

warwick.ac.uk/lib-publications

Original citation:
Moreno, Andrés, Sutinen, Erkki and Joy, Mike (2014) Defining and evaluating conflictive
animations for programming education : the case of Jeliot ConAn. In: SIGCSE 2014, Atlanta,
GA, 5-8 Mar 2014 . Published in: Proceedings of the 45th ACM technical symposium on
Computer science education pp. 629-634.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/59443

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
"© ACM, 2014. This is the author's version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 45th ACM technical symposium on Computer science education,
http://doi.acm.org/10.1145/2538862.2538888 "

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/19553884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/59443
http://doi.acm.org/10.1145/2538862.2538888
mailto:wrap@warwick.ac.uk

Defining and Evaluating Conflictive Animations for
Programming Education: The Case of Jeliot ConAn

Andrés Moreno
School of Computing

University of Eastern Finland,
Finland

amoreno@cs.uef.fi

Erkki Sutinen
School of Computing

University of Eastern Finland,
Finland

sutinen@cs.uef.fi

Mike Joy
Department of Computer

Science
University of Warwick, UK

m.s.joy@warwick.ac.uk

ABSTRACT
A review of the practical uses of errors in education reveals
three contexts where errors have been shown to help: teach-
ing conceptual knowledge, changing students’ attitudes and
promoting learning skills. Conflictive animations form a
novel approach to teaching programming that follows a long
tradition on research and development on program anima-
tion tools. Conflictive animations link the benefits of errors
with program animation tools and programming education.
This approach involves presenting to the students conflictive
animations that do not animate faithfully the programs or
concepts taught. Conflictive animations are versatile enough
to cover the fundamental building blocks of programs such as
operators, expressions and statements. With conflictive an-
imations a novel set of learning activities can be introduced
to computer science classes. This conflictive dimension of
activities augments an engagement taxonomy for animation
tools at all levels. They are an example of activities that
promote critical thinking. A particular implementation of
conflictive animations has been empirically evaluated aim-
ing for ecological validity rather than statistical significance.
Results indicate that students using conflictive animations
improve their metacognitive skills, and, when compared to
a control group, their conceptual knowledge improves at a
better rate.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer Science Education

Keywords
CS1; animation; programming; conflictive animation; con-
structivism

1. INTRODUCTION
While constructivism has a place in computer science ed-

ucation, it is still accepted that students should reliably

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’14, March 3–8, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538888 .

acquire the foundational knowledge of computers and pro-
gramming, and put aside their misunderstandings and mis-
conceptions [1]. As a consequence, computer science educa-
tors and researchers have been trying to improve students’
learning by creating new ways to interact and engage with
the material they produce. In an effort to make the mate-
rial more relevant, researchers have explored and developed
the possibilities of using visualizations as learning material
to present the dynamic aspects of programs and algorithms.
With these tools educators can propose different activities to
the students in order to engage with the material. As with
books, animation tools show the execution of programs and
algorithms following the experts’ understanding of the un-
derlying concepts [9, 2], which we assume to be correct.

Unfortunately, and despite the efforts of computer sci-
ence educators, visualization tools do not appear to signifi-
cantly improve the programming knowledge of first year stu-
dents [7]. A meta-study of algorithm animation evaluations
pointed out that the content of the visualizations are not as
decisive for learning as the intended use of the visualizations
[7]. In other words, “what” they see is second in learning to
“how” they interact with what they see.

If we take the idea that what students see is not the key
factor for the students to learn with animations, we can
propose that students could just see an erroneous anima-
tion: now, the animation does not match the expert’s rep-
resentation. Errors, or errata, appear in learning material
or information sources, and have been explicitly used be-
fore to foster learning. In this article, the roles of errors
for learning are explored. Moreover, the use of errors may
address problems previously identified in programming ed-
ucation and program visualization in particular.

2. ROLES OF ERRORS IN EDUCATION
Postman [18] proposed using errors as the basis for a

new teaching and learning practice. He argued that mak-
ing students aware of human limits, and hence the occur-
rence of errors, could raise a generation of critical learners
and thinkers. Students’ awareness of frequent scientific er-
rors and historical misrepresentations would prevent them
from making assumptions about the truth of information
presented to them, and force them to check the facts and
theories built upon that information.

