THE UNIVERSITY OF MARMGML

Original citation:

Darwish, Moftah O., Wallace, Alistair, Clarkson, Guy J. and Wills, Martin. (2013) Use of tridentate TsDPEN/pyridine ligands in ruthenium-catalysed asymmetric reduction of ketones. Tetrahedron Letters, Volume 54 (Number 32). pp. 4250-4253.

Permanent WRAP url:

http://wrap.warwick.ac.uk/59210

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© 2013, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.
Use of tridentate TsDPEN/pyridine ligands
in ruthenium-catalysed asymmetric
reduction of ketones
Moftah O. Darwish, Alistair Wallace, Guy J. Clarkson, Martin Wills
Leave this area blank for
$10 \mathrm{R}-\mathrm{R}=\left(\mathrm{CH}_{2}\right)_{4}$

Pergamon

Use of tridentate TsDPEN/pyridine ligands in ruthenium-catalysed asymmetric reduction of ketones

Moftah O. Darwish, Alistair Wallace, Guy J. Clarkson, Martin Wills*
Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.

Abstract

A series of enantiomerically pure tridentate ligands based on the 1,2-diphenyl-ethane-1,2-diamine structure, containing additional pyridine groups, was prepared and tested in asymmetric transfer hydrogenation of ketones using $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ as a metal source. Alcohols were formed in up to 93% ee in the best cases, and good results were obtained for substrates containing halides at the orthoposition. © 2015 Elsevier Science. All rights reserved

Keywords

Asymmetric catalysis
Reduction
Transfer hydrogenation
Ruthenium
Alcohol
Asymmetric transfer hydrogenation (ATH) of ketones is a valuable method for the synthesis of enantiomerically pure alcohols. ${ }^{1-3}$ A large number of catalysts have been reported for this application in recent years, of which those based on enantiomerically-pure $\quad N$-tosyl-1,2-diphenyl-ethane-1,2diamine $\mathbf{1}$ in combination with a $\mathrm{Ru} /$ arene or Rh or Ir/pentamethylcyclopentadiene have been particularly successful. ${ }^{2}$ Recently, we found ${ }^{4}$ that an N-tosyl-1,2-diphenyl-ethane-1,2-diamine (TsDPEN) modified with a triazole donor, ${ }^{5}$ i.e. 2, gave good results in the reduction of ketones when used in conjunction with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$. The results of the use of the triazole made us consider pyridine as an alternative donor, and the results of our study are described below.

A number of pyridine-containing ligands have been employed in ATH reactions. ${ }^{1,6-17}$ Early examples include Schiff base 3 (the Ir complex of which reduced acetophenone in up to 84% ee), ${ }^{8}$ the BINOL-derived 4 (the complex with $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}$ gave up to 97% ee in ATH in $i \operatorname{PrOH}),{ }^{10}$ as well as 2 -(2 '-pyridyl)pyridines, ${ }^{6}$ phenanthrolines ${ }^{7}$ and pyridines combined with phosphines in tridentate donor ligands. ${ }^{9}$ More recent examples include a series of $\mathrm{Ru}(\mathrm{II})$ complexes of pyridine/phosphine tridentate ligands together with phosphines, for example 5 (gave an alcohol of 93% ee from acetophenone reduction in $i \operatorname{PrOH}),{ }^{11 a}$ reported by Yu and co-workers. ${ }^{11}$ The pyridinecontaining catalysts, for example 6, reported by Baratta, are
highly active and give products of high ee in ketone reductions in ATH using $i \mathrm{PrOH} .{ }^{12}$ Also containing a chiral diphosphine, 6 gave ketone reduction products of up to 99% ee in ATH reactions in isopropanol, and is also active in ketone hydrogenation. ${ }^{12 \mathrm{a}}$

Pyridine-containing ligands have also been used extensively in non-asymmetric hydrogen-transfer processes, and for hydrogen-generation from organic molecules. ${ }^{13}$ Other applications of pyridine-containing ligands have been reported, ${ }^{14}$ as have their applications in highly active non-asymmetric hydrogenations of ketones. ${ }^{15}$ In some cases, ATH catalysts have been reported which contain a pyridine ring, but as one of a series of tosylated

[^0]diamine (complex with Ru / η^{6}-arene) ${ }^{16}$ or amino acid (complex with RhCp^{*}) ${ }^{17}$ derivatives.

