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O. Introduction

A relational calculus ie a formal system in which relation is the fund-

amental concept. The simplest relational calcu1us, that of ordinary binary

relations, wa6 introduced by Tarst<i in [4]. Tarskits system is essentially an

algebra in which the operations are the usual tsoolean operations (on sets of

orcieredpairs)to6etherwiththetwospeciaIoperation'ry(denotedby")

and composition (denoted by ";tt or by Juxtaposition). For any binary relations

Panda
F=[(x,y) l(y,D€P]
P;Q = ( (xry) I <*rt) € P and (vrz) €'l for some v ).

The unusual fea.ture of the relational calculi is the manner in which it is

oossible to make assertions about relations without referring to points. For

example, the inclusion R;R 
= 

R holds iff R is transitive, and R = il iff

R is symmetric. In a sense the relational calculj. are to the concept of

relation as category theory is to tite concept of functj-on.

Interest in relational calculi has been spurred recently by the search for

suitable mathematical systems in which to express the semantics of programming

Ianguages. Given a machine of the appropriate type we can associate with each

progran or part of a program the binary relation which characterizes its input-

output behaviour: as de Roever says in [Jrp.1]

"the collection of all pairs [consiotingJ of aun initial state of
the memory, for which the prograrn terminates, and its corresponding
final state of the nemory."

For example, if relations Rl arrd Ra represent prograns Pt and PZ respec-

tively, then the relation Rf iRa represents the program rrfirst Pt then

Pr'rr and the equation

(n.,;nr);u = u

(where U is the universal relation) asserts that the resulting progran halts

for every initial state.



l.or this approach to work it is necesaary to consider not just simple

binary relations (between points and points) but also typed binary relations

(between sequences of points and sequencee of points)' For'example' the system

described by l{itchcock and Park in [1] has for each natural numbers rt and m

relations of type n-rm which un<ler a standarci interpretation woul'd denote

subsets of D\Dm.

Certain difficultiee ariae when it

relational calculi. The usual approach

relational al5ebra. 'Iarski gave as his

come6 to constructing proof systems for

is to axiomatize the notion of a

axions the usual Boolean identities plus

T'l: (XrY);'l = X;(Y;Z)
9

T2:X-X
I3z (X;I)-= f ;f
T4: X;!J = X

T5z (x;Y)nz = n '+ (Y;I)ni = I

where u is the universal relation, O is its comprement and E is equality'

De Roeverre axioms are basically a typed version of Tarskirs with sone added

rules for projections. Neither system has any non-logical rules of inferencet

i.e.anyrulesotherthangubstitirtion,replacement,modusponensetc..Amodel

oftheseaxiomsi""Is,I@algebra,andarelationalgcbraisstandardiff

itisisomorphictoanalgebraobtainedbytakingacollectionofrelationson

some domain and interpretin8 the relation constants and operations in the usual

way (there are nonstandard relation algebras)'

The trouble with at least Tarskirs axions is that they are incomplete: Lyndon

in [2] showed that the inclusion

x 
1 
x2 n Y 

1 
Y 

2 
nz 

1z 2c x,l ( X,1 r,1 nxrY, n ( i,l z' {x 2i z) ti' .t .nz 2i' ?-) 
)Y 2'

though true in every standard relation algebra, does not follow from Tarskirs

axioms.Thetheoryofstandardre}ationalgebrasisnevertheles.;tlxiomatizable

simplybecauseitisenunerable:everyfornulagoftherelationalcalculus
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can be translated into a formula gt of the predicate calculus in euch a way

that models of cpr correspond to standard models of I and vice ver6a. The

difficulty lies in findlng a sufficiently elegant axiomatization. It is pos-

sible that de Roeverrs exioms are enough, for for he has provedlyndours formula

by using projections, but the question has so far not been resolved.

The most serious drawback of the algebraic approach is ttre tendeney of

proofs of even simple assertions to be complex and unnatural. Consider, for

example, tbe proof on L1rrt7) of the inportant lemma

X;YflZ = X;(f;ZnY) nZ.

the proof is nontrivial, uses the somewhat cryptic axiom 15 and has as a

substep the verification of

(x;x;z) nz = O.

In this work we attempt to remedy this defect by constructing a system of

natural deduction for the relational calcul-us (typed or untyped) which is con-

plete for standard relation algebr&s1 i.€. in which a formula is provable iff

it is true in every standard relation algebra. The system is natural in the

senae that rules used in proving an assertion are determined by the structure

of the assertion. The only disadvantege of the method is that it expands the

formalism by adding point variables.

1 - Informal ExPlanation

To understand how the system workar consider how one might prove the

lemma given above in a nonalgebraic mannero The equality is actually two j"n-

clusions, the most difficult being

X;YnZ cx;(f;ZnY)nz.

