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ON LOWER BOUNDS AT BLOW UP OF SCALE INVARIANT NORMS
FOR THE NAVIER-STOKES EQUATIONS

JEAN-YVES CHEMIN, ISABELLE GALLAGHER, AND PING ZHANG

ABSTRACT. In this work we investigate the problem of preventing the incompressible 3D
Navier-Stokes from developing singularities with the control of one component of the velocity
field only in L°° norm in times with values in a scaling invariant space. We introduce a space
”almost” invariant under the action of the scaling such that if one component measured in
this space remains small enough, then there is no blow up.

Keywords: Incompressible Navier-Stokes Equations, Blow-up criteria, Anisotropic
Littlewood-Paley Theory

AMS Subject Classification (2000): 35Q30, 76D03

1. INTRODUCTION

The purpose of this paper is the investigation of the possible behaviour of a solution of the
incompressible Navier-Stokes equation in R? near the (possible) blow up time. Let us recall
the form of the incompressible Navier-Stokes equation

(NS) {8tv+dlv(v®v)_Av+Vp:0,

divo=0 and v|=p =1,
where v = (v!,v2,v3) stands for the velocity of the fluid and p for the pressure.
It is well known that the system has two main properties related to its physical origin:
e the scaling invariance which the fact that if (¢, x) is a solution on [0, T'] then for any pos-

itive real number A, the vector field )y (¢, x) def Au(A%t, Az) is a solution on [0, \72T7;
e the dissipation of energy which writes

lvoll72.

N |

1 t
(1) 2||v(t)||ig+/0 Vo (t)]|2,dt" <

The first type of results which describe the behaviour of a (regular) solution just before
the blow up are those which are a consequence of existence theorem for initial data in spaces
more regular than the scaling. The seminal text [?] of J. Leray already pointed out in 1934
that the life span T*(ug) of the regular solution associated with an initial data in the Sobolev
space H'(R?) is greater than CHVU0||£24; then applying this result with u(¢) as an initial data
gives immediatly that, if 7*(ug) is finite, then

T* (uo)
(2) [Vu(t)||7s > ﬁ which implies that /0 [Vu(t)||72dt = co.

(uo) —
More generally, it is very classical result that for any - in ]0, 1] we have
— X C’Y
, which leads to ||u(75)||H%Jr27 > e

[

() T 2 el G,

Let us notice that the formula is scaling invariant abd comes from the resolution of (NN.S)
with a fixed point argument follwing the Kato method. Morever, E. Poulon proved in [] that
1



a regular initila data exists which blows up at finite time then an initial data u, exists in the
unit sphere of H 3+ such that

: o1
T*(ug) = inf{T*(ug) , up € Hz"7, HUOHH%“ =1}.

Assertion (3) can be generalized to the norm associated with the greatest space which is
translation invariant, continuously included the space of tempered distribution S’ (Rg) and

the norm has the same scaling as H 32 Ag pointed out by Y. Meyer in Lemma 9 of [?], this
space is the Besov space Bo_ol,;roz7 which can be defined as the space of distributions such that

) d_ef lfQ'y tA
(4) HUHB(;{;QV = iggm le" 2 u| o0

is finite. The generalization of the bound given by (3) to this norms can be done (see for
instance Theorem1.3 of [?]) we recall here

Theorem 1.1. For any + in the interval |0,1/2[, a constant ¢, exists such that for any regular
initial data g, its life span T*(ug) satisfies

1
(5) T*(u0) 2 ey luoll y ry2,  which leads to [Ju(t)| 5 142 > (T(u(iﬁ
This result as an analog for a global regularity uder the smallness condition which is the
Koch and Tataru theorem (see [?] ) which claims that an initial data which have a small norm
in the space BM O™ (R?) generates a global unique solution (which turns out to be as regular
as the initial data). The space BMO™'(R?) is a very slightly bigger space than BO_OIQ(R?’)
defined by 7

oo
(6) ||u||2._12 d:ef/ et peedt < 0o
oo, 0

and very slightly smaller than the space Bo_ol,oo. Let us notice that classical space H 3 of L3(R3)
are continuous embedded in BMO~H(R?).

Let us point out that the proof of all these results do not use the special structure of (NJS)
and in particular all the above results are true for any systems of the type

(GNS) O —Au+>  Aij(D)(u'v)
i,J
where A; j(D) are smooth homogenenous Fourier multipliers of order 1. The problem investi-
gated here is to improve the description of the behavior of the solution near a possible blow
up using the special structure of the non linear term of the Navier-Stokes equation.
One major achievement in this field is the work [?] by L. Escauriaza, G. Serégin and V.
Sverak which proves that
(7) T*(up) < oo = limsup ||u(t)] .1 = oc.
t—)T*(uo)
A different context consists in formulating a condition which involves only one component
of the velocity field. The first result in that direction is obtained in a pioneer work by J.

Neustupa and P. Penel (see [?]) but the norm involved was not scaling invariant. A lot of
works (see [?7,4, 7,7, 7,7, 7 7 7?]) established conditions of the type

T* T*
/0 13t ) adt = 00 o /0 10703 (t, )|yt = oo

with relations on p and ¢ which do not make these quantities scaling invariant.
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The first result in that direction using scaling invariant condition has been proved by the
first and the third author in [6]. It claims that for any regular intial data with derivative

in L%(R?’), then for any unit vector o of R?, we have

T*
(8) T* < 00 — / lo(t) - oll”, ., dt = oo
0 H

b+
for any p in the interval |4, 6]. It has been generalized by Z. Zhang and the first and the third
author for any p greater than 4 in [8]. This is the analog of the integral condition of (2) for
only a component.

