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fInstitut de Robòtica i Informàtica Industrial (IRI), UPC-CSIC

Carrer de Llorens i Artigas, 4-6, 08028 Barcelona, Spain

Abstract

This paper proposes an observer for the joint state and fault estimation devoted to
discrete-time linear parameter varying (LPV) systems subject to actuator faults.
The major contribution of this work is that the observer is able to estimate multi-
plicative faults, contrarily to the existing approaches, that consider additive faults.
The main characteristic of this observer is that it is scheduled not only by means of
the endogenous varying parameters of the faulty model, but also by the input vec-
tor. Another contribution of this paper consists in adding a switching component
in order to guarantee the feasibility of the conditions for designing the observer
gains. It is proved that, as long as the input sequence satisfies some characteristics,
the convergence of the observer error dynamics to zero is assured. A numerical
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example is used to demonstrate the effectiveness of the proposed strategy.

Keywords: Linear parameter varying (LPV) systems; Multiplicative actuator
faults; Fault estimation; Switched observers.

1. Introduction

In order to increase the reliability and performance of control systems, fault
detection and isolation (FDI) has been widely investigated in the last decades (see
[1, 2, 3] for recent surveys of the most relevant results). Model-based methods,
which use mathematical models to perform FDI in real-time, have proven to be
powerful tools for detecting and isolating faults in dynamic systems. Among these
methods, observer-based ones attempt to provide an estimation of the fault’s mag-
nitude, which is important in many applications, especially when an active fault
tolerant control (FTC) strategy is implemented. For example, [4, 5, 6] have pro-
posed to use sliding mode observers to decouple the effects of the faults from
the system’s estimated outputs. [7] has provided a robust observer for Lipschitz
nonlinear descriptor systems with bounded input disturbances. In [8], a bank of
unknown input observers (UIOs) has been used to perform robust fault diagnosis
in Takagi-Sugeno (TS) descriptor systems. In [9], UIOs have been used for FDI
in overactuated systems.

The provided list of references is not exhaustive, and many other observer-
based FDI methods have been developed for actuator faults, e.g. [10, 11, 12]. It
is worth highlighting that most of the proposed approaches consider the case of
additive faults, and there is a lack of results concerning observer-based estimators
for actuator multiplicative faults. However, much of the recent research in FTC
has considered systems affected by multiplicative faults, see e.g. the sliding mode
control-based solutions developed in [13] and [14]. The main difference between
an additive and a multiplicative fault is that, as a result of the additive faults, the
mean value of the output changes, while if the fault is multiplicative, it generates
changes on the system parameters [15]. The design of observers for multiplicative
fault estimation is not as straightforward as the case of additive fault estimation,
because the effect of the input and the fault are mixed. To the best of the authors’
knowledge, [16] and [17] are the only observer-based solutions proposed for the
estimation of multiplicative faults. In [16], the multiplicative faults have been re-
shaped into additive faults, such that a sliding mode observer can be used, while
in [17], the control input has been considered as a scheduling parameter, such that
the faulty system can be rewritten as a switched linear parameter varying (LPV)
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system, for which an LPV switched observer is designed. Hence, developing so-
lutions for multiplicative fault estimation remains an open and interesting research
issue.

The LPV paradigm is appealing because it can be used efficiently to represent
some nonlinear systems [18]. This fact has motivated many researchers from the
FDI community to develop model-based methods for LPV systems [19, 20, 21,
22, 23]. In some cases, due to the loss of feasibility of the LMIs, or the inherent
switching modes of the system, it may be needed to split the parameter region into
subregions, and switch among them during the LPV system operation. Thus, the
LPV system is transformed into a new class of system, referred to as switched LPV
system [24]. Both the study of the observability properties of switched systems
[25, 26] and the design of observers for switched systems with unknown inputs
[27, 28, 29, 30] have been investigated with interest in recent years. However,
only a few works have dealt with the problem of observer design for switched
LPV system, e.g. [31], where a Luenberger-like hybrid LPV observer was used
for the continuous state estimation, and [32], where an adaptive switched LPV
observer was proposed for the joint state and parameter estimation.