In view of the encouraging precedents, we elected to study tridentate ligands containing pyridine groups, with regard to their efficiency when used in a novel complex with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}{ }^{4}$ Towards this end we first prepared (R, R) -pyridine-2-carboxylic acid [2-(toluene-4-sulfonylamino)-1,2-diphenyl-1,2-ethylenediamine]-amide 7 in 86% yield (Scheme 1) by the reaction between pyridine-2-carboxylic acid $\mathbf{8}$ and $(1 R, 2 R)$-TsDPEN $\mathbf{1}$ using ethyl chloroformate.

Scheme 1. Synthesis of ligands 7 and 9.
In addition, the known (R, R)-[2-(toluene-4-sulfonylamino)-cyclohexyl]-amide 9^{18} was prepared from pyridine-2carboxylic acid $\mathbf{8}$ and $(R, R)-(-)-N$-(4-toluenesulfonyl)-1,2diaminocyclohexane 10 (90% yield, Scheme 1). The synthesis of the reduced analogues of compounds 7 and 9 was completed by reductive amination. (R, R) $-N-\{1,2-$ Diphenyl-2-[(pyridin-2-ylmethyl)-amino]-ethyl $\}$-4-methylbenzenesulfonamide (11) was prepared by reacting $(1 R, 2 R)$-TsDPEN 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with 2pyridinecarboxaldehyde (12). The mixture was stirred overnight at r.t. to obtain the known imine $(R, R)-N-\{1,2-$ diphenyl-2-[(pyridin-2-ylmethylene)-amino]-ethyl\}-4-methyl-benzenesulfonamide (81%). ${ }^{19,20}$ This was reduced using NaBH_{4} to afford $\mathbf{1 1}$ (62% yield, Scheme 2).

Scheme 2. Synthesis of ligands 11 and 13.
Compound 11 was found to be stable over a period of weeks and its structure was confirmed by X-ray crystallography (Figure 1). ${ }^{21}$

Figure 1. X-ray crystallographic structure of $(R, R)-\mathbf{1 1}$ with thermal ellipsoids drawn at 50% probability (ORTEP).

The synthesis of $(R, R)-4$-methyl- $N-\{2-[($ pyridin-2-ylmethyl)-amino]-cyclohexyl\}-benzenesulfonamide (13). ${ }^{16}$ was likewise achieved via the corresponding imine ${ }^{20}$ from $(1 R, 2 R)-(-)$ - N - p-tosyl-1,2-cyclohexanediamine
(10)
(Scheme 2). The synthesis of $(R, R)-\{2-[($ pyridin-2-ylmethyl)-amino]-cyclohexyl\}-carbamic acid tert-butyl ester (14) was completed by treatment of mono-Boc diamine $\mathbf{1 5}^{22}$ with 2-pyridinecaboxaldehyde (12) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the intermediate imine, which was reduced by NaBH_{4} (Scheme 3).

Scheme 3. Synthesis of ligand 14.
To carry out the ATH of ketone substrates, the reaction was first optimised with respect to reaction time, concentration and catalyst loading using compound $\mathbf{1 1}$ and acetophenone as a representative ketone (Table 1). An optimum ratio of $1: 3 \mathrm{Ru}_{3}(\mathrm{CO})_{12}$, i.e. a $1: 1$ ratio of Ru : ligand. Experiments were carried out using varying concentrations and catalyst loadings for 72 hours (Table 1). In all cases, the enantiomeric excesses decreased slightly with respect to time, possibly due to slow racemisation of the products (see supplementary data for full tables of conversion and ee with respect to reaction time).