The motivation of the issue raised in this paper is what happens for the above criteria
for p = o0? in other term, it is possible to extend L. Escauriaza, G. Serégin and V. Sverak
criteria (7) only for on component. This question sems to ambitious for the time being. Indeed,
following the work [?] by G. Koch, F. Planchon and the second author! one way to understand
L. Escauriaza, G. Serégin and V. Sverak in the following : assume that a solution exists such
that the /2 norm remains bounded near the blow up time. The first step consists in proving
that the solution tends weakly to 0 when ¢ tends to the blow up time. The second step consists
in proving a backforward uniqueness result which implies that the solution is 0 which of course
contradicts the fact that its blows up at finite time.

The first step relies in particular on the fact that the Navier-Stokes system (N S) is globally

wellposed for small data in H 2. In our context, the equivalent is that if ||vg - U||H 3 1s small

enough for some unit vector o of R?, then there is a global regular solution. Such a result,
assuming it is true, seems out of reach for the time being.

The result we prove in this paper is that if there is a blow up, it is not possible that a
component of the velocity field tends to 0 to fast. More precisely, we are going to prove the
following theorem.

Theorem 1.2. A positive constant ¢ exists so that for any initial data vo in H'(R?) with

associate solution v of (N'S) blowing up at a finite time T*, for any unit vector o of R®, there
holds

vi<T*,  sup |o(t)-of ) > colog 2 (e + W) '
teft,T*[ H2 T —t

The other result we prove here in that if we reinforce slightly the H > norm remains (almost)
scaling invariant.

L1
Definition 1.1. Let E > 0 be given, let us define H the space of distributions a in the

og,E
homogeneous space Jigs (R3) such that
def ~
ol [ leltog? (Blg] + ¢)fa(©) P < oo.
Hlig,E RS

Our theorem is the following.

Theorem 1.3. Let E > 0 be given. A positive constant cq exists such that if v the solution
of (NS) associated with an initial data vy belongs to H'(R®), and the maximal time of
existence T*(vg) is finite, then

Vo € S?, limsup |[v(t) - o .1

1 >cg.
t—T™*(vg) Hlog’E

Take care of the constant F
Let us make some comments about the result and in particular about the || - |[log, £ norm.
It is possible to bound the life span by this norm is the following way.

1See also [?] for a more elementary approach



1
Theorem 1.4. Let E > 0 be given. Let vy be an initial data in Hlig g+ Then the maximal
time of existence T™ of the solution v to (N.S) in the space C[0,T*[; H %) satisfies

(9) T* > cE? exp(—Cllvol .1 ) d:efT(E).
Hl(zjg,E
Morever, we have, if T™* is finite
E2
@l > eclog(m—)-

log,E

Proof. 1t is wellknown that a criteria having regular solution of (N.S) up a time 7T is that

T
(10) I(T) d:ef/o /RSe‘t|’f|2\§|3|@0(§)|2d§dt:s with & << 1.

For some parameter \ which will be choosen later on, let write that

1 T
m < — / / e~ £ 1og (€| E + €) oo ()| 2det
log2<ﬁ—|—e) 0 JyTie=a
T
_ 2 —~
+ / / eI ¢ 310 (¢) 2t
0 JVTIEI<A
ol .
< Mes / ( / et'5'21|s|2dt>|a B (6) Pdedt
log2<ﬁ—|—e) R* \Jo t2[¢]
ol
log,E 2
+)\||UOH.1.
log? <ﬁ+e) iz
Choosing
A= ° and T = - Elvol| 3 exp(=Cllwo]l 1 )
2000l , 2 il gz )
s log,E

ensures Condition (13) once observed that as [[vg]|? ,  is greater than HUOHIQL,Il (and thus
2 2
log,E

large) it is not relevant in the above formula defining 7. O

Explain the reason of this shifting

The structure of the paper is the following:
in the first section, we reduce the proof of Theorem 1.2 and Theorem 1.3 to the proof of
two lemmas related of the estimation of expression of the type

i’ () 9307 (1) 0507 () dx
RS
where i is in {1,2}. These expressions show up when we do L? energy estimates for Vyv. Here
we face the difficulty that we cannot control dsv in any sense using only || V|| ;2 and ||[VO5v|| 2.

Before going on, let us introduce some notation that will be used in all that follows. By a <

b, we mean that there is a uniform constant C, which may be different on different lines,

such that a < Cb. We denote by (a|b)z> the L2(R?) inner product of a and b. LE.(L{(LL))

stands for the space LP([0,7]; L9(Ry,; L"(Ryy))) with z, = (x1,22), and Vy = (0s,, 0,),
4



Ay, = 02, + 02,. Finally, we always denote (cy ) (resp. (¢j)jez) to be a generic element

kLez?
of £2(Z?) (resp.f*(Z)) so that Z c%j =1 (resp. Zc? =1).

kLc7? JEL
2. THE LIFE SPAN OF (NS) COMPUTED WITH log-TYPE NORMS

The goal of this section is to present the proof of Theorem 1.4.

Proof of Theorem 1.4. We simply prove an a priori estimate for a regular solution v of (N.S)
on [0, 7™ and skip the classical regularization process. Let us define

(11) T sup{T <TYVEST, ol ) <2leoll } ,

log,E log,E

and also vy A def 71 (1{E\§|ZA}®\(§)) and v, o def ) — vy A for some positive constant A to be
chosen later on. Then we observe from Definition 1.1 that

2 ; 1 2 E ~ Qd
lesallyy < [ ooy €118 (Blel €)@ e

1
12 S L R GRS
- log” A Jipleza} ( )
< v||?
_10g2A|| HHégyE
Let us proceed to the energy type estimate for (NS) in the || - || . ; norm. This gives
log,E
(13) Sz IlvOI s +IVe®lT y = —(v-Volo) 4
Hlog,E log,E log,E
We claim that
14 Vo) | <Cmin{lloly 1902, folelol Vel b
‘ ngg,E ‘ iz ngg,E ngg,E ngg,E

Assuming (14) to be true, then using Bernstein’s inequality (see [1, Lemma 2.1], or Lemma
A.1 for an anisotropic version used later in this paper), we infer from (11) and (12) that, for
any t less than T,

