THE UNIVERSITY OF

WARWICK

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/59476

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap

ALTERNATIVE VEHICLE ELECTRONIC
ARCHITECTURE FOR INDIVIDUAL WHEEL
CONTROL

By

SETHA PAN-NGUM

BEng, MSc

A thesis submitted for the degree of Doctor of Philosophy in Engineering

University of Warwick

School of Engineering

August 2001

ABSTRACT

Electronic control systems have become an integral part of the modern vehicle and
their installation rate is still on a sharp rise. Their application areas range from
powertrain, chassis and body control to entertainment. Each system is conventionally
control led by a centralised controller with hard-wired links to sensors and actuators. As
systems have become more complex, a rise in the number of system components and
amount of wiring harness has followed. This leads to serious problems on safety,
reliability and space limitation. Different networking and vehicle electronic architectures
have been developed by others to ease these problems. The thesis proposes an alternative
architecture namely Distributed Wheel Architecture, for its potential benefits in terms of
vehicle dynamics, safety and ease of functional addition. The architecture would have a
networked controller on each wheel to perform its dynamic control including braking,
suspension and steering.

The project involves conducting a preliminary study and comparing the proposed
architecture with four alternative existing or high potential architectures. The areas of
study are functionality, complexity, and reliability.

Existing ABS, active suspension and four wheel steering systems are evaluated in
this work by simulation of their operations using road test data. They are used as
exemplary systems, for modelling of the new electronic architecture together with the
four alternatives. A prediction technique is developed, based on the derivation of software
pseudo code from system specifications, to estimate the microcontroller specifications of
all the system ECUs. The estimate indicates the feasibility of implementing the
architectures using current microcontrollers. Message transfer on the Controller Area
Network (CAN) of each architecture is simulated to find its associated delays, and hence
the feasibility of installing CAN in the architectures. Architecture component costs are
estimated from the costs of wires, ECUs, sensors and actuators. The number of wires is
obtained from the wiring models derived from exemplary system data. ECU peripheral
component counts are estimated from their statistical plot against the number of ECU
pins of collected ECUs. Architecture component reliability is estimated based on two
established reliability handbooks.

The results suggest that all of the five architectures could be implemented using
present microcontrollers. In addition, critical data transfer via CAN is made within time
limits under current levels of message load, indicating the possibility of installing CAN in
these architectures. The proposed architecture is expected to be costliet in terms of
components than the rest of the architectures, while it is among the leaders for wiring
weight saving. However, it is expected to suffer from a relatively higher probability of
system component failure.

The proposed architecture is found not economically viable at present, but shows
potential in reducing vehicle wire and weight problems.

ACKNOWLEDGEMENTS

I am deeply grateful to my supervisor, R J Ball, for his elaborate guidance,
patience and a lot of time, throughout the course of this project. The completion of this
thesis would not have been possible without his support.

I am also grateful to the following people for their significant assistance to the
project: Mr. David Carter for kindly explaining the air suspension control operation to
me; University of Warwick inter-library loan staff for their efficient and friendly service
to my numerous requests; The Royal Thai Government for their financial support.

I would also like to thank my parents for all my education and upbringing, Ya and
Mai for their mental and nutritional supports, and Pan for her patience and

encouragement.

DECLARATION

I declare that all the work described in this thesis was undertaken by myself unless
otherwise acknowledged in the text, and that none of the work has previously been
submitted for any academic degree. All sources of quoted information have been

acknowledged by means of references.

Setha Pan-ngum

TABLE OF CONTENTS

CHAPTER 1 1
INTRODUCTION TO THE PROJECT 1
[.] BACKGROUND ... c.teeiiirinnrieeieeertneeeteseieetesessssestesssasseseeesssssasstsssessssssnmenssessnsssresessansssearsssssssssorsennses 1
1.2 PROJECT OBJECTIVESuooivieeiieiteenitesnieesiseersasiseesensessssssesssssssnsessssesssssssesssssesssasessasessessssnsasssassses 2
1.3 POSSIBLE BENEFITS OF DISTRIBUTED WHEEL CONTROLLER ARCHITECTUREcccocvveivreeirereennnes 3
1.3.1 Vehicle DYRAMUCScuovuvuriviriiiiiiniciiincicicinictnnsnes ittt 3
1.3.2 Electronic Point of VIeW ...ttt 4

1.4 METHODOLOGY.....ccviiiieirireeesieeenreessesinrtessessarssaesessssssassesssasssssansssssssssemessssssssrmessssssssssssassesassssssserns 5
1.5 THESIS CONTENTSccoctruiiiiririiriistisiste st iessessssrensssssn st st sassrssnesassssonssassnsssssssonnessosesssssssessesanen 6
1.6 REFERENCEScetteiiiiieierrieeissvureeessessnsteeesssssssuasessssssssnasssssssnsaassssssssussasssessssssnsnessssassensessessssssesaas 7
CHAPTER 2 8
LITERATURE REVIEW 8
2.1 SUSPENSION CONTROL.....ccuiinmiiintiieiscsiesiisrissistinenestestonssssstsnsssesstonsssssasessosssssessesssessssssssonee sasssns 8
2.1.1 Conventional Passive SUSPENSION SYSLEM.............cccovvvervvrerrseesresssesssssssssssossesssessssssesssessanes 8
2.1.2 Semi-Active SUSPENSION SYSIEMccovivvvomeieianieiiiniiiiiiietstsstsscsssereneeesessnessneseesanessessases 9
2.1.3 ACHivVe SUSPENSION SYSIEMLocorirriiirireniiitiic vttt ssesas e sasese st ests s esasssesseene 15
2.1.4 Suspension System Electronic CORIrol URILS............coovoveiiereneeiinenenieeeteccriesesseseassens 17
2.1.5 Current and Trend in Suspension System ReSCArcHcecvevveevevivvevvensiesiesirsienieecseeesnes 17
2.2 FOUR WHEEL STEERING (AWS) .. eiririeeierirseseeeeeetetstseseseasasaeseesasssasassesesasesesssesessasasasasasosossssnes 18
2.2.1 TYDES Of AWS SYSIEMS c.eeeeeeerererecreerrereneeeresnesssrssssessesesaenesisssesesaessesesionsenesensssnssanssens 19
2.2.2 4WS COntrol AIGOTIIAMScccovvecvevirvrneecrieereerenesssorenissessesiessessessessssssessensessessnsssassossens 19
2.2.3 4WS Electronic CORIPOL UNILScucceveririesvesirsvinseieecrnseosennessssesssesssssossenissesnssssssessens 2]
2.2.4 Status and Future Trend Of 4WS.......co oot eseetssesesssesessssssessessoseesessesenas 22
2.3 ELECTRONICS IN BRAKING AND ANTI-LOCK BRAKING SYSTEMS (ABS).....ccoovvvvvireereceeeceeane 23
2.3.1 TYPES OF ABS...ucniiiiiiiriirintire ettt ettt s e e 24
2.3.2 ABS CORIrol AIGOTIIRAMScuomeciirienieiteneiie ettt et e sae e essso e ssasbassnensesaesrenasan 24
2.3.3 ABS Electronic CORIOL URILS.........cueecueeevieeniiiesiirieeesiiieiesnisesnsssssssseenesssesessssssssesesesssnnes 28
2.3.4 Current Research on ABSovcviiriverriiritsciesvenssssssessssiessssssesssesssessseessessassssesssensons 29
2.4 MICROCONTROLLERSocvettiivitreeiriererreessirreeesisessessaeessssnsesosessssaresesssbesesssnsesssssressssnsesssarsusssesans 30
2.4] IREFOAUCHIONc.ooorirerireceetrseesercessesstsieessreritesss e sssssessesaasbsarssaseseensassessessessesrnsssossenssones 30
2.4.2 ATCRITECIUTESo.eoevverererrrereereserseesiensseeesssees et sesserssass s s et s s esaesen s e e stsbass st e sanserersensorsoressen 31
2.4.3 Microcontroller Trends in AUtOMOUIVE ELECIIONICScccvevveeeverevrinreereeeirveressressessrensesas 37
2.5 MULTIPLEXING AND CONTROLLER AREA NETWORKS (CAN)....ccovviriereeire e snven s 38
251 MUIIDIEXING ...ttt st se e s e et aseebansassnssassane 38
2.5.2 CAN ottt ettt sttt b e et s e e s e ta b et e s ereeren 40
2.5.3 CAN MiICIOCONITOUIEES ...ttt st sae st s e sre s s e ar st s e s e e ensaens 43
2.6 AUTOMOTIVE ELECTRONIC ARCHITECTURE.........cctcvtriitiirititeiesinestesesesesenessestesessessessasssssnensans 45
2.6.1 Conventional ArCRITECIUTE............cecevvvreerireesienrenivsieniessiessessesresieesessssessssntassesssrssersessesses 46
2.6.2 Centralised CONIIOLIEr..............ccoveeevieririiciviririiseeresienesesiessesesnsssssssssestsssasseessessesesnesses 47
2.6.3 Peer t0 Peer NetWOTKING..........cccoouevireeienieieeete sttt see e ssessesnassessessnsssestesesssessessenns 48
2.6.4 Master-Slave NetwWOTKINgGovcovvveveeiecivieesieiririesieiesiesesiessssseesssssessersesssssesesssensseseons 49

2.7 REFERENCESccctiitirteiertieteutetteteeestestebessestastassessessssresseasessessessessessensesssassessensesnesseosssnrssassnsons 51

CHAPTER 3 56

DERIVATION OF DIFFERENT AUTOMOTIVE ELECTRONIC CONTROL SYSTEMS &

TEST DATA 56
3.1 EXEMPLARY SYSTEMS ...ccoiiiiiiiirinenieinisisissenenisesnestssesssesessersenseesasssenssnessssssssessossessnsssorsons 56
3.1.1 Exemplary ABS SYStEM........oocuviiirivinrininiiniiniiininiiiniis oo ssssssssssssssesasses 57
3.1.2 Exemplary Suspension CORIrol SYSIEM.............cccovvuvverveeenemneiniessesesnssesesesnesessessnsenes 58
3.1.3 Exemplary 4WS SYStem..........ooviviiivininviiniiiiirniniic et es 59
3.2 EXEMPLARY DYNAMIC CONTROL SYSTEM FUNCTIONALITYcccorvtierinreernrveeessrnesessnseessrvessssonns 60
3.2.1 ABS CONPOL MOAEL. ...ttt ettt sresess s sen oo sanone 61
3.2.2 Active Suspension Control Model....................c.oniinvnnnisninniieniooenns 63
3.2.3 4WS Control Modeloconiiiiiiiieiriinitnninic s sressessas s sasessssses 65
3.3 ROAD TESTDATA ...oiiiitiitiiiitinin sttt er s es e nsasensanesssasssoses s on e s besboreeves 67
3.3.1 Data PreparQlion.................iiiiviivisenninsiinniisiisioniisisiissssssssssssssassssessssssssssssssssosesnes 68
3.3.2 Wheel Speed Dat.............eoiveveieriririricririiinincciiecsesecsecssssssesssssesssesssasessessessesasensane 70
3.3.3 Wheel HEight Datacveueeceeeieeieceeieencinitesientesiesnsssessnessassstsessssssssaosstossesssesestenane 77
3.3.4 Vertical Acceleration Data....................ocooeeeviinviiviiniininninincniiioiiieeensesenenes 77
3.3.5 Longitudinal Acceleration Datac.ccccmrviesensninscnncrsieniiieesssesisienisescroneseesanens 78
3.3.6 Lateral Acceleration Dat....................ccoreivirivriinsniiniiiniiininiitecsieecie e sesesesaens 78
3.3.7 Steering Wheel Angle Dat...........coeecervecivenevorenreneenerneesreneeestesseserseresessasssserasssssessneanee 80
3.3.8 YAW RALE DAL ...ttt asssesses b st 82
3.3.9 Whole Vehicle Model..................uuononiririnininiriiiiiieniieinenre sttt 83
3.4 WHOLE VEHICLE SIMULATION......coovtiertienrerseerirrernessnsessnesssessasserenessssassnssssessssnessnessssnesssnsssssness 85
341 ABS SIMUIAHON ...ttt sttt ses s as s e ses s neses st e se e re e e sennees 85
3.4.2 Active Suspension SiMUIAHIONcccocviviviririeniinscrirciesitcessrits st sstsesesansns 88
3.4.3 QWS SIUIGLION.cooneaerveeeeeeeciereecinere ettt st ra s et ssatssatesass e s et s e s nnsssannne 90
3.5 SUMMARY ..ottt sttt st s s s e s b n s s sa b sr e san s 91
3.0 REFERENCESeiiivteeiueiiirerateristesnesseeesesssseresessssesseesassassssssstosssesssasssessosasosssssssssonsnossnassssenssnsns 91
CHAPTER 4 92
VEHICLE ELECTRONIC ARCHITECTURES UNDER CONSIDERATION.......ccccoeounesenssansens 92
4.1 CONVENTIONAL CENTRALISED ARCHITECTURE (ARCHITECTURE 1)uuevcvvrvvereveeeerinrereesvvvennn. 92
4.2 CONVENTIONAL CENTRALISED WITH LIMITED CAN INTERACTION ARCHITECTURE
(ARCHITECTURE 2} v vevereeeeetieeeeeeesereeesssusessssessssuesssasutssnstessassnsssssssasssnssssssessessessssssnsasssssusssssssssnssasens 93
4.3 TOTAL CENTRALISED ARCHITECTURE (ARCHITECTURE 3)..ovveevveevereseseeereseseseevssososssensesnsesesenen 94
4.4 CONVENTIONAL CENTRALISED WITH FUNCTIONAL INTEGRATION ARCHITECTURE (ARCHITECTURE
) ettt et sk R e bR R R s R e e e R e s s RO e e e e s e ee st et be e et s anenes 94
4.5 DISTRIBUTED WHEEL CONTROLLER ARCHITECTURE (ARCHITECTURE 5) «.eeeuvvvevueeeirenivresreennannes 95
4.6 REFERENCEScocotiuiitiiiiritintinesistos e ss s tis et st s et sas b sas bt n bbb s b e bbb S b s st s b sheabsb b sbboncanas 96
CHAPTER 5 97
ELECTRONIC ARCHITECTURE FEASIBILITY STUDIES ON HARDWARE
REQUIREMENTS AND CAN MESSAGE DELAY 97
5.1 ECU HARDWARE AND PERFORMANCE REQUIREMENTSccvrvreeueveussereseeeeresesesssssssesessessssnsnsnses 97
5.1.1 The Vehicle System DeSign PrOCESScccvvvvvvensverivnssenserssesssesssesessssssssssesssesssessssssses 97
5.1.2 Hardware Performance Estimation of KRown ECUScooeceeivireeieceesevvenesieesessseneonns 98
5.1.3 Cruise control ECU EXperiment...............coccvcineiicrereoininnicsenneenieaseneseresersssssssesssnsesaes 99
5.1.4 Air Suspension ECU EXPEFiIENtc.ccoveveruvevrecresereserissseseriosessessssessessossssessessasssnsesens 116
5.1.5 Difference Between Predicted and Actual Response Times............uoeereeevveveercesevrerennnn. 126
5.1.6 Correction (Multiplying)} FACION.............ccocoovevuinirieiinniestinrersrsesesssssinsssstessessesssenensesene 128

5.1.7 Conclusions from the TWO EXPEFiMENLS...............oceeveceeveervenecvensesveseenersrissesseesissssssssssonses 129

5.2 ECU PERFORMANCE REQUIREMENT OF DIFFERENT ARCHITECTURESvevrveveereeeeeeenreseseens 130

5.2.1 Microcontroller Selection CriteriaQ..............ccooceviireniinenienrieeeneeeseeeeesesercsseessessesrenens 130
5.2.2 Alternative Architecture ECU Response Time Modelling.............oevoveneecccenvcennene. 130
5.2.3 Active Suspension, 4WS, and ABS Memory and I/O Predictions...............ccccevvvvnvevenunnns 136
5.3 CONTROLLER AREA NETWORK (CAN) SIMULATIONcccceerruimrirerrneersressreersrvesssensoresersnssossensnes 140
5.3.1 Timing ASPectS Of CAN ...covorerereercreintieeenttentesseesressaesresssesseessesssesssesasessessnssnssnsesasens 140
5.3.2 Simulation DAt...............cooouevmniecoenreeirerieiceieerceestece s ssseses e ssssstsssaearassessanesanens 142
5.3.3 Simulation Package and Methods................cvoovvevevverueniicrioniisnsesssonussressessesssesssssssessasens 144
5.3.4 Simulation MOdElsooooeoiooeoveriieiietiececteneete ettt erasass e s es 146
5.3.5 Simul8 MOAELsccoovceviiiiiiiiriiiiiiniecee ettt et e nes 148
5.3.6 SIMULALION RUN ...ttt vt e er st ss s e sbesba s e e st enenns 150
5.3.7 Results and ARGLYSISovvvivvvivininiisiniirennciriiesne e s e s b s 151
5.4 REFERENCESo.ioiitiiiiininnitiisiistsins sttt et s bbb et st sn s 153
CHAPTER 6 155
ELECTRONIC ARCHITECTURE EFFECTS ON COMPLEXITY AND COSTS......c.ccecenvsunes 155
6.1 EFFECT OF THE VEHICLE WIRING HARNESS ON DIFFERENT ARCHITECTURES.........ccoveuvverernnnee 155
6.1.1 Wiring Models of Dynamic and Powertrain Control SyStemscoveveevveervevcerereneenns 156
6.1.2 The Number of Wires and Their Estimated Total Length and Weight of Each Architecture
.. 165
6.2 CoST COMPARISON BETWEEN DIFFERENT ARCHITECTURES WIRING HARNESS.............uvcu....... 172
6.2.1 Component Cost ESHMAIIONcccovuriviiiniinirniiieniieniesieentesesinsesenesenssesessresaesssesasne 172
6.2.2 ANQLYSIS...uuouieiiniiniiriricicie ettt st b e e e s ea s pesaeane 177
6.3 FUTURE TRENDS AND OTHER EFFECTS ON SYSTEM COSTSccovvvmiminnnnnisirenisercrreesseneenes 178
6.3.1 FUture Trend Effects ... ieviriivireicerrinnectereeeeesessesessessssesssssssessestosssesssssesesssssessssasnes 178
6.3.2 ECU Development Cost...........ociverieirievinnieriinteniiniretsiesesetsesstssseseessesasosssssssesssonsessanes 179
6.3.3 Assembly and DiGGROSHC COSESouvuvovreeveeresirrirresisesressssossssnsessosssssssssstssesessssesessessannns 180
6.4 SUMMARY ..ottt et st s b st e e s e s e n s se e s e besenenrenees 181
6.5 REFERENCESvcoreeiierieeieercssarionesersersassessestansessensessessessessssassssssensorsossossossassssssonesnsesssnsessssses 182
CHAPTER 7 184
COMPONENT RELIABILITY PREDICTIONS OF ALTERNATIVE ELECTRONIC
ARCHITECTURES 184
7.1 TYPES OF RELIABILITY PREDICTION TECHNIQUESccceeverteerreerrerrersreeressresseesseessessssensessssonnes 184
7.1.1 Similar Equipment and Similar Complexity TeCARIQUEScocovveevereererevireeerrerereeneennnn 185
7.1.2 Prediction by FUNCHION TECARIQUEScuoueereeeenirerieiesssieiesssssesessssseresssssesseressensenes 185
7.1.3 Part Count TECARIGUEScvcrervererrieneriireiienerrteissessesessssesssssesessessssesensosesssstessnnss 186
7.1.4 Stress AnalySis TECARIGUESc.cvvueeereeeirirniieeniriesisseeeresessse st ssessesasssssessesseresessenes 186
7.2 RELIABILITY PREDICTION OF AUTOMOTIVE ELECTRONICScc.ocveurererereieteinrierersrsnessseenserearenis 187
7.3 RELIABILITY MODELLING OF DIFFERENT VEHICLE ELECTRONIC ARCHITECTURES................... 188
7.3.1 Reliability Modelling Based on AT&T TeCRRIGUEccocuvueeveeereererecrirreseerecveresnenn, 189
7.3.2 Reliability Modelling Based on Automotive Reliability Datq.................ocecovvrvereveeeeeenean. 194
7.3.3 ARGLYSIS.....ooriniiiiiiiieeeiictce ettt st b e e et r e renre s 195

T4 REFERENCESc.courireireeerienereriererestensrsnsstasssstossssssasteseasasestsssessssasesssnsossansssonsssnsssssssnsassoseonsans 196

CHAPTER 8

CONCLUSIONS

8.1 SIMULATION OF CONTROL SYSTEMS ..vvvivtiiririieiereiintirreesissrernesessssssssesessessssnssesssesssssssessssesssnsns
8.2 MICROCONTROLLER SPECIFICATION ...ucvvviriiiireieeeeieiinrieeresisersenesessssensseesssosssssecssssssssnssessosssassnns
8.3 SIMULATION OF CAN MESSAGE TRANSFERcovvrertienmrrennreeensresessreessssvsessssrresssanesesssreesass
8.4 SYSTEM WIRING COMPLEXITY AND COMPONENT COSTSouvverrverrenrrerisesirenerereiescsssessrersesssens
8.5 ELECTRONIC COMPONENT RELIABILITYccccevtvierierirerrerirecsrurereesesssnenesesessssssesessosserssesnsesseossans
8.6 DISTRIBUTED WHEEL CONTROLLER ARCHITECTUREcoviirtrvirirecirerreresccsnsennresesesssserneessessrans
8.7 FURTHER WORK.....occicoviurerereenrriereessesrareeessssssrtesiesssnsessessssasesssossssssassesossssassnesessressssnssenessossssne
8.8 REFERENCESoociiovvvreeirrersneesiraseesaisrseastesaasssssssessassssesssseseesssessssssssrassssossnssssssssssossanssssnsunessss

APPENDIX A PREDICTION OF ECU CONTROL PSEUDO CODE AND ASSEMBLY
PROGRAMS

CRUISE CONTROL...cceevvivieerreesseersenirseosessesensesssssasssesssessssesssnessasssssesssssssssssssessssssssssssssassssssnsssssnsseas
Throttle Demand Calculation Pseudo Code..................coeervceneevenreceeririeienririsienesseissensssssssenns
Throttle Demand Calculation Predicted Assembly Codeoeevverevevvevveenenseneeneeeeirenareenns
Predicted Assembly Programs of OtRer PrOCESSES............covveeecvrverevinivnronissrensessensesensnsnnsnsses
ReSpONSe Time PrediClioncvviveeririvrireoiisnerrssrssssssresssessesssassssssessssssesssesssessssssesssssssssssanas

AIR SUSPENSIONoooiiviriierieeisieeesisessieeeessseerssssersssessarsesssssssasessasssasssssssssssssssnssssasssssssnsosssnssessrsnnns
ALl SUSPERSION FIOW CRATLSvonvviiviiiiriiiriniinteeeticcteecessereeseses e sssassesessassssesssssesssssesessenes
Air Suspension Predicted ASSEMBLY COdeoveereevererneesiriesirsseeieninsteeseriesesse s e

ABS e e e e e s s e e se e e sae st e e e e s e et e ne et e s an e ses

Active SUSPENSION FLOW CRATL.........ciiviviriieenirirenieneereeetsscstssesessesssssssssisstsssssossssseessesssssstons
Active Suspension PSeUdo COde..............cuvoeerirccnrnerrsieessessressssssssssssnisssssssssssesssssssssesnns
PREDICTED RESPONSE TIME OF ALTERNATIVE ARCHITECTUREECUScocvvvivirmeiiiiceeeceeennnnn
Conventional Centralised, Conventional Centralised with Limited CAN Interaction,
Conventional Centralised with Functional Integration Architectures (Architecture 1, 2, 4)
Total Centralised Architecture (ATCHILECIUIE 3)......ccovvvivieveveeiieeieeieeeeeereeereeesessstsesasarenssesssneens
Distributed Wheel Architecture (ATCRILECHUIE 5)..........oooeueeeeeieeeevreeieeeseisireeeseaeeerreeeeesessessssnes

ROM ESTIMATION

APPENDIX B VEHICLE SIGNAL MODELS FOR CAN SIMULATION

APPENDIX C IN-VEHICLE SIGNAL LIST FOR VEHICLE WIRING MODELS.................

APPENDIX D SYSTEM COMPONENT COST CALCULATION

APPENDIX E ALTERNATIVE ARCHITECTURE RELIAIBILITY MODELLING...............
REFERENCES

243

LIST OF FIGURES

Figure 1.1 Outline of Distributed Wheel Controller ArChiteCture.........oc.vvvecieineemiemniinscnserereeninennes 2
Figure 1.2 Vehicle g-g diagramcocoviiviiiiiiinireniiiie sttt 4
Figure 2.1 Adaptive damping suspension system layout.............ccocovvererernisncnccnnnsecres e 10
Figure 2.2 Adaptive damping suspension block diagram.........c..ccocovmeroeinnncrirnrc e, 10
Figure 2.3 Adaptive damping suspension functional block diagram..........c..cccoervinennnninonennen. 11
Figure 2.4 Self levelling suspension system 1ayOouUt..........cccceiiiniiiiennninnines 12
Figure 2.5 Self levelling suspension block diagram.....coceeeeieiieinenienninnnsneee e 12
Figure 2.6 Series active suspension block diagramcoceeiiviniinniennnnin e 13
Figure 2.7 Parallel Active SUSPENSION.......cccivuerimiiiiiviiiine it 14
Figure 2.8 Anti-roll System Control Block Diagramccccceviiiminnnininieen s 14
Figure 2.9 Active suspension SYStem layoul...........cocveireriovirininiennenn e 16
Figure 2.10 Active suspension system input and output Signalscccoveinniririinierencnninnn 16
Figure 2.11 Acceleration control block diagram of active SUSpension..........ccccceveveeerevvereeeciiiinienenns 17
Figure 2.12 A typical front and rear wheel steering characteristic of a 4WSccocoovvririiiiinnnen, 18
Figure 2.13 Rear wheel steering characteristics of a simple 4WS system..........cc.ocovviniininininninin 20
Figure 2.14 Proportional control block diagram of a 4WS system.........cccceevvirnriinncnciiniiciins 20
Figure 2.15 4WS with yaw rate feedback control system diagramccccocvrienininininninininennine, 21
Figure 2.16 A 4WS ECU SIUCIUTEccovieivicriiiriiiniiiitinise st srsssss s bss s bosesssssosesaessssossonsas 22
Figure 2.17 Relationship between slip and tyre-road coefficient of frictionc.cccecveivnrcerinccane 25

Figure 2.18 Simplified model of ABS electronic control applied to some three and four-channel

E] 1<) 111 S OO 26
Figure 2.19 Typical ABS control cycles on high tyre-road friction coefficient roadc.ccccoveveneneenee 27
Figure 2.20 Simplified model of an ABS ECU ...t 28
Figure 2.21 Microcontroller simple block diagram........ccoccoovevinciiniinininiconninniesiece e 31
Figure 2.22 Microcontroller implementation growth in modern vehicles........cccoceeevveveveernvvnenennene 38
Figure 2.23 System block diagram of high-speed CAN netWOrk......ccocecvvvveerivcrernererennerinsreneennennes 40
Figure 2.24 CAN DATA FRAME message formatc.ccoeeveneniiiniiinincnieensicnie e enenseeessonns 42
Figure 2.25 Conventional centralised archit€Cturec.ccocevereverinirnerentrierrrcererrree et see e s 46
Figure 2.26 Centralised controller architeCturec.ccovverreererrrnrieereeerrenesnennenrerernrsresseseescseereesseses 47
Figure 2.27 Peer to Peer network architeCture............coveivervreenineiinccieeee et sae s eene 48
Figure 2.28 Master Slave network arChiteCtUrecovvveivieeieiereeceeecre s e eve e enrens 50
Figure 3.1 Simplified electrical diagram of an exemplary ABS syStem.........occeeeeiienieniviveniereneienrcennne 57
Figure 3.2 Simplified electrical diagram of an exemplary suspension control system................ccern... 59
Figure 3.3 Simplified electrical diagram of an exemplary 4WS control systemcccccvcerveverrernnnens 60
Figure 3.4 ABS CONMIOl CYCLEcccruirieveriiirieirerieriinieeeteretsret et bebtsvtesasae s sessesssessesesssasersesensessasas 62
Figure 3.5 Simulink model of the ABS SYStEM........cccveeivieriiieiriicecesicerie et ereae e etvetevsrasssanes 62

Figure 3.6 Exemplary active suspension control block diagramccoceeeeierecvemiviecinineiviseesiees 64

Figure 3.7 Simulink model of active SUSPENSION SYSIEIMcccccveveieereerererrerreesereeessesesesseseeerassnesenes 64

Figure 3.8 Exemplary 4WS system control block diagram.............cccvvverrerecrercecnensrcsceniennnsreesiessenns 66
Figure 3.9 Simulink model 0f 4WS SYSIEIMcuvviiviriieriicinrirenrenssneneesssasssiisssssssereseseressesessosens 67
Figure 3.10 Map of Rover’s Emissions test track at Gaydoncoe.coveevvesenererennsssssssssssssessennne 68
Figure 3.11 Vehicle speed data produced from road testeoeevvrrmerrerreeernsnencrnrencrescrercecresorsenes 68
Figure 3.12 Vehicle speed and distance travelled with track position indication..........c.ccvvviererccrcrnenn. 70
Figure 3.13 Fishbone diagram of the causes of wheel speed difference..........c.coevrrrerrerrcvcrrverererereneen 71
Figure 3.14 Friction force against wheel slip Zraphcccoveevvvimeieerienrennincereenceenrecceereesneeseeenne 73
Figure 3.15 Normalised longitudinal force against normalised wheel slip plotccocvvvveninrerrcrencnn. 74
Figure 3.16 Four wheel speed data...........ccooiimiiniiicecrcncnenn it ssssnenessses 76
Figure 3.17 Wheel height and vertical acceleration data...........ccocovrrvvrvrreniencnnininiicienectieseeseneeene 77
Figure 3.18 Model used to generate vertical acceleration data from the wheel height data.................. 78
Figure 3.19 Longitudinal acceleration data............cccouvvereverieverirnerereiseeersseresecssecesesesaseseosesessessessosssanns 78
Figure 3.20 Lateral acceleration datac.ccccevirrriereenrerecireseresnsesressansessessnosssessrosesasesessessasessssaone 79
Figure 3.21 Relationship between maximum front steering angle and vehicle speed..........c.ccccoueeue. 81
Figure 3.22 Front wheel steering angle data............coccoceieverrrnererinnnrerinnnnnssieieseenesenssrsnens 82
Figure 3.23 Yaw Tate daltalc.ccccocrerreniieiienteninientecneeseeneesessessesseosessessenssoss sasencsseencsnseseesssssasnesssssness 83
Figure 3.24 Simulink vehicle model of the dynamic control SyStems........ceevcrerrerircercesernecrenresvensaens 84
Figure 3.25 Four wheel speed SEnSOT iNPULS.ccccvevreerreeerernernninniesriesseesessrsseseesessessssesssssesesssssens 85
Figure 3.26 ABS IESPOMNSESccoovrrrrrrerrnierierisinnestereierestsresssuressssessrssnesescessosescssessenessonsensossrenessnses 86
Figure 3.27 Modified front left wheel speed to show sign of wheel lockingcccocceeveeverecrrcrenennenen 87
Figure 3.28 ABS responses to front left wheel locking........c.ccoveeveeecrerniiinninnencrnreerensenes 87
Figure 3.29 ACtiVE SUSPENSION INPULS.......cocrereerirrercreeerirerereseriereesiseesssessosesencrasssonsresenerasssssssssssssons 88
Figure 3.30 Active SUSPENSION TESPOMSES ..c.covererreerrereererreiosesorenessereesssesseesesssnssessassesessnesesssssasessarasses 89
Figure 3.31 4WS inputs and IESPONSES........ccoierviieriieinirireeerererereseseneesensetssosssssssessensisesessesessesssssosasses 90
Figure 4.1 Conventional centralised architeCtureccevuivveriererieerriverineseesserescsesesssesssseeressnsssessrenses 93
Figure 4.2 Conventional centralised with limited CAN interaction architeCture.........c.oeevveeervrerereenees 93
Figure 4.3 Total centralised architeCturec.ccceeeeemrnrerercnrenienenrininesseesenseesersneseresssessessesressansnes 94
Figure 4.4 Conventional centralised with functional integration architecture...........cocveeeereervreriereenne 95
Figure 5.1 Cruise control state transition diagram...........cc.ccecveererrerieririnereeseeensesesiensestsresessessessesasnes 100
Figure 5.2 Cruise control motor and solenoid Operations............ccccveveveveerererersererrsnoreseresseenrereserenens 101
Figure 5.3 Cruise control operation flOWCRaIt............ccevevreerirerierenireeenineeneensesesessssesnossenessesessesenens 103
Figure 5.4 Cruise control experiment Circuit CONNECHONc.cceevevveeereeerenersierereresierensessersssneseesenes 105
Figure 5.5 Cruise control microcontroller CONNECHONSccccvevvevervnreervesnesseeerneesserssersnssesseereorees 106
Figure 5.6 Waveforms when SET i PIreSSed........cevuvuerrinrnierintnininisreieresesssesensesesonssnssessssssssesens 107
Figure 5.7 Pulse response time to SET cOMMANdccccocevieveeireieeeirerreiesenieneresseeeaessereesessossones 108
Figure 5.8 Solenoid reSPONSE tNEccvueveriivereererieieeseereeeereeessrsssseestevesesseesessnssenesessoneserseses 108
Figure 5.9 MotOr rESPONSE tIME.........cceverrerieririeririeriereesteresiessnsessesnesessssassesssssssesaesessesessessersssnesassees 108
Figure 5.10 Scatter plot of pulSe reSpoNSe time..........ceceeueeiriereeiiriererenesereeie e serssssesasessesaees 109

Figure 5.11 Scatter plot of solenoid response time..........ocuoverrverererierernresrereeeereseeressenessssereessssessenns 110

Figure 5.12 Signal waveforms when ‘RES’ is Pressed.......co.cveeverireneeneneneccceronercsnsseeseeneessorassrens 110

Figure 5.13 Response time to SET (after cruise disengaged)........cccoccevverveeinniecerniiiinnncrcrnnencnnes 111
Figure 5.14 Response time to manually controlled ‘RES’ (disengage)..........cooeovvereininnincrcrcrsencnnuenes 112
Figure 5.15 Response time to ‘RES’ (disengage), controlled by solenoid signal..............ccoccrurnnnee. 113
Figure 5.16 Air suspension SOftWare SITUCIUTEccvevcrerrcreerireeirrernsseneesenessisresessesnssisnenassessessesesens 120
Figure 5.17 Air suspension measurement Circuit CONMNECHONS.......c..ccevveirereenresrereniseresserieescrseessenens 122
Figure 5.18 Air suspension microcontroller CONNECHONScceccreecerererrercmerssisrriseniosessenreseencnnns 123
Figure 5.19 Response to UP demand..............cocveviniirenncnnrcnrcererecerccenssisesnsesnssssesosessessenne 124
Figure 5.20 Response to footbrake during height state changec.ccocevevvrsinivninsencnnercnenennes 124
Figure 5.21 Response to0 DOWN........ccoociriiiiiicniccctessnstcsessnesises st ses s sane 125
Figure 5.22 Percent of RTOS overhead on CPU.........c.coverirviinernrinennriennnrerene e neesie e cseesneseneas 133
Figure 5.23 A series of periodic signal getting transmitted..........cccocevrrevrrcnininnninnnnien, 141
Figure 5.24 Number of signals of ach type.........cccceciiriiiciniinicinernecenrr et 143
Figure 5.25 Percentage of bandwidth of different types of signals per total bandwidth..................... 144
Figure 5.26 CAN simulation model from literaturecocccoverveerievirerenecerrereneeessessessessesssenses 145
Figure 5.27 Simul8 model Of ArCRILECHUTe 4oouvevvivieerininiieecieerivsresssssaeresenesessnenesssseasesssansesees 149
Figure 5.28 Timing diagram of a 10 ms period signal generation.............cececcevereecerrerrnrrnererernnsennons 150

Figure 5.29 Frequency Distribution of CAN Transmission Time of 5 ms Period Class C Signals.... 151
Figure 5.30 Frequency Distribution of CAN Transmission Time of 10 ms Period Class C Signals.. 152

Figure 6.1 Growth in the number of powertrain ECU I/Os against calendar year............cccceceevrnnenen. 156
Figure 6.2 Wiring model Of ArCRILECIUTE Ioueoueeoeeneeiririricrenerenrsisnenissssesieestecsessensesesesesessones 161
Figure 6.3 Wiring model of ArcRIteCtures 2,4..........ocuvveeeeerereriecerirseriesisnesesenresestenresesessseresessssssanes 162
Figure 6.4 Wiring model of Architectiure 3ovocevomercminieeesirissenenssistissesessssssesereseesssenes 163
Figure 6.5 Wiring model Of AFCRITECIUTE 5coonecreecuvrereirienirtrenicersseeseereresteserescsssosenessnosenson 164
Figure 6.6 Vehicle zonal diagrami............coooveviiinmrrecnrernicreenieenicnirsetsee e reresesssesesssssssonssseseneen 166
Figure 6.7 ECU wiring from passenger compartment to door panelsceceeverrevrrerereeeneenerenn 167
Figure 6.8 ECU wiring from passenger compartment to engine bay area...........cocvevevereeveerereeceerensenes 167
Figure 6.9 Plot of number of ECU components and I/O Pins.........c.ccceveveecvrrinveerenveenenenieniessenseennes 175
Figure 6.10 System costs of different architeCtures.c.cccveveverevrrrereeeneeesiiccctrsereseseeeseene 177
Figure 7.1 A bathtub curve representing typical component failure rate..........ccocococeevennicnrerenceevennene. 188
Figure 7.2 Hazard rate model developed by AT&T [10]ccccoevvirirrirnrnernreercsrecrerereseeseesessenens 190

Figure 7.3 Projected number of peripheral components per ECU Pins........cocoeverrnererrrrenreennnierenens 192

LIST OF TABLES

Table 5.1 Response time prediction results of Architectures 1, 2 and 4..............ccoveevveverevneennnnn.. 134
Table 5.2 Response time prediction results of Architecture 3covvvviviveconcernnvniecnirecen, 135
Table 5.3 Response time prediction results of Architecture 5ccovvvvvivivvinniivncincnesnnnann. 135
Table 5.4 ROM, RAM and l/O requirement Predictions of all the architectures..............ccecocvruenennn... 139
Table 5.5 Signal Bandwidth of all the Architectures..............cccoocviciiiiiiiiicnnncncn e 147
Table 5.6 Worst Case Delay of Class C Signals of all the Architecturesccccecvveverevrernccnnennane 153
Table 6.1 List of sensors and actuators in the modelscccocoviininnniicn e 158
Table 6.2 Total number of wires in different vehicle electronic architectures............coeevenvvcnenennene. 165
Table 6.3 Wiring length classification of different vehicle electronic architectures............cccovuevenneee. 166

Table 6.4 Length of four wire types and total lengths of wires in different vehicle electronic
ATCRIEECIUTES ..cveeneerireie ettt sttt et s es s e e s e bR e s e ab bt san e e e s et s sessesesarensanens 169
Table 6.5 CAN wiring lengths of the four vehicle electronic architectures............ccococviereverivireennns 170

Table 6.6 Total number, lengths and weights of wires in different vehicle electronic architectures.. 171

Table 6.7 Wiring harness costs of different electronic architectures.........c..cocceevevivecrrinrnnccenennne, 173
Table 6.8 Estimated microCONtroller COSESoorerirrirrinierieiereececerer et sre et eseeesvasreesrneens 174
Table 6.9 Microcontrollers and peripheral ECU component COStSs...........ucvvveveverinnniicccninicnncinnaee 176
Table 6.10 Combined sensor and aCtUALOT COSES.......c..vvurrrerrrrerrerenrismnenreseninesenssissersomosessessssesersnssasens 176
Table 6.11 OVverall SYSIEIN COSLSc.cvvvrrrerreerrerereesmecrenrreiarsereseonsesseesessasssaeressssossesssessessaessaassesssesssesseans 177
Table 7.1 Reliability modelling of alternative architectures using AT&T data.........ccccoeecerinnrennnnne 193

Table 7.2 Reliability modelling of alternative architectures using automotive reliability data 194

ABBREVIATIONS

4WS
A/D
ABS
ADC
ALU
ASE
ASR
AVCS
BECM
BT
CAN
CCM
CCS
CISC
CPU
D/A
EAROM
ECU
EEPROM
EMC
EMI
EMS
FIT
FMEA
HSIO
/O

IC

Four Wheel Steering System
Analogue-to Digital

Anti-lock Braking System
Analogue-to-Digital Converter
Arithmetic Logic Unit

Air Suspension/EVO Steering

Anti-Spin Regulation (Traction Control System)
Advanced Vehicle Control System

Body Electrical Control Module

British Telecom

Controller Area Network

Climate Control Module

Cruise Control System

Complex Instruction Set Computer
Central Processing Unit
Digital-to-Analogue

Electrically Alterable Read Only Memory

Electronic Control Unit

Electrically Erasable and Programmable Read Only Memory

ElectroMagnetic Compatibility
ElectroMagnetic Interference
Engine Management System
Failure In Time

Failure Mode and Effect Analysis
High Speed Input/Output
Input/Output

Integrated Circuit

ICD Instrument Cluster Display

ICM Ignition Control Module

ISO International Standards Organisation
LED Light Emitting Diode

LSIO Low Speed Input/Output

MTBF Mean Time Between Failure
MTTF Mean Time To Failure

OEM Original Equipment Manufacturer
OSEK Open Systems and Corresponding Interfaces for Automotive Electronics
OSI Open Systems Interconnect

OTP One-Time Programmable

PC Personal Computer

PCM Powertrain Control Module

PID Proportional, Integral, Differential
PSS Passenger Safety System

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computer
ROM Read Only Memory

RTOS Real-Time Operating System
RWM Read/Write Memory

SAE Society of Automotive Engineers
TTP Time Triggered Protocol

VAN Vehicle Area Network

w Width

WB Wheelbase

CHAPTER 1

INTRODUCTION TO THE PROJECT
1.1 Background

Electronic systems are becoming very significant parts of the modern road
vehicle. Their application areas range from powertrain, chassis and body control
through to heating, ventilation and entertainment. Their functions are expanding into
new areas to include navigation, crash avoidance, etc. [1-4]. The existing systems are
also being constantly improved to meet customer expectations and future regulations.
Consequently, both the complexity and cost of electronic systems per vehicle is rising
and expected to rise further [3].

This increase in complexity in turn gives rise to increased numbers of sensors
and actuators and also connections, and the amount of wiring harness required.
Modern high-end vehicles contain a few kilometres of wiring, weighing at least 22
kilograms [7,8]. The more complex the systems become, the more likely it is that data
needs to be exchanged amongst them. This is evident now from examples such as
gearbox-engine links that improve gearchange shift quality and steering-suspension
system links that stiffen the suspension during high ‘g’ manoeuvres. The cumulative
effect of this type of link is in larger quantities of data being transferred between the
electronic control units (ECUs).

Dynamic control systems such as Anti-lock Braking System (ABS), Traction
Control, Suspension Control, and 4-wheel drive and 4-wheel steering, all operate via
the wheels at the four corners of a vehicle. Conventionally, a centralised controller is
used for each function, with hard-wired links to sensors and actuators distributed
around the vehicle.

The increasing complexity of electronics systems and their interconnections in
modern vehicles is a serious concern [9]. It can lead to reliability and safety problems,
since wiring is still a major source of faults in a vehicle. In order to counter the
problem, networking architectures such as Controller Area Network (CAN) have been

developed to simplify wiring harnesses and enable data links between systems. It is in

Project Introduction

addition to these data networks that a number of different electronic architectures,

described in the following chapter, are under consideration to help ease the problem.

1.2 Project Objectives

The aim of this work is to evaluate alternative automotive architectures for
dynamic control electronics. The work adopts a system-level approach, in
acknowledgement of the different factors that influence the adoption of new vehicle
systems. Specifically, the functionality, reliability and cost of the alternative
architectures are evaluated to compare their practicality and commercial potential.

A specific arrangement proposed here is that of a distributed architecture,
which is anticipated to reduce the problem of increasing wiring harness and achieve
further benefits, especially in terms of vehicle handling and electronics. This
arrangement follows the concept of independent wheel control systems for suspension
[19] and brake [10,18,20]. The proposed architecture would contain an integrated
controller at each wheel and a central controller. These ‘Wheel Controllers’ would
take control of the dynamics of each wheel, concerning traction, braking and
suspension controls, with data connections via a networking protocol to other

controllers. The outline of the system is shown in Figure 1.1.

Wheel controller Wheel controlier

ECU Central ECU ECU
Network bus
Engine
management other ECUs
ECU

Wheel controller Wheel controller

ECU ECU

Figure 1.1 Outline of Distributed Wheel Controller Architecture

Specific objectives of this work are:

e to simulate the system operation using historical data from an instrumented

vehicle

Project Introduction

to derive the functional specification of the dynamics control systems in a near-

future vehicle and from this to estimate the processor specification required to

support it

¢ to study the feasibility of installing a CAN network in the alternative architectures,
in terms of message delay time

e to compare the desirability of the alternative architectures to the vehicle
manufacturer in terms of cost and reliability

e to evaluate the viability of the distributed wheel control architecture on the above

terms.

1.3 Possible Benefits of Distributed Wheel Controller
Architecture

The foreseeable advantages of the proposed architectures will be in the

following areas:

1.3.1 Vehicle Dynamics

In term of vehicle dynamics, a vehicle characteristic can be represented by the
g-g diagram [5] shown in Figure 1.2, which is the maximum grip per unit load that
four tyres can produce in any direction. This available force depends on the tyre-road
friction and the load on the wheels, and changes from moment to moment. High
performance cars tend to have a large diagram boundary. Although the diagram
suggests maximum attainable force, normal vehicles cannot reach this limit. A skilled
driver is often able to sense any reduction in grip, but is unable to redistribute the
vehicle forces between the four wheels. One of the reasons is due to suspension
geometry which affects wheel orientations and hence tyre forces. Imperfect brake
balance between front and rear could also prevent both tyres from reaching the
friction boundary simultaneously [5]. The available grip of each wheel cannot be
measured in real-time, due to its dependability on factors such as road surfaces and
tyre conditions. However, a system is being proposed that would sense and improve
vehicle handling performance and stability near the limits of tyre-road grip, by

distributing forces at each wheel accordingly [11,17]. Other systems are also intended

Project Introduction

to combine operations of brake, suspension and steering controls on each wheel, to
improve vehicle handling [12-16].

The electronic architecture proposed here would implement this combined
operation in a controller-per-wheel system, each controller sensing the grip when
nearing the limit and communicating with the others in order to distribute the vehicle

suspension, traction and cornering forces optimally.

ﬁiirection of travel Acceleration

FL FR
@ Left Right

Braking

[The four smaller circles indicate the
maximum available grip of each wheel, at one
particular moment. The large circle is the

RL RR
combination of the four that represents the
available grip of the whole vehicle.

Figure 1.2 Vehicle g-g diagram

1.3.2 Electronic Point of View

1.3.2.1 Cost

The component cost of the system is made up of ECU, wiring, sensor and
actuator costs. The potential cost saving of the proposed architecture will be as a
result of reducing the size of the wiring harness, which is currently the second most
expensive item in a vehicle, after the engine [6]. The wiring reduction is due to
networking and close proximity between a wheel controller and its sensors and
actuators.

Balanced against this will be the potential costs of the four Wheel Control
ECUs. The processing power, memory requirements and interface specifications of
these are derived by the author to allow a comparison to be made with other

architectures.

Project Introduction

1.3.2.2 Safety Features

In individual wheel brake-by-wire control systems that have been proposed to
date [18], a stated potential benefit is that a specified set of failures of electronics or
mechanical components at one wheel could be compensated for by actions of the
other three Wheel Control ECUS, as all are linked.

Similarly, this fault tolerance could be applied to other faulty cases. For
instance, a deflating tyre could be identified and the load on the tyre redistributed.

Elaborate diagnostic records of sensors and actuators at each corner could be
kept by each processor. The information could be of use in the future for trouble-
predicting functions, to give advanced warning to the driver before a component

actually breaks down [1].
1.4 Methodology

The work will firstly establish the likely electronic content of the dynamic
control systems of a typical near-future vehicle. The electronic systems considered
will be the Anti-lock Braking System (ABS), Suspension Control, and Four-Wheel
Steering (4WS), which are collectively responsible for the vehicle’s dynamics. These
systems are to be considered together in a total of five potential architectures. These
are: Conventional Centralised (Architecture 1), Conventional Centralised with
Limited CAN (Architecture 2), Total Centralised (Architecture 3), and Conventional
Centralised with Functional Integration (Architecture 4), as described in the
following chapter, along with the proposed Distributed Wheel Architecture
(Architecture 5) will be considered as the likely architectures of the future. The same
electronic systems will be arranged into a vehicle model according to each
architecture in turn. These models will form the basis for a study of the feasibility and
characteristics of the architectures described in the objectives above, allowing a

comparison of the potential benefits of each.

Project Introduction

1.5 Thesis Contents

Chapter 2 contains literature survey on the automotive electronic architectures,
mentioned in the thesis, and also the current developments and trends in dynamical
control systems involved, which are ABS, suspension control and 4WS. Also included
in Chapter 2 are current and future states of microcontrollers, which perform all the
system electronic control, and introduction to Controller Area Network (CAN), which
is a widely installed network architecture.

Chapter 3 describes the derivation of the exemplar dynamic control systems,
which are ABS, active suspension and 4WS systems. The simulation using road test
data to examine their functionality is described.

Chapter 4 explains the structures of the five vehicle electronic Architectures,
which are studied and compared in this project.

Chapter 5 includes the technique developed to predict the Electronic Control
Unit (ECU) performance, from software specifications. The comparison between the
predictions and experimental measurements, and the resulting derivation of a
correction factor are explained. The performance prediction of the ECUs of all five
Architectures is described, followed by the specifications of the required
microcontrollers for the control tasks. This completes the architecture feasibility study
on control hardware. The other feasibility study on CAN message delay, associated
with each architecture, and its simulation results are then described.

Chapter 6 contains the wiring complexity and component cost estimation of
the alternative architectures, focusing upon the wiring harness and ECU electronic
contents. The effects of future trends and other factors on costs are also discussed.

Chapter 7 compares the architectures’ characteristics on reliability, from
modelling.

Chapter 8 draws the conclusions on the work and gives suggestions for further

work.

Project Introduction

1.6 References

7.

8.
9.

. Kobayashi K, et al. Diagnostics for vehicle electronics present and future

Proceedings to the 1992 International Congress on Transportation, 1992
Furukawa Y The direction of the future automotive safety technology
Proceedings to the 1992 International Congress on Transportation, 1992

Ohr § Safety and security spearhead changes in automotive electronics
Computer Design, January 1996

Reichart G Driver assistance - premises and promises IMechE
(C498/1/184/95), 1996

Milliken W, et al. Race car vehicle dynamics SAE, 1995

McLaughlin R, et al. A feasibility study of CAN technology in body electronic
control systems IMechE Autotech 95, 1995

Fenton J Focus on networking of on-board vehicle electronic systems
Automotive Engineer, June/July 1996

Schreffler R Wire Harnesses of the Future Automotive Industry, Feb 1997

Inoue Y, et al. Multiplex Systems for Automotive Integrated Control SAE
No0.930002

10. Advanced Vehicle Systems Division, Motorola Semiconductor Products Sector

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

‘By Wire’ Technology Motorola, 2000

van Zanten A, et al. Simulation for the Development of the Bosch-VDC SAE
No.960486

Wallentowitz H Scope for the Integration of Powertrain and Chassis Control
Systems: Traction Control - All-Wheel Drive - Active Suspension SAE
No0.901168

Hurdwell R, et al. Active Suspension and Rear Wheel Steering Make Powerful
Research and Development Tools SAE No0.930266

Sato H, et al. Development of Four Wheel Steering System Using Yaw Rate
Feedback Control SAE No0.911922

Stevens S The Development and Testing of an Integrated Systems
Demonstrator Vehicle IMechE C498/35/157/95, 1996

Fruechte R, et al. Integrated Vehicle Control 39" IEEE Vehicular Technology
Conference, 1989

Van Zanten, et al. Vehicle Dynamic Control Automotive Engineering
International, February 1999

Bannatyne R Electronic Braking Control Developments Automotive
Engineering International, February 1999

Ito H, et al. Controller for Experimental Vehicle Using Multi-Processor
System SAE No. 910086

Hedenetz B, et al. Brake-By-Wire Without Mechanical Backup by Using a
TTP-Communication Network SAE No0.981109

Literature Review

CHAPTER 2

LITERATURE REVIEW

This chapter provides the background to the choice of the individual vehicle
dynamic control systems that are considered in this thesis. Additionally, the
technologies available within the ECU are reviewed, with the aim of identifying the

likely ‘state-of-the-art’ for a near-future ECU.