Table 1. A summary of initial ATH of acetophenone with ligands 11 and 13. ${ }^{\text {a }}$

Entry	Ligand	[Substrate]	$\mathrm{x}: \mathrm{y}$	Conv $(\%)^{\mathrm{b}}$	Ee $(\%)^{\mathrm{b}, \mathrm{c}}$
1	$\mathbf{1 1}$	0.1 M	$1: 0.33$	90	$93(R)$
2	$\mathbf{1 1}$	0.2 M	$1: 0.33$	97	$86(R)$
3	$\mathbf{1 1}$	0.5 M	$1: 0.33$	97	$84(R)$
4	$\mathbf{1 1}$	0.1 M	$2: 0.66$	97	$92(R)$
5	$\mathbf{1 3}$	0.1 M	$1: 0.33$	62	$91(R)$
6	$\mathbf{1 3}$	0.2 M	$1: 0.33$	96	$88(R)$
7	$\mathbf{1 3}$	0.5 M	$1: 0.33$	94	$87(R)$
8	$\mathbf{1 3}$	0.1 M	$2: 0.66$	97	$90(R)$
9	$\mathbf{1 4}$	0.1 M	$2: 0.66$	96	$88(R)$

${ }^{\text {a }}$ The reaction was carried out at $80{ }^{\circ} \mathrm{C}$ using acetophenone (1 mmol). ${ }^{\text {b }}$ Enantiomeric excess and conversion determined by chiral GC. ${ }^{\text {c }}$ Configuration determined by the sign of the optical rotation of the isolated product.

It was found that a reaction concentration of 0.1 M combined with a catalyst loading of $2 \mathrm{~mol} \%$ returned optimal results (Table 1 entry 4). The reaction reached completion after 48 hours, therefore the reaction was repeated using ligand $\mathbf{1 3}$ (Table 1), which gave a similar trend in the results. The supplementary data shows graphical comparisons of the ATH of acetophenone at different concentrations using ligand 11, and of the ee for ATH of acetophenone at different concentrations using ligand 13. The reduction of acetophenone using ligand 14 for 48 h (0.1 M concentration, $2 \mathrm{~mol} \%$ catalyst loading) gave almost the same conversion and ee compared to compounds $\mathbf{1 1}$ and $\mathbf{1 3}$ (Table 1 entry 9).

An investigation into the possibility of non-linear chirality transfer from ligand $\mathbf{1 1}$ to the product was carried out using ligand samples of varying ee from $0-100 \%$. This did not indicate any significant effect (see supplementary data for full details), indicating a 1:1 ligand:metal ratio in the active species. A suggested mechanism of action for the ATH of an aryl ketone using compound $\mathbf{1 1}$ as the ligand is illustrated in Figure 2. ${ }^{4}$ Initial decomposition of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with CO release, then ligation by $\mathbf{1 1}$ and proton transfer forms the coordinatively saturated active species 16. Aryl ketones can be reduced by $\mathbf{1 6}$ via an outer sphere, concerted mechanism as shown in transition state 17.

Figure 2. Proposed mechanism of action of the catalyst derived from tridentate ligand 11.

The orientation of approach may be influenced by a favourable $\pi-\pi$ interaction between the pyridine group in the ligand and the aromatic substituent on the respective ketone. Finally, hydrogen donation by the $i \mathrm{PrOH}$ solvent regenerates $\mathbf{1 8}$ to complete the catalytic cycle.

Compound 7 was employed as a ligand in the ATH of acetophenone, however no reduction product was observed after two days, as might be predicted in light of the anticipated requirement for a basic amine in the catalyst. The amide bond functionality may prevent the coordination of the corresponding nitrogen to ruthenium to form the active catalyst, as the lone pair is not available due to conjugation.

