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KEY POINTS 

We report strategies to reprogram macrophages as novel approach to treat Multiple 

Myeloma mouse models using pro-M1 and blocking M2 signals 

MIF is upregulated in the BM microenvironment of MM patients and plays an 

autocrine role in protumoral MØ polarization through CD74 and CXCR7 
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Summary 

Tumor associated macrophages (TAM) are important components of the multiple 

myeloma (MM) microenvironment that support malignant plasma cell survival and 

resistance to therapy. It has been proposed that macrophages (MØ) retain the capacity 

to change in response to stimuli that can restore their antitumor functions. Here we 

investigated several approaches to reprogram MØ as a novel therapeutic strategy in 

MM. First, we found tumor-limiting and tumor-supporting capabilities for monocyte-

derived M1-like MØ and M2-like MØ, respectively, when mixed with MM cells, both in 

vitro and in vivo. Multicolor confocal microscopy revealed that MM associated MØ 

displayed a predominant M2-like phenotype in the bone marrow of MM patient 

samples, and a high expression of the pro-M2 cytokine macrophage migration 

inhibitory factor (MIF). To reprogram the pro-tumoral M2-like MØ present in MM 

towards anti-tumoral M1-like MØ we tested the pro-M1 cytokine GM-CSF plus 

blockade of the M2 cytokines M-CSF or MIF. The combination of GM-CSF plus the MIF 

inhibitor 4-IPP achieved the best reprogramming responses towards an M1 profile, 

both at gene and protein expression levels, as well as remarkable tumoricidal effects. 

Furthermore, this combined treatment elicited macrophage-dependent therapeutic 

responses in MM xenograft mouse models, which were linked to up-regulation of M1 

and reciprocal down-regulation of M2 macrophage markers. Our results reveal the 

therapeutic potential of reprogramming macrophages in the context of MM.  
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Introduction 

Multiple myeloma (MM) is an incurable hematologic neoplasia characterized by 

accumulation in the bone marrow (BM) of malignant plasma cells that produce 

monoclonal proteins and cause bone lesions, renal disease and immunodeficiency 1. 

Survival of malignant plasma cells is supported by interactions with the BM 

microenvironment (cells, extracellular matrix and soluble factors), where macrophages 

(MØ) represent an important component2,3. Tumor associated macrophages (TAM) 

and related myeloid-derived suppressor cells protect MM cells from spontaneous and 

chemotherapy-induced apoptosis, and provide an immunosuppressive 

microenvironment 4,5. In addition, TAM participate in complex paracrine loops with 

stromal and endothelial cells, promoting MM survival and angiogenesis through 

release of VEGF and vasculogenic mimicry 6-8. Indeed, several studies have shown that 

MM patients with high BM-MØ infiltration have poor prognosis9,10. In spite of their 

pro-tumoral actions, MØ in the myeloma niche display inherent tumoricidal potential 

as demonstrated by the use of anti-CD47 antibodies that block “don’t eat me” signals, 

and elicit MØ-mediated myeloma regression11. Moreover, Th1 activated-MØ are 

important effectors cells mediating anti-tumor CD4+ T-cell responses in myeloma 

models12. Interestingly, macrophage-activating immunotherapy using CD40 plus TLR 

ligation has shown clinical benefit in a MM murine model 13. 

MØ therefore have great plasticity and can differentiate into several functional 

states in response to microenvironmental signals 14. Using different activation stimuli 

in vitro, MØ have been classified into two major polarized states: M1-MØ refers to 

classically activated MØ by cytokines such as IFN-γ, tumor necrosis factor (TNF-α) or 

granulocyte–macrophage colony-stimulating factor (GM-CSF), whereas M2-MØ refers 
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to alternatively activated MØ by IL-4, IL-13 or IL-10 15. M1-MØ have remarkable 

tumoricidal activity through secretion of cytotoxic factors (type I interferons, TNF-α, 

reactive nitrogen and oxygen species (RNS/ROS)) and phagocytosis 16,17. Notably, M1-

MØ can initiate specific anti-tumor immune responses through high expression of the 

major compatibility complex (MHC) and costimulatory molecules for efficient antigen 

presentation and proinflammatory cytokines (IL12 and IL23) to stimulate cytotoxic T 

and NK cells 18. In contrast, M2-MØ generally show low RNS/ROS production, low 

antigen-presentation and suppress antitumor immunity 19. 

Current in vivo evidence indicates that TAM are predominantly polarized 

towards the M2-like phenotype in advanced cancer stages, and that MØ targeting can 

be clinically beneficial 14,19,20. Rather than depletion of TAM, more targeted therapies 

are directed to block the pro-tumor functions of TAM, while promoting their anti-

tumor activities 21. Such reprogramming from M2-like to M1-like MØ may control 

inflammation-related cancer progression and elicit tumor-destructive reactions. 