2.1 Suspension Control

Suspension has a crucial role in ride comfort and handling of a vehicle. Its
functions are to isolate the vehicle body and its components from any irregularities of
the roads, and to keep the tyres in contact with the ground at all time [1]. These,
however, must be done without degrading stability and steering of the vehicle [2].
Ideally, a vehicle body should be level all the time, while suspension and wheels
move vertically according to road irregularities. There are also other functions of the
suspension as follows [3]:

e counteracting longitudinal, lateral forces and also braking and driving torque by
the tyres
e opposing vehicle body roll

* maintaining proper steer and camber attitudes of wheels to road surface

2.1.1 Conventional Passive Suspension System

This type of system includes components that only react to the forces acting on
the suspension, and hence is called passive [4]. The main component is the spring,
which acts to oppose the suspension movement when a vehicle encounters a rough
road surface. The other major element is a damper. The damper’s function is to
smooth out the oscillatory movement of the body/spring system.

The design of conventional suspension has traditionally been a compromise

between ride and handling [5]. For example, a car with a high suspension spring

Literature Review

stiffness tends to have higher stability than the one with lower stiffness, but the ride is
not as smooth.
With advances in technology, electronic-controlled suspensions have been

developed to improve the compromise inherent in conventional systems.

2.1.2 Semi-Active Suspension System

This is a system that still contains passive elements (spring and damper) but
has additional controllable components for dynamic improvement in various driving
situations. The controllable or semi-active elements may be either an air spring or
adaptive damper [4]. Semi-active suspensions require less power and are cheaper than
fully-active ones, but generally give inferior performance [8].

The typical semi-active system consists of several sensors depending on types
of systems and an ECU [6, 7]. The sensors include wheel height sensors, vehicle
speed sensor and a steering angle sensor.

According to the definition of active suspension by Milliken [5], many so-
called active suspension systems, which still contain passive components, will be
classified in this thesis as semi-active. Currently, the following systems would be
categorised as semi-active:

e adaptive damping
e self-levelling
e series active
e parallel active
¢ anti-roll control
Adaptive damping and self-levelling systems are the most commonly implemented
semi-active systems in cars at present [18]. These will now be discussed in more

detail.

2.1.2.1 Adaptive Damping

An example of a system for which published component details and operating
functions are available, is Toyota Electronic Modulated Suspension shown in Figure
2.1 [7]. It was first developed in 1983 and had been through various changes and
improvements up until the publication year of 1991. It sets the damping force to one

of several fixed values, in order to optimise riding comfort and stability according to

Literature Review

the selected ride mode. The block diagram of the system is displayed in Figure 2.2
[7].

Here, the ECU adjusts the damping hardness according to the measured wheel
height together with braking and steering information. The anti-roll function operates
when wheel height and steering angle changes indicate body roll, with the ECU

increasing the damping force to resist the movement.

Throttle position sensor

2 Steering sensor Absorber control switch

TEMS indicator
gpeed sensor

\ e

TDCL
connector
~—
\ Absorber
) control
NS actuator
//"\. .
Wheel stroke Absorber control compinter

sensor

Diagnosis
Absorber control actuator = connector

Figure 2.1 Adaptive damping suspension system layout

Whee! Right tront absorber
stroke sensor control actuator
control actuator
Engine

Throttie ssnsor control
)

Right rear absorber
control actuator

control swilch Indicator

Left rear absorber
control sctustor

Absorber control computer

Diagnosis output

Figure 2.2 Adaptive damping suspension block diagram

The typical system functional block diagram including sensor information is
shown in Figure 2.3 [7].

Figure 2.3 shows the control parameters, which are entirely a combination of
vehicle sensor signals. The throttle data and the stop lamp data are used to adjust the
setting of damping mode to minimise squat and dive, when accelerating and braking
respectively. The steering sensor provides data for the anti-roll control function. In
this particular system, feedback from the wheel stroke sensors is also incorporated
with the above information to further enhance ride and handling. An example is the
anti-dive function. A simple system would react to dive at high speed by increasing

the damping. With the addition of wheel stroke data, this controller will also

10

Literature Review

counteract dive at low speed, by detecting when the front wheel heights are low,
indicating a dive.

The ECU processes these signals, and is capable of producing commands to
the actuators at the interval at least equal to their operational response time of 10-20
ms.

Another system called a shock absorber control system, which was published
in 1985, incorporates acceleration-deceleration sensor to aid vehicle movement data,
and the ultrasonic road sensor to provide road condition data [6,13]. Another variation
of the Toyota adaptive damping system omitted all the sensors, and only requires
force reacted from road surface data, from the 4 piezoelectric sensors on shock

absorbers for adaptive mode selection [6,14].

Base damping force

SPEED e [1 veoww e
SENSOR g o Il s
. .
i —— &
i3 g
STEERING _—
e Ly
STOP LAMP ___{—o §§ %
SWITCH BE
B
THROTTLE L EwE
SENSOR §7—Z —
({HN'&?E";I%NAL) SPEED 3 Control area overlapped

with stroke:

Figure 2.3 Adaptive damping suspension functional block diagram
2.1.2.2 Self Levelling System

This system functions to keep vehicle body height constant above the road
surface, and also allows a low spring constant for ride comfort, regardless of load
conditions [6]. The system is often combined with adaptive dampers [16]. Hence, on
varying driving conditions and road surfaces, the combination of systems can adjust
damping force and spring rate accordingly [6]. Self levelling is described here
separately from adaptive damping because some systems perform only the self
levelling task without damping control [15].

There are currently two implemented systems with published information, one
developed by Rover in early 1990s [15] and the other described in [6] with no
manufacturer information. Both of them use air springs as the self-levelling actuators.

Examples of the system layout and block diagram are shown in Figure 2.4 and 2.5 [6].

11

Literature Review

Door Sensor Height Control Valve

Suspension Control Switch
Rear Height Sensor

jight Control Valve

> Front Height Sensor
‘Front Actvator

Figure 2.4 Self levelling suspension system layout

mode select
switch

stop lamp switch

throttle position
sensor

Jl exhaust valve l
eight control
valves

steering sensor

vehicle speed
sensor

door switch

height sensors

i

Figure 2.5 Self levelling suspension block diagram

This particular system has a combined functions of adaptive damping with the
control of shock absorbers and air springs, and self levelling with 3 ride height level
capability. As illustrated in Figure 2.5, this type of semi-active suspension requires
similar types of sensor to the adaptive damping. The system in Figure 2.4 performs
similar functions to a typical adaptive damping system with an added ability to raise
and lower the vehicle body height to suit ride conditions. To improve ride and

handling, these two functions are frequently combined into one system.

2.1.2.3 Series Active System

This semi-active suspension is sometimes called slow active suspension
system [5,16]. As the name suggests, the system contains a conventional spring in

series with a hydraulic actuator [17]. The actuator controls the ride at low frequencies

Literature Review

and leaves the high frequency actions to the passive element, hence the name slow
active [16].

A typical system control block diagram is as shown in Figure 2.6 [16].

longitudinal G
sensor

lateral G sensor

vertical G sensor hydraulic system

steering angle
sensor

height control
valves

vehicle speed
sensor

com

height sensors

Figure 2.6 Series active suspension block diagram

The system contains a Proportional-Integral-Differential (PID) controller to
correct the wheel height to the target wheel height [16]). PI feed-back vertical
acceleration control is also applied to compensate for the lag of actuator response, for
ride comfort. Finally, longitudinal and lateral acceleration sensors, together with
vehicle speed and steering angle sensors, are used to supply data for the control of
pitch and roll.

This system can attain better ride than adaptive damping with an extra benefit
of being able to keep the vehicle level during cornering, braking and accelerating
[18].

2.1.2.4 Parallel Active System

As the name suggests, the system is characterised by an actuator operating in

parallel with a passive spring as shown in Figure 2.7 [18]

13

Literature Review

sensor

Body

Controller
actuator

b

Unsprung
mass

§ Tyre

Figure 2.7 Parallel Active Suspension

sensor

The system is similar to active suspension but with the addition of passive
springs to support the vehicle mass. The actuators, therefore, have less load to act
upon and hence have a lower power consumption [17]. There is no information on

system ECU, sensors and actuators, or control algorithm found in literature.

2.1.2.5 Anti-roll Control

Most modern cars have an anti-roll bar, usually a torsional spring, connecting
the front wheels. Some cars also have one fitted on the rear wheels. The effect of the
anti-roll bars is realised when the two front or rear wheels move vertically in opposite
directions, which occurs during cornering, causing the body to roll. The bars will react
against this roll. To reduce the vehicle roll, and hence improve ride, when cornering,
an actuator is placed in series with the anti-roll bars. It can exert torque on the bars to
counteract the roll [18]. The result is a better ride. The control block diagram is

presumed to be as shown in Figure 2.8.

lateral G sensor E
steering angle (:
Actuator
sensor °
vehicle speed
sensor

Figure 2.8 Anti-roll System Control Block Diagram
The anti-roll control system has no benefit in a straight line driving. The
logical combination of anti-roll system and another semi-active suspension could

improve ride and handling characteristics closer to those of active suspension with

14

Literature Review

lower cost and power consumption [18].

2.1.3 Active Suspension System

An active system is defined here as a control system which has external power
added to it. The fully active suspension system is totally dependent on the powered
control elements [5]. It exerts forces via the actuators between vehicle body and
wheels irrespective of current dynamics of the vehicle elements [4]. With present
technology, the only practical active suspension system is electro-hydraulic due to the
power, force, and frequency response requirements [5].

Active suspension exists to improve the ride and comfort over the
conventional system. For instance, in a situation when a vehicle with conventional
suspension system runs over a small obstruction on an even road, the wheel spring is
compressed. The result is a higher wheel load and vehicle body rise. A car with active
suspension can detect the wheel tendency to rise and react to adjust the actuator,
maintaining constant wheel load and hence exerting no spring resistance to the
obstruction. Its operation is simply equivalent to lifting the wheels to cross the
obstruction [9].

The general electronic components are similar to those of the semi-active
systems, with a centralised ECU and a number of sensors. There are several active
suspension systems on the market. They are described by [4-6, 10-12]. One of the
latest system layouts, and input and output parameters are as shown in Figure 2.9 and

2.10 respectively [12].

15

Literature Review

Main accumulator Pressure control valve
\\ /
Contxoller \\ s vertical
- T Vo AN accelerometer
Actuator X -
/// e
/"/
‘‘‘‘‘ g Ko A
vertical accelerometer e / .

<

\\ (/.'\

Pressure control valve a, A7
s "ol
Main accumulator A

Vehicle height K g ’ V. ~
stnsot e /(\\ £ QY A ’ ‘ /

Lateral accelerometer

Longitudmal accelerometex
Pump accumulator

Actuator

0il
il i Regervoir tank

Multivalve unit 0il coolerx

Figure 2.9 Active suspension system layout

The important vehicle ride information is provided by accelerometers that

detect the vehicle acceleration in three axes, longitudinal, lateral and vertical. This

information is utilised in the system and shown in the acceleration control block

diagram of Figure 2.11. Its control details are described in Chapter 3.

The ECU employed in this active suspension system is capable of completing

a computation cycle within several milliseconds. Such high response speed is required

to suppress transient roll motion. Hence a similar update rate is required for the sensor

signals.
Longi tudinal Pressure control,
Acceleromatex [] (2l ghe-tront)
Lateral Pressure control
..... 4
accelerometers . \ﬁ%‘f"{_ front) |
Vertical 7 Prossure Control
) — edvalve
accelerometers iright-rear)
S T
Engine rpm Prfissure control
X - valye
signal ™ (fe¥t-rear)
Vehicle speed
sensor
Vehicle height Variable
sensoy . " capacity pump
Vehicle height Control Flow control
| selector switch| |circuit valve
et S
Brake
sviton T | | Fan motox
Doox switch —
P
s:;ti;:g brake — —=i Fail-gafe valve
Sl S
. Warming
Pressur b e T
¢ owiteh " indicator
Thermistor —_—
0il Tever
switch "

Figure 2.10 Active suspension system input and output signals

16

Literature Review

i Right
Longitudinal hd _
accelerometer ~front]

Lateral N

accelerometer;

Jertical b N,

accelerometer

(at three

wheels)

Vehicle Judgment |)
height sensox circuit

(at all four
wheels)

Figure 2.11 Acceleration control block diagram of active suspension

2.1.4 Suspension System Electronic Control Units

8 and 16 bit microcontrollers have been employed in suspension system ECUs.
The former is found in a Rover self levelling system [15], while two of the latter are
found in a more complex active suspension system [6]. One microcontroller handles
data from accelerometers and issues actuator control commands, with other data, such
as vehicle height and speed, processed and supplied by the other microcontroller. For
system safety, each microcontroller can signal the failsafe circuit should a fault occur.

There is no information on microcontroller type used in other kinds of
suspension systems. Their microcontrollers should, however, fall into either of the bit
categories above, due to their lower complexity than the active suspension. On the
other hand, the most complex suspension control algorithms may require a state of the
art microcontroller, according to [18]. Hence it can be expected that later generations

of active suspension will require a 32 bit microcontroller.

2.1.5 Current and Trend in Suspension System Research

There are currently several areas of research into suspension system. Much of
the academic research goes into novel suspension control algorithms [18,98-100].
Other research is directed towards the combined control of suspension, mostly active,
and other dynamic control systems, cheaper actuators and power sources [9-
10,18,101-102]. The latter two are viewed as an important challenge particularly to

active suspension development, since they are the most expensive part of the system

17

Literature Review

and active suspension consumes significantly higher amount of energy than other
types [18,97].

From the above discussion on types of suspension, it can be seen that active
suspension offers the best performance. However, its high price, weight and power
consumption prevent it from appearing in large volume. [97] suggests that the likely
system, that could be mass produced and have performance close to that of active
suspension, would be a combination of a few subsystems. The suggested combination
consists of self levelling system, adaptive damping and anti-roll control. The three
systems would provide a height control for payload compensation, ride control for
different driving situation, and level cornering, respectively. However, despite in
small volume, active suspension has been implemented on vehicles [9,11]. This
proves its practicality. If there is success on its actuators and power sources research
mentioned above, it could yet emerge into a higher volume car market. For these
reasons, the active suspension has been chosen for the later system simulation and

modelling work.

2.2 Four Wheel Steering (4WS)

Many 4WS systems have two basic operations [6]. Firstly to turn the rear
Wwheels through relatively small angles in the same direction as the front wheels at
high speed to reduce turning motion, and hence increase stability. Some cheaper
systems only contain this function [6,22]. Secondly to steer the rear wheels in the
opposite direction to the front wheels at low and medium speeds to decrease turning
radius and increase steering response respectively. The 4WS steering concept can be

illustrated, by the steering characteristic diagram of a typical system in Figure 2.12

[6].

.L’
!
Same eide
——
ratio
front and reer | 35km/h = venide
Oppoatte skig

Figure 2.12 A typical front and rear wheel steering characteristic of a 4WS

18

Literature Review

2.2.1 Types of 4WS Systems

4WS systems can be classified according to their mechanism as follows [6]:

e fully mechanical with steering shaft connecting front and rear wheel steering
gearboxes

e clectronic-hydraulic which applies hydraulic power to steer both the front and rear
wheels. The example of such system is described in [19,31].

e electronic-hydraulic-mechanical systems. One particular system has a mechanical-
hydraulic steering mechanism when steering rear wheels in the opposite to the
front wheels, and applies electronic-hydraulic type when steering the rear wheels
in the same direction as the front wheels [6]. The two mechanisms are determined
and controlled by the ECU. The system is illustrated in [20].

e electronic-electric control systems. As the name suggests, the steering of this type
of system is powered by electric motor and controlled by an ECU.

The control algorithms running within these ECUs are discussed in the next

section.

2.2.2 4WS Control Algorithms

Every type of four wheel steering system described above (except the fully
mechanical ones), is controlled by a central ECU. The ECU processes information
from sensors to determine the rear wheel steering angles and issues commands to the
front and rear wheel actuators. The control algorithm running on the 4WS ECU can be
of either open or closed loop type.

The open loop control algorithm applied is based on a predetermined
relationship between vehicle speed, front wheel angle, lateral acceleration and
steering wheel rotational velocity.

An example of a rear wheel steering characteristic of a simple system,
installed on a Nissan car in 1986 is as shown in Figure 2.13 [6]. This 4WS system is
intended to improve stability at high speed driving only, not to reduce the turning

radius at low speed. The rear steering angle range is thus small. In this algorithm, only

19

Literature Review

vehicle speed and lateral acceleration are used in determining the rear steering angle.

s 1G
L B et e d i A A B R]———- - —
:\ r
@ /
g ! 0.5G
o
£
]
2
3
@«
0

120

Vehicle speed (km/h)

Figure 2.13 Rear wheel steering characteristics of a simple 4WS system
Recent 4WS systems use a more complicated closed loop control, using yaw
rate feedback to improve stability [18]. A proportional control algorithm using
steering angle, vehicle speed and yaw rate sensors is shown in Figure 2.14 [28]. The

system configuration is displayed in Figure 2.15 [20].

& :Rear wheel steering sagle

8 8¢ :Front whee! steering.angle
ruurlu 1 .
sngle seasor | , e = 6+ :Front wheel steerlng speed
Front whes| steering angle V :Vehicle speed

‘D
L [Ki |propositionst

Ki(V) o, :Yorrate
(1
v
Yehicle g
speed seasor L*

1, .
N Stearing spesd paln Ka(B: . V) {Ma_u_'
v +

[]

L‘ Kl 1

: H !]

LT -
—

Taw rate
™ sensor —]
W, Yaw rale proportives] ,
Ks niok,(V)
-

-

Figure 2.14 Proportional control block diagram of a 4WS system

20

Literature Review

0i1 pump Yan rate sensor

Flox divider Steering angle sensor

Reservior tank Wheel speed sensors

Front unit (bVehicle speed sensor
able Active 4WS computer
Step motor (9Revarse switch
Control valve (IDABS computer

Piston

Return spring
{PRear steering actuator

Figure 2.15 4WS with yaw rate feedback control system diagram

The control equation (2.1) is shown below [20].

0 =K {V).6 +K,(.V)K,V).0o, (2.1)
9} : front wheel steering angle velocity
Or : rear wheel steering angle
of : front wheel steering angle
\% : vehicle speed
Wy : yaw rate
K, : opposite direction steering angle proportional gain
K 2(0} V) : tuning gain of steering velocity
K3(V) : yaw rate proportional gain

The first term represents the steering angle proportional gain. It is negative at
low speed, so that the rear wheels are steered in the opposite direction to the front
ones at low speed. This is for turning radius reduction. It is set to zero at high speed
driving. The second term is the yaw rate proportional term, which becomes dominant
at high speed. The two gains are positive, indicating the front and rear wheels are
turned in the same direction. The rear wheels are steered to reduce yaw rate that

occurs due to cross wind or road irregularity.

2.2.3 4WS Electronic Control Units

Both 8 bit [19] and 16 bit [29-30] microcontrollers have been employed in
different 4WS ECUs. These systems have similar number of system sensor inputs,
though one is an experimental system [30], where a microcontroller with spare
capacity may be selected to allow for subsequent program changes. In one case, two

microcontrollers are fitted as a safety precaution [29]. The two processors monitor

21

Literature Review

each other’s control operations. If a discrepancy is detected, each is capable of

switching the system to a safe state [29]. Figure 2.16 shows the ECU structure

diagram.
o Scheme ECU
K1.30 p
KLIS cass __"———w‘:“g
palt]
KLaY le‘ 8V-Btabi m 105Me
0
L | !
anslogus cl!nnh A condt- :) A0 ’::"w:a:. pvi
l——) :,'aon'n' + Poriphery [pva
‘ houfle .
AT] K) f
t——— :dﬂt:’ @ 1 o TVT
i 1l 3
over | SR,
__j./'\ conti- .)-—l wor | ‘ vav
‘l’,!oninng MO ?
reults + Poriphery
A ' C:> peohll e I o snv

e
Figure 2.16 A 4WS ECU structure

2.2.4 Status and Future Trend of 4WS

Work is currently underway to introduce new control concepts to further
improve system handling characteristics [6]. In the existing systems described above,
the control is based on a predetermined relationship between vehicle speed, front
wheel angle, lateral acceleration and steering wheel velocity. Newer concepts include
control algorithms based on vehicle side slip angle and model vehicle behaviour. The
former is to keep the side slip, which is the difference between the vehicle heading
direction and the moving direction of the vehicle centre of gravity, close to zero for
ease of driver’s control. The latter acts to try and match vehicle behaviour to the
desirable vehicle behaviour model, based on driver’s steering operations. This new
concept may also have an effect on increased system complexity.

Unlike ABS, the 4WS system has not been widely installed in modern cars,
since its first introduction to the production cars in 1985. This is due to the extra cost
on a vehicle, and the fact that its effect can only be realised in particular driving
conditions such as obstacle avoidance [23]. Under normal driving, the effect of 4WS
is almost equal to ordinary front wheel steering [23]. However, the combined effect of
4WS, suspension and ABS is believed to greatly enhance the performance and

stability of a vehicle [21,24,25]. It is also considered that this combination of systems

22

Literature Review

forms part of the Advanced Vehicle Control System (AVCS), which is a research
topic for future vehicle dynamic control systems [26,27]. Furthermore, an attempt to
introduce cheaper version of 4WS aiming for higher market acceptance is also
underway [22]. For the above reasons, the inclusion of 4WS in this work is considered

justifiable.

2.3 Electronics in Braking and Anti-lock Braking
Systems (ABS)

The braking system is an indispensable part of a vehicle, as it is a safety-
related system [35]. For this reason, there has been a large amount of research into the
area. To improve the performance in various driving situations, electronic control has
been introduced to prevent wheel locking, distribute braking force amongst wheels
depending on load and improve the driver’s response to an emergency stop situation.
This has proved so beneficial that a large proportion of modern cars contain
electronics as part of their braking systems. Many future developments, such as a fully
brake-by-wire system will only be made possible by the use of electronics.

This report will concentrate upon an Anti-lock Braking System (ABS). This is
because it is now established and widely installed in modern cars and expected to be a
standard fitting in future vehicles, with its benefits in terms of improved braking

performance to drivers proven and recognised [32-34].

The objectives of a typical ABS system are listed below [6,35]:
e keeping a vehicle stable during braking
e preventing a controlled wheel from locking

e the loss of ABS must not affect the safety of standard braking systems

Some ABS systems are also designed with the following objectives [35]:
e maintaining steerability during heavy braking
¢ optimally utilising tyre-road friction in order to minimise braking distance
¢ Dbeing able to quickly adapt to tyre-road friction changes
e minimise yaw effect during braking on split-coefficient road surface

e stable braking while cornering

23

Literature Review

2.3.1 Types of ABS

ABS can be categorised into three groups according to the number of braking

circuits (or channels) that its hydraulic system regulates [36].

2.3.1.1 Two-channel ABS

This is the simplest and cheapest type of ABS. A front and its diagonal rear
wheel are controlled together in a pair. Each front wheel is monitored for a sign of
lock up. When front wheel lock up is detected, the brake pressure of both wheels in a
pair are released simultaneously. In this ABS system, only two front wheel speed
sensors are needed. The amount of control task is less, and hence its lower cost. The
performance is inferior to the other two types of ABS. It is mostly installed in small

cars.

2.3.1.2 Three-channel ABS

As the name suggests, there are three control targets in this system. The two
front wheels are controlled individually, while the two rear wheels are controlled in a
pair. A popular control concept for rear wheels is ‘select low’, which provides equal
brake force to both rear wheels at all time. The amount of brake force given depends
on the status of a rear wheel with lower coefficient of friction. Despite the higher cost
then the previous system, its performance is considerably superior [37]. Three-

channel ABS is widely employed in medium and large cars.

2.3.1.3 Four-channel ABS

This is the most costly and complicated ABS of the three types. All four
wheels are monitored and controlled individually. As a result, the available tyre-road
friction of each wheel is optimally utilised and hence the shortest braking distance is

obtained.

2.3.2 ABS Control Algorithms

Having been in the market for more than twenty years, there has been a large
amount of research into ABS control algorithms. Different control methods such as

deceleration threshold, proportional-integral control and fuzzy logic are developed

24

Literature Review

[38-41]. However, only the former method is focused upon here, since most ABS
systems in the market employ this deceleration and wheel slip threshold algorithm
[40].

2.3.2.1 Wheel Slip

When a vehicle is accelerating or braking, tyres deform which causes the
difference between a circumferential wheel speed and a vehicle velocity. The wheel is
said to ‘slip’. As the result, a frictional force between tyre and road surface is
generated.

Slip can hence be defied in equation 2.2.

A=(Vy-V)/V, 2.2)
A - wheel slip
Vv, - vehicle velocity
V, - circumferential wheel speed

Figure 2.17 shows a typical relationship between slip and tyre-road coefficient

of friction L.

Tyre-Road
Coefficient of
fricti
riction () Stable Unstable
0 T
Optimum slip 1Wheel Slip (A)

Figure 2.17 Relationship between slip and tyre-road coefficient of friction

As seen from the graph, friction initially builds up to its peak value as the slip
grows. This is a stable area, where braking effort and tyre-road adhesion are balanced.
Here the higher braking effort asserted, the more tyre-road frictional torque generated
from the increase tyre-road friction, hence greater braking effect. Once the graph
moves into a higher slip area beyond the peak tyre-road coefficient of friction, a wheel
begins to lock and the balance between braking effort and friction is lost, hence less
braking effect. This is an unstable area. At its maximum slip value of 1.0, the wheel is

completely locked.

25

Literature Review

A basic control objective of an ABS is to prevent an excessive wheel slip
beyond the peak friction coefficient into the unstable area. Its control range is

designated by a shaded part of the line.

2.3.2.2 Deceleration Threshold Control

This control method is applied in ABS systems by Bosch which is widely
popular in ABS market {36]. The basic control procedure is that the system
continuously monitored a target wheel to see if wheel deceleration and wheel slip
values exceed set thresholds. When both thresholds are surpassed, ABS will activate
to avert wheel lock.

A simplified model of an ABS system is as shown in Figure 2.18 [42].

Hydraulic _‘:‘:]

modulator

Wheel speed
sensor

ecu [*

L L]

Figure 2.18 Simplified model of ABS electronic control applied to some three and
four-channel systems

From the wheel speed sensors, the ECU can calculate the following control
variables [43]:

vehicle reference speed obtained from a pair of diagonal wheels such as left

front and right rear wheels. During braking, its value is

generated based on an interpolation of the speed at the

beginning of braking process.

wheel acceleration calculated directly as a differentiation from the wheel
speed.
wheel slip cannot be directly measured but its representative value

can be calculated based on the reference speed.

Typical ABS control cycles on high tyre-road friction coefficient road can be
as shown in Figure 2.19 [42].

26

Literature Review

ve Vehicle speed, vre Reference spead, ve Péripheral wheel speed, A1 Slip switching threshold,
+A,+t Thresholds of peripheral wheel acceleration, -« Threshold of peripheral wheel deceleration,
-dAp,y Brake-pressure decrease.

N
- I — \/\v/
zT g t_:,,,., 5 -:-7"" ;_

i

Timg § ——

Figure 2.19 Typical ABS control cycles on high tyre-road friction coefficient road
The explanations for each control phase are described as follows:

Phasel the vehicle is under braking, wheel and vehicle speeds reduce. At the
end of the phase, wheel deceleration reaches its threshold.

Phase2 wheel deceleration threshold is exceeded, ABS holds brake pressure
constant. At the end of the phase, wheel speed approaches slip limit.

Phase3 both wheel deceleration and slip exceed their limits. ABS decreases
brake pressure, to let wheel gain speed until wheel acceleration goes
above threshold.

Phase4 once the wheel accelerates above threshold, brake pressure is
maintained. The acceleration continues

Phase5 wheel acceleration is beyond the upper limit, which signals ABS to
increase brake pressure

Phase6 wheel acceleration is now below the upper limit. ABS maintains
constant brake pressure, as wheel acceleration is above +a threshold

indicating that it is still slightly under-braked.

Phase7 ABS builds up brake pressure until wheel deceleration threshold is
exceeded

Phase8 the cycle repeats by reducing brake pressure irrespective of the state of
wheel slip

27

Literature Review

2.3.3 ABS Electronic Control Units

An example of a simplified ABS ECU is displayed in Figure 2.20 [6,37,42].

Solenoid
valves

Wheel speed
signals

—_——p;

Microcontraller

' Output
Circuit

input
Circuit

Optional second
microcontroller

Lbdd

Figure 2.20 Simplified model of an ABS ECU

The input circuit contains a filter and an amplifier. Its functions are filtering
input noise, amplifying the input signal, and converting it into a form ready to be
processed by a microcontroller.

The controller is a heart of all the control. It executes the control algorithm, by
calculating controlled variables from wheel speed signals, and processing them
according to the control rules. It finally sends command signals to drive circuits and
warning lamp.

The output circuit receives control signals. It then regulates and amplifies

current for driving the brake solenoids.

2.3.3.1 Microcontrollers for ABS

There is a wide variety of microcontrollers used in ABS systems, dependent
on the system complexity. Both 8 and 16 bit microcontrollers can be seen to
satisfactorily perform the control tasks of a modern practical ABS [36,44-48]. [36]
suggests that an 8 bit microcontroller is a cost-effective choice for a simple two-
channel ABS, whereas a more complex four-channel system demands a higher
performance 16 bit microcontroller. Due to the real time nature of the tasks, the
microcontroller needs to be able to execute them reliably within a fixed interval. It has
to calculate wheel speed at the typical cycle speed of Sms [36,46]. Some additional
hardware such as timer capture input can help a 8 bit microcontroller achieve this
target [44].

28

Literature Review

Some ABS systems employ a combination of microcontrollers in their ECUs
to meet performance and cost targets. An example is the application of three 8 bit
microcontrollers, to carry out distributed calculation tasks of a combined ABS and
traction ECU [45]. Another system employs two microcontrollers, each being
responsible for the control of two channels of a four-channel ABS system [42].

Another important reason of using extra microcontrollers in an ABS system is
for safety purposes. One system has a high performance 16 bit microcontroller for its
control tasks, while engaging a medium performance 8 bit microcontroller as a safety
computer to check the correctness and timing of commands [47]. The idea of having a
second identical microcontroller to perform duplicated control calculations is also
popular [37,49]. In these systems, both microcontrollers receive the same wheel speed
inputs and execute the same control algorithm to obtain output signals. The pair
monitors each other’s output signals. If the two are different, indicating an error, the

ABS is shut down and a warning lamp is lit to warn the driver [49].

2.3.4 Current Research on ABS

The current research on ABS can be summarised as having the following
objectives [50]:
¢ to improve system and assembly design technique to reduce cost, so the ABS is
more suitable for medium and low price vehicles. An example of area which
needs addressing is the amount of electrical connectors used for wiring, which
has an increasing percentage of overall system costs [50].
* to improve the utilisation of braking traction available on a wider range of road
conditions, to increase the system performance
* to integrate the system with others, such as traction control and electronic brake
distribution, to improve vehicle handling characteristics
* to enhance communication with the driver and compensate for driver incapability,
for example, automatic braking to avoid a crash due to slow human reaction.
Having gone through the reviews of the three dynamic control systems, the

microcontroller, which is the central part of those systems, will be reviewed.

29

Literature Review

2.4 Microcontrollers

2.4.1 Introduction

The microcontroller is a specialised microprocessor modified to suit it to
control applications [51]. It is employed in various specific embedded control
applications, such as in electronic appliances, robot arms, vehicle electronic circuits,
etc. Due to the variety of its applications, there is a wide range of peripheral
components that can be included in the microcontroller to suit each specific
application, such as Analogue-to-Digital Converter (ADC). Also there is a large
number of possible specifications for a microcontroller for each control task. These
specifications such as memory size, number of Input/Output (I/O) ports, processor
speed, and data word length (bits) are the basis for a designer to select a

microcontroller for an application.

2.4.1.1 Difference Between Microprocessor and Microcontroller

The two devices are generally used in different applications. The
microprocessor is used in computer applications, whereas the microcontroller is
applied in control and instrumentation. Their functional requirements thus differ.

The microcontroller may have to monitor a large number of input sensors, and
send output signals to various actuators at the same time. Therefore, it usually
possesses more input/output (I/O) ports. Its design objective is also towards high
performance and speed in I/O operation, rather than calculation-intensive applications.
Control programs are usually smaller than computation programs, and less memory
space is needed. Hence a smaller Read Only Memory (ROM) section, where control
program is stored, is contained in the microcontroller, compared to the larger size in
microprocessor. Microcontrollers, therefore, mostly have built-in memory which is
sufficient to use in their standalone control applications.

For the same reason, a microcontroller also incorporates a timer and some
necessary components for a specific control task [56]. Examples of such functions are
the analogue to digital (A/D) converter, digital to analogue (D/A) converter and

multiplexer. Its clock speed is also generally slower than that of the equivalent

MiCroprocessor.

30

Literature Review

Due to the severe environment in some embedded control applications, such as
in automotive use, microcontrollers are designed to be able to withstand higher
operating temperature than microprocessors, of which the applications are mostly in

an office environment.

2.4.2 Architectures

The standard architecture of a microcontroller is as shown in Figure 2.21 [6].

Microcontroller

CPU i
s o €= | ROM
Analoguef . . .
9 Control | :
ey T unit @ | RAM
Regis
ters
Digital e ;
SI:—{ignals Input ALU i
/ cirzuit T . Output Control
e o 7| circuit signals

Figure 2.21 Microcontroller simple block diagram

A microcontroller receives input signals from an external source via ADC and
digital input circuits. During operation, the microcontroller takes commands or
instructions from a control program stored in ROM.

The control unit, as the name suggests, controls the whole operation of the
microprocessor according to the control program by directing other parts of the
microcontroller. It controls data access from memory and tells the Arithmetic Logic
Unit (ALU) to perform specified logic and arithmetic operations.

The microcontroller also contains different kinds of registers [5S1]. The general
purpose ones are:
® program counter which stores the address of the next instruction in the memory, to
be retrieved.
instruction register which keeps the instruction code, that is next to be executed.

accumulator which contains the operand or data, to be performed arithmetic or

logic operation.

31

Literature Review

e address register which contains the memory address of data to be retrieved or
stored.

Additionally, specialist registers may be used such as reset source register
which indicates the sources of the latest microcontroller reset [103], and time base
counter which increments its content at a variably set frequency to provide time base
for a program [104].

There are, however, two alternative ways of arranging memory in a
microcontroller, as the results of two different designs from Princeton and Harvard, as

described in the following section.

2.4.2.1 Princeton and Harvard Architectures

The Princeton architecture, which is better known as Von Neumann,
comprises a single memory space for all control program as well as data variables.
The memory area is accessed by the control unit via memory interface unit. The
Harvard architecture, on the other hand, possesses separate storage areas for program,
variable Random Access Memory (RAM) and stack.

The Princeton architecture is simpler to design due to its single memory and is
more flexible in developing a software, whereas the Harvard architecture tends to
require fewer clock cycles to execute an instruction code [52]. The two most popular
8-bit microcontrollers, Intel 8051 and Motorola 68HCOS5, employ different
architectures. The former is based on Harvard, while the latter applies Princeton
architecture. However, a physically larger and more complex Harvard architecture is
the architecture for most modern high capability microcontrollers because of its
powerful support for parallel fetching of data and instructions [67].

In terms of microcontroller instruction sets, microcontrollers can be divided
into Complex Instruction Set Computer (CISC) and Reduced Instruction Set
Computer (RISC).

2.4.2.2 CISC and RISC

The two terms are not clearly distinguished and some microcontrollers have
characteristics in between the two. The majority of microcontrollers are CISC, which
tend to have a large number of instruction sets, some of which perform variation of

the same operation e.g. load data directly, load data by indirect addressing. The

32

Literature Review

concept of RISC is to have fewer numbers of simple instruction sets, and leave more
complex operations software design to users. The RISC concept is a microcontroller
designed to perform all instructions in single clock cycles, though this is not the case
for some RISC devices [60]. Another difference is that the RISC processor does not
have microcode memory, which acts as a decoder for software instructions in CISC.
RISC instructions are fed directly to a logic device, which generates signals for a
control unit to execute the instructions. This results in more complex chip design but
the omission of microcode memory enables smaller silicon size and generally faster
speed [60].

The performance of the two architectures are program dependent and,
therefore, one cannot be judged to be better than the other in all applications. The
current design trend is towards RISC [53]. This trend also applies in the automotive
industry [60]. This is especially true in the application of powerful 32-bit RISC

microcontrollers used in powertrain control {57,60].

2.4.2.3 Memory

Microcontrollers can use internal or external memories. Because of their
generally severe operating environments, both types of memories are served by
compact and temperature tolerant semiconductor memory devices.

These can then be divided into two classes [54]: read only memory (ROM) for
non-volatile program storage, and read/write memory (RWM) or a more common
term of Random Access Memory (RAM) generally for variable storage.

The established types of memory in automotive systems are ROM, Erasable
and Programmable ROM (EPROM) and flash memory, for program storage [70].
RAM is used for stack and variable storage, while byte erasable EEPROM
(Electrically Erasable and Programmable ROM) is installed with calibration and
security data [70].

Flash memory is sometimes called flash EEPROM due to the similarity to
EEPROM in a way that it can be electronically erased and programmed. The two
hames are interchangeable as their definitions are still confusing [52]. One source says
they differ in programming mechanism [6], whereas another suggests that EEPROM
¢an be partly erased while flash content can only be deleted in bulk [59,60]. Flash and

EEPROM offer the useful opportunity for an on board programming and easy

33

Literature Review

aftersale software update and revision. Now flash memory is becoming less costly and
hence expected to ultimately replace ROM as the program memory storage [59,70].

There is currently limitation on the amount of program memory available on a
microcontroller, due to its relatively large silicon space required. A Motorola
68HC916Y5 microcontroller with 164 Kbytes of flash ROM, which is among the
largest embedded memory size, has half of its entire space occupied by memory
[111]. The chip space corresponds to its cost, so this emphasises the need for good
system design to minimise memory usage and hence its production cost [112].

RAM requires 10-15 times more space and is 10-15 times more expensive per
byte than ROM [112]. However, less RAM is generally required for embedded
control applications than ROM. The estimate RAM usage has been given as 12-20
times and 32 times less than ROM by [113] and [70], respectively. Modern

automotive microcontrollers contain up to 8 Kbytes of RAM [114].

2.4.2.4 Processor Speed

The speed of a processor, which implies an ability to perform control tasks or
information handling, depends on many factors.

The number of clock cycles required to perform an operation also directly
affects the speed of the microprocessor. With the same clock frequency, a
microprocessor, which requires 4 clock cycles to perform a specific operation will be
20% faster than the one, which needs 5 clock cycles. Its range of instructions also has
an effect, for examples, a microcontroller without division instruction generally needs
a long and repetitive program to divide numbers, and hence taking relatively long
time to perform this particular task.

Modern microprocessors have master clock speed as high as 1.5 GHz [69].
Most of them, nonetheless, require several clock cycles to execute one operation.
Even the fast model such as Motorola 68040 still has an average of 1.25 cycles per
Operation [55]. Unlike, microprocessors, Microcontrollers run at a much lower
Operating speed, with some fastest devices operating at 40 MHz [67]. This is mainly
due to the heat, ElectroMagnetic Interference (EMI), and power consumption
constraints.

Microprocessor speed can also be slowed down by multiplexed address or data

bus, as well as the input/output (I/O) operation with external devices.

34

Literature Review

Designers also need to take power consumption, heat, and EMI into
consideration, as a vehicle is a tight space, with high concentration of electronics and
of limited power supply environment. It is generally accepted that higher
microcontroller operating speed implies higher heat generation, power consumption
and also EMI. The use of minimum clock speeds possible is recommended in system

design practice [68].
2.4.2.5 Interrupts

The interrupt is an essential part of real-time control, to allow interaction with
external signals which need urgent action. Wheel speed and engine speed are
examples of signals that are usually handled by interrupts. In order to service an
interrupt, the microcontroller stops executing current program and performs the pre-
programmed interrupt tasks. Most modern microcontrollers have a number of
interrupt levels, associated with the sources of interrupts, for instance Input Capture
ports or CAN port [63-65]. In case more than one interrupt occurring at the same time,
the interrupt with higher priority will get serviced first. Some advanced
microcontrollers also contain hardware dedicated for interrupt handling, which is
capable of saving register data, managing A/D conversions and generating Pulse
Width Modulation (PWM) signals. This hardware can execute an interrupt faster than
the controller CPU itself [63].

2.4.2.6 Timers

Timers are also essential for real-time operation of a microcontroller.
Applications of timers, together with other devices such as High Speed I/O (HSIO),
include operation monitoring, output compare, input capture and pulse accumulation.

Operation monitoring is carried out by a watchdog timer, which continuously
counts up or down. If it is not reset by the program code before the count reaches a
certain set value, a hardware reset signal is generated to re-start the microcontroller.
This is to prevent ECU software from getting stuck in an infinite loop.

Output compare is applicable to generating output signals such as square
waves, or Pulse Width Modulation (PWM) output, which require precise period or
duty cycle provided by timers. This function of timers also includes time delays

generation without CPU burden.

35

Literature Review

The Input capture function is done by sensing transitions of an input signal and
recording their times. This enables a microcontroller to measure the pulse width of an
input signal. A wheel speed signal is captured and its frequency, which indicates
wheel speed, is measured in this manner.

Pulse accumulation involves the counting of the number of times an event
such as input rising edges occurs.

Modern microcontrollers now contain several timers to cope with intensive
real-time control nature of automotive applications [63-66]. Hardware peripherals to
help ease CPU burden in performing aforementioned functions are also sometimes
included. Dedicated controllers for timer related operations, which effectively remove
CPU overhead on timer control, are also introduced on some recent versions of

microcontrollers [63,66].

2.4.2.7 Inputs/Outputs (I/0)

I/O is critical to the operation of a microcontroller, as its tasks require frequent
contact with external devices. High speed I/O, low speed I/O and serial I/O are the
three types of I/O available in modern microcontrollers. Some are capable of
configuring their I/O ports to switch between these functions [6].

High Speed I/O (HSIO) is interrupt driven, and its functions are often
associated with timers in input capture and output signal generation. These functions
are described in the previous section.

Low Speed /O (LSIO) is a means of parallel data transmission between
external devices and the microcontroller. Instead of interrupt driven control, LSIO
data reception and transmission are manually control via a dedicated register, by the
user program.

Serial /O is developed for data transfer with minimum microcontroller pin
requirement. As the name suggests, data is transferred bit by bit i.e. serially through a
single medium. The data transmission can be either synchronous or asynchronous. A
synchronous transmission requires clock signal link between the microcontroller and a
communicating device, so that each bit of data is sent on each clock transition.
Despite several variations, asynchronous transmission includes sending a start and end

bit before and after the data is transmitted, respectively, to notify the receiver.

36

Literature Review

As mentioned earlier, modern microcontrollers contain dedicated auxiliary
processors to perform I/O related to interrupts and timers [63,65]. This is to help free
more of the main CPU time. Some peripheral pins of later microcontrollers can also

be configured to be employed in I/O task [66].

2.4.2.8 Analogue-to-Digital Converter (ADC)

ADC is included in a microcontroller to convert analogue input signals into
digital forms for control use. The most popular integrated ADC are of the Successive
Approximation type, due to its best compromise between accuracy, conversion speed,
and chip space requirements. The method is to compare the input signal with a series
of analogue reference voltages until the closest match is found. The reference voltage
is adjusted by the factor of 2 for each test. Starting with the voltage half of the
conversion range, if the input is larger or smaller than the mid range voltage, the
reference voltage set for the next test will be % or % of the conversion voltage range,
respectively. The process continues until the closest match reference voltage is found.
For a 8-bit resolution conversion, a maximum of 8 comparisons are required to
complete the conversion. Current microcontrollers contain 8, 10 or 12 bit ADC [105].

In order to handle multiple analogue inputs with a single ADC, it is usual for

the microcontroller to multiplex up to 16 channels of analogue input to a single ADC.

2.4.3 Microcontroller Trends in Automotive Electronics

The trend of employing more microcontrollers in cars is prominent, as shown
by the prediction in Figure 2.22 [70]. The prediction agrees with a number of
predicted drastic rises of electronic costs and cost percentage to overall vehicle costs,
by authors in semiconductor and automotive industries [84,106-110]. This is due to
the number of new electronic control systems which have been anticipated in future

vehicles, such as satellite navigation and crash avoidance systems.

37

Literature Review

o B R e st ;
: | 105
g 100 /
c / g
8 i
© 80 l
@ / | Luxury
E ; e
g = Mid-range
2 I HEsene Low-end
€ — - 45
g 40 s ;
2 S |
© - — — -’26 |
.g 20 AR R R . T T TRV T
s Do arle w mwwt At e SIERCS R fPatae sl aewie
0 ']
1998 2000 2002

Year of manufacture

Figure 2.22 Microcontroller implementation growth in modern vehicles

There is also a trend of applying more powerful microcontrollers to existing
systems, as automotive electronic control tasks become more complicated, leading to
16 bit microcontrollers appearing in place of the most common 8 bit devices [58].

The other reason for using more powerful microcontrollers is the more
advanced diagnostic requirements now appearing, due to stricter regulations and
higher reliability demands from customers. Diagnostic tasks are believed to take as
much as 50% of microcontroller performance in some applications [61] and can also
occupy the same ratio of program code [62].

The widespread adoption of networking in vehicles also yields the need for
microcontrollers with networking capability e.g. the ones with Controller Area
Network (CAN) interfaces. These types of microcontrollers are now widespread in the

market, and will be discussed further in the following section.

2.5 Multiplexing and Controller Area Networks (CAN)

2.5.1 Multiplexing

Multiplexing is a method of combining signals on a single circuit, of which the
benefits to a vehicle are to minimise cost and improve reliability of wiring. In the past,
each of the electrical signals sent within a vehicle is via an individual wire link. As the
electronics in the vehicle becomes more and more complex, this gives rise to
increased numbers of sensors and actuators, and also connections and wiring harness

required. Furthermore, the wiring harness is the most common source of failure in

Literature Review

automotive electronics [71]. It also significantly contributes to the overall cost of a
vehicle. The car manufacturers’ approach to counter these problems is multiplexing.
By having a number of signals sent through a common wire link shared by a group of
nodes called network, these improvements in reliability and cost are achieved.
Multiplexing has gained popularity in automotive industry in recent years,
shown by the large number of microcontrollers with integrated multiplexing
hardware, such as Controller Area Network (CAN) offered in the market [82,83].
Multiplexing areas of applications have been defined by the Society of Automotive
Engineer (SAE) Vehicle Network for Multiplexing and Data Communications
Committee. According to the committee, three classes of vehicle data communication

networks are defined as [6,72]:

Class A. A potential application of multiplexing by transferring a group of
signals through a common signal bus between nodes, that would have
been communicated via individual wires in a conventionally wired
vehicle. In that conventional vehicle, these nodes do not exist.

Class B. A potential application of multiplexing to transmit and receive data
between nodes to eliminate duplicate elements such as sensors in the
system. These nodes normally exist in a conventionally wired vehicle.

Class C. A potential application of multiplexing to the high speed data transfer

between real-time control system modules.

Class B bus must be capable of doing all of Class A communication, and
hence the superset of Class A. On the other hand, Class B is the functional subset of
Class C. Class C bus must therefore be able to perform all the three class functions.

In this thesis, only Class C bus is concentrated upon, since it is the means of
multiplexing real-time control systems such as engine management system,
transmission system and ABS, which is of interest here. Class C is defied as having
the minimum data transfer speed of 125 Kbit/s up to 1 M bit/s to ensure satisfying
real-time response [77].

Among Class C multiplexing, Controller Area Network (CAN) has been the
most widely used protocol and has been adopted as the high-speed networking

protocol in Europe [74-75]. CAN is also gaining more acceptance in the US. Hence, it

39

Literature Review

is believed that it will become a global standard system in the future. CAN is,

therefore, the sole protocol considered in this thesis.

2.5.2 CAN

CAN protocol is based on CAN specification by its developer, Bosch [76].

The summarised specification is described in this section.

2.5.2.1 System Overview

An example of the high-speed CAN system is as shown in Figure 2.23. From
the diagram, CAN system has a physical layer called the CAN bus which is the
medium for data transfer. All the modules or nodes can gain access to transfer or

receive data from the bus.

Active
ABS ECU Suspension 4WS ECU
ECU

- b owon 1

| |

Engine Transmission
Management ECU
ECU

Figure 2.23 System block diagram of high-speed CAN network

2.5.2.2 Bus Configuration

All the nodes connected to the CAN bus in a CAN network are equal in terms
of priority, according to the multi-master principle. The failure of one module will not
affect access to the bus of others. Priority in data transmission does not depend on the
module, but on the importance of the data, as part of each data has the number

indicating its priority.

40

Literature Review

2.5.2.3 Message Addressing

Every message in CAN has been assigned a label or identifier. It is
recommended that each message has a unique identifier. which gives an information

on the type of message for example right rear wheel speed sensor.

2.5.2.4 Message Types

There are four different message types for transfer:
A DATA FRAME used when a node is transmitting data.
A REMOTE FRAME sent by a node requesting DATA FRAME with the same
identifier.
AN ERROR FRAME transmitted when a node detects a bus error.
AN OVERLOAD FRAME used to give extra delay between DATA or REMOTE
FRAMES transmission.

2.5.2.5 Message Format

There are two types of CAN DATA FRAME message formats: standard
frames and extended frames. The only difference between the two are that the former
has 11 bit identifier, but the latter contains a 29 bit identifier. The standard and
extended frame CAN are called CAN 2.0A (formerly known as CAN 1.2) and CAN
2.0B respectively. Figure 2.24 displays a general CAN message format without length
indication [76].

The arbitration field is where the identifier is contained with another control
bit to indicate whether the message is DATA or REMOTE FRAME. The identifier is

used to decide which message is to be transmitted in case a message collision occurs.

41

Literature Review

Iinterframe Interframe
Space < DATA FRAME > Space
———p

1
0

Start of framei

Arbitration field |

Control field

Data field
CRC field
ACK field
End of frame

Figure 2.24 CAN DATA FRAME message format
2.5.2.6 Bus Access

Each node can transmit a message when the CAN bus is free. When more than
one node is trying to transmit a message, a selection process called non-destructive
bitwise arbitration occurs. The process monitors the identifiers of simultaneously sent
messages bit by bit.

Each bit in a message is either recessive (logical 1) or dominant (logical 0).
Starting from the first bits of the identifiers, during the arbitration, if the identifier bits
are the same, the next bits are compared and so on until two corresponding bits are
different. At that point the message with dominant bit wins and will continue to be

transmitted, while the other message with recessive bit has to stop sending. It will

then wait until the bus is free before attempting to transmit the message again. If there

are more than two messages being sent at the same time, the arbitration works in the

Same way. It eliminates the messages until the only one with the longest sequence of

dominant bits is left sending.
2.5.2.7 Latency Time

With CAN non-destructive bitwise arbitration, no transmission time is lost in
Mmessage collision. CAN system can guarantee that the highest priority messages are
transmitted with little delay. This is crucial in real-time control which contributes to

the popularity of CAN in such applications. However, it cannot guarantee latency

42

Literature Review

times for lower priority messages. Latency is defied as the time taken to send a
message, measured from when a transmitter is ready to send the message until the
message is received by the receiver. Latency includes the time taken to re-transmit the

message in case of message collision.