In terms of pointsr we must show that for any

(a,b) e X;Y n z ) then ax;(f ;znY )nzb. The

alent to the assertion that d(;Yb and that

is in turn equival-ent to the assertion that

a and b, if aX;YflZb (i.e. if

assertion that d(;YflZb is err.uiv-

aZb, and the assertion that aX;Yb

aXc and that cYb for some co
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Thus we nust derive aX;([;ZnI)nZU from the assumption that aXc, cYb and

aZb hold for some c. Now the former assertion is equi"valent to the assertion

that both aX;(i;ZnY)b and aZb and since aZb ie am aasumptionl we need

only deri-ve aX;(X;ZnY)b. This is in turn equivalent to aXv and vf ;ZnYb

for some v. Since we have aXc aa an aseumption it will be enough to prove

9r/'
cl;Zflyb. Next we break cI;ZnYb down into cYb (an assumption) and cX;Zb

which in turn follows from "i" 
and wZb for any wr tsut both aXc and aZb

are assumptions and so the proof is complete.

The important point is that in formalizing this type of proof it is not

necessary to add the quantifiers and logical connectives of first order logic.

For examplel although in connection with fr'tr we used the phraeesrrfor somert

and t'for any'r in fact only the following two rules are needed: (1) to derive

aR;Sv derive aRv and vSb for some vr and (2) to to derive a result from

some assumptions plue aR;Sb derive the result from the same assumptions plus

aRv and vSb for any variable v not appearing in the result or in the other

assumpti ons.

2. Formqliqq

Our formal system consists of (1) a language whose formulas are of the

form xRy with R a relation expreasion and x and y point variables;

(2) a colLection of interpretation6 corresponding to standard relation algebras;

and (l) a relatiol rr[-,r of deducibility generated by a set of natural deduction

rules. The completeness reBUlt states that a formula r can be derived fron

a set f of formulas iff every interpretatlon which makes every formula in

f true also makes F true.

2.1 Sptax

The alphabet of the fornal language contains the symbols

(i) a, b, c1... a set V of point variables;

(ii) A1 811Ce... relation variablesl.

(iii) O' U, E relation constants;

(iv) U, n, ir -r- relation oPerations.



AternrforexamplettA;BflCrrrisanexpreesionforned

from the relation conetants, variables and expressions' A

anple 'tdAlB0Caf', is a word of the form xRy with R a term and x and y

pointvariables.Thenegationoftheformula:iRyisthe

Strictly speaking the set of formulas depends on the set V

and at times we will indicate this dependence by referring

Note that the symbol ttst' is not in the alphabet; insteadt

to be the formula "sg ffie".

2.2 Semantics

For any nonvoid set D and any set v of point variables a (v'D)-inter-

pretation A is a map which assigns to each tern a subset of D<D and to

each point variable an element of D. The map a must be consistent with the

usual interpretation of the relation operations and constantse €r.$' 4(RnS) must

be the intersection of A(R) and 4(S), ffid An) must be the enpty set'

Note that an interpretation is therefore determined by its restriction to the

ooint and relation variables.

If A is an interPretation, x and

term, then a E fiY @ eatisfies xRYt

y are point variables and R is a

or xRy is true in A itt <dG) 
'd(Y)>

lsin a(R). If r isasetofformulasand F i-saformulathen dFriff

a Eg for every formula G in r., and r f r iff a Er iqplies A EF for

every interPretation Q.

in the usual waY

fo{rnglat for ex-

formula *f;y.

of point variables

to fV-formulas!.

we define tB 
= 

S"

2.3 Rulee of Inference

The rules of inference of our system are the introduction and elimination

rules given on the next page together with the rule F l-F. In these rules F

ancl G are arbitrary formulasl xr, y anrl v are arbitrary variables; I is an

arbitrary set of formulas and R and S are arbitrary terns' In (;E) trvrr

is assumed not to occur in any formula in f and in (=T) rrxl and rryrr alre

assumed not to occur in any formula in f . Formally speaking the relation tt l- t'

between sets of formulae and formulas is the least one for vlbich these rulee

are valid.
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( rrr ) xRY IsY\ ur '' xRUSY xRUSY

r, nr \ xRY xSY
\ | rr .,, xRf,lSy

. -r \ rrxnY l- -afla\ r/ r F xRy

/nr \ *RY *frY
\r14./ afh

(AI)

(uI)

(-r )

(;r)

(gr )

(nr )

rl-.r
r,GFF

xRv vSy
xR; SY

Rules of Inference

(AE)

(ne)

(-E)

(rru)

(uE)

(E)

xR0Sy xRf'lSY
xRy xSY

W
s0t

I

( un)

&
xRy

(;E)