Several factors can induce the M2-MØ phenotype including macrophage-colony 

stimulating factor (M-CSF) and macrophage migration inhibitory factor (MIF), both 

abundantly produced in tumors 20,22,23. M-CSF is crucial for MØ differentiation and 

survival, and inhibition of its signaling ablates TAM in mouse tumor models and is 

associated with clinical benefit in patients20,24 . MIF is strongly upregulated in tumors 

and is related to tumor progression and high clinical stage 25,26.  Furthermore, MIF-

deficient models of melanoma and chronic lymphocytic leukemia (CLL) displayed 

prolonged survival 22,27.  

In this study we have characterized the functions of M1-MØ compared to M2-

MØ in MM and have explored possible therapeutic protocols targeting MØ in 
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myeloma. Using a new double strategy that combines GM-CSF and antagonizes MIF 

signaling, we have reprogrammed TAM and showed therapeutic benefit in MM 

xenograft models.  Furthermore, we have defined the role of MIF and its receptors, 

CD74 and CXCR7 in M2-MØ polarization. 

Materials and Methods 

Patient samples, macrophages and MM cell lines. Samples from MM patients were 

obtained after informed consent and followed the guidelines from the Ethics 

Committees of Instituto de Investigación Sanitaria Gregorio Marañón, Hospital 12 de 

Octubre and Consejo Superior de Investigaciones Científicas. Patient characteristics are 

reported in Supplemental Table 1. CD138+ primary myeloma cells were purified from 

the mononuclear fraction of BM samples from patients with active MM using CD138 

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Human monocytes were 

purified from buffy coats and differentiated to M1-like or M2-like MØ using GM-CSF or 

M-CSF, respectively, as previously reported 28 (protocol in Supplemental Figure 1E). 

Hereafter, we will refer to these phenotypes as GM-MØ and M-MØ, respectively. 

Human MØ and MM cell lines (NCI-H929, U266, MM.1S and MM.1S-GFP) were 

maintained in RPMI-1640 medium/10% fetal calf serum (Sigma-Aldrich, St. Louis, MO, 

USA) at 37ºC in 5% CO2/95% air atmosphere.  

For M-MØ reprogramming, the supernatant of previously differentiated M-MØ was 

replaced with fresh medium containing reprogramming agents (provided in 

Supplemental Table 2) every two days for seven additional days, as indicated in 

reprogramming protocol (Supplemental Figure 2A). 

MØ and MM cell co-cultures. MM cells were co-cultured with GM-MØ, M-MØ or 

reprogrammed MØ at 1:1 MØ/MM ratio. After 3 days, MM cell death was analyzed by 
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flow cytometry, using the Annexin V/Propidium Iodide kit (BD Bioscience, CA, USA). 

Staining with CD14Ab was used to exclude MØ from the analysis. MM cell proliferation 

was measured using carboxyfluorescein diacetate succinimidyl ester (CFSE, Life 

Technologies) and MØ and dead cells were excluded from this analysis using CD14Ab 

and 7-AAD staining, respectively.  

For non-cell-cell contact experiments, MØ were differentiated in the lower chamber of 

0.4 µM pore size Transwell inserts. MM cells were added to the upper chamber of the 

insert and MM cell death was determined after 3 days of culture. For experiments with 

conditioned media, the supernatants from various types of MØ or from GM-MØ+MM 

co-cultures were collected and added to MM cells (50% v/v). MM cell death analyses 

were performed after 3 days of culture. Conditioned media inactivation was 

performed by heating supernatants at 100ºC during 10 minutes. 

Other methods. Other methods, reagents and antibodies are provided in 

Supplemental Methods and Table 3. 

Results 

Differential role of polarized MØ on MM cell survival, proliferation and tumor 

growth. 

To determine the tumoricidal potential of polarized MØ towards MM cells, human 

monocytes were treated with either GM-CSF or M-CSF, to generate M1-like (GM-MØ) 

and M2-like (M-MØ) MØ, respectively. Phenotypical analyses confirmed that M-MØ 

had higher protein or mRNA expression of the M2 markers CD163, folate receptor beta 

(FRβ, encoded by FOLR2), STAB1, SERPINB2 and CCL2, and lower expression of the M1 

markers ICAM3, EGLN3, INHBA and MMP12 than GM-MØ 29-33(supplemental Figure 

1A). GM-MØ and M-MØ from 6 independent donors were co-cultured with several 
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MM cell lines and subsequently analyzed by flow cytometry, using annexin V and 

propidium iodide (AnV/PI) to identify dead MM cells and CD14 to exclude MØ (Figure 

1A and representative MØ donor in Supplemental Figure 1B). MM cells co-cultured 

with GM-MØ showed enhanced cell death compared with MM-cells cultured alone or 

co-cultured with M-MØ (Figure 1A). M-MØ also supported resistance of MM cells to 

the cytotoxic agent bortezomib (Figure 1B). Moreover, M-MØ protected primary MM 

cells from spontaneous death in ex vivo cultures, while GM-MØ enhanced basal cell 

death by 50% (Figure 1C).   