In a similar manner, Borasi [5] used errors as springboards
for inquiry. In her exploratory research, students took part
in activities that centered around errors, including those
made by the students themselves and by teachers and math-
ematicians. Students were asked to reflect on those errors

and discuss possible corrections, and as a result of the exper-
iment she determined that working with errors empowered
students to think mathematically.

Constructivism follows a similar principle, its focus is on
students constructing their own knowledge, and the teacher’s
mission is to guide students’ learning. Researchers in con-
structivism have promoted cognitive conflict as a way to
correct students’ misconceptions, and this has been success-
fully used in physics education [10]. Students are asked to
explain an empirical observation, and their incorrect expla-
nations are challenged with further empirical observations
that they cannot explain or refute. This should cause a cog-
nitive conflict that allows for conceptual change, as students
are ready for alternative explanations after their own have
been shown to be wrong.

Große and Renkl [6] proposed and studied the use of
worked examples — detailed descriptions about how a par-
ticular problem is solved — which contained errors, in order
to improve understanding and problem solving skills. In
their experiments, groups had to find errors in worked ex-
amples and correct them, and they concluded that correct
and incorrect worked examples allowed for a more compre-
hensive understanding (far transfer), but only to students
with prior knowledge. Students with little prior knowledge
performed better only by using correct examples.

To summarize, errors have been used in education for im-
proving three key aspects of learning: conceptual knowledge
[19, 10, 6], student skills [6] and student attitudes [18, 5].

Roles of errors in learning programming.
Coping with uncertainty, errors and unexpected results is

an important competence of all IT professionals throughout
their careers: programmers correct their own errors while
debugging, security researchers look for errors in other peo-
ple’s programs. When it comes to learning, studies have
listed errors students make while programming, debugging
or understanding programs [8]. However, the active use of
errors in lectures and programming exercises has rarely been
applied or researched in depth.

Cognitive conflict is one of the exceptions, as it has been
applied to programming education. Ma et al. [11] proposed
and evaluated an instructional design where cognitive con-
flict and animation take a central role in explaining value as-
signment and reference assignment. Their results indicated
that cognitive conflict combined with correct animations
leads to conceptual change. This effect was more evident
with easier concepts, like simple assignment, than harder
ones such as reference assignment.

Regarding programming skills, it is acknowledged that the
practice of programming is non-linear. A programming solu-
tion requires substantial and frequent error correcting before
reaching an acceptable state. Bennedsen and Caspersen [4]
argue for the need to expose the programming process to
students, highlighting how errors occur in the process and
showing the way experts deal with them.

Finally, debugging is a fundamental skill that students are
expected to acquire, and in which errors have a prominent
role. Specific activities and tools have been designed to help
them start debugging, but in most cases students develop the
skill while working on other tasks. According to Perkins et
al.et al. [16], tracing is a demanding task, and students
often fail to follow the correct execution of the program and
consequently do not diagnose the error.

3. PROGRAM VISUALIZATION AND ITS
LIMITATIONS

Program visualization tools depict the steps taken by pro-
grams during execution. They illustrate and animate pro-
gramming concepts, from basic programming constructs to
object oriented design issues [2]. It is postulated that the use
of multimodal presentation of information increases the level
of comprehension by students [12]. In program visualization,
animations present the abstract source code or algorithm in
a graphical way, providing an alternative representation to a
standard text document, and this presentation should help
students to construct their own knowledge [1].

However, when working in new or complex fields such as
programming, understanding the graphical clues provided
by the visualizations requires a level of expertise not always
found in learners [17]. To fully benefit from the animations
or visualizations, students should make the effort to under-
stand the graphical notation used. Thus, rather than easing
the student’s learning process, visualizations and animations
can initially impose a new extraneous cognitive load. Vainio
and Sajaniemi [21] even recommend programming teachers
not to present diagrams to students, or ask them to draw
their own, before they understand the concepts and the map-
ping between concepts and diagrams, lest the diagrams in-
troduce more confusion to the students. Both Petre [17] and
Vainio and Sajaniemi [21] seem to indicate that the use of
graphical representations, animated or not, are not recom-
mended in the case of novice programmers. This results in
a vicious circle: educators would like to use graphical rep-
resentations to help student understand programming con-
cepts, but educators cannot because students do not under-
stand yet those concepts.

