Kr 
(68Se + p + p). Neither experimental nor theoretical specific reac-
tion information are available at the moment [20–22].

Traditionally, the reactions have been described as sequential 
one-proton capture by tunneling through the combined Coulomb 
plus centrifugal barrier. The tunneling capture mechanisms have 
been discussed as direct, sequential and virtual sequential decay 
[23–26]. They are all accounted for in the present formulation. 
The capture rate depends on temperature through the assumed 
Maxwell–Boltzmann energy distribution. It is then important to 
know the energy dependence of the capture cross section for given 
resonance energies, and especially in the Gamow window [27].

Clearly the desired detailed description requires a three-body 
model which is available and even applied to the present processes 
[28,29]. However, the crucial proton-core potentials have so-far 
been chosen phenomenologically to produce the essentially un-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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known, but crucial, single-particle energies. A new model involving 
both core and valence degrees of freedom was recently constructed 
to provide mean-field proton potentials derived from the effective 
nucleon–nucleon mean-field interaction [30–32]. In turn these po-
tentials produce new and different effective three-body potentials, 
which in the present letter is exploited to investigate the two-
proton capture rates.

The techniques are in place all the way from the solution of 
the coupled core and valence proton system [28,31,32], over the 
self-consistent three-body input and subsequent calculations [33,
34], to the capture cross sections and rates [35–38]. We shall first 
sketch the steps in the procedure used in the calculations. Then 
we shall discuss in more details the numerical results of interest 
for the astrophysical network computations, which calculates the 
abundances of the isotopes in the Universe.

2. Theoretical description

The basic formulation and the procedure are described in [28,
35,39]. The framework is the three-body technique but based 
on the proton-core potential derived through the self-consistently 
solved coupled core-plus-valence-protons equations [30,31]. The 
procedure is first to select the three-body method, second to for-
mulate how to calculate the capture rate, and finally to choose the 
numerical parameters to be used in the computations.

2.1. Three-body method

The many-body problem is solved for a mean-field treated core 
interacting with two surrounding valence protons forming a three-
body structure [28]. The details of this recent model are very elab-
orate, but already applied on two different neutron dripline nuclei 
[28,30]. It then suffices to sketch the method. The wave function 
is an antisymmetric product of a mean-field core Slater determi-
nant and a three-body cluster wave function. The novel procedure 
is first to find the mean-field solution for the core-nucleons in the 
presence of the external field from the two valence protons. Sec-
ond, the valence-proton to core interaction is obtained by folding 
the calculated mean-field core structure and the same mean-field 
nucleon–nucleon interaction. This provides the crucial interaction 
between each of the two valence protons and the core nucleus. The 
solution to this three-body problem redefines the external field 
acting on the core nucleons, and the procedure is repeated until 
convergence is reached.

The present application only relies on the three-body solution, 
where the self-consistently derived proton-core interaction is the 
main ingredient. We solve the three-body problem by use of the 
adiabatic expansion of the Faddeev equations [29] in hyperspheri-
cal coordinates. The key coordinate is the hyperradius, ρ , defined 
as the mean radial coordinate in the three-body system [39,41], 
that is

(2mn + mc)ρ
2 = mn(rv1 − rv2)

2 + mc

2∑
i=1

(rvi − Rc)
2 (1)

where mn , mc , rv1 , rv2 and Rc are neutron mass, core mass, 
valence-proton and core center-of-mass coordinates, respectively. 
The hyperradius is supplemented by five hyperangles, and the 
three-body wave functions, � J , are found for given angular mo-
menta, J , as described in [33]. When necessary the continuum is 
discretized by a large box confinement and the discretized contin-
uum states, ψ(i) , are calculated [35].
j
2.2. Reactions

The two-proton capture reaction p + p +c ↔ A +γ , where cross 
section, σppc , and the photodissociation cross section, σλ

γ , of order 
λ are related [39]. The three-body energy, E , and the ground state 
energy, E gr , determine the photon energy, Eγ = E + |E gr |. The dis-
sociation cross section is then given by

σλ
γ (Eγ ) = (2π)3(λ + 1)