We next used video-microscopy to monitor MM cells in co-culture with MØ. 

During the first hours of co-culture with GM-MØ a significant number of NCI-H929 MM 

cells showed either rapid AnV+/PI+ staining (necrotic cell death) or long-lasting 

membrane blebbing and cell shrinkage (apoptotic cell death) (Figure 1D and 

supplemental video 1), indicating that GM-MØ were able to induce both forms of 

programmed cell death. By contrast, there were no dead MM cells in M-MØ+MM cell 

co-cultures or MM cells cultured alone (Figure 1D and supplemental video 2).  

To analyze the role of MØ on MM cell proliferation, we used CFSE dilution to 

monitor cell division of live MM cells (7-AAD negative). Figure 1E shows a progressive 

decrease in cell fluorescence in MM cells co-cultured with M-MØ, indicating active MM 

cell proliferation. MM cells co-cultured with GM-MØ maintained high CFSE-staining 

while MM cells cultured alone showed intermediate CFSE-staining (Figure 1E). These 

results indicated that M2-MØ enhance cell proliferation whereas M1-MØ do not. 

We next used a MM cell-xenograft model to examine whether human MØ 

could impact on tumor development. NCI-H929 cells were mixed with either GM-MØ 

or M-MØ and injected subcutaneously into NSG-mice. Determination of tumor size 
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revealed that MM cells co-injected with M-MØ developed larger tumors than when co-

injected with GM-MØ (Figure 1F). MM cells injected alone developed intermediate size 

tumors. Tissue analysis revealed a major component of CD38+/CD138+ tumor cells 

with scattered mouse and human MØ in both tumors (Figure 1G, quantified in 

Supplemental Figure 1C). Interestingly, MM+GM-MØ tumors displayed enhanced 

active caspase 3 levels, whereas MM+M-MØ showed higher Ki67 staining, revealing 

inverse apoptosis/proliferation ratio in each tumor. Comparable results were obtained 

when either GM-MØ or M-MØ were injected into the tumor at a later stage (after 

tumor volume reached 100 mm3) (Supplemental Figure 1D). These data indicate that 

M-MØ enhance and GM-MØ suppress MM tumor growth in vivo. 

Distinct response of polarized MØ in the secretion of cytotoxic factors and cross-

activation by MM cells 

To account for differences in macrophage differentiation protocols, we further 

exposed GM-MØ to LPS and IFN-γ (LPS/IFN-MØ), whereas M-MØ were treated with IL-

4 (IL4-MØ) (see protocol in supplemental Figure 1E). LPS/IFN-MØ displayed enhanced 

tumoricidal effect towards NCI-H929, but not towards U266 and MM.1s cells, 

compared with GM-MØ (Figure 2A). This indicates that further activation of GM-MØ 

with IFN-γ and LPS potentiates their killer ability towards certain MM cell lines. 

To determine whether the tumoricidal activity of MØ towards MM cells 

requires cell-cell contact, we used Transwell inserts to separate MØ and MM cells 

during culture. GM-MØ, and to a larger extent LPS/IFN–MØ, retained significant 

tumoricidal ability in this system, whereas M-MØ did not alter MM cell viability (Figure 

2B). Furthermore, as Transwell inserts prevent phagocytosis, the data show that the 

differential behavior of GM-MØ and M-MØ was not due to their distinct ability to 
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engulf apoptotic/necrotic cells. These results indicated that MØ tumoricidal effect 

involved, at least partially, the secretion of cytotoxic factors, a potential candidate 

being TNF-α34. No TNF-α production was detected in GM-MØ, M-MØ or MM cell 

culture media (Figure 2C). Interestingly, co-culture of GM-MØ with NCI-H929 or U266 

MM cells induced TNF-α secretion, whereas no TNF-α was  detected in co-cultures of 

MM cells with M-MØ. Culture supernatants of activated LPS/IFN-MØ contained large 

amounts of TNF-α, and co-culture with NCI-H929 or U266 MM cells further up-

regulated its secretion (Figure 2C). Production of IL-12 was also monitored as this 

cytokine encompasses both innate and adaptive anti-tumor immunity35 . Similarly to 

TNF-α, GM-MØ did not produce IL-12, but this powerful anti-tumor cytokine was highly 

induced upon co-culture with MM cells or activation by LPS/IFN (Figure 2D). These 

experiments demonstrated cross-activation of GM-MØ in co-culture with MM cells, 

which induced production of TNF-α and IL-12, compared with the lack of these 

cytokines in M-MØ co-cultured with MM cells. To further explore the role of TNF-α in 

MØ-dependent MM cell death, we incubated the supernatants obtained from Figure 

2C with the TNF-α blocking-Ab infliximab, and performed cytotoxic assays with NCI-

H929 or U266 cells (cell lines sensitive and resistant to TNF-α induced cell death, 

respectively 36). Figure 2E shows that infliximab reduced NCI-H929 cell death when 

cultured with GM-MØ+MM cell supernatant. In contrast, U266 cells were killed by 

other cytotoxic factors sensitive to heat inactivation (Figure 2E).  