However, empirical studies of algorithm animation and
program visualization conclude that the educational tools
can be beneficial for learning under certain conditions [7].
For example, in order to be beneficial, visualizations and
animations should be used consistently during a course, and
animations should increase in complexity as the students
progress[3].

4. CONFLICTIVE ANIMATIONS
Moreno et al. [14] defined conflictive animations as those

that deliberately may not reproduce what the animated code
or algorithm is programmed to perform. An extreme ex-
ample would be an animation of a different algorithm than
the one presented; for example, a bubblesort algorithm that
animates a heapsort algorithm instead. In contrast to the
usage of animations proposed by Ma et al. [11] – solving a
cognitive conflict – conflictive animations continually create
a cognitive conflict, and it is the student’s task to resolve
it by consulting lecture materials, watching correct anima-
tions, or asking teachers and peers. The learning is now
centered on the student.

Theoretically, conflictive animations serve the three key
aspects of errors in learning identified in Section 2. The
next subsections illustrate the possibilities that conflictive
animations offer to conceptual knowledge of programming
(Sec. 4.1), higher order thinking skills (Sec. 4.2), and at-
titudinal and motivational factors promoted by the use of
animations (Sec. 4.3).

4.1 Programming Concepts in Conflictive An-
imations

A program is the largest construct that compilers and in-
terpreters deal with, and can be the source for a conflict in
an animation. However, smaller program components pro-
vide more opportunities to create conflictive animations that
should help the student focus on fundamental programming
concepts. Moreno et al. described the categories of con-
cepts which can generate conflictive animations [13]. The
categories were deduced from the main production rules of
the Python grammar1. The chosen categories were: literal,
operator, function call, expression, statement and module.
For example, in the statement category, which determines
the execution path and data flow, a conflictive animation
of an if-statement can, for example, animate the then-block
when the condition of the if-statement is false.

4.2 Promoting Programming Skills with Con-
flictive Animations

Programming skills cover a range of skills that are useful
when practicing with the conceptual knowledge acquired.
Conflictive animations may increase the student’s metacog-
nition, and reveal the student’s lack of knowledge. The pos-
sibility of an error changes the way the student processes the
graphical information, and forces the student to concentrate
and to decipher the animation. This active attempt at deci-
phering the animation may increase the student’s metacog-
nition, and reveal the student’s lack of knowledge.

Other programming skills which potentially benefit from
conflictive animations are debugging and quality awareness.
As the animation executes the program step by step, the
student can learn how to trace the execution better than
with normal program animation, in which the student can
visualize the animation without stopping at each step.

4.3 Attitude Change with Conflictive Anima-
tions

Identifying an error can serve as a means for assessment,
and a good one, as it requires proper understanding, but
— as in Postman’s vision [18] — it is important that stu-
dents change their attitude towards the animation and their
learning. They cannot be passive when they are told that
the tool is cheating them, and they need to become in control
of the animation. In turn, the barrier between the tool that
produces the animation and the student is lowered. Now
the tool can fail, and the student is in position to make a
contribution.

This change of attitude may push students to make the
effort to understand the animation and the concepts repre-
sented. This way we can break the vicious circle hinted by
Petre [17] and elicited by Vainio and Sajaniemi [21]. Iron-
ically, it would be the wrong information displayed that
would make graphical representations and animations use-
ful.

5. PEDAGOGICAL USES OF CONFLICTIVE
ANIMATIONS

Naps et al. [15] introduced a taxonomy of engagement or
interaction with algorithm animations. This taxonomy lists
six levels of increasing engagement, 1)no viewing, 2)viewing,

1http://docs.python.org/2/reference/grammar.html

3)responding, 4) changing, 5) constructing, and 6)presenting.
However, the increasing engagement of the student does not
always lead to increased grades [20]. This result may indi-
cate that classical grading does not evaluate all the benefits
of engaging educational tools. Moreno et al.[14] explained
how conflictive animations add a new dimension to the en-
gagement taxonomy as they trigger different activities not
considered in the original taxonomy. For example, in the
responding category students are asked to spot the error or
errors in the animation. Identifying the error does not neces-
sarily mean that the student has wholly grasped the concept,
but at least that they have a functional mental model of the
program execution or algorithm.