The main contribution of this paper is to propose an observer for the joint
estimation of the state and multiplicative faults in discrete-time LPV systems.
Similarly to [17], the control input is considered as an additional scheduling pa-
rameter, such that the proposed observer is scheduled not only by the endogenous
varying parameters of the faulty model, but also by the input vector. The design
is performed solving matrix inequalities, and it is shown that if any of the system
inputs can take a value equal to zero, a problem of feasibility of the matrix in-
equalities would appear if a non-switching structure is used for the LPV observer.
However, the addition of a switching component allows to overcome this issue by
considering different feasibility regions generated by the scheduling parameters.
It is worth highlighting that, although interesting and innovative, the approach
proposed in [17] can be used only with single-input systems, which limits its ap-
plicability. On the other hand, the approach presented in this paper can be applied
to the more general class of MIMO systems. Moreover, another difference with
respect to [17] is that the conditions that the input should satisfy in order to assure
convergence to zero of the estimation error dynamics are determined through an
average dwell time reasoning.

The paper is structured as follows. Section 2 presents the problem of joint
state and actuator multiplicative fault estimation. Section 3 provides the solution
proposed for this problem. Section 4 illustrates the proposed approach using a
numerical example. Finally, the last section outlines the conclusions of this work.
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2. Problem Statement

Let us consider a discrete-time LPV system subject to actuator faults

x̄(k + 1) = Ā (θ̄(k)) x̄(k) + B̄ (θ̄(k))Γ(k)u(k) (1)
y(k) = C̄ x̄(k) (2)

where x̄(k) ∈ Rnx and y(k) ∈ Rny are the state and output vector, respectively. The
input vector, denoted by u(k), takes values in a subset Υ ⊂ Rnu , defined as follows

Υ = [umin
1 ,umax

1 ] × . . . × [umin
nu
,umax

nu
] (3)

where umin
j < 0 and umax

j > 0 for all j = 1, . . . ,nu.
The matrices Ā (θ̄(k)) ∈ Rnx×nx , B̄ (θ̄(k)) ∈ Rnx×nu are scheduled by the vector

of varying parameters θ̄(k) ∈ Θ ⊂ Rnθ , which is assumed to be known. The matrix
C̄ ∈ Rny×nx is a known constant matrix. On the other hand, the matrix Γ(k) is
unknown and describes the multiplicative faults, as follows

Γ(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ1(k) 0 ⋯ 0
0 γ2(k) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ γnu(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where each γ j(k), j = 1, . . . ,nu, represents the loss of effectiveness of the j-th
actuator, i.e. its degree of degradation. For example, γ j(k) = 0.7 would denote that
the j-th actuator is degraded by 30% (the delivered action is 70% of the nominal
one). On the other hand, γ j(k) = 1 denotes the nominal operation (no fault), while
γ j(k) = 0 would denote a 100% degradation, which corresponds to a total loss.
This type of representation for describing faults is quite common in the literature,
see e.g. [17, 33].

Remark 1. The assumption of constant output matrix is quite common in the lit-
erature, and could be relaxed either by increasing the mathematical complexity of
the solution proposed in the following, or by post-filtering the output vector y(k),
as proposed by [34].

The problem addressed in this paper is the joint estimation of the system states
and the multiplicative faults using the model (1) and the available measurements
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(2). In order to achieve this objective, let us notice that, thanks to the diagonal
structure of Γ(k), which implies

Γ(k)u(k) = U (u(k))γ(k) (5)
U (u(k)) = diag (u1(k), . . . ,unu(k)) (6)

γ(k) = [ γ1(k) γ2(k) . . . γnu(k) ]T
(7)

it is possible to rewrite the system state equation (1) as

x̄(k + 1) = Ā (θ̄(k)) x̄(k) + B̄ (θ̄(k))U (u(k))γ(k) (8)

Under the assumption of slow-varying faults, i.e. γ(k + 1) ≈ γ(k), and by
considering the augmented state vector x(k) ≜ [x̄(k)T γ(k)T ]T and the scheduling
vector θ(k) ≜ [θ̄(k)T u(k)T ]T , the following augmented system is obtained

x(k + 1) = A(θ(k))x(k) (9)
y(k) = Cx(k) (10)

with

A(θ(k)) = [Ā(θ̄(k)) B̄(θ̄(k))U (u(k))
0 I ] , C = [C̄ 0]

Remark 2. The assumption of slow variation of the faults could appear very re-
strictive. Nevertheless, this assumption could be relaxed from a practical point of
view, as stated by [35] and [36].

