View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Warwick Research Archives Portal Repository

THE UNIVERSITY OF

WARWICK

Original citation:
Park, D. (1979) On the semantics of fair parallelism. Coventry, UK: Department of
Computer Science, University of Warwick. (Theory of Computation Report). CS-RR-031

Permanent WRAP url:
http://wrap.warwick.ac.uk/59429

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

warwickpublicationswrap

————— L ——————————

highlight your research

http://wrap.warwick.ac.uk/

https://core.ac.uk/display/19553877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/59429
mailto:publications@warwick.ac.uk

The University of Warwick

T,

HEORY OF COMPUTATION

REPORT . NO.31

ON THE SEMANTICS OF FAIR PARALLELISHM

BY

DAVID PARK

TO APPEAR IN PROCEEDINGS OF THE WINTER ScHooL oN FORMAL SOFTWARE
SPECIFICATION, LynGBY, DENMARK, Jan, 1079

Department of Computer Scien
University of Warwick
COVENTRY CV4 7AL

October 1979
ENGLAND.

ON THE SEMANTICS OF FAIR PARALLELISM

David Park
Department of Computer Science
University of Warwick
Coventry CV4 7AL

England

1. INTRODUCTION

Suppose that a programming language involves, among other familiar ways of
composing commands Ci’ a "parallel" construct (Cl par CQ) . One expects, when using
this language, that a sequence such as

x:=O;y:=l;(x:=lgglhmﬂex==0§9y:=yﬂ))
should be guaranteed to terminate in whatever context it is executed. The command
x := 1 must be executed some time, and terminates the while command ; both arms of the
parallel pair are then complete, and there is nothing else left to be done. Moreover
the fact of terminaticn is important encugh, one feels, tc be deducible from the
formal sermantics of the programming language. There are obviously many similar contexts
in which the termination, and therefore the correctness, of programs may cepend on
such points. Nevertheless, the appropriate gereral constraint (the fairmess or finite
delay prcperty), whereby commands executed in parallel are each given as large amounts
of time as they need to terminate, is notoriously hard to reconcile with methods which
suffice to specify other features of programs. There is a crucial distinction involved,
between "unbcunded but finite" and "potentially infinite" attributes of the abstract
cbjects involved in the specification. The distincticn is closely related to the issue
of wnbounded nondeterminisr.. Because of this we will spend some time discussing such

generalities, with a view to exorcism.

The approach to fairness which we will suggest is a development from the use of
fixpoints to obtain relational semantics, as in Hitchcock & Park f6 1 and in de
Bakker & de Roever [3]. The account is relatively informal, in order to make the
algebraic ideas as accessible as possible. A more formal account of nondeterministic
relational semantics, including a discussion of the Hitchcock-Park method for proving

termination, can be found in de Bakker [2]

2. BASIC CONCEPTS

Given a set A, P(A) denotes its power—set, the set of all subsets of A, and Rn(A)
denotes the set P(A") of n—ary relations on A. The usual mathematical notation is
used here to denote combinations of relations and to abbreviate assertions about them.
In particular, the set abstraction notation

}

is used to denote the set of all those values of the term T for which a given property

(x| ——

bolds of the corresponding values of variables mentioned. The usual conventions as to
which variables are bound in this usage will replace the more formal alternatives for

variable binding.

A function F: Rn(A)* RQ(B) is monctone 1if X € Y = F(X) < F(Y). As is well-known,
every wonotone function F: Rn(A) + Rn(A) has a minimal fixpoint
wF = n{x| F(X) ¢ X} : ¢2.1)
satisfying F(uF) = uF .

In the informal development here, we have in mind a written form F(X) for the

function F, and will use the notation uX.F(X) for pF.

Schemes for denotational semantics adopting 'the fixpoint approach” use the
fixpoint operator as the basic means for describing functions computed using iteration
or recursion, In-:the relational approach the only functions fixpointed are on relation
algebras, or on products of relation algebras. For example, the command

while B do C
should denote the relation (presumably the graph of a function)

pXe { (x,3) | (x ¢ Sp and x = y) or (x € S, and

(d2) ((x,2) € R, and (z,y) € X))} (2.2)

O

This denotes a binary relation on states, assuming that SB is the set of states

satisfying B, and Rc is the input-output relation corresponding to the cormand C.

From the form (2.1) for uF follows the principle (sometimes referred to as
"recursion induction"):
fixpoint induction principle:
If F(Z) € Z then u¥ c 2 (2.3)

Many "inductive" arguments from mathematics can be regarded as instances of this
principle, for suitable F and Z. "Induction axioms", in this light, are constraints

onpF; typically that it is the whole of the mathematical structure in question.

Slightly more familiar than (2.1) is the alternative in the case that F is

w—-continuous as well as monotone.

w-continuity: F(X) is w-continuous in X if, whenever ng X1 gx2 C..., then

FGE0%) = 120F %y) (2.4)

In this case, there is the altergative expression
= U '
wf = O F(@) @)

In fact, (2.5) extends to the case that F is only known to be monotone, at the

expense of iterating F into the transfinite ordinals. (Hopefully the reader will not
take fright at this notion; all that need concern him here are that the ordinals are
linearly ordered, that each is either the successor of an ordinal or the least upper

bound of its predecessors, and that the first such limit ordinal is w, not counting 0.)

