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ABSTRACT

Aims. We aim to study the large-scale structure of an extragalactic serendipitous X-ray survey with unprecedented accuracy thanks
to the large statistics involved, and provide insight into the environment of AGN at the epochs when their space density declines
(z ∼ 1−2).
Methods. In this paper we present the two-point angular correlation function of the X-ray source population of 1063 XMM-Newton
observations at high Galactic latitudes, comprising up to ∼30 000 sources over a sky area of ∼125.5 deg2, in three energy bands:
0.5–2 (soft), 2–10 (hard), and 4.5–10 (ultrahard) keV. This is the largest survey of serendipitous X-ray sources ever used for clustering
analysis.
Results. We have measured the angular clustering of our survey and find significant positive clustering signals in the soft and hard
bands (∼10σ and ∼5σ, respectively), and a marginal clustering detection in the ultrahard band (<1σ). We find dependency of the
clustering strength on the flux limit and no significant differences in the clustering properties between sources with high hardness
ratios (and therefore likely to be obscured AGN) and those with low hardness ratios. We deprojected the angular clustering parameters
via Limber’s equation to compute their typical spatial lengths. From that we have inferred that AGN at redshifts of ∼1 are embedded
in dark matter haloes with typical masses of 〈log MDMH〉 � 12.60 ± 0.34 h−1 M� and lifetimes of tAGN = 3.1−4.5 × 108 yr.
Conclusions. Our results show that obscured and unobscured objects share similar clustering properties and therefore they both reside
in similar environments, in agreement with the unified model of AGN. The short AGN lifetimes derived suggest that AGN activity
might be a transient phase that can be experienced several times by a large fraction of galaxies throughout their lives.
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1. Introduction

Active galactic nuclei (AGN) are the brightest persistent ex-
tragalactic sources known, with their X-ray emission the most
common feature among them. Thanks to their large bolometric
output, AGN can be detected through cosmological distances,
which makes them essential tracers of galaxy formation and
evolution, as well as the large-scale structure of the Universe.
Clustering studies of AGN at redshift ∼1, when strong structure
formation processes took place, are key tools for understanding
the underlying mass distribution and evolution of cosmic struc-
tures (Hartwick & Schade 1990).

Moreover, a number of works suggest that the most luminous
AGN were formed earlier in the Universe, while the less lumi-
nous ones were formed later (Ueda et al. 2003; Hasinger et al.
2005; Barger et al. 2005; La Franca et al. 2005; Silverman et al.
2008; Ebrero et al. 2009). Understanding the large-scale cluster-
ing of AGN will therefore provide more clues to the environment
of AGN at these epochs and to how it is linked to the formation
and accretion of matter onto the central supermassive black hole,
since it is thought to be triggered by major mergers or close in-
teractions between galaxies (i.e. Kauffmann & Haehnelt 2000;
Cavaliere & Vitorini 2002; Menci et al. 2004; Di Matteo et al.
2005; Granato et al. 2006).

The simplest way to measure clustering is the two-point an-
gular correlation function, which measures the excess probabil-
ity of finding a pair of sources at a given angular distance. There

have been multiple determinations of the angular correlation
function of both optically and X-ray selected AGN (Vikhlinin &
Forman 1995; Akylas et al. 2000; Giacconi et al. 2001; Basilakos
et al. 2004; Basilakos et al. 2005; Gandhi et al. 2006; Carrera
et al. 2007; Miyaji et al. 2007; Ueda et al. 2008). These works
have shown that AGN detected in soft X-rays (0.5–2 keV) tend to
cluster strongly. Nevertheless, at higher energies many of these
results were inconclusive because of the small-number statistics,
ranging from marginally significant to no clustering detections at
all.

The angular correlation function, however, only measures
overdensities projected in the sky thus blurring the underly-
ing spatial structure. With larger and more accurate spectro-
scopic identification campaigns of AGN, an increasing number
of works have calculated the spatial clustering of these sources
(e.g. Mullis et al. 2004; Gilli et al. 2005; Yang et al. 2006; Gilli
et al. 2009). The clustering properties derived from these deter-
minations have been used to evaluate the evolution of AGN clus-
tering with redshift, and the mass of dark matter haloes (DMH)
in the context of a cold dark matter (CDM) scenario, in which
DMH of different mass cluster differently.

To accurately measure the angular correlation function, a
sample that achieves both width (to prevent biases caused by
a single structure) and depth (to ensure high angular density)
is needed. Moreover, X-ray selected samples are less biased
against obscuration than optically selected samples, especially in
the 2–10 keV energy range, and are therefore an ideal ressource
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for large-scale structure and evolutionary analysis. In this paper
we use 1063 XMM-Newton observations at high Galactic lati-
tudes over a sky area of 125 deg2 (Mateos et al. 2008) to compute
the angular correlation function of serendipitous X-ray sources
in three energy bands: 0.5–2 keV, 2–10 keV and 4.5–10 keV. The
sample comprises over ∼30 000 sources, thus being the largest
compiled sample to investigate clustering so far.

This paper is organised as follows: in Sect. 2 we overview
the sample used in this work and describe its general properties.
In Sect. 3 we perform a crude analysis similar to the traditional
counts-in-cells methods as a preliminary test for clustering. In
Sect. 4 we undertake the calculation of the angular correlation
function of our sample in different energy bands, while in Sect. 5
we study the deprojection to the real space of our results via
the inversion of Limber’s equation. Finally, our conclusions are
reported in Sect. 6.

Throughout this paper we have assumed a cosmological
framework with H0 = 70 km s−1 Mpc−1,ΩM = 0.3 andΩΛ = 0.7
(Spergel et al. 2003).

2. The X-ray data

In this work we use the sample presented in Mateos et al. (2008).
The observations are a subset of those employed in produc-
ing the second XMM-Newton serendipitous source catalogue,
2XMM1 (Watson et al. 2009). 2XMM is composed by observations
from the European Photo Imaging Cameras (EPIC) on board
XMM-Newton, although this sample was built using data from
the EPIC-pn camera only (Turner et al. 2001).

The selected observations fulfill the following criteria:

1. High galactic latitude fields (|b| > 20◦) in order to minimize
the contamination from Galactic sources.

2. Fields with at least 5 ks of clean exposure time.
3. Fields free of bright and/or extended X-ray sources.

If there were observations carried out at the same sky position,
the overlapping area from the observation with the shortest clean
exposure time was removed. The resulting sample comprised
1129 observations. For the purposes of this work we have also
removed the observations belonging to the Virgo Cluster, M 31,
M 33, Large Magellanic Cloud and Small Magellanic Cloud
fields, ending up with a final sample of 1063 observations.

The analysis presented in this paper has been carried out in
the following energy bands:

– soft: 0.5–2 keV;
– hard: 2–10 keV;
– ultrahard: 4.5–10 keV.

Sources detected in each energy band have a minimum detection
likelihood of 15 (which roughly corresponds to a 5σ significance
of detection, Cash 1979) and fluxes <10−12 erg cm−2 s−1. The
targets of the observations were removed.

The sky coverage as a function of the X-ray flux was cal-
culated using an empiral approach, computing a sensitivity map
for each observation that provides the minimum count rate re-
quired for a source to be detected at each position in the field
of view, taking into account the local effective exposure and
the background level. The procedure is described in detail in
Carrera et al. (2007) and Mateos et al. (2008). Sources with ac-
tual count rates below the sensitivity map value at their position
were therefore excluded from the analysis for consistency with

1 http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/

Fig. 1. Sky area of the survey as a function of flux in the soft (solid line),
hard (dashed line) and ultrahard (dot-dashed line) bands.

Table 1. Sample summary.