(=E) L=h:lr

(En) %F

1- Exarnples

For our first example we verify tyndOnte inclusion (see p2)' the proof

illustrates the manner in which a natural deduction systen alLows one to work

backwerd from the statement of a problem. It is for this reason that natural

deduction systens are easier to mechanlze than axiomatic-algebraic ones'

For convenience let
Y

tr = xtztn xanz

t, = it,,n'*I = i Y,,,n x2Y2n t1$2

so that we wish to show

x1x2n rlY2n zfz2 x19Y2

(note we have omitted ri'rrru). . Then by (=)

r
;ut
xRv+yxx

E;

f .xR
rFR

-5-

it is enough to show that



aXlx2nYlY zn'z.Z.b l- aX19Y2b .

tt follows from the (08) and the (AE) rules that it is enough to establish

axlx2br aYrYnbr a?rZrb l- aXlPY2b

and it follows from the (;E) rule in turn that it is enough to show

aXrpr PX2b, aY,Qr QYZb, allrrt tZrb F &\1PY2b .

Let us caII the set of formulas on the left hand side f. Then we will have

r F d(1cpY2b

iff from f we can derive aX,,,vr rfpw and wYrb for some v and lr. The fact

that dtp and qYZb are in f suggest v=P and q=w. Thus it remains

to derive SPq from f. Since
VV

P = X1Y1n XtIrn t1$2

we must derive nf,,Yrl, nxrirl ana nt.,'tre from l. The first two are immcd-

iate: for example, since dtP and aY.,Q are in f, we have pfrt by (-P)

j

and then px.,v.,e by (;I). To derive pr!1$2q we need p$1t and t$eq for

aome t. From the definition of {r it follows we must derive firort and

$rirt, and this follows easily if we take t=r. Since rtea also followu

in the sane vrayr the proof is complete.

For our second example we verify Tarski's fifth axiom, i.e. show that

x;Y o 'z=a l- Y;z n I=O.
The proof is presented in straight line form as in first order logic, each

assertion being derived from thoee above and not to the left.

(1) X;Y fl Z 
=Q 

assumPtion

(2) av;Z n Iu assumPtion

$t aY;Zu (nn) ana (a)

(4) a.[u r'

(5) bxa ("8)

(?) aYv assumPtion

(B) "Zu assunPtion

(g) bzv (-E) and (B)

(10) bxiYv (;I) using (5) and (7)

(11) bX;Yftzv (nr)using(9)*16(10)
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(12)

( tl)
( 14)

( 15)

bClv

aflU

aflb

Y;ZflX=O

4. Completeness

In thie section

rFF iff rFF
straight forward.

@I. For

any V-formula F:

(gp) usine (1)

(frE) using (12)

(;E) using (7)
(g|) usin6 (14)

and (11 )

and (l) cancellins (7)'(B)

cancelling (2)

we show that l- and F are equivalentr i'e' that

for all f and F. The rifr direction, soundneost is

any set V of variablesl any set f of V-formulas and

if f l-F then f FF.

Ilroof. Since l- waa defined to be the least relation for which our rules

are valid, it is sufficient to verify that each of the rul-es is sound (ttris is

omitted).

our proof of the 'only ifr direction is an adaptation of the Henkin con-

pleteness proof for firet order }ogic - we show that every consistent theory

has an interpretation. By a ll-i!gY. (V a set of variables) we mean a set T

of V-tormulas such tlrat T l- F inplies F € T for every V-formula F' A

V-theory T is consistent iff T does not contain the negation of any formula

in T, and T is ggilglg iff T contains the negation of every formula not

in T. Fina1ly, T is Henkin-complete (H-complete) iff for any variables x

and y and any terms R and sr if xR;Sy e T then there is a v in T

such that xRv € T and vSy € T. The strategy of the proof is to show that

every consistent theory has a con.sistent, complete, H-complete extension, and

that ev.:ry such theory has an interpretation'

The first step is to show that every consistent theory has a eonsistent

complete extension.
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Theorem 11. I'or any countable set v of variables and any v-theory

if T is consistent there is a consistent complete v-theory Tl

extending T.

proof. The standard proof carries over. Let 4'i I ieN) be an enumeration

of all V-formulas. Define a sequenc" {i I iep of V-theories extending T

by setting Tn = T and Ti*1 = Ti if Fre f , otherwise Ti*1 = the closure

of T U (fi). It io easily verified that U(f. I ieNi is a consistent com-

plete extension of T.

Next we show that every consistent theory has a consistent H-complete

extension.

Theorern III. For any countable set V of variables and any V-theory T:

if T is consistent there is a countable set Vr of variables ex-

tending Vr ancl a consistent H-complete Vt-theory Tr extending T.

pr-oof . Define a aequenc" {i I iep of sets of variables iind a sequence

<T. I i€N> of theories, each T- a V.-theory' as follows:
i' I r

/'r\ rF - 'F.\ |/ ^o _ ^'
(2) for anY ir

V. a new variable v and

resulting set of vard"ables

set of fornulars is T. ..