λ((2λ + 1)!!)2

(
Eγ

h̄c

)2λ−1 d

dE
B(Eλ,0 → λ), (2)

where the strength function for the Eλ transition,

d

dE
B(Eλ,0 → λ) =

∑
i

∣∣∣〈ψ(i)
λ ||	̂λ||�0〉

∣∣∣2
δ(E − Ei), (3)

is given by the reduced matrix elements, 〈ψ(i)
λ ||	̂λ||�0〉, where 

	̂λ is the electric multipole operator, ψ(i)
λ is the wave function of 

energy, Ei , for all bound and (discretized) three-body continuum 
states in the summation. The capture reaction rate, R ppc , is given 
by Ref. [37]

R ppc(E) = 8π

(μcpμcp,p)3/2

h̄3

c2

(
Eγ

E

)2

σλ
γ (Eγ ), (4)

where μcp and μcp,p are reduced masses of proton and core 
and proton-plus-core and proton, respectively. For the astrophys-
ical processes in a gas of temperature, T , we have to average the 
rate in Eq. (4) over the corresponding Maxwell–Boltzmann distri-
bution, B(E, T ) = 1

2 E2 exp(−E/T )/T 3,

〈R ppc(E)〉 = 1

2T 3

∫
E2 R ppc(E)exp(−E/T )dE, (5)

where the temperature is in units of energy.

2.3. Interactions

The decisive interaction is related to the mean-field calculation 
of the core. We use the Skyrme interactions, SLy4 [42] and SkM* 
[43], both with acceptable global average properties. The applica-
tion on one specific nucleus requires adjustment to provide the 
known borromean character, that is unbound proton-core f5/2 res-
onance at 0.6 MeV [44] and two protons bound to the core. We 
achieve this by shifting all energies while leaving the established 
structure almost unaltered. The simplest consistent such modifica-
tion is by scaling all the Skyrme strength parameters, ti , by the 
same factors, 0.9515 and 0.98, respectively.

The density dependent t3-term of the Skyrme interaction can 
be viewed as a parametrized three-body potential. To simulate that 
effect we employ a short-range Gaussian, S0 exp(−ρ2/b2), which 
depends on the hyperradius, ρ . This diagonal structure-less three-
body Gaussian potential leaves the structure unaltered although 
the energies may change substantially. We choose b = 6 fm and 
S0 = −17.5 MeV and S0 = −11.4 MeV to reproduce the predicted 
0+ energy of −1.34 MeV [45,46] with the SLy4 and SkM* interac-
tions, respectively. The unknown 2+ energy is varied from almost 
bound (zero energy) to the top of the barrier by changing S0 from 
−35.05 MeV (−37.8 MeV) to −26.22 MeV (−28.6 MeV) for the 
SLy4 (SkM*) interaction. This fine-tuning is necessary since the 
keV-scale of binding is crucial for tunneling through single MeV 
height barriers. The level of keV and even MeV-accuracy is beyond 
the capability of many-body model calculations.
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Fig. 1. The adiabatic potentials for the 0+ (red, solid), and the 2+ (light-blue, 
dashed) configuration in 68Se+ p + p using the SLy4 (thick) and SkM* (thin) Skyrme 
interaction between core and valence protons, scaled to reproduce the experimen-
tal f5/2 resonance energy of 0.6 MeV in 68Se + p [44]. The dotted horizontal line 
is the 0+ energy at −1.34 MeV. The gaussian three-body potential is not included. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

3. Effective three-body potentials

The elaborate numerical calculations for SLy4 and SkM* produce 
the sets of coupled “one-body” potentials depending on hyperra-
dius as shown in Fig. 1 for both 0+ (solid) and 2+ (dashed) states. 
The thick and thin curves are, respectively, the potentials obtained 
with the SLy4 and SkM* interactions, which, as seen in the figure, 
are very similar to each other. The continuations beyond the 20 fm 
in the figure are almost quantitatively Coulomb plus centrifugal 
behavior and as such reveal no surprises. The kinks and fast bends 
reflect avoided crossings and related structure changes. They are 
especially abundant at small distances and around the barriers.