For each ordinal a, Fn(¢) is defined by

(@) = FEE@®) if a = 84l

(@) = éiaFB(¢) if o is a limit ordinal.
Then for any monotone F

pF = F* (@) for some ordinal o (2.6)
In fact, once (2.6) holds for some ¢, it holds for all larger o, from the definition
above and the fixpoint property; so (2.6) holds for all sufficiently large a. In the

case that F is w—continuous, o can be taken as w; indeed (2.5) is just .

(2.5) is usually taken as the basis for Scott induction; however (2.6) permits
a generalization to fixpoints of monotone, not necessarily continuous, functions.

But first the full definition of continuity is needed.

continuity: G(Y) is continuous in Y if, for any ordinal o, and any sequence Y,, A<a,

A
U =
GO Y% Ta) = Y% 6

such that A<u=>%Y c Yu, we have

(w—centinuity is just the special case a = w; the definition here is equivalent to

the more usual definition through directed sets - assuming the Axiom of Choice.)

The following is a statement of Scott induction in a notationally tolerable special

case.

Scett induction principle:
If (a) Gi(Yl’ 1 YZ’ 1=1,2.

(b) Fi(X) are monotone in X, i=1,2.
(d) whenever Gl(Y YZ) =G

YZ) are continuous in Y

1’ 2 (¥ Y)

then-Gl(Fl(Yl), Fy(Y,)) = Gy(F (Y, F,(Y,))
then we can conclude from (a)-(d) that

Gy (uX.Fy (X), uK.F, (X)) = Gy (WXL Fy (X), uX.Fy (X)) (2.7)

The justification for this version of the principle is by a transfinite induction

argunment, showing that
‘ A A A
6, (FL @), F)@®) = G,(FX (@), F)(#))

for all ordinals A < a. The important continuity constraint (a) is necessary in the

case that 2is a limit ordinal.

Finally, we sketch the generalizations which are needed in the case of
simulgzneous recursions. We are then dealing with functions on producte of relation
algebras

N
F., : .1
i&

< 3
; -1Bh.(Ai) > Rn.(Aj) 1< j< N

(2 J

with each FB\XI’ XZ""" Xﬁ? monotone in each Xi'

New the N functions Fl’ F2,...,Fﬁ can be thought of as combined into a single

“function on the product algebra, defined by
F(Al, X2,...’ XR) = (Fl(xl,...,%),-.ooo, FN‘(Xl,....’ XN))

Morecver the structure on the product algebra is essentially just that of an algebra
of subsets of a disjoint union of the sets Aini. We can indicate this notationally:
O = B, Goevuny B
(Xl’ Xpseens XN) Sy (Yl’ Yoseens YN) iff X, c ¥, 15 i<N
and so on. With further definitions of UH’ ﬂn in this style we can proceed to recast
the development for simple recursions into one which applies to the simultaneous
case as well, In particular we have
uF nn{X[F(X) an:}
F*(¢,) for suitable a. :
If the functions Fi are defined by forms Fi(Xl,...., XN), 1 <i <N, we use

“ix1xz"'xﬁ'(F1(X1""' XN),...., FN(Xl""'Xﬁ))

1

to denote the i-th component of the fixpoint yF,

We will not write out the generalizations of fixpoint induction and Scott
induction principles here. The following principle needs to be emphasized. It allows
one either to eliminate simultaneous fixpoints in favour of simple fixpoints, or,
used in the reverse direction, to move fixpoint operators outwards from expressions
to achieve one simultaneous fixpoint, with no fixpoint operators in the expressions

for the functions involved. We state just the special case for N = 2,

Bekil-Scott principle:

If Fi(xl’ Xz)'ate monotone in X i=1,2, then

1? XZ’
XXy By (XLX0)s FolX), X)) = wXpoF) (X, X, F, (X, X))

MZXIXZ.(FI(Xl,Xz), FZ(XI’ XZ)) = qu.Fz(qu.Fl(Xl, XZ)’ XZ)

3. THE FROBLEM OF UNBOUNDED NONDETERMINACY

It is well-known that fair parallelism and unbounded nondeterminacy are
interrelated problems. Both the nature of the latter problem and the reason for
the relationship can be seen from the introductory example in Section 1. Under
fair scheduling the example exhibits unbounded nondeterminacy in the sense that
(a) the program terminates whatever; and (b) the final value that y takes is not,
in principle, bounded; any value from the infinite set {1,2,3,......} is possible.
In view of this relationship, any "solution" to the fairness problem would also
seem to provide a mechanism to implement unbounded nondeterminacy. Since there
are doubts as to the feasibility of such a mechanism, it would be as well to

focus on them in order to understand what sort of solution we might expect.

We proceed in the following steps; first, we look at the technical difficulty
as it presents itself in an abstract setting, by looking at the "power-domain"
constructions available for providing semantics for nondeterminism in the Scott-—
Strachey style; then we examine the techtnical difficulties as regards a relational
treatment — here we discover that these are not so severe as is implied by the

discussion in Dijkstralu] ; lastly, we discuss the reasons given for considering

this sort of feature unfeasible and/or undesirable.