A series of ketone derivatives were then reduced by ATH using ligands $\mathbf{1 1}$ and 13, (Table 2). Clearly, substituted aryl ketones are highly compatible with this methodology. Near quantitative conversion and high enantioselectivity were achieved for the majority of the substrates tested. Most of the substituted aryl ketones gave high conversions and good enantioselectivities (Table 2). Among the substituted aryl ketones tested, it was found that the presence of a meta-methoxy substituent on the aromatic ring yielded optimal results under the ATH conditions employed ($48 \mathrm{~h}, 98 \%$ conv., 94% ee). Acetophenone was reduced completely with only 88% ee compared to other substituted aryl ketones, which may indicate the effect of substitution on enhancing the ee. Trifluoromethyl- and chloro- substituted acetophenone were reduced completely with 91% ee.

Table 2. ATH of ketones with ligands $\mathbf{1 1}$ and $\mathbf{1 3}$ in conjunction with $\mathrm{Ru}_{3}(\mathrm{CO})_{12 .}{ }^{\text {a }}$

Entry	Ketone	Ligand	Conv (\%) ${ }^{\mathbf{b}}$	Ee $(\%)^{\text {b,c }}$
1	$\mathbf{1 9}$	$\mathbf{1 3}$	26	$86(R)$
2	$p-\mathbf{2 0}$	$\mathbf{1 3}$	68	$88(R)$
3	$\mathbf{2 1}$	$\mathbf{1 3}$	100	$86(R)$
4	$\mathbf{2 2}$	$\mathbf{1 3}$	86	$17(S)$
5	$\mathbf{1 9}$	$\mathbf{1 1}$	84	$93(R)$
6	$o-\mathbf{2 0}$	$\mathbf{1 1}$	99	$89(R)$
7	$m-\mathbf{2 0}$	$\mathbf{1 1}$	98	$94(R)$
8	$p-\mathbf{2 0}$	$\mathbf{1 1}$	90	$92(R)$
9	$\mathbf{2 3}$	$\mathbf{1 1}$	99	$91(R)$
11	$\mathbf{2 1}$	$\mathbf{1 1}$	99	$91(R)$
12	$\mathbf{2 4}$	$\mathbf{1 1}$	85	$90(R)$
13	$\mathbf{2 5}$	$\mathbf{1 1}$	95	$91(R)$
14	$\mathbf{2 2}$	$\mathbf{1 1}$	88	$19(S)$

${ }^{a}$ The reaction was carried out at $80{ }^{\circ} \mathrm{C}$ using acetophenone (1 mmol), $i \operatorname{PrOH}\left(10 \mathrm{~cm}^{3}\right)$. ${ }^{\mathrm{b}}$ Enantiomeric excess and conversion determined by chiral GC. ${ }^{\text {c }}$ Determined by the sign of optical rotation of isolated product.

The bicyclic compounds $\mathbf{1 9}$ and $\mathbf{2 5}$ were reduced in 84 and 95% conversion with 93 and 91% ees respectively. Also the long chain high molecular weight compound 24 was reduced in 85% conversion with 90% ee. Acetylcyclohexane was reduced at lower rates compared to aryl ketones, however the enantiomeric excess was significantly lower. The reversed enantioselectivity for acetylcyclohexane reduction, relative to acetophenone derivatives, suggest that weaker steric factors were directing the reaction, rather than electronic ones. The supplementary data contains tables and graphs of the observed conversion and ee for ketone reduction.

An investigation was carried out into the reduction of ortho-substituted aryl ketones (Table 3). Most of the substrates were reduced with near quantitative conversion and high enantioselectivity and are highly compatible with this methodology. Conversion improved with smaller electron-withdrawing groups (fluorine and chlorine) compared to unsubstituted acetophenone. Among the reduced substituents, lower conversion was obtained for large substituents such as iodide and trifluoromethyl groups. In these cases, it is likely that that the substituents cause an unfavourable orthogonal orientation of the arene group, which will subsequently disrupt the proposed $\pi-\pi$ interaction (Figure 2). Among the substrates reduced, 2^{\prime} methylacetophenone yielded optimal results after 48 hours,
achieving almost quantitative conversion and an ee of 93.8%. The electron-donating effect of the methyl substituent may encourage more favourable $\pi-\pi$ interactions in the transition state, whilst sterically it appears to be of optimum size to encourage high conversion without preventing approach to the catalyst. The supplementary data features further information on conversion and ee against time for these reductions.