The 0+ ground-state at −1.34 MeV [45,46] has structure corre-
sponding to the configuration of the pronounced minimum in the 
lowest 0+ potential. This is the final state in the capture process 
independent of the specific mechanism. No 0+ resonances (above 
zero energy) are produced by the potentials in Fig. 1.

The decisive capture process proceeds within the 2+ contin-
uum from the large to the short-distance attractive region of the 
potentials shown in Fig. 1. The lowest minimum is rather similar 
to the 0+ minimum but the non-adiabatic repulsive terms, omit-
ted in the figure, increase the energy substantially. Unfortunately 
nothing is known about a 2+ resonance which would strongly in-
fluence the capture rate. Consequently the strength, S0, is used to 
vary the position of the 2+ resonance from almost bound to disap-
pearance above the barriers. Both the resonance energy, the height, 
and the rather broad Coulomb shape of the barrier strongly influ-
ence the capture process.

The structure of these potentials is substantially simpler than 
those obtained in [28] where low-lying single-proton states p3/2
and f5/2 both appeared. This simplification results from using the 
nucleon–nucleon mean-field effective interaction to calculate the 
proton-core potential. It is a novel deduction embedded in the de-
sign of our model, arising naturally due to identical interactions for 
both core and valence particles. There is no single-particle states of 
the other parity implying that no 1− three-body resonance state 
appear in the low-energy region for neither of these Skyrme inter-
actions.

4. Quantitative results

The all-important core-valence proton potential is derived nat-
urally and unambiguously by our mean-field core treatment. As a 
result the two-proton capture cross section follows directly, only 
depending on the three-body resonance level. This is discussed in 
Fig. 2. The electromagnetic E2 dissociation cross section, σ (λ=2)
γ (Eγ ), for the pro-

cess, 70Kr + γ →68 Se + p + p, as a function of photon energy for the SLy4 (thick) 
and SkM* (thin) interactions. The 0+ final state energy is −1.34 MeV and the 2+
resonance energies are E = 0.5, 1.0, 2.0, and 4.0 MeV, respectively. The discretized 
continuum states are with box sizes of ρmax = 150, 200 fm.

the following section, after which the resulting temperature av-
eraged reaction rates are presented. This is supplemented by a 
discussion of the reaction mechanism and its implication for the 
possible reactions.

4.1. Cross section

The incident flux of low-energy protons on the core nucleus 
may result in capture. The corresponding cross section is most eas-
ily obtained from calculation of the inverse reaction, that is pho-
todissociation of the 0+ ground state, �0, of 70Kr. The discretized 
continuum states, ψ(i)

λ , are computed and the cross section is ob-
tained from Eqs. (3) and (2) with λ = 2. The photodissociation 
cross section, obtained from Eq. (2), is shown in Fig. 2 as func-
tion of the three-body energy.

The peaks in the capture cross section occur at experimen-
tally unknown resonance energies where the tunneling probability 
is large. We therefore vary the energy from 0.5 MeV to 4.0 MeV
where the widths of the peaks in the cross section increase with 
energy as the top of the barrier is approached. The crucial quantity 
is the resonance energy as tested within the present framework by 
including less adiabatic potentials than needed for convergence. By 
readjusting to the same resonance energy by use of the three-body 
potential we recover the cross section in Fig. 2.

These features are simply understood as enhanced spatial over-
laps between the 2+ continuum states in the resonance region and 
the ground state wave function, expressed through Eq. (3). Beside 
the resonance contributions we also find significant, although sev-
eral orders of magnitude smaller, background contributions, which 
is independent of a sufficiently large discretization box [40].