[(0-Volo) 3 | < Clllogall ;3 IV0lP 0 +lloallzeloll g Vol g )
Hlog,E Hlog,E Hlog,E log,E
_ 1
< (Clvll .y (logA) 1+1)IIWH2.% +Clloy allZee 0l
Hlog,E log,E log,E
1 CoA3
< (CHvoHH% (log A) 1+Z)HVvH2.% + s lollZallol? 5
log,E log,E log,E

Now let us choose
A =exp(Cillvoll .1 )
Hlog,E
for some large enough constant C1. We deduce from the conservation of energy and from (13)
that for any ¢ less than T',

d Co 2 2

@I, +IVe@)? ) < gexpCilwll 3 ) lleollzllo®)]? ,

dt HIZg,E HIZg,E E Hl?)g,E IZg,E
5



Then Gronwall’s Lemma implies that for any ¢ less than T,

tlool
k@2, < lowl?, exp(co S ep(3Culuoll ) ).

log,E log,E log,E

This ensures (9).

Now let us prove (?7?). In view of (9), we have

d 3 d
5T =T(E)(5 - Cgglul ).

And we observe from Definition 1.1 that

2log(E
R

d = 2
deHUOHHEg [00(§)|” d€

E Hlog,E
1 _ ~
< plwl?y [ lellog(Bl + ool dg
HZ2 R3
log,E
[voll ;1
— E )
since Hv(t)HH% < [lv@)ll .1, so this gives rise to
log,E
d T(E)
%T(E) >3- C||v0||H%) o
Then under the assumption that H?}()HH 1 < 2 we obtain
d T(E)
—T(F) > —=

so that T(E) — o0 as E — oc.

To conclude the proof of the theorem we use again the fact that |[v(¢)] .1 < |v(t)]] .1
H?2 2

log,E

so we deduce from (13) and (14) that

d
%Hv(t)lli.{% VeI, < Cll@lly IVo@IE

log,E log,E log,E log,E
which implies that for ¢t < T
d 2 2
SI@IE y + (=20l y )IVe@I? ,  <0.
log,E log,E log,E

Thus in particular if ||lvol| .1 <cp < 4, we achieve
log,E

[o()

.1 <ol .1 for t<T.
12 2

log,E log,E
This in turn shows that T' = T* = oo. The theorem is proved, up to the proof of (14).
Proof of (14). We observe from Definition 1.1 that

1
(15) a€ H?

_J _ ;
log,E = HAjaHL2 SJ Cj2 2 log 1(E2] + €)HCLH 1

log,E
Applying Bony’s decomposition (A.2) to v - Vv gives
3
v-Vov = Z (Tvkakv + Takvvk + R(Uk, 8kv)> .

k=1
6



Considering the support of the Fourier transform of the terms in 7,x0xv and due to the fact
that || Sjvl = S ¢27[lo]  ;, we have

1A T ool S D0 ISj—1vllee Ay Voll2

5" —jl<4
b i’
S D) ¢p2rlogTH(EY +e)||v\|H%||VvHH%
/=<4 o
l’ _ .
< c;22log™ ! (B2 + e)HvHH% HVvHH%
log,E
Similarly noting that [|Sjv||ze S ||v] 1z, we find
1A ot e S ) ¢ 2% log™! (B2 +e)llvllz=lvll
log,E

l7'—71<4

S cj2§ log™ 1 (B2’ +¢) H’UHLOOH’U”H%
log,E

Along the same lines, we have
18Tz S Y 1851V ollze A0l 2
7/ —jl<4
Then due to ||S;Vv||re S cj22ijHH1 and [|S; V|| < ¢;27||v| 1 , by applying Bernstein’s

2
inequality, we obtain

1 — i .
18y T2 S 28 log™ (B2 + e) min ([l 3 V0l g llollz=liell y ).
log,E log,E

Finally, we get, by applying Bernstein’s inequality again, that
ﬁ ~
1A R, Do) S22 D [Ae2ll Ay Vol

§1>5-3
<27 3 2 log (B2 +e) ol 4 V0l g
’>] 3 Hlog,E
S27log (B +¢) Y 2 loll 3 IVl 4
logE

J'>j—No

< ;28 log L (B2 + ¢)|lv]| 4 Ivell

log E

On the other hand due to divv = 0, one has >, R(v¥, Opv) = div R(v,v) so
182 RS 0wle 52 3 AyoleelByel
3'23—No

<2 Z cj/2*%log*1(E2jl—|—e)HvHLooHvHH;

2
o,

J'23—No log, 2
< 22 log ™ (B2 + €)|[v]| = |v]|
log,E
As a result, it turns out that
J _ ; .
(16) |1A;(v- V)| g2 S ¢;22 log 1(E2J + e) mln(HUH 1 HVUH ”UHLOOHUHH% ) .
logE log,E

7



Let us now return to the proof of (14). Observing that

(v-Volo) .1~ Z 27 log® (B2’ +¢€) (Aj(v - Vu)|Ajv) .,

log,E jGZ

from which, using also (16), we deduce that

|(v-Volv) 1 | < Z2j log? (E27 + ¢)||Aj(v- V)| 2] Aj0] L2

log,E ]EZ
<Y cmin(lolly 10l y lolleslolly )19y
- JEZ ’ a2 ngg,E7 Hl?)g,E Hf)g,E
S min([lol 1900y lollz=liol g )IVel, s
H?2 Hlig,E’ Hl?)g,E ngg,E
This completes the proof of (14), hence of the theorem. O

3. ANISOTROPIC LOWER BOUNDS AT BLOW UP

The goal of this section is to present the proof of Theorems 1.2 and 1.3. We choose ¢ =
(0,0,1) in what follows. Let us define

2
def m m
(17) HERDEY /R i i3 050™ (2)O0™ (x)dx .

i,m=1

Let us state the two main lemmas leading to the theorem.?