2.5.3 CAN Microcontrollers

There exist two types of CAN in applications: basic CAN and full CAN. In
basic CAN, a microcontroller checks all the messages on the bus to receive relevant
ones [75,79]. This takes up considerable amount of processor time, thus limiting
practical transmission rate to 250 kbit/s. A full CAN microcontroller possesses an
acceptance filter, which masks out irrelevant messages, freeing a CPU to perform its
control tasks [75,79]. This enables the full CAN system to have a transmission speed
of up to 1 Mbit/s. Furthermore, full CAN allows both the standard (CAN 2.0A) and
extended frame (CAN 2.0B) data formats.

In the semiconductor market, microcontrollers with integrated CAN peripheral
and stand-alone CAN microcontrollers are offered by manufacturers. The latter is
employed to a microcontroller without CAN to provide CAN capability. Before
deciding which approach is to be applied in an ECU, the following points should be

taken into consideration [80]:

Implementation cost This cost includes development and manufacturing costs. For
hardware design, ECU with integrated CAN microcontroller simplifies a designer’s
tasks as it requires fewer peripheral components and connections than the stand-alone
CAN microcontrollers. Time and hence cost of software design for the two types of
ECUs are comparable, because both need software developed for reading and writing
CAN messages. Due to its fewer number of components, the ECU with integrated
CAN microcontroller is cheaper to produce. In terms of the microcontroller chips
themselves, a combined price of stand-alone CAN and a control microcontroller is
cheaper than that of integrated CAN microcontroller in low volume. However, it is the
other way round for high volume purchase.

As a whole, an ECU with integrated CAN microcontroller has a potentially

lower implementation cost than that using stand-alone microcontroller.

43

Literature Review

Design flexibility An ECU with Stand-alone microcontroller is more flexible to

design than the one with integrated CAN microcontroller, due to the fact that stand-
alone CAN controllers are able to interface with different microcontrollers. It is
therefore possible to reuse some software from one system to another. In a type of
system where new products are introduced regularly, stand-alone CAN
microcontrollers yield greater flexibility in design and hardware modifications.
Engine management systems, which need to be modified for newer engine range or
change in regulations, or active suspension systems where technology is progressing,

would benefit from this design flexibility.

CPU burden Research by Intel shows that the level of CPU burden of ECU
with integrated CAN peripheral microcontroller is generally lower than that with
stand-alone CAN microcontroller, with the possible burden on the latter
microcontroller up to twice as much as that of the former [80]. This is because of the
higher speed and efficiency of the interaction between the CPU and its on-chip CAN
peripheral, as compared to an external link between a microcontroller and its stand-

alone CAN chip.

System reliability From the manufacturing point of view, an ECU with integrated

CAN microcontroller requires less printed circuit area, fewer connections and
components than an ECU with stand-alone microcontroller. As a result, an ECU with
integrated CAN microcontroller exhibits more reliability. Moreover, a microcontroller
with integrated CAN is developed in one piece, whereas a stand-alone chip has to
interface with a microcontroller possibly from another manufacturer. Compatibility
has to be ensured in the latter case. The number of components also inversely
contributes to the overall ECU reliability, as the individual defect ratio has to be

summed.

From the above considerations, to select between a system with stand-alone
microcontroller and the one with integrated CAN microcontroller, one has to weigh
design flexibility against cost, CPU burden and reliability.

The popularity of CAN is still growing, after having been made standard for
high-speed networking protocol in Europe and basis for J1939, the class C network

for truck and bus applications in the United States [78]. There is now a move by

44

Literature Review

European car manufacturers and suppliers, to standardise the interface between
distributed electronics or ECUs in cars, under the project called OSEK [81]. OSEK
covers standards for an operating system, communication system and a network
management system. Although an OSEK communication system is designed to
accommodate most networking protocols, CAN is the protocol used in most cases
[73]. Standard proposals have been made for the International Standards Organisation
(ISO) 7-layer Open Systems Interconnect (OSI) model, for CAN to define the lower
layers and OSEK to define the higher layers [74]. If OSEK is globally applied in the

future, an application of CAN in automotive will be even more widespread.

2.6 Automotive Electronic Architecture

At present, the automotive electronics trend is to become increasingly more
complex. Its importance in modern cars will grow, and hence the higher percentage
cost of electronics equipment per vehicle, which is expected to reach 20% of the
whole vehicle cost [84]. From the early days when electronics was introduced to the
control of engine timing and fuel injection, to keep emission under new, more
stringent laws, today they are also applied to improve ride, comfort, safety, etc.

This trend leads to the introduction of new systems such as crash avoidance
and navigation systems, and the existing systems become more complicated with
higher capability, for example, active suspension and four wheel steering. The
consequences of these are the increasing number of peripherals such as sensors and
actuators, and also larger wiring harness. This increase in wiring inevitably gives rise
to vehicle weight, cost and reliability problems.

There are currently 2 major approaches to reducing this complexity [85]. In
the first method, networking architectures such as CAN or Vehicle Area Network
(VAN) have been developed. The basic idea of networking or multiplexing is to share
communication lines for information transfer between components in a system or
different systems, instead of having one separate wire for transferring each type of
information. The second approach being to functionally integrate the relevant
controllers [85,86], for example, the combination of engine management system and

transmission control into one control unit.

45

Literature Review

Based on these two techniques, four arrangements of electronic systems for
vehicle dynamics and powertrain controls are studied. These architectures including

the typical centralised controller can be classified and discussed as follows:

2.6.1 Conventional Architecture

In this arrangement, different systems such as engine management or
suspension controls have their separate, centralised ECUs. Each ECU is connected to
its sensors and actuators via hard wire links, each of which is for one input or output
signal. Some information such as sensor readings may be shared among systems by
having extra wires between participating ECUs. The architecture is illustrated by
Figure 2.25.

from ABS peripherals to ABS peripheg‘s
from syspension peripherals to suspension peripgerals

Active
—| Suspension
ECU

ABS ECU

A

ABS - 4WE data links suspension-4WS ABS-other ECUs suspensrzn other ECUs

data links data links dataflinks

P

4WS ECU “WS,'°‘“°|. r ECUs other ECUs

A

from 4WS peripherals ko 4WS peripherals

(04712 POTPNEIES ,

a vehicle

Figure 2.25 Conventional centralised architecture

One of the benefits of this architecture is the ease of understanding what is
contained in the vehicles, systems and their functions. In terms of development, a
manufacturer can simply assign the task for each system independently to a supplier.
The interconnection/communication technology required in terms of electronics is
relatively low.

However, as previously mentioned, as the number of electronic systems
increase, the large number of disadvantages is clearly realised. Firstly, the large
number of wires causes significant rise in weight. Modern luxury cars contain a few
kilometres and approximately 100 kilograms of wiring [87]. Another direct effect

includes higher cost. The main wiring harness is a major bought-in component of a

Literature Review

modern vehicle. McLaughlin et al considers it to be the second most expensive item in
a vehicle, after the engine [88]. Higher fuel consumption due to weight increase also
contributes to growing running costs. Manufacturing time and cost are inevitably
related to the amount of wiring. Reliability problem also arises with the expanding
number of wires.

Some sensor duplication may also be possible because different subsystems
may be developed separately. Additionally, an introduction of a new system is
relatively costly due to the lack of component sharing.

Other suggested architectures for improvement will now be presented.

2.6.2 Centralised Controller

This idea supports the integration of ECUs into one single ECU. Millward
[89] claims that with the power of modern electronics, the architecture is feasible
provided that the integrated systems are not too complex or including too many sub
systems. For example, integrating only powertrain control systems is possible. Emaus
[90], however, suggests that more systems could be integrated, as shown in Figure
2.26. The diagram also typifies this architecture arrangement.

The possible benefits discussed by Millward [89] include the probable lowest
unit cost, due to the fact that it is one single unit with no duplication. Communication
delay problem also vanishes, since information sharing between systems is achieved

by integrating their controllers.

Centralised
engine-transmission-ABS control module

sensor sensor sensor
s actuators s actuators s 0 actuators

engine transmission brakes

Figure 2.26 Centralised controller architecture

Referring to Figure 2.26, having had an ECU of this magnitude and
complexity would raise the issues of its location and space requirement, coupled with
the size of the harness needed. Installation problem is therefore imminent. Heat
dissipation and Electromagnetic Compatibility (EMC) are also of concern. Another

difficulty related to its complexity is the development time and resources required,

47

Literature Review

including software and hardware [89]. There are also other concerns on the safety
measure in case of system failure, and small amount of system sharing between
different vehicle models.

The substantial effect of drawbacks over the advantages is expected to render
the fully integrated single ECU, for the whole vehicle dynamical control system,

impractical.

2.6.3 Peer to Peer Networking

The basic arrangement of such system vehicle dynamic control is as shown in
Figure 2.27 [91]. The system consists of separate electronic control systems, which
are linked by a communication network. For information sharing between different
networks, there exists a data converting gateway. The gateway performs necessary

conversion from one form of network message to another.

sensors / actuators sensors / actuators sensors / actuators
ECU ECU ECU
I I communication I
network gateway

another network bus

Figure 2.27 Peer to Peer network architecture

Kiencke, et al. [85] suggest that there should be local integration of frequently
sharing information ECUs such as engine management and transmission control. This
could reduce the number of components required by removing duplication. However,
ECU integration is limited by system complexity, which would involve both technical
issues, such as heat dissipation of an ECU and wiring implementation [86], as well as
organisational difficulties with increased development cost and time. Therefore, the
system coherence and production volume need to be taken into consideration to
Justify an integration.

Holzinger, et al. [86] point out that cost can be saved by integrating electronics
into a related mechanical system, for example, having hydraulic modulator and ABS

ECU as one piece. The saving would come from reductions in wiring harness and ease

48

Literature Review

of installation, due to the fewer number of components to fit in. This concept is,
however, limited by organisation, as it is not supported by recycling requirements
[86]. Potential difficulties may be met because of the environment in which the ECU
is required to work, for example under bonnet.

Another possible integration is between ECUs and their corresponding sensors
and actuators [86, 90]. This would also lessen wiring cost.

The apparent advantage of peer-to-peer architecture over the conventional one
is the reduced amount of wiring and hence cost. Historical information suggests the
reduction in electronics costs, as opposed to the constant price of wiring harness.
Therefore, the cost advantage of this architecture will even be more significant if the
trend continues [93]. It is also based on a development of the existing autonomous
systems, which it is logical to develop [89]. Now with the network capability built
into some microcontrollers, the hardware becomes straightforward. Despite
networking, each system is still independent. Reliability is high due to the fact that
failure of one system does not affect other system functions. Moreover, having been
networked, should a system failure happen, other ECUs would be able to detect and
react to keep a vehicle running safely [94]. In terms of diagnostics, a specialised
diagnostic ECU could merely be connected to the network [86,71]. By having
centralised diagnostics, the separate task done by each ECU can be omitted, thus
reducing the number of variations [86].

Data sharing and closed control corroboration between dynamical control
ECUs result in an improved ride and handling, showing a potential benefits of the
peer-to-peer architecture [28,96].

The considerations that need addressing with this architecture are cost and

selection of appropriate network standards.

2.6.4 Master-Slave Networking

This architecture is similar in terms of hardware to the previous one, but has
an extra centralised controller to oversee the operations of other local controllers.
Hence the name master-slave. The diagram of this architecture is as shown in Figure
2.28 [86].

The function and scope of the master varies in level of control, and number of

functions handled. At its most complex, the master controller could be connected by a

49

Literature Review

bus to the entire vehicle’s networks, including body control, powertrain, and
telematics networks [86]. In the system shown in Figure 2.28, all other controllers
remain fully responsible of their own tasks, whereas the master acts as a gateway to

handle communication between different networks, and performs diagnostic tasks.

Master
Diagnosis
Gateway
Powertrain bus Telematics network
< A
v 1
local ocal local
Elle fc¥ Iic%
Body bus Anther bus
<+ Y >
Y
local local local
ECU ECU ECU

TowT el

Figure 2.28 Master Slave network architecture

Emaus [90] describes a system with a master controller for each of the
vehicle’s networks. The engine area master controller receives information from local
or slave engine, transmission and brake controllers, and issue system-level commands
to them. The majority or all of the input processing, for example, switch debounce and
data filtering, and output processing such as driving actuators, are the responsibility of
local controllers. Hence the master slave architecture can be applied at a number of
different levels.

Hettich [92] points out that this architecture is comparable to the hierarchical
living model, where the master controller is equivalent to a cerebrum and various
local controller units represent organs. The master controller is responsible for the
Strategic functions such as safety and diagnosis, where basic functions, for instance,
braking and clutch controls are performed by local controllers. It is also suggested that
considering just the local ECUs, development should be driven by seeking an
Optimum cost between the two extremes of networking local ECU with their
Mmechanical units and integrating them into a combined unit.

This hierarchical concept is similar to that of Millward [89] who, however,

only supports the idea of having individual local buses between peer ECUs.

50

Literature Review

Stevens [95] has implemented master-slave architecture on a test vehicle by
having a master controller, diesel engine management, ABS, clutch management, and
adaptive damper connected together by CAN bus. It was demonstrated that additional
functions such as traction control, cruise control and vehicle stability control can be
performed by the master controller with no extra ECUs needed and only small amount
of additional hardware required.

The benefits of this master-slave arrangement are similar to those of the peer
to peer networking. One additional benefit is in terms of cost saving and ease of
introducing new functions with little or without any extra hardware. The amount of
cost saving, however, depends on the complexity of a vehicle, as there is a trade off
between the amount of new system cost saving and the cost of adding a master

controller.

2.7 References

—

Hartley J Automobile Steering & Suspension Newnes Technical Books, 1977

2. Newton K, et al. The Motor Vehicle 11" edition Butterworths, 1989

Gillespie T Fundamentals of Vehicle Dynamics Society of Automotive
Engineers, 1992

4. von Glasner E, et al. Analysis of Intelligent Suspension Systems for
Commercial Vehicles SAE No0.933008

w

5. Milliken Jr. W Active Suspension SAE No.880799
6. Jurgen R Autometive Electronics Handbook McGraw-Hill, 1995
7. KojimaH, et al. Development of New Toyota Electronic Modulated Suspension

- Two Concepts for Semi-Active Suspension Control SAE No0.911900

8. Crolla D, et al. Semi-Active Suspension Control for a Full Vehicle Model SAE
No.911904

9. Wallentowitz H Scope for the Integration of Powertrain and Chassis Control
Systems: Traction Control - All-Wheel Drive - Active Suspension SAE
No.901168

10. Hurdwell R, et al. Active Suspension and Rear Wheel Steering Make Powerful
Research and Development Tools SAE N0.930266

11. Iijima T, et al. Development of a Hydraulic Active Suspension SAE N0.931971

12. Aoyama Y, et al. Development of the Full Active Suspension by Nissan SAE
No.901747

13. Sugasawa F, et al. Electronically Controlled Shock Absorber System Used as
a Road Sensor Which Utilises Super Sonic Waves SAE No. 851652

14. Tsutsumi Y., et al. Development of Pieze TEMS (Toyota Electronic Modulated
Suspension) SAE No. 901745

15. Rover The New Range Rover Electric Manual, Rover Group 1995

16. Inagaki S, et al. Development of Feedforward Control algorithms for Active
Suspension SAE No. 920270

51

Literature Review

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34,

35

38.

39.

40.

Leighton N, et al. A Novel Active Suspension System for Automotive
Application Proceedings of the IMechE part D, Journal of Automotive
Engineering V208 No. D4 1994

Williams R Electronically Controlled Automotive Suspensions Computing &
Control Engineering Journal, June 1994

Irie N, et al. 4WS Technology and the Prospects for Improvement of Vehicle
Dynamics SAE No0.901167

Sato H, et al. Development of Four Wheel Steering System Using Yaw Rate
Feedback Control SAE No0.911922

Hirano Y, et al. Development of an Integrated System of 4WS and 4WD by
Heo Control SAE No0.930267

Tanizaki S, et al. The Effect of Active Rear Steer System International
Symposium on Advanced Vehicle control (AVEC), 1998

Kizu R, et al. Electronic Control of Car Chassis Present Status and Future
Perspective International Congress on Transportation Electronics, 1988

Yokoya Y, et al. Integrated Control System Between Active Control
Suspension and Four Wheel Steering for the 1989 CELICA SAE No.901748
Mitamura R, et al. System Integration for New Mobility SAE No.881773
Larsen R AVCS: An Overview of Current Applications and Technology
Proceeding of the Intelligent Vehicle Symposium, 1995

Kageyama I, et al. An Advanced Vehicle Control Method Using Independent
Four-Wheel-Steering System IEEE Conference on Intelligent Transportation
System 1997

Kawakami H, et al. Development of Integrated System Between Active
Control Suspension, Active 4WS, TRC and ABS SAE No0.920271

Bischof H, et al. The ECU of A Rear Wheel Steering System 8" International
Conference on Automotive Electronics, 1991

Adachi K, et al. Study on a New Four-Wheel-Steering Control Method At Low
Speeds-Front-End Path Memorising Method 8" International Conference on
Automotive Electronics, 1991

Eguchi T, et al. Development of “Super Hicas”, a new rear wheel steering
system with phasereversal control SAE No0.891978

Oppenheimer P Comparing Stopping Capability of Cars with and without
antilock Braking Systems (ABS) SAE No.880324

Lambourn R Braking and Cornering Effects with and without Anti-Lock
Brakes SAE N0.940273

Kolbe A, et al. Teves MK 1V Anti-Lock and Traction Control System SAE
No0.900208

. Limpert R Brake Design and Safety SAE, 1992
36.
37.

Chowanietz E Automotive Electronics SAE, 1995

Rittmannsberger N Antilock Braking System and Traction Control
International Congress on Transportation Electronics, 1998

Mauer G, et al. Fuzzy Logic Continuous and Quantising Control of an ABS
Braking System SAE No0.940830

Voit M, et al. Methodology for the Design of a New Strategy in Vehicle
Braking: Simulation and Comparison of Algorithms Proceedings to the
Advanced Vehicle Electronics Control (AVEC), 1994

Jun C The Study of ABS Control System with Different Control Methods
Proceedings to the Advanced Vehicle Electronics Control (AVEC), 1998

52

Literature Review

41.

42.

43

46.

47.

48.

49.

50.

51

54.

55

57.

58.

59.
60.

61.

62.

63

67

68

70.

71.

Schurr H, et al. A New Anti-Skid-Brake System for Disc and Drum Brakes
SAE No.840468
Bauer H (chief editor) Automotive Brake Systems Robert Bosch GmbH, 1995

. Denton T Automobile Electrical & Electronic Systems Edward Arnold, 1995
44,
45.

Dickerson W 68HCO05-Based System Design Dr. Dobb’s Journal, August 1995
Masutomi S, et al. Development of ABS and Traction Control Computer SAE
No.901707

Mcintyre S Two Functions, One Microcontroller Four-Wheel ABS and Ride
Control Using 80C196KB SAE No.881138

Wiehen C An Antilock Braking System for Sports Utility Vehicles and Light
Trucks SAE No.910698

Hassain § Digital Algorithm Design for Wheel Lock control System SAE
No.860509

Birch T Automotive Braking Systems 2" edition Saunders College Publishing,
1990

Mathues T ABS Extending the Range SAE No0.940829

. Malone M The Microprocessor A Biography TELOS, 1995
52.
53.

Predko M Handbook of Microcontrollers McGraw-Hill, 1998

Hintz K, et al. Microcontrollers Architecture, Implementation, &
Programming McGraw-Hill, 1992

Holdsworth B. Microprocessor Engineering Butterworth, 1987

. Poole L. Inside the Microprocessor MacWorld, October 1992
56.

Horowitz P, et al. The Art of Electronics 2™ edition Cambridge University
Press, 1990

Bursky D High-Integration Controller Tackles Automotive and Industrial
Needs Electronic Design, April 6™ 1998

Weiss R 16-bit Microcontrollers Take Over from 8-bitters Computer Design,
June 1996

Jurgen R Automotive Microcontrollers SAE, 1998

Shah P, et al. Programmable Memory Trends in the Automotive Industry
SAE No.901133

Kattwinkel T 16-bit Microcontroller C167R with Full CAN Module Tuning Up
Automotive Networks with the CAN Bus Siemens Components Vol. 30, Iss. 6,
1995

Caine J (Supervisor Advanced Powertrain Engineering, Ford) Private E-Mail
(JCainel @Ford.Com) 2001

. Intel 8XC196NT User’s Manual Intel June 1995
64.
65.
66.

Mitsubishi M16C/62 Microcontroller User’s Manual Mitsubishi, 1999
Motorola MC68SHC11 User’s Manual Motorola, 1995
Motorola MPC555 User’s Manual Motorola 15™ Sep 1999

. Bannatyne R MPCS555 A New Benchmark in Real-time Embedded Control

Solutions Embedded System Engineering Feb/Mar 1999

. Burdock W, et al. EMC Design Check List Rover Group, Oct 1994
69,

Intel Intel Pentium 4 Specifications website http://www.intel.com/pentium4/,
November 2000

Bannatyne R Future Developments in Automotive Microcontrollers (Published
in Automotive Microcontrollers (PT-75)) SAE, 1998

Kobayashi K, et al. Diagnostics for vehicle electronics present and future

Proceedings to the 1992 International Congress on Transportation Electronics
(92C002), 1992

53

Literature Review

72.

73.
74.
75.
76.
77.
18.
79.
80.
81.

82.

83

85.

86.

SAE Vehicle Network for Multiplexing and Data Communications Committee
Glossary of Vehicle Networks for Multiplexing and Data Communications
SAE J1213 Part 1

France R New Standards Help Vehicle Control Units Communicate Electronic
Product Design, November 1997

Navet N Controller Area Network CANs Use Within Automobiles IEEE
Potential, October/November 1998

Anonymous Controller Area Network Hitex (UK) Ltd., 1996

Bosch CAN Specification Version 2.0 Robert Bosch GmbH, 1991

Bauer H (chief editor) Automotive Handbook 4™ Edition Robert Bosch GmbH,
1996

Nath N CAN Protocol Eases Automotive-Electronics Networking EDN Vol. 43
Issue 17, 1998

Embacher M A Cost-Effective CAN MCU - Solution Electronic Product Design,
Vol. 17, Issue 4 1996

Szydlowski C Tradeoffs Between Stand-alone and Integrated CAN
Peripherals SAE No.941655

Kiencke U, et al. Open Systems and Interfaces for Distributed Electronics in
Cars (OSEK) SAE No0.950291

Motorola Motorola CSIC Microcontrollers Motorola, Quarter 3, 1997

. Intel Embedded Microcontrollers Intel, 1998
84.

Ohr S Safety and security spearhead changes in automotive electronics
Computer Design, January 1996

Kiencke U, et al. Architectural trends in automotive electronics IFAC advances
in automotive control, 1995

Holzinger O, et al. Automeotive electronics - integration and partitioning

~ (92C028) Proceedings to the 1992 international congress on transportation

87.

88.

89.

90.

91

92.

93.
94.

9s.

96.

97

98.

electronics, 1992

Fenton J Focus on networking of on-board vehicle electronic systems
Automotive Engineer, June/July 1996

McLaughlin R, et al. A feasibility study of CAN technology in body electronic
control systems (C498/35/028) Il MECH E Autotech, 1995

Millward J Vehicle electronic system architectures - influences and guidelines
SAE No. 930010

Emaus B Aspects and issues of multiple vehicle networks SAE No. 950293

. Hansson H, et al. BASEMENT: a distributed real-time architecture for

vehicle applications Real-time systems Vol. 11 Issue 3, November 1996

Hettich G A new approach for electronic-controller-functions in vehicles SAE
No. 960624

Schubotz H Modular body systems (C524/101/97) Il MECH E Autotech, 1997
Nakamura S et al. The high-speed in-vehicle network of integrated control
system for vehicle dynamics SAE No. 910463

Stevens S The development and testing of an integrated systems demonstrator
vehicle (C498/35/157/95) IMECH E, 1995

Sherman D Electronic Chassis Control Automotive Industry, August 1999

. Appleyard M, et al. Active Suspension: Some Background IEE Proceedings —

Control Theory Applications Vol.142 No.2, March 1995

Yong S, et al. Feed Forward Neuro-Controlled Active Suspension Using
Frequency and Time-Mixed Shape Performance Index International Journal of
Vehicle Design Vol. 17 No. 2, 1996

54

Literature Review

99. Soliman A, et al. Preview Control for a Semi-Active Suspension System
International Journal of Vehicle Design Vol. 17 No. 4, 1996

100. Esmailzadeh E, et al. Optimal Active Vehicle Suspensions with Full State
Feedback Control SAE No0.922473

101. Tanaka H, et al. Development of a Vehicle Integrated Control System ImechE
C389/220, 1992

102. Hoogterp F et al. An Energy Efficient Electromagnetic Active Suspension
System SAE No.970385

103. Intel 83C196EA Microcontroller User’s Manual Intel, May 1996

104. Motorola RISC Central Processing Unit Reference Manual Revision 1
Motorola, February 1999

105. Motorola Microcontroller Selector Guide Motorola Quarter 1, 2001

106. Di Vincenzo F, et al. Global Trends Towards Systems 30" International
Symposium on Automotive Technology & Automation Vol. 2, 1997

107. Melbert J Next Generation Automotive Electronics: The Impact on
Technologies and Design Methodologies 1992 Symposium on VLSI Circuits
Digest of Technical Papers, 1992

108. Kopetz H Automotive Electronics Proceedings of the 11" EUROMICRO
Conference on Real Time Systems, 1999

109. Jurgen R The Electronic Motorist IEEE Spectrum, March 1995

110. Ranta R, et al. The Importance of Electronics in Modern Cars Proceedings to
IEMC 96 Managing Virtual Enterprises: A Convergence of Communications,
Computing, and Energy Technologies, 1996

111. Cambou B Microsystems for Automotive Application — Semiconductor
Aspects Microsystem Technologies Vol. 3 Issue 3 Springer-Verlag 1997

112. Tindell K Embedded Systems in The Automotive Industry Embedded
Systems Conference, 1999

113. Lawrence P, et al. Real-Time Microcomputer System Design: An
Introduction McGraw-Hill, 1987

114. Motorola Automotive Selector Guide Motorola, Quarter 4, 2000

55

Derivation of Different Automotive Electronic Control Systems & Test Data

CHAPTER 3

DERIVATION OF DIFFERENT AUTOMOTIVE
ELECTRONIC CONTROL SYSTEMS & TEST
DATA

As stated in the introduction, this chapter describes the exemplary dynamic
control systems that are used to represent ABS, suspension control and 4WS. In the
next chapter, these systems will then be arranged into a vehicle model according to

different automotive electronic architectures.

3.1 Exemplary Systems

ABS, suspension control and 4WS have been chosen as the modelled dynamic
control systems. ABS has gained a significant acceptance in the market in the past
decade. A quarter of new cars world-wide are reported to be fitted with ABS [1]. ABS
is also expected to exist commonly in future medium and small sized vehicles, as it is
in the luxury and family car market at present. With suspension control and 4WS, the
acceptance is still far below that of ABS. Electronic suspension controls are still
mostly installed in only luxury vehicles, while 4WS are most popular among Japanese
car manufacturers. However, with both systems’ obvious benefit to ride and handling
of a vehicle, with additional advantages shown when used as integrated control, they
are expected to achieve greater production scale, if cheaper components and
manufacturing techniques become available.

These dynamic control systems are to be used as exemplary systems for
modelling the alternative vehicle architectures in the next chapter. These systems are
based upon the ones which are available in the market as they are proved practical.
Also advanced systems are needed, as they can closely represent the systems of the
near future, in terms of electronic contents and complexity. Specific information
demanded for this modelling is the method of control and electronic implementation,

which have been taken from published descriptions of their operation

56

Derivation of Different Automotive Electronic Control Systems & Test Data

The three exemplary systems are first described in terms of their overall
functionality and component contents, followed by a more detailed examination of

their control algorithms.

3.1.1 Exemplary ABS System

The ABS system selected for modelling in this thesis is based on the ABS and
traction control system described in [2]. The system adopts the same control strategy
as mainstream ABS systems, which is deceleration threshold. The system is chosen
because it is an actual system fitted in a vehicle in the market with the available
information on system signals and wiring provided in the literature. Although the
details of its control algorithm are not explicitly discussed, as is in all the literature in
this field, it indicates that the deceleration threshold method is employed. Since the
aim of the deceleration threshold control method is to maintain wheel speed or wheel
slip, or both, within the target values, all the ABS controls of this method follow
similar steps. The same type of control algorithm described in details in [14] is,
therefore, used as an ABS algorithm control model. The details of this ABS control
will be described in the functioning section of this chapter.

This exemplary ABS system is electronically controlled by a centralised ECU
and employs a hydraulic system as its actuator. The simplified electrical block

diagram of this ABS system is shown in Figure 3.1.

front right wheel speed rear right wheel speeq
m} T

switches

4 wheel brake controls

A

ABS ECU

actuator 1 rotor and relay control

e warning lamp

|-:—1 front left wheel speed rear left wheel speg

Figure 3.1 Simplified electrical diagram of an exemplary ABS system

57

Derivation of Different Automotive Electronic Control Systems & Test Data

3.1.1.1 Exemplary ABS Electronic Control

Wheel speed signals are sine waves of varying frequencies, proportional to the
wheel speeds. The range of frequencies of the wheel speed signals is approximately
18-2000 Hz [2]. Signal and timing characteristics of the system require that a wheel
speed and acceleration are calculated every 6 ms [2]. The same timing is required for

ABS control calculation. The ABS control model is described later.

3.1.2 Exemplary Suspension Control System

The exemplary suspension system chosen as a model in this project is one of
the few fully active suspensions currently available in the market. This is because of
higher power requirements, more complexity, greater expense and higher weight of
active suspension compared to the variety of more popular semi-active suspension
systems. However, theory suggests that active suspension can achieve the highest
performance among all the suspension systems [7]. Furthermore, it is believed that
future technology will enable electric active suspension, which would ease system
complexity and weight penalty problems of current hydraulic active suspension
systems. In terms of electronics, active suspension, due to its complexity, requires
high processing power for control. The system is, therefore, considered suitable as a

model for an electronically complex and demanding control systems of the future.

3.1.2.1 Exemplary Active Suspension Electronic Control

The active suspension system is described in [3,4]. A hydraulic system is used
as an actuator in this system. The system is based around a centralised ECU for
system control. Six accelerometers, one longitudinal, two lateral and three vertical,
sensing all three dimensional movements of the vehicle, together with four vehicle
height sensors and a vehicle speed sensor, each situated near each wheel, provide data
for the control. Control signals are designated to a multi-valve unit and hydraulic
pressure source of pump and motor, which maintain the overall system pressure. Ride
height of each wheel is controlled by another control signal from the ECU to a wheel
pressure control valve. The control cycle is not specifically stated, but is said to be

‘several milliseconds’ [3]. This active suspension control algorithm and

58

Derivation of Different Automotive Electronic Control Systems & Test Data

electrical block diagram of this active suspension system is displayed in Figure 3.2
[3.4].

. Front right pressure valve control Rear right
Wheel Front right wheel height pressur:
] valve control] -
Ver|Acc
Rear fight
wheel height
Lat Acc Lat Acc
a]
Multivalve unit & ,_Emmmm Active
hydraulic pressures suspension |
source ECU <
Ver Acc l Lon Acc
[O
Lat Acc - lateral accelerometer
Lon Acc - longitudinal accelerometer Reall left
Ver Acc - vertical accelerometer wheel height
Ver|Acc
D
1 Front left wheel height Rear left
O« Front left pressure valve control prjssureI O

valve contro
Figure 3.2 Simplified electrical diagram of an exemplary suspension control system

3.1.3 Exemplary 4WS System

An exemplary 4WS system used for modelling in this project is one of the
most advanced 4WS systems fitted in production cars. It is described in [5,6]. In the
previous chapter, classifying 4WS systems according to their methods of actuation,
later systems are of electronic-electric control and electronic-hydraulic-mechanical
Systems. Despite their differences, these advanced 4WS systems share similar closed
loop control algorithms, using proportional control with vehicle speed and steering
angle as major input data. Additional input data is steering speed or yaw rate for
improved control. Due to this similarity, their electronic control systems can be
assumed to have the same level of complexity. The system selected is chosen because
it has more details of its electronic control and components available in literature than
Other advanced 4WS systems of the same complexity [5-10]. This information is

€ssential for modelling purpose.

3.1.3.1 Exemplary 4WS Electronic Control

The exemplary 4WS system has a centralised ECU, which receives data from

Vehicle speed sensor, yaw rate sensor and front wheel steering angle sensor for

59

Derivation of Different Automotive Electronic Control Systems & Test Data

determining a rear steer angle. At low speeds, the rear wheels are steered up to five
degrees in the opposite direction to the front wheels, to reduce turning radius. At
medium to high speeds, the rear wheels are steered to a relatively small angle to the
same direction as the front wheels, to improve stability. The rear wheel steer control
signal is sent to a rear steering actuator. Closed loop proportional control is applied in
this 4WS system. The control details are explained in the previous chapter and also in
the functioning section of this chapter. The simplified electrical block diagram of this

4WS system is displayed in Figure 3.3 [5,6].

steering angle signal

o
> rear steerin trof Rear
4WS ECU ering con steering
vehicle speed signal < actuator
[m] -
yaw rate signal

]

Figure 3.3 Simplified electrical diagram of an exemplary 4WS control system

3.2 Exemplary Dynamic Control System Functionality

In order to verify the operation of these exemplary ABS, active suspension,
and 4WS systems, a simulation of each of the systems is made using MATLAB
Simulink. The control algorithm of each system is first interpreted as a Simulink
model. Road test data obtained from a vehicle making a circuit of the Gaydon
Emissions Circuit was used to drive the inputs of the systems. Some data, such as
acceleration data, steering angle, etc. was not available and hence has been
synthesised from the available information. The resulting system output signals,
representing control commands to actuators, are then inspected to see how the systems
respond to those sensor data. Since the system functional characteristics are broadly

known (such as ABS would activate when a wheel shows a sign of locking, or active

60

Derivation of Different Automotive Electronic Control Systems & Test Data

suspension would maintain stable vehicle ride height), the output signals can verify

these characteristics and the correct operation of the systems.

3.2.1 ABS Control Model

The nature of ABS control is very complex. A large number of different rules
are set by system developers, to cater for various braking circumstances a vehicle
would encounter. These rules are used to activate the ABS only to prevent an
imminent wheel lock, without unnecessary ABS operation which would sacrifice
valuable braking distance. The difference in braking characteristics between driven
and non-driven wheels with and without gear engaged, and the change in vehicle
speed relative to wheel speed at medium and heavy braking, to name a few, also
contribute to the greater number of rules for ABS control. Furthermore, because vital
data for ABS calculation, such as vehicle speed and wheel slip cannot be measured
directly, representative figures have to be obtained from wheel speed data. Different
ABS manufacturers develop their own set of rules and the methods of these
representative value calculations. This is all undisclosed information. The ABS
control described in this thesis is hence a simplified model formed from general ABS
control descriptions available in literature.

The ABS model is adapted from deceleration threshold control, which is the
most common ABS control algorithm [11]. The specific ABS control model used
follows the control method is described in [14]. The control procedures are as shown
in Figure 3.4 [14]. The figure represents ABS control on a high traction surface, for
example dry asphalt, which is slightly different from the control on low traction
surface, such as icy road. The ABS will compare each wheel acceleration with the
deceleration threshold, -a. The ABS will not sacrifice the valuable braking distance,
by activating to reduce brake pressure when the wheel acceleration first goes below
the deceleration threshold. It will only reduce brake pressure when both wheel
acceleration and wheel slip are lower than the threshold of peripheral wheel
deceleration, -a, and slip switching threshold, A,, respectively. Brake pressure will be
decreased until wheel acceleration goes back above the deceleration threshold, as seen

in phase 3.

61

Derivation of Different Automotive Electronic Control Systems & Test Data

vr Vehicle speed, vue Refarence speed, vy Peripheral wheel spesd, A, Slip switching threshold,
+A,+a Thresholds of peripheral wheel acceleration, —a Threshold of peripheral wheel deceleration,

—Apa, Brake-pressure decrease.

Time 1 ——»
Figure 3.4 ABS control cycle

Since the way in which the ECU determines

road surface condition is

unknown, and the fact that the control concepts for different traction surface control

are the same, i.e. deceleration threshold, the ABS model will be based on the high

traction surface control cycle. A Simulink model of the general ABS system was

devised by the author and is as shown in Figure 3.5

-
P "Mux|

stip _cal{

sign2

Muxi Slip calculation

speed vehicle speed

Wheael slip threshold
calculation

wheel slip check

RL wheel »dusdt
Lall
speed

acceleration_cal

sign2

RN
ﬂ Sum2 Gaint Acceleration

RR wheet acceleration thrashold check
speed acceleration check

Figure 3.5 Simulink model of the ABS system

_/ plveh_spoed_cal2 Sum1 slip check Gain

3

R
.y

[
>

Sum3 ABS check
ABS operating
condition check

(AND gate)

ABS
Outputs

62

Derivation of Different Automotive Electronic Control Systems & Test Data

In the model, wheel speed signals already converted from sine waves are fed
into the model. In order to avoid a repetition of calculation, the four wheel speed
signals are multiplexed throughout the whole model. Reference vehicle speed is
calculated from an average speed of a pair of diagonal wheels. From it, wheel slips are

also determined, based on the equation 3.1 below, which is described in the previous

chapter.
A=(Vy-VD/V, 3.1)
A - wheel slip
Vv, - vehicle velocity
V. -circumferential wheel speed

The equation can be applied in all cases except when the vehicle is stationary
i.e. vehicle speed is zero. That case is beyond the operation condition of the ABS.
Wheel decelerations or accelerations are also computed. Wheel slip and acceleration
are then compared to the threshold values, in wheel slip and acceleration check
sections, respectively. When both wheel slip and acceleration drop below the
thresholds, as monitored by the AND gate equivalent, the ABS issues output
command to reduce brake pressure. Low values are selected as thresholds for

demonstration purpose.

3.2.2 Active Suspension Control Model

The aim of this active suspension control is to exert active power to counteract
longitudinal, lateral forces and also braking and driving torques by the tyres. It also
acts to minimise vehicle body roll. In short, the control system tries to keep the four
Wheels level at appropriate height in all driving situations.

The exemplary suspension control systtem employs a proportional control

method as shown in Figure 3.6. The K elements are the control gains and the term

1 . : : o
m are a first order delay for vertical acceleration. A judgement circuit is there to

determine if ride height is within an allowable range. The vertical, longitudinal and
lateral accelerations multiplied with their respective gains and delays, and wheel

heights are added. The sum of the values is the output for each wheel height control.

63

Derivation of Different Automotive Electronic Control Systems & Test Data

Longitudinal Kpf 13; ght .
accelerometer ron
Lateral — Krf
accelerometer l\
Vertical L} 1L _dxps E?itnt
accelerometer 1+T8 O
(at three ‘
wheels)) Kpr =) Right
e -reay
Kry
1 . Left
1+TS sl -rear
Vehicle Judgm?nt
height sensor circuit
(at all four
wheels)

Figure 3.6 Exemplary active suspension control block diagram

pgoon
oo ’{1/ >+
i+
Longitudinal Gain + —___.—>E
accelerometer
200D —p+ Front right
00 b‘ 1 Front right control actuator
Lateral Gaint -
accelerometer >+
ooao 1)] i+ E——— D
00 P
s+1 —+ Front left
Vertical Delay element 1 Gain2 Front left control actuator
accelerometer
>l1\ »—
|+
Gain3 | e D
P+
—>+ Rear right
Hearright contro! actuator
Gaind
1
—p — ’{1 -
s+1
>_.
Delay element 2 Gainb >+ ’D
aoao
00 >+ Rear left
Rearleft control actuator

4 wheel height
sensors

Figure 3.7 Simulink model of active suspension system

This has been modelled by the author, as a Simulink model of the active
Suspension control system, and is displayed in Figure 3.7. The judgement circuit logic
Which performs a diagnostic function is not available. Its description is to check if the

Wheel heights are within range. It can, therefore, be omitted by assuming wheel

64

Derivation of Different Automotive Electronic Control Systems & Test Data

heights are within allowable range, which is what is expected under normal road
driving. The values of the control gains and delay elements are not known. The
purpose of this simulation is to demonstrate the functioning of the control systems
only, and no quantitative results are required. All the control gains and delay elements

are therefore set to one.

3.2.3 4WS Control Model

The concept of a 4WS system operation is to steer the rear wheels in an
opposite direction to the front wheels at low speeds, while the rear wheels are turned
in the same direction as the front wheels at medium to high speeds. The opposite steer
is to reduce turning radius, whereas the same directional steer is to improve handling
and stability.

In the exemplary 4WS system, a more recent control method is modelled, such
that instead of controlling the rear wheels according to the driver steering inputs alone
i.e. steering angle and speed, they can additionally take account of the current state of
the vehicle [6]. By doing so, the control system would be more robust to changing
driving conditions, such as crosswind and varying road conditions. The vehicle
current state can be indicated by its yaw rate. Hence a yaw rate sensor is introduced to
sense vehicle deflection due to sudden braking, side wind, or road surface irregularity
at medium to high speeds. Rear wheels are steered according to yaw information to
maintain vehicle zero slip angle, and hence minimise the effect of the disturbances
and improve stability. At low speed however, the rear wheels are steered to angles
Opposite to the front wheels’ angles to improve vehicle manoeuvrability.

Proportional control is employed in the system. A control map with steering
angle and yaw rate proportional terms, are used to determined the 4WS system
control. Three control gains: opposite-direction steering angle proportional, steering
velocity tuning and yaw rate proportional gains are present. The second gain has the
value according to steering and vehicle speeds, whereas the other two have their
values corresponding to vehicle speed. Equation 3.2 is the control governing formula

[6]. The control block diagram is shown in Figure 3.8 [5].

65

Derivation of Different Automotive Electronic Control Systems & Test Data

6 =K,(V).0 +K,(6 V).K,V).a, (3.2)
0} : front wheel steering angle velocity
or : rear wheel steering angle
of : front wheel steering angle
\Y% : vehicle speed
wy : yaw rate
Ki(V) : opposite direction steering angle proportional gain
K 2(6} V) : tuning gain of steering velocity
K3(V) : yaw rate proportional gain

From the control block diagram, the steering velocity tuning and yaw rate
proportional gains are set to zero at low speed, making the second term of the
equation zero. Hence at low speed driving, 4WS is control by the first term, steering
angle proportional term, with the opposite direction steering angle proportional gain
K. The negative K, indicates that the rear wheels are steered in the opposite direction
to the front wheels. At medium to high speed, K, becomes zero, leaving the control to
the second term, the yaw rate proportional term. The rear wheel steer direction
depends on vehicle yaw, as the system acts to reduce the yaw rate [6]. Hence the

effect of road disturbances is minimised.

8, :Resr wheel steering angle

8 8¢ :Front wheel sleering sngle
mi steering .
angle sensor | |] — 8. :FPront whee) steering speed
Front whee| steering angle V :Vehicle speed

N
| I, K1 lmmltlonl Ki(V) w, ;Yo rite
i
v

Vehicle v
speed sensor T

[]

+ 8,
~ Steering speed giln Ka(8¢, V) %}1 Actuator Vehele
o K3 vV, +
L\ m' "
—— N
Yan rate

= seasor —T -
W, Yaw rale proportional)

Ks gtinKa (V)

[__A_‘_V

Figure 3.8 Exemplary 4WS system control block diagram

66

Derivation of Different Automotive Electronic Control Systems & Test Data

A Simulink model of the above system has been devised by the author and is

shown in Figure 3.9.

n0oa
00 4 X
Steeing f ingang
eering angle
e | ol
Font whee! deefing ange
0oDD proportional gain
)
1+
Veide >§ N -
ek '
pocdemr ¢ Qrtined avSaniet
Stessing velodty esting speed conirol
0000 gan
00 X
Yawrate 4’_/— Yawrate
Enor Yavorete propartional control
proportional gain

Figure 3.9 Simulink model of 4WS system

This Simulink model is an exact representation of the block diagram in Figure
3.8. The gain values are not known, so they are arbitrarily set for the simulation, with
the gain shapes maintained.

In order to exercise the systems described above, a set of road test data was

used.

3.3 Road Test Data

The input data for the above control system simulation is produced and
generated based on a road test data. The data was collected by R. J. Ball on 6™ Feb
1992, from driving a Rover Metro around the Rover Emissions test track at Gaydon,
England. The map of the track is as shown in Figure 3.10. The data was collected at
approximately every 0.1s, over the period of 4 minutes. The types of data collected
were time, engine speed, sync manifold pressure, throttle angle and road speed, of
which only time and road speed are of use for the simulation. The rest of the input
data such as steering angle, vertical and lateral accelerations, have had to be generated

based on the available data and the track map.

67

Derivation of Different Automotive Electronic Control Systems & Test Data

N\
N
@ GENERAL LAYBYS (™ // h}
EMERGENCY BOXES & TELEPHONES @ (,/
§E e M 0 » A
RECOMMENDEDMAXIMUM SPEED ? ,’ T o s
1 \/ Y
1
| IR NORTH BEND
P ! % N fudmen
i i e 4)
Direction of travel -
\}
(e i Spagl, of
! [#msh] \\\’\Q?'_-::-:';:_"-::::T::tm—_,. O >
| R b
LS 9 Starting/Finishing Point
s i, S I LRt Tl W SN e S| D bt ——— LT
Lty
\\‘/

TRACK CONTROL REGULATIONS - EMISSION CIRCUIT
0

Y y ¥ MIGE
| ful i fy Ll

GAYDON PROVING GROUND - TRACK LAYOUT
Figure 3.10 Map of Rover’s Emissions test track at Gaydon

3.3.1 Data Preparation

After a small number of spurious errors, which are single zero road speed

samples during high speed driving (believed to be an instrumentation fault) are

removed, the road speed data is produced as shown in Figure 3.11.

Vehicle speed

80

T B R e e

Speed(mph)
-
o
i&
—

iy
Ly

0 50 100 150 200 250
Time(s)

|
k] |
|
|

Figure 3.11 Vehicle speed data produced from road test

68

Derivation of Different Automotive Electronic Control Systems & Test Data

In order to generate other input data, specific information of vehicle position
on the track during the test, have to be established.

From a conversation with the driver, though not specifically remembered, the
likely starting point of the measurement was the general layby area highlighted on the
map. The vehicle was driven in a clockwise direction around the track. The starting
point of measurement is confirmed by the constant forty miles per hour speed on the
road speed plot, indicating the vehicle negotiating the hairpin bend. The bend has a
recommended maximum speed of 40 mph, corresponding to the driven speed. The
first stop, at approximately 105 seconds after the start of measurement was at another
layby area, above the starting point on the map.

A distance plot was made by integrating the road speed data. The graph is
shown in figure 3.12. The plot was used to aid vehicle track position establishment.
From the distance plot, the starting of the hairpin bend (shown as the first ‘o’ on the
plot) is specified as half a mile from the starting point, as measured from the track
layout. The second ‘o’ on the plot indicates the end of the hairpin bend. This is again,
established by measuring the length of the bend from the track map. The next left
hand bend is measured to be 0.8 mile from the hairpin bend. The process is then
repeated to identified all vehicle track positions. The vehicle track positions in curves
are marked with different symbols shown in Figure 3.12. The symbols and vehicle

position relationship is as follows:

between the first and second ‘0’ - hairpin bend

between ‘+’ and ‘x’ - the next left hand bend
between ‘x’ and ‘*’ - north bend

between ‘*’ and ‘[’ - bridge bend

69

Derivation of Different Automotive Electronic Control Systems & Test Data

1
Vehicle speed (mph) plot with track position indication
80
o~ \ I/JA\E""‘;
. / fi pley A
60 ; \‘ Y i .11 o 11 ; ’1‘
H ; i H H
/ bk
40 S z I i
/ AR L
H [H
20 vty s
v b
ol i | il P
0 50 100 150 200 250
Time (s)
Distance travelled (miles) with track position indication
4
° T
2 ../'*/
—_’/_"//"
1 ’e/,e//
0]
0 50 100 150 200 250

Time (s)

Figure 3.12 Vehicle speed and distance travelled with track position indication

3.3.2 Wheel Speed Data

Individual wheel speed data was not available from the road test, so it has been
generated from vehicle speed. The four wheel speeds are based on the vehicle speed
with a slight variations created by an added noise. The noise represents the difference
in speed sensor readings, due to the causes analysed in the fishbone diagram of Figure
3.13.

The following section explains the procedure used to calculate the size of this

noise.

70

Derivation of Different Automotive Electronic Control Systems & Test Data

3.3.2.1 Wheel Speed Noise

driven and non . - road disturbances
corneting variation

A

Speed errors

speed sensor uneven braking tyre between any
/ \ 2 wheels
load size
wheelload pressure wear made

Figure 3.13 Fishbone diagram of the causes of wheel speed difference

The causes and their effects to the wheel speed difference are:
speed sensor. Speed sensors fitted to vehicles are of variable reluctance or hall
effect, and recently introduced magnetic resistance element or optical types [7].
They all produce signals of magnitude or frequencies proportional to their
rotational speed. With the straight relationship between them, the error in
measurements is insignificant compared to other sources.
The driven wheels are subjected to drive torque from the engine. This extra force,
in effect, flattens the tyres more, hence reducing their rolling circumference. The
driven wheels, therefore, roll faster than the non-driven ones during acceleration.
When braking with low gear engaged, the driven wheels are subjected to engine
torque, causing increase in wheel mass moment of inertia. This makes the driven
wheels react slower to changes of braking torque in an unstable braking region
[14]. Since there is no excessive braking, which would cause an ABS system to
operate, in the test drive, all the braking is confined within a stable region. Hence
there is assumed no difference between driven and non-driven wheels during
braking.
road disturbances (bumps). Bumps on the road may cause a wheel to be
temporarily off the ground. The effect is a slow down of wheel speed. Since the
test track is smooth, the effects of the disturbances are expected to be small.
cornering variation between outer and inner wheels. The effect is that the outer
wheels spin faster than the inner ones during bends. This effect is included in the

following section.

71

Derivation of Different Automotive Electronic Control Systems & Test Data

e uneven braking. Uneven braking could cause a particular wheel to decelerate
faster or slower than other wheels, depending on heavier or lighter brake grip and
the road surface. Since the test track is smooth and the test vehicle is in good
condition, the effect of an uneven braking is assumed small.

® tyre

o wheel load. A wheel with heavier load would be flatter to the ground. This
makes it effective rolling circumference smaller, hence turning faster. A
wheel can be subjected to heavier or lighter load than others. Hence the
effect could be either faster or slower speed.

e tyre pressure. An underinflated tyre has the same effect as a heavy loaded
wheel i.e. having smaller rolling circumference, and hence turning faster
than normally inflated tyres. An overinflated tyre has the opposite effect.
Since normal drivers tend to inflate their tyres to a specified pressure and
reinflate when the pressure drops, the tyres are underinflated most of the
time. This results in higher measured wheel speeds, but the effect is likely
to be common to all four tyres.

e tyre wear. A reduction in tyre tread depth means smaller tyre
circumference. The test vehicle was fitted with tyres of specification
155/65 R13. Its radius with no load is (13 x 2.54 x 10) /2 + 155 x 0.65 =
265.85 mm. An approximate maximum allowable tyre tread wear of 10mm
would reduce the wheel radius by (10 / 265.85) x 100 = 3.76%. Hence this
is also the same percentage of possible variation in wheel speed.

e tyre make. Tyres of the same specification made by different
manufacturers will be the same nominal size, but will have minor
differences in rolling radius. The test vehicle was a low-mileage vehicle
owned by the manufacturer and had the same brand of tyre fitted on each

wheel.

3.3.2.1.1 Effects of road disturbances and uneven braking

As mentioned earlier, the variation in wheel speed measurements due to road
disturbances and uneven braking are small, due to the quality of the test track and

vehicle. The effect is, therefore, assumed negligible in the simulation.

72

Derivation of Different Automotive Electronic Control Systems & Test Data

3.3.2.1.2 Effects of different tyre conditions

The wheel speed measurement variation, caused by different tyre
circumstances discussed above, is considered almost constant during a single trip.
This is because the changes in tyre wear, tyre pressure and load can be ignored during
a four minute drive. The effect is assumed small and constant, as considered
previously in a similar work in the literature [15]. A random number from a normal
distribution of mean 1 and variance 0.01 (equivalent to 1% of the wheel speed), is

used as an multiplying offset to a series of the speed measured from each wheel.