Band (keV) Nobs
a Nsou

b Flux limit Area
(erg cm−2 s−1) (deg2)

Soft (0.5–2) 1063 31 288 1.4 × 10−15 125.52
Hard (2–10) 1063 9188 9.2 × 10−15 125.52
Ultrahard (4.5–10)c 432 1259 1.4 × 10−14 51.47

a Number of XMM-Newton observations used. b Number X-ray sources
used. c For observations with exposure times >20 ks only.

the sky area calculations. The fraction of sources removed this
way is less than 4% in the 0.5–2 keV band,∼5% in the 2–10 keV
band, and ∼7% in the 4.5–10 keV band. Similarly as in Mateos
et al. (2008), we have also only considered sources that were
detectable over a minimum area of Ωmin = 1 deg2 in order to
avoid uncertainties due to the low count statistics, or inaccuracy
in the sky coverage calculation at the very faint detection limits.
Less than 0.5% of the sources in the soft and hard bands were re-
moved this way, while in the ultrahard band this fraction raises to
∼1.5%. Changes in the flux limits of the survey were negligible.

Since the density of sources per field is a key issue to the
study of angular clustering (a low source density can lead to a
no-clustering signal even if there is an actual clustering present,
see Carrera et al. 2007), we have removed the fields with expo-
sure times below 20 ks from the analysis in the ultrahard band.
This way we enhance the source density in this band from ∼1 to
∼4 sources per field (still far from the source density in the soft
and hard bands, ∼30 and ∼10 sources per field, respectively), for
a total of 432 fields.

Hence, the overall sky coverage of the sample is 125.52 deg2

comprising 31 288 and 9188 sources in the softand hard bands,
respectively. The sky area covered by the >20 ks ultrahard sam-
ple is ∼51.5 deg2 for a total of 1259 sources (see Fig. 1). The
properties of the sample are summarised in Table 1.

3. Cosmic variance

As a preliminary test for source clustering, we have compared
the actual number of sources detected in each field Nk with
the number of expected sources λk obtained from the best fit
log N − log S of Mateos et al. (2008). This is similar to the

http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/
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traditional count-in-cells method. If there is a cosmic struc-
ture present in a few (or most of the) fields, the number of
sources detected would be significantly different compared to
that of a random uniform distribution as measured by the overall
log N − log S .

For this purpose we have used the cumulative Poisson distri-
butions

Pλk (≥ Nk) =
∑∞

l=Nk
Pλk (l), Nk > λk

Pλk (≤ Nk) =
∑Nk

l=0 Pλk (l), Nk < λk,
(1)

where Pλk (l) is the Poisson probability of detecting l sources
when the expected number of sources is λ. The likelihood statis-
tics for the whole sample is hence

L′ = −2
∑

k

ln Pλk (≥ Nk) − 2
∑

k′
ln Pλk′ (≤ Nk′ ), (2)

where k runs over the fields for which Nk > λk and k′ runs over
the fields for which N′k < λ

′
k. This procedure is the same as the

one used in Carrera et al. (2007), and differs slightly from that of
Carrera et al. (1998) which uses Pλ(l) instead of the cumulative
probabilities.

The observed L′ values thus obtained were compared to
1 000 000 simulated likelihood values calculated using λk and
Poisson statistics, finding that the number of simulations with
likelihood values above the observed ones were 0, 6522 and
703 713 for the soft, hard and ultrahard bands, respectively. It
can be seen that there are significant deviations from the ex-
pected number of sources from a random uniform distribution
in the soft and hard bands.

The fact that all the simulations in the soft band show better
likelihoods than our sample indicates that we can set up a lower
limit for the significance of the deviation (i.e. an evidence for
clustering) of at least �6σ, whereas in the hard band the devia-
tion is of the order of ∼3σ. The small number of simulations in
the ultrahard band with likelihoods better than the observed ones
suggests that no significant deviations (well below 1σ) from the
random distribution were found, probably due to the large sta-
tistical noise (Stewart et al., in preparation). However, these re-
sults point out in the direction that a cosmic large-scale structure
might be present in most of the observations, therefore setting
ground to more ellaborate clustering analysis.

4. The angular correlation function

The two-point angular correlation function w(θ) determines the
joint probability of finding two objects in two small angular re-
gions δΩ1 and δΩ2 separated by an angular distance θ with re-
spect to that of a random distribution (Peebles 1980),

δP = n2δΩ1δΩ2[1 + w(θ)], (3)

where n is the mean sky density of objects. If w(θ) = 0 the dis-
tribution is homogeneous.

The angular separation is a projection in the sky of the actual
spatial separation between two sources at different redshifts thus
somewhat blurring the true underlying spatial clustering, which
needs accurate and highly complete redshift determinations to
be properly measured. The angular correlation function is, nev-
ertheless, a powerful approach given the large size of the present
two-dimensional extragalactic sample.

The spatial clustering, however, can be estimated by depro-
jecting the computed angular correlation function assuming a
given redshift distribution (which can be either empirically mea-
sured or derived from a luminosity function model) via the in-
version of Limber’s equation (see Sect. 5.1).

4.1. Method

To calculate the angular correlation function we have used the
estimator proposed by Landy & Szalay (1993):

w(θi) =
DD − 2DR + RR

RR
, (4)

where DD, DR and RR are the normalised number of pairs of
sources in the ith angular bin for the Data-Data, Data-Random
and Random-Random samples, respectively. DD, DR and RR
are normalised dividing them by the total number of pairs in the
sample:

fDD = ND(ND − 1)/2
fDR = NDNR
fRR = NR(NR − 1)/2.

(5)

To produce the random source sample against which we have
compared the real source sample searching for overdensities at
different angular distances, we have tried to mimic as closely
as possible the real distribution of the detection sensitivity of
the survey. The method employed here is similar to that used in
Carrera et al. (2007) and can be summarised as follows:

1. we formed a pool that included all the real sources with de-
tection likelihoods ≥15 in the band under study, irrespective
of whether their count rates were above the sensitivity map
of their corresponding field at the source position or not;

2. for each field, we extracted sources at random from this pool
keeping their original count rates and distances to the optical
axis of the X-ray telescope but randomizing their azimuthal
angle around it;

3. if the source had a count rate above the sensitivity map of the
field under consideration at the new position, it was kept in
the random sample. Otherwise, the source was discarded and
a new source was drawn from the pool until the number of
valid simulated sources matched the number of real detected
sources in the field.

This method allowed us to reproduce the decline of the detec-
tion sensitivity with the off-axis angle in the simulated sample.
We have performed 100 simulations of the whole sample in each
band this way. For comparison, we have plotted in Fig. 2 the
log N− log S relations for the real and random samples in the
soft and hard bands, respectively. Both curves match very well
along the entire flux range except at fluxes close to the flux limit
of the survey, where the source counts of the simulated sam-
ple slightly underestimates the source counts of the real sam-
ple. However, the overall agreement is excellent and therefore
the above method provides a good random sample for clustering
analysis purposes.

The errors in different angular bins are not independent from
one another. To estimate the errors we have followed the method
described in Miyaji et al. (2007) who computed the covariance
matrix in the form

Mi j =
∑Nsim

k=1

[
wk

R(θi) − 〈wR(θi)〉
] [
wk

R(θ j) − 〈wR(θ j)〉
]
/Nsim

× [1 + w(θi)]1/2
[
1 + w(θ j)

]1/2
,

(6)

where wk
R(θi) is the angular correlation function for the kth sim-

ulation in the ith angular bin, 〈wR(θi)〉 is their mean value, w(θi)
is the actual value for the angular correlation function computed
from Eq. (4) and Nsim is the total number of simulations. The
square root of the diagonal elements Mii are hence the scaled
errors for each bin in the angular correlation function.
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Fig. 2. Source counts of the real (triangles) and simulated samples
(dots) in the soft (upper panel) and hard (lower panel) bands.