Lemma 3.1. For any positive constant Ey, we have that

1

Vi |2, E,
18) 1) $ 18 (gt (™

1311
H?2

|05 I
+e) IVl + =93 )

Lemma 3.2. Let Ey ~ ||vo||3,, we have that

0so® 2

(19) 1080 S 103 190 s+ 1% 5

log

We admit these lemmas for the time being.

Proof of Theorem 1.2. As in [4], we perform L? energy estimate in the momentum equation
of (NS) with —Apv. This can be interpreted as a H! energy estimate for the horizontal

2Here Fy, a scaling parameter which will be chosen later, is homogeneous to a kinetic energy.
8



variables. Indeed we have

3
1d .
IVl + IVl = 3 &) with
j=1
def 2
51(1)) = Z(aﬂ)h : thh‘aﬂ)h)Lz s
i=1
P2
(20) 52(’0) d:e - Z(@ivh . th?’\&-v?’)p s
i=1
.
Es(v) def Z(@iv:gagvhwivh)LQ and
i=1
P2
E4(v) def Z(@iv?’ﬁgv‘g{@wg)p .
i=1

Let divy, o® def O1v! + 002, A direct computation shows that
2

E(v) =— /}R3 divy, vh(z (95072 + 0102090t — 811)1821)2) dr,

ij=1
which together with divwv = 0 ensure that

2
E1(v) = /R3 303 ( Z (0307)? + O1v20pv! — 811;1821)2) dx .

ij=1
Then it follows from the laws of product in Besov spaces (see [1]) that
[Ex@)] S 11050y 1(Vuo™)?]
(21) 2,00
3 h)|2
S g Ve -

53
By,

Similarly, we have
< 3 h 3
(2 S Vel -y [Vee® - Var?ll Ly
(22) 2,50 ) 31
S IV g V00

and

£ S 1ose?ll_y N(T®l g
(23) , 2,00 - 2,1
S N 1900 12

It remains to handle the estimate of £3(v). It follows from Lemma 3.1 that

1 [[Vuoll22 Eo 850" ]|7»
21 &) S 1, (logz (e ) I9neli + =5 IV ).
HZ

Then by inserting (21-24) into (20) gives rise to

1 d IVl
3 Vw0l + 1901 10 (! (250 4 ) 9o
(25) H2 "
60" 2,
9, )



Now, a positive real number m being given, let us consider T < T* and T, such that

def ~
(26)  sup. Hv3(t)HH% <m and T, < sup{t € [0, T[/ HVhUH%O@([O,t];L?) < 2||Vhvoll72} -
te[0,T]

Note that divwv = 0, we have
IVo* ()l[72 =l1Vnv* (6172 + 1850° (1)172

(27) .
Vet (022 + [l divi o (0)]22 < 20|Vieol2 VE< T

Then for any ¢ less than T}, Inequality (25) writes
d
%HVhUH% +2[| Vol 3

29) h
Vo E
< Cum (tog (2 1 )y + 12V o )

E

So that by time integration of (28) from [0,] and using the L? energy estimate on v, we infer
that, for any t less than 7.,

t
IV h0()]2 +2/HWMW%Aﬂ
0

1/ IVhoo Eo
< ¥l + Comtogt (1020 4 0) [ o0, ar
tho
+ com!Vnliz [ 1o @laar
HVhUoH Eo
< 19l + Comiogh (P22 4 ) [ w0,
ool Vivoll7 -
C .
+ Com 7y
choosis g 1l R
oosing Fy = 5Com in the above inequality implies that
t
Vel + [ IV (el
3 1 (I Viwol32llvoll?
< Hi¥imnls + Cumiog (Tl 4 o) oy,

Let us assume that

IVnvoll2lvollZ: 1
md * e) = 2

This implies that m is smaller than 1/2C} and thus that

Cimlog (

+)< L
e —_—
< 5e

[Vhwoll22 vl 2
C

(29) m log% (
Then we infer that, for any ¢ less than T,

IVw0(6) 32 < 5 wvol2a
This implies that T}, = T and thus that 7 is less than the blow-up time 7. Moreover, thanks

o (27) and Theorem 1.4 of [6], the solution v(t) is smooth for ¢ < T. By contraposition
10



and (29), this implies that

2 2
IVunllalolls | )

3 _1
(30) sup ([0} ()]l 3 > exlog™H L

te[0,T*[

Let us translate this inequality in time. Let us define

def
m®) Y sup By
t'eft,T*|
Inequality (30) writes
2 2 €3
V@32 e3> erexp( 575 )

Because of the energy estimate, we get, by integrating the above inequality over [¢,T*[, that

1 4 r INTEIRS TIIIE:
@l = t IVao(E)[IZ2 dt'l[vl|Teo (12

T*
zt/H%MM@MMﬁMﬂ
t

> /T*e ( € )dt/

c
The function ¢t — exp<72:()’t/)> is a non decreasing function. Thus
m

1 c
SIeOIE: 2 e (50 ) (0~ 1),

This writes

T —t
and the theorem is proved provided that we prove Lemma 3.1. O

m(t) > clog ™2 (e 4 Hv(t)‘%z)

Proof of Theorem 1.3. The proof follows exactly the same lines as the previous one, replacing
the estimate of £3(v) by Lemma 3.2 instead of Lemma 3.1. Estimate (25) becomes

61 oIVl + 1eld < (0P [9hel + 1] ||‘[’?’“h”;)
g gt v PO TR = FAN s YOl 0
og
so by time integration and thanks to the energy estimate we find that as long as
def 1
t<TE{T o,/ suwp [PR)], <o b
tE[O,T] Hl?)g 20

there holds

t 1 t
||th(t)H%2+/0 [Vno()|[F dt’ < |!VhUOH%2+Eg/O 150" (t')[17.2 dt’

O L
>~ H hU0HL2 + E02 )
which together with (27) ensures that
Vo3 (D)2, < [ Vionll2 lvol[72
sup [V (1)]2 < [Vavoll3a + 1y
te[0,T%] 0
Then Theorem 1.4 of [6] implies that the solution v(t) is smooth for ¢ < T. Theorem 1.3
follows by contraposition. a

11



Let us now present the proof of Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1 . We first get, by applying Bony’s decomposition (A.2) to d;v39;v™ with i, m
belnging to {1,2} and then using Leibniz formula, that

8¢U30ivm = Taivmaﬂ)‘g + Taivzaaivm + R(aﬂls, 8ﬂ)m)
(32) = 0;Tp,,mv> + A(v3,0™)  with

AP, 0™) = —Tyoumv® + Ty, 300™ + R(90%, 0,0™) .