Since we want to contemplate unbounded nondeterminacy by itself, it will be
convenient to postulate a programming feature intended to exhibit it. The most
natural device in the context of our first example would be an expression which
takes, nondeterministically, any positive integer value; writing this as "anyposint",
the example program is then to be equivalent to

x := 1l; y := anyposint ;

3.1. Nondeterminism and Power—domains

Power—domain constructions are intended to augment the system of domains used
in the Scott-Strachey style of description so as to provide denotations for non-—

deterministic programs. If B, E are domains, and P(E) is the power—domain obtained

from E by this construction, the '"nondeterministic functions" from D to E are to
be identified with elements of (D » P(E)), the domain of continuous functions (in
the domain theoretic sense) from D to P(E). The case we should be immediately
interested in is the case in which D, E are the same "flat domain'", obtained by
adjoining a minimal element L ("nontermination") to an otherwise unstructured set

of "wachine states" .

Quite apart from the issue of continuity (which we will be discussing later,
in the context of a relational development), the power~domain construction provides
a setting for a slightly different issue. It turns out that the objects in each power—
domain RE) must be obtained by making identifications between subsets of E. The
identifications which concern us occur in all three constructions known to the author;
in Plotkin's original proposal [51 , in the variant due to Smyth [8] , and in the
construction based on the lattice of Scott-closed subsets - which results from
following up the converss to Smyth's ordering. In Plotkin's terminology, the
identification involved is that of a set with its Cantor closure - the closure
with respect to a certain topology on the domain. But we can look at what is

involved in a slightly different light - by appealing to constraints on how subsets

X of E are to be characterized.

What is needed to specify this constraint is some notion of "finite fact" about
elements of E, The collection of such "finite facts" about elements which are

consistent with membership in X should then be the most we can use to characterize X.

exclusion criterion: for an object x to be definitely excluded from membership in X,

there must be some "finite fact" which holds of x but which holds of no element of X.

An object x, therefore, for which there is no such finite fact, can be adjoined
to X without affecting its characterization. So at least to this extent distinctions
between sets in P(E} are blurred (and in practice there is more "blurring" before
a partial ordering structure can be obtained making P(E) an acceptable domain).
. ¥

It remains to choose an appropriate notion of "finite fact". The obvious choice
connected with Cantor closure fits in well with other intuitively appealing aspects
of domains - relating all computationally relevant structure to properties of a

denumerable set of basis elements.

finite fact about x: any boolean combination of assertions of the form e C x, where

x is the given element and e may be any basis element of E.

The general constraint that results from these considerations is the identifi-

cation of sets with their Cantor closures. In our case E is a "flat" domain,
satisfying

xEyep(x =10r x =y)
Every element is a basis element. The difficulty over unbounded nondeterminism
appears when we apply the exclusion criterion to 1, with X an infinite set. For
consider any finite fact true of L, and suppose it to be in disjunctive normal
form. At least one disjunct must be true of x= 1, and each such disjunct must be
equivalent to a conjunction of the form

e1¢ x and ezf_,f; x and......and en‘$ x (3.1.1)

for some n, since t £ x is true of all x, and no other assertions e E x are true
of 1. But any statement of the form (3.1.1) is true of all but a finite number
of elements of E, so must be true of some element of X. 1 can therefore not be

excluded from X - and this is essentially the difficulty we expected.

Note: Plotkin invokes the notion of "finitely generable" set to put an initial
constraint on P(E), and it is tempting look for significance in this aspect of the
construction rather than elsewhere, But in fact every Cantor closed set is finitely
generable, as Plotkin points out; so the initial constraint was not, after all,
essential. The same structure is obtained by partitioning all subsets with the help

of the closure operator.

This difficulty in the context of power—domains makes it apparently impossible
to find a reasonable semantics reflecting fair parallelism in the way one would
like, #.e. to find a funation mspping parallel.programs to denotations which are

c N

elements of some domain, of "nondeterministic functions" perhaps , This does not

at all rule out, however, denotations obtained as subsets (in the conventional
sense) of domains - and research in this direction seems called for. What seems
to require. careful formulation-is the problem of choosing appropriate domains
for use in continuation semantics cast in such a style, since analogs of the

reflexive domains needed may not be constructible.

3.2. Relational semantics for nondeterminism.

The outcome of a relational semantics for a deterministic program can be
quite straightforward. One characterizes a set S of "machine states", and produces,
for each program C, a denotation MCJe RZ(S), vwhich is to be the relation between
input and corresponding output states of C. But in the nondeterministic case there

is an extra complication concerned with termination. The input-output relation by

jtself will not distinguish between the following two trivial programs
skip (3.2.1)
skip or (while true do skip) (3.2.2)

but the second of these has a possible non—termination, whereas the first does not.
But one clearly wants to distinguish between such programs. One can cope with this
problem either by adding an element L to S, to signify nontermination in the style
of Scott - this is the device adopted by de Bakker {3]- or, as we do here, by
adding 2n additional semantic function. For each program C, we will aim to give a
denotation composed of two sets:

Mcl e R,(8) the relation computed by C

7ic] ¢ S the termination domain of C
The intended significance is that all executions of C terminate iff C is started
from a state in TIC]. The two programs (3.2.1), (3.2.2) are then distinguished
by T, which yields S for the former and ¢ for the latter, presumably. In the
deterministic case T is unnecessary , since it may be derived from ¥ - unless
it is intended to attach some meaning to termination without a value as opposed
to nontermination. At the end of this article we will give definitions for M, T
for a "toy" language in which commands are permitted to exhibit unbounded nondeterm-
inism. But we should first discuss the arguments that seem to imply this is an
unreasonable goal.

