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ABSTRACT

We present photometric redshifts for 1031 X-ray sources in the X-ATLAS field using the machine-learning technique TPZ. X-ATLAS
covers 7.1 deg2 observed with XMM-Newton within the Science Demonstration Phase of the H-ATLAS field, making it one of the
largest contiguous areas of the sky with both XMM-Newton and Herschel coverage. All of the sources have available SDSS pho-
tometry, while 810 additionally have mid-IR and/or near-IR photometry. A spectroscopic sample of 5157 sources primarily in the
XMM/XXL field, but also from several X-ray surveys and the SDSS DR13 redshift catalogue, was used to train the algorithm. Our
analysis reveals that the algorithm performs best when the sources are split, based on their optical morphology, into point-like and
extended sources. Optical photometry alone is not enough to estimate accurate photometric redshifts, but the results greatly improve
when at least mid-IR photometry is added in the training process. In particular, our measurements show that the estimated photometric
redshifts for the X-ray sources of the training sample have a normalized absolute median deviation, nmad ≈ 0.06, and a percentage
of outliers, η = 10–14%, depending upon whether the sources are extended or point like. Our final catalogue contains photometric
redshifts for 933 out of the 1031 X-ray sources with a median redshift of 0.9.
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1. Introduction

Current and future surveys (e.g. XMM, eROSITA, DES, and Eu-
clid) will provide us with large datasets that contain hundreds
of thousands of sources. Spectroscopy is expensive in telescope
time and challenging to complete for large samples, thus pho-
tometric redshift (photo-z) estimations have become a necessity
in observational astronomy today. Although photo-z estimations
are cheaper and the only means to estimate distances for large
samples, they are also subject to systematics and higher uncer-
tainties than spectroscopic redshift estimations (spec-z).

The pursuit of accurate photometric redshifts has led
to the development of many photo-z estimation methods
that can be divided into two main categories: template-
fitting (e.g. Brammer et al. 2008) and machine-learning (e.g.
Carrasco Kind & Brunner 2013) techniques, although there are
some hybrid methods as well (e.g. Beck et al. 2017). The
template-fitting techniques determine the photometric redshifts
by fitting synthetic spectral templates, either empirical or syn-
thesized, from stellar population models to observational spec-
tral templates. A number of variations of this technique ex-
ist in the literature, such as the Bayesian photometric redshifts
(BPZ; Benitez 2000) and Easy and Accurate photo-Z from

? The table of the photometric redshifts is only available at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A39

Yale (EAZY; Brammer et al. 2008). Machine-learning tech-
niques, also known as empirical methods, use a spectroscopic
dataset to train an algorithm, which is then applied to a pho-
tometric sample to estimate photometric redshifts. Examples
of empirical methods include the Artificial Neural Network
(ANNz; Collister & Lahav 2004; Lahav & Collister 2012) and
random forest techniques, for example, Trees for photo-Z (TPZ;
Carrasco Kind & Brunner 2013).

Each of these techniques has its own advantages and disad-
vantages. Beck et al. (2017) compared the performance of eight
photo-z estimation methods (four template-fitting techniques and
four machine-learning techniques). Their analysis revealed that
all methods perform adequately when the training set coverage
is sufficient, but their performance deteriorates when extrapola-
tion is required. Random forest techniques in particular are not
expected to perform well beyond the boundaries of the training
set. On the other hand, the latter techniques perform better than
the other techniques when the photometric measurement errors
increase. Beck et al. (2017) concluded that none of the methods
is superior to the others and that a trade-off has to be made de-
pending on the available training set, that is to say, its photomet-
ric accuracy and coverage.

The machine-learning methods have been successfully ap-
plied to derive photometric redshifts for galaxies (e.g. SDSS;
Beck et al. 2016) and optical quasi-stellar objects (QSOs) (e.g.
Brescia et al. 2015; Cavuoti et al. 2017). However, for X-ray
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AGN, only spectral energy distribution (SED) fitting techniques
have been used (Salvato et al. 2009; Hsu et al. 2014). AGN
SEDs are more complicated than galaxy SEDs, however, be-
cause of contamination from the host galaxy, intrinsic obscu-
ration, variability, and dominance of different components in
different spectral bands, for instance. Thus, photo-z for AGN
through SED fitting is difficult. On the other hand, machine-
learning methods require large spectroscopic training samples
to perform well, and X-ray datasets that are suitable to be used
as training sets are rare.

We here use X-ray sources detected in the XMM-
XXL survey (Liu et al. 2016; Georgakakis et al. 2017) to
train, for the first time, a machine-learning algorithm (TPZ;
Carrasco Kind & Brunner 2013) to estimate photometric red-
shifts for X-ray AGN in the X-ATLAS field. Our goal is to use
these photo-z estimates in a future paper to estimate the star for-
mation rate (SFR) and stellar mass of these sources and study
the connection between the AGN activity and the environment
of their host galaxy. In this paper, we check the accuracy of the
photo-z estimates. The structure of the paper is as follows: in
Sect. 2 we describe the X-ray sources for which we estimate
photo-z, in Sect. 3 we briefly describe the TPZ algorithm and
provide information for the training sample. The results are pre-
sented in Sect. 4, while we discuss and summarize the main con-
clusions of this work in Sect. 5.