Under the assumption that the augmented system (9)-(10) is observable, the
following observer for the joint state and fault estimation could be proposed

x̂(k + 1) = A(θ(k))x̂(k) + L(θ(k)) (ŷ(k) − y(k)) (11)
ŷ(k) = Cx̂(k) (12)

In this case, the problem would reduce to find the observer gain L(θ(k)) such
that lim

k→∞
e(k) = lim

k→∞
(x̂(k) − x(k)) = 0.

Taking into account the augmented system (9)-(10) and the state/fault observer
(11)-(12), the dynamics of the estimation error e(k) is given as follows

e(k + 1) = (A (θ(k)) + L (θ(k))C) e(k) (13)

Let us recall the following lemma.
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Lemma 1. [37] (Lyapunov condition for the stability of discrete-time LPV sys-
tems) Consider an autonomous discrete-time LPV system

x(k + 1) = A (θ(k)) x(k), θ ∈ Θ ⊂ Rnθ (14)

If there exists a matrix P = PT ≻ 0 such that ∀θ ∈ Θ the following holds

[ P PA (θ)
A (θ)T P P

] ≻ 0 (15)

then the system (14) is stable in the sense of Lyapunov.
Proof: The proof is straightforward by considering the Lyapunov function

V (k) = x(k)T Px(k) and imposing that the difference V(k + 1) −V(k) is negative.
◻

Then, sufficient conditions for guaranteeing the stability of (13) are obtained
by applying Lemma 1, and considering the change of variables Ξ(θ) = PL(θ),
which leads to the following matrix inequalities

[P PA (θ) + Ξ (θ)C
⋆ P ] ≻ 0 ∀θ ∈ Θ ×Υ (16)

However, due to the structure of the matrices A (θ) and C, if any of the inputs
can take a value equal to zero, then a problem of feasibility of the matrix inequali-
ties appears due to the loss of observability of the pair (A (θ) ,C). For example, if
u(k) = 0 were an admissible input, the observability matrix for this value, defined
as

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C
CA(θ)

⋮
CA (θ)nx+nu−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C̄ 0
C̄Ā (θ̄) 0

⋮ ⋮
C̄Ā (θ̄)nx+nu−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(17)

is such that rank(O) < nx + nu.
In order to guarantee the feasibility of the conditions for designing the ob-

server gains, a switched LPV state/fault observer, which is the main contribution
of this work, is proposed in the next section.
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3. Main result

Before introducing the switched LPV state/fault observer, let us define the
switching signal that will be used by the observer for achieving a correct estima-
tion. In order to do so, let us define the following subsets of the input space

Rs1 s2...snu
= {u ∶ u1

s1

O(−1)s1ε1, . . . ,unu

snu

O (−1)snuεnu} (18)

Qs1 s2...snu
= {u ∶ u1

s1

O s1ε1, . . . ,unu

snu

O snuεnu} (19)

R/Qs1 s2...snu
= {u ∶ u ∈Rs1 s2...snu

,u ∉ Qs1 s2...snu
} (20)

where the operators
s j

O, j = 1, . . . ,nu, are a shorthand notation for

s j

O = { ≥ i f s j = +
≤ i f s j = −

(21)

and ε j, j = 1, . . . ,nu, are given small scalars. The piecewise constant switching
signal

σ(k) = s1(k) . . . snu(k) (22)

defines at each time sample whether the index s j of the active subsetsRs1 s2...snu
and

Qs1 s2...snu
is + or −, as given in (21). In particular, the switching rule that provides

the switching signal is chosen to be dependent on the values of the inputs, as
follows

s j(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s j(k − 1) i f u j(k)
s j(k−1)

O (−1)s j(k − 1)ε j

−s j(k − 1) i f u j(k)
s j(k−1)

≶ (−1)s j(k − 1)ε j

(23)

where the operators
s j

≶ are a shorthand notation for

s j

≶ = { < i f s j = +
> i f s j = −

(24)

In order to clarify the notation, let us consider a system with two available
inputs u1(k) and u2(k), i.e. nu = 2. Eq. (18)-(20) define the following subsets of
the input space