3.3.2.1.3 Effects of an engine on the driven wheels

As previously discussed, the driven wheel would roll faster than the non-
driven wheel during acceleration. This is due to wheel slip, which is required to
generate a tractive force between tyre rubber and road surface. Similar to braking, the
amount of tractive force available depends on the tyre-road coefficient of friction.
Consider the slip against friction (tractive) force plot in Figure 3.14, friction force
increases with the greater slip up to the maximum at approximately 15-20% slip on
dry surface according to [12], and 10-15% according to [16]. Beyond this point,
braking or acceleration will enter an unstable region, which if continues, would result

in wheel locking or spinning, respectively.

Dry Road
o
e
L Wet Road
c
0
©
g
w
Ice
OOA) . 10 O,
Free Rolling Slip Locho”

Figure 3.14 Friction force against wheel slip graph
During test drive, there was no extreme manoeuvring, hence the vehicle can be
considered to operate in a stable range at all time. It is, therefore, assumed that the

driven wheel speed data is subject to up to 15% slip.

73

Derivation of Different Automotive Electronic Control Systems & Test Data

Figure 3.15 shows a plot of normalised longitudinal force and wheel slip of
different tyre loads. The longitudinal force and the slip ratio are normalised by
dividing them with the frictional force. Hence the graph can be viewed as a

longitudinal force against wheel slip plot.

1.5

-
(=]

Normalized longitudinal force, Fy
o

o
tn

:O
(4]

t
-
o

-10 -5 0 5 10 15
Normalized slip ratio, S

Load: ©1800lb. © 1400ib. A 1000iD.
x 600lb. + 200b. — Fit
Figure 3.15 Normalised longitudinal force against normalised wheel slip plot
As discussed above, it is assumed that the vehicle tyres are within stable range
throughout the drive. From the plots in Figure 3.14 and 3.15, the longitudinal force
and slip are linear in the stable region. During low to medium speed, all the resistance

forces on the vehicle are omitted, to calculate an acceleration using Newton’s Second
Law [12].

F =Ma
F : longitudinal force
M : vehicle mass
a -: acceleration

A longitudinal force is linear with a wheel slip. An acceleration is, therefore,
linear with a wheel slip. At low to medium speed, the relationship between

acceleration and wheel slip is hence expressed as:

A=c.a (3.3)
A : wheel slip
a : acceleration
C . constant

74

Derivation of Different Automotive Electronic Control Systems & Test Data

Assuming that 15% slip (spin) occurs at the acceleration of 10 m/s%, ¢ is equal
to 0.015. The plot of Figure 3.15 is based on the SAE wheel slip definition, which is
opposite in sign to equation 3.1. By substituting equation 3.3 into the wheel slip
equation, the following equation is obtained:

V.=V, (0.015a+1) (3.4)

Hence the front wheel speed data during acceleration at the speed below 40
mph, is modified from the vehicle speed data using equation 3.4. Acceleration at high
speed driving is subject to significant air resistance force, and other factors such as
tyre pressure. Complex empirical model is needed to approximate the relationship
[12]. Furthermore, during acceleration higher magnitude of wheel slip occurs at low
speed, due to the higher driving torque of low gears. Therefore, at higher speed during
acceleration, the front wheel speed data is modified to have a random slip (spin) of

below 5%.

3.3.2.1.4 Effects of cornering

During cornering the outer wheel speeds are greater than the inner wheel
speeds. The speed difference is calculated from the difference between distance
travelled. For example, during the North Bend cornering:

North Bend is approximated to have half circle shape.

North Bend radius measured from the map = (0.0867 miles

Assuming wheel track = 1.6 metres = 0.001 miles
Radius of outer wheel travel (r) =0.0867 + 0.0005 = 0.0872 miles
Outer wheel travelling distance = 7tr = 0.27395 miles

Inner wheel travelling distance = 0.27081 miles

Average travelling distance = vehicle travelling distance

= (outer wheel travel - inner wheel travel) + 2

=0.27238 miles

Difference between outer wheel and vehicle travels = 24erwheeltravel - vehicletravel)

- x100%
vehicletravel

= 0.5764%
Difference between inner wheel and vehicle travels = 0.5764%
Half of the amount of difference is added to the vehicle speed data during in

North Bend to form the outer wheel speed data. Likewise, half of the difference

75

Derivation of Different Automotive Electronic Control Systems & Test Data

subtracted from the vehicle speed data represents inner wheel speed data. The same
calculation process was also carried out for other bends.

By including the difference in speed between inner and outer wheels during
cornering, and adding small randomly generated noise mentioned earlier, the four

wheel speed data is created as shown in figure 3.16.

Front left wheel speed (mph)
80

60 [f\\wﬁ [/\\ [/‘ '\/”\\/)/\F\\ fn
N, v N
= Wl I

0 50 100 150 200 250

Time (s)
Front right wheel speed (mph)
80

50 A\ VAR Vo Aa
A WA NIV
ol Ay \]

0 50 100 150 200 250
Time (s)

Rear left wheel speed (mph)
80

oo /\\M«/ﬁ fA\ [Fm\/’/ﬁi
N, WAy \
= U7 1

0 50 100 150 200 250

Time (s)
Rear right wheel speed (mph)

80

y A VA I o A
ol [N [Vl M
ol f WA \
L Wl \

0 50 100 150 200 250
Time (s)

Figure 3.16 Four wheel speed data

76

Derivation of Different Automotive Electronic Control Systems & Test Data

3.3.3 Wheel Height Data

Since no information is available for wheel height during the road test, a wheel
height is randomly generated during the drive and set to zero during stops.
Throughout the data, a small amount of noise is added. Figure 3.17 shows the wheel
height data, together with the vertical acceleration data generated from it.

W heel height (m)
0.1

0.05

o hosmn ‘) angnal N f
T A

-0.05

T
-0.1
0 50 100 150 200 250
Time (s 2
Vertical acceleration (m/s®)
0.2

-0.2

0 50 100 150 200 250
Time (s)

Figure 3.17 Wheel height and vertical acceleration data

3.3.4 Vertical Acceleration Data

Vertical acceleration data is generated from the wheel height data. Instead of
taking only the second order derivative of the wheel height data, an average of the
current and three other sample delays is taken, for the vertical acceleration. This, in
effect, smoothes the vertical acceleration data. The vertical acceleration data is
generated using the model shown in Figure 3.18. The vertical acceleration plot is

shown in Figure 3.17.

77

Derivation of Different Automotive Electronic Control Systems & Test Data

s »+
From Fle Desivative Derivativel P+ ' eticel_acoeemtion
E_»@_»@_»: Gaint ToFile

Figure 3.18 Model used to generate vertical acceleration data from the wheel height
data

3.3.5 Longitudinal Acceleration Data

Longitudinal acceleration data is created by differentiating the vehicle speed
data. Before the differentiation, the vehicle speed is converted into metre/second unit.
Figure 3.19 shows the longitudinal acceleration of the test vehicle.

Longitudinal acceleration (m /52)
10

-10 !

50 100 150 200 250
Time (s)

Figure 3.19 Longitudinal acceleration data

3.3.6 Lateral Acceleration Data

A vehicle experiences lateral acceleration when being steered from straight
ahead travelling direction. From the road test, larger lateral accelerations would occur
during cornering. The lateral acceleration of the road test is calculated. All the bends

are assumed parts of circles. Equation 3.5 governs the movement of a particle

travelling in a circle.

78

Derivation of Different Automotive Electronic Control Systems & Test Data

v2 V2
F=ma= m=— Hence a = - (3.5)
: centrifugal force
: particle mass
: lateral acceleration
: particle speed
: radius of the curve

m < ® 3o

The radii of the track bends are known. The lateral acceleration of the vehicle
during bends is, therefore, calculated using the equation 3.5. On straight driving,

lateral acceleration is calculated from the equation 3.6 [12].
Vg

___ Vg 3,
?=573Lg + KV? (36

: front steering angle (deg)

: wheel base (ft)

: acceleration (m/s?)

: understeer gradient (deg/g)
:vehicle speed (m/s)

:gravitational constant = 9.81 (Nm/s)

B LIRS M ;

The lateral acceleration is plotted in Figure 3.20.

Lateral acceleration

Acceleration (m/sz)

0 A Ao A/\f\ " V/\\J\ A

W T T

0 50 10 150 200 250
Time (s)

Figure 3.20 Lateral acceleration data

79

Derivation of Different Automotive Electronic Control Systems & Test Data

3.3.7 Steering Wheel Angle Data

The steering wheel angle data is independently generated for the section of the
drive in bends and on other parts of the track.
During cornering in bends, the steering angles can be found from the equation

3.7 governing the steering angle during high speed cornering [12].

§=57.3 LR +Ka, 3.7)

: front steering angle (deg)

: wheel base (ft)

: radius of turn (ft)

: understeer gradient (deg/g)
: lateral acceleration (g)

NAC o

o
<

From the study by Riede P, et al. [16], statistical data shows an approximately
linear relationship between understeer gradient and vehicle curb weight. The test
vehicle has a curb weight of 840 kg. Its approximate understeer gradient, obtained
from the curb weight against understeer gradient plot, is 2.25 deg/g.

The vehicle wheel base is 2.27 metres [14]. An example of the front steering
angle calculation for during a 60mph drive in the North Bend is as follows:

Radius of bend (R) =0.0867 miles
= 0.0867 x 1600 = 138.72 metres
From equation 3.7, L and R have to have the same unit, so R is converted into metres.
Wheel base (L) = 2.27 metres
From equation 3.6, lateral acceleration (a) = V2 /R = 60% x (1600/3600)2/ 138.72
=5.126 m/s*=5.126/9.81 =0.523 g
Front steering angle (3) =(57.3x2.27/138.72) + 2.25 x 0.523
=2.114 degrees

Using equation 3.7, the front wheel steering angle of the vehicle is calculated
for rides in all the bends.

On other parts of the track, the front steering angle is randomly generated to
be within the scope of the graph obtained from [13]. Lechner, et al. [13] studied the
steering characteristics in relation to vehicle speed, based on measurements from
actual road driving. It shows that as the vehicle speed is higher, the less steering is
made. The relationship is shown in Figure 3.21. It should be noted that in the actual

test track drive, there is much less steering than in actual driving, because there are no

RN

Derivation of Different Automotive Electronic Control Systems & Test Data

sharp turning points as normal streets, nor overtaking manoeuvres. However, the
aforementioned steering characteristic study is used to generate the steering data for
non-bending part of the track, in order to create an exaggerated steering angle data.
The exaggerated steering angle data can demonstrate the 4WS operation at low speed

drive more clearly than a more realistic, almost zero degree steering data.

Maximum front steering angle (deg)

S 388 888 ¢ 9 9

Vehicle speed (mph)

51
54
57

Figure 3.21 Relationship between maximum front steering angle and vehicle speed
Based on this plot, the steering angle is randomly generated within the
envelope of the plot and the x axis.
Combining the front wheel steering angle generated during cornering and the
rest of the drive together, the complete front wheel steering data is plotted in Figure
3.22.

81

Derivation of Different Automotive Electronic Control Systems & Test Data

Front wheel steering angle

Steering angle (deg)

|
oL L] e
f A\

0 50 100 160 200 250
Time (s)

-2

Figure 3.22 Front wheel steering angle data

3.3.8 Yaw Rate Data

The yaw rate during cornering can be found using the equation 3.8 [12]

573g6V

21280V 3.8
"= 573Lg +KV? (3.8)

r : yaw rate (deg/s)
A% : vehicle speed (m/s)
o : front steering angle (deg)
L : wheel base (ft)
K : understeer gradient (deg/g)
g :gravitational constant = 9.81 (Nm/s)
Yaw rate calculation at speed 50mph during the North bend cornering is as
follows:
Radius of turn (bend) =0.0867 miles
Vehicle speed = 50/ 3600 (miles/s)
The distance unit of V and R have to be the same.
Yaw rate =57.3 x (50/3600) / 0.0867
=9.18 deg/s

Outside the bends, yaw rate is randomly generated. Figure 3.23 displays the

yaw rate plot.

82

Derivation of Different Automotive Electronic Control Systems & Test Data

Yaw rate

15

10 (\
ICRE - -
(=]
(4
=
[
‘é /\
2 9 Ao A ofr A W
> \ ‘H \\Q

-5 ¥

-10

0 50 100 1560 200 250

Time (s)

Figure 3.23 Yaw rate data

3.3.9 Whole Vehicle Model

Now all the data required is available. It will be fed into the whole vehicle
dynamic model, and the system response will be used to verify the control system

operations. The whole vehicle model of the dynamic control systems is shown in
Figure 3.24.

83

Derivation of Different Automotive Electronic Control Systems & Test Data

[

longitudinal accelerom eter

Lateral accelerom eter

Vertical accelerom oter

FR Heightsensor

> >

p- L1

Right front

3

Transfer Fcn

Active Suspension

Left front

Right rear

. |> Sum4

i G ain§ -

Fr——— 1 +
Gainé Sums

1
s+1 i:
Transfer Fent f =4~
Gain7

4

Sum 6

Steering
angle sensor

wheel speed

opposite angle gain

>

Steering veiocity

Product

lvi_

M ux

Table2

S-Function3

wheel slip check

S-Functiont

) i R
'—»l veh_speed_cal2 i__ S-Function2 o
Muxt
L S-Function m
Constantt
du/dt
L>+
acceleration_cal)
-
Sum2 Gaint
10
Constant acceleration check

Figure 3.24 Simulink vehicle model of the dynamic control systems

Gain

4W S

Left rear

ABS operating
condition check

>

Steering Output

FL ABS OQutput

| R ABS Qutput

emu

Dem ux

RL ABS Output

RR ABS Output

84

Derivation of Different Automotive Electronic Control Systems & Test Data

3.4 Whole Vehicle Simulation

All the sensor signals produced were input into the whole vehicle model and
the system responses were obtained. For clarity of system verification, ABS, active

suspension and 4WS operations will be analysed separately.

3.4.1 ABS Simulation

The inputs to the ABS are the four wheel speed sensors and the response is the
ABS commands for the four wheel control. The plot of the inputs and the responses,

from the simulation, are shown in Figure 3.25 and 3.26, respectively.

Front left wheel speed (m ph)
80

N P A NN AT)
v [N, AN il V7
ro / oA L/
L o\/ V[i

[50 10
TIim e (s)
Front right wheel sp

160 200 250

eed (mph)
80

.o o yan L o e S, A
v I Wy A T L
o / VoLV \/
L WY il

0 50 100 150 200 250
Tim e (8)

Rear left wheel speed (m ph)
80

.o I yan A ™S AT
.o [[y el LI
o / VoLV \ /
N (WY

0 50 100 150 200 250
h

80

6o I ' S A
v [N [
» V) \

= W

[50 10

Tim e (s)

Figure 3.25 Four wheel speed sensor inputs

85

Derivation of Different Automotive Electronic Control Systems & Test Data

ABS response for front left wheel

1 T ¥ L L]
0
-1 ABS response for front right wheel
1] T T T
0
_1 i -} 1 L
ABS response for rear left wheel
1) Ll T L]
0
-1 1 L 1 1
ABS response for rear right wheel
1 L] T T L]
0
_1 1] L L
0 50 100 150 200 250
Time (s)

Figure 3.26 ABS responses

In this case, none of the wheels show signs of locking, so the ABS does not

activate.

This does not allow ABS operation to be demonstrated during the test data,

hence to demonstrate ABS operation, the front left wheel speed data is modified to

have higher deceleration rate. Its plot together with the front right wheel speed data is

shown in Figure 3.27. The part modified is the deceleration around 100" second. The

ABS responses are plotted in Figure 3.28.

86

Derivation of Different Automotive Electronic Control Systems & Test Data

Modified front left wheel speed (mph)
80

oo S ﬂ WV ey
o L N LNV M

20

0 50 100 150 200 250
Time (s)

Front right wheel speed (mph)
80

60 A\ VAT, VN As
[N\ N v

40

20

0 50 100 150 200 250
Time (s)

Figure 3.27 Modified front left wheel speed to show sign of wheel locking

ABS response for front left whee!

0 50 100 150 200 250

Time (s)
ABS response for front right whee!

0.5

-0.5

0 50 100 150 200 250
Time (s)

Figure 3.28 ABS responses to front left wheel locking

The response plot of the front left wheel demonstrates that when the ABS
detects an impeding wheel lock, it reacts by sending a command to that wheel actuator
to prevent it. During normal braking of the front right wheel, the ABS detects no sign

of locking, and hence leaves the front right wheel actuator inactivated.

87

Derivation of Different Automotive Electronic Control Systems & Test Data

3.4.2 Active Suspension Simulation

For the active suspension system, the three dimensional accelerations and the
wheel height signals are the inputs. Its responses are the four wheel height demand

signals. The inputs and responses are plotted in Figure 3.29 and 3.30, respectively.

Wheel height (m)

0.1
0 o N o i £
a1 e
-0.1

Longitudinal acceleration (m/s?)

. | Hy
0 n Yty LS ST #MWW—VW—%

- Il
10 Lateral acceleration (m/s®) l
10
. [
-10 - - 2
Vertical acceleration (m/s’)
0.2
o TIVAT AN PN e
AN \W\M ot
-0.2
0 50 100 150 200 250

Time (s)

Figure 3.29 Active suspension inputs

88

Derivation of Different Automotive Electronic Control Systems & Test Data

Front left wheel height demand
15

0 _“WWA N AW\ anﬁ.v._' : AL, Wﬂvj"\' -y J Nj

AT
-5
" 1'! ‘ T
10
0 50 100 150 200 250
Time (s)
Front right wheel height demand
15
10 \
5
oL BN |
Y Wirvewy \ wvv’" 2 et and
-5 ¥
-10
0 50 100 150 200 250
Time (s)
Rear left wheel height demand
10
5 4

0 _NMN ¥ v‘ M MJ\M'A_A | y’Jr paTy A‘V'_Aw,‘ w
’

-15

0 50 100 150 200 250
Time (s)
Rear right wheel height demand
10

5 bk

0 _MNV“'"V‘ NV ‘\}"»\qvf\.,.J'A',1 /‘ A’L ~ “',“\m Voo YU %

T ALY W Vv—v‘
V

-15

0 50 100 150 200 250
Time (s)

Figure 3.30 Active suspension responses

Figure 3.30 clearly demonstrates the active suspension responses to
longitudinal and lateral accelerations. The lateral acceleration plot shows that the
vehicle is negotiating two curves starting at approximately 55 and 170 seconds,
indicated by the two rises. The active suspension responds by sending commands to
raise the two left wheels and lower the two right wheels. This would, in effect, make
the four wheel heights even during cornering. As the response to longitudinal
acceleration, the longitudinal acceleration plot between 100-150 seconds is
considered. During that period, the vehicle is subjected to alternate braking and

accelerating, as seen by alternate negative and positive plots, respectively. The active

89

Derivation of Different Automotive Electronic Control Systems & Test Data

suspension responds by issuing commands to raise the front wheels and lowering the

rear wheels when braking, and the opposite when accelerating.

3.4.3 4WS Simulation

The three inputs to the 4WS system, vehicle speed, yaw rate and steering

inputs, and its outputs are plotted in Figure 3.31.

80

Vehicle speed (m/s)

. My

Vel WL
W

/ W
20

Y A WY A
|/

[
WY

16

100 150

Time (s)
Yaw rate (deg/s)

200 250

10

0 __WWM LA A ~ AAA. . o\ AA A
YV RIYVV LA - o Wy "V M
-5
0 5§50 100 150 200 250
Time (s)
Steering inputs (deg)
40
30
20 LV.AWM\
10
0 AM N ~A L ~ A A - L"'ﬁ'\ M _A A
‘Vvv Y had v A ' Dl ’\ , VETY 7 A
10
0 50 100 150 200 250

Time (s)
Steering outputs (deg)

, Il

"l

b

L—ﬁMJL)

A\ A bAoA A
YNV VVV e

0 50

100 150
Time (s)

Figure 3.31 4WS inputs and responses

200 250

The plot shows the two characteristics of the 4WS system. Starting at

approximately 55 and 170 seconds, the front wheels are steered when the vehicle is at

medium to high speed in the bends. This can be seen from both the yaw rate and

90

Derivation of Different Automotive Electronic Control Systems & Test Data

steering input plots. The 4WS responds by steering the rear wheels in the same
direction as the front wheel to increase vehicle stability. During low speed drive, seen
between 0-25 seconds, the 4WS sends commands to steer the rear wheels in the

opposite direction to the front wheels to minimise turning radius.

3.5 Summary

Models of ABS, active suspension and 4WS control systems have been
derived in this chapter to match published descriptions of typical systems. In order to
be able to exercise these systems, basic road test data has been obtained, from which
additional parameters have been synthesised. The simulation shows that the three
exemplary systems function as expected. Their information will then be used in other

models in this thesis.

3.6 References

1. Lambourn R Braking and Cornering Effects with and without Anti-Lock

Brakes SAE No0.940723

2. Masutomi S, et al. Development of ABS and Traction Control Computer SAE

No0.901707

3. Aoyama Y, et al. Development of the Full Active Suspension by Nissan SAE

No0.901747

4. lijima T, et al. Development of a Hydraulic Active Suspension SAE No0.931971

5. Kawakami H, et al. Development of Integrated System Between Active Control

Suspension, Active 4WS, TRC and ABS SAE No0.920271

6. Sato H, et al. Development of Four Wheel Steering System Using Yaw Rate

Feedback Control SAE No0.911922

7. Jurgen R Automotive Electronics Handbook 2" Edition McGraw-Hill, 1999

8. Yokoya Y, et al. Integrated Control System Between Active Control Suspension

and Four Wheel Steering for the 1989 CELICA SAE No0.901748

9. Irie N, et al. 4WS Technology and the Prospects for Improvement of Vehicle

Dynamics SAE No.901167

10. Bischof H, et al. The ECU of A Rear Wheel Steering System 8" International

Conference on Automotive Electronics, 1991

11. Jun C The Study of ABS Control System with Different Control Methods
Proceedings to the Advanced Vehicle Electronics Control (AVEC), 1998

12. Gillespie T Fundamentals of Vehicle Dynamics SAE, 1992

13. Lechner D, et al. The Actual Use of the Dynamic Performances of Vehicles
IMechE C389/283, 1992

14. Bauer H Automotive Brake Systems Bosch, 1995

15. Watanabe K, et al. Absolute Speed Measurement of Automobile from Noisy
Acceleration and Erroneous Wheel Speed Information SAE No.920644

16. Milliken W, et al. Race Car Vehicle dynamics SAE, 1995

91

Vehicle Dynamic Control Electronic Architectures Under Consideration

CHAPTER 4

VEHICLE ELECTRONIC ARCHITECTURES
UNDER CONSIDERATION

The distributed wheel controller and four other automotive dynamic control
architectures were chosen for modelling and comparison purposes. The study and
comparison between these architectures, with regards to their feasibility, advantages
and disadvantages in the aspects explained in Chapter 1, will be described in the
following chapters. The other four architectures were selected because of their current
popularity or potential for the future as suggested in literature. They will each be

described in this chapter.

4.1 Conventional Centralised Architecture
(Architecture 1)

Before the introduction of networking, this was the only architecture of car
electronics. The architecture is still the most commonly applied architecture at
present, especially in medium and small-sized cars. It is, therefore, chosen to be the
basic model for comparison. Electronic control systems here contain centralised
ECUs. The ECUs are linked with corresponding sensors and actuators via dedicated
wire links. Each type of data transfer between ECUs are also through these individual

links. The model of the conventional centralised architecture is shown in Figure 4.1.

92

Vehicle Dynamic Control Electronic Architectures Under Consideration

from ABS peripherals 1o ABS gerlphere_:‘ls
from syspension peripherals to suspension pen'pgerals
H .

> B5-susp % Active

l¢——-datatinks— .
ABS ECU — Suspension
P — ECU
N f suspension-4WS ABS-other ECUs suspensfontother ECUs
ABS - qWE data links data links data links datallinks

4WS-other ECUs

» 4WS ECU YTy other ECUs

ko 4WS peripherals
—>

a vehicle

Figure 4.1 Conventional centralised architecture

4.2 Conventional Centralised with Limited CAN
Interaction Architecture (Architecture 2)

This architecture is currently gaining popularity along with networking, and is
believed to be the most common system of the near future. It represents how
networking is applied in modern vehicles. In this architecture, all the electronic
systems are of conventional structures, each with an ECU at the control centre
dictating its peripheral hardware. A network bus is introduced to replace hard wires

for data sharing among ECUs. The system is as shown in Figure 4.2.

from ABS peripherals Active from suspension peripherals
to ABS peripherals ABS ECU Susggrcjsion to suspension peripherals
t network bus t
& »
trom engine peripherals Engine from Its peripherais
Managemen from 4WS, 4WS ECU o 4WS other ECUs
to engine peripherals YECU peripheral peripherats to its peripherals

v

a vehicle

Figure 4.2 Conventional centralised with limited CAN interaction architecture

93

Vehicle Dynamic Control Electronic Architectures Under Consideration

4.3 Total Centralised Architecture (Architecture 3)

This architecture follows an idea of integration to reduce wiring and number
of devices, by combining a number of ECUs into a single unit. In practice, it started
by integrating engine management system and transmission control ECUs into one
unit. It could expand further to combine other dynamic control ECUs which are in the
same geographical area [1]. This is an alternative architecture for the future. The
combined ECU would control all the related systems and may share data with other

ECUs via networking. A diagram of the architecture is as shown in Figure 4.3.

From ABS peripherals | ~omnined ABS & | T2 ABS peripherals

From suspension peripherals Active To suspension peripherals .

From 4WS peripherals S‘Rsesn;g‘j & To 4WS peripherals >

I network bus
Engine &
Transmission other ECUs

ECU

a vehicle

Figure 4.3 Total centralised architecture

4.4 Conventional Centralised with Functional
Integration Architecture (Architecture 4)

This architecture is based on the existing Architecture 2 with enhanced vehicle
control performance. The concept initiates interests and research in many ECU
developers and car manufacturers [2-5]. Each control system has its centralised ECU
to command its operation. There exist smart sensors and actuators in each system,
which contact the ECU via a network bus. By doing so, more data from each system
is available to other ECUs. There are also more interactions between ECUs. This
enables more functional integration among control systems, such as combined brake,
suspension and steering control during cornering. The system diagram is displayed in
Figure 4 4.

94

Vehicle Dynamic Control Electronic Architectures Under Consideration

Active
Front . Rear
smart ABS ECU SusEpce;rEszn smart
sSensors sensors
t t network bus t t
3 $ $!
Front Rear
smart 4WS ECU other ECUs smar
actuators actuators
a vehicle

Figure 4.4 Conventional centralised with functional integration architecture

4.5 Distributed Wheel Controller Architecture
(Architecture 5)

In this architecture, a combined ABS, 4WS and active suspension control ECU

for each wheel is situated near to that wheel. Each Wheel Controller (or Distributed)

ECU would also be integrated with the wheel sensors and actuators to form a single

unit. The Central ECU would provide some share sensor data and monitor the Wheel

Controller ECUs. The four wheel controllers are linked to other ECUs by a network

bus as shown in Figure 4.5.

95

Vehicle Dynamic Control Electronic Architectures Under Consideration

Front right Rear right

wheel Central ECU wheel
controller controller

Front
network bus
<}: < >

Front left Rear left

wheel other ECUs wheel
controller controller

a vehicle

Figure 4.5 Distributed wheel controller architecture

4.6 References

[e—

. Emaus B Aspects and issues of multiple vehicle networks SAE No. 950293

2. Kiencke U Integrated Vehicle Control Systems IFAC Intelligent Components

for Autonomous and Semi-autonomous Vehicles, 1995

3. Schmidt E, et al. Required elements of integrated vehicle control systems SAE

No.901170

4. Wallentowitz H Scope for the integration of powertrain and chassis control
systems: Traction control - All-wheel drive - Active suspension SAE

No.901168

5. Tanaka H, et al. Development of a Vehicle Integrated Control System ImechE

C389/220, 1992

96

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

CHAPTER 5

ELECTRONIC ARCHITECTURE FEASIBILITY
STUDIES ON HARDWARE REQUIREMENTS AND
CAN MESSAGE DELAY

5.1 ECU Hardware and Performance Requirements

This chapter is intended to address the feasibility of the five alternative vehicle
electronic architectures described earlier; specifically the requirements on the
microcontrollers that will control the ECUs. Computing performance and electronic
interface specifications are estimated for these. In addition, the data transfer time
associated with CAN implementation on different architectures is studied. These two
studies provide more details on electronic characteristics of these architectures, as
well as indicating their relative feasibility for implementation.

The work in this thesis concentrates upon electronics hardware aspects of the
vehicle electronic architectures. Since ECUs and especially microcontrollers are at the
hearts of these systems, their characteristics in particular should be examined.
Furthermore some architectures such as Total Centralised (Architecture 3) have not
been previously implemented, hence it is useful to verify its possibility and evaluate
its likely contents. An important characteristic of CAN is its timing, which is crucial
to these safety related control systems. The high speed (class C) intra and inter system
data transfer is required to be within specified time limits, so that up to date data can

be used for vehicle control tasks.

5.1.1 The Vehicle System Design Process

ECU requirements specification setting is the first part of the ECU
development process. This stage is followed by electronic architecture design,
implementation and test [4]. In the conventional way of ECU development up till
now, the functional specifications including the control algorithms and time and

accuracy requirements of the ECUs are specified by a development team [5]. These

97

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

specifications are passed on to the ECU developer, who selects the ECU hardware
including a microcontroller, and programs it to perform the specified functions. The
ECU hardware as well as the functional design are experimentally tested and
corrected until the development team is satisfied. In the new ECU development
process, its functions are tested by simulation until satisfied before a pilot ECU is
constructed and tested. This enables development time saving [6].

In both conventional and recent ECU development processes, the hardware
specifications including those of the microcontroller, are determined after the details
of the ECU functions and requirements are made. These complete ECU functional
details, which includes all the I/O signals required, control and diagnostic algorithms,
are enough to specify the hardware as well as developing the software of the ECU.

In this thesis, detailed ECU specifications are not available for the existing
electronics architectures and are non-existent for the future and proposed
architectures. The only available information is the functional description of each
control system, which can be obtained from the literature.

In order to estimate the required hardware specifications of the ECUs of these
future electronic architectures, an initial estimate is made based on the performance of
existing control ECUs. Thus, if the accuracy of the prediction can be determined from
considering a known ECU, and any necessary correction factor established, this same

factor can then be applied to calculations for future systems.

5.1.2 Hardware Performance Estimation of Known ECUs

As mentioned above, the objective of work described here is to estimate the
time taken to perform a specific control task by a known ECU. This is carried out by
studying the function of the ECU and derive a program pseudo code to execute the
tasks. Since the type of microcontroller used is known, so is its timing specifications
for each op code. Hence the total time the microcontroller requires to perform the
tasks can be estimated. An actual response time can also be measured experimentally.
The two results are compared and errors identified. The technique can then be used to
estimate the performance required of other control ECUs of different electronic

architectures, taking the same errors into account.

98

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.2.1 Response Time Calculation

Different microcontrollers require particular numbers of operating cycles for
each instruction. To calculate the time they take to perform a task, the total number of
times each instruction is to be executed is counted. These sums are the universal
platform for microcontroller response time calculation. They are multiplied by the
number of execution cycles of the corresponding commands of a microcontroller. The
sum of these products is a total number of execution cycles that a specific
microcontroller requires to do the task. The execution time is then the product of the
total number of execution cycles and the execution cycle time. Equation 5.1
represents the calculation process.

T =T.. tcye (5.1

Where T = (n.c; + nz.co+ ... + np.Cp)

T - control execution time

T, - total execution cycle count

ny - number of times an instruction is to be run

Cx - number of execution cycles a command takes

tcyc - a microcontroller execution cycle time

The two ECUs studied in this work were an air suspension control and a cruise
control ECUs. They were chosen due to the hardware availability and availability of
design documentation, and were slightly less complex (in term of code) than the
future systems.

The next section will describe the work on both ECUs.

5.1.3 Cruise control ECU Experiment

The ECU examined was the cruise control ECU part no. SGA 004 397
developed by Hella, fitted to Range Rover vehicles. The microcontroller used in the
ECU was a Toshiba 8-bit equivalent of the Intel 80C49, running at 8 MHz [3].

From the Range Rover Workshop Manual, the cruise control system functions
are as follows [1]:

e when SET is pressed and the cruise control is not in the cruising mode, the cruise

speed will be set and the cruise control will start to maintain vehicle speed at that

99

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

constant set speed. The cruise speed will be set provided that the vehicle speed
exceeds 28 mph.

e when SET is pressed during the cruising mode, the cruise control will accelerate
the vehicle by operating the motor that opens the throttle. Once the SET button is
released, speed increase is stopped, and the cruise control sets the cruise speed to
the current vehicle speed.

e when RES is pressed during cruising mode, the cruise control operation will be
disengaged

e when RES is pressed again, the cruise operation resumed, with previously set
speed restored.

e at any time during its operation, the cruise control will be disabled when either a
stop lamp switch is on, or the vehicle speed drops below 28 mph.

e other driver’s controls such as accelerator and clutch pedals depression, non
forward gearbox, and out of range engine speed can also disable the cruise system,
but they are monitored by the Body Electrical Control Module (BECM). Once any
of these conditions occurs, the BECM will simply cut the cruise control power
supply. Hence they are outside the scope of the cruise control.

This moding is shown in a state transition diagram in Figure 5.1.

RESUME

Figure 5.1 Cruise control state transition diagram
SET cruise control sets current speed as set speed and maintains constant set speed
RESUME cruise control restores previously installed set speed

ACCELERATE cruise control accelerates while SET is pressed

OFF cruise control stops vehicle speed control

100

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.3.1 Throttle Actuator Operations

The throttle actuator consists of a vacuum pump motor and solenoid. Their
operations are [1]:
e Open throttle when the pump motor operates, air pressure is applied to the
actuator to open the throttle.

e Constant throttle during operation, the normally closed solenoid valve is closed to

keep the throttle angle constant.
e Close throttle the solenoid valve is released when the throttle is to be closed,
letting the air out of the cylinder.

The operation is illustrated in Figure 5.2.

air pump

>< vehicle throttle
. Open throttle
solenoid
. Constant throttle
solenoid
‘___.
+«— +—
Close throttle
solenoid

Figure 5.2 Cruise control motor and solenoid operations

5.1.3.2 Estimation Method

The parameter that was chosen as the basis of the comparison between
theoretical and practical results, was the systems response time to the two cruise
control switch inputs, ‘SET’ and ‘RES’. These two switches are used to initiate

vehicle cruise control. The comparison of the two results would show what level of

inaccuracies the method incurred.

101

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.3.3 Theoretical Response Time

The response time of a cruise control unit, to the two stimuli, can be estimated
by looking into the program instruction level of the microcontroller. The estimate is
made by first studying the cruise control functions derived from the data sheet in
Figure 5.1, and then drawing the equivalent program structure. It is acknowledged that
from the functions, a variation of program structures could be drawn. However, it is
assumed that the most calculation intensive, hence most processor time consuming
program part, which is the vehicle speed control algorithm is essentially the same.
Variations in other program parts are hence believed to have little effect on the overall
response time. Having completed this estimated program structure, the equivalent
machine code instructions can be deduced. The individual instruction execution times,
provided in the microcontroller data sheet, can then be used to estimate the total time
taken for program execution, and hence the response time. The assumption is made
that all moding is handled by the microcontroller i.e. the surrounding logic performs
only very simple operations, such as inverting/combining signals, or storing results
(latches), and that the estimated program structure matched that which was actually
used.

From the cruise control functions written earlier, the program flowchart is
deduced as shown in Figure 5.3. The coloured lines are response time measurement
guidelines, and processes in bold indicate changes in states of input or output, hence

detectable.

102

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Cruise control flowchart

Set

status On—

[

opd current /
speed

ncrease throttle No

demand | N
/ Load current / / Load current
speed speed
Lpad prev
Hef speed
eh spee - P,
n range ?, N >
Yep
l Disengage
| | cruise
-
N » '
No
response to SET Status off >
response to RES 7
Yes
motor and
No f
f
calculate and
send throttle
demand

Speed Interupt)
Pulse | -Fetch and continue program
calculate veh
speed

Figure 5.3 Cruise control operation flowchart

From Figure 5.3, the calculation intensive and hence the most time consuming
section is the throttle demand calculation, which involves finding the speed error and
applying the speed control algorithm. This is expected to take significantly more of

microcontroller time than others. It will thus be considered in more detail.

103

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.3.3.1 Throttle Demand Calculation

The proportional and integral control algorithm is widely applied in cruise
control and is assumed that it is also used in this particular system [2]. The control

algorithm is governed by the equation 5.2:

M
d = ern + Kl ZE"—M
m=1

(5.2)
d - throttle demand
Kp, Ki - constants from the lookup table
e(error) - difference between vehicle speed and cruise set speed
M
Z E, . - sum of the M previously calculated errors
m=}

Note that in the system being examined, the vehicle speed signal comes from
the ABS ECU via the Body Electronic Control Module (BECM), in pulse form [1].
The signal is scaled so that 8000 pulses are equivalent to distant of 1 mile, and the
pulse frequency is proportional to the vehicle speed. Hence at vehicle speed 1 mph,
the frequency of the speed signal is:

8000 + (60 x 60) =2.22 Hz

The speed signal used in calculation is assumed in Hertz as shown above,
since it is directly proportional to the actual speed.

The pseudo code for the calculation part, as well as other program parts are
shown in Appendix A.

The pseudo code has then been converted into program code for the specific
processor used, shown in Appendix A. From the microcontroller 80C49 data sheet,
the instruction execution cycles were obtained and the total program execution time
was calculated. In this case, the estimate of the total time taken by the microcontroller

to respond to the switch inputs ‘SET’ and ‘RES’ was 2.65 ms.

104

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.3.4 Practical Measurement of Response Time

A set of practical measurements were then made using a real cruise control

ECU to reproduce the theoretical estimates as closely as possible.

5.1.3.4.1 Circuit Connection

The cruise control circuit was then connected to a simple test jig for
measurement of the same timing parameters. The connection was as shown in Figure

54.

Cruise Control ECU

1 3 4 5 6 7 8 9 10 11
A A A A A A
4 4 1
12

SET RES Stop lamp Brake
on/12V on/12V on/12V onsov vV JUUL
offflov Off/ov off/ OV off / 12V Vehicle speed

Solenoid /] M Motor

»-
»

Figure 5.4 Cruise control experiment circuit connection
The equipment used in this experiment was as follows:

¢ To observe if the motor and solenoid were being switched on, they were replaced

by LEDs
e toggle switches were connected as brake and stop lamp switches
¢ ‘SET’ and ‘RES’ were controlled by button switches, fed from a 12V supply
¢ vehicle speed signal was represented by a square wave from the signal generator.

o the logic analyser and a digital oscilloscope were used as measurement tools.

105

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.3.4.2 Identification of Internal Connections

In order to be able to identify the response of the microcontroller, rather than
any external filtering or timing circuits, the ECU was opened and an inspection was

made of the microcontroller connections. The results were:

SET (ECU pin 3) corresponds to 80C49 pin 12 (BUS bit 0)
RES (ECU pin 4) corresponds to 80C49 pin 17 (BUS bit 5)
Motor (ECU pin 7) corresponds to 80C49 pin 32 (Port 1 bit 5)
Solenoid (ECU pin 6) corresponds to 80C49 pin 28 (Port 1 bit 1)

Veh Speed (ECU pin 11) corresponds to 80C49 pin 6 (Interrupt)

Figure 5.5 shows the internal connection diagram.

=
— 1 40 —
—1 socas [
Veh speed INT —
- P7 |

—] . motor

— Port1. |—
SET B0 —

— . solenoid
] Po —
-— . BUS —
RESET —
— i37 L
— 20 21 —

Figure 5.5 Cruise control microcontroller connections
The vehicle speed input thus causes an interrupt to the controller program on

every pulse. The clock speed of the microcontroller was verified as being 8 MHz.
5.1.3.4.3 Measurements

Measurements were taken of the response time taken for the output signals to
motor and solenoid to change state after one of SET and RES buttons was pushed.

The measurements were taken as being the time delay between button pressed
and a change in motor or solenoid output, according to the coloured guidelines in the
flowchart shown in Figure 5.3. The results were compared to the prediction model.
For each measurement, the timing was repeated over 30 samples to ensure
consistency, and any apparent dependency on vehicle speed was investigated. It was,

however, believed that despite the use of interrupt to measure vehicle speed, the effect

106

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

of vehicle speed on response time would be minimal. This is because from the pseudo
code in Appendix A, the vehicle speed calculation would take less than one hundredth
of the predicted response time to switch inputs.

5.1.3.4.3.1 Response Time when SET (blue line on Figure 5.3)

The response time was measured between the point that ‘SET’ is pressed to
store and maintain the current vehicle speed, and when the control signals to motor
and solenoid change state.

The measurement was made when ‘SET’ button was pressed to set the cruise
reference speed for the first time.

The logic analyser was set to trigger the change in SET button signal. Its

internal clock was set at 5 kHz. The waveforms are displayed in Figure 5.6.

Pulse response
I‘_ time Solenoid

SET response time—'l

|<—Motor response time——-———»|
Motor _'
Solenoid J

Figure 5.6 Waveforms when SET is pressed

It can be seen that a short pulse is applied to each motor and solenoid initially,
followed by full actuation several milliseconds later.

The hypothesis is that solenoid and motor are diagnosed by the ECU by
sending a test signal, a short negative-going pulse, to check the two actuators. If they
pass this check, they are then turned on by the falling edge a short time later. The
three periods of time were measured at different cruise set speed and plotted as

illustrated by Figure 5.7, 5.8 and 5.9.

107

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Pulse response time when SET

80

70 I 1 I I 1

m 30mph
i f (mean=53.7ms,
SD=15.6ms)

60

50—

W 50mph
40 4 -

i
} B | | I Il (mean=55.3ms,
SD=13.7ms)
Lt I [080mph
(mean=54.6ms,
20 4 SD=15.3ms)
10 - HEl | HE - HEll |-
0 - . . 4

12 3 45 67 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
measurement

Time (ms)

Figure 5.7 Pulse response time to SET command

Solenoid response time
80

70 |

60 = B 30mph

(mean=57.1ms,
50 Z y § 4l W0 | SD=4.3ms)
W 50mph
e (mean=49.6ms,
SD=1.4ms)
30 |
0O80mph
20 H B (mean=42.7ms,
SD=0.4ms)
10 H "
0 Ly . L + 4

1 2 3 4 5 6 7 8 9 1011 12 183 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
measurement

time (ms)

Figure 5.8 Solenoid response time

Motor response time

140

120 - S - . L i T ey
0 l 30mph
(mean=120.6ms,
% SD=2.0ms)
80 M 50mph
(mean=111.2ms,
60 SD=2.4ms)
0 80mph
40 (mean=111.7ms,
SD=1.7ms)
20 |
0 - J i

123 4567 8 91011 12131415161718192021222324252627282930

time (ms)

measurement

Figure 5.9 Motor response time

108

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

It can be seen from Figure 5.8 and 5.9 that the motor and solenoid response
times are consistent and dependent on cruise set speed, especially the motor response
time. However, Figure 5.7 displays a wide range of response time, which varies
irrespective to cruise set speed. It ranges from 28 - 76 ms. From the prediction model,
it should only takes approximately 2.65 ms. The response time and vehicle speed
relationship of the pulse and solenoid responses can be observed more clearly in the
scatter plot of Figure 5.10 and 5.11. It can be seen that the motor response time is
almost exactly twice that of the solenoid, suggesting the two events are similar and
carried out serially. The relatively level mean line in Figure 5.10 suggests that the
pulse response time is independent of vehicle speed, as opposed to the sloped mean

line in Figure 5.11 which indicates speed dependency of solenoid response time.

Scatter plot of pulse response time

80 1

70 % * z

60 L i |
2 50 : 4 z | —=—red line =
= ’ i calculated
o 40
£ - $ f mean
i= 30 ¥ 3

20

10

0 -

20 30 40 50 60 70 80 90

Vehicle speed (mph)

Figure 5.10 Scatter plot of pulse response time

109

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Scatter plot of solenoid response time

90 -

80 ;
1
70 ’
60
g 50 95 T s [
= — | || —=— red line =
g 40 b | calculated
= mean
30 '
|
20
10
h |
20 30 40 50 60 70 80 90

Vehicle speed (mph)

Figure 5.11 Scatter plot of solenoid response time

5.1.3.4.3.2 Response Time when RESUME (red line on Figure 5.3)

When ‘RES’ is pressed after the cruise control is disengaged, the system will
resume its cruising operation at the previously set cruise speed.

The measurement follows the operation shown by the red line in Figure 5.3.
The response time was predicted to be almost equal to the response to ‘SET’ in the
earlier section, which took approximately 2.65 ms, according to the model. The signal
waveforms and the response time measurement are as shown in Figure 5.12 and 5.13,
respectively.

!‘—Response time—-|

RES —

Motor

Solenoid

Figure 5.12 Signal waveforms when ‘RES’ is pressed

110

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Response time to 'RES’ (resume cruise control)
Time (ms)
80 -
70 = [.‘, Il . | m30mph
f (mean=51.7ms
60 ! = I | I SD=15.2ms)
50 B 3 m50mph
40 1 ol (mean=48.4ms,
SD=13.7ms)
30-
20 0080mph
(mean=54.9ms|
10 b SD=13.8ms)
0
123456 7 8 9101112 1314151617 18 1920 21 22 23 24 25 26 27 28 29 30
Measurement

Figure 5.13 Response time to SET (after cruise disengaged)

From Figure 5.13, the response time is inconsistent, ranging from 23 to 76ms.
It is much more than that anticipated by the model at 2.65ms. The vehicle speed, as
predicted, has virtually no effect on the response time, since the average response
times measured at different vehicle speed were within 15% of one another, with the
overall average response time of 52 ms. However, these comparable averages indicate
that the program loops to perform these tasks are comparable in terms of time taken,
as it would be expected from the model. The average response time is also
comparable to the average pulse response time to ‘SET’ (Figure 5.7). This similarity
of response times, again, was expected from the model.

From the range of measured response times, it is likely that a non-interruptible
task, of length 53ms, is also being handled by the processor. If the SET input occurs
near the start of this other task, a 53ms delay is incurred. If the SET input occurs near
the end of this other task, a negligible extra delay is incurred. However, there is still a
23ms overhead on every occurrence of the input signal.

The wide range of response times was thought to be partly due to the variation
in measurement starting points, due to the probable cyclical nature of software.
Although it was assumed to start from the top of the flowchart in Figure 5.3, it could
in fact start anywhere in the calculation loop. From the flowchart, the state of the
button is monitored once in each loop. If it is pressed while other tasks are performed,
the controller will not detect it until it completes all the loop functions and looks at the

button.

111

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

In order to investigate this, an additional measurement was made to compare

solenoid response times to ‘RES” input when disengaging cruise control.

Response Time to ‘RES’ (disengaged cruising)

When ‘RES’ is pressed while the cruise control is operating, the system
disengages. The response time was measured between the change in ‘RES” input and
the solenoid response. A comparison can be made between two different experiments,
using manual switch input and solenoid signal feedback connected to ‘RES’. As
discussed earlier, in the former case the ‘RES’ input is controlled manually. The input
is thus received at an arbitrary point in the software loop. Whereas in the latter case
the input is switched on at the change of solenoid control signal, which occurs at a
certain point in software. This comparison between the two cases can indicate the
effect of the variation in the measurement starting points.

The response time to ‘RES” controlled manually is shown in Figure 5.14.

Response time to manually controlled 'RES’
(disengage cruise control)

80 4
70 : r = I | | I .SOmph
ﬂ (mean=51.7ms,
60 = = i R SD=15.2ms)
> 50 = = S W 50mph
E P | (mean=48.4ms,
g SD=13.7ms)
= 30]
0 80mph
20 (mean=54.9ms,
SD=13.8ms)
10 S i A |
0

1 23 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Measurement

Figure 5.14 Response time to manually controlled ‘RES” (disengage)

The solenoid control feedback to ‘RES’ was done by first connecting it to a
simple BJT switching circuit to invert the output, since the solenoid control and ‘RES’
input signals had opposite on/off status. The inverted solenoid control signal was then
connected to the ‘RES’ input pin.

The response time to the solenoid signal feedback controlled ‘RES’ is shown

in Figure 5.15.

112

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Response time to solenoid feedback controlled 'RES’

(disengage cruise control)
80 4

70 Ml

60

Ti 50
me

(m
s)

| [m30mph
| (mean=40.6ms

(mean=44.6ms
SD=10.4ms)
O80mph
(mean=40.8ms
SD=10.9ms)

40

30

20

10

0 4
1 2 8 4 5 6 7 8 9 10 11,12 1814 15 1617 18 18 .20 21 22 23’ 24 .25 268 27 28 29 80

Measurement

Figure 5.15 Response time to ‘RES’ (disengage), controlled by solenoid signal

From Figure 5.15, the range of readings obtained are smaller than those when
using manual ‘RES’ switch, as seen from the reduction in standard deviation (average
reduction of 5.4ms). It also has 9.5ms shorter average time. This demonstrates that
there is a certain point in the software, at which the microcontroller monitors the
states of button inputs.

It is noted that the response time to manually controlled ‘RES’ (Figure 5.14)
has very similar mean and standard deviation, to the response time to initial ‘SET” and
resuming ‘RES’ in Figure 5.7 and 5.13, respectively. The two latter response times
were expected to be significantly longer because of having larger number of
processes, including the time consuming actuator output calculation process, as shown
in Figure 5.3. This could suggest that the calculation process is carried out as part of
the software loop regardless of the state of switch input.

Overall the measured response times of the cruise control ECU are much more
than the predicted ones. This can be attributed to several factors, as will be discussed

in the analysis.

5.1.3.5 Analysis

The measured results above are different from those predicted by the
predicting model of the equivalent ECU operations. There are three possible causes to
differences between measured and predicted results. These can be categorised as:
® measurement errors
* external effects (test jig)

® internal effects (ECU)

113

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

They will now be discussed.

5.1.3.5.1 Measurement Errors

Measurement error can be a result of defective or improperly calibrated
equipment. The equipment involved in the experiment, signal generator, oscilloscope
and logic analyser, was checked, as described below.

The oscilloscope probes were calibrated before the start of the measurement
The two oscilloscopes, digital and analogue, gave the same measurement results on
both frequency and voltage. When tested on a known source signal, they were shown
to be accurate to within 3% on the test signal.

Next the signal generator frequency calibration was checked, by using an
oscilloscope to monitor frequency of a signal generated. The frequency range is
within £ 1% of the setting, which is considered acceptable. The voltage control knob
was also found to be working in order.

Finally, the logic analyser was examined by measuring the cruise control
response time, using both a digital oscilloscope and the analyser. The two results were
within £ 1% of each other. They are hence considered sufficiently precise.

From the above examination, measurement error can then be assigned a

maximum value of 3%.

5.1.3.5.2 External Effects

External effects include a variation in performance of other components
associated with the microcontroller and cruise control ECU.

During the experiment, all the components and signals connected to the ECU,
such as vehicle speed signal and switch status, were controlled so that their conditions
were identical for repeated measurements.

The signal generator accuracy has been confirmed, but another possible effect
may be from the switches. Mechanical switches have a contact bounce time, when
pressed, before they settle to one state. This bounce time was measured for the
switches used and was found to be between 130 to 650 is. This time duration was

negligible compared to the response time of tens of milliseconds.

114

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

A relay in the ECU also has the effect on the response time but its maximum
delay is measured to be approximately 1 ms. This is again, negligible compared to the

duration of response time. Hence the major effect is unlikely to lie in this area.

5.1.3.5.3 Internal Effects

It is very likely that the unknown program in the microcontroller has a
significant effect on the response time of the cruise control. The wide range of
response time obtained, indicates a possibility that the microcontroller was executing
a certain program loop when SET or RES was pressed. It would complete its current
task before responding to the input. The response time obviously depends on at which
point in the loop, a button is being pressed. If it is near the start of the loop, the
response will be longer. On the other hand, if it is near to the end, the microcontroller
quickly finishes the loop and thus gives fast response. The experiments on manually
and solenoid signal feedback controlled ‘RES’ switch demonstrates this possibility.