4.2. Capture rates

The capture cross sections are the main ingredient in the cal-
culation of the two-proton absorption rate appropriate for the 
temperature dependent astrophysical network computation. The 
average rate in Eq. (5) is shown in Fig. 3 as a function of tem-
perature. The left and right panels correspond to the results ob-
tained with the SLy4 and SkM* interactions, respectively. The 
Boltzmann smearing factor produces very smooth and qualitative 
similar curves. They are zero at zero temperature and energy, 
because the barrier is infinitely thick. All rates then increase to 
a maximum at the Gamow peak where the best compromise is 
reached between the decreasing temperature distribution and the 
increasing tunneling probability. The main difference between the 
SLy4 and SkM* results arises from the smaller background con-
tribution in the second case. This fact produces smaller rates at 
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Fig. 3. Reaction rates, using SLy4 (left) and SkM* (right) interactions, for the radia-
tive capture process 68Se + p + p →70 Kr + γ , as function of temperature for the 
different 2+ resonance energies in Fig. 2. The black dashed curves are background 
contributions.

high temperatures, although the general features are very much 
the same in both cases.

The peak contribution moves to higher energy and becomes 
smoother with increasing resonance energy. Above temperatures 
of a few GK the average rate variation is moderate and the size 
roughly of order � 6 × 10−11 cm6[N Amol]−2s−1 or � 4 × 10−11

cm6[N Amol]−2s−1, depending on the Skyrme interaction. A low-
lying resonance energy corresponds to low-lying peak position of 
larger height. We emphasize that the background without reso-
nance contribution obviously is smaller but sizable as soon as the 
temperature exceeds about 4 GK (∼ 0.34 MeV). In other words, 
if temperatures are in the astrophysically interesting range be-
low about 1 GK, the size variations are substantial, and vice 
versa above a few GK the details from the microscopic origin are 
smeared out.

The actual size of the rate may reveal deceivingly little variation 
at the relatively high temperatures. However, the barrier height 
and width are all-decisive and both may easily be different for 
other systems where the single-particle structure at the Fermi en-
ergy is different and perhaps more complicated as studied in [28]. 
The relatively large 2+ background contribution might suggest cor-
responding relative large 0+ continuum contributions. However, 
the 0+ barriers in Fig. 1 are larger and the 0+ → 0+ transition as 
well require processes involving atomic electrons. It is again worth 
emphasizing that a superficially more complete calculation with 
many coupled potentials would provide the same rates after ad-
justing to the same resonance energy.

4.3. Reaction mechanism

The rate depends on the capture mechanism. We are here 
only concerned with three-body capture, but a dense environment 
would enhance four-body capture processes as discussed in [36]. 
The overall three-body process is tunneling through a barrier of 
particles in a temperature distribution of given density. Once inside 
the relatively thick barrier they have essentially only the option of 
emitting photons to reach the bound ground-state. However, the 
first of this two-step process can occur through different mech-
anisms, where the most obvious possibility is to be captured in 
different angular momentum states. The conservation of angular 
momentum and parity quantum numbers are crucial in connec-
tion with resonance positions.

If low-lying 1− continuum states are allowed they would be 
preferred. If 1− states are prohibited 2+ continuum states would 
be preferred, and the system would have a longer effective lifetime. 
Fig. 4. The probability of the three-body, 68Se + p + p, wave function for the low-
est allowed potential with the SLy4 interaction, integrated over directional angles 
(sin2(α) cos2(α) ∫ |�n(α, ρ, x, y)|2dxdy), as a function of hyperradius, ρ , and 
hyperangle, α, related to the Jacobi coordinate system where “x” is between core 
and proton.

This could very well be why some systems appear to be critical 
waiting point nuclei. In general, low-lying resonances enhance the 
contributions substantially. This selection depends strongly on the 
nucleus under investigation.

For a given angular momentum of the three-body continuum 
states, we still may encounter several qualitatively different ways 
of absorbing two protons from the continuum [47]. These mech-
anisms were discussed in [23] for the inverse process of dis-
sociation, that is direct, sequential and virtual sequential decay. 
They are all accounted for in the present formulation. In [28] we 
concluded that the direct process is most probable for very low 
three-body energy when two-body subsystems are unbound. If the 
energy is larger than stable two-body substructures such interme-
diate vehicles enhance the rates and the mechanism is sequential.