R++ = {u ∶ u1 ≥ −ε1,u2 ≥ −ε2} R+− = {u ∶ u1 ≥ −ε1,u2 ≤ ε2}

R−+ = {u ∶ u1 ≤ ε1,u2 ≥ −ε2} R−− = {u ∶ u1 ≤ ε1,u2 ≤ ε2}
(25)
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Q++ = {u ∶ u1 ≥ ε1,u2 ≥ ε2} Q+− = {u ∶ u1 ≥ ε1,u2 ≤ −ε2}

Q−+ = {u ∶ u1 ≤ −ε1,u2 ≥ ε2} Q−− = {u ∶ u1 ≤ −ε1,u2 ≤ −ε2}
(26)

R/Q++ = {u ∶ u ∈R++,u ∉ Q++} R/Q+− = {u ∶ u ∈R+−,u ∉ Q+−}

R/Q−+ = {u ∶ u ∈R−+,u ∉ Q−+} R/Q−− = {u ∶ u ∈R−−,u ∉ Q−−}
(27)

Then, σ(k − 1) = ++ would indicate that the active subset at time sample k − 1
is R++, while σ(k − 1) = +−, σ(k − 1) = −+ and σ(k − 1) = −− would indicate
R+−, R−+ and R−−, respectively. Then, if the active subset at time sample k − 1
were R++, the switching rule (23) would be as follows

σ(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ + i f u1(k) ≥ −ε1,u2(k) ≥ −ε2

+ − i f u1(k) ≥ −ε1,u2(k) < −ε2

− + i f u1(k) < −ε1,u2(k) ≥ −ε2

− − i f u1(k) < −ε1,u2(k) < −ε2

On the other hand, if the active subset at time sample k − 1 were R+−, the
switching rule would be

σ(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+ + i f u1(k) ≥ −ε1,u2(k) > ε2

+ − i f u1(k) ≥ −ε1,u2(k) ≤ ε2

− + i f u1(k) < −ε1,u2(k) > ε2

− − i f u1(k) < −ε1,u2(k) ≤ ε2

Similar switching rules are obtained for the remaining active subsetsR−+ orR−−.
Taking into account the definition of the switching signal provided in (22)-

(23), the following switched LPV state/fault observer is proposed in order to guar-
antee that in each subset of the input space Rs1 s2...snu

, the design conditions for the
gains are feasible

x̂(k + 1) = A(θ(k))x̂(k) + Lσ(k)(θ(k)) (ŷ(k) − y(k)) (28)
ŷ(k) = Cx̂(k) (29)

where Lσ(k)(θ(k)) corresponds to the active LPV observer gain, that is defined by
the value of the switching signal σ(k). For comparison with LPV observers and
switched observers, see [38] and [39], respectively. The design problem becomes
to find the possible LPV observer gains Ls1...snu

(θ(k)) for all the subsets defined
in (18), such that the dynamics of the estimation error

e(k + 1) = (A (θ(k)) + Lσ(k) (θ(k))C) e(k) (30)

8



satisfies some stability condition.
The following theorem provides a sufficient condition for the stability of the

estimation error dynamics (30). This proof resembles the reasoning used to prove
the stability of switched LPV systems with average dwell time [24].

Theorem 1. If there exist 2nu positive definite matrices Pl = PT
l ∈ R(nx+nu)×(nx+nu),

2nu matrices Ξl(θ) ∈ R(nx+nu)×ny , scalars 0 ≤ a ≤ 1, b ≥ 0 and µ > 1 such that the
following conditions hold

[ Pl PlA (θ) + Ξl (θ)C
⋆ aPl

] > 0, ∀θ ∈ Θ × (Υ ∩Ql) (31)

[ Pl PlA (θ) + Ξl (θ)C
⋆ bPl

] > 0, ∀θ ∈ Θ × (Υ ∩Rl) (32)

1
µ

Pm ≤ Pl ≤ µPm (33)

with l and m equal to all the possible combinations of index s1 . . . snu as defined in
(18)-(19), then the error dynamics (30) converges asymptotically to zero as long
as the LPV observer gains are calculated as

Ll (θ(k)) = P−1
l Ξl (θ(k)) (34)

and the input sequence u(k) is such that for any k0 ≥ 0, it is possible to find a
k f > k0 such that

(µN) (bNk̄
R/Q) (aNk̄Q) < 1 (35)

where N is the number of switches in [k0, k f ] given by (23), k̄Q is the average
number of samples per switch during which u(k) belongs to one of the subsets
Qs1...snu