Applying Lemma A.1 gives

. Efs 3
1850™ iz S ¢2 G2Vl oy V2 < 3,

and there holds
1A Tomv®llzz S Y 1S5—1(0i0™) || Loe [ A 0? | 2
l7'—j1<4

(3
< S 2B V0| g 0% e
|7/ —j|<4

(3 _ g
SCJQJ(Q 51 82)th7)HHsz”U3HH517

that is

. 3 3
(33) 1 To:0m 0| 2 S VR0l grog 103 fsr - With 814 82 = 3 and sz < 3"

Then by using integrating by parts, we obtain

’ GiTaivmv?’é?gvm dx’ = ‘/ Tawmv?’(?i@gvm dx
R?) RS

(34) < || To,m 3| 2| Ds050™ | 12

h
SN 3 IVR )13
Next we claim that
(35) ||A(U3,Um)||3512+32_1 S0 o 100™ (| sy With 1+ 82 >1 and sy, 82 €]0,1].
Indeed due to s; 4+ s3 > 1, it is easy to observe from Lemma A.1 that

1A RO%,00™) I S D 1145007 | ol A D™ 2
3’253
< Z Cj,Q—j/(81+s2—1)”USHHSIHameHSQ
3’233
S 27D 08| (100 e, -
Similarly since sy < 1, one has
1A T2’ S D I1S-1070™ |2 ]| Aj0% 2
7' —71<4

< CjQ*j(51+szfl) HU3”HS1 HaivaHSQ .
12



Finally due to s; < 1, we have ||S;0;v°| 12 < 27(=50||v3|| ;7.,, from which, we infer

1A T30 ™ r S D 151000 218 00™ || 2
lj'—jl<4
5 Z Cj,2*j/(81+5271)HU3HHSI Haﬂ)m”H52
|7’ —j]<4
S 277D 03 o (100 e
This results in (35).

Let us now deal with the estimate of / A(v®,v™)030™ dz. The main problem is that
RB

. . L1
when v® € H%,ﬁivm € H', (35) implies that A(v3,v™) € Bf 5, which can imbedded into
) L1
(B?’Oo)h(BiZ)v (see (37) below). Yet it follows from Lemma A.1 that

1 1
0 .1 — 1 — 9
(Bl,OO)h(Bf,Q)v — (BQ,oo)h( 12,2)\; — (BQ,oo)h(Lv) .
While 930" only belongs to H'? so that the product A(v3,v™)d30™ does not make sense in
the sense of distributions. The idea consists in decomposing d3v™ in a term containing only
low horizontal frequencies, a term containing only intermediate horizontal frequencies and a

term containing only high horizontal frequencies. More precisely, for a couple of positive real
numbers (A, A) such that A < A, let us define

def def

(36) ap\ = F (1, 00a): aaa = F ((Lp,0,4) — 1p,00))a) and
agn = F ' (1pe(0,0)a) -

Let us study first low horizontal frequencies. Let us write that
[ At omands| < 3 IARATAGS, o™l |AEAT O 1
RS k€72
e
‘
S Y ene2b22 | ARATAWS, 0™)|| 1| 950" 2

~

2k<\
12/

Yet notice that for any a € B;r (R3) with s > 0, we have

IARAYalle S ) IARATAjalle S ) 1AzallLs

j >0— N, j >4— N
(37) J=Z 0 p J=Z _z
<Y 2 Plallsy S 2 lall,
j>6—No

where (¢j,r) ez is a generic element of £7(Z) so that ). ¢} = 1. (35) along with (37) ensures
that that

_t
(33) JARATA®S, v™)l|zx S er2 % [[0%]] 3 [ Vo™ |-
As a result, it comes out
[ A omaug do| § 3 enerd 1903 1900 g s
R
2k <)

(39) ZEZB
S AN 3 V0™ (| (1950 | 2

S0,y (210s0™ (122 + I Vae™13:)-
13



Whereas by applying Lemma A.1, we write

AW oMb nda| <N IIARATA(Y, 0™ 2| BEAT Ovl A lre
kLcZ?
£
S Z cr 022 | ARATA W, ™) || 1 | VB30 2,

A<2k<A
LEL

.

which together with (38) implies

AW o™i nda| S D7 enecev?lpy IVu0" | V0850 1

‘ R? A<2F<A
(40) e

1/A
< togt () 0% 3 900 |2,
Now let us study the case of high horizontal frequencies. Let us write that
3 b 3 S
| /R AW de| < 3 ARATAG g IR g
k!GZZ h v
_k
S G2 A Y ay a
A<2k (Bl,Q)h(Bl,Z)v
ez

Yet it follows from Lemma A.2 that

[Vnd3v™|| 2.

[SI

) .1 )
Bll,z — (Bf’z)h(B

2)v’

[y

from which and (35), we deduce that
| [ AW v dsvhy da| S ATHIARY, 0™ gy V0050 12
(41) R® ’ e
_1 m
S A3 VR 12| Vo™ 3 -
Summing up (34) and (39) to (41), we achieve
(0", 0%)] < Co (1071, (A0 13 + V0" %)

(42) (AN g 2 -3 3 2
+10g% () 1013 190013 + A3 V0% 12 Vvl ) -

Choosing A and A in the above inequality such that

\V4 3 VU3 2
A Iy IO
Eg "

gives rise to (18). O

Proof of Lemma 3.2 . We first get, by using Bony’s decomposition (A.2) for both horizontal
and vertical variables to 9;v30;v™, that

8iv3aﬂim = (Th + Rh + Th) (TV + RY + TV) (aiv3, aﬂ)m) .