4.2. Fit to an analytical model

The angular correlation function calculated in Sect. 4.1 can be
described by a power-law model in the form

wmodel(θ) =

(
θ

θ0

)1−γ
, (7)

where 1 − γ is the slope and θ0 is the angular correlation length.
We have fitted the data using a χ2 technique. The fits were

carried out over the range in which we had positive signal
(50–1000 arcsec). Similarly as in Miyaji et al. (2007), in order
to take into account the correlations between errors computed in
Sect. 4.1 we have minimised the expression

χ2 = ΔT M−1Δ, (8)

where M−1 is the inverse of the covariance matrix (Eq. (6)), and
Δ is a vector such as

Δi = w(θi) − wmodel(θi) + IC. (9)

IC is a constant that accounts for the integral constraint, which
is a bias in the correlation function that occurs when a positive
correlation is present at angular scales comparable to the indi-
vidual field size. The mean surface density of objects from the
survey is therefore too high thus producing a negative bias in the

Table 2. Summary of the fits.

Band (keV) Nsou θ0 γ − 1 χ2/d.o.f.
(arcsec)

Soft (0.5–2) 31288 22.9 ± 2.0 1.12 ± 0.04 8.4
7.7 ± 0.1 0.8 (fixed) 12.3

Hard (2–10) 9188 29.2+5.1
−5.7 1.33+0.10

−0.11 1.9
5.9 ± 0.3 0.8 (fixed) 3.0

Ultrahard (4.5–10) 1259 40.9+19.6
−29.3 1.47+0.43

−0.57 0.5
7.4 ± 1.4 0.8 (fixed) 0.6

angular correlation function (Basilakos et al. 2004). The integral
constraint can be formally calculated by

IC =

∫ ∫
dΩ1dΩ2w(θ)∫ ∫

dΩ1dΩ2
, (10)

where the integrals are carried out over the whole area of the
survey. However, since the dependence of the sensitivity on the
area of the survey is rather complicated we have estimated IC
empirically. For this, we have calculated the angular correlation
function in the absence of correlation via the average of Nsim
realisations of w(θ) in which we have replaced the real data by
random samples simulated independently using the method de-
scribed in Sect. 4.1 (Carrera et al. 2007). The values of IC thus
obtained are small (∼9.5×10−3) but not negligible, and ignoring
them can produce underestimations in the strength of the clus-
tering signal.

4.3. Results

In this section we present the results obtained after fitting the
overall samples to the power-law model described in Sect. 4.2
in each energy band. The best-fit parameters are summarised in
Table 2 along with the number of sources involved. These val-
ues correspond to the fits in the 50–1000 arcsec range applying
the integral constraint correction. The reported errors are 1σ. Fit
results are plotted along with the observed binned angular corre-
lation function in Fig. 3.

In the soft band (0.5–2 keV) we detect a high-significance
(∼10σ) clustering signal with a correlation length of θ0 =
22.9 ± 2.0 arcsec and a slope of γ − 1 = 1.12 ± 0.04 after
correcting for the integral constraint. If we ignore that correc-
tion in our fits, the correlation lengths are comparable within
the error bars but the power-law becomes significantly steeper
(γ − 1 = 1.29 ± 0.04). Similar values for the slope γ − 1 in
this band were found by Gandhi et al. (2006) and Carrera et al.
(2007), who obtained γ − 1 = 1.2 albeit with larger (up to a fac-
tor 10) error bars. Our best-fit correlation length θ0 is consistent
with that of Carrera et al. (2007) (θ0 = 19+7

−8 arcsec) within the
error bars, but it is significantly larger than that of Gandhi et al.
(2006) (θ0 = 6.3 ± 3.0 arcsec). In general, our results without
applying the integral constraint correction show slightly larger
correlation lengths and steeper slopes, although generally con-
sistent with the IC corrected results within the error bars.

For comparison with other works that reported their results
with a fixed γ − 1 we have also made the fits fixing the slope
to the canonical value of γ − 1 = 0.8 (e.g. Peebles 1980). The
correlation length drops to θ0 = 7.7±0.1 arcsec then, which is in
good agreement with Puccetti et al. (2006) (θ0 = 5.2 ± 3.8 arc-
sec) and Carrera et al. (2007) (θ0 = 6 ± 2 arcsec) although
our parameters are much more constrained thanks to the large
statistics. Our result is smaller (by 2σ) than that computed by

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=2
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Fig. 3. Angular correlation function in the soft (top panels), hard (centre panels) and ultrahard (bottom panels) bands. Left hand panels are
represented in linear-log scales, while right hand panels are represented in log-log scales. Solid dots are the observed data. Solid triangles represent
the average random estimation of w(θ) used to calculate the integral constraint (see text). Overplotted is the best-fit χ2 with and without fixed slope
(dashed and solid lines, respectively).

Basilakos et al. (2005) using the XMM-Newton/2dF survey (θ0 =
10.4 ± 1.9 arcsec). On the other hand, Ueda et al. (2008) found
a correlation length of θ0 = 5.9+1.0

−0.9 arcsec in the SXDS survey,
smaller than ours by ∼2σ, while Miyaji et al. (2007) obtained
a much weaker clustering strength of θ0 = 3.1 ± 0.5 arcsec
for sources in the COSMOS field. Similarly, Yang et at. (2003)
found a ∼2σ clustering signal in Chandra observations of the

Lockman Hole North-West region with θ0 = 4 ± 2 arcsec. The
samples used by Yang et al. (2003) and Miyaji et al. (2007) reach
limiting fluxes one order of magnitude deeper than that of our
sample. Therefore, their very low correlation lengths compared
with ours could be explained in terms of a dependence of the
clustering strength on the flux limit of the sample involved (see
Sect. 4.4).

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=3
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In the hard band (2–10 keV) the power-law becomes steeper
(γ−1 = 1.33) and the clustering is stronger (θ0 = 29.2+5.1

−5.7 arcsec)
although marginally consistent with the results in the soft band
within the 1σ error bars. The clustering detection is still very sig-
nificant (∼5σ). The sources detected in the hard band are less bi-
ased against absorption, and if the unified model of AGN is cor-
rect (the obscuration of the nucleus is due to orientation effects
only) one might not expect significant differences in the clus-
tering properties of obscured and unobscured sources. However,
accurate angular clustering measurements in this band have been
difficult because of the limitations caused by the small-number
statistics. For instance, Gandhi et al. (2006), Carrera et al. (2007)
and Ueda et al. (2008) were not able to obtain significant clus-
tering signal in this band. Basilakos et al. (2004) found results
consistent with ours (γ−1 = 1.2±0.3 and θ0 = 48.9+15.8

−24.5 arcsec)
but with much larger error bars. Puccetti et al. (2006) are also in
agreement with us (θ0 = 12.8± 7.8 arcsec) within their large un-
certainties. For a canonical slope of 0.8, Yang et al. (2003) found
θ0 = 40±11 arcsec, much larger than ours (θ0 = 5.9±0.3 arcsec)
with a significance of ∼4σ. Such a strong clustering is somewhat
surprising and it is much higher than any other reported angular
clustering analysis in this band using a fixed canonical slope (al-
though it is roughly consistent with the result of Basilakos et al.
2004 for a fixed γ − 1 = 0.8). We would like to stress, however,
that the characterisation of the angular correlation function us-
ing a fixed slope might not represent the true clustering of the
X-ray sources (see the differences between both best-fit curves
in Fig. 3). Indeed, the goodness of fit in both the soft and hard
bands shows that when we allow the slope to float free, the fit to
our measured w(θ) is better than when it is fixed to the canoni-
cal value of γ = 1.8 (see Table 2). However, we will make use
of our fixed-slope fit results elsewhere in this paper in order to
make comparisons with other works that only reported γ = 1.8
results due to the low statistics.