To avoid MØ-MM cell cross-talk, we performed experiments with GM-MØ 

conditioned media, which still induced cell death of NCI-H929 cells and to a lesser 

extent of U266 cells (Figure 2F). LPS/IFN–MØ media enhanced death of NCI-H929 cells 

but not of U266 cells. Altogether these data demonstrate the differential response of 
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M1-like MØ, compared to M2-like MØ, to secrete IL-12, TNF-α and other cytotoxic 

factors and to be cross-activated by MM cells. 

Expression of MØ polarization markers by MM-associated macrophages  

We next analyzed the in vivo polarization state of macrophages present in BM 

samples, highly infiltrated by CD38+/ CD138+ plasma cells, from active MM patients. 

Whole mounts of BM samples were stained with MØ polarization markers and 

analyzed by confocal microscopy 37. Initial identification of MØ was performed using a 

combination of CD68 and CD163 MØ markers (Figure 3A), finding high expression of 

CD163 and moderate of CD68 in MM-infiltrating MØ (Figure 3B). CD163+ MØ were 

gated to quantify relative fluorescence expression of M1 markers CLEC5A, TNF-α and 

EGLN3 and M2 markers CD209 and FRβ 38(Figure 3A). We quantified more than 3,000 

single cells in several cases and these analyses revealed that MM-associated MØ highly 

express CD163, CD209 and FRβ, whereas most MØ were negative for CLEC5A, TNF-α 

and EGLN3 (Figure 3B). With respect to cytokines known to drive M2-TAM polarization, 

we found that MIF, a cytokine secreted by MM cells, was highly detected in the BM 

microenvironment. Interestingly, MM TAM showed elevated expression of CD74, MIF 

high-affinity receptor 39. 

Pro-tumoral towards anti-tumoral MØ reprogramming  

We then explored strategies to functionally reprogram stablished pro-tumoral MØ into 

tumoricidal effector MØ by using pro-M1 stimuli in combination with blocking M2 

autocrine/paracrine signaling and subsequently monitored expression of M1/M2 

markers (see protocol and MØ viability in Supplemental Figure 2A, B). Treatment with 

GM-CSF alone induced upregulation of M1-associated genes and down regulation of 

most M2-associated genes (Figure 4A). However, the combination of GM-CSF with 
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blockade of M2-signaling using an anti-M-CSF neutralizing Ab, or blocking the M-CSF 

receptor with GW2580 or Ki20227 40 reduced the expression of M1 genes compared to 

GM-CSF treatment alone (Supplemental Figure 2C).  

It has been reported that MIF controls the alternative activation of tumor MØ 

in a melanoma mouse model 22, and we found high expression of MIF in the BM 

microenvironment (Figure 3). Quantification of MIF secretion showed that is 

abundantly produced by M-MØ as well as by MM cells (Supplemental Figure 2D). 

Therefore, our next strategy was to block autocrine/paracrine MIF production either 

with the suicide antagonist 4-iodo-6-phenyl-pyrimidine (4-IPP)41, with the allosteric 

inhibitor p425, also known as Chicago Sky Blue 6B (CSB) 42, or by knocking-down MIF 

using siRNA. 4-IPP alone or MIF silencing significantly repressed M2-associated genes, 

which were further reduced by combining 4-IPP or CSB with GM-CSF (Figure 4A and 

Supplemental Figure 2E and F).  Furthermore, GM-CSF treatment showed a 

cooperative effect when combined with 4-IPP or CSB enhancing M1 genes, in contrast 

to M-CSF signaling antagonists. These changes were stable enough to down-regulate 

the surface expression of FRβ and CD163, and to up-regulate the M1 marker ICAM3 

(Figure 4B).  

In addition to changes in receptor surface expression, MØ polarization is 

associated with a shift in energy metabolism, and the AMP-Activated Protein Kinase 

(AMPK) is central in this regulation 43. To analyze AMPK activity during M-MØ 

reprograming towards M1, we analyzed by western blot T172 phosphorylation levels 

linked to AMPK activation, which is higher in M-MØ than in GM-MØ (data not shown). 

Interestingly, treatment of M-MØ with either GM-CSF or 4-IPP decreased AMPK T172 

phosphorylation, and reduction was even higher by combining both treatments (Figure 



 12

4C). These data indicate that GM-CSF and 4-IPP strongly down-regulate AMPK activity 

in M-MØ, suggesting a pro-inflammatory metabolic shift that might favor their pro-

inflammatory functions 44. 