The underestimated actuator control signals may result from the different
control algorithm adopted, or it could also be different calculation methods employed
to get the results. The resolution of inputs and outputs also has effect on calculation
time.

The model does not take the self and peripheral device diagnostic times into
account simply because the methods used is unknown and entirely up to the software
designer. If there were such tasks, they would take a significant amount of the
microcontroller time.

The software may be designéd to allow for mechanical delays in the cruise
control system.

Although the switch bounce itself is very short, it is highly possible that the
software allows ample time for switch debounce for safety purpose. It is found that
another software design has a switch debounce time of 30ms [5]. This assumption
could be used to explain the response times measured in these experiments. The
response time to ‘SET’ (to initiate cruise control), shown in Figure 5.7, ranges from
28-76 ms. If the software design is consistent with that of [5], the switch debounce

time could be approximated to be as much as 20 ms.

115

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

The error may also be due to the spare capability of the controller, which
results in it being idle. In this case, the controller operates slower than estimated, since

it is programmed to waste time on irrelevant tasks such as counting a delay loop.

5.1.3.6 Cruise Control Experiment Conclusions

From the measurement of the cruise control actual response time to switch
inputs, the ECU was seen to take approximately twenty times the predicted response
time, plus the probable switch debounce of approximately 20ms. The difference is
believed to stem from the external and internal causes mentioned above. These can be
summarised as follows:

* unknown software structure and the algorithm adopted by the designer

e microcontroller idle time to keep software timing structure

¢ allowance for mechanical component delays

¢ diagnostic procedures also being carried out by the processor

However, certain aspects of the cruise control operation seem to agree with the
predicting model, as seen from the experiment. Those include:

o the average response time to the two inputs, SET and RES, are comparable,
suggesting that the two are subject to similar control loops.

e the ECU monitors the state of the switches at one point in the loop. This is seen
from the smaller deviation in response time when the output signals are used as
switch inputs, to synchronise the measurement.

¢ vehicle speed has no effect on the response time of the ECU.

The above information learned from this experiment will be used in the next

experiment and also in comparing electronic architecture requirements.

5.1.4 Air Suspension ECU Experiment

The second control system that was chosen for analysis was the air suspension
system fitted to the Range Rover model year 1999.

This system is used to provide a soft and comfortable feel to a vehicle ride. Its
function is to keep the four corners of the vehicle level, using air pressure. It consists
of the following elements, air reservoir and air compressor which provide system air

supply and maintain air pressure, four wheel height control valves, inlet and exhaust

116

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

valves for wheel height control. Other than keeping 4 corners level, the ride height is
also adjustable by the use of control buttons, UP and DOWN, to select between 4
different heights. The four heights in ascending order are ‘ACCESS’, ‘LOW’,
‘STANDARD’, and ‘HIGH’.

During normal riding conditions, the four corner heights are constantly read
from the sensors. The corner with the highest deviation from the required height
according to the ride state, is corrected by means of opening that corner valve together
with an inlet or exhaust valve to raise or lower down the corner, respectively.

The suspension system also responds to driver’s inputs (‘UP’ and ‘DOWN’
buttons) and changes ride heights accordingly. When either a brake or door switch is
on, the change between ride heights will be temporarily suspended.

Details of the software controlling the ECU were obtained from [1,7] and are
described in the following section. The ECU contains a Motorola 8-bit
MC68HC705BS microcontroller, running at 4 MHz, as its central processor.

As in the previous experiment, the air suspension ECU response time to the
switch inputs is predicted from its software specifications and compared to that

actually measured experimentally.

5.1.4.1 Theoretical Response Time

5.1.4.1.1 Software Execution

From [1,7], the software cycle showed a simple timing structure, but did not
employ a bespoke Real-Time Operating System (RTOS).

The software cycle is fixed at 10ms and is controlled by 20 interrupts, with a
space of 0.5ms between them. The software is split into two main tasks: Synchronous

and Sequential jobs.

5.1.4.1.1.1 Synchronous Job Modules

The synchronous jobs are to check the battery voltage, reset watchdog timer,
control the triangular waveform supplied to the height sensors, and read the height
sensor outputs. An interrupt is generated every 0.5ms, to start the synchronous tasks.
Some of the jobs have no associated function (“Null job”), but exist to maintain the

software timing structure.

117

Electronic Architecture Feastbility Studies on Hardware Requirements and CAN Message Delay

As shown in Figure 5.16, each synchronous job is initiated after an interrupt
every 0.5 ms. The synchronous jobs at time O and t ms, between 4.5 and 5.5 ms, of
each software cycle are to control the timing of the triangular wave used to drive the
height sensors. The synchronous jobs at time 3, 3.5, 4, 4.5, 8, 8.5, 9, 9.5 ms of each
cycle read the height sensor inputs. Wheel height is taken as being proportional to the
amplitude of the square wave sensor output. In order to minimise the effect of noise,
each square wave height sensor output is read four times at high level and four times
at low level. The sum of the four high values has subtracted from it the sum of the
four low values, to average out the noise.

All of the synchronous jobs are limited to within 200 ps, inclusive of handling.
For this reason, and also the fact that they are less computation, they are believed to
take substantially less processor time than the sequential jobs.

The sequential job modules will now be described.

5.1.4.1.1.2 Sequential Job Modules

The sequential jobs perform the rest of the height control functions. As the
name suggests, each task is executed after the previous one. They are executed during
the time space between successive synchronous job interrupts. When an interrupt
occurs, the sequential job is pre-empted. A scheduled synchronous job is executed and
then the sequential job is continued after the completion of the synchronous job.

The software structure is as shown in the diagram of Figure 5.16.

The functions of the sequential jobs are described in brief as follows:

Service watchdog — reset watchdog timer

Calculate air spring height — divide height sensor reading by 4 (to complete the
averaging of sensor reading), check validity of the readings and convert sensor
readings into height.

Debounce vehicle status logic — debounce all the switches to accept state change after
the new state has been stable for 30 ms. Check to inhibit simultaneous UP and
DOWN switch press.

Process vehicle status logic — calculate the ride height required and control ride state
change if demanded.

Check for sensor faults — check if the height sensor readings are within range, and set

the appropriate fault flag and counter.

118

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Settled at datum analysis — check if each wheel height settles into new ride height,
after a change of ride state within time limit.

Calculate air spring logged errors — calculate the difference between actual wheel
heights and demanded heights.

Increment excess error meters — check if any one corner height is consistently further
away from demanded height than the other three.

Average logged errors — average wheel height of either front or rear axle depending
on control mode.

Adjust air spring heights — use wheel height logged error and current height control
mode data to determine the valve operations for wheel height control.

Drive outputs and select modes — check that there is no fault condition, before driving
the outputs according to the demand determined in the previous job.

Suspension fault modes — analyse all the fault status recorded to determine if any of
the valves is stuck.

Regulate compressor air pressure — monitor air compressor and diagnose for any fault
Calculate and process road and engine speeds — calculate road and engine speeds by
counting their interrupt requests over the constant time period. The speeds are also
range checked.

Program EEPROM - handle all the EEPROM reading and programming, as requested
by other jobs. Check any change in fault register status and write the change on
EEPROM.

Background communication handler — handle all the communication between ECU

and the outside, such as diagnostic from laptop or sensor calibration.

119

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Synchronous Jobs Sequential Jobs
Time JOB
(ms)
0 Measure minimum ramp 1. service watchdog
signal, start ramp rise & 2. calculate air spring heights
calculate rising time —> 3. debpunce vehicle status
0.5 | Null logic _ _
1.0 | Measure battery voltage > ‘51 Elrlzzis’?o\;eshelrizrStfzzulisloglc
. 1 '
; (5) gﬁil 6. settled at datum analysis
25 TNull <€ > 7. E?rlgrslate air spring logged
3.0 Measure high sensor outputs 8. increment excess error
3.5 | Measure high sensor outputs €«—> [~ meters
4.0 Measure high sensor outputs 0. average logged errors
4.5 | Measure high sensor outputs | €= |, adjust height of air springs
t Measure maximum ramp 11. drive outputs and select
signal & start ramp fall > modes
5.5 | Null 12. suspension fault modes
6.0 | Null € |13. regulate compressor air
6.5 Null pressure
7.0 | Null & (14. calculate and process road
7.5 Null and engine speed
8.0 | Measure low sensor outputs < > 15. program EEPROM
8.5 Measure low sensor outputs 16. back grm.md’
9.0 Measure low sensor outputs communications handler
9.5 Measure low sensor outputs
10.0 | Clear count & start cycle

Figure 5.16 Air suspension software structure

The predictive model is to estimate the ECU response time to driver’s control
switches such as UP, DOWN and footbrake.
The detailed functions of the jobs are shown in the flowcharts together with

modelled software pseudo codes and execution times in Appendix A.

5.1.4.1.2 Model prediction

Using the same method as on the cruise control system, a pseudo code version
of the control tasks was written, and equivalent machine instructions devised to carry
them out. The total machine instruction times were then calculated.

From the pseudo code shown in Appendix A, the response time to the ‘UP’
(change ride height) and foot brake switches (stop ride height changing) are calculated
as between 31.2 and 41.2 ms. The response time is predicted as a range rather than an

exact value, due to the fact that the software is structured in a loop. Switch debounce

120

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

is set at 30ms. The switch status check is only performed once every 10ms of software
cycle. If the switch is pressed just before the switch debounce module, the minimum
debounce would complete in approximately 30ms. However, if the switch is pressed
just after the switch debounce module just completed, it would take one complete
cycle before it is starting to be debounced. Hence this maximum debounce time would
be 40ms. The execution time taken by the modules between switch debounce and
output control (when the response is detected) was calculated at 1.2 ms. Adding this
estimation to the minimum and maximum debounce times, gives the response time
prediction range of 31.2-41.2 ms.

The response to ‘DOWN’ switch was calculated at 1.031 - 1.041 s. The
estimation method was the same as those responses to the other two switches, with a
one second delay added as “direction_changed” check. This check is to ensure that
vehicle is not changing vertical direction of travel within one second after the button
pressed, before responding to the demand. This is believed to prevent grounding (in
case the vehicle is travelling on bumpy road, it may ground when the suspension is

lowered).

5.1.4.2 Practical Measurement of Response Time

5.1.4.2.1 Experiments

The experiments carried out were to evaluate the accuracy of performance
prediction model by taking measurements of real-time ECU operations.
The ECU performance to be evaluated was the response to various switch

inputs such as driver control ‘UP’, ‘DOWN’ and foot brake switches.

5.1.4.2.1.1 Circuit Connection

The air suspension circuit was set up for measurement. The connection is as

shown in Figure 5.17.

121

Llectrornic Arcrrreciure £ easiPlily SIHIESs O LZaradware NEeGUIreEnIernts drtd CALlY HMESSAdge L/eidy

1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 26 27 28 30 31 32 33 34 35
power A hand 4 8 door Y
supply ;L:‘ ;1_54(;; RL yalve brake diagnostic serjsor FR valve foztn?sr\a/ke switch

12V P on/ov common open/oV
L 2 4 L 4 A ofifsV A Y A Y 4 ofifov 2 close/sV
A 4
v
! FL Jalve Wb v inlet Palve v
inhibit A
¢ RL sgnsor exhaust U . UP switch . .
input{1-4V valve engine Zv:/g:\r; RR yalve on/oV diagnostic
speed oft/5V
oft/sv FR sgnsor | i
Ve @ drivE 5V | E“ i

FL V'V * o pressure thermal o0 i DOWN

d .senss\(/)r switch trip Py road switch

nve on/ovV on/ovV speed on/ov

[XY g P RR gensor
offs offS inpu} 1-4v oft/5V
0_@ RR pensor % !
drive 5V %
N/
RL sensor
drive 5V

Figure 5.17 Air suspension measurement circuit connections

122

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

The external components used in this experiment were as follows:
® to observe the switching state of the air valves, they were represented by LEDs.
e handbrake, pressure, inhibit, and door switches were represented by toggle
switches.
e UP, DOWN, and footbrake were controlled by button switches, connected to a 12
V supply.

¢ vehicle and engine speed signals were supplied by two signal generators.

5.1.4.2.1.2 Identification of Internal Connections

As carried out in the previous cruise control ECU measurement, the
microcontroller connections of the air suspension ECU were inspected. The results

were as shown in Figure 5.18.

20 8
— 21 7 —
engine speed TCAP1 MC68HC805B6 -
vehicle speed TCAP 2 —
— 7 -
Up — . —
DOWN — . 1 |-
| PORT A B
footbrake 0 .
— 7 -
exhaust valve 33 6 PORTEB 47 |—
L OO RTRTOPIE 0
34 46
rrrrrrrt e T
(]
2
]
>
ke
=

TCAP - input-capture pin
Figure 5.18 Air suspension microcontroller connections

5.1.4.2.1.3 Measurements

Measurements were taken of the ECU response time to produce command
signals to inlet and exhaust valves, initiated from the change in UP, DOWN or

footbrake. When UP is pressed, the ECU would open the inlet valve to let air into the

123

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

four corner valves, hence lifting the vehicle. On the other hand, the exhaust valve
would be open to let air out, when DOWN is pushed.

The results on responses to ‘UP’ button and foot brake, to change ride state
and inhibit change (during ride height change, if the foot brake is pressed, the process
is halted), respectively, are shown in the graphs of Figure 5.19, 5.20. The response to

‘DOWN’” switch is shown in Figure 5.21.

Response to UP demand

46 [(,
44 . |
«.* me . g Wg A
@ * i
42 - T W) - ot Pl
" $ Ty Aa MY ™~ & UP (low ->standard) 30mph
40 —~—H——'—oi—l—1 . L4 ¢ | (mean=40.3ms,SD=2.7ms)
= A & & s Ao y &
g 38 - = . a A B * /| m UP (low ->standard) 50mph
E 2 R A - * oA LY | (mean=39.1ms,SD=2.7ms)
F 36Me - i Ae P A UP (standard->high) 30mph
Ao "m, A A (mean=39.3ms,SD=2.6ms)
34 —_— n_
32
30 Ao e
- [ep] wn N~ (o)) - (4] w N~ (o)) ~— ™ Te) N~ [=)]
Sl e = b 5 [aV) [aV] [aV] [aV] [aV]
Measurement

Figure 5.19 Response to UP demand

Response to Footbrake during height change from standard --> low
at 30mph (mean=39.3ms,SD=3.1ms)

50 - ‘
a8 Bdbeiin ot Ll el
P s DS e IR G e e
VR e S SR O el G St
24 . o @~ n e !
I 200 Lo e .———_~_~—--—---________?
384+ _---______‘__“___,”“,_____é

Time (ms)

36 fLElo e o i o e LN |

84 Bee i bi ik . R sl e L il s T g

e e

30 e T e o o il e i)
1 3 5 7 9 11 1811 116 7 19 21 23255512701 129

Measurements

Figure 5.20 Response to footbrake during height state change

124

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Response to DOWN (standard --> low) 30mph
(mean=814.8ms,SD=49.9ms)

900 -
850 fpk uil ek abi s o et e IPLL R L) A A L I S s e *
800 f ¥ aakt Bl Ll o e e e IR SRR R e AN T e T Voig et

750 frfEDen v nan dea i ikl s b LBgnaid sBn g s s PR €6 -1

Time (ms)
L

PO L i R S SO R AR |

L T e

600 by
1 3 5 7 9 111 13 15 17 19 21 23 25 27 29

i
4

Measurement

Figure 5.21 Response to DOWN

5.1.4.3 Analysis

The experimental results show that the responses to UP inputs at different
vehicle speeds and ride states, and foot brake correspond well with the prediction in
both mean and standard deviation measures. The measured response times ranged
between 34.2-44.2 ms. The response to ‘DOWN’ button is, however, faster than
anticipated. The response time is less than 1s, which is the time required for
direction_changed check, mentioned previously. This could be due to the possibility
that the direction_changed check time is actually lower than 1s, but being rounded up
in the software specification.

Overall the software model gives more accurate prediction compared to the
cruise control experiment. This is due to the following:

* software description, including switch debounce time, is known in detail.

¢ diagnostic tasks are included in this model, whereas there was no description in
the cruise control model. In the prediction model, the diagnostic codes are
calculated to take 36% of the total execution time.

® known hardware limitation. It is found that the software has been designed to cater
for hardware limitation. For example, the air suspension system requires 1 s of
drier time before any corner valve can be open. The software has to respond by

having a delay before operating the valves. Hence it is believed that the

125

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

microcontroller generally has spare capacity, during which it stays idle, in a

software cycle.

This system knowledge mentioned above leads to the generally improved
accuracy of the prediction model. It may be possible to form a reasonably accurate
model of a future system, if the past results are statistically used to obtain a correction
factor. This factor, when multiplied with the predicted model, could make prediction

closer to reality.

5.1.5 Difference Between Predicted and Actual Response
Times

From the two experiments above, there exists a significant difference between
the predicted and measured response times. The factors that were considered possible
to attribute to this difference are:

- Diagnostics overhead

This is a feature of all safety-related software systems and typically occupies
30% of the total executable code. From the predictive model, the diagnostic code for
the air suspension was approximately 36% of the total code. This would be the case
for the future systems being proposed later.

- Switch debounce

This could be used for all user-inputs where mechanical controls were used.
The experimental work by the author and the air suspension software information
indicate there was a 20-30 ms overhead for each time the switch input changes.

- Real-Time Operating Systems (RTOS) overhead

Some complex electronic control ECUs, such as ABS and engine management
system, employ RTOS. RTOS performs non application related tasks, such as
scheduling and interrupt management, allowing the systems to be developed faster
[18]. 1t, however, consumes microcontroller processing time and memory space.

This, however, was not apparent on the 2 relatively simple systems
investigated, but would be likely to be used in more complex controllers, particularly
if systems were combined in a single, complex controller. A large number of
commercial RTOSs are available for most microcontrollers. RTOSs for each
Microcontroller vary in memory footprints and processor overheads. These

Characteristics are also application dependent, as RTOSs are highly customisable.

126

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Software details of a particular application are needed for its RTOS overhead
prediction. It is hence difficult to accurately predict its overhead at an early design
stage. An evaluation of RTOSs of two 32-bit microcontrollers running an automotive
powertrain control application, was published [26]. The results are that with 1000
interrupts per second, the RTOS overheads on CPU range between 13-30% for one
microcontroller, and 15-33% on the other. With 2000 interrupts per second, the
overheads on the two microcontrollers go up to 25-53% and 28-62%, respectively. It
is suggested that RTOS speed and size are opposing optimisation goals, as an
improvement in one tends to degrade the other [27]. The evaluation results from [26]
also support this statement.

It is noted that RTOS overhead is linearly proportional to the number of
interrupts, due to the interrupt intensive nature of powertrain control application, and
interrupt latency being generally the most indicative factor in RTOS real-time
performance consideration [28]. Context switching is the other factor often considered
[29]. The powertrain control application also uses very small amount of other RTOS
features.

The future systems will also have a large number of interrupts due to the high
number of sensors and fast update rates. Its RTOS overhead is hence expected to
depend on its number of interrupts. Furthermore, the impact of context switching on
overhead can be minimised, by good software design that enables a processor to
spends most time executing programs rather than switching between tasks [28].

- Inefficiency due to compiler

It is becoming unlikely that code will be written at the machine code level, due
to large application size and complexity. Instead, compilers are regularly used to
allow high level languages (C, C++) to be used with higher productivity by the
programmer. These inevitably incur some inefficiency in their use of code. Literature
source suggests that code size overhead generated by compilers could range from a
factor of 1.2 up to 2.2 [30]. This same factor is believed to reflect on performance
overhead also, since software performance is generally determined by code size [30].
However, the compiler efficiency could be improved significantly from changing its
options, and versions to better suit the applications. This was demonstrated in [30]
that the overheads of all of the four compilers studied could be improved to

approximately 1.3.

127

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

The air suspension control was programmed using Assembly. The
programming language of the cruise control is unknown. However, it is likely that the
language was also Assembly, because of its similar complexity to the air suspension,

both using 8-bit processors.

5.1.6 Correction (Multiplying) Factor

In order to predict the response time of other or unknown ECUs, the results
gained from the two experiments on cruise control and air suspension ECUs will be
used to derive a correction factor.

Taking the above influencing aspects into account, the correction factor should
be calculated by first taking the maximum switch debounce time off the measured
response time. Then the predicted response time, added by a 36% of approximated
diagnostic codes (assumed equal to that of the air suspension), is divided into the
measured response time. The result is the correction factor. As discussed earlier, both
systems are believed to be without RTOS and written in Assembly language, so the

effect of RTOS and compiler are not included here.

5.1.6.1 Cruise Control Experiment

The largest response time to ‘SET’ and ‘RES’ (resume) in the cruise control
experiment, shown in Figures 5.7 and 5.13, is 76 ms. The predicted response time is
2.65 ms. Adding the diagnostic code estimate gives 4.14 ms. The design switch
debounce time is estimated at 20 ms, from the range of the above results between 23-
76 ms, and the air suspension switch debounce time of 30ms. Since both the air
suspension and cruise control ECUs have simple 8-bit central microcontrollers, their
level of software complexity should be similar. The software loop of the cruise
control is hence estimated at 10 ms, the same as the air suspension. As described in
the previous section, the largest possible debounce time is approximately the sum of
the software loop and the design debounce time. This makes the cruise control largest
response time excluding switch debounce to be 46 ms. The cruise control multiplying
factor is, therefore, 46/4.14=11.1.

128

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.1.6.2 Air Suspension Experiment

The largest response time to the ‘UP’ switch of the air suspension without
switch debounce time is 4.2ms, where as the predicted value stands at 1.2ms. The
correction factor is therefore 3.5. As mentioned earlier, the difference between the
predicted and measured response times of the air suspension ECU are much smaller
than that of the cruise control, due to having much more software information
available. However, there is no such information on the software of other systems to
be predicted. The only available information will be system operations, from user
manuals or articles, as in the cruise control case. This ratio is, therefore, unsuitable to
be used as a multiplying factor.

In order to establish a multiplying factor from the air suspension experiment,
the software prediction model is to be reviewed. By not taking into account of the
software details and only using vehicle user manual [1], the software model would
only include sections @, ®, ©, @, ©® (sub section 10), and a quarter of A/D
conversion from synchronous jobs (taking only one reading instead of four from each
wheel height sensor). The predicted response time would be 0.39ms and 0.61ms with
diagnostic estimate added. The multiplying factor would be 4.2/0.61 = 6.9.

The average of the multiplying factors from the cruise control and air

suspension experiments is 9. It will be used in other ECU response time prediction.

5.1.7 Conclusions from the Two Experiments

The two experiments were executed in an attempt to use software modelling to
predict the response time of the cruise control and air suspension system ECUs. The
response time predicted by the models were compared to the measurement results on
the actual ECUs. The measured and predicted response times are clearly different.
The influencing factors to the difference, including switch debounce, diagnostic and
RTOS overheads, and compiler inefficiency, are discussed.

The predictions on the cruise control ECU was also less accurate than those of
the air suspension ECU. This was due to the fact that there was more software
information on the air suspension system than on the cruise control. Software
structure, switch debounce time, as well as part of the control algorithm and

diagnostic information was available on the air suspension, whereas the cruise control

129

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

flowchart was only derived from a vehicle user manual.
Based on the influencing factors and different level of software information
above, the correction factors from the two experiments were derived. The average

correction factor of 9 will now used in other ECU response time prediction.

5.2 ECU Performance Requirement of Different
Architectures

The software modelling technique from the above experiments will now be
used to predict response time of other control ECUs of different electronic
architectures. This model, together with memory estimation and the wiring model
(from chapter 6) will be used to estimate the specifications of microcontrollers,

required to fulfil the response time limits.

5.2.1 Microcontroller Selection Criteria

There are many factors that system developers need to take into consideration,
in selecting a microcontroller for their applications [8-12]. Those criteria include
hardware peripherals €.g. ROM, RAM and I/O, processing power, price, availability,
development tool availability, manufacturer support, compatibility with earlier
systems, etc.

This project is intended to do a feasibility study of different vehicle electronic
architectures. The actual system development is beyond its scope. The focus is,
therefore, on specifying what specifications a microcontroller needs to possess to
perform the control tasks. Hence, only hardware peripheral and processing power
requirement will be examined. The overall system costs will also be estimated and

discussed in Chapter 6.

5.2.2 Alternative Architecture ECU Response Time Modelling

The exemplary ABS, 4WS and active suspension systems, described in
Chapter 3, are studied and their software control flowcharts and pseudo code are

derived. They are shown in Appendix A.

130

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.2.2.1 Microcontroller Family

As the complexity of the various control tasks was not known at the outset, the
target microcontroller could not be sensibly selected. Instead, a range of
microcontrollers was chosen, with the most suitable becoming clear from the software
modelling exercise.

The instruction set used in the model belongs to microcontrollers from
Motorola. Motorola microcontrollers were selected due to a number of reasons.
Firstly it is due to familiarity since the air suspension previously experimented
contains an 8 bit Motorola microcontroller, so its instruction set was already studied.
Secondly their microcontrollers are widely used, and there are a large number of
textbooks based on their products {9,12]. Motorola also produces microcontrollers
ranging from 8, 16 to 32 bits, with a complete online documentation.

The M68HC05, M68HCO08 and M68HC12 were initially selected for software
modelling. M68HCOS is the most basic 8 bit Motorola microcontroller, while
M68HCO08 is more powerful, and is software compatible with the former family.

M68HC12 is one of the two 16 bit Motorola microcontroller families.

5.2.2.2 Response Time Estimation

This section describes the transformation of modelled system pseudo codes
into response time estimation.

The control execution time from the pseudo codes is obtained from equation
5.1. The multiplying factor of 9, derived from the two experiments, is multiplied to
the control execution time, to obtain the total execution time. The effects of the
influencing factors, which could cause the difference between the predicted and actual
response time, are then taken into account. They are multiplied to the total execution

time. The calculation is done as shown in equation 5.3.

Te=TxCx Odiag X Ocpl + ORTOS (5.3)
TE - estimated response time

T - control execution time

C - correction (multiplying) factor

Ogiag - percentage of diagnostics overhead

Ocp - percentage of compiler overhead

Ortos - RTOS overhead

131

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Diagnostics overhead of 36% of the total code (equal to 56% of control code)
from the air suspension experiment, which is within a range of typical diagnostic
percentage of up to 40%, is used here [20].

Independent valuation study on compiler overhead for individual
microcontrollers considered here is not available. Typical compiler overhead can
range up to a factor of 2, and the worst case of up to 3 [21]. However, [30]
demonstrates that after several revisions, the factor could be improved down to
approximately 1.3, for all the compilers studied. With the heavy financial constrain of
the automotive industry, it could be assumed that software developers would devote
to the same practice, to reduce ROM requirement and hence cost. The same factor is,
therefore, used for the compiler overhead study here.

Commercial RTOSs come in a wide range of performances for a single
application. To gain an accurate RTOS overhead, detailed software operation is
needed, and with corroboration from a vendor, software developers can customise an
RTOS to suit their applications in terms of performances and memory usage. In this
stage of design, an approximation of RTOS overhead can only be made from their
performance study of similar applications.

RTOS overhead is taken from the only available evaluation study of ten
RTOSs of a more powerful Motorola MC68332 microcontroller, running powertrain
control system in [26]. The automotive powertrain application involves a lot of
interrupts. This is, to smaller extent, also true for dynamic control systems, due to
their many sensors and high speed update rates. The overhead of a medium
performance RTOS is used, as it has a compromised performance between overhead
and RAM usage. The overheads are proportional to the rate of interrupts. The

overhead plot of the selected RTOS is shown in Figure 5.22.

132

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

RTOS overhead on CPU
A0 S e = - e
T 35 -+
.
Q
£ 9 .
o
0z *
O 020 *
TS 5
)
SihlS P
-
§ 10 .
(3]
= .
& 5 L
0 T T T T : . + T i
0 200 400 600 800 1000 1200 1400 1600 1800 2000
No. of interrupts per second

Figure 5.22 Percent of RTOS overhead on CPU

The number of interrupts per second of the predicted systems can be estimated
from the number of sensor inputs, and their update rate. However, the RTOS overhead
percentage from the evaluation was calculated based on only powertrain application.
An actual RTOS overhead for a specific number of interrupts should be almost
constant regardless of applications. If a less time consuming main task than a
powertrain control had been used in the evaluation, the percentage of RTOS overhead
would have been higher. To maintain the consistency for comparison of all the
systems being predicted, a virtual application execution time of 5ms was assumed.
This was used as a main task execution time for RTOS overhead calculation, for all of
the predicted systems. The value Sms was selected because when added with RTOS
overhead, the total system execution time should be within the 10ms limit (of the
predicted systems here) with some spare capacity. This would be a realistic timing
target for a system developer.

A microcontroller is considered capable of performing the ABS, active
suspension or 4WS control tasks if its response time is within the specified limits. The
exemplary active suspension system calculation is executed in cycles of several
milliseconds [13], while the air suspension in the experiment has a 10ms cycle. /0 ms
is, therefore, adopted as the active suspension response time limitation. Two of the
ABS systems have software cycle times of 5 and 6 ms [14,15]. The more stringent 5
ms is selected for ABS response time limitation. None of the 4WS systems in the
literature explicitly states its software cycle or response time, with one system

reported having its control carried out at high speed [16]. Since the active suspension

133

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

and 4WS have been integrated experimentally [17], their response times are assumed
comparable. Hence, 10 ms is also adopted as 4WS response time limitation.
The response time prediction of the selected microcontrollers, when used to

execute the control tasks of alternative architecture ECUSs, will now be discussed.

5.2.2.3 Conventional Centralised, Conventional Centralised with Limited
CAN Interaction, Conventional Centralised with Functional Integration
Architectures (Architectures 1, 2, 4)

In these architectures, each of the active suspension, ABS and 4WS systems
has its separate ECU. Their control flow chart and software pseudo code are shown in

Appendix A. The response time prediction results are shown in Table 5.1.

Architectures | Active Suspension 4WS ABS
1,2,4
Total Response Total Response Total Response
response | time limit | response | time limit | response | time limit
time (ms) (ms) time (ms) (ms) time (ms) (ms)
M68HCO05 7.9 10 3.5 10 21.7 5
| (8 bit)
M68HCO08 2.7 10 1.1 10 4.7 5
(8 bit)
M6SHC12 2.3 10 1.0 10 4.5 5
(16 bit)

Table 5.1 Response time prediction results of Architectures 1, 2 and 4

The results suggest that all three ECUs could be controlled by 8 bit
microcontrollers. It should be noted that Architecture 4 would realistically take longer
response time to control than suggested by the model, since each system would have
to execute extra combined control tasks. Since the details of integrated control is not
available and various system developers have different approaches, the tasks were not

included in the software models.

5.2.2.4 Total Centralised Architecture (Architecture 3)

The only ECU of this system performs the all of active suspension, 4WS and
ABS control tasks, requiring their total execution cycles (T.) to be added together.
With the response time limit of 5 ms, the ABS control has to be executed twice under
the system response time limit of 10ms. Hence the ABS total execution cycle is

doubled before adding to those of the 4WS and active suspension, whose limit is 10

134

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

ms. Its response time prediction results are shown in Table 5.2. The details are in

Appendix A.

Architectures 3 Total response time (ms) Response time limit (ms)
M68HCO5 (8 bit) 51 10
M68HCO8 (8 bit) 9.5 10
M68HC12 (16 bit) 8.6 10

Table 5.2 Response time prediction results of Architecture 3
The result suggests that the M68HC12 microcontroller is capable of
performing the Architecture 3 control tasks. Both this and the 8 bit M68HCO08

microcontroller have comparable response times for this task.

5.2.2.5 Distributed Wheel Controller Architecture (Architecture 5)

This architecture consists of one central controller and four distributed wheel
controllers. The 4WS tasks are solely controlled by the central ECU, while those of
ABS and active suspension control are split between the ECUs. The ABS and active
suspension control of a wheel is carried out by the corresponding distributed wheel
control, while the central ECU computes shared data such as vehicle speed. From the
ABS and active suspension flow charts in Appendix A, the ABS control task @ and
active suspension control task @ are executed by the central ECU. The rest of the
control of is done by the distributed wheel ECUs.

The software modelling results are displayed in Table 5.3.

Central ECU | Distributed ECU
Architecture 5
Total response | Total response | Response time limit (ms)
time (ms) time (ms)
M68HCO5 (8 bit) 4.5 17.8 10
M68HCOS (8 bit) 1.4 22 10
M68HC12 (16 bit) 1.2 2.1 10

Table 5.3 Response time prediction results of Architecture 5

The results suggest that an M68HCOS microcontroller is capable of executing

the central ECU control tasks within limits, while the more complex M68HCO08

microcontrollers are needed for each of the four distributed ECUs.

135

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.2.2.6 Analysis

The software modelling shows that all of the control, of the ECUs of the five
architectures, can be done by 8 and 16 bit microcontrollers. However, the software
model does assume that the resolution of control variables in all systems is within 8
bits. This information on this resolution is not available in literature. Some of the
existing systems may have higher resolution, which would require longer execution
time from 8 bit microcontrollers. To do 16 bit number calculation such as addition an
8 bit microcontroller has to carry out lower byte and then higher byte additions. The
process would require approximately twice the number of execution cycles and hence
twice the execution time as an 8 bit number addition. 16 bit number multiplication
and division would take more than double of that execution time.

Hence, considering the predicted ECU response time of all the architectures,
only the 8 bit microcontrollers with at least 50% spare capacity (response time limits
are much more than twice as much as the predicted response times) were selected.

The results suggest that, in terms of processing power, it is feasible for all of
the architectures to be implemented using current microcontrollers available in the

market.

5.2.3 Active Suspension, 4WS, and ABS Memory and I/O
Predictions

Having predicted the response times taken by different microcontrollers in the
five architecture control tasks, now their memory space and I/O required will be

predicted.

5.2.3.1 ROM Estimation

Memory estimation, as in response time estimation, is generally obtained from
experience from earlier developments of similar systems. The only ROM estimation
method, which requires no detailed software information, found in literature [22] is
based on the statistical technique [31]. The work was developed by computer
Scientists to roughly estimate the length of high-level language programs (number of
program lines) from preliminary design information. From the program length, [22]

gives an approximation of 5-20 bytes of machine code for each line, and hence the

136

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

overall ROM estimate. For worst case estimate, the number of machine code for each
line of 20 was used here.

The estimate is based on the number of operators and operands in a program.
Operators are program commands that act on variables or control program flow, such
as mathematical signs, for examples +, -, = and >, or commands such as FOR, IF-
ELSE, GO TO. Operands are elements of a program that are acted on by operators,
including variables (external and internal), constants, function or subroutine names.

The program length estimate is governed by equation 5.4 [31].

N/n, N =k(0.5772 + In k) (54)

L=

L - number of program lines

N - estimate of total number of operators and operands

n - a typical number of operators and operands in each program line

k - sum of total number of distinct operators in a programming language and
estimate number of distinct operands in the program

The total number of distinct operators in C, the language assumed to be used
here, is 53 [32]. The estimate number of distinct operands is the sum of the number of
external (I/O) and internal variables, constants, and processes. A typical number of
operators and operands in each program line, n, is between 3 and 5. For example:

A =B has one operator and two operands.
A =B + C has two operators and three operands.

For an upper approximate, n=3 is used here. As practised in [22], 50% extra
number of operands is allowed since it is not possible to identify all of them at this
stage.

It is acknowledged that this estimation method is approximate, being given an
accuracy range of approximately up to 45% [22]. The author also believes it to be
conservative. It is likely that the programs, which were studied and used to derive the
formula, do not contain as much amount of diagnostic check on each data as highly
safety related automotive control software. This may cause an underestimation of
program length. However, as this technique is used consistently on all the predictions,
it should provide a useful memory comparison between systems and a guideline for
microcontroller requirements. RTOS memory footprints are not included in the
estimate, due to the fact that there is a wide range of ROM usage between commercial
RTOSes. A minimum ROM footprints of commercial RTOSes for M68HC12 range
between 2.5 and 14 kbytes [19]. Since RTOS kernel can be customised to suit an

137

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

application which would inevitably changes its memory size, it would be unrealistic
to estimate RTOS ROM space at this early stage.

The calculation details are shown in Appendix A.

5.2.3.2 RAM and /O Predictions

RAM requirement could be estimated from program variables [12,22].
However, there are many unknown variables in the program other than the known
ones from the control algorithms. Furthermore, the multiplying factor, derived from
the response time experiments, can not be assumed to indicate the ratio of variables
from the flowcharts and total variables in the program. For these reasons, RAM space
required is instead estimated from ROM space. [7] suggests that RAM could be
estimated to be 12 and 20 times less than ROM space, for assembly and high-level
language programming, respectively. Since it is assumed that the ECU software is
programmed in high-level language, RAM to ROM ratio of 1/20 is used. This
estimate is again believed to be conservative, since it relies on the ROM estimate
described above. It is suggested by [22] that it is extremely important that RAM
should be generously estimated at this preliminary stage, since the software
development cost will spiral up if a program needs to work with an insufficient
memory space. RAM estimate is hence added 50% more space for unforeseen
variables in later design stage.

The number of I/Os needed is simply taken from the wiring models. This
should provide reliable estimate, since the wiring models are formed using signal

information of existing systems.

138

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.2.3.3 Memory and I/O Prediction Results

Following the prediction methods described above, the memory and I/O

predictions of the ECUs of the five architectures are as shown in Table 5.4.

ROM (k bytes) | RAM (k bytes) 1/0
Architecture 1
Active suspension ECU 7.6 0.6 28
4WS ECU 5.0 0.4 7
ABS ECU 7.1 0.5 38
Architectures 2, 4
Active suspension ECU 7.6 0.6 27
4WS ECU 5.0 0.4 7
ABS ECU 7.1 0.5 30
Architecture 3
Total centralised ECU 17.2 1.3 63
Architecture 5
Central ECU 10.4 0.8 42
Distributed ECU 7.8 0.6 6

Table 5.4 ROM, RAM and /O requirement Predictions of all the architectures

It should be noted that RTOS RAM usage was not included in the prediction,
for the same reason as the exclusion of RTOS in ROM estimation. However, the
evaluation study of commercial RTOSs in [26], described earlier, suggests that using
standard commercial RTOSs for an M68300 32-bit for automotive powertrain
application is impractical. This is because RTOSs consume too much on-chip RAM.
This argument is also supported by [33]. This could also be the case for the
microcontrollers in this study. Most of the M6BHCO08 and M68HC12 contain 1Kbytes
of RAM, whereas maximum RAM for M68HCOS is 0.5Kbytes [34]. Considering a
4WS ECU, an M68HCO5 could perform its control task but with 80% of its RAM
capacity used. It is very likely that if the M68HCOS is to be used for 4WS ECU, it has
to be with in-house RTOS or without it at all. This unsuitability of conventional
RTOSs for automotive control applications is one of the reasons that European OSEK
(Open systems and the corresponding interfaces for automotive electronics)
committee produced its OS definitions. Other benefits of OSEK OS definitions are the
portability of ECU applications from different suppliers and interoperability of ECUs
in a vehicle network [23]. The definitions allow for small RTOS kernels demanding

small ROM and RAM compared to conventional RTOSs. Although there are some

S~) , 139

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

OSEK RTOSs in the market [35,36], they are not yet widely used since they are new
to the market. Besides, OSEK OS definition was just developed and it may still have
some design flaws [34].

The ROM, RAM and I/O requirement results also confirm that all of the
electronic architectures considered, in term of microcontroller specifications, could be

implemented using current technology.

5.3 Controller Area Network (CAN) Simulation

CAN plays an important part in providing a means for high speed data transfer
between all the ECUs in the vehicle considered in this thesis. The powertrain and
dynamic control ECUs are safety related, so it is vital that the data transfer between
these ECUs occurs within allowable time limits for the control tasks. This section,
therefore, concentrates on establishing that correct operation of the specified
architectures can be achieved within these specified limits. It covers the relevant
characteristics of the CAN protocol, the chosen simulation method, the simulation

input data and the analysis method to be used.

5.3.1 Timing Aspects of CAN

When a CAN bus is free of messages, any node is able to send an information
on to the bus. However, in the event of two nodes trying simultaneously to transmit
data, a method is needed to avoid data corruption and excessive loading on the bus.
To do this, CAN employs bit arbitration process in determining the right to transmit a
message, when more than one node tries to send their data. The nodes which send
simultaneous messages continue their message transmission, while keep comparing
their own message with the bus status it by bit. Simultaneous transmission can
continue for as long as all the bits of the signals sent are the same. Once a bit
difference is detected (indicating a collision), the message (or messages) which
contains a passive bit (1) will be stopped, while the one with a dominant bit (0) will
continue. The node(s) that backs off the transmission will try to send its signal again
as soon as the CAN bus is free.

By giving each data a unique identification number, same priority message

collision where all the messages have to be taken off line, can be avoided. In practice,

140

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

more important or urgent messages are given lower identification numbers, which
give them higher priorities to be transmitted. Under the CAN protocol, the message
with the highest priority always get the first access to the bus, which effectively
guarantees its delivery time. It can be seen that a problem can arise when a large
number of high priority messages are transmitted, and lower priority messages will
have to keep backing off transmission. This may cause long delays before lower
priority messages can be sent.

Four out of the five vehicle electronic architectures considered in this thesis
could potentially employ CAN. It is, therefore, important that the CAN message
delays of these architectures are examined. An excessive delay of signal transmission
is a delay longer than the period of the transmission, causing the delayed data to be
obsolete. This is shown in Figure 5.23. The delay would probably force the relevant
ECU to employ previous data, not up to date, in its control tasks instead. This could
cause inaccurate control. The effect of the delay may not be significant in non safety
related data such as climate control but it is vital for most of safety related class C
signals such as wheel speed sensors. Hence an excessive delay of these class C signals

in any of the architectures may render it unfeasible or unsafe to implement.

[1 [1

Period Period
(transmission (transmission
time window) time window)

Figure 5.23 A series of periodic signal getting transmitted

Thus, a simulation of CAN data transfer between ECUs has been carried out.
In order to realistically simulate this operation, real information on data signalling in
the target vehicle is needed, including all the other messages that would be using the
CAN bus. The work in [15], which also studies the timing characteristics of CAN,
provides this information. The information contains common messages shared
between ECUs of a modern luxury car [24]. As stated in [15], this information
represents a generic workload, that can be used to characterise background network

traffic of a vehicle, and will now be described.

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

5.3.2 Simulation Data

The information comprises 90 periodic signals that are shared between 9 CAN
nodes, namely the Powertrain Control Module (PCM), Anti-Lock Braking System
(SRS), Passenger Safety System (PSS), Air Suspension/EVO Steering (ASE), Ignition
Control Module (ICM), Instrument Cluster Display (ICD), Trip Computer
Diagnostics, Cruise Control System (CCS), Climate Control Module (CCM). The
signals include all classes (Class A, B and C), characterised as low, medium and high
speed messages, respectively.

From the data, class C signals have transmission frequencies of 200 and 100
Hz. Those frequencies of class B signals are 50, 10 and 5 Hz. Class A signals are
transmitted at 1 and 0.1 Hz. The data details and how it is prepared is described in the

following section.

5.3.2.1 Data Preparation

From the list of the 9 CAN nodes above, there is a difference between the
electronic systems specified in the supplied data, and those that have previously been
considered in this thesis. Notably, PSS and SRS systems here cover the function of
the ABS/ASR system modelled in the thesis. Furthermore, ASE system in the
simulation data combines the equivalent functions of active suspension and 4WS
systems, modelled in this thesis.

Since the ABS/ASR, active suspension and 4WS are focused upon in this
thesis, they are to be treated as individual nodes. Therefore, the ASE and its signals
are removed, and replaced by the active suspension and 4WS systems and their
signals from the exemplary systems in Chapter 4. Similarly, the exemplary ABS/ASR
system and all of its control signals are introduced to the simulated vehicle, in place of
SRS system. Also all the brake control related signals are taken away from the PSS
node, while it retains the rest of its signals, which are used for airbag and other safety
controls.

The signal list contains all the sensor and actuator signals, some of which are
not transmitted on the CAN bus in the wiring diagrams in Chapter 6. However, it is
intended to keep the number of signals on the CAN bus high, so that the CAN bus can

be simulated under high workload. This is to examine the systems’ behaviour under

142

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

worst case conditions and also because more electronic systems and consequently
more signals are going to be transmitted on the CAN bus in the future. By keeping the
number of signals high, the simulated vehicle will more closely resemble vehicles in
the near future.

Due to the above reason, a sensor node is introduced into the system. It
transmits ABS/ASR, active suspension and 4WS sensor data onto the CAN bus. For
the same reason, the ABS/ASR, active suspension and 4WS control signals are
assumed to be transmitted onto the CAN bus.

The transmission frequencies of the newly introduced signals are kept
consistent with the rest of the list. For example, the ABS/ASR wheel brake controls
are given the same frequency as the wheel speed sensors, and new warning lamp
signals are given the same frequency as the ones on the list.

The complete list of 117 signals of this CAN simulation data is shown in
Appendix B.

The number and the combined bandwidths of the signals of different

frequencies are shown in Figure 5.24 and 5.25.

Number of Signals of Each Type

Number
nN
(6,

15 - 2
10 ‘
4 - |

200Hz (C!ass 100Hz Class 50Hz (Class 10Hz (Class 5Hz (Class B) 1Hz (Class A) 0.1Hz (Class
C) C) B) B) A)

Types of Signals

Figure 5.24 Number of signals of each type

143

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

Percentage of Signals of Each Type

50

40 -

30 A

20 +—

Percentage of Total Bandwidth

10 -

0 ; .- ; |

o

200Hz 100Hz 50Hz (Class 10Hz (Class 5Hz (Class 1Hz (Class 0.1Hz (Class
(Class C) (Class C) B) B) B) A) A)
Types of Signals

Figure 5.25 Percentage of bandwidth of different types of signals per total bandwidth

Note that the percentage of class A signal bandwidth to the overall bandwidth
is very small as seen from Figure 5.25. Due to this fact, some of the class A signals
such as horn or L/R indicator signals controlled by the driver, whose nature is not
periodic, are assumed periodic for simplicity. Since their bandwidth is very small, the

effect of the assumption is minimal.

5.3.3 Simulation Package and Methods

A CAN bus timing simulation has been executed in the referred work [15].
The author has carried out a discrete event simulation in a similar fashion, but using
different software, due to its availability.

The referred simulation work [15] was done using SES/Workbench, a generic
discrete event simulator running on a SPARC workstation. Though not explicitly
stated, the simulation contains a create_msg node, which generates all the data
according to frequencies and priority specified in the workload table. The data is then
passed on to set_msg, a queue equivalent, which sets them in order according to their
priority. From there, they go onto the channel, the CAN bus equivalent. Timing
statistics of all the messages are collected. The simple model of the simulation is

shown in Figure 5.26.

144

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

create_ set_msg ichannel collect_
tats

msg

real_t miss

real_time_
misses_stats

Figure 5.26 CAN simulation model from literature

The CAN bus simulation in this thesis was done on Simul8 software, created
by Visual Thinking International Ltd. Simul8 is primarily used to simulate step by
step process, such as factory automation or a hospital receiving patients. It runs under
Microsoft Windows and is readily available on the university PCs, and can be
modified to simulate the CAN bus.

Simul8 contains a queuing item, which can act like a CAN contention resolver
by letting the highest priority one among the waiting messages go on CAN bus first.
As soon as the CAN bus is free, the next highest priority message is allowed to be
sent.

Furthermore, Simul8 provides a source item, which can be used to represent a
CAN node. Its function is to arrange its messages and attempt to send the highest
priority one first when more than one messages are ready to be transmitted. From

these functions, the timing aspect of CAN bus access can be simulated accurately.

5.3.3.1 Assumptions and Data Settings

In this CAN simulation the following assumptions are made:

¢ all the signals are assumed to be short (2 bytes) and periodic which is the nature of
real-time data such as sensor and control signals. Each message, therefore, is eight
byte long, containing the two bytes of data and six bytes of CAN overhead as in
[23].

¢ all the messages are given priorities according to their transmission frequencies.
Ones with higher frequencies have higher priorities.

* nmessages with the same transmission frequencies are given the same priority.
There are 7 different frequencies and hence 7 priority levels. This is not exactly
like actual CAN application, in which each message has its unique priority level.
The messages were not given unique priority levels because it was preferred to

study the transmission delay of a group of messages with the same frequency,

145

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

rather than individual messages. Besides, this practice does not affect the timing
of CAN bus access. Same priority level messages would gain access to the CAN
bus arbitrarily. It could be assumed that the one that misses out has lower priority.
In terms of timing, one message gets access and the other gets a delay, just like in
real application, hence no effect.

e as a discrete event simulation, all the messages initial occurrence time is randomly
generated for each simulation run. However, the following message arrivals are
consistent with their periods. Two messages in the same node will not be allowed
to be simultaneously generated. This is because in reality a node does not try to
send two messages at the same time. It would organise all the ready to transmit
messages in order in its buffer before sending them.

e CAN bus transmission speed is 1 Mbits/s which is the highest bit rate for
automotive CAN use [25].

5.3.4 Simulation Models

The four architectures using CAN considered in this thesis were simulated.
They are:
o Conventional centralised with limited CAN (Architecture 2)
e Total centralised (Architecture 3)
¢ Conventional centralised with functional integration (Architecture 4)
e Distributed wheel (Architecture 5) architectures

The signal Table B1 in Appendix B represents the simulated data for
Architecture 4 as an example. The departures from this example for each of the other

architectures will now be examined.

5.3.4.1 Conventional Centralised with Limited CAN Interaction
Architecture (Architecture 2)

As discussed earlier, Architecture 2 is intended to represent the electronic
architecture of current vehicles, which utilises CAN but to a limited extent. It is
expected that CAN will be under more message load as more electronic systems and
sensors/actuators are introduced or put on to the network. Since ECU connections to
sensors and actuators of current vehicles are by hard wires, the sensor node and its

related signals were taken off the vehicle signal list for Architecture 2. ABS, active

146

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

suspension and 4WS control signals to their actuators were also taken off for the same
reason.

The signals taken off from the list are number 2-11, 22-42, 57-64, 79-82.

5.3.4.2 Total Centralised Architecture (Architecture 3)

The architecture contains one centralised ECU in place of the ABS, active
suspension and 4WS ECUs. The number of signals in the vehicle signal list is the
same, but the three dynamic control ECU nodes are replaced with the centralised ECU

node.

5.3.4.3 Conventional Centralised Architecture with Functional
Integration (Architecture 4)

The simulation model of Architecture 4 was constructed according to the

vehicle signal list in Appendix B.

5.3.4.4 Distributed Wheel Controller Architecture (Architecture 5)

In Architecture 5, the ABS, active suspension and 4WS ECUs are replaced by
four distributed wheel ECUs and the Central ECU. Sensor signals which are closely
located to the distributed wheel ECUs were assigned to be transmitted by the ECUs.
The distributed wheel controllers also took over the controls of ABS and suspension

wheel actuators. The signal list modifications is shown in Table B2 in Appendix B.

5.3.4.5 Signal Bandwidth

The class C signals bandwidths and the overall bandwidths of all the
architectures are given in Table 5.5. It can be seen that the Architecture 2 has a lower
designed bus bandwidth because of the use of additional hard-wired connections, as

described above.

Architecture | Overall Bandwidth | Class C Bandwidth Percentage of
(kBits/s) (kBits/s) Class C Bandwidth
Architecture 2 186.8 153.6 82.2
Architecture 3 441.8 403.2 91.3
Architecture 4 4418 403.2 91.3
Architecture 5 441.8 403.2 91.3

Table 5.5 Signal Bandwidth of all the Architectures

147

Electronic Architecture Feasibility Studies on Hardware Requirements and CAN Message Delay

The detailed bandwidth distribution among the signals of Architecture 3-4 is

shown in Figure 5.25.

5.3.5 Simul8 Models

The Simul8 model of Architecture 4 is as shown in Figure 5.27, as an example.