2. X-ray sample

The Herschel Terahertz Large Area survey (H-ATLAS) is the
largest Open Time Key Project carried out with the Her-
schel Space Observatory (Eales et al. 2010), covering an area
of 550 deg2 in five far-infrared and sub-millimeter (submm)
bands (100, 160, 250, 350, and 500 µm). 16 deg2 have been
presented in the Science Demonstration Phase (SDP) catalogue
(Rigby et al. 2011) and lie within one of the regions observed by
the Galaxy And Mass Assembly (GAMA) survey (Driver et al.
2011; Baldry et al. 2010). XMM-Newton observed 7.1 deg2 with
a total exposure time of 336 ks (in the MOS1 camera) within
the H-ATLAS SDP area, making the XMM-ATLAS one of the
largest contiguous areas of the sky with both XMM-Newton and
Herschel coverage. The catalogue contains 1816 unique sources
(Ranalli et al. 2015).

To obtain optical, mid-IR, and far-IR photometry for the
XMM-ATLAS sources, we cross-matched the X-ray cata-
logue with the SDSS-DR13 (Albareti et al. 2015), the WISE
(Wright et al. 2010), and the VISTA-VIKING catalogues
(Emerson et al. 2006; Dalton et al. 2006) with the ARCHES
cross-correlation tool xmatch, which symmetrically matches an
arbitrary number of catalogues providing a Bayesian probabil-
ity of association or non-association (Pineau 2016). xmatch as-
sociates one or more tuples with each X-ray source, including
possible counterparts in VISTA and/or WISE, with the corre-
sponding probability. When a given X-ray source had more than
one associate tuple, we selected those with a probability >0.68,
of these, those that were included in most catalogues, and fi-
nally, those with the highest probability. The cross-match re-
vealed 1031 sources with at least optical photometry. Using the
association probabilities derived by xmatch, fewer than 10% of
the counterparts in our catalogue are missmatches (≈85 sources).
Of the 1031 sources, 848 have mid-IR counterparts, while 589
also have near-infrared (NIR) counterparts (Table 1). Of the 1031
sources, 174 have spectroscopic redshifts from either the SDSS
or the GAMA surveys.

Table 1. Number of X-ATLAS X-ray AGN divided based on their avail-
able photometry and optical morphology.

Available photometry Total number of Point-like Extended
sources sources sources

SDSS 1031 (174) 576(119) 455 (55)
SDSS+WISE 603 (124) 343 (87) 260 (37)

SDSS+WISE+NIR 423 (92) 249 (67) 174 (25)
SDSS+NIR 653 (122) 380 (86) 273 (36)

Notes. In parentheses we quote the number of sources with available
spectroscopic redshift from the SDSS and GAMA surveys.

3. Analysis

3.1. Method

To estimate the photometric redshifts for the X-ray AGN in the
ATLAS field, we used the publicly available algorithm TPZ. The
technique is described in detail in Kind & Brunner (2013). In
brief, TPZ is a parallel machine-learning algorithm that uses pre-
diction trees and random forest techniques to generate photomet-
ric redshift probability density functions (PDFs) by incorporat-
ing measurement errors in the calculation while also efficiently
accounting for missing values in the data.

Random forest is an ensemble-learning method for classifi-
cation, regression, and other tasks. The method generates predic-
tion trees and then combines their predictions. Prediction trees
are built by asking questions that split the data until a stopping
criterion is met that creates a terminal leaf. The leaf contains a
subsample of the data with similar properties, and by applying a
model within the leaf, a prediction is made.

TPZ is an empirical technique and therefore required a
dataset with spectroscopically measured redshifts to train the al-
gorithm before it was applied to our photometric X-ray sample.
The spectroscopic training sample we used in our analysis is de-
scribed in the following section.

3.2. Training sample

The X-ray catalogue we used to train the TPZ algorithm comes
from the XXM-XXL survey. XMM-XXL covers a total area of
about 50 deg2 with an exposure time of about 10 ks per XMM
pointing (Liu et al. 2016; Georgakakis et al. 2017). In the north,
8445 X-ray sources are detected (XXL-N). This region extends
to about 25 deg2. Of these sources, 5294 have optical (SDSS)
photometry. Reliable spectroscopy from SDSS-III/BOSS is
available for 2512 AGN (Menzel et al. 2016). To increase the
size of our training sample, we also included sources from the
XWAS (XMM-Newton Wide Angle Survey; Esquej et al. 2013),
XBS (Della Ceca et al. 2004), XMS (Barcons et al. 2007), and
COSMOS (Brusa et al. 2010) surveys. We also added ∼1500 op-
tically selected X-ray AGN with spectroscopic redshifts from the
SDSS-DR13 dataset by cross-matching the 3XMM-DR5 cata-
logue with SDSS, UKIDSS (Hambly et al. 2008; Irwin 2008),
2MASS (Skrutskie et al. 2006), and WISE. This increased the
total number of sources in our training sample to 5157 (Table 2).
Testing the performance of TPZ (see next section) with and with-
out the optically selected X-ray AGN revealed that the inclusion
of these extra sources marginally but systematically improved
the training process of the TPZ code. Specifically, the outlier
percentage (see next section) decreased by 2–3% in all cases.
Therefore, the results we present next were estimated using the
training sample described above.
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Table 2. Number of sources used to train TPZ, with the corresponding
available photometry.