The most influential critique of unbounded nondeterminacy appears to be that
embodied in Chapter 9 of Dijkstra [4]. In this section we will concentrate on the
technical difficulties discussed by him, setting aside conceptual problems for the
moment. Qur observations here follow lines largely developed by de Bakker{3]and de
Roever [7].

There are some awkward superficial obstacles first of all. Dijkstra talks of
"predicates" and "conditions", where we are inclined to talk in terms of sets, so
the reader should be prepared to substitute propositional notions (and, or, = etc.)
for the corresponding set—theoretic notions. (N, U, c etc.) in order to translate
between our principles and those enunciated by Dijkstra, and vice versa. Moreover,
we will want to regard the fixpoint operator u as applicable in either context, so
that the principles sketched in Section 2 should be regarded in that light as well.
For example, there will be a fixpoint induction principle applicable to predicate
transformers F(R)

if F(R) = R then pF =R (3.2.3)
Secondly, Dijkstra is intent on obtaining axioms for the yp predicate transformer,
and not on obtaining denotations for programs. But his criticisms must apply to

our efforts as well, since wp can be characterized in terms of our p and 7.

wp(C, RI(s)&> (s € TICl and (Ws')((s,s") M [l = R(s"))) (3.2.4)
Thirdly, we prefer to talk about programs constructed from while statements, and to
achieve nondeterminacy either through an or construct on commands or through a
possibly nondeterministic basic command, rather than through the guarded command

formalism. We hope these details are only superficial obstacles to understanding.

Dijkstra proceeds by enunciating a continuity property - that wp(C, R) is
w-continuous in R, in_just the sense of Section 2, though translated into
propositional terms.‘He then shows that the language he has developed to that
point has this property, but that the command which we have written x := anyposint
dces not, since -

wp(x := anyposint,gggx < 1))
is true of all states, but

wp(x := anyposint, x < i)
is true of nore. This is quite correct, and an important example; failures of the
continuity property are inconvenient - many proofs depend critically on continuity
assumptions, which are often embedded in principles for reasoning about programs
(e.g. condition (a) of our version of Scott induction). Dijkstra, however, appears
to overestimate the inconvenience. The reason for this is that there is, in effect,
a hidden continuity assumption in his rules for reasoning about the repetitive
construct. He notices this, but fails to notice that it can be fixed elegantly.
In cur notation, his example is the following command:

while x # O do (if x. < O then x := anyposint else x := x - 1) (3.2.53)
Call this cormand WHILE, and the component conditional IF; what is wp(WHILE, true)?

Following Dijkstra, we have

wp (WHILE, true) =;Z;Hi (3.2.6)
where HO = (x = 0)
B, 4 =(wp (IF, Hi) or H.)

by induction on i, then (assuming we know all about wp(IF, R))

B, =(0 = x<i)
but then, plugging back into (3.2.6)

wp (WHILE, EEEE) = (x 2 0)
and this is clearly wrong — WHILE terminates for all x, positive or negative.
But there is another version of (3.2.6), using u:

wp (WHILE, true) = uX.(x = O or wp(IF,X)) (3.2.7)
i.e. wp(WHILE, true) is the strongesi condition X such that

X = (x = 0 or wp(IF, X))
To see that (3.2.7) should give the correct result for wp(WHILE, true), it may
help to move to the formulation using sets., The analogous function is

F(X) = ({0} U {x|x < 0 and §" ¢ X} U {x|x-1 ¢ X})

10

where N = {yly > 0}; (we are assuming that "states" are just values of x -
but this is not essential to the result of (3.2.7)); now we have
F(@) =0
F2(@) = 20, i} etc., and
@ = Gri@ = oy ux’
i=0

And we nust now go transfinite - but for just one step; putting N = {y|y < 0}

1 - +
Y@ = oyuN U N
which is now correct. So this was a case where a fixpoint of a non~continuous F

is called for - moreover an F with uF # F ().

The nature of the error and the way to fix it now begins to be clear. The
general formulation for the while statement should be
wp(vhile B do C, R) = uX.((non B and R) or (B and wp(C, X))) (3.2.8)
If the right hand side of this is abbreviated uX.FR(X), the analog of Dijkstra's
rule would be

wp(while B do C, B) = F."(false) (3.2.9)

This latter formulation is quite correct provided FR is continuous, which in

turn is true provided there is no possibility of unbounded nondeterminism.

This is not the end of the story, but to continue would take us too far from
the theme of this article. Clearly (3.2.8) is also correct in the continuous case,
provided (3.2.9) captures this special case of Dijkstra's axiom correctly. But it .
also remains to justify (3.2.8) in the monotone case, and to verify that the other
main principle underlying Dijkstra's discipline, with the exception of the continuity
property, are still valid. The fixpoint principles of Section 2 can, in fact, be
used to justify Dijkstra's properties 1-3 ("excluded miracle", monotonicity and
multiplicativeness of the wp function). And the "loop invariance theorem" also
turns out to be a nice instance of the fixpoint induction principle when the

fixpoint version of wp is adopted for the repetitive construct.

3.3 Continuity and implementability.

Many theoreticians accept the thesis that objects which are "computable" or
"effectively given" may be obtained by considering only continuous operations on
a tightly constrained system of demains and/or relation algebras. On the other
hand, they would be inclined to accept the constraints that our "exclusion

principle" puts on what sets can be regarded as effectively given - and insist

11

on sets which are "Cantor closed"” with respect to some domain structure. But the
denotations of programs invoking fair parallelism or unbounded nondeterminism
appear to violate both these constraints - and, superficially, nothing could be
more effectively given than the denotation of a computer program. But there is one
observation which appears to dodge the conflict, which concentrates on the role
actually played by nondeterminism in the languages being discussed. One can ask
the question ~ what is it that makes an implementation of such a language correct?