Small scrolls on the left represent individual signals, that are from the list. The
model is arranged such that the high priority signals are above the lower priority ones.
200 Hz signals have priority level 7, 100 Hz signals have priority level 6, 50 Hz
signals have priority level 5, and so on. Note that for clarity, most of the 117 signals
from the list are left out of the diagrams.

The scrolls and ECU images are for signal generation purpose in the
simulation. The initial occurrence of each signal is firstly generated at a random start
time by Microsoft Excel. Once the first signal is created, the subsequent signals of the
same type follow according to their specified period. For example, as shown in Figure
5.28, the first vehicle speed signal is created at the random time of 2.52 ms from the
start of simulation. Vehicle speed has a period of 10 ms, so the subsequent vehicle

speed signals would arrive at 12.52, 22.52, 32.52 ms and so on from the starting time.

148

Llectronic Archizecture Feasioility Srudies on Aardware Requirements and CAN Message Delay

200 Hz — R
Signa’s (7) D GC—_—__/—Z’ B’ 2 ~f \
\
PCM \\\
100 Hz 3 = -
signals (6) L F ‘ L7 \
TITroy \
ABS
50 Hz
signals (5) L7
TTTTTTT
10 Hz sus
IERRRAR!
5Hz 4aws
signals (3) L7
1Hz L F a; S T
signals (2) : Sensors
0.1 Hz INLREL
signals (1) C— PSS
() priority level
ICM
T
ICD
TITTITT
CCSs
TITTTIT
CCM

Figure 5.27 Simul8 model of Architecture 4

[D0066000600009

Y

bocobb0005560000
[T

Bus Queue

Enter CAN bus

Electronic Architecture Effects on Complexity and Costs

Simulation
start time
| l]) |]]]
0 2.52 Vehicle speed 10 12.52 20 22.52 30 3252 Time (ms)
' signal (period
10 ms)

Figure 5.28 Timing diagram of a 10 ms period signal generation

As indicated by arrows, these signals go to the originating ECU to which they
belong, to be transmitted onto the CAN bus. The whole process described above is
equivalent to ECUs creating signals to be sent onto the CAN bus, in real vehicle
applications.

From ECUs linked by arrows to Bus Queue represents data queuing to be
transmitted from ECUs onto the CAN bus. An ECU will let its signals join a queue
one by one, equivalent to an ECU attempting to transmit one signal at a time. More
than one signals in the Bus Queue at a time symbolises message collision. The Bus
Queue arranges incoming signals in order according to their priority, equivalent to
CAN message contention. The highest priority signal is put in front of the queue. The
Bus Queue then let the highest priority signal onto the CAN bus (displayed as a door
image) once the bus is free. Each signal occupies the CAN bus for 64 ms, equal to the
time taken to transmit the 8 byte message.

The simulation models representing the 4 different electronic architectures are
essentially of the same format, except for the difference in the number of ECUs and

signals, and their signal routing.

5.3.6 Simulation Run

A simulation was run for an equivalent of 1 real-time second at time. One
second covers the periods of all the signals except for signal no. 117, whose period is
10s and hence of little significant to the CAN bus load. Since all the signals are
assumed periodic, any longer simulation run would give a repetitive result to the 1
second run.

For each architecture, the simulation was run 100 times with different sets of
random numbers. Each simulation was run for 1 real-time second. A number of
simulations were run in order to simulate different possibility of messages arriving on

the CAN bus at different times. Each simulation involves 4800-6800 messages getting

150

Electronic Architecture Effects on Complexity and Costs

access to the CAN bus. The time which the two groups of class C signals (of period 5
and 10ms), which are for real-time control, wait in the CAN Bus Queue plus the
transmission time was collected. This is equivalent to the signal time delay associated

with CAN in real applications.

5.3.7 Results and Analysis

The frequency distribution of the CAN delay of the two groups of class C

signals are shown in the graphs below.

Frequency Distribution of CAN Transmission Time of 5 ms Period Class
e C Signals
85.00 -
80.00 -
75.00 +
70.00 -
65.00 -
60.00 -
55.00 -
50.00 -
45.00
40.00 -
35.00 -
30.00 -
25.00
20.00 -
15.00 |
10.00
5.00 -
0.00 -

@ Architecture 2
W Architecture 3
O Architecture 4
Architecture 5

Percentage (%)

0.06- 0.07- 0.08- 0.09- 0.1- 0.11- 0.12- 0.13- 0.14- 0.15- 0.16- >0.17
0.07 0.08 009 0.1 0.1 012 0.3 0.14 0.15 0.16 0.17

Transmission Time (ms)

Figure 5.29 Frequency Distribution of CAN Transmission Time of 5 ms Period Class
C Signals

151

Electronic Architecture Effects on Complexity and Costs

Frequency Distribution of CAN Transmission Time of 10 ms Period
Class C Signals

| Architecture 2
M Architecture 3

O Architecture 4
@ Architecture 5

Percentage (%)

0.06- 0.07- 0.08- 0.09- 0.1- 0.11- 0.12- 0.13- 0.14- 0.15- 0.16- >0.17
007 0.08 009 0.1 041 012 013 0.14 0.15 0.16 0.17

Transmission Time (ms)

Figure 5.30 Frequency Distribution of CAN Transmission Time of 10 ms Period
Class C Signals

From Figure 5.29-5.30, it can be seen that the majority of the two groups of
class C signals are transmitted within 0.7 ms. The minimum possible CAN
transmission time (no collisions) for each signal is 0.64 ms. This indicates that those
signals are transmitted virtually without delay. Architecture 2 has the highest
percentage of signals sent without delay, because it has the lowest utilised message
bandwidth.

The percentage of messages transmitted with increasing delay then falls
drastically for all the architectures. However, the larger number of 10 ms period
signals have experienced long delays than the 5 ms periods signals. This can be seen
from the higher percentage of signals with transmission time longer than 17 ms (the
last bars on the chart) in Figure 5.30 than those in Figure 5.29. Also the 10 ms period
signals have experienced longer worst case delay than the 5 ms signals. This could be
expected, since the 10 ms period signals have lower priority than the 5 ms signals.

The worst case delays of all the architectures are shown in Table 5.6.

152

Electronic Architecture Effects on Complexity and Costs

ARCHITECTURE Worst case delay (ms)
5 ms Period Class C Signals|10 ms Period Class C Signals
(% of delay per period) (% of delay per period)
Architecture 2 0.18 (3.69%) 0.26 (2.55%)
Architecture 3 0.27 (5.34%) 0.54 (5.37%)
Architecture 4 0.25 (5.07%) 0.67 (6.67%)
Architecture 5 0.73 (14.66%) 1.00 (9.97%)

Table 5.6 Worst Case Delay of Class C Signals of all the Architectures

From Table 5.6, the worst case delay of the class C signal transmission for all

the architectures are of low percentage to their periods. A signal delay of longer than

its

period would cause a problem to control systems involved. This indicates that

under the current level of message load, CAN is applicable in terms of speed to all the

electronic architectures.

5.4 References

—

O o N

10.

1.
12.

13.

14.

15.

. Rover Range Rover Electrical Manual Rover Group 1995

Ribbens W Understanding Automotive Electronics 4™ Edition McGraw Hill,
1995

Philips Components Integrated Circuits Data Handbook IC14
Microcontrollers NMOS, CMOS, Philips 1989

Schmerler S, et al. Towards Real-Time System Specification and Design SAE
961631

Dieterich K Methods and Tools for the Efficient Development of Automotive
Electronics SAE 950571

Maclay D Simulation gets into the Loop IEE Review, May 1997

Glibbery R Suspension Ride Height Controller Lucas Automotive Ltd., 1990
Motorola Selecting the Right Microcontroller Unit Motorola, 2000

Lipovski G Introduction to Microcontrollers Architecture, Programming, and
Interface for the Motorola 68HC12 Academic Press, 1999

Bannatyne R Selecting a Microcontroller Embedded Systems Programming
Vol.11, Issue 4, 1998

Comer D Microprocessor-Based System Design CBS College Publishing, 1986
Spasov P Microcontroller Technology The 68HC11 3™ Edition Prentice Hall,
1999

Aoyama Y, et al. Development of the Full Active Suspension by Nissan SAE
No.901747

Masutomi S, et al. Development of ABS and Traction Control Computer SAE
No0.901707

Upender B Analysing the Real-Time Characteristics of Class C
Communications in CAN Through Discrete Event Simulations SAE
No.940133

153

Electronic Architecture Effects on Complexity and Costs

16. Eguchi T, et al. Development of “Super Hicas”, a New Rear Wheel Steering
System with Phasereversal Control SAE N0.891978

17. Yokoya Y, et al. Integrated Control System Between Active Control
Suspension and Four Wheel Steering for the 1989 CELICA SAE No0.901748

18. Hawley G Selecting a Real-Time Operating System Embedded Systems
Conference Papers, Miller Freeman, 1999

19. Cahners Business Information Table of Commercial Embedded RTOSes EDN
Magazine website
http://www.ednmag.com/ednmag/extras/embeddedtools/rtosdisplay.asp 2001

20. Jurgen R Automotive Electronics Handbook 2™ edition McGraw-Hill, 1999

21. Lemieux J Moving Efficiently from Assembly Language to C Embedded
Systems Conference, 1999

22. Lawrence P, et al. Real-Time Microcomputer System Design: An Introduction
McGraw-Hill, 1987

23. Paccard E Technology for a New Automotive Era Real-Time Magazine Issue 3,
1999

24. Electrical and Vacuum Trouble Shooting Manual FPS-12119-93: 1993 Town
Car Ford Motor Company, 1993

25. Bosch CAN Specification Version 2.0 Robert Bosch GmbH, 1991

26. Toeppe S, et al. Commercial RTOSes for Automotive Applications Embedded
Systems Programming, July 2000

27. Stepner D, et al. Embedded Application Design Using a Real-Time OS
Proceedings of 1999 Design Automation Conference, 1999

28. O’Dowd D Real-Time Operating Systems Traget Missions-Critical Embedded
Systems Real-Time Magazine, July-September 1997

29. Keate L A Real-World Approach to Benchmarking DSP Real-Time
Operating Systems Proceedings to WESCON, 1997

30. Tribolet C, et al. Embedded C and C++ Compiler Evaluation Methodology
Embedded Systems Conference, 1999

31. Shooman M Software Engineering: Design, Reliability, and Management
McGraw-Hill, 1983

32. Kernighan B, et al. The C Programming Language 2" Edition Prentice-Hall,
1988

33. Tindell K Embedded Systems in the Automotive Industry Embedded Systems
Conference, 1999

34. Motorola Master Selection Guide Motorola, 1999

35. Trialog OSEKTtr 2.0 Managing the Growth of Automotive Electronics Trialog,
2000

36. Wind River Tornado for OSEKWorks 2.0 Wind River, 2000

154

Electronic Architecture Effects on Complexity and Costs

CHAPTER 6

ELECTRONIC ARCHITECTURE EFFECTS ON
COMPLEXITY AND COSTS

An electronic control system consists of four parts, sensors, actuators, an ECU,
and wiring harness. This chapter compares the five architectures’ effects on system
component complexity and costs. The focus will be upon wiring harness and ECU,
since it is these that vary between architectures. The number of wires in each
architecture will first be estimated, together with their weight. The microcontroller
requirements for each ECU are estimated in the previous chapter. The number of
other ECU components will be approximated, thus combined with the microcontrolier
specifications to form a measure of ECU complexity. The cost of each system part is
researched and the overall system component cost of each architecture is calculated.
The comparison between the cost of each architecture is made, and the effects of the

future trends and other factors on costs are discussed.

6.1 Effect of the Vehicle Wiring Harness on Different
Architectures

The complexity of wiring harness is an important consideration in the design
and assembly of any electronic control system, for its cost, weight and ease of vehicle
assembly. Tighter safety regulations and higher performance demands from the
market result in the increased electronic control system complexity. As the electronic
systems grow more complex, the number of ECU functions, and inputs and outputs
invariably increases. This is confirmed in the case of engine management and
powertrain ECUs, as shown in Figure 6.1 [1]. The increasing number of input and
output signals, needed in automotive electronic control systems, underlines the

growing significant of the vehicle wiring harness.

155

Electronic Architecture Effects on Complexity and Costs

200
140
120 +
100 +
80 -
60
40
20 7
D B
198 1882 1985 1998 2001
Figure 6.1 Growth in the number of powertrain ECU I/Os against calendar year

The increase in wiring harness complexity also results in the increase in the
number of connectors. Together, these two are the major source of failures in vehicle
electronics [2]. Furthermore, the greater the amount of wiring harness carried, the
more vehicle weight problems, Electromagnetic Interference (EMI) related, and
physical assembly problems when fitted to the vehicle. A study has also shown that
wiring is the second most expensive item in modern vehicles [3].

It was in order to overcome the above wiring related problems, that
multiplexing technology was originally introduced. A large number of networking
systems have since been developed by car manufacturers and suppliers to tackle these
wiring problems.

Having emphasised the impact of wiring harness on the design of electronic
control systems, this chapter is dedicated to analysing each electronic architecture’s

wiring characteristics in terms of wire count and length.

6.1.1 Wiring Models of Dynamic and Powertrain Control
Systems

Dynamics and powertrain control systems form the subject of this thesis. To
form a wiring model of each electronic architecture, exemplary wiring of each control
system has to be selected. The wiring models of these systems will be used as bases
for all the electronic architectures. Power distribution wiring will not be included,
being dissimilar to signal wiring and independent of networking protocols.

The three chosen dynamic control systems, namely ABS/ASR, active
suspension and four wheel steering, are included in the wiring model. Powertrain

control systems, which comprise Engine Management System (EMS), transmission,

156

Electronic Architecture Effects on Complexity and Costs

cruise control, are also used to construct the wiring models, as is power steering. Their
inclusion is due to the fact that these systems would also be likely to use a high speed
networking bus.

The functionality of the exemplary control systems are taken from a small
number of published papers, which provide either necessary wiring or signal flow
information {4-14]. In case of powertrain control systems, since their functions are not
focused upon in this thesis, the most complicated current systems found are chosen, as
being indicative of mainstream near-future systems. This is due to the aim of this
study, which is to demonstrate the effect on the wiring complexity of an electronically
advanced modern vehicle.

The exemplary active suspension and four wheel steering systems, used in
Chapter 3 on vehicle electronic simulation, are also employed in the wiring model.
The exemplary 4WS was designed by the manufacturer to have an integrated control
with an ABS when wheel slip occurs. However, these two systems are treated
individually here, since it is assumed that each system would be provided separately
by different suppliers.

The ABS control model used for simulation in Chapter 3 is derived from a
Bosch ABS description [4]. Its signal flow or wiring information is not available.
Therefore, a different ABS, which has its signal flow data elaborately published, is
used in the vehicle wiring model instead [S]. This system is a combined ABS and
Traction Control (ASR), which is advanced and gaining popularity among top end
vehicles, so the ASR is included in the model.

Using all the information on signals and wiring of all the above control
systems, a vehicle signal table is derived as shown in Table C1 in Appendix C [5-12].
The table is sorted into individual system inputs and outputs. The sources and
destinations of the input and output signals, respectively, are also given in the table.

The numbers associated with the sources or destinations are used to identify
sensors or actuators in the wiring models in Figures 6.2 to 6.5. It should be noted that
the engine management system is very complex and includes a large number of
engine sensors and actuators, such as knock and oxygen sensors, fuel injectors, etc.
However, these devices are within the engine proximity or actually situated inside the
engine, the signal flow between the engine sensors and actuators, and the EMS ECU
is treated as internal to the engine management system. Hence it is omitted from the

model.

157

Electronic Architecture Effects on Complexity and Costs

In Figure 6.2-6.5, system components which involve a lot of signal types have
their names written. Sensors or actuators which have fewer wires connected to are
given identifying numbers, in order to save diagram space. The list of the components

and their associated numbers is displayed in Table 6.1.

Vehicle Diagram Component Number
Sensors and Switches O
1 throttle position sensor
2 ignition key
3 vertical G sensors x3
4 lateral G sensors x2
5 height sensors x4
| 6 longitudinal G sensor
7 speed sensor
8 door switch
9 wheel speed sensors x4
10 kick down switch
11 gear lever position
|12 brake fluid level switch
13 hand brake switch
14 brake switch
15 steering wheel angular velocity sensor
16 steering wheel torque sensor
17 steering wheel angle sensor
18 yaw rate sensor
19 4WS oil level sensor
Actuators O
1 suspension wheel pressure control valves x4
2 throttle actuator
3 sub-throttle actuator
4 4WS motor
5 power steering unit
6 ABS wheel actuators x4

Table 6.1 List of sensors and actuators in the models

The following section describes the wiring models of each vehicle electronic
architecture.

In the wiring models, ECU and component locations are drawn according to
the information available, so that the length of system wiring is visually
representative. However, due to limited diagram space, lack of information on a small
number of components, and component simplifications, some components are located

accurately only up to the appropriate zone in a vehicle. For example, the suspension

158

Electronic Architecture Effects on Complexity and Costs

hydraulic system components, such as pumps and valves which spread throughout the
underbonnet zone. For simplification, all components are treated as a single block
situated in that zone . This is not entirely accurate, but any errors introduced would
tend to cancel each other out (i.e. some wires would be longer than the approximation,
some shorter), so its connection to the active suspension ECU still provides a good
appreciation of the wire length required. The ABS exemplary system does not provide
information on the ABS ECU location. The ABS ECUs can be placed in the engine or
passenger compartments [7]. In order to be consistent with the active suspension and
4WS ECUs, the ABS ECU is assumed to be passenger compartment (zone) mounted.
Smart sensors and actuators, which employ intelligent sensor and actuator
nodes in an area such as the underbonnet zone to handle their information transfer, are
not shown in the modelling. This is because the modelling process is intended to
compare the amount of wiring among studied architectures, within the same criteria.
Since the conventional centralised architecture is incapable of such technology, it is
therefore omitted. However, smart sensors and actuators are also believed to yield
benefits in terms of wiring reduction to all the architectures with networking

capability.
6.1.1.1 Conventional Centralised Architecture (Architecture 1)

All the vehicle electronic architectures are described in chapter 2. The
Conventional Centralised architecture has each electronic system as a standalone.
ECU interaction is very limited, except for some sensor signals such as vehicle speed,
which may be shared among a few control systems. No form of networking exists. All
the connections within or between electronic control systems, are by point to point
wiring.

The wiring model of the Conventional Centralised architecture is shown in
Figure 6.2.

6.1.1.2 Conventional Centralised with Limited CAN Architecture
(Architecture 2)

This architecture has similar structure to the previous Architecture 1, except
for the introduction of CAN in the vehicle. The CAN network provides the means of
communication between ECUs. All the information transferred between ECUs,

previously done via individual wires, is now carried out through a two wire CAN

159

Electronic Architecture Effects on Complexity and Costs

network. Figure 6.3 displays the Conventional Centralised with Limited CAN

architecture.

6.1.1.3 Total Centralised Architecture (Architecture 3)

The Total Centralised architecture has a single centralised dynamic control
ECU, which performs all the control tasks of ABS/ASR, active suspension, power
steering and 4WS. A single EMS ECU is also used to control all the engine and
powertrain applications, in effect combining engine management, transmission and
cruise control ECUs into one. The CAN bus is applied as a means of data transfer
between the centralised dynamic control, EMS and other ECUs. The Total Centralised

architecture model is shown in Figure 6.4.

6.1.1.4 Conventional Centralised with Functional Integration
Architecture (Architecture 4)

Without the applications of smart sensor and actuator nodes, the architecture
has the same wiring arrangement as Architecture 2,. Hence Figure 6.3 also represents

the wiring of this architecture.

6.1.1.5 Distributed Wheel Controller Architecture (Architecture 5)

In this Distributed Wheel architecture, four individual wheel control ECUs are
located near all four wheels. Each is responsible for controlling the ABS and
suspension of its corresponding wheel. A central controller in the vehicle acquires and
distributes sensor data which needs to be shared among individual wheel ECUs. The
sensor and actuator signals for each wheel, exclusive to each individual distributed
wheel ECU such as wheel height, are transferred to the ECU via individual wire links.
The integrated engine and powertrain ECU remains the same as in Architecture 3,
while 4WS and power steering ECUs are integrated with the Central ECU. The CAN
network is used for data sharing among all the ECUs.

The wiring model of the Distributed Wheel architecture is as shown in Figure
6.5.

160

Electronic Architecture Effects on Complexity and Costs

WHEEL 2 5 WHEEL
; - 2
®© ®
0
O,
1
z (=]
10
LU Voo Sashn, —
o b [F==l Driver Display LI 13
12 } —
=114
i Driver %
ABS Hydraulic R ! Switches ook =
D5 matce ooy ccntn System A1 T
Ny ¥
v e i F—
 ErrTTE Traction o comumor roviure
e a System <t s powes sty 3o
® ©
@ —
simsee¥ CRUISE
L) et did s)| CONTROL -
.. Ve spest
.| TRANSMISSION |...}.) m - L | "
bre w0 e g - et g wnd o wiod whas o
E:xwm H CONTROL W..:::.M Sensors and Switches (squares)
| —“.-.T’ 1 throttie position sensor
—id] i 2 ignition key
4NS 3 vertical G sensors x3
ws 4 lateral G sensors X2
Yo 5 height sensors x4
oo s 6 longitudinal G sensor
-0 1 g - N 7 speed sensor
o —r y B
ENGINE Ly POWER === 0 wm:l-m:l.-«-omw
sins oo) MANAGEMENT 5 setcte spmet STEERING frstssn duoss :o lud(d::nmld\
1 gear lever position
onutex s SYSTEM -) 12 brake fluid level switch
T — TerTEETr 13 hand brake swich
E e o 14 brake switch
frgre spom Whow et 15 steering wheel angular velocity sensor
4 parking b e ST 16 steering wheel torque sensor
: I—_| ngrud e v 17 steering wheel angle sensor
= e S i
Speed o secveiin) 19 AWS oil level sensor
Sensor 1] Actuators O
traee swacr SUSPENSION feist shest neps semans
ahos tagrs I 1 suspension wheel pressure control valves x4
— 2 thottle actuator
3 sub-throttie actuator
Ve accatet ahon 4 4WS motor
4 LT 5 power steering ut
I —_— e 6 ABS wheel actuators x4
v dof: ST
Suspension [La | [
Hydraulic M5 E
System a1 -1
= § manf ”y
e % B 4
e o
i e den
1 actcn e gaena s
I whe e gamars
e ke sy
ABSASR i
ot s semy
T L4
g 1 o
(TEEX

©
{0

OO

9 9
WHEEL 5 5 | WHEEL

Figure 6.2 Conventional Centralised Architecture (Architecture 1)

161

Electronic Architecture Effects on Complexity and Costs

WHEEL

e
WHEEL °
9
o
[
0,
)
—
2
b———|
10
e
== [T 1 T 17
nefrpof ==y Driver Display e 13
12 } ‘ — = | 13 |

ABS Hydraulic
System

Traction
Hydraulic
System

v scton metcr power supty ads

Driver
Switches

>

|

o

|

=3

|

=

S ion

L CRUISE | _
It CONTROL | 4T~ e
e syorsen | TRANSMISSION 19 I sl
gouie ot CONTROL
) < ¢
Wk -
MAﬁrggﬂEENT * 3 e POWER
smgmespieen)| STEERING
SYSTEM — 3
L
7
Speed
Sensor
] e oo SUSPENSION
——
E—I I—

p
Hydraulic
System

IS Whe bt Sernae

it 8 wheol eyt

S W bt e T

o syt

e apoeT

ABS/ASR

7T whow by e o

©

a,

WHEEL 5

OO

Figure 6.3 Conventional Centralised with Limited CAN and Functional Integration Architectures (Architectures 2,4)

o | o }—

WHEEL

Dnswm =

Sensors and Switches (squares)

throttle position sensor
ignition key

vertical G sensors x3
lateral G sensors x2

height sensors x4
longitudinal G sensor

speed sensor

door sensors x4

wheel speed sensors x4

kick down switch

gear lever position

brake fluid level switch

hand brake switch

brake switch

steering wheel angular velocity sensor
steering wheel torque sensor
steerng wheel angle sensor
yaw rate sensor

4WS oil level sensor

Actuators O

suspension wheel pressure control vakes x4
throttle actuator

sub-throttle actuator

4WS motor

power steering unit

ABS wheel actuators x4

162

Electronic Architecture Effects on Complexity and Costs

5
WHEEL =1} | WHEEL
9 9
O ©
O : =
O
1
e e
: =]
—
10
L—
[11
:]
Driver Display - 13
12 i ol
14
, 15
Driver =5
ABS Hydraulic Switches 71
System SELLAE
Traction
Hydraulic
System y
O
o
e i 19 Sensors and Switches (squares)
Yok dow: < -
— 1 throttle position sensor
- en whiod sther domar 2 ignition key
e spmed ENGINE & - 3 vertical G sensors x3
[_‘ 4 lateral G sensors x2
POWERTRAIN et et 5 height sensors x4
ECU 6 fongitudinal G sensor
; 7 speed sensor
angne stz s kst 8 door sensors x4
. [} wheel speed sensors x4
10 kick down switch
b y oy 1 gear lever position
Ty o o 12 brake fluid level switch
13 hand brake switch
— A 14 brake switch
15 steering wheel angular velocity sensor
Goria Dodlainkn 4 16 steering wheel torque sensor
S 17 steering wheel angle sensor
18 W rate sensor
7 i yo
s T 19 4WS ol level sensor
Sensor Actuators O
1 suspension wheel pressure control valves x4
2 throttle actuator
vl whest heght demans 3 sub-throttle actuator
4 AWS motor
DYNAMIC 5 power steering unit
CONTROL 6 ABS wheel actuators x4
ECU
Suspension
Hydraulic
System

(e :
(L

9 9
WHEEL 5 5 WHEEL

Figure 6.4 Total Centralised Architecture (Architecture 3)

163

Electronic Architecture Effects on Complexity and Costs

WHEEL

Distributed
Wheel ECU

S0

Figure 6.5 Distributed Wheel Controller Architecture (Architecture 5)

Suspension
hydraulic system

Distributed
Central ECU

WHEEL
@ AES whottrshe snset Distributed
Wheel ECU o B 2
; o === Rear Right
1
2
10
1
- Driver Display _1 e
12
14
Driver ”3
A5 scienced stw i 1L
ABS Hydraulic [Sl 1
System
Traction rupecs reswis
Hydraulic
Sitte s gt it
©
O
S .
Wk dow! - "
Vel st ENGINE &
POWERTRAIN
ECU y——
3
4
7
Speed
Sensor

(: Je—r—===e{ Distributed

() 3in whoe b e Front Left

Wheel ECU

WHEEL

&3

s wheettrake dormarst ()

fronsctin whes neght semans ()

Distributed
- | Wheel ECU
uie g Rear Left
9
5 WHEEL

e wn -

Sensors and Switches (squares)

throttle position sensor
ignition key

vertical G sensors x3
lateral G sensors x2
height sensors x4
longitudinal G sensor
speed sensor

door sensors x4

wheel speed sensors x4
kick down switch

gear lever position
brake fhiid level switch
hand brake switch
brake switch

steering wheel angular velocity sensor

steering wheel torque sensor
stearing wheel angla sensor
yaw rate sensor

AWS oil level sensor

Actuators O

suspension wheel pressure control valves x4

throttle actuator
sub-throttle actuator
4WS motor

power steering unit
ABS wheel actuators x4

164

Electronic Architecture Effects on Complexity and Costs

6.1.2 The Number of Wires and Their Estimated Total Length
and Weight of Each Architecture

The number of wires, their estimated total lengths and weights will be used for

comparison and discussion of the different vehicle electronic architectures.

6.1.2.1 The number of Wires in Different Electronic Architectures

The total number of wires, in each of the 4 vehicle electronic architecture

models, are simply counted and shown in Table 6.2.

Vehicle Electronic Architectures Total Number of Wires
Conventional centralised architecture (Architecture 1) 100
Conventional centralised with limited CAN and with 85
functional integration architectures (Architectures 2 and 4)

Total centralised architecture (Architecture 3) 76
Distributed wheel architecture (Architecture 5) 79

Table 6.2 Total number of wires in different vehicle electronic architectures

6.1.2.2 The Estimated Total Lengths of Wires in Different Electronic
Architectures

The total wire length of each architecture is estimated by first splitting the
wires into groups according to their lengths. This is done in relation to an estimated
distance between the components at the two ends of a wire. The length of each wire
group is estimated, as will be described later. The total wire length for each
architecture can then be added up from all the wires.

As stated at the beginning of this chapter, that in the models, the EMS and
transmission control ECU are located in the underbonnet zone, together with the
vehicle speed sensor, ABS and traction actuators, and the suspension hydraulic
system. The other five ECUs are situated under the passenger seats, classified as in
the centre zone. All the driver control switches and display are obviously around
dashboard zone. The ABS and suspension wheel actuators are in proximity to the
wheels, and classified as in wheelarch zones. Finally, the 4WS actuator is located near
the rear axle and considered as in boot zone. The wiring models are drawn according

to these classifications.

165

Electronic Architecture Effects on Complexity and Costs

Figure 6.6 shows the zonal classification of a vehicle.

Wheel arch

==

Dash-

board

Underbonnet

Wheel arch

Centre

Wheel arch

Boot

Wheel arch

Figure 6.6 Vehicle zonal diagram

Based on the component locations and their relative distance apart specified

above, looking at the set of wires in the four models, all the wires can be categorised

into 4 length groups, according to the zones of the two components that they link as

follows:

e centre-underbonnet/boot zones, for example, the wire that links the engine speed

signal between EMS and the cruise control ECU, or the rear wheel steer signal

wire between the 4WS ECU and the 4WS actuator.

e dashboard-underbonnet/centre zones, for example, a driver display signals from

EMS or the active suspension ECU to the driver.

e centre-wheelarch zones, for example, a wheel height signal between the active

suspension ECU to an active suspension actuator

e same zones, such as one that carries engine speed signal between EMS and the

transmission control ECU.

From the above wire grouping definition, all the wires in each wiring

architecture can be classified in to groups as shown in Table 6.3.

Vehicle Number of Wires
Electronic
Architectures
Centre- Dashboard- Centre- same | Total
underbonnet/ | underbonnet/ | wheelarch | zones
boot centre
Architecture 1 41 35 18 6 100
Architectures 2,4 31 35 18 1 85
Architecture 3 26 30 18 2 76
Architecture 5 26 27 6 20 79

Table 6.3 Wiring length classification of different vehicle electronic architectures

166

Electronic Architecture Effects on Complexity and Costs

From a wiring inspection of a typical mediumy/large saloon car [15], the four

groups of wires can be fitted in the vehicle as shown in Figure 6.7-6.8 [18].

kA ey

Figure 6.8 ECU wiring from passenger comparvt’me‘nt to engine bay area

Figure 6.7 demonstrates how the ECUs in the centre zone are wired. All the
wires from these ECUs are first led in bundles, to the sides of the vehicle along the
floor. From there the wires are laid towards the front or rear of the vehicle, depending

on the locations of end components, along the sides of the vehicle at floor level below

167

Electronic Architecture Effects on Complexity and Costs

the doors.

Figure 6.8 shows how these wires are linked to the underbonnet zone. They
are laid along the floor below the doors to the front of the passenger compartment.
The parts, where the wires can go though the chassis from the passenger compartment
to the underbonnet zone, are located below the dashboard and glove box on each side
of the vehicle. Through these chassis gaps, the wires can then be connected to
components in the front wheelarch zones or led along the front wing panels and then
across the underbonnet zone to link to components in that area. Similarly, the wires,
linked to the rear wheelarch or boot zones, are laid in this manner.

From the above wiring information, the lengths of wires belonging to each of
the four groups can be estimated as shown below.

The estimated length of a wire that link two components between:

Centre - underbonnet/boot zones — total length is the sum of the lengths of the
following sections of wiring between:

component in centre zone — vehicle side = 0.5 vehicle width (W)

vehicle side — front/rear end of passenger compartment (along door panel) = 0.5
wheelbase (WB)

front/rear of passenger compartment (floor level) — chassis gaps linked to engine
bay/boot zone (below dashboard level) = 500 mm

chassis gaps - centre of underbonnet/boot zone = 0.5W

Total length = 0.5W + 0.5WB + 500 + 0.5W = IW + 0.5 WB + 500 mm

Dashboard - centre/underbonnet zones - total length is the sum of the lengths of the
following sections of wiring between:

component in centre zone — vehicle side = 0.5W

vehicle side — driver’s position (along door panel) = 0.25WB

driver’s position — dashboard (vertical wiring) = 500 mm

Total length = 0.5W + 0.25WB + 500 mm

Centre - wheelarch zones - total length is the sum of the lengths of the following
sections of wiring between:

component in centre zone — vehicle side = 0.5W

vehicle side — front/rear end of passenger compartment (along door panel) = 0.5WB
front/rear of passenger compartment (floor level) — chassis gaps linked to

underbonnet/boot zones (below dashboard level) = 500 mm

168

Electronic Architecture Effects on Complexity and Costs

Total length = 0.5W + 0.5WB + 500 mm
Short distance — wires that link two components in the same zones are given an
approximate length of 500 mm each.

In order to quantify the above estimated wire lengths, wheelbase and width of
a vehicle are needed. These dimensions are taken from two types of cars: a large,
luxury saloon and a compact car. This allows the wire lengths of different
architectures to be compared, when applied to two passengers on different market
ends. The comparison could indicate which architectures are best suited to which type
of vehicles. The required dimensions are taken from those of the Mercedes-Benz S-
class and the Vauxhall Corsa, both of which are well known among their classes.
Their dimensions are {16,32]:
Mercedes-Benz S-class: Width = 1.855 m Wheelbase = 3.085 m
Vauxhall Corsa: Width =1.610 m Wheelbase = 2.440 m

The lengths of the four types of wires can now be estimated according

to the formula derived earlier. Each type of wire length, together with the total wire

length of each electronic architecture, when installed in each vehicle are shown in
Table 6.4,

Vehicle Electronic | Length of Wires (m) (Mercedes-Benz S-class / Vauxhall Corsa)
Architectures
centre- dashboard- centre- same zones Total
underbonnet |underbonnet | wheelarch
Length
/boot /centre
No. | length | No. | length | No. { length | No.| length
Architecture | 41 | 159.8/ | 35 | 77.0/ 18 | 53.5/ | 6 3.0/ 293.2/
136.5 67.0 45.5 3.0 252.0
Architectures 2,4 31 | 120.8/ | 35| 77.0/ | 18 | B53.5/ | 1 0.5/ 251.7/
103.2 67.0 45.5 0.5 216.2
Architecture 3 26 | 101.3/ | 30 | 66.0/ | 18 | 535/ | 2 1.0/ 221.8/
86.6 57.5 45.5 1.0 190.5
Architecture 5 26 | 101.3/ | 27 | 59.4/ 6 178/ [20 | 10.0/ 188.5/
86.6 51.7 15.2 10.0 163.4

Table 6.4 Length of four wire types and total lengths of wires in different vehicle
electronic architectures

169

Electronic Architecture Effects on Complexity and Costs

6.1.2.3 The Estimated Total CAN Wire Length in Different Electronic
Architectures

The lengths of CAN wires can also be estimated in a similar way. The CAN
bus is wired along the side of the vehicle and the ECUs are linked to the bus at their
nearest points along the line. The CAN bus lies along the side of the vehicle. In all the
architectures, except the Architecture 5, there is no ECU towards the rear. Hence the
CAN bus only lies between the mid and front of the vehicle. Its length is, therefore,
equal to the length of centre-wheelarch zone wire minus 0.5W (since CAN bus lies on
the vehicle side, the distance between the centre zone and vehicle side of 0.5W is
taken out). From the above approximation, the length of the CAN bus of all the
architectures except Architecture 5, is estimated at 2.04 and 1.72 metres for the
Mercedes and Vauxhall, respectively.

The Architecture 5 CAN bus needs to cover the front to rear wheelarch
distance. Its length is, therefore, twice that of the other architectures. Its length is
estimated at 4.09 and 3.44 metres for the Mercedes and Vauxhall, respectively.

All the ECUs are connected to the CAN bus with half a vehicle width length
wire. Note that two distributed wheel ECUs are one vehicle width away from the
CAN bus, while the other two are virtually next to the bus, so the average distance is
from ECU to the bus is half a vehicle width. Table 6.5 shows the total CAN wiring
lengths of all the architectures except Architecture 1.

Also there is a different in CAN wiring length between Architectures 2 and 4,
where there is none before. This is because Architecture 4 requires data integrated
control between 4WS ECU and other ECUs, hence 4WS ECU needs to be on CAN.
On the other hand, 4WS ECU requires no integrated control in Architecture 2.

Vehicle Electronic Length of CAN Wires (m)
Architectures (Mercedes Benz S-Class / Vauxhall Corsa)

CAN bus length ECU Wire Links to| Total CAN

CAN bus length | wiring length

Architecture 2 2.04/1.72 4.64/4.03 6.68/5.75
Architecture 3 2.04/1.72 1.86/1.61 3.90/3.33
Architecture 4 2.04/1.72 5.57/4.83 7.61/6.55
Architecture 5 4.09/3.44 5.57/4.83 9.65/8.27

Table 6.5 CAN wiring lengths of the four vehicle electronic architectures

170

Electronic Architecture Effects on Complexity and Costs

6.1.2.4 The Estimated Weight of Wiring Harness in Different Electronic
Architectures

The weight of a thin wall automotive wire of conductor size 0.65 mm?, made
by MULTICOMP, which is comparable to the 0.5 mm? wires used in Rover 800 is
used to estimate the total wiring weight of each vehicle electronic architecture [17].
The 500 metre of this wire weighs 5.85 kilograms, which is equivalent to
1.17kilograms/100metres. A twisted pair wire, which is used as networking bus in
automotive applications [20-21], is to be used to estimate the CAN wiring weight. The
wire, made by Belden Wire & Cable, weighs approximately 5.92kg/100m [19]. Table
6.6 displays the total number of wires, their total lengths, and weights of different

vehicle electronic architectures.

Vehicle Wire Lengths (m) and Weights (kg)
Electronic (Mercedes Benz S-class / Vauxhall Corsa)
Architectures
Total number | Wire length | Wire weight | CAN wire System
of wires (m) (kg) weight (kg) | wire weight
(kg)
Architecture 1 100 293.2/252.0 | 3.43/2.95 0/0 3.43/2.95
Architecture 2 85 251.7/216.2 | 2.95/2.53 0.40/0.34 | 3.34/2.87
Architecture 3 76 221.8/190.5 | 2.59/2.23 0.23/0.20 | 2.83/2.43
Architecture 4 85 251.7/216.2 | 2.95/2.53 0.45/0.39 | 3.40/2.92
Architecture 5 79 188.5/163.4 | 2.21/1.91 0.57/0.49 | 2.78/2.40

Table 6.6 Total number, lengths and weights of wires in different vehicle electronic

architectures

Compared to Architecture 1, Architectures 2, 3, 4, and 5 enable weight saving

of 3%, 17%, 1% and 23% on a large passenger car respectively. The four

architectures, when installed in small vehicle, would yield 3%, 18%, 1% and 19% in

weight saving from the Architecture 1, respectively.

The results of the above weight prediction suggest that the relative wiring

weight of all the electronic architectures is consistent across small and large vehicle

range.

171

Electronic Architecture Effects on Complexity and Costs

6.2 Cost Comparison Between Different Architectures
Wiring Harness

Cost is a very important aspect in car manufacturers’ considerations, since the
automotive market is very competitive. Before deciding to include or change to a new
system, a car manufacturer will contemplate system cost among the first few factors.
In this section, the wiring harness cost and its effects on cost of different vehicle
electronic architectures, will now be discussed. It should be note that not all the costs
are quantifiable since the study is in equivalent of a concept stage. An attempt was,
however, made to estimate the component costs of different architectures. The costs
of wiring, microcontrollers, peripheral ECU components, sensors and actuators were
estimated or collected. These add up to system component cost. The results, together
with the discussion on other cost aspects, can provide a comparative indication of the
potential costs and savings of different electronic architectures. The future trend of

costs will also be discussed.

6.2.1 Component Cost Estimation

6.2.1.1 Wiring Harness Cost

From [22], the cost of wires when fitted into a vehicle depends primarily on
the number of wires, and not their lengths. This is due to the fact that most of the cost
is incurred from preparation, such as wire cutting and peeling. The total materials and
connecting cost of system wiring harness can be approximated from the number of
wires (or signals) in a system.

The cost per wire was 30p in 1993 [22]. Since most of the cost if from
preparation, it is assumed to rise with inflation, as does labour cost. Assuming the
inflation rate of 2.5% annually, the cost per wire in 2000 is predicted to be 36p.

The cost of CAN installation is also included here due to its relation to wiring.
From [22], the cost of adding CAN to an ECU can be coarsely approximated by

equation 6.1.

172

Electronic Architecture Effects on Complexity and Costs

CAN cost per ECU = (CAN + INTERF) x 1.8 + 2WIRE 6.1)
CAN - CAN chip cost

INTERF - CAN interface material cost (e.g. drivers, crystal, etc. = 0.61)
1.8 - on cost overhead multiplier (e.g. labour, PCB accessories, etc.)
2WIRE - twisted pair serial bus (60p)

The cost variation of all the factors except CAN chip, from model year 1994
vehicles estimated in [22], is not known. They are thus still used in this estimation.
The cost of CAN chip is currently £1.12 [23]. The CAN installation cost per ECU in
2000 is estimated at:

(1.12+0.61) x 1.8 + 0.60 = £3.71

Using the wiring and CAN installation cost estimation described above, the

wiring harness costs of all the architectures are shown in Table 6.7.

Vehicle Number of | Wiring | No. of CAN CAN Wiring

electronic wires costs (£) capable installation harness

architectures ECU costs (£) costs (£)

Architecture 1 100 36 0 0 36

Architecture 2 85 30.6 5 18.6 49.2
Architecture 3 76 27.4 2 7.4 34.8
Architecture 4 85 30.6 7 26.0 56.6
Architecture 5 79 28.4 6 22.3 50.7

Table 6.7 Wiring harness costs of different electronic architectures

6.2.1.2 Microcontroller Costs

The microcontroller costs are obtained, based on the market price of the
microcontrollers specified in the performance prediction in Chapter 5. The prices of
microcontrollers of the same or nearest family (in number of bits) as the ones
specified, with the closest amount of ROM and RAM are taken as the basis for
calculation. It is estimated in [33] that 1K of ROM costs approximately $0.05,
whereas the same amount of RAM costs 10-15 times more. 1K of RAM would cost
$0.75 in the worst case approximation.

The memory difference between the specifications and the available
microcontrollers is then estimated into costs. This is applicable in industry when a
Original Equipment Manufacturer (OEM) wants to buy a large number of

microcontrollers, a manufacturer will fabricate it according to the customer’s

173

Electronic Architecture Effects on Complexity and Costs

specifications. The ROM/RAM additional or reductive costs are converted into
pounds, assuming $1.4 to £1 exchange rate. These costs are added or subtracted to the

microcontroller price to complete the microcontroller cost estimation. The results are

displayed in Table 6.8.
Microcontroller Architectures 1, 2, 4 Architecture Architecture 5
Cost Estimation 3
Active 4WS ABS Total Central | Distributed
suspension centralised ECU | wheel ECU
ECU

Required MC68HC08 | MC68HCO5 | MC68HC08 | MC68HC12 | MC68HCO05 | MC68HC08
Microcontroller
Required ROM 7.6 5.0 71 17.2 104 7.8
(K bytes)
Required RAM 0.6 0.4 0.5 1.3 0.8 0.6
(K bytes) .
Based 13.0°9 9.3 13.0 24,97 9.3 13.0
microcontroller
price (£)
Required - -24.4 -11.0 -24.9 22.3 -5.6 -24.2
available ROM
Required - 0.1 -0.1 0.0 0.3 0.3 0.1
available RAM
Estimated MC 121 8.8 12.1 25.9 9.2 12.2
cost (£)

Table 6.8 Estimated microcontroller costs
" all the prices of microcontrollers and electronic components are quoted per piece.
This would certainly be more expensive than the actual production prices, which have

bulk discounts. They are, however, useful for comparison purpose.

6.2.1.3 Peripheral ECU Component Costs

The costs of other ECU components namely peripheral Integrated Circuits
(IC), resistors, capacitors and transistors, are also added to the ECU cost. There is no
formula in estimating these component costs during the design stage. It is, however,
believed that their number may be related to the number of ECU inputs and outputs.
This is because they are primarily to assist a microcontroller in processing the inputs
and outputs. The estimation was carried out by plotting a graph of the number of input
and output signals of drivetrain or dynamic control ECUs produced from 1986 to
1995 (the number of signals were simply the number of pins they possessed), and the
number of their electronic components, to obtain the 1* order trend line. Figure 6.9

displays the graph produced.

174

Electronic Architecture Effects on Complexity and Costs

B0 s et SN S : e
£ 300
(=
£ 250
[} o
Q.
§ 200 > @ 1Cs
- rd W Resistors
S 150 - — Capacitors
é 100 == Pt X Transistors
5 e
= 50 tm o e] X
0 = :,f?_"_ ::1: -t- D .-1 I ; I ‘
0 10 20 30 40 50 60 70
Number of ECU I/O pins

Figure 6.9 Plot of number of ECU components and I/O pins

All the ECUs studied in the graph were manufactured using through hole
technology. It is acknowledged that recent changes to semiconductor device
packaging (surface mount) may affect this assumption. Another factor, which should
affect the trend lines, are the unknown number of unused pins in each ECU.

By applying the number of input and output signals from the wiring models of
Architectures 1-5, displayed in Figures 6.2 to 6.5, to the trend line, the number of
vehicle drivetrain and dynamic control system components could be predicted.

The costs of the peripheral ICs, resistors, capacitors and transistors were taken
from [17], and averaged. The products of the average component prices and their
predicted numbers are then used to form ECU component costs. The results are shown

in Table 6.9. The details of calculation are shown in Appendix D.

175

Electronic Architecture Effects on Complexity and Costs

Architecture|Architecture|Architecture|Architecture|Architecture
1 2 3 4 5

Total MC cost 33.1 33.1 25.9 33.1 57.9
Total no. of ICs 15 12 27 12 15
Total IC cost (£) 7.3 5.8 13.1 5.8 7.3
Total no. of resistors 194 168 240 168 232
Total resistor cost (£) 19.4 16.8 24 16.8 23.2
Total no. of 96 79 179 79 108
capacitors
Total capacitor cost 18.2 15.0 34.0 15.0 20.5
&
Total no. of 51 51 19 51 78
transistors
Total transistor cost 53.9 53.9 20.1 53.9 82.4
&)
Total ECU cost (£) 132 125 117 125 191

Table 6.9 Microcontrollers and peripheral ECU component costs

6.2.1.4 Sensor and Actuator Costs

The costs of sensors and actuators can be calculated from the combined

number of control related sensors and actuators of each system. Individual sensor and

actuator prices are taken from [17,19]. The sensor and actuator types are the ones used

in their corresponding system found in literature [7]. Table 6.10 shows their combined

costs.

Architectures | Architectures 3,

1,2 4,5
No. of microswitches 6 6
Total microswitch cost (£) 5.8 5.8
No. of steering angle sensors 1 1
Total steering angle sensor cost (£) 14.2 14.2
No. of speed sensors 6 5
Total speed sensor cost (£) 38.4 32
No. of acceleration sensors 7 7
Total acceleration sensor cost (£) 175.3 175.3
No. of height sensors 4 4
Total height sensor cost (£) 22.8 228
Total sensor cost (£) 250 243.6
No. of solenoid actuators 8 8
Total actuator cost (£) 75.4 75.4

Table 6.10 Combined sensor and actuator costs

176

Electronic Architecture Effects on Complexity and Costs

6.2.1.5 Overall System Costs

The costs of all the system components can now be summed up to obtain the

total system costs. This is shown in Table 6.11.

Architecture | Architecture | Architecture | Architecture | Architecture

1 2 3 4 5
Wiring cost 36 49.2 34.8 56.6 50.7
ECU cost 133.9 126.6 117.9 126.6 195.1
Sensor cost 250.0 250.0 243.6 243.6 243.6
Actuator cost 75.4 75.4 75.4 75.4 75.4
Overall 493 499 471 500 561

system cost

Table 6.11 Overall system costs

The pie graphs of all the architecture costs, showing how much each

component is contributed towards overall costs, are displayed in Figures 6.10.

Architecture 1 (£493)

156%

7%

Architecture 4 (£500)

15%

25%

11%

49%

Architecture 2 (£499)

156%

10%

50%

Architecture 5 (£561)
13%

9%

Figure 6.10 System costs of different architectures

6.2.2 Analysis

Architecture 3 (£471)

16%

25%

M Wiring cost

O ECU cost

| @ Actuator cost |

~
|
|
| M sensor cost
|
|

7%

52%

The overall system costs indicate a cost advantage on Architecture 3, primarily

due to having only one ECU. The costliest Architecture 5 is approximately 19% more

expensive, while the other three architectures have comparable component costs,

being around 6% more expensive than Architecture 3.

177

Electronic Architecture Effects on Complexity and Costs

The sensor costs dominate the overall system costs, accounting roughly for
half of the costs in all cases. The wiring costs have the least impact of all, contributing
not more than 11% to the total costs. Since the sensor and actuators costs are almost
consistent across all architectures, the ECU prices hold the key to overall system
costs. Architecture 5, which has the most number of ECUs, is therefore the most
expensive.

Apart from the component costs, other factors and future trends affecting the

overall system costs will now be discussed.

6.3 Future Trends and Other Effects on System Costs

6.3.1 Future Trend Effects

In the near future, the imminent introduction of smart sensors/actuators,
integrated chassis control, and by-wire technology, will have an impact on vehicle
wiring costs of these architectures [24,26].

The Smart sensor concept is to combine a number of sensors/actuators in
proximity into one housing, which can transmit or receive data on a vehicle network
[25]. Current sensor/actuator nodes can also be added intelligence to have networking
capability. Consider the vehicle model here, smart sensor/actuator concept would,
therefore, reduce the number of wires and add more CAN nodes into the vehicle.
From the vehicle wiring diagram, the vertical, lateral and longitudinal sensors located
in the middle of the vehicle could be combined into a smart sensor node. The
ABS/traction and active suspension hydraulic systems, could also be two smart
actuator nodes. The effect of introducing these three smart sensor/actuator nodes
would reduce the wire count by 23, with 3 extra CAN modules added. This would
result in cheaper wiring cost to implement the Architectures 2-5.

Integrated vehicle chassis control involves closer co-operation between
different chassis control systems, by sharing data and functioning together during
certain driving conditions to improve handling and comfort [27-28]. An example of
this is the activation of active suspension during braking to prevent dive, to improve
passenger comfort. More signal sharing between ECUs would greater utilise the

bandwidth of CAN. The effect on the vehicle wiring architectures here, would include

178

Electronic Architecture Effects on Complexity and Costs

the introduction of 4WS ECU to CAN on Architecture 2, and the increase in wire
count on Architecture 1, due to more signal sharing.

By-wire technology, most notably brake and steer by-wire, would use electro-
mechanical brakes and electric steering actuators to replace hydraulic brakes and
steering columns, respectively [29]. Though by-wire may take longer time before it
can be implemented on vehicles than the two aforementioned technologies due to
safety and car electrical power concern, its substantial potential benefits making its
application imminent. The effect of by-wire technology to wiring would possibly be
an increase in ECUs and electronic contents. Again this would increase CAN utility
and for a vehicle with CAN, or raise the wire count in a vehicle without CAN.

The effects of these coming technologies combined would clearly substantiate
the use of networking. Electronic architectures that include networking would render
savings in terms of wiring cost over ones without networking. Consider the vehicle
electronic architectures here, Architectures 2-5 would have far cheaper wiring cost
than Architecture 1. Architecture 3 would have the cheapest wiring cost due to the
smaller number of CAN nodes and slightly fewer signals, followed closely by
Architecture 5 and Architectures 2 and 4.

The concept of integrating electronic contents with its physical components
have been seriously considered, especially in poWertrain systems. It is believed that
by integrating the EMS to, for example, the intake manifold in the engine and the
transmission control inside the transmission, yield benefits in material cost savings
[1]. Some interconnections can be eliminated, while part of the EMS enclosure is
provided by the manifold. Architectures I and 2 could benefit from this concept by
having their power steering ECUs integrated with their mechanical contents [30].
4WS ECU could possibly be integrated with its hydraulic system also. Architecture 5
could also benefit from these cost savings, by having its wheel ECUs integrated to

wheel brake or suspension actuators.