Then the u(vil i€N)-theory rIr (= utT. I ieul) is a consistent H-complete

extension of T.

To see this note first that an easy induction on i shows that each Ti

is consistent. In the caee i = O the result is immediate. Now suppose that

for some \ Ti is consietent but Ti*1 is not. Then Ti*t l- af,)a and so

by the definition of Ti*, there is a finite set of the form

(*j*j'j, ojsjxjl i Sn)

such that

Ti, *oRouo, vosovor ..o , *oRnvrr, trrsnJn F af)a.

for each formula in Ti of the form xR;Sy add to

add to T. the formulas xRv and vSy. fhe
1

is V. . and the closure under l- of the resultin6
1+l

-9 -



But then n applications of the (;E) rute give uo Ti l- ufta which contra-

di"cts the consistencY of Ti"

Since each Ti is consistent, Tr must be consistent'

Next, note that Tr muet be Fl-complete. For if xR;Sy is in Tt, it

must be in Ti for some i' But then there is a v in Vi*, such that

xRv and vsy are in Ti*1 and therefore in Tr'

Finallyweputthelasttwotheorenstogethertogetthedegiredresult

on extensions.

Theorem IV. For any countable set V of variables and any V-theory t:

if T is consistent there is a set vf of variables extending v

and a consistent, complete, H-complete theory T' extending T'

j!g!. Define a sequence 4* | iep of theories extenrling T as follows:

(t) Tn = Ti

Q) tAL*1 is a complete consistent extension of Tet;

(t) T2i*2 is an H-complete consistent r:xtension of T2i*1'

It is easily verified that U[Til i€N) is a consistent, completet

H-complete extension of T.

Theorem V. For any countable eet V of variables and any V-theory T:

ifTisconsistent,completeanclH-completethenthereisan

interpretation A such that A I f for every f in T'

@|. Foranyvaribles x and y in V let x3Y iff xEy€T'

It is errsily verified that : is an equivalence relation' Therefore for any

v in V 1et V be the equivalence class of vr and let f = (t I v€V)'

Then for any variable v in V let O(v) = t, and for any V-formula xRy

let a(xRy) = ( (1rI) I xRy € T ). The nap a so defined is then an inter-

pretation of T.

v,/e must first show that a is in fact an interpretationl i'e' that

a is consistent with the intended meanings of the relation operations and



constants. We give only the proofs fortt;tt andItU"r the others being similar.

(t) union. !/e muet show that 4nus) is the union of AG) and A$)

for any terms R and S. This anounts to showing that for any variables x

and y in V' xRUSy € T iff xRy € T or xSy € T.

If either xRy or xsy is in f the (UI) rule gives us xRUSy € T.

Now suppose that xRUSy € T but that neither xlly nor xsy is in T.

Since T is complete, both xf;y and xSy must be in T. But thie means

that xFnEy e T and therefore (omitting the proof) ttrat xfri3y Q T, which

contradicts the consistency of T.

(1) Composition. We must show that (irf) e A(RiS)

and (lr$) € d(S) for sone Vo This amounts to showing

xRv € T and vSy € T for sone vr and this is just the

H-completeness.

Finall)rr the fact that A F F for every F in T

iff (*,t) € aG)

that xR;Sy€T iff

statement of

is immediate.

Corollary. Every consistent

Proof. Extend the theory of

H-complete theory.

of formulas has an interpretation.

set to a consistent, completet

set

the

fhis gives us the nain result.

Theorem V. For any countable set V of variables, any set f of

V-formulas and any V-fornula

if f FF then f FI'.

Proof. Suppose that F does not follow from i. Then f and the negation

of f are consistent and so have an interpretationt impossible.

5. Tvpad Relational Calculi
- 4

This natural deduction system can be carried over quite easily to a typed

systen such as that of Hitchcock and Park. Fornulas would be of the form

*..x....xnRy,ly2...f, with R aterm of type n-+m. The rules of inference given

on page 6 wouLd remain valid if xr y and are interpreted as se,llences of
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variables of appropriate lengths. The rules for the extra operations are com-

pletely obvioust e.g.

xr....x'.Ryr',,. ' '|p Vn" 'V'SWO'''Wn.ulw^v
\ lr'/ x^...x.vo...t.Rlsyo'Xnwo"'wr.tuJL',tltv

Xn. . .x ivo. . .V*R l syo, . .ykwo. . .wn xo. - .x..,vo. .'v*R l Syo"'ynwo"'wn(lE) ffi.",,VJV

The completeness proof for this typed system goes through with Iittle change'

The extra operations offer no difficulty because their rules are purely

definitional, like the ruleo for -'
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