We next determined the tumoricidal ability towards MM cells of MØ 

reprogrammed by different stimuli. M-MØ reprogrammed with GM-CSF, 4-IPP or 

blocking M-CSF alone displayed significant tumoricidal ability. Notably, a remarkable 

increase in MM cell death was reached by reprogrammed MØ treated with the 

combination of GM-CSF plus inhibition of M-CSF or MIF signaling, which was also 

confirmed by video-microscopy (Figure 4D and Supplemental Figure 2G, H). 

Nonetheless, the combination of GM-CSF+4-IPP showed the largest cytotoxic effect 

towards MM cells (Figure 4D). Altogether, these results indicate that the combination 

GM-CSF+4-IPP was remarkably effective at reprograming M-MØ towards M1-like MØ, 

as assessed by gene and protein expression as well as by tumoricidal responses. In 

addition, these results suggest that combining pro-M1 plus anti-M2 treatments may 

synergize for a more efficient repolarization towards anti-tumoral M1-like MØ. 

CD74 and CXCR7 are the MIF receptors involved in MØ reprogramming  

Besides binding to the high-affinity receptor CD74, MIF interacts with the chemokine 

receptors CXCR4, CXCR7 and CXCR2 45. To further characterize the role of MIF in MØ 

polarization, we first analyzed the expression of these receptors on M-MØ. These 

macrophages highly expressed CXCR4 at the cell surface, whereas CXCR7, CXCR2 and 

CD74 showed a predominant intracellular distribution (Figure 5A). We next compared 

the ability of 4-IPP together with MIF receptor blocking antibodies or antagonists to 

reprogram M-MØ, alone or in combination with GM-CSF. Interestingly, the anti-CD74 

Ab, the CXCR7-antagonist CCX733 and 4-IPP strongly reduced the expression of the 
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M2-specific FOLR2 gene (Figure 5B, left). Blocking CXCR2 or CXCR4 was less effective, 

suggesting that MIF was preferentially signaling through CD74 and CXCR7 to repolarize 

M2 macrophages. 4-IPP or the anti-CD74 Ab only mildly affected the expression of the 

M1-genes (Figure 5B). Importantly, the combination of GM-CSF with 4-IPP, or with 

CD74/CXCR7 inhibitors further enhanced M1-gene expression compared with GM-CSF 

alone (Figure 5B).  

Therapeutic evaluation of MØ reprogramming in a MM xenograft model  

The above data indicate that MIF is highly detected in the BM microenvironment of 

MM patient samples (Figure 3), and our in vitro results established that the most 

effective treatment for reprogramming M2-MØ towards M1-MØ was the GM-CSF+4-

IPP combination (Figure 4). Therefore, we evaluated the potential therapeutic 

application of this MØ reprogramming combination in NCI-H929 and MM.1S xenograft 

tumor mouse models. Previously, we confirmed that M-MØ and GM-MØ derived from 

NSG mice behave similarly to human MØ and that M-MØ repolarized with GM-CSF+4-

IPP displayed tumor cytotoxic activity in vitro (Supplemental Figure 2 I-J). For the NCI-

H929 xenografts, cells were subcutaneously injected into NSG and SCID mice, and 

when tumor volumes reached approximately 100 mm3, mice were treated with GM-

CSF+4-IPP, 4-IPP alone or vehicle. Significant reductions in NCI-H929 tumor volumes 

were observed in both murine models treated with GM-CSF+4-IPP, as compared to 

control mice or to 4-IPP alone (Figure 6 A). This was not due to MM toxicity, since our 

in vitro experiments demonstrated that 4-IPP was not toxic for MM cells 

(Supplemental Figure 2 K). To assess the specific contribution of MØ in the reduction of 

MM tumor sizes in mice treated with GM-CSF+4-IPP, we used clodronate-containing 

liposomes (clo-liposomes) to deplete MØ before the treatment. Subcutaneous NCI-
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H929 tumors did not develop if clo-liposomes were administered at the time of tumor 

injection (day 0, data not shown). Therefore, tumors were allowed to develop and 

mice were injected intravenously with clo-liposomes when tumors reached 100 mm3. 

In a preliminary experiment, we observed a significant reduction in TAM 48 hrs after 

clo-liposome administration (data not shown), therefore GM-CSF+4-IPP treatment was 

initiated at that time after clo-liposome infusion. Mice treated with GM-CSF+4-IPP 

developed smaller tumors and survived longer, compared with mice treated with clo-

liposomes plus GM-CSF+4-IPP (Figure 6B), suggesting that the presence of MØ during 

GM-CSF+4-IPP treatment is required for the therapeutic benefit against myeloma. 

To further characterize the in vivo reprogramming ability of GM-CSF+4-IPP treatment 

on SCID murine TAM, tumor-associated myeloid cells were isolated with CD11b 

magnetic beads from NCI-H929 tumors to quantify the relative expression of a panel of 

M1 and M2 mouse MØ genes 46. These analyses revealed a general reduction of M2 

markers on treated mice, which was statistically significant for Cd206, S1pr1, Stab1 and 

Ctla2b, and was associated with a reciprocal increase in M1-markers, including Inhba 

and Ccr2 compared with tumor-bearing control mice (Figure 6C).  