6. CREATING CONFLICTIVE ANIMATIONS
With the previous description of levels and pedagogical

issues, specific applications of conflictive animations can be
imagined or prepared in practical settings. Teachers can
manually create animations with existing tools (e.g. [9]) or
modify existing ones from publicly available repositories2 to
introduce errors in them and use them in their lectures.

Using conflictive animations at the responding and chang-
ing levels can especially improve students’ attitudes. Activi-
ties at those levels are similar to puzzles where students have
to find all the pieces or correct the errors. The construction
and presenting levels can be extended further to allow for
other gaming activities, either collaborative or competitive.

As described by Moreno et al., automatic animation tools
like Jeliot 3 [2] produce conflictive animations when new
rules are introduced that modify the interpretation of pro-
gramming constructs, i.e., creating a conflictive interpreter
[13].

7. EVALUATION
To compare the effectiveness of conflictive animations with

the normal animations in learning, a new version of Jeliot
3, called Jeliot ConAn, has been modified to produce them
automatically [13]. The Jeliot family of animation tools is
a successful lineage that has resulted in a wide range of so-
lutions [2] to support learners in different contexts, e.g., at
high schools, and universities, in e-learning. The evaluations
carried out in those contexts have led the further develop-
ment of the Jeliot family.

Jeliot 3 animates in its right-hand pane the execution of
the code entered by the student. This way students can
observe the steps taken by their programs, as illustrated in
Figure 1. Jeliot ConAn shares the same user interface and
animation graphics. It has been modified to misinterpret
certain statements that result in conflictive animations per-
taining to object-oriented concepts. As well, students can
indicate the moment they think a conflict has happened by
pressing a button. Thus, Jeliot ConAn engages students
at the responding level with conflictive animations of state-
ments and function calls.

To evaluate Jeliot ConAn and the impact of conflictive an-
imations in programming, an empirical study within a pro-
gramming course was performed. In the study, a subset of
the conflictive animation characteristics was evaluated: the
conflictive animations related to the function call conceptual
level (see Section 4.1) and the responding level (Section 5)
of the engagement taxonomy. Eighteen students (11 male,

2http://www.animal.ahrgr.de/Anims/animations.php3

Figure 1: Screenshot of Jeliot. Showing one step in
the object allocation process.

7 female) from an introductory programming course in Java
volunteered to take part in the study. The students were
taking part in an international Master’s program in infor-
mation technology and had very different backgrounds and
programming knowledge. To ensure the ecological validity of
the experiment, the experiment was performed during one of
the practical sessions of the course, and after the lecture and
practical session on the topic of object-oriented inheritance.
Thus, the experiment would measure the knowledge, skills,
and attitude of actual programming students in a realistic
setting.

Students were randomly assigned to the control group (9
subjects) and to the experimental group (9 subjects), and
the procedure was similar for both of them except for the vi-
sualization task. In the visualization task, the control group
used Jeliot 3 to debug two programs, and the experimental
group used Jeliot ConAn to find the conflict in two different
animations. The programs dealt with the concept of inher-
itance and shared most of the code apart from the error
students had to debug: thus, they were of similar difficulty.
The visualization task duration was limited to 40 min.

Before the visualization task, students completed a ques-
tionnaire about their previous programming experience, and
a pre-test with multiple-choice questions about inheritance.
Afterwards, they completed several evaluation forms: 1) a
post-test identical to the pre-test, 2) a graphical question-
naire with screenshots of the animations they had seen to as-
sess their understanding of the animations and the concepts
represented by them, and 3) a feedback form about the an-
imation tool to assess their attitude regarding the tool. As
well, the first author, who facilitated the experiment, took
notes during the sessions regarding students’ activities and
interactions with the computer.

7.1 Results
Students were divided into five categories according to

their reported experience with programming languages. The
self-reported Java programming experience previous to the
Java course was similar in both groups, with a majority
having none or low previous experience in Java (8 out of 9 in
both groups). For other programming languages the Jeliot

3 control group had a majority of students with medium
to high experience (6 out of 9), while in the Jeliot ConAn
experiment group a majority had low experience (7 out of
9) in other programming languages.

In the following results, non-parametric statistical tests
for significance were run. However, due to the small size of
the groups (N=18) and small differences, the results were
not statistically significant.