, and k̄R/Q is the average number of samples per switch during which u(k)
belongs to the regions that belong to a subset Rs1...snu

but does not belong to any
subset Qs1...snu

.
Proof: First of all, for each possible combination of indices s1 . . . snu in (18)-

(19), let us define the corresponding Lyapunov function

Vl (e(k)) = e(k)T Ple(k) (36)

It is also assumed that over an interval [k0, k f ], the input u(k) changes the active
subset as Q0 → R0/Q0, . . . ,Ql → Rl/Ql, . . . ,QN−1 → RN−1/QN−1 at time samples
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k0
Q
, . . . , kl

Q
, . . . , kN−1

Q
, and asR0/Q0 → Q1, . . . ,Rl/Ql → Ql+1, . . .,RN−1/QN−1 → QN

at time samples k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

.
Then, considering conditions (31), at k = k0

Q
, . . . , kl

Q
, . . . , kN−1

Q
, the Lyapunov

functions V0, . . . ,Vl, . . . ,VN satisfy

V0 (e(k0
Q
)) < (ak0

Q
−k0)V0 (e(k0)) (37)

V1 (e(k1
Q
)) < (ak1

Q
−k0
R/Q)V1 (e(k0

R/Q
)) (38)

⋮
Vl (e(kl

Q
)) < (akl

Q
−kl−1
R/Q)Vl (e(kl−1

R/Q
)) (39)

⋮
VN (e(k f )) < (ak f−kN−1

R/Q)VN (e(kN−1
R/Q

)) (40)

On the other hand, the conditions (32) guarantee that at k = k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

,
the Lyapunov functions V0, . . . ,Vl, . . . ,VN−1 satisfy

V0 (e(k0
R/Q

)) < (bk0
R/Q

−k0
Q)V0 (e(k0

Q
)) (41)

V1 (e(k1
R/Q

)) < (bk1
R/Q

−k1
Q)V1 (e(k1

Q
)) (42)

⋮
Vl (e(kl

R/Q
)) < (bkl

R/Q
−kl
Q)Vl (e(kl

Q
)) (43)

⋮
VN−1 (e(kN−1

R/Q
)) < (bkN−1

R/Q
−kN−1
Q )VN−1 (e(kN−1

Q
)) (44)

In addition, the conditions (33) guarantee that at k = k0
R/Q

, . . . , kl
R/Q

, . . . , kN−1
R/Q

V1 (e(k0
R/Q

)) < µV0 (e(k0
R/Q

)) (45)

⋮
Vl+1 (e(kl

R/Q
)) < µVl (e(kl

R/Q
)) (46)

⋮
VN (e(kN−1

R/Q
)) < µVN−1 (e(kN−1

R/Q
)) (47)

Therefore, linking all the inequalities (37)-(47), the following is true

VN (e(k f )) < (µN)
⎛
⎝

b
N−1
∑

l=0
(kl

R/Q−kl
Q)⎞
⎠
⎛
⎝

a
k f−kN−1

R/Q+
N−1
∑

l=1
(kl

Q−kl−1
R/Q)+k0

Q−k0⎞
⎠

V0 (e(k0)) (48)

10



By considering

k̄Q =
k f − kN−1

R/Q +
N−1
∑
l=1

(kl
Q − kl−1

R/Q) + k0
Q − k0

N
(49)

k̄R/Q =

N−1
∑
l=0

(kl
R/Q − kl

Q)

N
(50)

the inequality (48) can be rewritten as

VN (e(k f )) < (µN) (bNk̄R/Q) (aNk̄QV0 (e(k0))) (51)

Then, if the input u(k) is such that for each k0 ≥ 0 it is possible to find k f > k0

that satisfies (35), the Lyapunov functions will be decreasing to zero, and therefore
the estimation error e(k) will converge asymptotically to zero, completing the
proof. ◻

From a practical point of view, Theorem 1 cannot be used because it relies
on the satisfaction of infinite constraints. However, the number of constraints can
be reduced to a finite number by choosing the observer gain L to depend only on
θ̄(k), and by considering a polytopic representation of A (θ(k)) and L (θ̄(k)), as
follows

A (θ(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
βl

j (u(k))AQl
i j ∀θ ∈ Θ × (Υ ∩Ql) (52)

A (θ(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
χl

j (u(k))ARl
i j ∀θ ∈ Θ × (Υ ∩Rl) (53)