For the MM.1S xenograft model, we injected MM.1S-GFP+ cells intravenously into NSG 

mice and after 10 days animals were treated every two days with GM-CSF+4-IPP or 

vehicle. Upon 2 weeks of treatment, MM.1S infiltration in the BM was quantified by 

flow cytometry and by mRNA expression of human GAPDH. The data revealed a 

significant reduction in MM.1S BM infiltration in GM-CSF+4-IPP treated mice (Figure 

6D-E), which was linked to a decrease in the expression of M2-markers and to an 

increase in M1-markers, as compared to vehicle (Figure 6F). These data indicate that 
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GM-CSF+4-IPP treatment reprograms gene expression of TAM in vivo, and generates a 

population of MØ with anti-tumoral properties.  
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Discussion 

MM remains an incurable malignancy mainly due to minimal residual disease, which is 

commonly supported by the BM microenvironment, leading to drug resistance and 

disease relapse 47. Therefore, new therapeutic strategies that target the supportive 

microenvironment are urgently needed to boost the efficacy of tumor-directed 

therapies. TAM represent an abundant component of BM microenvironment that 

contribute to MM cell resistance to conventional chemotherapy 4,48. However, the 

inherent tumoricidal potential of these MØ has not been explored. In the current study 

we evaluated for the first time the therapeutic value of reprogramming MØ in MM. 

We found that MIF is highly expressed in the BM microenvironment and plays an 

autocrine role in M2-MØ polarization through CD74 and CXCR7. Using a combined 

treatment to reprogram MM TAM with the pro-M1 cytokine GM-CSF plus blocking the 

pro-M2 cytokine MIF with 4-IPP, we induced up-regulation of M1-markers and the 

reciprocal down-regulation of M2-markers, both in vitro and in vivo. This combined 

treatment induced MØ-dependent tumor reduction in MM xenograft models, thus 

identifying MM-MØ as promising therapeutic targets. Furthermore, our data establish 

the translational potential of combining treatments that promote M1 while 

simultaneously blocking M2 signaling to re-educate TAM.  

We previously described M1 and M2 polarization markers for phenotyping 

tissue macrophages by multicolor confocal microscopy in several human pathologies 

38. Our quantitative image analyses at the single-cell level revealed that TAM from 

active MM patients have a predominant M2-like phenotype. During tumor evolution a 

diverse spectrum of MØ populations develop within the tumor compartment 49. At 

patient early diagnosis, MM monocytes/macrophages display a pro-inflammatory 
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transcriptional profile in the MM microenvironment that leads to transcription of 

inflammatory cytokines 6,50. Interestingly, a shift towards M2 polarization occurs upon 

tumor progression in MM animal models 50, which is consistent with our results. 

Indeed, it was recently reported that the levels of soluble CD163 and CD206 (M2-MØ 

markers) present in serum are independent markers of overall survival in MM patients 

51,52. In addition, we explored other factors reported to control TAM alternative 

activation such as MIF, which was selected because it is highly expressed by primary 

malignant plasma cells 22,53. Accordingly, we found abundant MIF in the MM BM 

microenvironment, along with high expression of the MIF receptor CD74 in MM TAM 

in patient samples. MIF was originally identified as a pro-inflammatory stimulus  

mainly produced by macrophages, which are able to secrete large amounts of this 

cytokine in response to various stimuli 54. Nevertheless, MIF is a pleiotropic cytokine 

with complex context-dependent signaling that leads to inhibition of anti-tumor 

reactivity in vivo 
55. Furthermore, MIF controls mature B-cell proliferation and survival, 

and the humanized anti-CD74 monoclonal antibody milatuzumab is being clinically 

evaluated for treatment of multiple myeloma 56. Thus, blocking MIF or its receptors 

may target both, MM cells and macrophages in the BM microenvironment. The dual 

targeting of MM cells and the BM microenvironment is accomplished by novel 

therapies such as bortezomib, thalidomide and lenalidomide, that have significantly 

improved patient survival 57.  

As stated above, our goal was to re-program the M2-like MØ present in the 

MM microenvironment to become anti-tumoral M1-like MØ. To this end, we first 

analyzed the tumoricidal or supportive effects of diverse MØ polarization states 

towards MM cell lines. Interestingly, M1-like GM-MØ promoted both apoptotic and 
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necrotic forms of programmed cell death to MM cells and limited the growth of MM 

xenografts in vivo. On the other hand, M-MØ protected MM cells from bortezomib-

induced death in vitro and promoted tumor growth in vivo. Moreover, our previous 

results showed that M-MØ exhibit a gene profile similar to ex vivo-isolated TAMs from 

several tumor types 58, therefore supporting the use of M-MØ as an in vitro TAM 

model to explore reprogramming protocols.  