Available photometry Total number of Point-like Extended
sources sources sources

SDSS 5157 2703 (1900) 2454 (1200)
SDSS+WISE 4781 2473 (1500) 2308 (1400)

SDSS+WISE+NIR 3212 1613 (1000) 1599 (1000)
SDSS+NIR 3313 1679 (1000) 1634 (1100)

Notes. The second column presents the total number of the sources,
while the third and fourth columns show the numbers of sources divided
into point like and extended. In parentheses we quote the number of
sources we used to train TPZ during the validation process (see text for
more details).
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Fig. 1. Redshift distribution of the 5157 sources used to train the TPZ
algorithm (black solid line). The dashed and dotted lines present the
redshift distribution when we split the training sources into extended
and point like based on their optical classification.

In addition to the photometric bands of SDSS (u, g, r, i, and
z), we included mid-IR (W1, W2) and near-IR (J, H, K) bands
in the training process of TPZ to determine whether its perfor-
mance improved. For this purpose we cross-matched the 5157
sources with the WISE catalogue and near-IR catalogues, that
is, with VISTA, UKIDSS, or 2MASS. The cross-match was per-
formed using the xmatch cross-correlation tool and following the
same analysis as described in the previous section for the AT-
LAS sources. The number of sources we obtained and the avail-
able photometry is presented in Table 2. Although TPZ can infer
missing photometry, in our validation tests and the estimation
of the photometric redshifts of the X-ATLAS sources, only the
available photometric bands were used for each subsample.

The redshift distribution of the training set is presented in
Fig. 1.

3.3. Checking the performance of TPZ using the training set

To check the performance of TPZ in estimating accurate photo-
metric redshifts, we split our training set into two subsamples.
One was used to train the algorithm, and the other subsample
was used as a test case for which we estimated photometric
sources. This is an ideal scenario since both subsamples share
the same region of the parameter space and the same quality
of (spectroscopic) data, that is, the same distribution in redshift
and magnitude as well as the same photometric errors. To ac-
count for the fainter magnitudes of our photometric X-ATLAS
sources compared to the spectroscopic training sample and to
facilitate a more accurate check of the TPZ performance, in
this test we trained TPZ using colours instead of magnitudes.
Figure 4 presents two examples of the colour distribution of the
training sources (black circles).

The accuracy of the photometric redshifts estimated by TPZ
was quantified by two widely used statistical parameters, the nor-
malized absolute median deviation, σnmad, and the percentage of
outliers, η. σnmad is defined as

∆(znorm) =
zspec − zphot

1 + zspec
,

MAD(∆(znorm)) = Median(|∆(znorm)|),

σnmad = 1.4826 ×MAD(∆(znorm)). (1)

The percentage of outliers, η, is defined as

η =
100
N
× (Number of sources with |∆(znorm)| > 0.15). (2)

Since the near-IR data come from different surveys, the training
sample was used to calibrate any possible dependencies on the
different filters used, that is, the differences between the K filter
on UKIDSS and the Ks filter on VISTA and 2MASS. Our tests
revealed that there are no differences, regardless of whether we
ignored the different filters or scaled K magnitudes to Ks. For ex-
ample, using the SDSS+NIR sample for point-like and extended
sources, the percentage of outliers differs by <±0.8% and the
difference in σnmad is negligible. Therefore, we ignored this dif-
ference in filters in our analysis.

Our initial tests revealed that the performance of the TPZ
algorithm in estimating photometric redshifts improved when
we split the sources based on their morphology (Salvato et al.
2011). Using the SDSS photometric bands and estimating pho-
tometric redshifts without dividing the sources into point like
and extended, we obtained σnmad = 0.12 and η = 0.35%. These
numbers are higher than those derived when splitting the sources
based on their optical morphology (see Table 3). We also tried to
use the morphology as one of the features used to train the algo-
rithm. Our tests revealed that there is no improvement in the ac-
curacy of the photo-z estimations. For example, using ten photo-
metric bands, σnmad = 0.05 and η = 11.8%. These estimates are
in between the values obtained when the sources are split based
on their morphology (Table 3). We therefore split the training
sources into point like and extended, using their SDSS classifi-
cation. The number of sources in each subsample is shown in
Table 2. Their redshift distribution is presented in Fig. 1. Based
on the two distributions, we can reach redshifts of up to 3.5 and
2.5 for point-like and extended sources, respectively.

Table 3 presents the values for the various parameters of TPZ
we used to estimate photometric redshifts for each subsample.
Nrandom is the number of random realizations that TPZ per-
forms, NTrees is the number of trees used, and Natt the number
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Fig. 2. Point-like sources. Left: importance of attributes as a function of redshift. Right: RMS importance factor as a function of the attributes
computed using the bias and its scatter.