Knowledge tests. The pre-test and post-test consisted of
10 multiple-choice questions. The test grade was obtained
by giving one point per right answer and deducting half a
point per wrong answer, in order to discourage students to
randomly answer. Table 1 shows the average results for these
tests in both groups.

The Jeliot ConAn group did improve the grade in the
post-test (Wilcoxon Signed-rank test, p-value= 0.1). The
Jeliot 3 group did not improve at all.

The grading test, the same for pre-test and post-test, con-
tained questions related to the concepts that were the cause
of the conflictive animations in the group using Jeliot Co-
nAn: method overloading (2 questions) and constructors (3),
and general object-oriented questions (5). To find out if
Jeliot ConAn had any effect in the learning of those con-
cepts for the experimental group, the pre-test and post-test
were divided according to those three categories (method
overloading, constructor, and general object-oriented knowl-
edge). Results of this division are presented in Table 4.1. In
the table, the third column, maximum gained points possi-
ble, is calculated by subtracting the total of points that all
students can get for a given concept. The fourth column
adds the increase in points for each student in the Jeliot
ConAn group. The fifth column shows the p-value of the
Wilcoxon Signed-rank test.

For the method overloading concept, there was no change
in score after the intervention. Two out of nine students
found the conflict present in the animation. For the con-
structor concept, three students increased their score, and
three students found the conflict. Only one student in-
creased their score and found the conflict for the constructor
concept. In the general object-oriented knowledge group two
students improved their score and one worsened.

Graphical questionnaires. The graphical questionnaire con-
sisted of 11 questions related to the animation of an object
allocation. Two points were awarded for each right answer,
one for each answer that had some truth in it, and 0 if the
answer was empty. One point was deducted for each wrong
answer. The first five questions asked the students to de-
scribe the screenshots depicting the five main steps in the
execution, and the other six questions focused on compo-
nents of the animation. The average score result for this
questionnaire was higher in the control group, 6.82 points,
than in the experimental group, 4.82.

Previous programming experience shows a correlation with
the graphical questionnaire results in both groups (Spear-
man’s test: Jeliot 3 group p-value= 0.03; Jeliot ConAn
group p-value=0.12). Expert students described better the
animation than non-expert students. There is no correlation
between the gain and the experience in any of the groups.

Feedback. The feedback form consisted of nine questions,
five questions used a Likert scale to record the answers and

Table 1: Average and standard deviation of previous programming experience, pre-test, post-test, and the
difference between those two (gain).

Group Prog. experience Pre-test Post-test Gain

Jeliot 3 (N=9) 2.73 (σ 1.56) 3.00 (σ 2.52) 2.89 (σ 2.31) -0.11 (σ 1.34)
Jeliot ConAn (N=9) 3.11 (σ 1.36) 1.38 (σ 2.91) 2.16 (σ 2.54) 0.78 (σ 1.28)

Table 2: Results from the Jeliot ConAn group are analyzed regarding their improvement in the concepts
demonstrated with conflictive animations.

Concept Number of
questions

Maximum
gained points
possible

Accumulated
gained points

Number of stu-
dents finding the
conflict

p-value

Method Overloading 2 18 0 2 NA
Constructor 3 22 4 3 0.25
General object-oriented 5 20 1 NA 1

four were open questions. According to the responses, many
more students from the control group felt that the animation
tool had helped them to understand Java and inheritance,
89% from the control group and 44% from the experimen-
tal group. However, students from both groups disagreed
with the fact that the tool had not had an influence in their
Java knowledge (67% both groups), i.e., students thought
the tool had a positive influence in their knowledge. Both
groups of students from the experimental group felt that the
animation tool was not hard to use (56% and 67%), but only
55% would like to have had more exercises using the tool.
On the contrary, 89% of the students from the control group
would have liked more debugging exercises with the tool.

When answering the open questions, students from both
groups emphasized the need for textual information to com-
plement the animation, and the need to simplify certain as-
pects of the visualization like the multiple references to the
objects.

From the notes taken during the sessions, it was observed
that two students did refer to the online resources that were
available for them in case of need. Both students belonged
to the experimental group.