We have also performed the angular clustering analysis in the
ultrahard band (4.5–10 keV) obtaining inconclusive results, even
after using only deeper fields (see Sect. 2). We found marginal
clustering signal (∼1σ) in this band, with the best-fit parameters
consistent with those of the soft and hard bands (see Table 2),
and in good agreement with the results of Miyaji et al. (2007).

4.4. Dependence on the flux limit

Previous studies on the angular clustering of Chandra Deep
Field sources using different subsamples suggest that the clus-
tering strength might depend on the flux limit of the sample
(Giacconi et al. 2001; Plionis et al. 2008). Similar results with
other samples with different depths seem to point out also in
this direction. We have investigated this behavior in our soft and
hard samples (where we have enough statistics) by splitting both
samples into subsamples with different flux limits and then com-
puting their angular correlation funtion. This means that we are
using all sources cumulatively above the given flux limit. The
results of these fits are reported in Table 3. Errors are 1σ.

We can see that if we leave both parameters θ0 and γ − 1
free, the clustering strength significantly increases and the power
law becomes steeper as we move towards brighter flux limits in
the soft band. Something similar is observed in the hard band,
although in this case we were unable to simultaneously fit both
parameters in the brightest subsamples due to the low source
density.

In order to compare these results with other works we froze
γ−1 ≡ 0.8. The resulting best-fit correlation length θ0 still shows
a strong dependence with the flux limit of the subsample. In

Table 3. Summary of the fits in different flux-limited subsamples.

Band (keV) Flux limit Nsou θ0 γ − 1
(erg cm−2 s−1) (arcsec)

Soft (0.5–2) 5 × 10−15 23264 27.3+3.2
−3.3 1.16+0.05

−0.06
8.7 ± 0.1 0.8 (fixed)

Soft (0.5–2) 1 × 10−14 12 046 37.3+5.0
−5.4 1.28+0.08

−0.09
9.9± 0.2 0.8 (fixed)

Soft (0.5–2) 4 × 10−14 1346 87.8+8.5
−13.4 2.34+0.31

−0.34
7.6 ± 1.5 0.8 (fixed)

Hard (2–10) 3 × 10−14 4790 23.5+11.5
−12.4 1.11+0.20

−0.24
8.30.3
−0.4 0.8 (fixed)

Hard (2–10) 6 × 10−14 1571 14.1+1.5
−1.4 0.8 (fixed)

Hard (2–10) 9 × 10−14 609 19.2+4.0
−3.9 0.8 (fixed)

Fig. 4 we have plotted these points along with the results from
other surveys such as CDF-N and CDF-S (Plionis et al. 2008),
CLASXS (Yang et al. 2003), COSMOS (Miyaji et al. 2007),
XMM-2dF (Basilakos et al. 2004, 2005), ELAIS-S1 (Puccetti
et al. 2006), XMM-LSS (Gandhi et al. 2006) and AXIS (Carrera
et al. 2007). In Fig. 4 there seems to be a linear trend θ0-flux in
spite of the large uncertainties in most of the surveys.

We tried to formalize the observed trend by fitting the points
to a power-law in the form θ0 = T (S/S 15)α, where S 15 =
1 × 10−15 erg cm−2 s−1 and the normalisation T is the expected
correlation length at S 15. We find that α = 0.15 ± 0.01 and
T = 6.98 ± 0.10 arcsec in the soft band, and α = 0.34 ± 0.04
and T = 2.72+0.31

−0.29 arcsec in the hard band, respectively.
Although our points match well with the results from other

surveys within the error bars of the latter, they seem to follow
a slightly different trend. We therefore fitted our points alone
obtaining α = 0.11 ± 0.01 and T = 7.37+0.11

−0.12 arcsec, and
α = 0.35+0.06

−0.04 and T = 2.59+0.41
−0.39 arcsec in the soft and hard

bands, respectively. Fitting the rest of the surveys data points
and excluding ours provide the following best-fit parameters:
α = 0.44+0.08

−0.07 and T = 5.55 ± 0.39 arcsec in the soft band, and
α = 0.39+0.07

−0.08 and T = 2.99+0.46
−0.45 arcsec in the hard band.

There are no significant differences between the fits in the
hard band, all of them consistent with each other. In the soft
band, however, strong differences arise, our data points suggest-
ing a much milder dependence on the flux limit than that pre-
dicted by other surveys. Although our data points do not look
visually misplaced with respect to the general trend (with the
exception of the last point at the highest flux limit, which could
be severely affected by the low statistics), the fits in which they
are involved are dominated by them due to their much smaller
error bars. We have also checked that the above results do not
significantly change by removing the point at the highest flux
limit, the fits still dominated by the tiny error bars of the rest
of the points. On the other hand, the Chandra Deep Field data
points alone suggest a stronger dependence in both energy bands
with respect to the one we would expect from the other surveys,
which might be caused by cosmic variance or the so-called am-
plification bias (caused by the merging of a pair of sources into a
single source due to the PSF of the detector at small angular sep-
arations, Vikhlinin & Forman 1995) as discussed in Gilli et al.
(2005) and Plionis et al. (2008).

We have also checked whether the flux limit dependence
is still significant using independent flux bins. Our data points
plotted in Fig. 4 are not independent from each other, since the
sources above a given flux limit are also present in the brighter
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Fig. 4. Best-fit correlation length (for γ − 1 ≡ 0.8) as a function of the flux limit of the sample (at zero area) in the soft (left panel) and hard
(right panel) bands. Overplotted is the best fit to all points (solid line), our sample only (dashed line), and the rest of the surveys excluding our data
points (dot-dashed line). The points belonging to our sample are not independent from each other (i.e. the sources are used cumulatively above the
given flux limit).

subsamples. Therefore, we have studied the flux dependence us-
ing independent data points. As shown in Fig. 5 the trend is also
very clear in this case, being much steeper in the hard band than
in the soft band (α = 0.67 ± 0.09 against α = 0.26 ± 0.02) thus
suggesting that the clustering strength of the sources detected in
the 2–10 keV band is significantly more dependent on the flux
limit of the subsample.

There are several possible explanations for the θ0-flux limit
trend. One of them could be that, since X-ray surveys at differ-
ent flux limits are, in principle, sampling different populations of
sources, they have different clustering properties. Deep pencil-
beam surveys will probe fainter and typically further sources
than wide-area bright surveys, thus suggesting a possible de-
pendence of clustering with redshift. Other simple explanation
could be that pairs of sources in deep surveys (hence with fainter
flux limits) tend to be separated at smaller angular distances due
a projection effect. If this is the actual cause of the trend, the
dependence should disappear after taking into account the real
separation between sources (i.e. redshifts).

4.5. Angular clustering of a hardness ratio selected sample

If the unified model of AGN is correct and the obscuration is
due to an orientation effect, the clustering of obscured and un-
obscured sources should not be significantly different. The ex-
pected fraction of obscured AGN in our sample is ∼50% in the
2–10 keV band, and ∼20% in the 0.5–2 keV band (Mateos et al.
2008), and they can be selected by computing their hardness ra-
tios (HR)

HR =
H − S
H + S

, (11)

where S and H are the count rate of the source in the soft and
hard bands, respectively. A HR value often used in the litera-
ture to discriminate between obscured and unobscured sources
is HR = −0.2, which approximately corresponds to a source
with an obscuring column density NH = 1022 cm−2 and an in-
trinsic power-law photon index of 1.7 at redshift z = 0.7 (see
e.g. Gandhi et al. 2004).

We have applied this criterion to our sources thus creating
two subsamples with HR ≥ −0.2 and HR < −0.2 in the soft and

hard bands, and studied their angular clustering properties. The
best-fit parameters are reported in Table 4 along with their 1σ
uncertainties. The results are plotted in Fig. 6.