The answers classify into one of two categories:

tight nondeterminism: each correct implementation must, according to some precise

sense of "possible result", produce all and only those possible results which the

semantics of the language prescribes.

loose nondeterminism: there may or may not be a sense in which the implementation

can produce more than one result; the only constraint is that every result produced

is one of those prescribed by the semantics.

In loose nondeterminism the requirement that all prescribed outputs be "possible"
disappears. In this sense, any implementation of

x =1
is , loosely, an implementation of

X := anyposint

New it is immediately clear that the sense in which fair parallelism is
nondeterministic is a loose one. Noone requires of a correct implementation for
parallelism that there be an appropriate semse in which 211 scheduling algorithms
be possible in it, only that there be one such scheduling algorithm, and if
fairness be required that the scheduler be fair. On considering other 'mondeter-—
ministic' features of actual languages, the reader should also be able to convince
himself that the nondeterminism intended is in the loose sense (the only exceptions

seem to be in the realm of probabilistic algorithms).

With this observation the conflict begins to fade; there is still perplexity,
nevertheless. Firstly, if the class of possible implementations is in no sense
computable, there may be no effective test that an implementation is correct. As
regards the fairness of schedulers, this is quite true - and can be derived as an
unsolvability result in the classical style. Nevertheless, fairness is a property
that can be formally established, just as totality can for recursive functions on

the integers = a property with just the same status as fairness.

12

Secondly, one can doubt that 'fairnmess' and similar properties are really
useful, since no very useful consequences can be deduced from them alone, and/or
since reliance on them alone for correctness is not good programming practice.
This view bases itself on scepticism as regards the value of guaranteed termination
in the absence of bounds on termination time. If there is a defense to the view,
as applied to practical programs, it depends on the utility of separating
termination proofs from the derivation of more detailed time estimates. In the
case of deterministic programs, this separation appears to be real enough, if
only because termination is usually just logic, and easy - whereas obtaining
termination bounds (even quite loose ones) is mathematics, uses (so far) rather
different methods and standards of rigour, and may be just that much harder to do.
One might expect the same experience to recur as regards properties deducible
from fairness alone, as against properties deducible from more detailed knowledge
of scheduling. But to support the defense would need more experience in using

fairness, etc. in proofs than we now have.

4. STRANGE FIXPOINTS AND THEIR USES
4.1 Maximal Fixpoints.

Over relation algebras the properties of the minimal fixpoint operator u
dualise in a straightforward way, to properties of the maximal fixpoint operatorW;
thus

w(x.F(x) = U[X|Xx C F(X)} (46.1.1)
for F(X) any function monotone in X. Or we can, in effect, turn the algebra
upside—down to obtain an expression with three nested complement signs

o XF(X) = uX. (FOO) | (4.1.2)
Similarly, if we let U stand for the maximal universal set in the algebra, we can

proceed downwards from the top of the algebra to obtain a maximal fixpoint:

F o =0
Fa(v) = F(FB(U)) if a =8 +1
Fa(v) = dgaFB(v) if o is a limit ordinal

13

With these definitions, we have
ﬁ(X.F(X) = F&(vj for all sufficiently large «
and v(X.F(X) = FwCU) in the case that F is w-cocontinuous

w-cocontinuity: F(X) is w—cocontinuous in X if, whenever XO E.XI 2 X2 D ..., then

FGD0%;) =‘§§OF(Xi)

Similarly, we can proceed to define general cocontinuity, and to derive dual
inference principles to those of Section 2. Indeed they can be deduced from the
principles of that section using the expression (4.1.2). We will not explicitly

formulate these duals here.

4,2 Extended Languages.
- *
Given any set I, the set I' of extended sequences over ¥ is the set I of
finite sequences over I together with the set I“ of infinite sequences over I.
o £' = £ ug¥, We will consider subsets of I as extended languages, a pretext
for borrowing notation by analogy with standard notation for finite sequences,

So, for 0 € £, %X,¥ € XT, XY C Z+:

A denotes the null sequence
<o> denotes the corresponding sequence of unit length
ox denotes the result of prefixing o to x
xy denotes the concatenation of x and y, if x € Z*
and denotes x, if x e r°.
XY denotes {xy|x ¢ X, v € Y}
This extended notation of concatenation, while degenerate on infinite sequences,
can easily be seen to have the elementary algebraic properties of the standard

notion:

AX = XA = X
(xy)z
(xY)z
XY u XZ
XZ v YZ

x(yz)
X(YZ)
X(Y u Z)
(X uvY)Z
X =¢x = ¢

etc.