Then the proof of Lemma 3.2 will be based on the following claims, which we shall present a
general version for the sake of the proof of Lemma 4.1 below. More precisely, we claim that
14



for any p € [2, 00|, there holds

(43) 7" 00", 0l gno S 00431 90" e
(44) 7800, 00l gna S 000021900
(45) IR0, 0™ i),z S 100 g N9l gog

Let us admit the above inequalities for the time being, and proceed the proof of Lemma 3.2.
Firstly, in view of (43) and (44) for p = 0o, we deduce that

(46) ‘/3 (Th + Th) (81'1}37 8ivm)33fuh dl" S H (Th + Th) (81"03, aﬂ}m) HH1,0 ||63Uh||H1,0
R
S 0?13 V0" %
On the other hand, it follows from Lemma A.1 that

IARAT R T (0%, 0™ 112 S 25 Y I1ARSH_10:0° |12 (1) | AR AY 0™ | 12

K >k—3
|0/ —e|<4
k —1 ok h
S28 ) cwelogT(2 E+6)HU3HH% IVaot]] 411
K >k—3 log,
|0/ —e|<4
kq.,—1(ok h
52 10g 1(2 E—|—€) Z Ckl’€/||U3||H% ||VhU HH1
k'>k—3 log,E
|0/ —e|<4
S e log T (2PE + )|V (Ve g
Hlog,E
Along the same line, we get, by a similar derivation of the above inequality, that
|ABAY RO RY (9103, 90™) || 2 < 2823 > AR AL |2 | AL AL O™ | 12
K >k—3
>0-3
kol L ek h
< 2722 Z C%%/Z 2 log™ (2 E+e)||v3||H% | Vo HH%%
K >k—3 log, E
0>0-3
< c2"log ! (2E +€) HUSHH% 1700”71,
log,E
and
IARAYRMTY (0%, 0™ 12 S 2% Y I1ARAGO® 12| AR S 10i0™ | 12 (1ee
k' >k—3
|0/ —6|<4
<2 cwplog (X E+e) |0l 1 IVl 1 g
k/>zk:3 lg)g,E Hh2 (322,1)\'
|0/ —e|<4
kq.o—1(ok h
< c2¥log™! (2 E+€)I|v3||H% Vo[l

log,E

This together with (45) for p = co ensures that

(47)  ARATR"(@:0°, 0,0™) | 2 S ce2 min([[o%]] 3 log™ (2B + ) 0Pl ) I V00" 0.

log,E

3
I,
15



Now for any positive integer N to be fixed later on, we write

‘ ‘ Rh(@-vg,@ivm)@gvh dac‘
RS

By virtue of (47), we have

<

IN + 1%  with

k<N
1=/

k>N
el

Iv S D IIARATR(9:0%, 00™) | 2| AR A} 050" 2

k<N
LET

S 2V 3 V0" g 1950™ 2

and

I S IARATRY (007, 00™) | 2| ARAT D50 | 12

k>N
LeZ

S crecelog (280313, + e)vaﬂH%

k>N
ez

k>N

1
< (D0 172213 + €)) Pl

log,E

log,E

IVn0"[%,

Vo™ 3 -

Z]/ ABAYRY (9,03, 8;0™) AR AT 9501 das‘

Z]/ ABAY RE (9,03, 8;0™ )A};&zaguhdx‘.

Without loss of generality, we may assume that 2V||v*||2, > e. Then there holds

Zlog (21035, +e) <

k>N

which implies that

I§ S %y

Hence we achieve

IN

log,E

/ logf2 (QTHU?’H%Q + e) dr
N

1

1

log 2 (N log 2 + log ||U3||%2)

1

log2’

h
Vo] g1 -

[ B0t awmoumda| < € (210 190 000"+

IN

3
oIy

log,E

Vo™ 1%

Choosing 2V Ey ~ 1 in the above inequality gives rise to

(43) (/R R R (A
og,

By summing (46) and (48), we conclude the proof of (19).
Let us now present the proof (43), (?

?) and (45

16
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log,E
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Ej

V013, )

+ 22V o8]y 105003 )
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Proof of (43). Observing from Lemma A.1 that
h v 3k £
IS8 S Vi o= S e 2800 .

Then due to H! — H3'3 (see Lemma A.2) and considering the support properties to terms
in ThTV (903, 0;0™), we write

IARAYTMTY (0:0%, 0™ 2 S Y S_1 Y100 [l | AJ AL D™ | 2

|k'—k|<4
o' —t]<4
!
5 Z ck/’gl2k ||’U3||H%’0||alvm||H%,%
k' —k|<4
o't <

< e 2810° ]y IVt

When p € [2, 0], It follows from Lemma A.2 that

so that we have

2k(1-2
It 1S Vel $ 220y

and

|k —k|<4
/6] <4

IARAITTY 0 00 S S w2 PNy 0™z

e [ POy R [

Similarly, since for p € [2, 00|, there holds

)

2k(1—-1) _¢
(49) 1SEALD e 2y < 2 (73) 258

21
Hp’2
we get, by applying Lemma A.1, that

£
2

IARATTM R (030, 0™ 12 S 22 Y ISp_18p00° | ge o) | AR AG O™ | 12

|k’ —k|<4
0>0-3
3 N
2: Y o 22 2||v3HH%+%||0w’”IIH1_%,o
|k —k|<4
0'>0-3

< CWZI“HU

~

A

TS
H?2'p H p

Whereas due to (49) and

—k(1-2) ¢
8RS0 3 ey 2 (P28 0
17



we deduce that

IARATTA T (0h0®, b2 S D I1SH -1 AL oo 22) | AR ST -1 0™ | 2 (12e)
|k —k|<4
|¢'—£|<4
kl
R [ [ BN 75