The results show that the clustering properties of HR ≥ −0.2
sources, which are likely to be absorbed, are not significantly
different from that of the HR < −0.2 sources (well within the
error bars) in both the soft and hard bands. This is in contra-
diction with the results of Gandhi et al. (2006) who found that
sources in the XMM-Newton-LSS survey with HR > −0.2 in
the 2–10 keV band showed clustering evidence whereas sources
with HR < −0.2 did not. They were hugely affected by low-
count statistics, however, and their angular clustering detections
were marginal.

On the other hand, our results are in agreement with those of
Gilli et al. (2005) and (2009), who computed the spatial corre-
lation function for obscured and unobscured sources in the CDF
and COSMOS fields, respectively. They were unable to find sig-
nificant evidence of different clustering behaviours between both
subsets of sources. Moreover, since obscured AGN are typically
detected at low redshifts (z < 1) in medium-depth surveys, this
could also mean that sources above and below redshift 1, when
AGN reached a maximum in comoving density in the Universe
according to recent luminosity function models, do not cluster
differently.

5. Spatial clustering

5.1. Inversion of Limber’s equation

The two-dimensional angular correlation function is a projection
in the sky of the real three-dimensional spatial correlation func-
tion ξ(r) along the line of sight, where r is the physical separation
between sources (typically in units of h−1 Mpc).

We can model the spatial correlation function as (De Zotti
et al. 1990)

ξ(r, z) =

(
r
r0

)−γ
(1 + z)−(3+ε), (12)

where ε parameterizes the type of clustering evolution. For in-
stance, if ε = γ − 3, the clustering is constant in comoving
coordinates, which means that the amplitude of the correlation

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=4
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Fig. 5. Best-fit correlation length (for γ − 1 ≡ 0.8) as a function of the
flux limit of the sample in the soft (dots) and hard (triangles) bands
in different flux bins. The individual points are independent from each
other. Overplotted is the soft (solid line) and hard (dashed line) best fits.

Table 4. Summary of the fits of the hardness-ratio selected subsamples.

Band (keV) Nsou θ0 γ − 1
(arcsec)

Soft (0.5–2) HR ≥ −0.2 4038 27.1+14.5
−17.7 1.17+0.26

−0.35
8.3±0.5 0.8 (fixed)

Soft (0.5–2) HR < −0.2 27791 24.8+2.6
−2.7 1.17 ± 0.05

7.5±0.1 0.8 (fixed)

Hard (2–10) HR ≥ −0.2 3425 33.1+13.3
−17.8 1.37+0.28

−0.36
6.8 ± 0.5 0.8 (fixed)

Hard (2–10) HR < −0.2 6006 27.0+8.5
−9.9 1.27+0.17

−0.20
6.2 ± 0.3 0.8 (fixed)

function remains fixed with redshift in comoving coordinates as
the pair of sources expands together with the Universe. On the
other hand, if ε = −3 the clustering is constant in physical coor-
dinates (De Zotti et al. 1990).

The angular amplitude θ0 can be related to the spatial ampli-
tude r0 by inverting Limber’s integral equation (Peebles 1993).
In the case of a spatially flat Universe, Limber’s equation can be
expressed as (Basilakos et al. 2005)

w(θ) = 2

∫ ∞
0

∫ ∞
0

D4
Cφ

2(Dc)ξ(r, z)dDcdu(∫ ∞
0

D2
cφ(Dc)dDc

)2
, (13)

where φ(Dc) is the selection function (the probability that a
source at a comoving distance Dc is detected in the survey). The
comoving distance Dc is related to the redshift through (Hogg
1999)

Dc(z) =
c

H0

∫ z

0

dz′

E(z′)
, (14)

with

E(z) =
[
Ωm(1 + z)3 + ΩΛ

]1/2
(15)

in a spatially flat Universe (Ωk = 0), and H0 being the Hubble
constant (Peebles 1993; Hogg 1999).

The number of objects in a survey that subtend a solid angle
ΩS in the sky within a redshift shell dz is

dN
dz
= ΩSD2

cφ(Dc)

(
c

H0

)
E−1(z). (16)

Combining these equations, Limber’s equation becomes

w(θ) = 2
H0

c

∫ ∞

0

(
1
N

dN
dz

)2

E(z)dz
∫ ∞

0
ξ(r, z)du. (17)

The physical separation between two sources that project an an-
gle θ in the sky can be written as

r � 1
1 + z

(
u2 + x2θ2

)1/2
(18)

under the small angle approximation assumption. If we now
combine Eqs. (12) and (17) we obtain

θ
γ−1
0 = Hγ

⎛⎜⎜⎜⎜⎝ rγ0 H0

c

⎞⎟⎟⎟⎟⎠
∫ ∞

0

(
1
N

dN
dz

)2 E(z)(1 + z)−3−ε+γ

Dγ−1
c (z)

dz, (19)

where

Hγ =
Γ( 1

2 )Γ( γ−1
2 )

Γ( γ2 )
, (20)

with Γ being the gamma function. We can now invert Eq. (19)
to obtain r0 given an angular amplitude θ0, but we also need to
determine the source redshift distribution dN/dz, which can be
estimated from a given luminosity function model. We can do
this via the Eq. (16) writing the selection function (degradation
of sampling as a function of the distance in flux-limited surveys)
as

φ(Dc) =
∫ ∞

Lmin(z)
Φ(Lx, z)dLx, (21)

which depends on the evolution of the source luminosity func-
tion Φ(Lx, z) but is independent of the cosmological model.

We have determined the redshift selection function (see
Fig. 7) for our sample using the best-fit luminosity-dependent
density evolution (LDDE) model of the X-ray luminosity func-
tion of Ebrero et al. (2009) for all three bands (soft, hard and
ultrahard). Our results on the inversion of Limber’s equation for
different values of the clustering evolution parameter ε are listed
in Table 5, along with the median of the redshift distribution in
each band. The angular clustering parameters θ0 and γ used are
those of Table 2 corrected from the integral constraint. The 1σ
errors of r0 have been computed assuming fixed γ and ε.

Although it is an useful tool to estimate the spatial clustering,
the inversion of Limber’s equation has some limitations since a
number of assumptions has to be done. The spatial correlation
r0 obtained this way is therefore affected by uncertainties com-
ing from the determination of θ0 and γ, the type of clustering
evolution ε, and the redshift selection function. In this context,
we can assume that the values of the angular correlation func-
tion θ0 and γ obtained in this work have been accurately deter-
mined thanks to the large statistics involved (at least in the soft
and hard bands). The parameter ε is hardly known in any system
and therefore all our results will be reported for both clustering
models.

A critical issue for the inversion of Limber’s equation is the
redshift selection function N−1dN/dz. The luminosity function
model from which it is derived was computed using AGN from

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=5
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Fig. 6. Angular correlation function for the soft HR ≥ −0.2 (upper left panel), soft HR < −0.2 (upper right panel), hard HR ≥ −0.2 (lower left
panel), and hard HR < −0.2 (lower right panel) sources. Solid dots are the observed data. Solid triangles represent the average random estimation
of w(θ) used to calculate the integral constraint (see text). Overplotted is the best-fit χ2 with and without fixed slope (dashed and solid lines,
respectively).

Fig. 7. The redshift selection function for the soft (solid line), hard
(dashed line) and ultrahard (dot-dashed line) bands.

a variety of public surveys ranging from deep-pencil beam to
shallow wide surveys, and the intrinsic absorption was taken
into account at hard X-rays (Ebrero et al. 2009). Hence, we can

assume that the redshift selection function is robust enough
within the redshift range in which it was computed (z ∼ 0−3).