Reprogramming M-MØ with the pro-M1 cytokine GM-CSF induced low 

tumoricidal ability compared with GM-MØ programmed from monocytes, indicating 

that M-MØ are not as plastic as monocyte precursors. To reinforce MØ 

reprogramming, it is important to block autocrine/paracrine M2 signals, such as M-CSF 

or MIF, which are abundant in tumor microenvironments and might reverse the 

reprogrammed “therapeutic” M1-MØ 19. Inhibition of M-CSF signaling was one of the 

first TAM targetting strategies, which diminished M2-like MØ programming in 

glioma59. However,  blocking M-CSF signaling in combination with GM-CSF to 

reprogram MØ reduced INHBA expression, which encodes Activin A that is a key factor 

driving GM-CSF-dependent M1 polarization33. Interestingly, blocking MIF in 

combination with GM-CSF showed great induction of INHBA expression. MIF has been 

recently recognized as a pro-M2 tumor derived factor, whose disruption improved 

survival in chronic lymphocytic leukemia and melanoma mouse models 22,27. Our 

current results extend the role of MIF in M2 polarization from rodent to human 

macrophages and identify CD74 and CXCR7 as the main receptors for MIF involved in a 

pro-M2-MØ positive feed-back mechanism. 

Because single pro-M1-MØ or anti-M2-MØ agents had a partial effect in MØ 

reprogramming, we reasoned that the combination of both treatments may have a 



 19

synergistic effect. Indeed, treatment with GM-CSF and the MIF-inhibitor 4-IPP showed 

the best cooperative M1 to M2 shift at gene, protein and functional levels. 

Importantly, we demonstrated therapeutic benefit of this novel combination in mouse 

models of MM that were dependent on macrophages. Furthermore, TAM isolated 

from treated mice displayed enhanced M1 and diminished M2 gene expression. 

Altogether our results indicate that MØ-reprogramming strategies may provide 

significant clinical benefit for MM patients. 
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Figure Legends 

Figure 1. M1-MØ are cytotoxic to MM cells and inhibit MM cell proliferation and 

tumor development in vivo.  A) The indicated MM cell lines were cultured alone or in 

the presence of GM-MØ or M-MØ for 3 days. Cell death was measured and normalized 

by MM cell spontaneous death. Data represent mean±SEM of 6 independent 

experiments with different MØ donors. B) MM cells were cultured for 72h in the 

absence or presence of M-MØ, and cell death was induced with bortezomib (10 nM) 

(n=3 MØ donors). C) Cell death analysis of patient CD138+ MM BM cells (dot plot) 

cultured alone or with GM-MØ or M-MØ (48 h). D) NCI-H929 cells were co-cultured 

with GM-MØ or M-MØ (stained with CFSE; blue) and live-imaged for 4h. First and last 

frames are shown (bright field images). Rapid acquisition of AnV (green)/PI (red) 

staining represent necrotic cells (red circles). Blebbing-apoptotic cells are circled in 

yellow and one magnified case is indicated (asterisks). E) MM cell proliferation (CFSE 

dilution method) in the presence of GM-MØ or M-MØ. A representative experiment is 

shown on the left, and mean fluorescence intensity (MFI) values of 3 independent MØ 

donors normalized by NCI-H929 cultured alone, are shown on the right. F-G) NCI-H929 

cells were injected (s.c) alone or mixed with GM-MØ or M-MØ (1:1) in the flank of NSG 

mice. After 10 days mice were sacrificed for tumor volume evaluation (F) and confocal 

microscopy analysis (G) by determining CD138/CD38, caspase 3, F4/80, CD163 and 

cd45, and Ki67 labelling. Percentage of proliferating (Ki67) and apoptotic cells (active 

caspase 3) along intratumoral areas is represented on the right. Data show media±SEM 

of at least 4 mice per group (*, p<0.05; **, p<0.01, ***p<0.001).  
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Figure 2. M1-MØ and M2-MØ secretion of cytotoxic factors and cross-activation in 

co-culture with MM cells. A-B) MM cell death was analyzed after 72 h of co-culture of 

MM cells alone or in the presence of various types of the indicated MØ, in cell-cell 

contact experiments (A) and non-cell-cell contact Transwell experiments (B). C-D) 

Determination by ELISA of TNFα (C) and IL-12 p40 (D) levels in supernatants collected 

after 48h culture of various types of the indicated MØ, MM cell lines or MM+MØ co-

cultures. E) NCI-H929 and U266 cells were cultured with TNFα (200 ng/ml) or 

supernatants collected from GM-MØ+NCI-H929 and GM-MØ+U266 co-cultures, 

respectively (measured in C), and treated with infliximab (80 μg/ml), as indicated. GM-

MØ+MM conditioned media was inactivated by heat (10 minutes at 100ºC). F) 

Conditioned media of various types of the indicated MØ were collected and added to 

NCI-H929 or U266 cells (50% v/v). MM cell death was measured after 72 h of culture. 