H
|k —k|<4
¢ —0]<4

A

< Ck,€2k||03||H%+%HthhHHl_%-
This leads to (43).
Proof of (44). Note from Lemma A.1 that

kot
1ARSE 0P| 2 () S cre22 22|07 g0 and

(50) hAv m k-t m
1Sk AL O™ oo (r2) S cr 022272 (|00 || 1.1
we infer
IARATTOTY (000, 002 S D [1ARSE_1000° 12 ey 1) —1 A O™ | oo 12)
K —k|<4
e <4
S D w20 Ly oll0™ Ly
k' —k|<4
|0 —g|<4

S e 2103 V00" | -
While for p € [2, 0o[, we deduce from Lemma A.1 that
v E(1-2

18887007 2 ey S 2 U7 5

(51) Hy (B2,1)V
2k

ISEAT O™ | Lo (12) S 2™ 10:0™ ]| 1205

so that there holds

IARAYTATY (0%, 0™ e S Y IARSH_10:0° | 12 (10 1SR 1 AB O™ | Lo 1)

|k k| <4
|/ —6]<4

< S w1 gz 1007
|k —k|<4
|0 —g)<4

SR [Py | G Y
While applying Lemma A.1 and (49) yields

i , .
IARATTRY @, 00z S25 0 [ISH ALO e e | AR AT 00| 2
|k —k|<4
0'>0-3
/
S25 > e E Y
|k —k|<4
0'>0-3

10s0™ || -

21 2
2,1 g%

S en 21y VP
18
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Lemma A.1 also ensures that

!
ISESy o™ I S Y 2M2T AL AL O™ 12
k' <k—1
<e—1
28 ! m 2k ¢ h
S D ewe2 2700 g S ene2 22 Vit

2

H »p
K <k—1
0<i-1

)

which implies that

IARATT TY (00, 00™) 2 S D IARALSW® | L2llS)i_y Sy 0™ | L=
|k —k|<4
' —6)<4
k/
< D awe2 0Pz 0™

2

H p
k' —k| <4
&' —¢|<4

,0

S 20 a2 V"] s

Consequently, we conclude the proof of (44).
Proof of (45). Thanks to (50), we deduce from Lemma A.1 that

IARATRMTY (0, 0™l S 25 Y ARSI 1000% ] 2 (o) | AR AT 0" 2
k'>k—3
|0/ —e|<4

28 Y Al ol Vet g

k' >k—3
0/ —e|<4

N

AN

k1,3 h
2" [[0°]| 3 Vo[ -
Whereas for p € [2, 00[, by virtue of (52), we write

0

IARATRMTY (0%, 00™) |2 S 28 Ckfck',z'\|v3HH%+%Haz'vmll 1o

k'>k ih
>k—3
(52) o' —e|<4

S e (0[] 2 [IVio™] oz

Applying Lemma A.1 once again gives

IABAY RO RY (903, 90™) || 2 < 2F23 > AR AL |2 | AL A O™ | 12

K >k—3
0>0-3

14 _Z

<228 3 275y 00
k'>k—3
0'>0-3

k h
S 2?1 vz V00
19
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and

IARAYRMTY (00%, 0™l 2 S28 D AR AR L ll AR Sy 1000 [ 12 (1ee)

W>k-3
= h<a
k

S22t )y crroll®ll 2 1 10:0™ ] 20
W>k-3
= d<a
k h

S 28?1 iz VR0 e

This gives rise to (45).

4. PROOF OF ENERGY ESTIMATE
Lemma 4.1. We have that
(53) 10" 0) £ O g 1o (190 1o + ) IVwolfa + 319l + 1050 22
Let &;(v) be given by (20). Then we deduce from the law of product that
Ex@) S 1050°] 3 1Yol —y
S LY R PR
Along the same line, one has
) S 1915 V0ot |2 Vo |
Ea@)] S5 V0?2 Vie? ||
As a result, it comes out

[E1(0)] + [E2(v)| + [Ex()] < Cllv?| 3 [IVholl 2 Vil g

1
3012 2 2
< Ol g IViollze + S IVioll-

Inserting the above estimate and (53) into (20) results in

d h h

D 15neliZs + 19wl < P2, dog (I 132 + ) IWwl3a + 950" 3.
Integrating the above inequality over [0,t] with ¢ < T™*, we obtain

¢ ¢

Vo) + [ 190l dt < ol + € [ 101 o (1900713 + ) Vol .

Then Osgood Lemma ensures that
t t
60 IV + [ Vel de < ol exp(esn(C [ 107 dr)).
0 0

Proof of Lemma 4.1. Taking p = 2 in (43) and (44), we infer

(55) 11", o) ST+ T)(90%, 0™ gy-1.01050™ | o
SN g V00 22 Vol
Whereas by taking p = 2 in (45) results in

(56) IARATRM(0:0°, 0:0™) |2 < ce2®[[0°[] 3 | Vn0" | 2.
20



Let us now deal with the estimate of /

Rh(&-v3, 0iv"™)03v™ dz. Again we use (36) to write
RS

30l = O3]y + O3vly p + O3y

Let us study first low horizontal frequencies. Thanks to (56), we get, by a similar derivation

of (39), that

‘ /R RYN0°, 00™) 050}y daz‘ < D IARATRY (90, 0™ || 2| ARAT D5l || 12
ktcZ?