Table 3: ATH of aryl ketones containing a substituent at the ortho position. ${ }^{\text {a }}$

Entry	R	Conv (\%)	Ee $(\%)^{\mathrm{b}, \mathrm{c}}$
1	F	>99	$83.7(R)$
2	Cl	>99	$87.6(R)$
3	Br	99.0	$86.2(R)$
4	I	3.1	$9.1(R)$
5	CF_{3}	33.3	$17.6(R)$
6	Me	>99	$93.8(R)$

${ }^{a}$ The reaction was carried out using substrate (1 mmol) in $i \operatorname{PrOH}\left(10 \mathrm{~cm}^{3}\right)$, $48 \mathrm{~h} .{ }^{\mathrm{b}}$ Enantiomeric excess and conversion determined by chiral GC. ${ }^{\mathrm{c}}$ Determined by the sign of the optical rotation of the isolated product.

In conclusion, we have described the synthesis of an effective tridentate ligand for incorporation into an active asymmetric transfer hydrogenation catalyst upon combination with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$. We are currently investigating further applications of this system.

Acknowledgments

We thank the Libyan Ministry for Higher Education and Scientific Research for financial support (to M.O.D.), and Warwick University for support of A.W. The X-ray diffractometer was funded through the Advantage West Midlands Science City Advanced Materials project and ERDF support.

Supplementary data

General experimental details, graphs of experimental results, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of all new compounds and chiral GC/HPLC spectra.

References

1. (a) Gladiali, S.; Alberrico, E. Chem. Soc. Rev. 2006, 35, 226236. (b) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol.

Chem. 2006, 4, 393-406. (c) Ikariya, T.; Blacker, A. J. Acc.