Our results in the soft band assuming clustering constant
in physical coordinates (ε = −3) are in good agreement with
those obtained from optically selected AGN surveys r0 �
5.4−8.6 h−1 Mpc (Akylas et al. 2000, Croom et al. 2002, Grazian
et al. 2004) and X-ray selected surveys such as Mullis et al.
(2004) (r0 = 7.4+1.8

−1.9 h−1 Mpc) or Basilakos et al. (2005) (r0 =

7.5 ± 0.6 h−1 Mpc). However, when we assume evolution con-
stant in comoving coordinates (ε = γ− 3) the result of Basilakos
et al. (2005) is slightly larger (at 2σ confidence level) while
the predictions of Miyaji et al. (2007) are systematically smaller
(r0 � 9.8 ± 0.7 h−1 Mpc).

In the hard band, our deprojected spatial amplitude is sig-
nificantly smaller than the value from Basilakos et al. (2004)
who obtained r0 � 12−19 h−1 Mpc using hard sources from the
XMM-Newton-2dF survey for a fixed canonical slope γ = 1.8.
However, they find that their correlation lengths are much larger
(over a factor 2) than the ones provided in the literature for AGN
(Croom et al. 2001) or 2dF (Hawkins et al. 2003) and SDSS
(Budavari et al. 2003) galaxy distributions. In fact, the r0 values
obtained by Basilakos et al. (2004) can be compared instead to
that of extremely red objects (EROs) and luminous radio sources
(Roche et al. 2003; Overzier et al. 2003; Röttgering et al. 2003)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=7
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Table 5. Spatial correlation lengths r0 for different clustering models
(ε) obtained from Limber’s equation. Errors are 1σ.

Band (label) γ ε r0 (h−1 Mpc) z̄

Soft (S1) 2.12 –0.88 12.25 ± 0.12 0.96
Soft (S2) 2.12 –3 6.54 ± 0.06 0.96
Soft (S3) 1.80 –1.20 13.74 ± 0.14 0.96
Soft (S4) 1.80 –3 7.20 ± 0.07 0.96

Hard (H1) 2.33 –0.67 9.9 ± 2.4 0.94
Hard (H2) 2.33 –3 5.7 ± 1.4 0.94
Hard (H3) 1.80 –1.20 12.7 ± 0.5 0.94
Hard (H4) 1.80 –3 6.8 ± 0.3 0.94

Ultrahard (U1) 2.47 –0.53 7.0 ± 5.5 0.77
Ultrahard (U2) 2.47 –3 5.1 ± 4.1 0.77
Ultrahard (U3) 1.80 –1.20 11.6 ± 1.7 0.77
Ultrahard (U4) 1.80 –3 7.4 ± 1.1 0.77

which are in the range r0 � 12−15 h−1 Mpc. On the other hand,
the results of Basilakos et al. (2004) for a best-fit slope γ = 2.2
are consistent with ours within the error bars, which may imply
that the fixed slope representation is not a good characterisation
for the large-scale clustering of AGN.

Gilli et al. (2005) performed a broadband spatial cluster-
ing analysis of the X-ray sources detected in the Chandra Deep
Field North and South obtaining correlation lengths in the range
r0 = 5−10 h−1 Mpc, roughly in agreement with our predictions
within the error bars, albeit with a much flatter slope γ ∼ 1.4.
More recently, Gilli et al. (2009) studied the spatial clustering of
AGN in the COSMOS field finding r0 = 8.65+0.41

−0.48 h−1 Mpc and
γ = 1.88.

In the context of a comoving clustering scenario ε = γ − 3,
these results in the soft and hard bands seem to confirm the
difference in the spatial clustering between X-ray selected and
optically selected AGN reported in other works. Our large cor-
relation length r0 > 10 h−1 Mpc is in general consistent with
that of X-ray selected AGN (Basilakos et al. 2004; Basilakos
et al. 2005; Puccetti et al. 2006), while reported correlation
lengths from optically selected AGN are significantly shorter
(r0 � 5 h−1 Mpc, Croom et al. 2002). The situation turns when
we assume clustering in physical coordinates ε = −3, being our
computed r0 consistent with the values of Croom et al. (2002).

Our results in the ultrahard band are in good agreement
(within the error bars) with the deprojected spatial clustering cal-
culated by Miyaji et al. (2007) using COSMOS sources detected
in the 4.5–10 keV range. It must be taken into account, however,
that the θ0 values we used to invert Limber’s equation in this
band correspond only to a marginal detection of clustering.

5.2. Dependence on the X-ray luminosity and redshift

The results obtained in Sect. 4.4 showed that the angular clus-
tering strength seemed to depend on the flux limit of the sample
under consideration. Since there are several combinations of red-
shifts and luminosities that yield to a given flux, we have inves-
tigated whether the deprojected spatial length r0 depends on the
X-ray luminosity and redshifts. Moreover, this would provide
additional information on the evolution of the X-ray sources.

Since flux and luminosity are related to each other through
the luminosity distance S = L/4πd2

L(z) and θ0 ∝ rγ/γ−1
0 (via

Limber’s equation), if we assume that the θ0 − S relation de-
scribed in Sect. 4.4 θ0 ∝ S α is generally true, we would expect

a spatial correlation length dependent on luminosity and redshift
in the form r0 ∝ (L/d2

L(z))α(γ−1)/γ.
We have therefore inverted Limber’s equation for different

flux-limited subsamples (see Sect. 4.4). The median redshifts
and luminosities have been derived from the LDDE best-fit lu-
minosity function of Ebrero et al. (2009). In Fig. 8 we plot the
deprojected correlation distances r0 as a function of the median
luminosity and redshift of the different subsamples for different
clustering models.

We find no significant dependence of the clustering strength
neither on the luminosity nor on the redshift median ranges
spanned by our sample. In a comoving clustering scenario, there
seem to be no dependence on the median luminosity in neither
the soft and hard bands (dots and triangles in the left panel of
Figure 8, respectively). However, when we consider ε = −3 a
slightly positive trend is observed in both bands (squares and
crosses, respectively, same panel). In order to check out the sig-
nificance of this dependency, we fitted both a constant value and
a constant plus a linear term to the points in Fig. 8 and compared
their goodnesses of fit. The F-test results show no significant
improvement of the fit for neither model and therefore we con-
clude that no significant dependence of r0 on luminosity is found
in our data. On the other hand, Plionis et al. (2008) found in-
dications for a luminosity dependent clustering in the Chandra
Deep Fields, although their large error bars make this conclu-
sion rather uncertain. Using our much more constrained best-fit
parameters we are unable to confirm such dependency.

Similarly, we do not see evolution on the clustering proper-
ties of our sources, although a mild dependence could be present
as r0 slightly decreases as the median redshift increases. The spa-
tial clustering analysis of the Chandra Deep Field (Gilli et al.
2005) and COSMOS sources (Gilli et al. 2009) led to similar
conclusions.

5.3. Bias parameter and connection to dark matter haloes

The spatial clustering values obtained in Sect. 5.1 can be used
to estimate the mass of the dark matter haloes (DMH) in which
these sources are embedded. A commonly used quantity for such
an analysis is the bias parameter, that is usually defined as

b2(z) =
ξAGN(8, z)
ξDMH(8, z)

, (22)

where ξAGN(8, z) and ξDMH(8, z) are the spatial correlation func-
tions of AGN and DMH evaluated at 8 h−1 Mpc, respectively.
The former value has been calculated in this work whereas the
latter can be estimated using (Peebles 1980)

σ2
8(z) = ξ(8, z)J2, (23)

where J2 = 72/
[
(3 − γ)(4 − γ)(6 − γ)2γ] and σ2

8(z) is the dark
matter density variance in a sphere with a comoving radius of
8 h−1 Mpc which evolves as

σ8(z) = σ8D(z). (24)

D(z) is the linear growth factor of perturbations, which is de-
fined as DEdS(z) = (1 + z)−1 in an Einstein-De Sitter cosmology.
However, in the context of a Λ-CDM cosmology the growth of
perturbations is weaker and it is attenuated by a suppression fac-
tor g(z) so that D(z) = g(z)(1 + z)−1. We have used here the ana-
lytical approximation for g(z) described in Carroll et al. (1992).
On the other hand, we have fixed the rms dark matter fluctuation
at present time σ8 to 0.84 (Spergel et al. 2003).
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Fig. 8. Deprojected spatial correlation length r0 as a function of the median luminosity (left panel) and redshift (right panel). The results are shown
for different clustering models ε = −1.2 (soft band: dots; hard band: triangles) and ε = −3 (soft: squares; hard: crosses).