6.3.2 ECU Development Cost

It is generally acknowledged that system complexity has significant effect on
development cost and time. With this understanding, Architecture 4 is expected to be
more costly in development. This is because simultaneous development of the

architecture requires close corroboration between the ABS, EMS, active suspension

179

Electronic Architecture Effects on Complexity and Costs

and 4WS suppliers. This would make the development time and cost of these systems
higher than having them individually developed, as Architectures 1 and 2.
Architectures 3 and 5, though contain highly complex systems of engine &
powertrain and vehicle dynamic control ECUs, could actually yield cost savings, due
to the fact that they only require a couple of complex systems developed rather
several fewer complex systems [26]. This, however, depends on the number of
suppliers with capability to develop these complex systems. The more suppliers there
are, the more competitive the market becomes, and hence cheaper costs. Complex
systems also have a drawback in terms of the limited number of car models that they
can be fitted in. Individual ABS, power steering or cruise control ECUs can be fitted
to a wide range of models, whereas a more complex vehicle dynamic control ECU
may have to be specific to only one or two car models. Therefore, this advantage of

the economy of scale is towards Architectures 1,2,4.

6.3.3 Assembly and Diagnostic Costs

Assembly cost depends much on labour cost and hence how long it takes to
assemble the systems. The wire count is one of the indicators in this case. The level of
system integration is another, since highly integrated systems need less steps to be
connected and assembled. These considerations favour Architecture 3 due to its
relatively small number of wires, and Architecture 5 due to its potentially integrated
system components.

Wiring is the significant source of electronic failures in cars [31]. Hence the
less wiring a vehicle contains, the less likely it is to fail. The conventional centralised
architecture would, therefore, have the potentially highest maintenance cost. Though
ECUs are far less likely to fail, once fails it is almost always totally replaced by a new
one, with high cost. The more complex the ECU, the more expensive it tends to cost.
In this respect, Architecture 3 could be more costly to maintain than the other four

architectures.

180

Electronic Architecture Effects on Complexity and Costs

6.4 Summary

The work done in this Chapter is to compare the five architectures in terms of
component complexity and costs. The system components include sensors, actuators,
ECUs and wiring.

The number of wires in each architecture was derived from published papers
on the exemplary powertrain and dynamic control systems [5-12]. The results suggest
that Architecture 1 has the highest number of wires. Architectures 2, 4 are expected to
have 15% fewer wires, whereas the Architectures 3 and 5 would have 24% and 21%
fewer than Architecture 1, respectively.

The estimate of overall wire length, including that of CAN cables, was made
based on the dimensions of small and large luxury vehicles in the market. From the
wire lengths, the wiring weight of the architectures were calculated and compared.
The results show that the percentage of weight different between architectures is
almost consistent across the two vehicle types. Architectures 2, 4 have a slight weight
saving (approximately 2%) on Architecture 1, whereas Architectures 3, 5 enable
weight reduction of 20%.

The component costs of the alternative architectures were then calculated.
Each wiring cost is considered fixed regardless of length, since the cost is mainly
from preparation [22]. The costs of CAN, including cables, microcontrollers and
interface materials were calculated from the equation in [22]. ECUs consist of
microcontrollers and peripheral electronic components. Microcontroller specifications
were estimated in Chapter 5, while the number of peripheral components was
approximated from the plot of number of ECU I/O pins against peripheral
components. Individual component price was taken from electronic supplier
catalogues [17,19].

The overall system costs indicate that Architecture 3 is potentially the cheapest
system. Architecture 1, 2, 4 costs are similar at 6% higher, while Architecture 5 is
potentially the most expensive being 20% costlier than Architecture 3. The future
automotive electronic trends and other cost aspects that affect the above cost estimates

were discussed.

181

Electronic Architecture Effects on Complexity and Costs

6.5 References

1.

2.

bl

®

10.

1.
12.

13.
14.
15.
16.
17.
18.

19.
20.

De Vos G, et al. Migration of Powertrain Electronics to On-Engine and On-
Transmission SAE No.1999-01-0159

Anderson D A New Way of Trouble Shooting the Wire Harness from Drawing
Board to Service Rack SAE No0.960394

McLaughlin R, et al. A feasibility study of CAN technology in body electronic
control systems IMechE Autotech 95, 1995

Bauer H Automotive Brake Systems Bosch, 1995

Matsutomi S, et al. Development of ABS and traction control computer SAE
No.901707

Achleitner E. et al. Electronic Engine Control System for Gasoline engines for
LEYV and ULEY Standard SAE N0.950479

Jurgen R Automotive Electronics Handbook McGraw-Hill, 1995

Bauer H Bosch Automotive Handbook 4™ edition Bosch, 1996

Schleupen R, et al. Electronic Control Systems in Microhybrid Technology
SAE No0.950431

Sato H, et al. Development of Four Wheel Steering System Using Yaw Rate
Feedback Control SAE No0.911922

Ise K, et al. The ‘Lexus’ Traction Control (TRAC) System SAE No0.900212
Graham C, et al. General Motor High Performance 4.3L V6 Engine SAE
No0.920676

Yokaya Y, et al. Integrated Control System Between Active Control
Suspension and Four Wheel Steering for the 1989 Celica SAE No.901748

Irie N, et al. 4WS technology and the prospects for improvement of vehicle
dynamics SAE No.901167

Ting C A Novel Approach of Transmission Line Theory in EMC Assessment
(PhD Thesis) July 2000

Car Magazine Issue 418, June 1997

RS Catalogue RS Components Ltd., 2000

Rover 800 Series Electrical Fault Finding Manual Rover Group, 1992

Farnell Component Catalogue Farnell 2000

Wheat G, et al. Vehicle Multiplex Wiring — An Implementation SAE
No.880591

21. Akashi K, et al. Application of Multiplexing to Automotive Body Electrical

22.
23.

24.

25.

26.

27.

28.

Control Fujikura Technical Review Issue 22, 1993

McLaughlin R In-Vehicle Communication Networks (MSc Thesis), 1993
Philips PCA82C250 CAN Controller Interface price list RS Components
catalogue website http:// www.rswww.com, June 2000

Ward D, et al. A Vision of the Future of Automotive Electronics SAE No.2000-
01-1358

Sparks D, et al. Multi-Sensor Modules with Data Bus Communication
Capability SAE No.1999-01-1277

Bannatyne R Electronic Braking Control Developments Automotive
Engineering International, Feb 1999

Kawakami H, et al. Development of Integrated System Between Active
Control Suspension, Active 4WS, TRC and ABS SAE No0.920271

Yokoya Y, et al. Integrated Control System Between Active Control
Suspension and Four Wheel Steering for the 1989 CELICA SAE No0.901748

182

Electronic Architecture Effects on Complexity and Costs

29.

30.

31.

32.

33.

34.

35.
36.

Jordan M Drive-by-Wire Will End the Era of the Hnadbrake Turn Electronic
Engineering, Dec 1999

Burns J, et al. Integrated Motor Drive Unit A Mechatronics Packaging
Concept for Automotive Electronics SAE No0.2000-01-0132

Anderson D A new way of trouble shooting the wire harness - From drawing
board to service rack SAE No.960394

Mercedes-Benz S600 dimensions Mercedes-Benz UK website
http://www.mercedes-benz.co.uk, June 2000

Tindell K Embedded Systems in the Automotive Industry Embedded Systems
Conference, 1999

Motorola MC68HC705L16CFU Microcontroller Price, Arrow Catalogue
Arrow Electronics UK, 2000

Motorola MC68HC908GP32 Microcontroller Price, Maplin, 2000

Motorola MC68HC16Z1CFC16 Microcontroller Price, RS Catalogue RS
Components Ltd, 2000

183

Reliability Predictions of Alternative Electronic Architectures

CHAPTER 7

COMPONENT RELIABILITY PREDICTIONS OF
ALTERNATIVE ELECTRONIC ARCHITECTURES

This chapter introduces the concept of reliability, presents alternative methods
for its prediction, and selects and uses one of these to compare vehicle electronic
architectures.

Reliability is defined as ‘The ability of an entity to perform a required function
under given conditions for a given time interval’ [1].

As the trend in the increasing amount of electronics in automotive continues,
the quality and reliability of electronics becomes prominent. Customers expect vehicle
electronics to function correctly throughout the life of a vehicle [2]. Since electronics
is now widely applied in the control of safety related systems of a vehicle such as
Anti-lock Braking Systems (ABS) and power assisted steering systems, failures of
these systems could lead to dangerous driving situations [3]. Hence careful
consideration has to be placed upon its reliability from an early design stage. It is
suggested by [4] that the engineering effort put into early part of the design of a
product gives more effective results in terms of reliability, quality, cost and time, than
the effort put in the later stage. This stresses the importance of reliability
consideration in alternative architecture analysis.

During the initial design stage of a new vehicle system, before hardware is
available, reliability prediction is useful to quantitatively evaluate whether the design
will meet the target reliability level [5]. In some cases, the reliability prediction may
not be very accurate, but it can identify a better design by comparison between a

number of initial designs.

7.1 Types of Reliability Prediction Techniques

There are a number of reliability prediction techniques that have been
developed. The designer can select one, which suits the depth of design knowledge
and the historical data on equipment reliability available to him/her [5]. The reliability

estimate is usually in terms of Mean Time Between Failure (MTBF) or Mean Time

184

Reliability Predictions of Alternative Electronic Architectures

To Failure (MTTF). MTBF is an average time that an equipment can be used before it
fails, when the equipment is repairable [6]. MTTF is similar to MTBF except that it
describes failure rate of non-repairable equipment. According to the data type or

availability, the techniques can be classified into five categories, as described below

[5].
7.1.1 Similar Equipment and Similar Complexity Techniques

These two are among of the most basic techniques, developed to perform a
very early prediction of system reliability, before system specifications are available.
The objectives of the predictions using these techniques are mostly to estimate if a
newly introduced system will meet a minimum reliability constraints [5].

The predictions are based upon historical reliability data of existing
equipment, which is similar in type, operation or complexity to the one being
predicted. For instance, a historical reliability data of an airbag system accelerometer
can be a reliability indicator of a set of similar accelerometers of a new ABS system.
Reliability data of a current EMS ECU should provide a reasonable reliability source
for a new version EMS ECU.

The accuracy of this technique depends on the quality of reliability data and
similarity between the new equipment and the selected one, for which the field results
are used. The more accurate prediction is expected if the production techniques used

and the manufacturers of the two equipment are the same.

7.1.2 Prediction by Function Techniques

Statistical correlation between major functional characteristics and the history
of operational reliability of an equipment is applied in this technique. Each
characteristic is given a weighing factor according to its significance in terms of
reliability. An example given by [5] shows that a radar reliability prediction can be
calculated based on the derived correlation equation between average number of
component parts and other radar characteristics. The characteristics include design
year, detection range, target resolution, receiver dynamic range, etc. Having estimated
the average number of component parts, the radar MTBF can then be obtained from

the average failure rate per part.

185

Reliability Predictions of Alternative Electronic Architectures

Different prediction equations were derived for several equipment by [7]. No
literature was found on the application of this technique on automotive electronics,

but the technique is considered applicable to the field of automotive electronics [5].

7.1.3 Part Count Techniques

The part count techniques can be applied when information on the number of
component parts and types is available or can be estimated. The basic prediction is
done by first finding out the number of each type of components classified by the
failure data source. The generic failure rate associated with each class of component is
then multiplied by the number of components. All the component failure rates are
then added up to make the equipment failure rate. The general governing equation is

as follows [5]:

A=Y N, (A7), (7.1)
i=l
for a given equipment environment where:
A - total equipment failure rate (failures/ 10° hours)
Ac - generic failure rate for the i generic part (failures/10® hours)
g - factor affecting the reliability of the i generic part
N; - quantity of it generic part
n - number of different generic part categories

There are several sources of generic failure rates, with the most well known
one being [8] produced by the US government. References 9-11 are examples of other
sources. Many large companies also compile their own database of component

reliability based on their own field data.

7.1.4 Stress Analysis Techniques

This technique is similar to the previous one but takes into account the
different levels of stress to which a component is subjected such as electrical load and
vibration, and the environment it will be in such as temperature and humidity. These
influencing factors are multiplied with the generic failure rate in the prediction model
to reflect the effect of the stress or environment on the equipment. The model is
therefore believed to give a more accurate prediction than the part count method.

An example of the model for silicon integrated circuits taken from [9] is

shown in Equation 7.2.

186

Reliability Predictions of Alternative Electronic Architectures

A= 7\«3 Tt o g (7.2)
Where
A - the failure rate
A - base(generic) failure rate
1 - temperature weighting factor
TQ - quality factor
TE - application environment factor

Some of the sources of failure data such as [8, 9, 11] also provide data for the
stress analysis technique with different types of stress factors included. Concerning
the accuracy of these models, some work has been carried out to evaluate their
accuracy and suggest an improved model. Whitehead, et al. [12] evaluated the
accuracy of British Telecom (BT)’s models [9] on actual performance of
telecommunication equipment, and concluded that the model accuracy was acceptable
for first 1-3 years of equipment operation. Collas, et al. [13] compared the operational
reliability results of mainframe computers with its predicted reliability model
constructed using BT’s models [9], and adjusted its model to improve accuracy.
Kerscher, et al. [14] found that the Military handbook model 8] was not accurately
representing the field reliability of its electronics equipment. They, therefore,
developed their own prediction model based on the combined Military handbook

model and the Weibull distribution technique.

7.2 Reliability Prediction of Automotive Electronics

It is pointed out by [5] that the most of the reliability prediction models could
give questionable accuracy when predicting automotive electronic product reliability
because of their assumption that the electronic component failure rate is constant. The
practical electronic equipment have been found to have a time dependent failure rate
which is represented by a bathtub curve as shown in Figure 7.1. This argument is
supported by actual assessment results from [12, 14, 15, 16]. Furthermore, the
suggestion that the assumption that component failure rate during non-operating
period is zero, may cause an inaccuracy. This is because automotive electronic
equipment could be in operation for only 5% of its lifetime [5]. Hence by omitting the
non-operating failure rate, the model could give too optimistic a result.

As previously mentioned, the reliability prediction is not generally expected to

give a precise value for such an initial design stage. It is, however, useful as a tool for

187

Reliability Predictions of Alternative Electronic Architectures

estimating whether the new product reliability will meet preliminary reliability

requirement, and for comparing the reliability of different designs.

A

-

()
et
©
o
o
=
N I II III
Early failures Random failures Wear out failures
useful life

-

Time

Figure 7.1 A bathtub curve representing typical component failure rate

7.3 Reliability Modelling of Different Vehicle
Electronic Architectures

As mentioned above, a reliability prediction of electronics systems can provide
initial comparison between systems, in the preliminary design stage before hardware
is developed. This section is intended to compare the projected reliability of different
electronic architectures.

In this case, only the Part Count and Stress Analysis techniques are applicable,
due to the fact that they require no field data and not much information, other than a
number of components in a system, to form a model. Furthermore, there is no
universally accepted best model. Although the accuracy of this technique could not be
proved, it is justifiable to apply it just to compare different architectures and find a
more reliable one.

Of all the 4 reliability data sources available [8-11] for these techniques, [10]
and [11] were chosen for the reliability modelling in this project. {10] was chosen as it
is the most up-to-date. It was developed by AT&T following the guidelines of the US
Ministry of Defence [8], which is among thé most widely known electronic equipment
reliability data sources. [11] was selected since, despite its relatively old information,
it uses historical reliability data of components in automotive applications. By using
two models, their results should provide a more substantial basis for architecture
reliability comparison than applying only one method.

The following sections describe the two modelling processes.

188

Reliability Predictions of Alternative Electronic Architectures

7.3.1 Reliability Modelling Based on AT&T Technique

7.3.1.1 Modelling Technique

AT&T Bell Laboratories provide the estimates of hazard rates of the
components used in products manufactured by AT&T [10]. The information is the
basis for this reliability prediction method.

ECUs are considered to be ‘nonmaintained systems’ in the area of reliability
engineering, since none of their electronic components are inspected and maintained
during their operating lives. They are simply used until becoming faulty and hence
being taken out for replacement or repair. The reliability of such system is commonly
measured by hazard rate [10]. It is the instantaneous rate of failure for units of a
population that last to time t.

At time t, let the number of units which work be S(t).

After a period of At, the number of units which still work is S(t+At).

Hence the number of units that fail during that period is S(t) - S(t+At)

The average hazard rate over At, A(t), is the fraction of failed units over the

working ones. It can be represented by the equation:

S()— S(t+ Ar)
S(1). At

At) =

When At is approaching zero, the hazard rate is:

A(t) = limae->0A(t)

This eventually gives:

d
AMY) = —Eln[s(t)]

= § A()de
St)=e ° =e ¥

189

Reliability Predictions of Alternative Electronic Architectures

The unit of hazard rate is time™' and is usually represented by FIT (Failure In

Time). A device with a hazard rate of 1 FIT can be interpreted as it has the probability

of 10” to fail in the next hour, given that it has survived up to that hour.
For example, an electronic system which has a hazard of 1000 FITs has a

probability to work for 2000 hours without failure S(t):

A(t) = 1000 x 10”° / hour
S (t) = e-0.000001(2000) = e-0.00Z = 0.998

Hence the smaller the hazard rate value it has, the more reliable the device is.

The hazard rate model of [10] for electronic components is formed using two
distinct sources of device reliability information: accelerated life tests and
performance recorded in the field or factory. The result is a model, which is a
combination of a Weibull and an exponential distribution, representing short and long

term hazard rates, respectively. Figure 7.2 illustrates the model in log scale.

-
o
(=]
[}
[«»}

Hazard Rate (FITs

1 ' © 0 " 10000
Operating Time (Hours)
Figure 7.2 Hazard rate model developed by AT&T [10]

For an automotive electronic system, its reliability over the vehicle life span,
considered long-term (or steady-state) reliability, is of interested. To form a reliability
model, the number of different system components are multiplied by their associated
exponential device hazard rates and their contributing factors. The governing equation

is shown in equation 7.3.

190

Reliability Predictions of Alternative Electronic Architectures

all devices

A = E Z(Ar)i(AE)i(lL)i (7.3)
i=l
Where:
Aol - total hazard rate
E - environmental application factor
At - temperature acceleration factor
Ag - electrical stress acceleration factor
AL - device long-term hazard rate

Environmental application factor is related to where the ECUs are located,
which is classified as vehicular-mounted in this case. The operating temperature is
assumed within 40°C, the same in all the ECUs. Since all of the ECUs, except the
distributed wheel ECUs of Architecture 5 which are near wheelarch area, are assume
to be located in a passenger compartment, the consistency of the assumption ensures
fair comparison between the architectures. Electrical stress is applicable to passive
components. The factor depends on power dissipated for resistors and voltage for
capacitors. There is no information on these values, so they are assumed not under

undue stress, corresponding to the electrical stress acceleration factor of 1.

7.3.1.2 Alternative Electronic Architecture Reliability Modelling

Here the application of the reliability modelling method described above is
applied to the alternative electronic architectures.

As practised in Chapter 6, as the number of components in the Wheel
Controller system was unknown, it had to be estimated. The estimation was carried
out by plotting a graph of the number of input and output signals of known drivetrain
and dynamic control ECUs produced from 1986 to 1995 (the number of signals were
simply the number of pins they possessed), and the number of their electronic

components, to obtain the trend line. Figure 7.3 displays the plot.

191

Reliability Predictions of Alternative Electronic Architectures

350

£ 300 -
g = .
S 250 -
Q. 3 e
§ e o E | ® ICs
‘.5 150 - rd .| R‘em:qtﬁ)rs ‘
a - ra . | CdpauAllor.s
2 100 '- -~ X Transistors
e ==sEto
Z 50 = m——— e

0 T‘gﬁ-r‘ :!E "t"':*?' = ¥ :-:F:-l I Eﬁ“ !

0 10 20 30 40 50 60 70
Number of ECU /O pins

Figure 7.3 Projected number of peripheral components per ECU pins

By applying the number of input and output signals from the wiring models of
the conventional and distributed architectures, displayed in Figures 6.2 and 6.5 of
Chapter 6, to the trend line, the number of vehicle drivetrain system components
could be predicted. It is acknowledged however, that recent changes to semiconductor
device packaging (surface mount) may affect this assumption.

Applying the number of components to equation 7.3, the reliability predictions
of all the alternative architectures are shown in Table 7.1. Note that the hazard rate of
the majority type of a component is used as a representative for all types of that
component. For example, most resistors found on the ECUs are of metal thin film
type, so the hazard rate of the metal thin film resistor is used in the calculation of all
the resistors. In the calculation, it is assumed that the components are connected in
series, so the failure of one component means a system failure. This is not strictly
true, but it is reasonable to consider that a component failure will affect the normal

system operation.

10D

Reliability Predictions of Alternative Electronic Architectures

CONtIe
microcontroller

digita -50 ga
" metal (up to IMQ)
" ceramic (general purpose) up to 0.1uF
" NPN or PNP
* sum of a Centralised ECU A and four Distributed ECU A
""" assuming vehicle lifetime of 20 years

Table 7.1 Reliability modelling of alternative architectures using AT&T data

e

As seen from the table, the reliability calculation suggests that Architecture 3
is the most reliable system. Architectures 1,2,4 and Architecture 5 are predicted to be
4% and 9% less reliable respectively i.e. they should have 4% and 9% more
probability of failure during operating lifetime (estimated 20 years) than Architecture
3.

193

Reliability Predictions of Alternative Electronic Architectures

7.3.2 Reliability Modelling Based on Automotive Reliability
Data

7.3.2.1 Modelling Technique

This reliability technique is described in [11]. Its prediction is based entirely
from a database of empirical automotive failure rates. The data was collected from a
field failure data from a number of automotive sources, by an IIT Research Institute.

The prediction technique itself was developed further from earlier models
[17,18], which is governed by the general equation 7.1. The influencing factors
include component location in vehicle, component package type, module package,
screen level, and burn-in, depending on the components. The predicting equations for
specific types of component are shown in Appendix E.

The improvement over the earlier models was achieved by taking into account
the effect of temperature, declining failure rate from infant mortality to steady-state
operation, and nonoperating failure rate.

The failure rate given is in terms of failures per 100 part per 400 hours, as
opposed to the hazard of the previous method. This is approximately for a year use of

vehicle, assuming that it typically operates less than 5% of the time [11].

7.3.2.2 Alternative Electronic Architecture Reliability Modelling

Using the estimates of ECU components from number of ECU I/Os against
component plot in Figure 7.3, described in the previous technique, the system
reliability prediction was made. The details calculation is shown in Appendix E. The

results are shown in Table 7.2.

Architecture 1\Architecture 2,4 |Architecture 3 |Architecture 5
Failure rate 0.39 0.37 0.33 0.59
Failure rate (x with steady- 0.21 0.20 0.18 0.32
state multiplying factor)’
Probability of failure in 0.043 0.040 0.036 0.064
vehicle lifetime operation™
Probability of operating 0.957 0.960 0.964 0.936
for a vehicle lifetime
without failure
* for a typical automotive module over 30,001 hours of operation [11]
** assume vehicle life of 20 years.
Table 7.2 Reliability modelling of alternative architectures using automotive

reliability data

194

Reliability Predictions of Alternative Electronic Architectures

The prediction indicates that Architecture 3 is potentially the most reliable
architecture. Architectures 1,2,4, and Architecture 5 are predicted to be 1% and 3%

less reliable, respectively.

7.3.3 Analysis

The results from both the reliability prediction techniques agree on the relative
reliability of alternative architectures. Both suggest that the Architecture 3 is
potentially the most reliable, followed by the comparable Architectures 1,2,4, whereas
Architecture 5 is the least reliable. This could be explained by the fact that
Architecture 5 contains more ECUs than Architectures 1,2,4, which have the same
number of ECUs. Architecture 3 benefits most from having a single ECU.

The difference of the predicted failure rates between the two techniques
underlines the caution, stated earlier, that the prediction at this early stage is unlikely
to give an accurate result. It merely indicates a potentially more reliable design from
others. Nonetheless, both the prediction techniques suggest that all the alternative
architectures are highly reliable, with less than 15% chance of failure during a vehicle
lifetime. This is slightly optimistic due to the fact that the reliability prediction of
diodes is excluded from the models, because from the ECUs studied, the number of
diodes and ECU pins are virtually unrelated. This should not strongly undermine the
prediction results since the diode base failure rate is comparable to that of capacitors
(in [11], while not all types of diode data is available in [10]), where there are
noticeably fewer number.

In the view of overall vehicle component reliability, Architecture 1 powertrain
ECUs lack the benefit of component redundancy as a result of networking, which the
other four architectures possess. This can be seen from them having the most number
of wires, and hence more I/Os and components, from the wiring diagrams (Figure
6.2-6.5) in Chapter 6. Architectures 3 and 5 gain further benefit from having
integrated powertrain control, which reduces its I/Os resulting in having fewer
components, and hence higher reliability. The powertrain ECU reliability was not
included in the reliability prediction, because not all of the signal and I/O information
on an EMS is available. The wiring diagrams in Chapter 6 were drawn by omitting a

large number of signals between the engine and EMS, treating them as internal. Those

195

Reliability Predictions of Alternative Electronic Architectures

signals and I/Os are essential for EMS component estimation, and hence for reliability

prediction.

The advantage of higher reliability of Architecture 3 may not be significant in

terms of cost to customers. Since ECU failure is generally fixed by replacing it with a

new one. Due to its higher complexity, the cost of its single ECU would be much

more than any ECU of other architectures. This makes its replacement much more

costly, despite a lower chance of failure.

7.4 References

10.

11

13.

14.

15.

16.

17

18.

. International Electrotechnical =~ Commission International Vocabulary

Dependability and Quality of Service IEC 50 (191), 1991

Rose P Automotive and aerospace electronic systems. Dependability
requirements Microelectronics and Reliability Vol.36 Iss.11-12 October, 1996
Idoguchi M A Method of Reliability Analysis for Automotive Electronic
Systems SAE No.910355

Kerscher W Reliability Prediction Techniques - Electrical/Electronic Products
SAE No.870051

Electronic Reliability Subcommittee Automotive Electronics Reliability
Handbook SAE 1987

Leitch R Reliability Analysis for Engineers An Introduction Oxford University
Press 1995

James L, et al. Study of Reliability Prediction Techniques for Conceptual
Phases of Development RADC-TR-74-235, October 1974

Reliability Prediction of Electronic Equipment US Mil-Hdbk-217D, January
1982

Handbook of Reliability Data for Components Used in Telecommunications
Systems British Telecom, Issue 4, January 1987

Klinger D, et al. AT&T Reliability Manual Van Nostrand Reinhold, 1990

. Denson W, et al. Automotive Electronic Reliability Prediction SAE No0.870050
12.

Whitehead A, et al. Reliability Performance of Electronic Components; A
Critical Appraisal of British Telocomm’s HRD Issue 4 1987

Collas G, et al. Comparison Between Operational and Predicted Reliability
for Computer System: Modelling Adjustment International Conference on
Reliability Techniques and Their Application, 1991

Kerscher W Failure-Time Distribution of Electronic Components Proceedings
of the Annual Reliability and Maintainability Symposium, 1988

Franklin D Component Selection Impact on Reliability Proceedings to the
WESCON 1996

Brombacher A, et al. Simulation, A Tool for Designing-In Reliability Quality
and Reliability Engineering International Vol. 9, 1993

. Binroth W, et al. Development of Reliability Prediction Models for Electronic

Components in Automotive Applications SAE No.840486
Coit D, et al. Impact of Nonoperating Periods on Equipment Reliability
RADC-TR-85-91, September 1984

196

Conclusions

CHAPTER 8

CONCLUSIONS

The work in this thesis was initiated from the increasing trend in installing
electronic control systems in vehicles. The interaction and interconnection of these
systems is non-trivial and offers potential benefits in functionality, cost, weight and
reliability.

This project aims to compare automotive architectures for dynamic control
electronics, in the light of the trend mentioned above. The system-level evaluation of
different architectures was made with a specific purpose of evaluating the Distributed
Wheel Architecture (Architecture 5) which has been proposed. It was evaluated along
with the traditional Conventional Centralised (Architecture 1), the recently adopted
and increasingly more popular Conventional Centralised with Limited CAN
Interaction (Architecture 2), and Total Centralised (Architecture 3) and Conventional
Centralised with Functional Integration (Architecture 4), both of which could
potentially be fitted to vehicles of the near future.

The work done in the project can be summarised as follows:

e Simulation of dynamic control systems operation using data generated from the
road test of an instrumented vehicle.

e Derivation of functional specifications of the electronic control systems of the
alternative architectures. This was followed by the estimation of microcontroller
specifications needed for the control tasks.

o Simulation of CAN message transfer of alternative electronic architectures within
a vehicle to predict the CAN associated delay.

e Calculation of a projected component cost of the alternative -electronic
architectures.

e Reliability modelling and comparison of the alternative architectures.

e Evaluation of the viability of the distributed wheel architecture on the above

terms.

These six areas will now be examined in turn.

197

Conclusions

8.1 Simulation of Control Systems

The simulation of dynamic control system operation was carried out to verify

the operation of the exemplary ABS, 4WS and active suspension systems, which were

to be applied throughout the project. This simulation gave the following conclusions:

Since the road test data obtained did not include all of the input signals needed for
the simulation, those missing inputs had to be synthesised from the available data.
Vehicle speed data from road test and test track information, and the synthesised
data are sufficient for the verification of directional response of the dynamic
control system functions intended.

Synthesising data in this case, however, is not suitable for detailed simulation. The
simulation carried out here only shows how the control systems respond to
varying inputs direction wise, but not in details with magnitude of control
parameters shown. For example, when front wheel height inputs go below zero
indicating diving, the simulation shows that the active suspension responds by
sending positive going front wheel control signals. This shows satisfactorily the
operation of active suspension, where the amplitude of control response is of no
interest.

To perform a quantitative simulation, more realistic synthesised data is needed.
This requires information such as test vehicle spring and damper characteristics
and test track surface angle, to generate wheel height data. However, as discussed
in the wheel speed data generations, there are many influencing factors to each
data. These make synthesised data inappropriate for high precision simulation,
such as for control parameter calibration, owing to the additive nature of errors
from each contributory input.

The simulation in this thesis, however, benefits from using synthesised data, as it
could be modified or exaggerated to demonstrate particular control functions, such
as the ABS operation when a wheel is locking.

Having verified the operations of the exemplary ABS, 4WS and active suspension
controls, they were then to be used for the microcontroller specification

estimation.

198

Conclusions

8.2 Microcontroller Specification

Microcontroller specification, including performance, ROM and RAM

capacity and number of I/O, for each of the ECU in the alternative architectures was

to be estimated, as part of the feasibility study for architecture implementation. The

conclusions on the estimation of microcontroller specifications are as follows:

Prediction of a microcontroller response time, of a control system at this
equivalent of early design stage, is acknowledged to be difficult and potentially
inaccurate. The prediction, based on past programming experience and software
information on older version of similar systems, believed to be the only plausible
method. This is the method currently adopted by ECU developers. Due to the lack
of these factors, an alternative prediction, by constructing a pseudo code based on
functional specifications, was developed here

The prediction results of the two known ECUs were verified against the
experimentally measured response time. The results were found to vary in
accuracy, with the more detailed specification producing greater accuracy. This
was mainly due to designer dependent program parameters, such as switch
debounce and diagnostics. A ‘multiplying factor’ was hence calculated to assist
the response time prediction of alternative architecture ECUs.

The response time prediction results indicate the possibility of all the alternative
architectures being potentially implemented wusing currently available
microcontrollers. The ROM and RAM memory, and number of I/O estimations
were also within the current microcontroller specifications.

Due to the designer dependent program nature, although better results could
statistically be gained, given more ECUs to predict and experiment on and hence
get more generalised multiplying factor, the prediction confidence is not expected
to be high. However, without any more system information, the author sees no
alternative prediction method.

Nonetheless, by measuring the actual response times of a large number of ECUs
of each type, for example ABS ECU, a database of a particular system response
times can be obtained. This information could be used to assist the prediction,
since it provides the range of possible response times of each system as a

prediction guideline.

199

Conclusions

e The microcontroller specification estimate was to be used for ECU component

cost calculation in Chapter 6.

8.3 Simulation of CAN Message Transfer

CAN is an ISO standard network protocol for in-vehicle high speed data
communication for passenger vehicles, and hence it is likely to be installed in most
advanced future vehicles. For this reason, CAN associated delay in data transfer under
different vehicle electronic architectures was simulated, to inspect CAN capability in
delivering messages within timing constrain. The simulation of CAN message transfer
yields the following conclusions:

e Under current level of message load, a CAN network is capable of providing in-
vehicle data transfer for all of the alternative architectures with more than half of

network capacity in reserve.

8.4 System Wiring Complexity and Component Costs

The study of architecture wiring complexity and component costs of
alternative architectures was to evaluate the suitability of the architectures for
implementation, from vehicle manufacturers’ point of view. The evaluation concluded
that:

e The results show that Architectures 2-5 with network capability contain 15-25%
fewer wires than Architecture 1. In term of wiring weights, Architectures 3, 5
have a potential weight saving of approximately 20% over other architectures. The
study also found that the wiring weight saving is almost consistent between small
and large passenger vehicles.

e The system cost study shows that Architecture 3 has potentially the cheapest
component costs, with 19% saving on the most expensive Architecture 5. The
other three architectures are expected to have comparable costs of approximately
6% higher than Architecture 3.

e The projected component costs are a guideline for current implementation of the
alternative architectures. Other cost factors cannot be included due to the
unavailability of data such as assembly methods and associated labour hours

required, or cannot be quantified such as ECU development cost. However, their

200

Conclusions

effects and those of future trends are discussed in Chapter 6.

The plot of ECU pins against peripheral ECU component counts, used to
statistically predict the number of these components, is based on ECUs with
through hole technology. The increasingly more popular surface mount
technology would be likely to possess different pin/component ratios. Also as with
general statistical studies, it is believed that the prediction accuracy could be

improved, if more sampled ECUs were available.

8.5 Electronic Component Reliability

Component reliability prediction of the alternative electronic architectures was

made to investigate their practicality and compare their potential reliability. The

conclusions from this work are as follows:

The two component reliability prediction techniques show similar results,
suggesting that the proposed Architecture 5 have potentially higher failure rates
than the other architectures. This is primarily due to it having the largest number
of ECUs.

The predictions rely on the number of component prediction, which is based on
the plot of the number of ECU pins against peripheral ECU component counts. As
discussed before in Chapter 6, further samples of powertrain and dynamic control
ECUs are needed to verify the prediction accuracy. From the collection of ECUs
that the author inspected, the ECU pins and peripheral components show a clear
evidence of correlation. However, with this small data set, the correlation can not
be considered conclusive. If a large set of data is available and the relationship is
firmly established, the plot also has potential applications in other areas such as
ECU power estimation.

Despite the wide use of handbooks for reliability predictions, there has been doubt
about their accuracy in the aerospace industry [5]. There is a joint effort by
manufacturers and regulators in the industry to develop a new reliability
assessment program. This, however, has not yet been followed by the automotive
industry. In spite of this doubt, the reliability prediction techniques used here
should provide a useful early quantitative reliability assessment of any new system

designs, especially in comparison to other designs.

201

Conclusions

8.6 Distributed Wheel Controller Architecture

Overall, the thesis proposed the Distributed Wheel Controller Architecture as a
potentially attractive alternative vehicle electronic architecture. The architecture has
been thought of for the suspension system in the literature [1], due to its potential in
integrating each distributed suspension control ECU with its wheel actuator unit, and
also in [2-4] which employ a distributed control ECU on each wheel of a brake-by-
wire system. By integrating the functions of ABS, suspension and 4WS, all of which
are wheel related control systems, in each Distributed Wheel ECU, the author
anticipated its potential benefits in terms of vehicle dynamic, safety and ease of extra
control functions addition.

From the results obtained in this thesis, the actual advantages and
disadvantages of the Distributed Wheel Architecture (Architecture 5) were seen to be
as follows:

o It has a longer worst case CAN message delay times for highest priority messages,
than other architectures, due to its larger number of ECUs. However, its maximum
delay time was still found to be well within the system requirement, and hence
leaves CAN with spare capacity for message addition.

e Both Architectures 3 and 5 contain noticeably fewer number of wires and less
overall wiring length and weight than the rest. The results are consistent between
small and large passenger vehicles.

o The proposed architecture component cost is more expensive than currently
installed architectures. Its relatively high component cost at present may dampen
its prospect on small vehicle market, which is highly cost sensitive.

e The proposed architecture has a potentially higher electronic component failure
rate than the rest of the architectures, due to its larger number of ECUs.

Electronic control systems form a very important and safety related part of a
vehicle. Any architectural change or new system introduction will have effects on
many areas of the vehicles. Before a new architecture can be adopted, vehicle
manufacturers will have to thoroughly research its worth in practicality, performance
and financial aspects, on this exhaustive list of areas such as safety, assembly, model
compatibility, development time and cost, reliability, regulations, customers’

requirements, etc.

202

Conclusions

Hence, the proposed Architecture 5 has functional performance benefits, but
these are potentially overshadowed by cost and reliability concerned, as shown in this
thesis. However, the cost situation is likely to change as electronics development
continues, and the vehicle systems are also changing with introduction of new control
systems and increased in functional integration among existing systems. These
changes could make the Architecture 5 more attractive in the future.

The effects of these changes should, therefore, be investigated further, as

discussed in the next section.

8.7 Further Work

In addition to the research executed in this project, future work covering other
electronic related aspects and functionality benefits of the proposed architecture in
comparison to others, needs to be done in the following areas:

e With the benefit of networking, it is possible to add functions to the control
systems using additional software without the need for extra ECUs. Furthermore,
integrated control between systems for improved vehicle handling can be
achieved, such as sharing signals between braking and steering functions to allow
the driver to retain control while braking hard in a bend. Further work in this area
is to study the algorithms of these possible operations such as combined ABS,
active suspension and 4WS control, tyre pressure monitoring, and hill hold
(automatically applying brakes to keep the car still, while it stops on a slope
surface). Simulation could be done as in Chapter 3 to demonstrate these
operations. Their software pseudo codes can be derived to estimate the resulting
software overheads on the system ECUs, as carried out in the hardware
performance prediction in Chapter 5. This would indicate how much current
microcontroller capability is required for various potential functional additions.

o Investigate the functional benefits on vehicle safety of alternative architectures.
Networking and combined vehicle dynamic control lead to closer collaboration
among control systems. This could enable a safety upgrade from failsafe to fault
tolerant system in some cases. For instance, a cruise control system with a broken
vehicle speed sensor may receive the data from an ABS system and carry on its
operation, which would otherwise be shut down. Another example is when one

Wheel Controller ECU of Architecture 5 is broken, instead of shutting all the

203

Conclusions

systems down, the other ECUs could potentially take over and continue some
functions. ABS operation could be run albeit in degraded capacity, such as
coupling the problematic wheel with the laterally opposite one, effectively running
in 3-channel instead of a better 4-channel mode. An extent to which onboard
diagnostics could be applied to each architecture is also of interest. This could be
done by Failure Mode and Effect Analysis (FMEA) to analyse possible failure
cases. This allows the study of possible action to each failure case, to enable fault
tolerant system capability.

e Oncoming technology such as brake-by-wire and steer-by-wire are believed to
yield great benefits in vehicle weight and component reduction. However, their
success in implementation strongly depends on the safety of these heavily
electronic based systems [6]. Redundancy systems may be introduced in
architectures 1-4, but not necessary in Architecture 5 since a Wheel Controller of
one wheel could potentially resume the functions of another broken controller.
These changes could, therefore, have significant effect on the alternative
architectures in terms of vehicle assembly and cost. The implications on vehicle
by having additional ECUs or multiple bus structures would incurred an extra
cost, which should hence be evaluated. This would also provide the basis for
comparison between different safety strategies.

¢ Investigate a means of predicting the usage of a specific microcontroller running a
control function. This is a common problem and one for which, from literature
studies, appears to be still unresolved. In practice, manufacturers use past
experience and historical data on a similar microcontrollers running similar type
of control functions as the basis for prediction. Without this information, the
prediction method based on software pseudo code, developed in this project, gives
mixed results. Further research could be to build a database of predictions for each
type of control system to establish the accuracy range. In addition, the processor
time ratio between functions such as signal manipulation, main control and
diagnostics, could be explored by monitoring various ECU signals. This would
enable a more detailed study of specific control sections for prediction.

e Recent development sees networking protocols, such as Local Interconnect
Network, Time Triggered CAN and particularly Time Triggered Protocol (TTP),

as alternatives to conventional CAN [2,7-9], especially for future by-wire systems.

204

Conclusions

TTP offers exact time schedule of each node for message transfer, and hence
guarantees a deterministic message delay time [6] as well as eliminates bus
overload problem [9]. Importantly, its fail-silence property can ensure that a faulty
node detects itself and stops its message transmission, and hence avoids
compromising vehicle safety with faulty data. Their impact on the alternative
architectures should, therefore, be examined. Bus speed and message format
should be studied. These characteristics, together with the list of modeled vehicle
signals in Chapter 5, could be used to formulate the network implementation on
the alternative architectures. The level of message load and potential room for
addition can indicate network suitability for current and future installation on
these architectures. Hardware required for the network implementation should
also be investigated for its cost impact on the alternative architectures.

* Recently some vehicles contain several buses with different transfer speeds,
dedicated for body electronics, chassis control and entertainment, which cross-
communicate through gateways. The approach is introduced to ease bus

congestion of a single bus vehicle, and hence improve on message delay.

Simulation on message transfer would give approximate transfer delays and levels
of message load for different architectures. These results, together with associated

hardware cost, would provide the basis for comparison between CAN and the

networks mentioned above, on the alternative architectures

205

Conclusions

8.8 References

1. Ito H, et al. Controller for Experimental Vehicle Using Multi-Processor
System SAE No. 910086

2. Hedenetz B, et al. Brake-By-Wire Without Mechanical Backup by Using a
TTP-Communication Network SAE No.981109

3. Advanced Vehicle Systems Division, Motorola Semiconductor Products Sector
‘By Wire’ Technology Motorola, 2000

4. Bannatyne R Electronic Braking Control Developments Automotive
Engineering International, February 1999

5. Condra L, et al. Reliability Assessment of Aerospace Electronic Equipment
Quality and Reliability Engineering International Volume 15 Issue 4, 1999

6. Dilger E, et al. Towards an Architecture for Safety Related Fault Tolerant
Systems in Vehicles European Conference on Safety and Reliability, 1997

7. Quigley C, et al. An Investigation into the Future of Automotive In-Vehicle
Control Networking Technology SAE No.2001-01-0071

8. Kopetz H, et al. TTP — A New Approach to Solving the Interoperability
Problem of Independently Developed ECUs SAE No0.981107

9. Heiner G, et al. Time-Triggered Architecture for Safety-Related Distributed
Real-Time Systems in Transportation Systems FTCS - Fault Tolerant
Computer Symposium, 1998

206

Appendices

APPENDIX A PREDICTION OF ECU CONTROL
PSEUDO CODE AND ASSEMBLY PROGRAMS

Cruise Control

Throttle Demand Calculation Pseudo Code

Pseudo Code

i.
ii.

iii.

iv.
\'2

Vi.

VIi.

subtract vehicle speed to cruise speed to give e
table look up for gain K, based on the value of e

multiply K, to e

table look up for gain K| based on the value of 7?7

M
muitiply K to 2 E,_,
m=1

add the two products to get d

M
update 2 E, .
m=1

Throttle Demand Calculation Predicted Assembly Code

Program Code

--------- load cruise set speed

subtract vehicle and set speeds (get e(error value))

--------- save € in memory

ii

jump if carry not set (case e is +ve)
jump if carry set (case e is -ve)

complement A (convert e to +ve for table look up)

A + 1 (complete conversion)

--------- table look up for K (when e is -ve)

save K,
loadeto A
multiply K, to e

--------- save K, . e in memory

M
load ZEn_m from memory

m=1

--------- table look up for K;

M
multiply z E,, oK

m=1

--------- save value in register

load carry counter address to register
clear carry counter

Execution Cycle

w

o

w ugonuw»—u—u—t\)tow»—-u
oo

—
o

588

— N W

207

Appendices

vi

vii

load lower 8 bits of K, . ¢ from memory

M
load address of lower 8 bits of K. z E,_, to register

m=1

M
add lower 8 bits with carry of K,.e to K. 2 E, .

m=1
save sum in memory
jump if carry not set (no overflow)
jump if carry set (overflow)
increment carry counter
load higher 8 bits of K, . e from memory
load carry counter address to register
add carry counter to A

M
load address of higher 8 bits of K.e to K. z E, .

m=1

M
add higher 8 bits with carry of K,.e to K. z E, .

m=1

save sum in memory
jump if d +ve

output motor control signal

output solenoid control signal
jump if d -ve

output motor control signal

output solenoid control signal

-output to port

M
load 2 E,_, from memory to register

m=1

load e address to register

M
adde to Z E, .,

m=]

save sum in register

M
subtract e,.m from e + Z E, .

m=1

M
save new 2 E, .

m=1

load e

-save € in memory (in place of e,.m)

Total

— D W W NN W —

(3]

I

3] W MDD W

O WO w

(73]
~J

Note that 80C49 microcontroller has a limited set of instructions, compared to

modern microcontrollers. For example, it does not have subtract instruction. The

operation has to be carried out by combining a series of instructions. In the tasks and

execution times above, such instructions were subtraction, table look up and multiply.

The combination of instructions, which made up the tasks are given details below.

208

Appendices

Load/Save/Add (between A and memory address)

load memory address to register
load/save/add to/from/to A

Table look up

Load table index to A

add first memory address of table to A
move a to register

move data from memory to A

save result

subtraction (x-y)

clear carry

loady to A

complement A
A+1(=-y)

load x address to register
add x with carry to A (x-y)
save result

Multiplication(8 bits x 8 bits)

Number of clock cycles

W — N

—_—) = = DN WD

S

|~—-b~)>—'NN'-‘UQ'—‘
(OS]

The multiplication is programmed in the same way that the long multiplication

is done by hand i.e. by multiplying each bit of one number to the other number. For

example 4 bit x 4 bit multiplication of ABCD x 1011 is done by

+A

A B C D
1 0 1 1
A B C D
B C D
0 0 0 0
D
ANSWER

The 8 bit x 8 bit multiplication program is constructed from a simpler 4 bits x

4 bits program.

209

Appendices

The whole program code of 4 bits x 4 bits and 8 bits x 8 bits is shown below.
4 bit x 4 bit Multiplication (X x Y)

Program Code Execution Cycle
Data preparation

load X

save X to @0"
load Y

save Y to temp memory
load X

shift A left

save Ato @1
shift A left

save A to @2
shift A left

save A to @3
clear A

save A to @sum

0000X3X,XXo
000X3X2X X0

00X3X,X X000

0X3X,X1X0000

W W = L = LI == Lo = W W W W W

Multiplication

{load Y to A

A AND 00000001

jump if A zero

jump if A not zero (bit O of Y is 1)
load @sum
add content of @0 to A
save A to @sum

W W LN NN W

18}
{} is repeated 4 times (4 bits) 18x4=72

Total cycles required for 4 bit x 4 bit multiplication is 103

8 bit x 8 bit Multiplication

8 bit x 8 bit multiplication can be carried out by doing a number of 4 bit x 4 bit
multiplication. This is done by splitting each 8 bit number into high 4 bits and low 4
bits and multiplying them. These result in 4 products, which can then be added up to
get the result. An example of X x Y is as shown below.

Y7 YsYsYs Y3Y2Y1 Y
X X7X6Xs5 Xy X3XpX;Xo

Name the four most significant bits of Y, Y2 and the four least significant bits

Y1. X2 and X1 are also named accordingly. The product of X and Y is:

210

Appendices

Bit [15|14 13(12]|11|10|9 (8|7 |6 |5]4]|3]|2 0
< Y1.X1 (=P1)
+ €« Y2.X1 (=P2) >
+ < Y1.X2 (=P3) >
+ < Y2.X2 (=P4) >
_ XxY

The program code is written below:

Program Code

load X
save X in temporary memory
load Y
save Y in temporary memory

Calculating Y1.X1 (=P1)

load X to A

A AND 00001111 (get X1)
save X1

repeat above to get Y1
Y1.X1 (P1)

Repeat the loop 3 times to get P2-4
Addition

clear A
load @sumlow address to register

save A to @sumlow (clear memory space for low 8 bit result)

repeat the above for @sumhigh
clear carry
clear counter

Pl + P2

load P2to A

shift left 4 times (move P2 low 4 bit to add with high 4 bit of P1)

add P1 to A (P1+P2)
save result to @sumlow (lower 8 bit result)
jump if carry 0
jump if carry 1
increment counter in memory

Execution Cycle

W W W W

— 00 W N W

03

119x3=357

W = P = N

WNNWWRAW

211

Appendices

clear carry
Add P3 to the sum

load P2to A

shift right 4 times (using 4 high bits of P2 for high 8 bit addition)

save result
load P3to A

shift right 4 times (using 4 high bits of P3 for high 8§ bit addition)

add P2 high 4 bits to A
add carry counter to A
save result (P2+P3+carry)
clear carry counter

load P4 to A
add (P2+P3+carry) to A
save result to @sumbhigh (higher 8 bit result)
jump if carry O (multiplication completed)
jump if carry 1 (overflow)

increment carry counter (keep record)

Total number of cycles taken by the 8 bits x 8 bits is

DWW WRWWRW

WD WWW

wn
oL
= -]

Predicted Assembly Programs of Other Processes

Program Code

Button press check

load button reading from portto A
jump if 0 (no button pressed)
jump if not zero (button pressed)

SET, RES, brake button pressed check

load button reading from port to A

A AND value for SET

jump if SET

repeat the above 2 times for RES and brake checks

Cruise status check

load cruise status variable to A
A AND cruise on value
jump if zero (cruise off)

Execution Cycles

|'—H—“NNN [N \S N[O 3V

[o 2 \®]

DN W

212

Appendices

Jjump if not zero (cruise on)

N N

Vehicle speed check

load vehicle speed
subtract minimum speed to vehicle speed
jump if out of range

|»—~[\.)>—-kb.)
o0 w

Set reference(set) speed

load vehicle speed
store vehicle speed in set speed memory space
increment set speed set counter

N W W W

Check if reference(set) speed is previously set

load set speed set counter
jump if not zero (set speed has been set)
jump if zero (set speed has not been set)

NN W

Response Time Prediction

Response time is predicted by adding the cycle times, of all the processes the
cruise control ECU executes in response to SET, as shown in Cruise flowchart in
Figure 3 of Chapter 5. The total cycle counts in response to SET is 1413.