14

*
The star—closure operator on languages (subsets of £) can be defined using a

minimal fixpoint. For extended languages, the same expression provides the

expected generalisation of the notion. But we can talk now of omega-closure,

dagger-closure as well. For an extended language A S.Ef, we have

*
star-closure of A: A = uX.(AX v {2})
omega—closure of A: I\ ="JX.AX
dagger—closure of A: Ny ='ﬂ%.(AX v {A})

It is easy to see that
%
A ={1} u Avu A? u...

since the right-hand side has the form F(¢) and is a fixpoint of F(X),

taking F(X) = AX v {A}. 1In fact this F(X) is easily seen to be continuous in X -
concatenation of extended languages is continuous. Notice that the above
definitions of "omega—-closure", "star-closure” do not correspond to intuition

1-

in the cases that the null string X € A, since in this case A+ =AY = 1 is the

universal set. We should verify the following basic properties:

w
1. If A ¢ A, then A" = {w ww, ... | W, € A}:

Abbreviate the right—-hand side as A" for the moment. A = AA" satisfies
the fixpoint equation defining AY, so AfE_A@ - by the dual of the fixpoint
rule (2.3) - if A" E.AAf then A" C X.AX = A®, Conversely, suppose W € A",
then w € AAY - so w = wbw', with w, € A and w' e AY; similarly w' = wlw"

with v, € A, and so on. So w € AY,

*
2. AT =AY U A : this is the special case of (3) below in which B = {A}.

*
3. ﬂxx.(AX yB) =A” U A B: this gives an opportunity to exhibit the dual

to the Scott principle (2.7) in an elementary context. Consider the
equation:
X=Yu A*B
(2) both sides of the equation are cocontinuous in X,Y;
(b) the functions AX v B, AX are monotone in Y;
() U=Uua'B
(d) whenever X =Y u A*B, then
AX uB=AQx v A*B) u B
= AY u AA*B v B
= AY U (AA* u {A1B
= AY u A*B

(]

The conclusion of the dual principle follows, viz.

| X. (AX u B) =WX.AX v A”B

15

*
4. yX.(AX yB) = A-B : follows directly from a conventional Scott induction.

w : + * y .
5.1f X¢Aand B} @, then A°B = A" , A'B = &” u aA"B: that A% = A%follows from

(1) above. The other equation 1s derived from this and from (2) as follows
ATB = (& ua™)B = A%B u a%B =AYy A%p

Note. Whlle (1) above looks straightforward, it should be noticed that the maximal
fixpoint A ﬁJX AX is not necessarily reached in o steps, from which it is clear that
the function AX is not always cocontinuous. The sort of example which shows this

was mnoticed by Tiuryn [9] in the context of algebras of infinite trees.

Example (Paterson): take = {0, 1, 2} , a eZ+ defined by

: = 2101001000100001..... = 21010°10°10%1. ..

A = {21010%1....10" | n > 0} y {0}

-— - L B 3
then a € (2101021....0n 11)0n 12' < A"y’ for each nj; so0 a € Fb(zT); but a ¢ AP.:![%:

v

In fact the concatenation function F(X, Y) = XY on extended languages is not

cocentinuous ip either X or Y, (though it is cocontinuous on languages of f1n1te

sequences). To see that cocontinuity fails in the first argument position

consider just

-

= (s
then xi1” = {1%}, ﬁ(Xilw) = (1%}

But MX. =@, so (nxi)lw = g.

Maximal, rather than minimal, fixpoints are appropriate when defining functions,
1.
predicates recursively on I The following two ' deflnltlons", of concatéenation

and equality respectlvely, could well serve as axioms for Z+ under concatenation

.{(x,y,xy) | x,yez’ t =1{X({Kk,y,y) l yer'} o {(ox.y,oz) | (x,5,2)eX, g€)
cext) oo
{(x,x) | xez'} =AX. ({(A,0)} ¢ {(ox,0y) | {x,y)eX, oe L})

Notice that if p is used ratner than.T! what are obtained are conc¥tenation

and identity restricted so that weZ » and undefined for xelI® .

e o - s

4.3 The "fair merge" problem.

One can approach the fair scheduling problem by first of all tackling the
problem of defining a "fair" merge on ET, a nondeterministic function which
interleaves pairs of possibly infinite sequences in such a way that all of any
infinite sequence provided is absorbed. A functional relevant to finding the

fair merge relation is the following
+ +
{(,%,x) | %e2'} u {(x,2,%) | xer'}

{(ox,y,02) l oer, (x,y,z)eX}
{(x,0y,02) | oeX, (x,y,2z)eX} (4.3.1)

Fm(X)

[

[

Unfortunately, neither ufm nor‘ﬂ%m is the required relation. For uFm produces
no merges from pairs of infinite sequences,whi1e1{fm produces merges which are
not fair. Thus
(N T
(0,1 ,x)epFm for no xe{0,1}

while (ow,lw,o“) Fm, for example.

A clue to the appropriate solution is given by concentrating just on the

. w . . . e e s
fair merges of 0O and 1%, which is the set of all sequences with infinite numbers

of both 0's and 1's. This set can be specified nicely using the operators of

4.2 as

* * W
(0 11 0)
* % W
or (1 001)

Now ©*11%y" =x.(0*11%0x)
=1(x.(O*IuY. (0XulY))
='r/x.(pZ{0ZuluY. (0XulY)))
=1le.(pZF(Z, Y. F(X,Y))))
where F(X,Y) = 0X V1Y,

Proceeding by analogy, weufirst distinguish the two occurrences of X in Fm(X):
Fm(X,Y) = {(2,x,x) | xez+} u {(x,2,%) | xezf}
u{(ox,y,0z) | oeZ, (x,v,z)eX}
v{(x,0y,02) | oeZ, (x,y,2)e¥} (4.3.2)
Then define
fairmerge =1JX.uZ.(Fb(Z,uY.Fm(X,Y))) (4.3.3)