Even when it is energetically forbidden to populate two-body 
resonance states it may be advantageous to exploit these struc-
tures virtually while tunneling through an also energetically for-
bidden barrier. This is appropriately named the virtual sequential 
two-body mechanism. It may be appropriate to emphasize that 
a similar three-body virtual mechanism is forbidden because the 
three-body energy is conserved in contrast to the energy of any 
two-body subsystem.

The mechanism for the present capture process is revealed in 
Fig. 4 where the 2+ probability integrated over the directional an-
gles is shown for the lowest potential as function of hyperradius 
and one of the Jacobi angles. It is a strikingly simple structure for 
hyperradii larger than about 15 fm, which for these coordinates is 
equivalent to one proton at that distance from the center of mass 
of the combined proton-core system. Since the Jacobi angle, α, is 
either close to zero or π/2, this simply means that one proton is 
staying very close to the core for all these hyperradii. Eventually 
also this proton has to move away from the core, since no bound 
state exists. But this process is sequential through the substructure 
characterized as the proton-core f5/2 resonance.

The higher-lying configurations corresponding to the three fol-
lowing potentials also show precisely the same f5/2 structure. This 
is explained by combining the compact proton-core f5/2 resonance 
with one non-interacting (apart from Coulomb and centrifugal) 
distant proton in any angular momentum configuration consistent 
with a 2+ structure. The angular momenta capable of combin-
ing with f5/2 to produce 2+ are p1/2, p3/2, f5/2, f7/2, and h9/2. 
This also implies that for temperatures much smaller than the 
f5/2 resonance energy it would be energetically advantageous to 
start the capture process in a configuration corresponding to di-
rect three-body capture. The change of structure, around avoided 
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level crossings, to two-body resonance configurations would then 
greatly reduce the barrier and substantially enhance the capture 
rate.

5. Conclusion

The new model that treats the core and the two valence parti-
cles self-consistently and simultaneously is applied on the waiting 
point nucleus (68Se) for the astrophysical rp-process. This is done 
with only two phenomenological tuning parameters, that is scaling 
of the nucleon–nucleon interaction strength and addition of struc-
tureless three-body potential. Both adjustments leave the structure 
unchanged while shifting the energies to desired positions. The 
results are therefore much less arbitrary than usual three-body 
calculations, as demonstrated by the robustness against changes 
of the Skyrme interactions, SLy4 and SkM*. Adding two protons, 
but not one, produces a bound system, 70Kr, which is then a bor-
romean nucleus.

We calculate the radiative two-proton capture rate as function 
of temperature for different resonance energies. We investigate the 
mechanism and find that sequential capture of one proton after 
the other by far is dominating. The first available single-particle 
resonance state, f5/2, is the vehicle, whereas the other proton can 
approach in continuum states of even higher angular momentum. 
After tunneling through the barrier into the 2+ resonance state, in 
practice only E2 electric transition to the ground state is allowed. 
Background capture through non-resonance continuum states also 
contributes significantly to the capture process. The sequential 2+
capture mechanism might for other nuclei be replaced by for ex-
ample the normally larger 1− capture.

We emphasize that the crucial properties are the energies and 
angular momentum quantum numbers of the single-particle core 
states at the Fermi surface. The cross sections and capture rates 
can therefore be substantially different for another nucleus. We 
have the crucial properties determined by the procedure, which 
moves the uncertainties from the three-body level to the choices 
made in the many-body treatment. Different Skyrme interactions 
suitable for dripline nuclei give similar results for the same nu-
cleus, whereas inappropriate Skyrme interactions might give very 
different results. The point is that we need more information to 
choose wisely, but nucleon–nucleon effective interactions can now 
be used directly to predict electromagnetic capture rates. Even 
more generally, this line of deduction can also be used if the mean-
field treatment is replaced altogether by something better.

In conclusion, the two-proton capture rates at a waiting point 
at the dripline are successfully calculated with a conceptually rel-
atively simple, but technically advanced, new model. The same 
effective nucleon–nucleon interaction is used for both the nuclear 
mean-field and the proton-core calculations. The temperature de-
pendent rate and the corresponding capture mechanism are calcu-
lated with less ambiguity than in previous calculations. A number 
of applications are now feasible.
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