Fig. 3. Same measurements as presented in Fig. 2, but for extended sources.

Table 3. Performance of the TPZ algorithm, estimated by splitting our spectroscopic sample (see Sect. 3.2) into train and test files.

Sample Point like Extended TPZ parameters
σnmad/η (%) 〈error〉 σnmad/η (%) 〈error〉 Nrandom NTrees Natt

SDSS 0.08/27.0 0.33 0.06/18.0 0.21 6 8 7
SDSS+WISE 0.06/17.4 0.25 0.06/13.0 0.20 8 10 8

SDSS+WISE+NIR 0.05/13.7 0.23 0.04/9.0 0.18 6 8 12
SDSS+NIR 0.06/20.0 0.27 0.05/11.5 0.19 8 10 10

Notes. The accuracy of the photometric redshifts is quantified by estimating the normalized absolute median deviation, σnmad and the percentage
of outliers, η. The median error of the photometric redshift for each subsample is shown. The values of the TPZ parameters we used for each
subsample are also presented.

of attributes for TPZ. The number of the bins used was 50 in
the case of extended sources and 70 for the point-like sources.
To estimate the PDFs and the confidence level of the estimated
photometric redshifts (see Carrasco Kind & Brunner 2013), the
rms factor was set to 0.06. The same values for each parameter
were used to estimate the photo-z for the 1031 X-ray sources in
the ATLAS field (next section).

Figure 2 presents the importance of some of the attributes we
used in the training process of the TPZ algorithm. The left panel
presents the importance of the attribute as a function of red-
shift for the point-like sources when ten photometric bands are

available. A factor of one in the importance implies that the at-
tribute acts as a random variable (for more details see Sect. 4.1.1.
in Carrasco Kind & Brunner 2013). The right panel presents the
RMS importance factor as a function of the attributes computed
using the bias, defined as ∆z = zspec − zphot, and its scatter.
Figure 3 shows the same measurements for the extended sources.

The left panels of Figs. 2 and 3 show that the importance
of each attribute is different at different redshifts. In the case of
point-like sources, the z − W1 colour is the most important at-
tribute up to redshift 2.5, but its importance significantly drops
at z = 3. Similarly, the importance of the h − k colour in the
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Fig. 4. Left: u − g vs. g − r colour distribution of the training sample (black circles) and the X-ATLAS sources (blue triangles). Right: z −W1 vs.
J − H colour distribution of the training sample (black circles) and the X-ATLAS sources (blue triangles). The fraction of the X-ATLAS sources
that is well covered by the training set is different for different colour combinations. This is quantified in Table 4.
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Fig. 5. Performance of TPZ using the ten available photometric bands (SDSS+WISE+near-IR). The training sample has been split into train
and test files to compare the estimated photometric redshifts with the spectroscopic redshifts of the sources. The dashed lines correspond to
∆znorm = ±0.15. Based on our analysis, the number of outliers is η = 9% and η = 13%, for the extended and point-like sources, respectively. The
normalized absolute median deviation is σnmad ≈ 0.04–0.05.

case of extended sources significantly drops at z > 1.4. More-
over, same colours have a different importance for point-like and
extended sources, as can be more clearly seen in the right panels
of the two figures. For instance, the z − W1 colour is the most
important attribute for the point-like sources, but is least impor-
tant in the case of extended sources. Therefore, the importance
of the colours used to estimate photometric redshifts for X-ray
sources strongly depends on the morphology of the source and
the redshift range of interest.

The results of our measurements are presented in Table 3.
When we use optical photometry alone (SDSS), the number
of outliers is high, especially in the case of point-like sources.
When we add mid-IR colours (WISE), the results improve sig-
nificantly, while TPZ performs best when we also include near-
IR magnitudes in the training process of the algorithm. Figure 5
compares the estimated photometric redshifts with the available
spectroscopic redshifts of the sources. Figure 6 presents exam-
ples of photometric redshift PDFs produced by TPZ.
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Fig. 6. Examples of PDFs produced by TPZ during the validation process. The top panels present results for extended sources and the bottom
panels for point-like sources. In the left panels, the estimated photo-z (dotted line) is in agreement with the spectroscopic redshift (solid line) of the
source. In the right panels, the estimated photo-z differs significantly from the spectroscopic redshift. These measurements are also characterized
by a low confidence level of the photometric redshift.

The number of outliers drops to 9–14% when ten bands are
used for the photo-z estimation (Table 3). Although this num-
ber is significantly lower than the outlier percentage that we
obtain when we used fewer photometric bands, there is a non-
negligible number of outliers even among our best photo-z es-
timates. Figure 7 presents the colour space occupied by the
training sample (black circles) for different colour combinations.
Outliers (blue triangles) lie within the boundaries of the train-
ing set. Therefore, their existence cannot be attributed to the
extrapolation in colour space that TPZ may be required to per-
form. Although the cause of these outliers is uncertain, their per-
centage can be significantly reduced by applying a cut in the
confidence level, zconf (Carrasco Kind & Brunner 2013), of the

photo-z. For example, for zconf > 0.6, η = 4.5% in the case of
point-like sources. The percentage further decreases (η = 2.4%)
when we consider only photo-z estimated using ten photomet-
ric bands. When we apply a zconf > 0.5 cut for the extended
sources, the corresponding numbers are η = 4.0% and η = 1.2%.
Figure 8 presents the distribution of zconf for point-like and ex-
tended sources.