(57) S enece2 07 g IVt 219507 2

2k<1
LE

SN g 900" |22 (19507 | 2

Whereas along the same line to the proof of (40), we obtain
1
(58) 1 /R RM0®, 00™) 0501 dm\ <Clog? Al[o*[| g V0" [l 2 Vio" | g -
To handle the estimate of [s R"(9;v%, 8ivm)|83v§" A dx, we claim that

k
(59) JARAYRM(0:0%, 00™)[| 12 S €22 | Viv| g [ Viv™ || 2.
Indeed note from Lemmas A.1 and A.2 that
AVSY O o gy S cr27 2|08
|ARSy Ov ||L§(Lv) ~ Gk v HH},%(BQ%J)V

k k
S a2z 00 g S 272 || Vol g,

~

where we used divv = 0 so that 93v3 = — divy, 930", Then along the same line to the proof of
(45), we write

IARATRMTY (0%, 0™ 12 S 25 Y IIARSE_10:0° |12 (1) | AR AY O0™ | 12

k' >k—3
o' =<4

k/
S28 3 cwew o2 7 03] el 0™ 2
k'>k—3
e <1

E
< 22 | Vol g [ Vao 2.
Whereas applying Lemma A.1 once again gives

IABAY RO RY (903, 90™) |2 < 2F23 > AR AL |2 | AL AL O™ | 12
E>k—3
0'>0-3
< ok £ 2 _K Y 3 m
$2°22 ) 272 7100 g 4 10
k'>k—3
0>0-3
k
S 22 ||V o | V0| 2,
21



and

IARATRMTY (00%, 0™ 2 S 28 ) [ ARARO° |2l AR Sy 1 0:0™ | 12 1)

k'>k-3
/=<4

. ¥
SP S @2 E g 0w e
k'>k-3
0 =e|<4
k
S 2210 g2 | Vo | -
This leads to (59) due to the fact that [|v?|| 72 < C||Vivl| 1.
Thanks to (59), we get, by a similar derivation of (41), that
1
[ B0, 0™ oy o] SAH V0l g [910" 2 V000"
(60) R3
1
SAT2 Vit | 2| VaollZ,
By summing up (55) and (57), (58) and (60), we achieve
1 _1
1, 0] < O (10 (1050722 + Tog? AIVa"50) + A~F [Tl ) Va2
1
(o) < O(tog A2,y 1" 32 + A3 V10 2 Va0, )

1
+ gHththﬁp + (10507 .
Choosing A in the above inequality such that
2
A = (60| Vpo"| 12)
gives rise to (53). 0

APPENDIX A. TOOL BOX ON FUNCTIONAL SPACES

Let us mention that, as in [5], [6], [7] and [9], the definitions of the function spaces we are
going to work with require anisotropic dyadic decomposition of the Fourier variables. Let us
first recall some basic facts on anisotropic Littlewood-Paley theory from [1]

Nja=F Hp(27|E)a), Afa=F N2 en)a), Aja=F (27 &)a),
Sja=F ' (x(277)€)a), Spa=F'(x(27M&a),  Sya=F ' (x(27&)a),

where £ = (&, &3) and &, = (&1,&2), Fa and @ denote the Fourier transform of the distribution
a7

a denote the Fourier transform of the distribution a, x(7) and ¢(7) are smooth functions
such that

(A1)

3 8 .
S<rl <2 S —ir) =
Supp @C{TER/ 4_]7’\_3} and VT>O,‘ e(277T) =1,
JEZ
Supp XC{TG]R/ |T|<é} and VreR X(T)+g ©(2777) = 1.
_3 )

Jj=>0
We first recall the definition of homogeneous Besov space:

Definition A.1. Let (p,q,r) be in [1,00]> and s in R. Let us consider u in S} (R?), which
means that u is in S'(R?) and satisfies lim | Sjup~ = 0. We set
j——o0

lull sy, < (21 Asullz)
22
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. : def
oF0r5<%(ors:g1fr:1), WedeﬁneBI‘i( e{ € S (RY) ‘||u|\Bs < 00}

e IfkeNandifd+k <s<%4k+1 (ors= p—l—k—i—l ifr =1), then we define B3 ,.(RY)
as the subset of u in S} (R?) such that 9°u belongs to B;;k(Rd) whenever || = k.

We remark that 3572 coincides with the classical homogeneous Sobolev spaces H.

Definition A.2. Let us define the space (B;} n) (B;g T2) as the space of distribution in S},
such that

def A ’ b 1/7,,2 1/T1
HUH(B;},n)h(Bp <Z oriks (Z or2 S2HA AZ ||Lp1Lp2) )

keZ LeZ
is finite. When p1 = po = p, 11 = Ty =T we briefly denote (B;}T)h(B;,QT‘)V as B;},Zw. In
particular, we shall denote BSI’S2 by H$1:%2,

For the convenience of the readers, we recall the following anisotropic Bernstein type lemma
from [7, 9]:

Lemma A.l. Let By (resp. B,) a ball of R,Ql (resp. R,), and Cj, (resp. C,) a ring of Ri
(resp. Ry); let 1 < py < p; < oo and 1 < gy < g1 < oco. Then there holds:
If the support of @ is included in 2B}, then

< ok(lal+2(1/p2—1/p1)) |

10z, aHLpl LIy < \GHL§2(L31)-

If the support of @ is included in 2°B,, then

< 9t(B+(1/a2—1/q1) )”CLHL{jl(L‘D

Haazga”Lpl(qu) ~ V')

If the support of @ is included in 2¥Cy,, then

lall s oy < 27 kNFFP 102, all o1 (a1
a_

If the support of @ is included in 2¢C,, then

< 9- ZNH

HC’JHLP1 (L1 S aHLﬁl(Lﬁly

Lemma A.2 (Lemma 4.3 of [6]). For any s positive and any 0 in |0, s[, we have
”f” Bé ﬁ)h(39 Yy S ||f||Bs .

At the end of this section, let us recall the para-differential decomposition (Bony’s decom-
position) from [2]: let @ and b be in S’'(R?), then we have the following decomposition

ab=T(a,b) + T(a,b) + R(a,b) with
(A.2) T(a,b) = Sj-1ad;b, T(a,b) =T(ba), R(a,b)= Ajadb,

JEZ JEZ

where ﬁjb def E‘ J—jl<1 Ajb. In order to study product laws between distributions in anisotropic
Besov spaces, we shall also use Bony’s decomposition in both horizontal variables and vertical

variable.
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