7.2 Discussion

Conceptual knowledge. The results regarding the improve-
ment of students’ conceptual knowledge of the topics pre-
sented in the experiment point to a higher impact of the
conflictive animations, even if not statistically significant.
Students from the experimental group had improved their
knowledge, if only by half a point, after interacting with the
conflictive animations for 40 minutes.

When the results obtained by the experiment group were
scrutinized more closely, the conflictive animations, which
were at the conceptual level of “function call” (Sec 4.1), did
not significantly improve students’ post-test grades on the
topics that were addressed, namely method overloading and
inheritance. The slight improvement in inheritance under-
standing may be due to the fact that both conflictive ani-
mations tasks dealt with inheritance, although only one had
one error related specifically to it, and students’ exposure
was double.

It is worth mentioning that the experiment tried to shed
light on students’ understanding of very subtle and com-

plex execution steps of object-oriented programs. Future
research should evaluate the impact of conflictive anima-
tions on different conceptual levels that are also prone to
misconceptions, e.g., “statements” level concepts such as as-
signments. Even though Úrquiza-Fuentes and Velázquez-
Iturbide [20] found that the impact of animations is higher
in complex topics, this has not been the case, and there may
be a barrier for very complex topics.

Surprisingly, the slight improvement in inheritance un-
derstanding from the experimental group did not correlate
with a good understanding of the graphical metaphor that
was evaluated by the graphical questionnaire: the control
group understood better the static depictions of the anima-
tion according to their descriptions. The ability to describe
in their own words the animation is correlated to the pre-
vious programming experience of the participants, no mat-
ter the intervention. This finding is consistent with Petre’s
research [17], in which novices have more problems under-
standing graphical notations. Also, the students that found
the conflict did not automatically improve their grades.

Programming skills. On one hand, the de-learning effect
of the control group after debugging, negative learning gain,
contrasts with their high confidence in the beneficial effects
of the tool in their learning. It highlights the problems with
traditional program animation where learners do not assess
their knowledge, and we can say that their meta-cognition
is poor.

On the other hand, two students from the experimen-
tal group checked the lecture notes while doing the task.
This indicates that the conflictive animations improved their
metacognitive skills. They had been aware of something
they did not understand and decided that they needed to
correct that. No one from the control group stopped to
check the learning material.

Attitude change. This short intervention cannot capture
all the potential of conflictive animations for attitudinal change.
In any case, the students showed a negative attitude towards
the conflictive animation tool and the activities it promotes,
63% of experimental group versus 89% of thecontrol group
asking for more activities with their version of the tool. This
possibly reflects the discomfort produced by the new conflic-
tive task, and it is an unexpected result, as we had imag-

ined the engagement and motivation would have been larger
with the conflictive activities. A way to solve this would be
to advance through the conflictive engagement taxonomy,
and have students viewing some conflictive animations dur-
ing the lectures before attempting to work on the responding
level. As well, the Jeliot ConAn focuses too much on finding
the error, i.e., being critical. A more constructive approach
could benefit the attitude change towards conflictive anima-
tions and thus balance the critical thinking. Future research
will evaluate the impact of working at the constructive level
with conflictive animations.

8. CONCLUSION
The paper is a first step to understanding the consequences

of using errors in computer science education. Conflictive
animations form a flexible resource that can change the way
computer science is taught. The conflictive animations in
the responding category evaluated here have had a small
impact in the students using them. However, results point
to students improving their meta-cognitive skills and knowl-
edge when compared to using normal animations for debug-
ging. In any case, more research is needed to confirm those
suggested effects. As well, more activities should be designed
and evaluated to fully address the impact of conflictive ani-
mations in education.

Conflictive animations do not solve all the factors that
partially explain the low retention rate and problematic men-
tal models of students. Conflictive animations try to put
within a computer science context ideas already used in
other disciplines. Indirectly, conflictive animations can ad-
dress the problems that current visualization systems and
practices have by providing a different reason for students
to look at the visualizations.

9. REFERENCES
[1] M. Ben-Ari. Constructivism in computer science

education. Journal of Computers in Mathematics and
Science Teaching, 20(1):45–73, 2001.

[2] M. Ben-Ari, R. Bednarik, R. Ben-Bassat Levy,
G. Ebel, A. Moreno, N. Myller, and E. Sutinen. A
decade of research and development on program
animation: The jeliot experience. Journal of Visual
Languages & Computing, 22(5):375 – 384, 2011.