Variability of AGN can affect the accuracy of the estimated
photometric redshifts (Simm et al. 2015). This is not a problem
for the optical bands of SDSS we used, since all bands have been
observed simultaneously. Variability is also minimum in the
mid-IR photometric bands. No estimate of the variable sources
in our sample can be made for the near-IR bands, however. We
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colour distribution of the training sample (black circles) and the outliers (blue triangles).

Fig. 8. Distribution of zconf for the extended (dashed line) and the point-
like (dotted line) sources in our training sample.

would expect most of these sources to be excluded when a zconf
cut were applied, as discussed above, but a flag cannot be as-
signed to indicate these sources in the full catalogue.

4. Results

Following the results of the tests during the validation process
(see previous section), we split the 1031 X-ATLAS X-ray AGN
into point-like and extended sources using their SDSS classi-
fication. The number of sources divided based on their optical

Fig. 9. i−z vs. g−i colour space diagram. Black dots present the sources
in our training sample. The black solid line defines the region of the
colour space that contains 90% of the training sources as estimated by
the KDE test. Green dots are the sources from the X-ATLAS sample
inside the 90% region, and red crosses present the remaining X-ATLAS
sources.

morphology as well as the available photometry is presented in
Table 1.

Machine-learning methods, such as TPZ, are known to
perform poorly when no training set coverage is available and
extrapolation must be performed (Beck et al. 2017). Figure 4
compares the colour distribution of the X-ATLAS AGN (blue
triangles) with that of the training sample (black circles). In
both examples, the coverage of the training set seems sufficient
to properly train TPZ to estimate the photometric redshift of
the X-ATLAS sources. To quantify the differences among the
colours between the training and the X-ATLAS samples, we per-
formed a kernel-density estimation (KDE) test. Using KDE, we
defined the region in colour space that contained 90% of the
training sample. Then we estimated the fraction of the X-ATLAS

A39, page 7 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731762&pdf_id=7
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731762&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731762&pdf_id=9


A&A 608, A39 (2017)

Table 4. Fraction of the X-ATLAS sample that is well covered in all possible combinations of colours as well as in at least one colour-colour
combination.

Available photometry Fraction of sources that is well covered Fraction of sources that is well covered
in all colour combinations in at least one colour-colour combination

Extended/Point like Extended/Point like
SDSS 51%/56% 98%/91%

SDSS+WISE 40%/44% 99%/94%
SDSS+WISE+NIR 25%/35% 100%/100%

SDSS+NIR 37%/46% 99%/99%

Notes. An X-ATLAS source is considered well covered by the training set in a colour-colour combination when it lies in a region of the colour
space that contains 90% of the training sources.

Fig. 10. Redshift distribution of the 933 X-ATLAS sources taking into
account the full PDF of each source. Photo-z are estimated using the
TPZ algorithm.

sources that were contained in that region, that is, the sources
that are well covered by the training sample. This is illustrated
in Fig. 9 for the g − i vs. r − z colours. Table 4 presents the
fraction of X-ATLAS sample that is well covered in all possible
combinations of colours as well as in at least one colour-colour
combination.

TPZ estimated photo-z for 933 out of the 1031 sources.
Most of the remaining 98 sources have missing photometry, that
is, only SDSS bands are available, and therefore the algorithm
cannot be properly trained to give a photometric redshift esti-
mate. The distribution of the photometric redshifts for the 933
X-ATLAS X-ray sources, estimated by TPZ and taking into ac-
count the full PDF of each sources, is shown in Fig. 10. Of the
933 AGN, 174 have available spectroscopic redshifts from the
SDSS and GAMA surveys. In Fig. 11 we compare our photo-
metric redshifts, estimated using TPZ, with the available spec-
troscopic redshifts. Table 5 presents the median error and the
median confidence level, zconf , of the photometric redshifts, cal-
culated by TPZ as a function of the available photometric bands.

Table 5. Median error of the photometric redshifts and their me-
dian confidence level, estimated by TPZ, for each subsample of the
X-ATLAS dataset based on the available photometry.

Available photometry 〈zconf〉 〈error〉

Extended/Point like Extended/Point like
SDSS 0.44/0.36 0.21/0.26

SDSS+WISE 0.44/0.46 0.20/0.25
SDSS+WISE+NIR 0.49/0.48 0.19/0.24

SDSS+NIR 0.48/0.47 0.19/0.26

The full catalogue with the estimated photometric redshifts is
available at the CDS1.

To verify how many of the X-ATLAS sources are AGN
(log LX > 42 erg s−1), we used the X-ray fluxes provided by the
XMM-ATLAS catalogue (Ranalli et al. 2015) and the estimated
photometric redshifts to calculate the X-ray luminosities. This
information is available for 894 sources. Our calculations show
that 883 of the sources have log LX > 42 erg s−1.