The CDM structure formation scenario predicts that the bias
parameter is determined by the dark matter halo mass (Mo &
White 1996). We have used the large-scale bias relation as a
function of halo mass reported in Sheth et al. (2001)

b(M, z) = 1 +
1√

aδc(z)

×
[
aν2
√

a + 0.5
√

a(aν2)1−c − (aν2)c

(aν2)c + 0.5(1 − c)(1 − c/2)

]
,(25)

where ν = δc(z)/σ(M, z), a = 0.707, and c = 0.6. δc is the criti-
cal overdensity for collapse of a homogeneous spherical pertur-
bation, and it takes the value of �1.69 in an Einstein-De Sitter
cosmology. For a general cosmology, δc posseses a weak depen-
dence on redshift as reported in Navarro et al. (1997). σ(M, z) is
the rms density fluctuation in the linear density field that evolves

σ(M, z) = σ(M)D(z) (26)

where σ(M) is given by the convolution of a power spectrum
P(k) with a top-hat window function w(k),

σ2(M) =
1

2π2

∫ ∞

0
k2P(k)w2(k)dk. (27)

For a power-law power spectrum P(k) ∝ kn, the rms fluctuation
on mass is

σ(M) = σ8

(
M
M8

)−(n+3)/6

, (28)

where M8 is the characteristic mean mass within 8 h−1 Mpc (see
e.g. Martini & Weinberg 2001).

The results for the bias parameters and estimated DMH
masses for the different clustering models in the soft, hard
and ultrahard bands are reported in Table 6. We find an aver-
age 〈log MDMH〉 = 12.50 ± 0.34 h−1 M� and 〈log MDMH〉 =
12.71 ± 0.34 h−1 M� for the clustering models ε = −3 and
ε = γ − 3, respectively. This is in excellent agreement with the
results from the AERQS survey (Grazian et al. 2004) or the 2dF
survey (Porciani et al. 2004, Croom et al. 2005) and, more re-
cently, the COSMOS survey (Gilli et al. 2009).

Our derived bias parameters b are in excellent agreement
with those reported in Basilakos et al. (2008), who found

Table 6. Bias and dark matter halo mass. Errors are 1σ.

Band (label)a σ8 b log MDMH
b

Soft (S1) 2.52 ± 0.10 4.82 ± 0.18 12.76 ± 0.31
Soft (S2) 1.30 ± 0.03 2.48 ± 0.07 12.50 ± 0.31
Soft (S3) 2.22 ± 0.01 4.24 ± 0.02 12.71 ± 0.30
Soft (S4) 1.24 ± 0.01 2.37 ± 0.01 12.49 ± 0.30

Hard (H1) 2.39 ± 0.56 4.53 ± 1.06 12.74 ± 0.34
Hard (H2) 1.26 ± 0.27 2.38 ± 0.51 12.49 ± 0.34
Hard (H3) 2.07 ± 0.06 3.92 ± 0.11 12.69 ± 0.31
Hard (H4) 1.18 ± 0.03 2.23 ± 0.06 12.47 ± 0.31

Ultrahard (U1) 1.81 ± 1.70 3.16 ± 2.97 12.66 ± 0.44
Ultrahard (U2) 1.22 ± 1.08 2.14 ± 1.88 12.50 ± 0.44
Ultrahard (U3) 1.91 ± 0.15 3.34 ± 0.26 12.68 ± 0.32
Ultrahard (U4) 1.27 ± 0.09 2.23 ± 0.16 12.52 ± 0.32

a Labels are those of the fits in Table 5. b In units of h−1 M�.

b(z = 1.2) = 4.88 ± 1.20 and b(z = 0.85) = 4.65 ± 1.50 in
the soft and hard bands, respectively. In general, X-ray selected
AGN show larger bias parameters than optically selected AGN
(e.g. Croom et al. 2005; Myers et al. 2007). This could mean
that the underlying matter distribution is traced differently in X-
rays and in the optical domain, with X-ray selected AGN re-
siding in more massive DMH than the optically selected AGN.
A number of works (Porciani et al. 2004; Croom et al. 2005;
Basilakos et al. 2008) show that optical AGN are likely to be
hosted by DMH with masses � 10−13 h−1 M�, while X-ray AGN
are usually embedded in DMH with masses � 10−13 h−1 M�.
Our results, however, are slightly lower but consistent neverthe-
less with the estimations from the spatial clustering of COSMOS
sources (MDMH ∼ 12.4−12.8 h−1 M�, Gilli et al. 2009). We must
stress that our results are derived from a mostly unidentified
X-ray sample which has been selected so that the vast major-
ity of the sources are likely to be AGN, although we can expect
some pollution coming from Galactic stars and passive galaxies.
We estimate the population of non-AGN sources in our sample
to be of the order of ∼10% (see e.g. Barcons et al. 2007).

It is possible to trace the bias evolution with redshift using
the relations described above. At redshifts up to ∼1, where the
median of the redshift distribution of our sample is expected to

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911670&pdf_id=8
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Table 7. Predicted bias at z = 0.

Band (label) ε b0

Soft (S1) γ − 3 2.95 ± 0.09
Soft (S2) –3 1.76 ± 0.04
Soft (S3) γ − 3 2.65 ± 0.01
Soft (S4) –3 1.71 ± 0.01

Hard (H1) γ − 3 2.80 ± 0.02
Hard (H2) –3 1.75 ± 0.25
Hard (H3) γ − 3 2.53 ± 0.04
Hard (H4) –3 1.72 ± 0.02

lie, a simple model to describe the bias evolution is the so-called
conserving model (Nusser & Davis 1994; Fry 1996),

b(z) = 1 + (b0 − 1)/D(z), (29)

where b0 is the population bias at z = 0. This model assumes that
the objects, after being formed at a given high-redshift epoch,
evolve with time within the gravitational potential. We have
computed the bias parameter for several subsamples with dif-
ferent median redshifts in the soft band, finding that the present-
time bias b0 strongly depends on the clustering model. For in-
stance, for the ε = γ − 3 model (fits S1, S3, H1 and H3), b0 lies
in the range 2.5–3.0, whereas for the ε = −3 model (fits S2, S4,
H2, H4) we obtained b0 ∼ 1.75 (see Table 7 and Fig. 9). These
results were expected since the ε = −3 model removes the red-
shift dependence in Eq. (12) and hence produces lower correla-
tion lengths with respect to the ε = γ − 3 model. Similar results
for b0 were obtained by Basilakos et al. (2005), who also studied
the bias evolution for both clustering models. Gilli et al. (2009)
found b0 values in the range 1.5–2, similar to that of Croom et al.
(2005), consistent with our predictions for a ε = −3 clustering
scenario.