Summarized results of at least three independent experiments with different donors 

±SEM are shown. (*, p<0.05; **, p<0.01, ***p<0.001). 

Figure 3. Phenotyping of MM- MØ from BM patient samples. A) Multi-colored 

staining of BM aspirates containing particles from active disease MM patients, as 

indicated. Upper panels represent panoramic views, while bottom panels are 

magnified ones. Nuclear-Dapi appears in blue in all cases. B) Plot showing the mean 

fluorescence intensity for each marker in CD163+ TAM (n=10 cases). Cells >25 arbitrary 

units (a.u) are considered positive, relative to negative control. Scale bars, as indicated. 

Figure 4. Repolarization of pro-tumoral M-MØ towards anti-tumoral MØ. A) RT-qPCR 

analyses of M2 and M1 genes from M-MØ treated for 24 hours with GM-CSF (1000 

U/ml), the MIF inhibitor 4-IPP (50 μM), or in combination. Values of M-MØ in the 
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absence of treatment are given an arbitrary value of 1. Results represent mean±SEM of 

10 independent donors. B) Flow cytometry histograms showing cell surface expression 

of FRβ, CD163 and ICAM-3 in M-MØ untreated or treated as indicated. Results from a 

representative MØ donor (upper graphs), and MFI±SEM quantification of at least 4 

independent experiments with the indicated treatments (lower graphs) are shown. 

Values in the absence of treatment are given an arbitrary value of 1. C) Immunoblot 

analysis of P-AMPK expression in M-MØ untreated or treated for 6 hours with GM-CSF, 

4-IPP or in combination. Densitometric analyses (arbitrary units, a.u) normalized to 

GAPDH levels and referred to M-MØ control are shown. D) Determination of NCI-H929 

and U266 cell death alone (first bar) or cultured with M-MØ untreated or treated as 

indicated. 4-IPP (50 μM), M-CSF neutralizing antibody (1μg/ml), M-CSFr inhibitor 

GW2580 (1μM). Results represent mean ±SEM of 3 independent experiments with 

different donors (*, p<0.05; **, p<0.01, ***p<0.001). 

Figure 5. MIF receptors and signaling during MØ repolarization. A) Flow cytometry 

analyses of intracellular and surface expression of MIF receptors CXCR4, CXCR7, CXCR2 

and CD74 on M-MØ. B) Expression levels of FOLR2, INHBA and EGLN3, as determined 

by RT-qPCR on M-MØ treated for 24 hours with GM-CSF (1000 U/ml); 4-IPP (50 μM); 

AMD3100 (25 μg/ml); CCX733 (100 nM); SB225002 (300 nM) and α-CD74 blocking 

antibody (5 μg/ml); or GM-CSF in combination with all of them. Values in the absence 

of treatment are given an arbitrary value of 1. Result represents mean ±SEM of 4 

independent donors. (*, p<0.05; **, p<0.01, ***p<0.001) 

Figure 6. GM-CSF+4-IPP therapeutic effect in immunodeficient mice MM xenograft 

models. A) NCI-H929 cells were s.c inoculated into the flank of NSG (left graph) or SCID 
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mice (right graph). When tumors reached volumes of 100 mm3, mice were treated 

every two days until sacrifice (day 18th) with the indicated treatments. (Left, n=6-10 

per group; right, n=8). B) NSG mice displaying 100 mm3 subcutaneous NCI-H929 

tumors were injected i.v with clodronate, and two days later, mice were treated with 

GM-CSF+4-IPP every two days. Tumor growth was measured daily. Data show tumor-

volume average of 5 mice per group ±SEM. C) M1 and M2 polarization murine marker 

expression in CD11b+ cells isolated from tumors grown in SCID mice, as determined by 

RT-qPCR (n=10). Relative expression (log scale) indicates the expression of each marker 

after GM-CSF+4-IPP treatment relative to its expression in the absence of treatment. 

D-E) MM.1S-GFP cells were i.v. injected into NSG mice and 10 days later mice were 

treated with GM-CSF/4-IPP or with vehicle. Mice were sacrificed after 2 weeks of 

treatment, and BM cells were analyzed by flow cytometry for human HLA-1 and GFP 

expression. Representative dot-plots panels showing HLA-1+/GFP+ percentages (left), 

and quantification of BM infiltration (right) are displayed. (B) RT-qPCR analyses of 

human GAPDH expression of BM samples from vehicle- or GM-CSF/4-IPP-treated mice. 

Data show the mean±SEM of 14 mice. F) M1 and M2 polarization murine marker 

expression in the BM from NSG mice infiltrated with MM.1S-GFP cells, shown as in C. 

(*, p<0.05; **, p<0.01, ***p<0.001).  
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