17

The dual of the Bekic-Scott principle allows us to rewrite this, after noting
thathX.A = A if A is independent of X. Thus
fairmerge =thl.uZ.(Fm(Z;JXZ.pY.Fm(Xl,Y)))

N
Where’ for i=1’2’ Ji = wi/Xle‘<L‘Z'F’:n(z.!}(2) ’uYOElm(Xl,Y)>O (4-3.4)
We can now note that fairmerge = ﬂ& also, using three applications of the

fixpoint property:

‘r/ = uZ.Fm (2 ?v/) (4.3.5)
1/2 = WY.Fm (W,Y) (4.3.6)

applying the fixpoint property to the simultanecus fixpoint (4.3.4) S
Hence ‘h-é Fm(i{ 74’ (4.3.7)

and 1~/2 = Fré 7{) - (4.3.8)

applying the fixpoint property to the two y-expressions, (4.3.5) (4.3.6).
This symmetry allows us to reverse the Bekié-Scott argument to obtain the

fourth form
fairmerge = ﬁ&.uY.Fm(uZ;Fm(Z,X),Y) (4.3.9)

We now have four forms for fairmerge. Note incidentally, that we now have also,

from (4.3.7) that
fairmerge = Fm(fairmerge,fairmerge)

so that our relation is certainly a fixpoint of the original Fm - but neither

its maximal nor its minimal fixpoint.

We should show now how to verify that fairmerge corresponds to our
original idea. One way to simplify the manipulations needed to verify this is,
temporarily, to extend even further the notion of concatenation used in the
previous sectloﬂ, so as to apply to triples (x,y,z) of words from XT, so that
(%,¥,2) (u,v,w,) (xu,yv,zw), to replace A by the triple- (A,A,A) and to define
corresponding closure operations on sets of triples. The properties of * .0
given in (4.3) generalise, except that the condition "A¢A" in (1), (5) of (4.3)
X,¥,2€A => x + A and y § A and z { A". With this
device, Fm(Y,Y) simplifies to

Fn(X,Y) = A u BX u CY

must be strengthened to "

where A = {(A,x,x) | xezf} u {(x,2x) | xezf}
B = {(g,%,0) | cek}
C = {(A,0,0) | ver}

18

then fairmerge =@fx.uz.(A U BZ u C uY.(A u BX u CY))
*
=1/X.uz.(A U BZ v CC (A u BX))
* *
=wX.B (A u CC (A u BX))
7%& * * * %
.((B u CC)A U B CC BX)
* Kk 1+ % ¥
(B'CC'B) (B ucCC)A
* %k _u * Kk Kk k %
(BCCB) u (BCCB) (B ucC)A

it

* %
since B CC B contains no triple with a null component. The final expressions

simplifies to
. * % *
fairmerge = (B CC B) u (BuC) A (4.3.10)

With the given definition of A,B,C, the reader should see that this is indeed
*
the expected fair merge. The term (B u C) A defines merges on pairs one of which
» - L . * *
is finite - in which case fairmerge is not in question. The term (B CC B)w

provides the fair merges of pairs of infinite sequences.

Fairmerge is, of course, commutative and associative, in the sense that

(x,y,2z) € fairmerge ¢ (y,x,z) € fairmerge (4.3.11)
(x,y,u) € fairmerge & (u,z,v) e fairmerge (4.3.12)

= (y,z,w) € fairmerge & (x,w,v) € fairmerge, for somew'.

An easy proof of commutativity springs from the two symmetric forms (4.3.3)
and (4.3.9). But it is not clear how best to prove associativity formally. 1In
view of the fact that concatenation is not cocontinuous, dual Scott induction
seems to be of limited used in proofs, and other algebraic insights seem to be
called for to obtain general principles applicable to expressions involving
occurrences of W as well as u. Recent work by Tiuryn [9] by Arnold and Nivat [1]
and by Wadge and Faustini [10] seem to suggest some directions in which such

insights might be sought.

5. AN EXAMPLE LANGUAGE

In the appendix is specified a relational semantics for a toy language
with a fair parallel constraint, using the notational devices introduced in this
article and a format adapted from various models in the Scott-Strachey style.

In order to accommodate parallelism, the semantic functions NMIC]

(relational meaning), 7T[C] (termination domain) are factored, so that

19

MIC] = rRM(VICI)
T{cl = Tp(wIC])
where N [C] is an intermediate entity, the set of abstract paths

corresponding to the command C

rICD € Ry(s)T
Abstract paths are therefore finite or infinite sequences of state relations,
with the intention that each element of a sequence correspcends to an atomic
("uninterruptible") action. The choice of abstract paths, rather thap name

sequences (or trees), is comparatively arbitrary, and is mctivated by the wish

to factor out inessential syntactic (and other) detail at the earliest opportunity.

It should now be possible to foresee how proofs might be shaped in a
properly formulated formal system. We can consider the task of proving that

the command
C : (D par while B do skip) (5.1)
always terminates, assuming D is atomic and makes B false.