[3] R. Ben-Bassat Levy, M. Ben-Ari, and P. A. Uronen.
The Jeliot 2000 program animation system.
Computers & Education, 40(1):1 – 15, 2003.

[4] J. Bennedsen and M. E. Caspersen. Exposing the
programming process. In J. Bennedsen, M. E.
Caspersen, and M. Kölling, editors, Reflection on the
Teaching of Programming. Springer, 2008.

[5] R. Borasi. Capitalizing on errors as ”springboards for
inquiry”: A teaching experiment. Journal for Research
in Mathematics Education, 25(2):166–208, 1994.

[6] C. S. Große and A. Renkl. Finding and fixing errors in
worked examples: Can this foster learning outcomes?
Learning and Instruction, 17(6):612–634, 2007.

[7] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages and Computing,
13(3):259–290, 2002.

[8] J. Jackson, M. Cobb, and C. Carver. Identifying top
java errors for novice programmers. In Proceedings of

the 35th ASEE/IEEE Frontiers in Education
Conference, 2005.

[9] V. Karavirta, A. Korhonen, L. Malmi, and
K. Stalnacke. Matrixpro - a tool for demonstrating
data structures and algorithms ex tempore. In
Proceedings of ICALT 2004, pages 892–893, 2004.

[10] M. Limón. On the cognitive conflict as an instructional
strategy for conceptual change: a critical appraisal.
Learning and Instruction, 11(4–5):357–380, 2001.

[11] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and
M. Wood. Using cognitive conflict and visualisation to
improve mental models held by novice programmers.
In SIGCSE ’08: Proceedings of the 39th SIGCSE
technical symposium on Computer science education,
pages 342–346, New York, NY, USA, 2008. ACM.

[12] R. E. Mayer. Multimedia Learning. Cambridge
University Press, 2001.

[13] A. Moreno, M. Joy, N. Myller, and E. Sutinen.
Layered architecture for automatic generation of
conflictive animations in programming education.
Learning Technologies, IEEE Transactions on,
3(2):139–151, 2010.

[14] A. Moreno, E. Sutinen, R. Bednarik, and N. Myller.
Conflictive animations as engaging learning tools. In
R. Lister and Simon, editors, Seventh Baltic Sea
Conference on Computing Education Research (Koli
Calling 2007), volume 88 of CRPIT, pages 203–206,
Koli National Park, Finland, 2007. ACS.

[15] T. L. Naps, G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. Á. Velázquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. In ITiCSE-WGR ’02:
Working group reports from ITiCSE on Innovation
and technology in computer science education, pages
131–152, New York, NY, USA, 2002. ACM Press.

[16] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and
R. Simmons. Conditions of learning in novice
programmers. In J. C. Spohrer and E. I. Soloway,
editors, Studying the Novice Programmer, pages
261–279. Ablex Publishing Company, 1989.

[17] M. Petre. Why looking isn’t always seeing: readership
skills and graphical programming. Communications of
the ACM, 38(6):33–44, 1995.

[18] N. Postman. The End of Education, chapter The
Fallen Angel. Vintage, 1996.

[19] J. P. Smith, III, A. A. diSessa, and J. Roschelle.
Misconceptions reconceived: A constructivist analysis
of knowledge in transition. The Journal of the
Learning Sciences, 3(2):115–163, 1993-1994.

[20] J. Urquiza-Fuentes and J. Velázquez-Iturbide. Toward
the effective use of educational program animations:
The roles of student’s engagement and topic
complexity. Computers & Education, 67(0):178 – 192,
2013.

[21] V. Vainio and J. Sajaniemi. Factors in novice
programmers’ poor tracing skills. SIGCSE Bulletin
(Association for Computing Machinery, Special
Interest Group on Computer Science Education),
39(3):236–240, 2007.

	Introduction
	Roles of Errors in Education
	Program Visualization and Its Limitations
	Conflictive Animations
	Programming Concepts in Conflictive Animations
	Promoting Programming Skills with Conflictive Animations
	Attitude Change with Conflictive Animations

	Pedagogical Uses of Conflictive Animations
	Creating Conflictive Animations
	Evaluation
	Results
	Discussion

	Conclusion
	References