5.4. The lifetime of AGN

We can estimate the lifetime of AGN using the mean DMH
masses calculated above and making some simple assumptions.
We have followed the method proposed by Martini & Weinberg
(2001), assuming that we are sampling the most massive DMH
at a given redshift z and that each DMH hosts an active AGN at
any given time. There is hence a relation between the comoving
density of AGN Φ(z) and their lifetime tAGN(z) in the form

Φ(z) =
∫ ∞

Mmin

tAGN(z)
tDMH(M, z)

n(M, z)dM, (30)

where Mmin is the minimum halo mass hosting an AGN, n(M, z)
is the comoving density of DMH of mass M at redshift z, and
tDMH(M, z) is the lifetime of DMH.

According to Martini & Weinberg (2001), the characteris-
tic halo timelife is defined as the time interval during which a
DMH of mass M at redshift z is incorporated to a larger halo
of mass 2M. To a first approximation, we can assume that the
halo lifetime is comparable to the Hubble time at that redshift,
tDMH(M, z) ∼ tU (z). Equation (30) then yields

tAGN(z) = tU(z)
Φ(z)
ΦDMH(z)

, (31)

where

ΦDMH(z) =
∫ ∞

Mmin

n(M, z)dM (32)

is the comoving density of DMH with mass above Mmin.

We can estimate ΦDMH(z) following the Press-Schechter ap-
proximation as described in Martini & Weinberg (2001), obtain-
ing a DMH comoving space density at z = 1 (approximately the
median of the redshift distribution of our sample) for haloes with
mass larger than log Mmin = 12.6 h−1 M� (the average halo mass
estimated in Sect. 5.3) of ΦDMH � 2 × 10−3 h3 Mpc−3.

For the comoving density of AGN, we have used the pre-
dicted value from the X-ray luminosity function of Ebrero et al.
(2009) that we used to deproject Limber’s equation, at the me-
dian luminosity of our sample and z = 1. This yielded to an
AGN duty cycle in the range tAGN/tU = 0.054−0.078. In our
cosmological framework, the Hubble time at z = 1 is ∼5.8 Gyr.
The estimated lifetime of AGN is hence in the range tAGN =
3.1−4.5 × 108 yr.

However, the assumptions made in the Martini & Weinberg
(2001) approximation (i.e. AGN activity is a random event in
the lifetime of a halo) might not be valid at redshifts below z <
2, where the AGN space density begins to decline and hence
fuelling mechanisms may trigger AGN activity rather than black
hole growth, thus dominating clustering properties.

The estimated lifetime derived above corresponds to the total
activity period for a single AGN, which can be split into several
episodes of activity. The significantly shorter lifetime compared
to the time period spanned between redshift ∼1 and 0 indicates
that we are probably observing several generations of AGN, and
that an important fraction of galaxies might experience AGN ac-
tivity one or more times throughout their lifes.

6. Conclusions

We have studied the angular correlation function of a large sam-
ple of serendipitous X-ray sources from 1063 XMM-Newton ob-
servations at high Galactic latitudes in several energy bands:
0.5–2 (soft), 2–10 (hard) and 4.5–10 (ultrahard) keV. Our sam-
ple comprises 31288, 9188 sources in the soft and hard bands,
respectively, covering ∼125.5 deg2 in the sky, and 1259 sources
in the ultrahard band over∼51.5 deg2, thus being the largest sam-
ple ever used in clustering investigations.

We found significant positive angular clustering signal in the
soft (∼10σ) and hard (∼5σ) bands, while our results in the ultra-
hard band are only marginal (<1σ). The result in the hard band
clears up the debate on whether X-ray sources detected in this
band cluster or not, since a number of past works had reported
different inconclusive results ranging from a few σ detections to
no detection at all.

We made power-law fits to the angular correlation func-
tion taking into account correlations between errors in the range
50–1000 arcsec, determining the best-parameters with unprece-
dented accuracy. We obtained typical correlation lengths of θ0 =
22.9 ± 2.0 (soft), θ0 = 29.2+5.1

−5.7 (hard), and θ0 = 40.9+19.6
−29.3 (ultra-

hard), and slopes γ−1 = of 1.12±0.04, 1.33+0.10
−0.11, and 1.47+0.43

−0.57, in
the soft, hard and ultrahard bands, respectively. An angular clus-
tering characterisation with a fixed canonical slope of γ−1 = 1.8,
typical value found for nearby galaxies, does not reproduce well
the observed data.

Previous angular clustering studies reported that the clus-
tering strength might depend on the flux limit of the sample
(Giacconi et al. 2001; Plionis et al. 2008). Indeed, after splitting
our sample into several subsamples at different flux limits we
found a dependency of θ0 on the flux limit. One possible expla-
nation for this behaviour is that different flux limits effectively
sample different source populations, thus reflecting an underly-
ing dependence of the clustering properties on redshift.
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Fig. 9. Bias parameter as a function of redshift for different bands and clustering models. Left panel: clustering model ε = γ − 3 fits in the soft (S1
and S3, dots and triangles, respectively), and hard (H1 and H3, squares and crosses, respectively) bands. Right panel: clustering model ε = −3 fits
in the soft (S2 and S4, dots and triangles, respectively), and hard (H2 and H4, squares and crosses, respectively) bands. Overplotted are the best
fits to the conserving bias evolution model in each band.

We have also studied the angular clustering of hardness-ratio
selected subsamples in the soft and hards, finding that the clus-
tering properties of sources with HR ≥ −0.2 are not significantly
different to that of HR < −0.2 sources. Since the former are
likely to be absorbed AGN, this may provide support to unifica-
tion theories, in which obscuration is due to an orientation effect
and has nothing to do with the large-scale clustering whatsoever.
Other works (e.g. Gilli et al. 2005, 2009) have also failed to find
significant differentes in the spatial clustering of absorbed and
unabsorbed AGN.

We inverted Limber’s equation, assuming a given redshift
distribution for our sources, in order to estimate typical spa-
tial correlation lengths. We found values of r0 = 12.25 ± 0.12,
9.9 ± 2.4, and 7.0 ± 5.5 h−1 Mpc in the soft, hard and ultrahard
bands, respectively, for a clustering model constant in comoving
coordinates, while for clustering constant in physical coordinates
we obtained r0 = 6.54 ± 0.06, 5.7 ± 1.4, and 5.1 ± 4.1 h−1 Mpc,
respectively.

Inverting Limber’s equation for different flux-limited sub-
samples reveals no dependence of the typical deprojected spatial
length neither on the median luminosity nor on the median red-
shift of the samples. A slightly positive trend might be observed
when assuming a ε = −3 clustering, although it does not provide
a significantly better fit compared with a constant model, accord-
ing to the F-test. These results appear to be in contradiction with
those of Plionis et al. (2008) but are in agreement with those
of Gilli et al. (2005, 2009). Moreover, this could mean that the
θ0-flux limit dependency discussed in Sect. 4.4 might be caused
by the fact that pairs of sources tend to appear closer in deep
surveys with fainter flux limits.

We used these values to calculate the rms fluctuations of the
AGN distributions within a sphere of radius 8 h−1 Mpc, and com-
pared them with that of the underlying mass distribution from the
linear theory in order to estimate the bias parameter of our X-ray
sources. We obtained values ranging from ∼2 to ∼4.8 in the red-
shift interval 0.5 � z � 1. The bias depends on the mass of the
dark matter haloes (DMH) that host the AGN population. From
the computed bias values we have estimated a typical DMH mass
of 〈log MDMH〉 � 12.60 ± 0.34 h−1 M�.

The typical AGN lifetime derived from the Press-Schechter
approximation at redshift z ∼ 1 lies in the range in the range

tAGN = 3.1 − 4.5 × 108 yr. This interval is significantly shorter
than the time span between that redshift and the present thus sug-
gesting the existence of many AGN generations, and that a sig-
nificant fraction of galaxies may switch from a quiescent phase
to AGN activity, and vice versa, several times throughout their
lifes.
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