The 80C49 microcontroller has a machine cycle = (1 + crystal clock frequency) x 15

The circuit clock is 8 MHz
Hence the machine cycle is 1.875 us

.. The predicted response time to SET is

1413 x 1.875us = 2.65 ms

213

Appendices

Air Suspension

Air Suspension Flow Charts

1 Calculate Air Spring Heights

@ accumulate delta voltage / 4

repeat 3 times for
FR,RL,RR

clear delta
voltage
accumulator

2 Debounce Vehicle Status Logic

. P or DO
@ changed ? |
no

| same

yes . .
update switch status register

!

increment counter of
unchanged inputs

clear counter of changed inputs

fiy inp
counter =3

update change to memory

214

Appendices

©,

3 Process Vehicle Status Logic

check ride
state

yes
X

change ride state control registers
@ according to state change and
update height demand

reload height demand

4 Check for Sensor Faults

under limit

Y

@ clear fault counter

5 Settle at Datum Analysis

@ ride state

y

set settling

flag register

<
]
(7]

changed ?

load settling time limit to counter
according to air pressure sensor

@ A 4 "

decrement settling time counter

yes
A 4

@ set failure to settle register

in li

eight
readings

repeat 3 times for
FR, RL, RR

yes

clear settling flag register

215

Appendices

6 Calculate Air Spring Logged Errors

FL demand height - filtered height

® |

store logged error in memory

7 Increment Excess Error Meters

@ compare 4 logged errors and record
the largest

y
@ increment meter of the largest error

No—p

yes

FL error >

yes (FR + RL).2 no

set error flag

8 Average Logged Errors

repeat 3 times for
FR, RL,RR

repeat 3 times for
FR, RL, RR
S - sensitivity constant

(FL+FR)/2 (RL+RR)/2

average front logged error = @ average rear logged error =

216

Appendices

9 Adjust Air Spring Heights

check height

sensitive or slow mode
control mode

no
Y.

average logged error
(FL+FR+RL+RR)/ 4

culculate 70% of required
height change

l open exhaust valve] ' apen inlet valch
i chear drier + ——no l
it direction change
or exna. :
time delays
valve & Y

clear l noj
increment direction
change time delay open corresponding increment drier
counter comer valves & time delay counter
clear counter

yes

‘fp:'l'lc‘:'“cr vulv; increment dricr
with largest error time delay counter
clear counter

yes

0% height ching
reached for the
her comer sef

open one set of
corner valves
according to

dircction change

no

open the other
corner valves

30% height
change reaches

yes

Y
Z close the comer valves /

height ch
reached for the
T cComer,

no
change height control apen the uther comer
mode valves

217

Appendices

10 Drive Outputs and Select Modes

overcurrent
pin che;

OK

inlet valve
ose -> open

yes

air usage + application
programmable value

increment opening
time counter

®

store time to memory
and clear

11 Suspension Fault Modes

—

no

edlurete
fall recorded
?
n

[+]

218

Appendices

12 Regulate Compressor Air Pressure

pressure

no \W yes

compressor
tunning -> stop,

oinpresse B switch n
O >
compressor
opearates > on
I

no yes
X

increment COmpressor on

@ time counter

®
A 4
record fault
decrement fault increment fault in EEPROM

counter counter —

> threshold

yes @
h A
record fault
in EEPROM

219

Appendices

13 Calculate and Process Road and Engine Speed

peri

yes
h 4

convert road speed interrupt
requests into direct reading

road acceleration =
current - previous road speeds

ada speed &
acceleration
der li j

decrement fault counter

increment fault counter

set vehicle stationary bit

/

record fault
@ in EEPROM

reset vehicle stationary bit

14 Program EEPROM

read or write to EEPROM as
requested by other modules

220

repeat the
whole
procedure to
find engine
speed and
acceleration

Appendices

Measure Sensor Outputs (Synchronous Job)

read FL sensor
output
set up channel MUX
and start A/D
conversion

add current to
previous FL readings

read FR sensor
outpu
set up channe] MUX
and start A/D
conversion

add current to
previous FR readings

read RL sensor
outpu
set up channel MUX
and start A/D
conversion

add current to
previous RL readings

A
read RR sensor
output
A
set up channel MUX /
/ and start A/D
conversion

add current to
previous RR readings

.

221

Appendices

Air Suspension Predicted Assembly Code

Air Suspension Sequential Job Modules

@ Calculate Air Spring Height
Cycles
1 FL accumulated delta voltage + 4 19
store FL 5 24
2 {compare FL to lower limit 4
branch if outside limit 3}
same to higher limit 7
3 clear high byte of accumulated voltage 5
” low ” ” ” 5 @
same for FR, RL, RR 48x3=144
192
Total
+4 load high byte to accumulated delta voltage 4
rotate right through carry 3
load low byte 4
rotate right through carry 3
clear carry 2
rotate right through carry 19

Appendices

® Det Vehicle Status Lo

1

load switch inputs
compare fo switch status register
branch if different

load switch status register to X

clear other switches in A (A AND UP&DOWN)
“ ” X (X AND UP&DOWN)])

store Xin M

check if different (A @ M)

branch if different

load switch inputs

clear other switches in A except UP (A AND UP)
branchif 0

clear other switches in A except DOWN (A AND DOWN)
branch if 0

store switch input

load switch change register

{compare to UP change (A AND UP)

branch if unchanged

increment unchanged counter

clear unchanged counter (if changed)

same to DOWN, INHIBIT, FOOT, HAND-BRAKES, DOORS,
AIR PRESSURE

{load UP counter

compare to 3

branch if equal

set/reset UP bit in memory

same fo DOWN, INHIBIT, FOOT, HAND-BRAKES, DOORS,
AIR PRESSURE

Total

Cycles

4

4

3 9

4

2

2

5

4

3 7

4

2

3

2

3 14

5 5

4

2

3

5}

(5)
6x10=60 74

4

2

3}

5
6x14=784 98

222

223

Appendices

©_Process Vehicle Statfus Logic

Cycles

1 {load current ride state 4

compare fault ride state with current ride state 4

branch if current state is fault state 3}

check for other 2 fault states 2x11=22 33
2 {load request change register 4

compare to UP demand 4

branch if UP demand is requested 3}

same to DOWN M 22
3 check if road speed not faulty (same as ©1) M

” engine speed ” ” Ll @
4 check if ride state is kneel (same as ©1) [l

” ” standard, low, high, belly out 4x11=44

{load new ride state 4

store new ride state 5}

load and store height adjust procedure, seftle at datum analysis, height control mode,

direction time, drier time, and FL, FR, RL, RR demands 9%x9=381 145
Total 222
@ Check for Sensor Faulfs
1 {compare FL reading to higher and lower limit (same as ©1) 2x11=22
2 clear fault counter 5}
Repeat 1, 2 for FR, RL, RR 3x27=81 108
Total 108

224

Appendices

© Settle ot Datum Analysis

6

7

check if ride state has changed {same as ©1)
set seftling flag register

check if air pressure very low

” ” ” just below cut off line
above cut off line

load settling time limit according to air pressure
store in settling time limit counter

” ” ”

{check if height reading within upper limit
” ” ” lower limit

decrement settling fime counter
check if settling time counter is 0

set failure to seftle register

same for the other 3 corners

8

clear settling flag register

Total = process 1+ 4 + 5 + 6 + 7 {the longest route)

O _Calculafe Air Spning Logged Errors

1

{load demand height of FL
demand - filtered heights (=logged error)
branch if negative
set sign bit
complement logged error
clear carry
store logged error

same to FR, RL, RR

Total

Cycles
n

5

N
1
N
4
4

11
1

5
1
5}
3x43=129
5

183

N WOWbhbd

L

104

225

[

&

29

HEEERES

Appendices

@ _Increment Excess Error Mefers
Cycles
1 loadFRto A 4
X =1 (load 1 fo register X) 2
FR-FL 4
branch if equal 3
branch if lower 3
load FLto A 4
X=2 2
FL-RR 4
branch if equal 3
branch if lower 3
load RRto A 4
X=3 2
RR - RL 4
branch if equai 3
branch if lower 3
X=4 2 50
2 X>A 2
A-4 2
branch if equal to 0 3}
repeatwithA-3,A-2,A-1 3x7=21
increment FR record in memory (FR has the greatest error) 5 [33]
3 compare largest error meter to limit no 7]
(load 3
mefer-limit 4
branch 3)
4 {load FR error 4
load S 4
FR error + RL error 4
(FR error + RLerror) xS N
compare to FL 4
branch if lower 3
set error flag 5 [35]
same for FR, RL and RR errors 3x35=105
Total 234

226

Appendices

O _Average Logged Errors

1 load ride mode
compare with front fwo mode
branch if in front two mode
" " rear "

2 load FL sign bit
compare to FR sign
branch if equal (same sign)
compare FR sign to positive
branch if positive
load FR logged error (-ve)
FR-FL
branch if negative
set 1o sign bit
complement
(FL + FR) + 2 (rotate right)
store average logged error

Total

WWOHWwbOUWNWRDNN W wbh b

e

227

4

Appendices

© Adlust Air Sorina Heiaht

1

load height control mode
check if sensitive mode (compare & branch)
check if slow mode

{load FL logged error
compare to zero
branch if equal
same for FR, RL, RR

load sign of largest logged error

compare the 2 directions (A @ previous sign of largest error)

branch if different
load current largest logged error sign
SfOl'e [" " "

load valve register

compare to zero

branch (to 6) if no valve open (0)

A AND corner valve open demands
branch if not zero (corner valve open)

load direction change time delay counter
compare to limit

check if largest logged error negative {load + branch)
open inlet or exhaust valve
clear delay counter

increment counter

check if drier time delay reached
load valve open demand

10 A OR largest error indication data

store in valve open demand
clear drier time delay counter

11 increment counter

12 load ride mode

branch if it is 70% height adjust procedure

13 load valve open demand

branch if valve open

14 clear A

4
7
7 18
4
4
3}
3x11=33 44
4 4
4
3
4
5 16
4
4
3
4
3 18
4
443 11
4+3 N
5
5 7
5 5
N
4 15
4
5
5 14
5 5
4
3 7
4
3 7
3

228

Appendices

{ check if FL error negative
A - FL (FL negative), A + FL (FL positive)
same for FR, average (RL&RR)
branch if negative
set sign bit
complement A
A + 2 (rotate A right 3, clear carry 2)
A+2
store A

15 load 7 to X
Ax7
store Ax7
(Ax7)+10
16 check logged error direction
17/18 open inlet/exhaust valve (set bit)
19 check if drier time delay reached
20same as 10
21/23/25/27 check if height change reached
22/26/28 close both corner valves

24 open corner valves

Total = process1+12+ ... +28-18

4+3
4}
2x11=22

GO wohw

[

14

4+4+3=11

5+5=10

10

229

62

2716

n

4

30

10

Appendices

0 O Drive Oufputs and Select Modes

1

check if valve open requested
same for lamp, compressor

check if fault flag set
same for footbrake, doors, battery, hardware overcurrent pin

load valve open demand

A AND inlet valve open

branch if not open

compare to previous inlet valve state
branch if close = open

load air usage
A + programmable value
store air usage

load valve open demand
A AND corner valve open demand
branch if not open

increment counter
check if opening time counter zero

store time
clear counter

Total =process1+2+3+5+7

© O Suspension Fault Modes

1

check if height or speed sensors faulty
check if other errors occur

Total

7
2x7=14 18

7

4x7=28 @

4
2
3
4
3 16
4
4
5 13
4
2
3 9
5 5
1
5
5 21
102
7

4x7=28 35
35

230

Appendices

O ©_Regulate Compressor Air Pressure
1 check if pressure switch open

2 load flag register
A AND failure to rise recorded
branch if fail

3 check if compressor change from run - stop (= 0@ 3)
4 load compressor operating time

operating time - air usage time

compare result to threshold

branch if smaller
increment counter

5 compare value in fault counter to limit
(record result in EEPROM)

6 checkif compressor on (= 00 2)

7 check if compressor operates > programmable time
check if failure to rise recorded (=0® 2)
[record result in EEPROM)

8 switch compressor on
increment compressor on time counter

Total = process 1+ ... +5
0 © Calculate and Process Road and Engine Speeds
1 check if constant time period reached (= ©6)

2 load road speed interrupt counter
store as speed

3 acceleration = A - previous road speed
store acceleration

4 check if road speed under limit
" acceleration "

5 decrement counter

6 load road speed
speed - 1
branch if speed < 1 mph

7 7

4

2

3 [9]

16 16

4

4

4

3

5 [29]
4+4+3=11 m

9 9
4+4+43=11

9

5

5 10
63

n n
4

5 9
4

5 9

1
n

w
0

231

Appendices

7 set/reset vehicle stationary bit 5 5

8 check if counter reaches maximum limit (=0 4) N n

Total 81
O O Program EEPROM
1 {load fault EEPROM fault register status

compare to that in RAM
same for sensor fault register

=3+

2 update EEPROM 24
(set bit in EEPROM control register 5
load data to write to EEPROM from RAM 4
write to EEPROM 5
set bit in EEPROM control register 5
reset the bit after program time elapsed 5)
same for sensor fault register

Total 46

232

Appendices

Air Suspension Synchronous Job Modules

A/D conversion
{load A/D channel select and enable value
store value to A/D control register (initiate A/D conversion)
delay loop (wait for A/D conversion to complete)
load A/D control register
AND with A/D completion constant (check if conversion finished)
branch if A/D has completed
load A/D conversion result
store result
}
same to FR, RL, RR

[repeat 3 more times (each sensor is read 4 times)

Total diagnostic codes 895
Total other codes 1618
Total codes 2513
Percent of diagnostic codes to fotal codes 35.6%
Percent of diagnostic codes to other codes 55.3%
Nofes

. D represents diagnostic codes

27
4
5
4
2
3
4
5
3x27=81 87

3x108=324 324

cycles

cycles

233

Appendices

ABS

ABS Flow Chart

{ START)

Read and
@ calculate wheel

speed

@ Calculate vehicle
speed

Calculate wheel
@ acceleration and slip

No is ABS on? Yes

a Yes—~—

go to constant
state of
state/space

anaI%sis

A

state/space
analysis

ABS State/Space Analysis

cc < -a /\ acc < +a
ags » Constant = —»-

Pressure
increase
(slow)

Normal
braking

A

Pressure
increase
(fast)

Pressure
decrease

acc>-a,V>\/4.L

gl
g

234

Appendices

ABS Pseudo Code

© Read and calculate wheel speed

read wheel speed sensor inputs (A/D conversion)’

[
{

load A/D channel select and enable values

store values to A/D control register (initiate A/D conversion)
delay loop (wait for A/D conversion to complete)

load A/D control register

AND with A/D completion constant (check if conversion finished)
branch if A/D has completed

load A/D conversion result

store result

divide wheel speed signal by 10 (scale down) ™"
]

[1 x 4 (4 wheel speed sensors)

@ Calculate vehicle speed

load FL wheel speed

FL + RR wheel speed

store result

load FR

FR + RL

{
compare (FR + RL) to (FL + RR)
branch if (FR + RL) smaller

*k ok

}
load higher pair to A

shift right (+ 2)
store result

© Calculate wheel acceleration and slip

{

load current wheel speed

current — previous wheel speed (= wheel acceleration****)
store result

load vehicle speed

vehicle speed — wheel speed

load 100 to another accumulator

(vehicle speed — wheel speed) x 100

divide the result with vehicle speed (= wheel slip percentage)
store result

235

Appendices

}

{} x 4 (for 4 wheels)

O ABS status check

{

load ABS status flag
compare to ABS ON value
branch if ABS is on

*kokk K

}

{} x 4 (for 4 wheels)

© State/space analysis

{ find out the current ABS state
load ABS state variable
compare ABS state variable to ‘normal braking state’ value
X 4 (also compare it to the other 4 possible state values)

find out the new ABS state
check if acc (wheel acceleration) exceeds a threshold value for state change
check if wheel speed exceeds a threshold value for state change
load appropriate state value
store the value as current ABS state variable
set brake valve register (according to the brake control law of the ABS state)}

{} x 4 (for 4 wheels)

Asterisk(s) Explanation

“This {} is a typical ‘read’ (analogue sensor input) program codes

" According to the ABS wheel speed sensor range given in [1]

™ This {} loop is a typical ‘compare’ program codes

™ The time interval between successive readings of each wheel speed sensor is
assumed fixed. Hence there is no need to divide successive wheel speed subtraction
with this time, to obtain a wheel acceleration.

"™ This {} loop is a typical ‘check’ program codes

236

Appendices

4WS

4WS Flow Chart

1 START)

>

@ Read yaw rate
sensor
A

Read vehicle
@ speed sensor
@ Read steering
angle sensor

ange

es steering No
W

@ efiling t
Set setting flag Yes counter No
register zero?
A 4

Load settling time Clear inhibit rear Decrement settling
limit on counter steering flag time counter
Sat inhibit rear Calculate steering

steering flag speed

Calculate and
@ send rear steering
angle demand

237

Appendices

4WS Pseudo Code

© Read yaw rate sensor
read yaw rate sensor (same as ABS @ but without division)

O Read vehicle speed sensor

read vehicle speed sensor (same as ABS @ but without division)

© Read steering angle sensor

read steering angle sensor (same as ABS @ but without division)

(4]

check if steering direction has changed _

check if settling ti*rgg*gounter zero (check if steering direction is definitely
changing)

clear inhibit rear steering flag

© Calculate steering speed
load current steering angle
current - previous steering angle

store steering speed (see)

O Calculate and send rear steering angle demand

rear steering angle control calculation according to the control equation below

(described in exemplary 4WS system in Chapter 3)

6 =K V1.8 +Kn@ VK00,

9} : front wheel steering angle velocity

Or : rear wheel steering angle

of : front wheel steering angle

\Y% : vehicle speed

Wy : yaw rate

Ki(V) : opposite direction steering angle proportional gain
K 2(6} V) : tuning gain of steering velocity

Ki(V) : yaw rate proportional gain

[

Table look up for K;(V)

load vehicle speed to index register

238

Appendices

load table content (index addressing)

% sk ok ok ok ok

}

load front wheel steering angle (0f)
multiply front wheel steering angle with gain (K;(V). 6f)
store result

]

do ay. K3(V) (same as [] above)
Table look up for K 2(6} V)

load current vehicle speed (V)
load vehicle speed interval value of the table

current vehicle speed + vehicle speed interval (to find row that V belongs)
store result

load current steering speed (6}.)
load steering speed interval value of the table
current steering speed + steering speed interval (to find column that 6} belongs)

store result
load total number of columns

load Gf column position

total number of columns x Hf column position

result + starting memory location for table (locate beginning of 6 column position in

ROM)
result + V row position (locate the right gain in the table in index register)
Load table content (index addressing)

Calculation

Load K3(V). o,

Ka(V). ay x K,(8 V)

Load K,(V).Gf

(K(V).6f) x Ks(V). oy x K2(0} V) (=0, rear steering angle)
save 0,

Asterisk(s) Explanation

S ek ok 4K

4WS allows steering direction change to settle before responding, in case there
i*g*g*glitch in a steering angle sensor reading.
This {} is typical ‘table look up’ program codes

239

Appendices

Active Suspension

Active Suspension Flow Chart

START

N

Read longitudinal
accelerometer

©/

Read lateral,
vertical
accelerometers

®/

Read 4 height
sensors

® /

heel heig|

Open/close corner
valves to adjust
wheel height

Yes
es

No \W

®/

Calculate and
send height control
signals

/

240

Appendices

Active Suspension Pseudo Code

© Read longitudinal accelerometer

read longitudinal accelerometer (same as ABS @ but without division)
@ Read lateral and vertical accelerometers

read lateral accelerometers (same as ABS @ but without division) x 2 (2 sensors)
read vertical accelerometers (same as ABS @ but without division) x 3 (3 sensors)

© Read wheel height sensors

read wheel height sensors (same as ABS @ but without division) x 4 (4 height
SEensors)

O Check if wheel heights within range

{
load wheel height

compare to lower limit
compare to higher limit

}
{} x 4 (4 wheels)

© Calculate and send wheel height control signals

wheel height control calculation according to the control equation below (described in

exemplary active suspension system in Chapter 3)

wheel height demand = W +/- (Lo x K;x) +/- (La x K) +/- (Ve x 1/(1+TS) x Kpx)

w - wheel height

Lo - longitudinal acceleration
La - lateral acceleration

Ve - vertical acceleration
Kpx, Kix, Kpx - relevant control gain
1/(14TS) - first-order delay element

Note that + or — sign depends on a particular wheel under calculation.

{

load previous vertical acceleration
load control gain

multiply (Ve x 1/(1+4TS) x Kypx)
store result

241

Appendices

{} x 3 (same for longitudinal and lateral accelerations, but using current values i.e. no

delay element)

load wheel height (W)
wheel height +/- longitudinal acc x control gain (W +/- (Lo x Kx))
result +/- lateral acc x control gain (W +/- (Lo x Kjx) +/- (La x Kx))
result +/- vertical acc x control gain (W +/- (Lo x Kx) +/- (La x K) +/-
(Ve x 1/(1+TS) x Kpy)
branch if +ve
set valve control bit (open valve)
branch if —ve
reset valve control bit (close valve)

Divisions (a/b)

Load b
Clear counter
Compare bto a
Branch if positive (b < a)
Increment counter
{accumulator content = b+b
compare accumulator content to a
branch if positive (quit the loop if accumulator content greater than a)
increment counter } (repeat the {} loop until accumulator content greater than a)
{accumulator content — a (=c)
compare c to b/2
branch if negative
increment counter} (round up the result)
({} loop is to round the result according to the remainder)
store result

Assume the loop is repeated t times, instruction count is
1 x load

(t+2) x compare

(t+2) x branch

(t+1) x add/subtract

(t+2) X increment

1 x clear

1 x store

where t is the division result

242

Appendices

Number of Instruction Execution Count

Number of times an instruction is executed

Microcontroller Active suspension 4WS ABS
Instruction

Load 62 28 51
Branch 26 6 37
Compare 8 3 33
Store 32 12 26
Rotate 0 0 1
Clear 0 0 0
AND/OR/XOR 10 3 4
Increment 0 0 0
Set/reset bit 8 0 0
Add/subtract 12 3 10
Complement 0 0 0
Transfer (register <-> 0 0 0
accumulator)

Clear carry 0 0 0
Multiply 12 5 4
Division 0 2 8

Table 1 Instruction execution count of active suspension, 4WS and ABS

Predicted Response Time of Alternative Architecture

ECUs

The tables below contain the calculation process that leads to the response

time prediction of alternative architecture ECUs, as described in Chapter 5.

Conventional Centralised, Conventional Centralised with
Limited CAN Interaction, Conventional Centralised with
Functional Integration Architectures (Architecture 1, 2, 4)

243

Appendices

Active Suspension

Active Suspension Instruction Execution Count

(n,)

No. of Execution Cycles”

J

instruction (c

per each

Active Suspension Total Execution
Cycle Count (T,)

Microcontroller Instruction

MC without division

MC with division

M68HC05

M68HCO8

M68HC12

M68HCO5

M68HCO08

M68HC12

» capablllly (M68HC05)

capabllllv (M68HC08&12)

$ 62

S

248

186

26

78

78

78

FETAE

CBIf

50

24

32

128

96

0

~ 160
18

0

0

0

0

0

0

240

40

30

Increment

0

0

0

0

Set/reset bit

.. 32

w32

Add/subtract

12

48

36

Complement

A E

.

0

Transfer (rcgmtcr <> accumulator)

0

0

0

Clear carry

A0

50

Multiply

12

—

36

Division

NA

SOhEL

<

>—~|\5mw4>dﬁm.ummm.§¢wh

\lcn-&—t—}-h.ihh-kw-b#ghgw{f-

-Lco-k'-&-}w‘.hxxm‘w#w’wma

R0

518

X multipiyi‘ng factor (9)

4662

Total No. of executioncyeles ™ =~ | = 7002 5994 | 4662
Cycle Time (ns) : 476 125 ; 125
_control response time (ms) e@33 o740 06

Dlagnostlc overhead factor

1.6

_response time (With diagnostics) ms |

o 1’0'9:.,

1.3

comBIIer overhead
respi ith
_diagnostics,compiler) ms

No. of interrupts (from signal table)

12

Update rate (ms)

| =100

No. of interrupts per sec

1200

Percent of RTOS overhead

. 006

RTOS overhead (ms)

1=

Predicted response time (ms

244

Appendices T s

4WS 4WS Instruction Execution Count (n,) No. of Execution Cycles per 4WS Total Execution Cycle Count (T,)
each instruction (c,)
Microcontroller Instruction MC without division MC with division M68HCO0S | M68HCO08 | M68HC12 | M68HCOS5 | M68HCOS (Extra for | M68HC08 IM68HC12
capability (M68HCO5) |capability (M68HC08&12) ivisi i

______—-l—

£
g
&

—————_-m

245

Appendices

ABS ABS Instruction Execution Count (n,) No. of Execution Cycles" per ABS Total Execution Cycle Count (T,)
each instruction (c,)
Microcontroller Instruction MC without division MC with division M68HCO05 | M68HCO08 | M68HC12 | M68HCO05 | M68HCO5 (Extra for M68HC08 [M68HC12
capability (M68HCOS5) |capability (M68HCO08&12) DlVlSlon Instrucuon)
PE R S B R, [T A S| S e 0n | S
3 3

Beale i e g

Branch

[ncrement

0
] Zaba v iasiol ol R0
ALK Ll AR e (o wiit

Add/subtmct

Xmulnplymg factor (9) | 6120 5 6183 5283

ilout dfofelesiiie Al el LY R T SR B SR (5912366 7810566

CycleTime(ns) : 5 RS : _ 476 s 125 125

oI LIEEEE ' R RS ; 0BT
Dxagnostlc overhead factor 1.6 1.6
T TS T - R = 7 EEE L
ot ST A il 22 o i = o nth
compiler overhead 1.3 1.3
"No. of interrupts (from signal table)™™ 4 4 4

N(',,;,fimempgspersec] _ : i : . : : » . 3840 il ! 58‘}0) 38.4()"

RT6§ overilea& (ms) : : 32 : : 32 :

g w t p K s

* The division pseudo code is not multiplied by the correction factor, since it is believed to be in only the calculation parts identified, and not in
the rest of the program.
" Extended addressing mode is assumed for each instruction, to allow more flexibility in memory allocation in programming
*** The number of input sensors counted here only includes those used in the control algorithms. Other sensors drawn in the wiring model in
Chapter 6, such as oil level sensors, are not counted since they are read at much larger intervals and hence negligible.
“** The total response time of ABS is multiplied by 2 to make ABS response time limit (originally 5ms) consistent with those of 4WS and active
§g§£)ension (10ms), for ease of comparison. This is only for comparison purpose and does not affect the actual system timing prediction.

A 100mph vehicle speed is assumed to obtain a high rate of interrupts, for worst case ECU response time prediction.

Total Centralised Architecture (Architecture 3)

No. of execution cycles M68HCO05 M68HC08 M68HC12

Active Suspension 7002 5994 4662
4WS 3079 2277 1818
ABS 38216 12366 10566
Total No. of execution cycles 48297 20637 17046
Cycle Time (ns) 476 125 125
control response time (ms) 23.0 2.6 2.1
Diagnostic overhead factor 1.6 1.6 1.6
response time (With diagnostics) ms 35.9 4.0 3.3
compiler overhead factor 1.3 1.3 1.3
response time (With diagnostics,compiler) ms 46.7 5.2 43
No. of interrupts per sec 5240 5240 5240
Percent of RTOS overhead 85.2 85.2 85.2
RTOS overhead (ms) 4.261 4.261 4.261
Predicted Response time 51.0 9.5 8.6

247

Distributed Architecture (Architecture 5)

The two tables below are the response time predictions of the centralised and distributed ECUs of the Distributed Architecture,

respectively.

248

Central ECU

Centralised ECU Instruction Execution Count

(ny)

No. of Execution Cycles per
each instruction (c,)

4WS Total Execution Cycle Count (T,)

Microcontroller Instruction

MC without division

05)

MC with division

M68HCO05

M68HC08

M68HC12 | M68HCO5

M68HCOS5 (Extra for
Division Instruction)

M68HCO08

M68HC12

Load g el

capability (M68HC
Al o8

e

A

capability (M68HC08&12)
«- _ ie ;“ 26 e

S04 e s i

i 8

iadod i

78

Branch

41

21

102

21

21

3 e

Liie

R

Store

_75

60

45

15

i

6 .~’~ S

THE T

Clear

0

AND/ORXOR: &= @

3

Increment

Set/reset bit

o

Add/subtract

‘Complement. == T

Transfer (register <-> accumulator)

(SH 1Y (V) N K/ (WY N RO (O FOY 1S FORY S

Clearcarry .

Multiply

—]
—

VY[Y [PN NG S R 6 P Y

Nfalof=|o|=|N|o|w|o||a s |~

Sum %

X multiplying factor (9)"

‘Total Nosofiexecutioneycles'i o7ty | iie e

Cycle Time (ns)

Diagnostic overhead factor

“response time (With Giagnostics) ms_

compiler overhead

nse time (With diagnostics,compiler)

No. of interrupts (from s:gnai table)

No. of interrupts per sec

Percent of RTOS ove

RTOS overhead (ms)

Predicted response time (ms)

249

Distributed ECU

Distributed ECU Instruction Execution Count
(ny)

No. of Execution Cycles per
each instruction (c,)

ABS Total Execution Cycle Count (T,)

Microcontroller Instruction

s
Branch

Sto;'é :
Clear

Increment

Add/subtract

'§M>%‘K‘§\A S 8 PV e
Transfer (register <-> accumulator)

Multiply

;(mult]piymg factor (;)' 5 »
| (iycfle Thne (ns)). ‘
; biagnostic overhéad fécibr g ‘7

(c;mbiler overhgad : 4' ‘

=

No. of interrupts (from signal table)
No of inten;xpts per sec

"RTOS overhead (mis) -

= o

oz iad w IR RRAN N ARENT

T 7 TS

MC without division MC with division

i b

o P S 12

M68HCO5
capability (M68HCO5) | capability (M68HC08&12)| _

M68HCO08 | M68HC12

M68HCO5 | M68HCOS5 (Extra for | M68HCO8 [M68HC12

Division Instruction)”

PR
81
537 e

LS SFAITE

476

“82
1.6
1.3

4 4 4

1260 1260

1.2 1.2 1.2

o THAT
B

250

Ly o athtdottdotidng

ROM ESTIMATION

ROM requirement is estimated based on method described in [2], which is

developed by [3].

N =k (0.5772 + In k)

L=N=+3

ROM =L x 20

N - estimated number of operators and operands in a program

k - sum of estimated number of distinct operators in programming language and

estimated number of distinct operands from the software design (sum of input,

output, internal variables, constants and function modules)

L - estimated number of program lines (assuming an average line has 3 operators

and operands e.g. A = B)

ROM - estimated ROM required (assuming each high level language program line is

translated into 20 bytes of machine language code)

Operand Count

Active Suspension

Input and output variables (from wiring diagram)

Internal Variables (from Pseudo code)

Temporary variables for input and output readings

A/D register, delay counter

Previous vertical acceleration

Product of acceleration and gain

Sum of 3 acceleration x gain and wheel height
Valve control register

Status variables (oil level, pressure)

Constants (from Pseudo code)

A/D completion constant
Height range (min and max)
Control gains

Pressure range

Oil level range

Modules (from Flowchart and Pseudo code)
Read 3 accelerometers and height sensor

Wheel height, oil level, pressure range check
Wheel height adjust

N — W W= NN

NN —

W

28

40

13

13

251

aAppenaices

Gain x acceleration calculations
Wheel height calculation
Corner valve control 1

—)

4WS

Input and output variables (from wiring diagram) 7

Internal variables (from Pseudo code) 23
7 temporary variables for input and output readings, previous steering angle,
steering speed, settling time counter, 3 gain position index, 3 gains, 2 products
of element and gain, 2-D table co-ordinate, actual 2-D table position memory
address, A/D control register, A/D delay counter, direction change flag

Constants (from Pseudo code) 11
reservoir tank range (2), step motor angle range (2), 3 table starting memory
locations, 2 vehicle and steering speed intervals for 2-D table, total row in 2-D
table, A/D completion constant

Modules (from Flowchart and Pseudo code) 15

11 modules from flowcharts (except ®), 3 table look up, rear wheel steering

calculation

ABS

Input and output variables (from wiring diagram) 16
Internal variables (from Pseudo code) 35

16 temporary variables for input and output readings, A/D register, A/D
counter, 4 wheel speeds, 2 diagonal wheel sums, vehicle speed, reference
wheel speed, previous wheel speed, wheel acceleration, wheel slip, ABS
status, current and next ABS states (2), 2 status (solenoid, motor), brake valve
register

Constants (from Pseudo code) 11

A/D completion constant, 5 state identifications, 3 acceleration thresholds (-a,
a, +A), brake fluid range (2)

Modules (from Flowchart and Pseudo code) 25
read wheel speed, scale wheel speed, 4 calculations (vehicle speed, wheel

acceleration, slip, reference vehicle speed), ABS status check, 2 state
determinations (current and next states), 15 state checks and controls (each

252

state has acceleration and wheel slip checks, and brake valve set), brake fluid
check

Distributed Architecture

Central ECU
Input and output variables (from wiring diagram) 34
Internal variables (from Pseudo code) 63

25 temporary variables for input and output readings, 16 4WS internal
variables (except 7 I/O variables already included), A/D register, A/D delay
counter, 4 status variables (active suspension oil level, pressure, ABS
solenoid, motor), 4 wheel speeds, 2 diagonal wheel sums, vehicle speed
Constants (from Pseudo code) 18

A/D completion constant, 6 limits (active suspension pressure, oil level, ABS
brake fluid), 11 4WS constants

Modules (from Flowchart and Pseudo code) 20

read longitudinal accelerometer, 3 checks (active suspension oil level,
pressure, ABS oil level), 15 4WS modules, vehicle speed calculation

Distributed Wheel ECU

Input and output variables (from wiring diagram) 14

Internal variables (from Pseudo code) 34
14 temporary variables for input and output readings, A/D register, A/D delay
counter, previous vertical acceleration, 3 products of acceleration and gain,
Sum of 3 acceleration x gain and wheel height (3), valve control register,
wheel speed, vehicle speed, reference wheel speed, previous wheel speed,
wheel acceleration, wheel slip, ABS status, current and next ABS states (2),
brake valve register

Constants (from Pseudo code) 17

A/D completion constant, 2 wheel height limits, 6 control gains, 5 ABS state
identifications, 3 acceleration thresholds

Modules (from Flowchart and Pseudo code) 33

read vertical, lateral accelerometers and wheel height (3), wheel height check,
wheel height adjust, 3 gain x acceleration calculations, wheel height

253

Appendices

calculation, read wheel speed, scale wheel speed, 3 calculations (wheel
acceleration, slip, reference vehicle speed), ABS status check, 2 state
determinations (current and next states), 15 ABS state checks and controls

The table below shows the ROM requirement calculation process.

ROM Architectures 1,2, 4 Architecture 3 Architecture 5
estimation
Active 4WS | ABS |Total Centralised|Central| Distributed
Suspension ECU ECU ECU
I/Os 28 7 16 49 34 14
Internal variables 40 23 35 92 63 34
Constants 13 11 11 33 18 17
Functions 13 15 25 53 20 33
(modules)
Total operands 94| 56 87 227 135 98
Total operands 141 84 131 341 203 147
with 50% extra
Total operators 53 53 53 53 53 53
k 194 137 184 394 256 200
N 1134 753 1062 2578| 1564 1175
Program lines 378 251 354 859| 521 392
@)
ROM estimate 7560 5021 7082 17189 10425 7834
(bytes)

254

Appenaices

APPENDIX B VEHICLE SIGNAL MODELS FOR

CAN SIMULATION

Table B1 is the list of signals used for CAN simulation of Conventional

Centralised Architecture with Functional Integration Architecture (Architecture 4) in

Chapter 5.
Signal Name Period Class | Source
No. (ms) ECU
1 spark output timing signal 5 C PCM
2 front left wheel brake demand 5 C ABS
3 front right wheel brake demand 5 C ABS
4 rear left wheel brake demand 5 C ABS
5 rear right wheel brake demand 5 C ABS
6 ABS solenoid control 5 C ABS
7 ABS motor control 5 C ABS
8 front left wheel speed sensor 5 C SEN
9 front right wheel speed sensor 5 C SEN
10 rear left wheel speed sensor 5 C SEN
11 rear right wheel speed sensor 5 C SEN
12 crash sensor 1) C PSS
13 crash sensor 2 5 C PSS
14 crash sensor 3 5 C PSS
15 brake position sensor 5 C PSS
16 clutch position sensor 5 C ICM
17 crankshaft position sensor 5 C ICM
18 profile ignition pickup 5 C ICM
19 speed control signal 5 C CCS
20 transmission speed sensor 10 C PCM
21 vehicle speed 10 C ABS
22 front left wheel height demand 10 C AS
23 front right wheel height demand 10 C AS
24 rear left wheel height demand 10 C AS
25 rear right wheel height demand 10 C AS
26 fail-safe mode demand 10 C AS
27 flow control valve control 10 C AS
28 fan motor control 10 C AS
29 variable timing pump control 10 C AS
30 rear wheel steering demand 10 C 4WS
31 front left wheel height sensor 10 C SEN
32 front right wheel height sensor 10 C SEN
33 rear left wheel height sensor 10 C SEN
34 rear right wheel height sensor 10 C SEN
35 vertical acceleration sensor 1 10 C SEN
36 vertical acceleration sensor 2 10 C SEN

255

Appendices

37 vertical acceleration sensor 3 10 C SEN
38 lateral acceleration sensor 1 10 C SEN
39 lateral acceleration sensor 2 10 C SEN
40 longitudinal acceleration sensor 10 C SEN
41 steering angle sensor 10 C SEN
42 yaw rate sensor 10 C SEN
43 rear wheel spin sensor 1 10 C PSS
44 rear wheel spin sensor 2 10 C PSS
45 cylinder Id sensor 20 B PCM
46 manual level position 20 B PCM
47 delta pressure feedback electronic 20 B PCM
48 heated exhaust gas oxygen sensor 20 B PCM
49 mass air flow sensor 20 B PCM
50 throttle position sensor 20 B PCM
51 engine RPM 20 B PCM
52 ignition diagnostic monitor 20 B ICM
53 transmission oil temperature 100 B PCM
54 A/C compressor clutch 100 B PCM
S5 engine coolant temperature 100 B PCM
56 transmission lubricant pressure 100 B PCM
57 ABS solenoid status 100 B SEN
58 ABS sensor status 100 B SEN
59 4WS motor status 100 B SEN
60 brake status 100 B SEN
61 reverse switch 100 B SEN
62 height switch 100 B SEN
63 door switch 100 B SEN
64 active suspension pressure status 100 B SEN
65 battery current 100 B ICM
66 battery voltage 100 B ICM
67 shift sensor 100 B ICM
68 intake air temperature 200 B PCM
69 octane adjust plug Is A PCM
70 transmission control switch 1s A PCM
71 engine idle speed Is A PCM
72 engine status 1s A PCM
73 fuel flow Is A PCM
74 transmission control indicator Is A PCM
75 EGR vacuum regulator 1s A PCM
76 check engine indicator Is A PCM
77 ABS warning lamp Is A ABS
78 active suspension warning lamp 1s A AS

79 steering oil level 1s A SEN
80 suspension hydraulic oil level 1s A SEN
81 thermistor Is A SEN
82 brake fluid Is A SEN
83 power locks Is A PSS

256

aApPpenaices

84 power seats Is A PSS
85 power windows Is A PSS
86 shift inhibit signal Is A PSS
87 shift in progress Is A PSS
88 seatbelt sensor Is A PSS
89 door sensor 1 Is A PSS
90 door sensor 2 1s A PSS
91 door sensor 3 ls A PSS
92 door sensor 4 Is A PSS
93 door sensor 5 1s A PSS
94 anti-theft sensor Is A PSS
95 airbag indicator lamp Is A PSS
96 seatbelt lamp Is A PSS
97 door lamps status Is A PSS
98 airbag status ls A PSS
99 fuel level sensor ls A ICM
100 alternator warning indicator 1s A ICM
101 auto headlamp sensor Is A ICD
102 ignition switch position 1s A ICD
103 horn sensor Is A ICD
104 hazard sensor Is A ICD
105 L/R signal ls A ICD
106 control to tone maker Is A ICD
107 oil pressure Is A ICD
108 SET/ACCEL/RESUME Is A CCS
109 cruise control indicator ls A CCS
110 outside temperature s A CCM
111 desired temperature 1s A CCM
112 cabin temperature Is A CCM
113 rear window defrost Is A CCM
114 blower speed control Is A CCM
115 damper control Is A CCM
116 hear/cool control Is A CCM
117 washer fluid sensor 10s A ICD

Table B1 Complete List of Signals for Conventional Centralised with Functional
Integration CAN Simulation

Source ECU codes:

PCM - Powertrain Control Module
ABS - Antilock Braking System
AS - Active Suspension

4WS -4 Wheel Steering

SEN - Sensors

PSS - Passenger Safety Systems
ICM - Ignition Control Module
ICD - Instrument Cluster Display
CCS - Cruise Control System
CCM - Climate Control Module

257

Appendices

Table B2 is the list of signals, which are different from the above Table B1,

used for CAN simulation of Distributed Wheel Architecture (Architecture 5) in

Chapter 5.
Signal Name Period Class | Source
No. (ms) ECU

2 front left wheel brake demand 5 C FLC
3 front right wheel brake demand 5 C FRC
4 rear left wheel brake demand 5 C RLC
5 rear right wheel brake demand 5 C RRC
6 ABS solenoid control 5 C DCC
7 ABS motor control 5 C DCC
8 front left wheel speed 5 C FLC
9 front right wheel speed 5 C FRC
10 rear left wheel speed 5 C RLC
11 rear right wheel speed 5 C RRC
21 vehicle speed 10 C DDC
22 front left wheel height demand 10 C FLC
23 front right wheel height demand 10 C FRC
24 rear left wheel height demand 10 C RLC
25 rear right wheel height demand 10 C RRC
26 fail-safe mode demand 10 C DCC
27 flow control valve control 10 C DCC
28 fan motor control 10 C DCC
29 variable timing pump control 10 C DCC
30 rear wheel steering demand 10 C DCC
31 front left wheel height 10 C FLC
32 front right wheel height 10 C FRC
33 rear left wheel height 10 C RLC
34 rear right wheel height 10 C RRC
77 ABS warning lamp Is A DCC
78 active suspension warning lamp 1s A DCC

Table B2 Changes in Signals from Table B1 for Distributed Wheel Architecture

CAN Simulation

ECU codes:

FLC - Front Left Wheel Controller
FRC - Front Right Wheel Controller
RLC - Rear Left Wheel Controller
RRC - Rear Right Wheel Controller
DCC - Distributed Central Controller

The figure in the next page is the CAN simulation model on Simul8 software.

258

Appendices

APPENDIX C IN-VEHICLE SIGNAL LIST FOR

VEHICLE WIRING MODELS

Signal Name

Source/ Destinatign
(Component no.)

Engine Management System (EMS) (Inputs)

throttle position

driver controls (1)

ignition key status

driver controls (2)

gearbox status

transmission

Engine Management System (Outputs)

malfunction display

driver display

Transmission Control (Inputs)

throttle demand

driver controls (1)

throttle angle

EMS

drive style selection

driver switches

kick down

driver controls (10)

gear lever position

driver controls (11)

engine speed

EMS

engine torque

EMS

vehicle speed

vehicle speed sensor (7)

Transmission Control (Outputs)

engine torque demand

EMS

malfunction display

driver display

Cruise Control (Inputs)

vehicle speed

vehicle speed sensor (7)

on/off selection driver switches
resume acceleration driver switches
brake lamp driver controls (14)

throttle status

driver controls (1)

engine speed

EMS

Cruise Control (Outputs)

throttle demand

throttle actuator (O2)

cruise status

driver display

ABS/ASR (Inputs)

wheel speed (x4)

wheel speed sensors (9)

engine speed

EMS

259

Appendices

main throttle angle

EMS

sub-throttle angle

EMS

traction motor current

traction hydraulic system

main throttle idle

EMS

sub throttle idle

EMS

accumulator pressure

traction hydraulic system

traction on/off

driver switches

brake fluid level

brake fluid level switch (12)

parking brake status

driver controls (13)

engine system status

EMS

gear shift position

driver controls (11)

stop light

driver controls (14)

step motor power supply

traction hydraulic system

ABS solenoid status

ABS hydraulic system

ABS motor status

ABS hydraulic system

ABS/ASR (Outputs)

ABS wheel brake demand (x4)

ABS wheel actuator (0O6)

traction brake actuator demand (x3)

traction hydraulic system

sub-throttle demand

sub-throttle actuator (O3)

ABS/traction throttle demand

EMS

ABS motor relay control

ABS hydraulic system

ABS solenoid relay control

ABS hydraulic system

traction relay and motor controls (x3)

traction hydraulic system

ABS indicator lamp driver display
traction indicator lamp driver display
traction on/off lamp driver display
traction status EMS

Active Suspension Control (Inputs)

vertical acceleration (x3)

vertical G sensors (3)

lateral acceleration (x2)

lateral G sensors (4)

vehicle height (x4)

height sensors (5)

longitudinal acceleration

longitudinal G sensor (6)

vehicle speed

vehicle speed sensor (7)

engine speed

EMS

brake signal

driver controls (14)

door status

door switch (8)

vehicle height demand

driver switches

parking brake status driver controls (13)

pressure status suspension hydraulic system

thermistor suspension hydraulic system
p y Yy

oil level status

suspension hydraulic system

Active Suspension Control (Outputs)

260

LAY o

individual wheel height demands (x4)

suspension wheel pressure control
valves (O1)

fail-safe mode display

driver display

fail-safe mode demand

suspension hydraulic system

variable pump control

suspension hydraulic system

flow control valve control

suspension hydraulic system

fan motor control

suspension hydraulic system

Power Steering (Inputs)

steering wheel angular velocity

steering wheel angular velocity
sensor (15)

steering wheel torque

steering wheel torque sensor (16)

vehicle speed

vehicle speed sensor (7)

Power Steering (Outputs)

power demand

power steering unit (5)

malfunction display

driver display

4 Wheel Steering System (Inputs)

vehicle speed

vehicle speed sensor (7)

steering wheel angle

steering wheel angle sensors (17)

hydraulic oil level switch

4WS hydraulic oil level sensor
(19

reverse switch

driver controls (11)

yaw rate

yaw rate sensor (18)

motor rotating angle

4WS actuator

4 Wheel Steering (Outputs)

rear wheel steer demand

| 4WS hydraulic system (04)

Table C1 Signals within vehicle electronic wiring models

” Source/Component numbers are designated to identify them in the wiring diagrams

in Chapter 6.

261

Appendices

APPENDIX D SYSTEM COMPONENT COST
CALCULATION

Here are the averaged component price list used in the calculation in Chapter 6
[5]:
e IC price is the mean of average Op-Amp IC price of £0.80 and average logic IC
price of £0.19, and is equal to £0.49.
¢ Resistor price is an average price of metal thin film resistor, and is equal to £0.10
e Capacitor price is an average price of multi-layer ceramic through hole capacitors,
and is equal to £0.19
e Transistor price is an average price of BJT and FET transistors, and is equal to
£1.06
The prices are taken of the types of ICs, resistors and capacitors that are most
often found on the powertrain and dynamic control ECUs, which the author processes.
Due to a variety of transistors found, the prices of all types of transistors from the

catalogue are taken.

262

Appendices

APPENDIX E ALTERNATIVE ARCHITECTURE
RELIAIBILITY MODELLING

The reliability predicting equations based on the prediction technique using

automotive data [6], described in Chapter 7, are written below:

For integrated circuits: Ap = Ao TR Ts. Top. Tor
For resistors: Ap = Ap.TL.Tos. Top. ToT
For capacitors: Ap = Ap.ToL.TCp.ToT
For transistors: Ap = Ap. L. Tes. Tor
Where:

Kp - predicted component failure rate

Ao - base failure rate

TR - integrated circuit family

L - location factor

s - screening factor

Tp - module packaging factor

Tr - temperature factor

The reliability calculation based on the reliability prediction technique
developed by [6] is shown in Table E1.

263

Appendices

: | N/A|
—II 00038 ---
;.J Al g 1

11

1%
[

R S E< 1
—-I-

Total AQ 0.408

"™ Since the ECUs here are all highly safety related, the most reliable screening (electrical and environmental) and packaging
(encapsulated) on the list are assumed.

" No data on passenger compartment location (which most ECUs are, except Distributed ECUs, which are chassis mounted), so
data on trunk location is used instead. This is because trunk location offers the least hostile place in the list, which is believed to
be closed to passenger compartment.

"MOS type " metal film type * nonelectrolytic type """ average of FET and BJT values since they are approximately equal in
numbers

Table E1 Alternative architecture reliability calculation based on automotive data

264

Appendices

References

—

. Jurgen R Automotive Electronics Handbook 2™ edition McGraw-Hill, 1999

2. Lawrence P, et al. Real-Time Microcomputer System Design: An Introduction
McGraw-Hill, 1987

3. Shooman M Software Engineering: Design, Reliability, and Management
McGraw-Hill, 1983

4. Kernighan B, et al. The C Programming Language 2™ edition Prentice Hall,
1988

RS Catalogue RS Components Ltd., 2000

6. Denson W, et al. Automotive Electronic Reliability Prediction SAE No.870050

s

265

	WRAP_thesis_coversheet_Pan-Ngum_2001.pdf
	391917.pdf
	391917_001
	391917_002
	391917_003
	391917_004
	391917_005
	391917_006
	391917_007
	391917_008
	391917_009
	391917_010
	391917_011
	391917_012
	391917_013
	391917_014
	391917_015
	391917_016
	391917_017
	391917_018
	391917_019
	391917_020
	391917_021
	391917_022
	391917_023
	391917_024
	391917_025
	391917_026
	391917_027
	391917_028
	391917_029
	391917_030
	391917_031
	391917_032
	391917_033
	391917_034
	391917_035
	391917_036
	391917_037
	391917_038
	391917_039
	391917_040
	391917_041
	391917_042
	391917_043
	391917_044
	391917_045
	391917_046
	391917_047
	391917_048
	391917_049
	391917_050
	391917_051
	391917_052
	391917_053
	391917_054
	391917_055
	391917_056
	391917_057
	391917_058
	391917_059
	391917_060
	391917_061
	391917_062
	391917_063
	391917_064
	391917_065
	391917_066
	391917_067
	391917_068
	391917_069
	391917_070
	391917_071
	391917_072
	391917_073
	391917_074
	391917_075
	391917_076
	391917_077
	391917_078
	391917_079
	391917_080
	391917_081
	391917_082
	391917_083
	391917_084
	391917_085
	391917_086
	391917_087
	391917_088
	391917_089
	391917_090
	391917_091
	391917_092
	391917_093
	391917_094
	391917_095
	391917_096
	391917_097
	391917_098
	391917_099
	391917_100
	391917_101
	391917_102
	391917_103
	391917_104
	391917_105
	391917_106
	391917_107
	391917_108
	391917_109
	391917_110
	391917_111
	391917_112
	391917_113
	391917_114
	391917_115
	391917_116
	391917_117
	391917_118
	391917_119
	391917_120
	391917_121
	391917_122
	391917_123
	391917_124
	391917_125
	391917_126
	391917_127
	391917_128
	391917_129
	391917_130
	391917_131
	391917_132
	391917_133
	391917_134
	391917_135
	391917_136
	391917_137
	391917_138
	391917_139
	391917_140
	391917_141
	391917_142
	391917_143
	391917_144
	391917_145
	391917_146
	391917_147
	391917_148
	391917_149
	391917_150
	391917_151
	391917_152
	391917_153
	391917_154
	391917_155
	391917_156
	391917_157
	391917_158
	391917_159
	391917_160
	391917_161
	391917_162
	391917_163
	391917_164
	391917_165
	391917_166
	391917_167
	391917_168
	391917_169
	391917_170
	391917_171
	391917_172
	391917_173
	391917_174
	391917_175
	391917_176
	391917_177
	391917_178
	391917_179
	391917_180
	391917_181
	391917_182
	391917_183
	391917_184
	391917_185
	391917_186
	391917_187
	391917_188
	391917_189
	391917_190
	391917_191
	391917_192
	391917_193
	391917_194
	391917_195
	391917_196
	391917_197
	391917_198
	391917_199
	391917_200
	391917_201
	391917_202
	391917_203
	391917_204
	391917_205
	391917_206
	391917_207
	391917_208
	391917_209
	391917_210
	391917_211
	391917_212
	391917_213
	391917_214
	391917_215
	391917_216
	391917_217
	391917_218
	391917_219
	391917_220
	391917_221
	391917_222
	391917_223
	391917_224
	391917_225
	391917_226
	391917_227
	391917_228
	391917_229
	391917_230
	391917_231
	391917_232
	391917_233
	391917_234
	391917_235
	391917_236
	391917_237
	391917_238
	391917_239
	391917_240
	391917_241
	391917_242
	391917_243
	391917_244
	391917_245
	391917_246
	391917_247
	391917_248
	391917_249
	391917_250
	391917_251
	391917_252
	391917_253
	391917_254
	391917_255
	391917_256
	391917_257
	391917_258
	391917_259
	391917_260
	391917_261
	391917_262
	391917_263
	391917_264
	391917_265
	391917_266
	391917_267
	391917_268
	391917_269
	391917_270
	391917_271
	391917_272
	391917_273
	391917_274
	391917_275
	391917_276
	391917_277
	391917_278
	391917_279