1. Let ATOMIC (E). abbreviate

(¥&) £ € ©= length (8) ¢ 1 (5.2)
and TOT (Z) abbreviate
™D (E) = § (5.3)

We must establish:
if ATOMIC (DID]) and RM(D[DIE{B]) = ¢
then TOT(N [cC}) (5.4)

2, The following general results should be available
if ATOMIC (Ei), i=1,2,3, and A ¢ g,

+ * t
£ .2 = =T (v (= '% .8 =
then FM(-—-l,-—z -) -2 \--1(-2 -‘3) U~3-.1 (505.)
TOT(;I) & RM (El) = @ = TOT (5152) (5.6.)
TOT (51) & TOT (Ez) = TOT 5152) (5.7)
& TOT (':’1 U 52) (5.8)
*
& TOT (:1 :‘.2) (5.9)
ATOMIC (=) = TOT (5) (5.10)
AtoMICc (E f[cl) (5.11)

AtoMICc (E fc)) (5.12)

20

3. From the semantics

N [c] = N [(D par while B do skip)]
= FMQLD}, E{BI'EIB])

= (8] (0Ip1 &3 FiBl) v FiBIDID]) (5.13)

from (5.5.)
Expand E{8]1 E(8] = (Z(8lzis]’ FIB] v E(BD) (5.14)

TOT (wfc]) then follows, using, in turn, (5.6), (5.7), (5.8)
and (5.9) to work the TOT property outwards.

We hope these very sketchy ideas will serve as a stimulus towards a more
detailed and rigorous development of such a formal system. Our prime aim in
this article has been to show that the fairness pfoperty can be reasonably

characterised in a relational style, and this, we feel has now been achieved.

21

References.

(1]

£2]

[3]

4]

£s]

[63

(71

L8l

£s]

Arnold, A., Nivat, M. : Metric interpretations of infinite trees and semantics
of nondeterministic recursive programs. Rapport I.T.-3-78. Equipe Lilloise

d'Informatique Theorique, 1978.

de Bakker, J.W.: Semantics and termination of nondeterministic recursive
programs. pp 435-477 in Automata, Languages and Programming, ed. Michaelson,
Milner, Edinburgh University Press, 1976.

de Bakker, J.W., de Roever, W.P.: A calculus for recursive program schemes,
pp. 167-196 in Automata, Languages and Programming,ed. Nivat, North Holland
1973.

Dijkstra, E.W., & Discipline of Progranriing. Prentice-Hall, 1976.

Plotkin, G., A powerdomain construction. 452-487, SIAM J. Comp. 5 (1976).

Hitchcock, P., Park, D., Induction rules and termination proofs. pp. 225-251

in Automata, Languages and Programming, ed. Nivat, North Holland 1973.

de Roever, W.P,, Dijkstra's predicate transformer, nondeterminism, recursion
and termination, in Mathematical Foundations of Computer Science, Springer
Lecture Notes 45, 1976.

Smyth, M., Power domains. 23-26 J. Comp. Sys. Sci. 16 (1978)

Tiuryn, J., Continuity problems in the power—set algebra of infinite trees.

(presented at 4e Colloque de Lille, 1979), Warsaw, 1979,

[10]Wadge, W.W.: An extensional treatment of dataflow deadlock. 285-299 in

Semanties of Concurrent Computation, Springer Lecture Notes 70, 1979.

Al

APPENDIX.

Relational Semantics for a toy language involving fair parallelism, and permitting

unbounded nondeterminism:

Syntactic Classes and Notation:

C € Cmd (Commands)
B € BCond (Basic Conditions)
D € BCmd (Basic Cormands)

. Syntax:

C ::=D | skip | abort | (C1 3 Cz) | if B then C, else c, | while B do C |
(Cl or CZ) | (Cl par C2)

Basic Semantic Notions and Notation:

xe S _ (States)

X e P(S) (State-sets)

Re R2 (s) (State relations)

E e R2 (S)-f _ (Relation sequences, Paths)

5 € P(R2(§)1:) . (Path sets)

¢ e P&y (5) x 5% -
¥ e P x5

D : BCmd » RZ(S)* (Basic comMind spees)

B : BCond + P (S) (Basic condition specs)

Derived Semantic Notions:
N : Cod +~ P’CRZ(S)*) (Abstract paths)
: Cnd > RZ(S) (Denoted ralation)

X

¢ Cmd > P (8) (Termination domain)

T
E,E : BCond-*P(RZ(S)f)

Auxiliary Relations:
run =0, ({ (A, x, x) | xe S} v {(, x, y) | @2)((x, 2) e R& (£, z, y) € 2)})
RME) ={(x,) | @E)E €5 & (£, %, y) € run}
tdom = W¥.({Q, x) IxeSIu{(RE, ©) | (V2)((x, z) ¢ R =€, z) € ¥)})
IDE) ={x | (FIE € 2= (£, x) ¢ tdom)}

fairmerge -— see main text (4.3.2), (4.3.3).

.FM(EI’ 52) = {& 1(351)(352351 € Ey0 &y € £,s (ﬁl, £gs E) € fairmergel}

Semantic Equations:

EiBI = {<{(x, x) | x € BIBl}>}
E[B} = {<{(x, x) | x ¢ BIBI}>}
MECE = RM(ECI)

7ici = TDWICD)

N{D] = DiD]

Niskip] = {1}

Nl abort] = RZ(S)N

(o CZ)B = NﬁclliN[czll

FIif B then C, else C,} = EiBINIC,] v E[B]N[gzl

Niwhile B do Cl= (zEBICH)' Eis]
NE(C, ox C,)1 = NIC,} v NEC,]

NI(C, par C;)] = FMOIC, T, NIC,D)