5. Summary and discussion

We presented a catalogue with photometric redshift estimates for
933 X-ray AGN in the ATLAS field. For the first time, we used
the largest available X-ray sample to train a machine-learning
technique (TPZ) and estimate photo-z for X-ray sources. Our
analysis shows that our redshift estimates are accurate when op-
tical photometry is combined with mid-IR photometry in the
training process of the algorithm. When additional photometric
bands (near-IR) are used, the precision of the photometric red-
shifts is further improved. Our photo-z estimates have a normal-
ized absolute median deviation, σnmad ≈ 0.06 and the percentage
of outliers is η = 10–14%, depending on whether the sources
are extended or point like. These numbers significantly improve
when a cut in the confidence level of the photometric redshift is
applied (zconf > 0.5–0.6.).

Valiante et al. (2016) and Bourne et al. (2016) presented a
catalogue of 120 230 sources with identifications of optical
counterparts to submm sources in Data Release 1 (DR1) of the
H-ATLAS sample. The sources are located in three fields on
the celestial equator, covering a total area of 161.6 deg2, which
was previously observed in the GAMA spectroscopic survey.
The catalogue contains photometric redshifts (Smith et al. 2011)

1 And at http://xraygroup.astro.noa.gr/atlas/
atlas-photoz-online.dat
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Fig. 11. Comparison of the photometric redshifts estimated using TPZ with the spectroscopic redshifts from the SDSS and GAMA surveys for the
174 of the 933 sources in the ATLAS field. The left panel shows the comparison for 55 extended sources and the right panel for 119 point-like
sources. The median error of the photo-z varies from 0.19 to 0.26 and the median confidence level from 0.36 to 0.49, depending on the morphology
of the source and the available photometric bands (Table 5). A significant fraction of outliers exists in the case of the point-like sources, even when
seven or even ten photometric bands are used. This number can be greatly reduced when a cut is applied on the confidence level of the photometric
redshift, as discussed in the text (zconf > 0.6).

measured from the SDSS ugriz and UKIDSS YJHK photometry
using the neural network technique of ANNz (Collister & Lahav
2004). Photometric redshifts have been estimated using a
training sample constructed from spectroscopic redshifts from
GAMA I, SDSS DR7, 2SLAQ (Cannon et al. 2006), AEGIS
(Davis et al. 2007), and zCOSMOS (Lilly et al. 2009), covering
redshifts z < 1. Of these sources, 5500 lie in the X-ATLAS
region, and 3515 have a photometric redshift estimate using
ANNz. Sixty-five of these sources are common between the
two samples. Figure 12 presents the redshift distribution of the
3515 sources (solid line) and that of the 65 common sources,
based on our TPZ photo-z estimations (dashed line). The vast
majority of the ANNz photo-z estimates are at z < 1 because of
the galaxy training sample used for ANNz. In Fig. 13 we com-
pare our photometric redshift estimates using TPZ with those
using the ANNz method. Most of the discrepancy between the
two photo-z estimates is located in the upper left part of the plot,
that is, ANNz computes lower redshift values than we find from
our TPZ measurements. Most of this difference is likely due to
the different training sets used in the two methods. The training
sample of ANNz was constructed to better suit their test sam-
ple, the vast majority of which consists of galaxies. Our training
sample (Sect. 3.2) consists of X-ray AGN and extends to higher
redshifts (up to z ∼ 3.5; see Fig. 1). Our analysis has shown
(Figs. 2, 3, and 9 and Table 4) that the coverage of our training
set in feature space, that is to say, in colours, is also sufficient
at high redshifts (z > 1). The results of this comparison is not
an indication that ANNz generally performs poorer than TPZ,
but that for the specific X-ray sources our X-ray training set is
probably better suited.

Large-scale structure studies (e.g. weak lensing, gravita-
tional waves, clustering) require accurate redshifts in their
analysis. Georgakakis et al. (2014) examined the effect of the
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Fig. 12. Redshift distribution of the 3515 sources with ANNz photo-z
estimates in the X-ATLAS field (solid line) and the N(z) using TPZ
(normalized to the number of sources with ANNz estimates) of the
65 sources that also belong to our X-ray AGN sample. The redshift
distribution of the photo-z estimated by ANNz peaks at low redshifts
(z ∼ 0.3), and very few sources have z > 1 (solid line). This is ex-
pected since ANNz has been trained to estimate photometric redshifts
for galaxies. The N(z) estimated using TPZ has been specifically trained
to estimate photo-z for X-ray sources and presents a second peak at
z ∼ 1.5 (dotted line).
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Fig. 13. Comparison of our photometric redshifts estimated using TPZ
and those estimated using ANNz (Smith et al. 2011) for the 65 common
sources with our X-ATLAS X-ray AGN catalogue and the submm cata-
logue described in Valiante et al. (2016) and Bourne et al. (2016). Most
of the discrepancy between the two photo-z estimates is located in the
upper left part of the plot, i.e., ANNz computes lower redshift values
than are obtained with our TPZ measurements. Most of this difference
is likely due to the different training sets used in the two methods. The
training sample of ANNz is constructed to better suit their test sam-
ple, the vast majority of which consists of galaxies. Our training sample
(Sect. 3.2) consists of X-ray AGN (see text for more details).