Ll (θ̄(k)) =
Nθ̄

∑
i=1
αi (θ̄(k))Ll

i ∀θ ∈ Θ × (Υ ∩Rl) (54)

with
Nθ̄

∑
i=1
αi (θ̄(k)) =

Nu

∑
j=1
βl

j (u(k)) =
Nu

∑
j=1
χl

j (u(k)) = 1 (55)

and αi ≥ 0 ∀i = 1, . . . ,Nθ̄, β j ≥ 0 ∀ j = 1, . . . ,Nu, χ j ≥ 0 ∀ j = 1, . . . ,Nu.
Then, the following corollary can be obtained easily from Theorem 1.
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Corollary 1. Choose scalars 0 ≤ a ≤ 1, b ≥ 0, and find 2nu positive definite
matrices Pl = PT

l ∈ R(nx+nu)×(nx+nu) and 2nu Nθ̄ matrices Ξl
i ∈ R(nx+nu)×ny such that

[ Pl PlA
Ql
i j + Ξl

iC
⋆ aPl

] > 0 (56)

[ Pl PlA
Rl
i j + Ξl

iC
⋆ bPl

] > 0 (57)

and such that there exists µ > 1 for which

1
µ

Pm ≤ Pl ≤ µPm (58)

with l and m equal to all the possible combinations s1, . . . , snu as defined in (18)-
(19), i = 1, . . . ,Nθ̄ and j = 1, . . . ,Nu.

Then, the error dynamics (30) converges asymptotically to zero as long as the
LPV observer gain is given by (54) with

Ll
i = P−1

l Ξl
i (59)

and the input sequence u(k) is such that for any k0 ≥ 0, it is possible to find a
k f > k0 such that (35) holds.

Proof: The proof is based on a basic property of matrices [40], which estab-
lishes that any linear combinations of (56) and (57) with non-negative coefficients
(of which at least one different from zero) is positive definite. Using the coeffi-
cients αi (θ̄(k)) and βl

j (u(k)), (56) becomes

Nθ̄

∑
i=1
αi (θ̄(k))

Nu

∑
j=1
βl

j (u(k)) [ Pl PlA
Ql
i j + Ξl

iC
∗ aPl

] > 0 (60)

that, taking into account Ξl
i = PlLl

i, and (52), (54) and (55), becomes (31).
If the same process is applied to (57) using the coefficients αi (θ̄(k)) and

χl
j (u(k)) and taking into account (55)-(57), (32) would be obtained.

Since (58) corresponds to (33), the conditions provided by Theorem 1 are
recovered, completing the proof. ◻

4. Illustrative Example

Consider the discrete-time LPV system subject to multiplicative actuator faults
(1)-(2) with state and input matrices described by

12



Ā(θ̄(k)) =
⎡⎢⎢⎢⎢⎢⎣

0.3 0.2 θ̄2(k)
0.6 θ̄1(k) 0.1

2θ̄2(k) 0.3 0.5

⎤⎥⎥⎥⎥⎥⎦
, B̄(θ̄(k)) =

⎡⎢⎢⎢⎢⎢⎣

0.8 + θ̄1(k) 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
, C̄ = [1 0 0

0 1 0]

with the varying parameter θ̄1(k), θ̄2(k) ∈ [0.1,0.3] for all k, and with the inputs
u1(k) and u2(k) taking values in [−10,10]. By considering (5)-(8), under the
assumption of slow-varying faults, the augmented system (9)-(10) is obtained as
follows

A(θ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.2 θ̄2(k) (0.8 + θ̄1(k))u1(k) 0
0.6 θ̄1(k) 0.1 0 u2(k)

2θ̄2(k) 0.3 0.5 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,C = [
1 0 0 0 0
0 1 0 0 0

]

The subsets R..., Q... and R/Q... are defined as in the example provided in the
previous section, with a choice of ε1 = ε2 = 1. By taking into account the limits of
θ̄1(k), θ̄2(k) and u(k), 16 vertex matrices are obtained for each subset.

By choosing a = 0.9 and b = 2, the LMIs (56)-(57) have been solved using the
YALMIP toolbox [41] with SeDuMi solver [42], verifying that, for the obtained
Lyapunov matrices, the condition (58) holds with µ = 5. According to Corollary 1,
if the LPV observer vertex gains are calculated as in (59), then the estimation error
would converge to zero as long as the input sequence satisfies condition (35). It is
worth remarking that, since the Lyapunov-based conditions are always sufficient
for convergence, and not necessary, it is possible that the estimation error would
still converge to zero even though the input sequence does not satisfy (35).

The results shown in the following refer to multiplicative faults assumed to oc-
cur in both inputs. The initial conditions and the scheduling parameter trajectory
are as follows:

x(0) = [0.2 0.5 1]T
(61)

x̂(0) = [ −0.2 0 −0.5 1 1 ]T
(62)

θ̄1(k) = 0.2 + 0.1 sin(0.005k) (63)

θ̄2(k) = 0.2 + 0.1 cos(0.01k) (64)

13



The input sequences are chosen as follows (see Fig. 1)

u1(k) = { 0 if k ∈ [500,1500]
5 sin(0.001k) else (65)

u2(k) = −5 cos(0.0046k) (66)

Fig. 2 shows the states and their estimation, while Fig. 3 shows the state esti-
mation errors obtained from the simulation. On the other hand, the faults and their
estimation are depicted in Fig. 4. At the time instant k = 500, u1(k) becomes zero,
such that the condition (35) is not satisfied anymore. However, the fault/state esti-
mation errors have already converged to zero, so no problems arise. On the other
hand, when the fault appears at sample k = 1000, the lack of excitation of the input
causes the multiplicative fault in the first actuator γ1 not to be correctly estimated.
By recalling that the Lyapunov functions are quadratic functions of the state/fault
estimation errors, it is reasonable that they start diverging as well, as shown in
Fig. 5. However, when satisfactory input sequences enter into the system, i.e.
starting from sample k = 1500, the switched LPV observer behaves as expected,
such that both the faults and the states are correctly and rapidly estimated, and the
Lyapunov functions converge again to zero.

Notice that, although in the proposed scenario γi(k + 1) = γi(k), i = 1,2, does
not hold at sample k = 1000 and in the interval k ∈ [2500,4000], the proposed
approach is able to achieve correctly the goal of estimating jointly the states and
faults in the system. It is worth stating that in the case of abrupt faults, the result-
ing stepwise change in the fault profile would cause a sudden change in the value
of the Lyapunov function (e.g. at k = 2500 in Fig. 5). However, due to the ac-
tuator effectiveness being constant in the subsequent samples, the convergence of
the Lyapunov function to zero would be guaranteed by the theoretical results pro-
vided by Theorem 1 (in other words, in the case of abrupt faults, the assumption
of slow-varying faults would not affect the estimation performance). On the other
hand, in the case of incipient faults (e.g. linear changes), undesired and not ex-
pected effects could appear, e.g. the bumps in the state estimation errors and fault
estimates that are visible in the interval k ∈ [2500,4000] in Figs. 3-4. Although
the results presented in this Section have shown that the proposed approach is able
to work correctly for a wider range of multiplicative fault profiles than the ones
satisfying the slow-varying assumption, it is clear that this point should be further
investigated by future research.
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5. Conclusions

This paper has proposed a method for estimating simultaneously the states and
the actuator faults in discrete-time LPV systems, using a switched LPV observer.
Differently from the existing approaches that consider additive faults, the pro-
posed observer is able to estimate multiplicative faults. The proposed approach
considers switching rules between different regions and design LMIs that take into
account the properties of observability and non-observability of different regions.
Sufficient conditions to design the observer gains were provided in the form of
a set of LMIs. Moreover, it has been shown that if the input sequence has some
characteristics in terms of numbers of switching in an interval, and average num-
ber of samples per switch in every switching region, the convergence of the error
dynamics to zero is assured. Simulation results have shown and validated the
relevant characteristics of the proposed method.

Although the simulation results have shown that the proposed approach can
be successfully applied to faults with different profiles (e.g. stepwise or linear), it
should be underlined that the theoretical guarantees provided by the design would
hold strictly only for the case of slow-varying faults, i.e. the case when γ(k+ 1) ≈
γ(k). Future research will aim at overcoming this limitation, so as to obtain a
design approach which provides theoretical guarantees about the convergence to
zero of the estimation error for a wider range of possible fault change rates. Also,
the design of input sequences which satisfy the required characteristics will be
considered, with the aim of developing an active fault estimation technique.
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Figure 1: Applied inputs u1(k) and u2(k).
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