accuracy of photometric redshifts on the estimation of the cor-
relation function in clustering measurements. They concluded
that a σ ∼ 0.04 (standard deviation of the photo-z) is required
in photo-z estimations that are to be used to calculate the AGN
correlation function in clustering studies. This accuracy is chal-
lenging to obtain, although Georgakakis et al. argued that the
clustering signal can be recovered even if the normalized ab-
solute median deviation is σ = 0.08, when the AGN/galaxy
cross-correlation function is measured and the galaxy sample
has very accurate photometric redshifts (σ ≈ 0.01). Their anal-
ysis takes the error of the photometric redshifts into considera-
tion, but does not account for outliers. Even our best photomet-
ric redshift measurements (extended sources with ten available
photometric bands) have a considerable percentage of outliers
(∼9–10%). Our preliminary results (Mountrichas et al., in prep.)
indicate that the clustering signal can be recovered using pho-
tometric redshifts derived by TPZ when a cut is applied on the
confidence level of the photometric redshift.

The 3XMM catalogue is the largest available X-ray cata-
logue, containing about 470 000 unique sources covering a to-
tal area of 1000 deg2 on the sky. XMMFITCAT-Z2 (Corral et al.
2015) is a spectral fit database for 124 000 sources with good
photon statistics in the 3XMM. The potential of these catalogues

2 http://xraygroup.astro.noa.gr/Webpage-prodec/
xmmfitcatz.html

will increase significantly with the addition of the distance in-
formation for their sources. We will apply the analysis presented
in this work to the 3XMM catalogue to estimate photometric
redshifts for all the X-ray sources with at least optical photom-
etry. In the 3XMM-DR5 catalogue, 42 697 sources have avail-
able SDSS photometry and 22 619 also have WISE counterparts.
3XMM-DR6 and usage of PanSTARRS in the southern sky will
increase the numbers of available X-ray sources. The resulting
X-ray catalogue will exceed any other current X-ray catalogue
with available redshift information by an order of magnitude.

Acknowledgements. The authors thank the anonymous referee for their careful
reading of the paper and their constructive comments. The research leading to
these results has received funding from the European Union’s Horizon 2020
Programme under the AHEAD project (grant agreement No. 654215). G.M. ac-
knowledges financial support from the AHEAD project, which is funded by the
European Union as Research and Innovation Action under Grant No: 654215.
F.J.C. and A.C.R. acknowledge financial support through grant AYA2015-
64346-C2-1-P (MINECO/FEDER). A.C.R. also acknowledges financial support
by the European Space Agency (ESA) under the PRODEX program.

References
Albareti, F. D., Comparat, J., Gutiérrez, C. M., et al. 2015, MNRAS, 452, 4153
Baldry, I. K., Robotham, A. S. G., Hill, D. T., et al. 2010, MNRAS, 404, 86
Barcons, X., Carrera, F. J., Ceballos, M. T., et al. 2007, A&A, 476, 1191
Beck, R., Dobos, L., Budavári, T., Szalay, A. S., & Csabai, I. 2016, MNRAS,

460, 1371
Beck, R., Lin, C.-A., Ishida, E. E. O., et al. 2017, MNRAS, 468, 4323
Benitez, N. 2000, ApJ, 536, 571
Bourne, N., Dunne, L., Maddox, S. J., et al. 2016, MNRAS, 462, 1714
Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503
Brescia, M., Cavuoti, S., & Longo, G. 2015, MNRAS, 450, 3893
Brusa, M., Civano, F., Comastri, A., et al. 2010, ApJ, 716, 348
Cannon, R., Drinkwater, M., Edge, A., et al. 2006, MNRAS, 372, 425
Carrasco Kind, M., & Brunner, R. J. 2013, MNRAS, 432, 1483
Cavuoti, S., Amaro, V., Brescia, M., et al. 2017, MNRAS, 465, 1959
Collister, A. A., & Lahav, O. 2004, PASP, 116, 345
Corral, A., Georgantopoulos, I., Watson, M. G., et al. 2015, A&A, 576, A61
Dalton, G. B., Caldwell, M., Ward, A. K., et al. 2006, SPIE, 6269, 62690X
Davis, M., Guhathakurta, P., Konidaris, N. P., et al. 2007, ApJ, 660, L1
Della Ceca, R., Maccacaro, T., Caccianiga, A., et al. 2004, A&A, 428, 383
Driver, S. P., Hill, D. T., Kelvin, L. S., et al. 2011, MNRAS, 413, 971
Eales, S., Dunne, L., Clements, D., et al. 2010, PASP, 122, 499
Emerson, J., McPherson, A., & Sutherland, W. 2006, The Messenger, 126, 41
Esquej, P., Page, M., Carrera, F. J., et al. 2013, A&A, 557, 11
Georgakakis, A., Mountrichas, G., Salvato, M., et al. 2014, MNRAS, 443, 3327
Georgakakis, A., Salvato, M., Liu, Z., et al. 2017, MNRAS, 469, 3232
Hambly, N. C., Collins, R. S., Cross, N. J. G., et al. 2008, MNRAS, 384, 637
Hsu, L.-T., Salvato, M., Nandra, K., et al. 2014, ApJ, 796, 22
Irwin, M. J. 2008, in Processing Wide Field Imaging Data (Berlin Heidelberg:

Springer-Verlag), 541
Lahav, O., & Collister, A. A. 2012, Astrophysics Source Code Library

[record ascl:1209.009]
Lilly, S. J., Le Brun, V., Maier, C., et al. 2009, ApJS, 184, 218
Liu, Z., Merloni, A., Georgakakis, A., et al. 2016, MNRAS, 459, 1602
Menzel, M.-L., Merloni, A., Georgakakis, A., et al. 2016, MNRAS, 457, 110
Pineau, D. C. 2016, ArXiv e-prints [arXiv:1609.03457]
Ranalli, P., Georgantopoulos, I., Corral, A., et al. 2015, A&A, 577, 10
Rigby, E. E., Maddox, S. J., Dunne, L., et al. 2011, MNRAS, 415, 2336
Salvato, M., Hasinger, G., Ilbert, O., et al. 2009, ApJ, 690, 1250
Salvato, M., Ilbert, O., Hasinger, G., et al. 2011, ApJ, 742, 61
Simm, T., Saglia, R., Sabato, M., et al. 2015, A&A, 584, 22
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Smith, D. J. B., Dunne, L., Maddox, S. J., et al. 2011, MNRAS, 416, 857
Valiante, E., Smith, M. W. L., Eales, S., et al. 2016, MNRAS, 462, 3146
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868

A39, page 10 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731762&pdf_id=13
http://xraygroup.astro.noa.gr/Webpage-prodec/xmmfitcatz.html
http://xraygroup.astro.noa.gr/Webpage-prodec/xmmfitcatz.html
http://linker.aanda.org/10.1051/0004-6361/201731762/1
http://linker.aanda.org/10.1051/0004-6361/201731762/2
http://linker.aanda.org/10.1051/0004-6361/201731762/3
http://linker.aanda.org/10.1051/0004-6361/201731762/4
http://linker.aanda.org/10.1051/0004-6361/201731762/4
http://linker.aanda.org/10.1051/0004-6361/201731762/5
http://linker.aanda.org/10.1051/0004-6361/201731762/6
http://linker.aanda.org/10.1051/0004-6361/201731762/7
http://linker.aanda.org/10.1051/0004-6361/201731762/8
http://linker.aanda.org/10.1051/0004-6361/201731762/9
http://linker.aanda.org/10.1051/0004-6361/201731762/10
http://linker.aanda.org/10.1051/0004-6361/201731762/11
http://linker.aanda.org/10.1051/0004-6361/201731762/12
http://linker.aanda.org/10.1051/0004-6361/201731762/13
http://linker.aanda.org/10.1051/0004-6361/201731762/14
http://linker.aanda.org/10.1051/0004-6361/201731762/15
http://linker.aanda.org/10.1051/0004-6361/201731762/16
http://linker.aanda.org/10.1051/0004-6361/201731762/17
http://linker.aanda.org/10.1051/0004-6361/201731762/18
http://linker.aanda.org/10.1051/0004-6361/201731762/19
http://linker.aanda.org/10.1051/0004-6361/201731762/20
http://linker.aanda.org/10.1051/0004-6361/201731762/21
http://linker.aanda.org/10.1051/0004-6361/201731762/22
http://linker.aanda.org/10.1051/0004-6361/201731762/23
http://linker.aanda.org/10.1051/0004-6361/201731762/24
http://linker.aanda.org/10.1051/0004-6361/201731762/25
http://linker.aanda.org/10.1051/0004-6361/201731762/26
http://linker.aanda.org/10.1051/0004-6361/201731762/27
http://linker.aanda.org/10.1051/0004-6361/201731762/27
http://ascl.net/1209.009
http://linker.aanda.org/10.1051/0004-6361/201731762/29
http://linker.aanda.org/10.1051/0004-6361/201731762/30
http://linker.aanda.org/10.1051/0004-6361/201731762/31
http://arxiv.org/abs/1609.03457
http://linker.aanda.org/10.1051/0004-6361/201731762/33
http://linker.aanda.org/10.1051/0004-6361/201731762/34
http://linker.aanda.org/10.1051/0004-6361/201731762/35
http://linker.aanda.org/10.1051/0004-6361/201731762/36
http://linker.aanda.org/10.1051/0004-6361/201731762/37
http://linker.aanda.org/10.1051/0004-6361/201731762/38
http://linker.aanda.org/10.1051/0004-6361/201731762/39
http://linker.aanda.org/10.1051/0004-6361/201731762/40
http://linker.aanda.org/10.1051/0004-6361/201731762/41

	Introduction
	X-ray sample
	Analysis
	Method
	Training sample
	Checking the performance of TPZ using the training set

	Results
	Summary and discussion
	References