Chem. Res. 2007, 40, 1300-1308. (d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201-2237. (e) Hashiguchi, S. Noyori, R. Acc. Chem. Res. 1997, 30, 97-102.
2. (a) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 2521-2522. (b) Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1, 1119-1121. (c) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem. Int. Ed. 1997, 36, 285-288. (d) Alonso, D. A.; Brandt, P.; Nordin, S. J. M.; Andersson, P. G. J. Am. Chem. Soc. 1999, 121, 9580-9588. (e) Handgraaf, J.-W.; Meijer, E. J. J. Am. Chem. Soc. 2007, 129, 3099-3103. (f) Soni, R.; Cheung, F. K.; Clarkson, G. C.; Martins, J. E.D.; Graham, M. A.; Wills, M. Org. Biomol. Chem. 2011, 9, 3290-3294. (g) Steward, K. M.; Gentry, E. C.; Johnson, J. S. J. Am. Chem. Soc. 2012, 134, 7329-7332.
3. (a) Mashima, K.; Abe, T.; Tani, K. Chem. Lett. 1998, 11991200. (b) Murata, K.; Ikariya, T.; Noyori, R. J. Org. Chem., 1999, 64, 2186-2187. (c) Hamada, T.; Torii, T.; Izawa, K.; Noyori, R.; Ikariya, T. Org. Lett. 2002, 4, 4373-4376. (d) Hamada, T.; Torii, T.; Izawa, K.; Ikariya, T. Tetrahedron 2004, 60, 7411-7417. (e) Hamada, T.; Torii, T.; Onishi, T.; Izawa, K.; Ikariya, T. J. Org. Chem. 2004, 69, 7391-7394. (f) Thorpe, T.; Blacker, J.; Brown, S, M.; Bubert, C.; Crosby, J.; Fitzjohn, S.; Muxworthy, J. P.; Williams, J. M. J.
Tetrahedron Lett. 2001, 42, 4041-4143. (g) Sterk, D.;
Stephan, M. S.; Mohar, B. Tetrahedron: Asymmetry 2002, 13, 2605-2608. (h) Wu, X.; Vinci, D.; Ikariya, T.; Xiao, J. Chem. Commun. 2005, 4447-4449.
4. Johnson, T. C.; Totty, W. G.; Wills, M. Org. Lett. 2012, 14, 5230-5233.
5. (a) Timmis, F.; Adolfsson, H. Org. Biomol. Chem. 2010, 8, 4536-4539. (b) Cambreiro, X. C.; Pericas, M. A. Adv. Synth. Catal. 2011, 353, 113-124.
6. Botteghi, C.; Chelucci, G.; Chessa, G.; Delogu, G.; Gladiali, S.; Soccolini, F. J. Organomet. Chem. 1986, 304, 217-225.
7. Gladiali, S.; Pinna, L.; Delogu, G.; De-Martin, S.; Zassinovich, G.; Mestroni, G. Tetrahedron: Asymmetry 1990, 1, 635-648.
8. Zassinovich, G.; Bettella, R.; Mestroni, G.; Bresciani-Pahor, N.; Geremia, S.; Randaccio, L. J. Organomet. Chem. 1989, 370, 187-202.
9. Jiang, Q.; Van Plew, D.; Murtuza, S.; Zhang, X. Tetrahedron Lett. 1996, 37, 797-800.
10. Brunner, H.; Henning, F.; Weber, M. Tetrahedron: Asymmetry 2002, 13, 37-42.
11. (a) Ye, W.; Zhao, M.; Yu, A. Chem. Eur. J. 2012, 18, 1084310846. (b) Du, W.; Wang, L.; Wu, P.; Yu, Z. Chem. Eur. J. 2012, 18, 11550-11554. (c) Zeng, F.; Yu Z. Organometallics 2008, 27, 2898-2901. (d) Ye, W. Zhao, M.; Du, W.; Jiang, Q.; Wu, K.; Wu, P.; Yu, Z. Chem. Eur. J. 2011, 17, 4737-4741.
12. (a) Baratta, W.; Chelucci, G.; Magnolia, S.; Siega, K.; Rigo, P. Chem. Eur. J. 2009, 15, 726-732. (b) Baratta, W.;

Benedetti, F.; Del Zotto, A.; Lidia L.; Fulvia Felluga, F.; Magnolia, S.; Putignano, E.; Rigo, P. Organometallics 2010, 29, 3563-3570. (c) Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Angew. Chem. Int. Ed. 2008, 47, 43624365. (d) Baratta, W.; Chelucci, G,; Gladiali, S.; Siega, K.; Toniutti, M.; Zanette, M.; Zangrando, E.; P. Rigo, P. Angew. Chem. Int. Ed. 2005, 44, 6214-6219. (e) Putignano, E.; Bossi, G.; Rigo, P.; Baratta, W. Organometallics 2012, 31, 11331142. (f) Baratta, W.; Ballico, M.; del Zotto, A.; Herdweck, E.; Magnolia, S.; Peloso, R.; Siega, K.; Tuniutti, M.; Zangrando, E.; Rigo, P. Organometallics 2009, 28, 44214430.
13. (a) Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2011, 50, 2120-2124. (b) Montag, M.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2012, 134, 1032510328. (c) Gnanaprakasam, B.; Zhang, J.; Milstein, D. Angew. Chem. Int. Ed. 2010, 49, 1468-1471. (d) Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Kohl, S. W. Nature 2009, 324, 74-77.
14. Kwong, H.-L.; Yeung, H.-L.; Yeung, C.-T.; Lee, W.-S.; Lee, C.-S.; Wong, W.-L. Coord. Chem. Rev. 2007, 251, 21882222.
15. (a) Prakash, O.; Singh, P.; Mukherjee, G.; Singh, A. K. Organometallics 2012, 31, 3379-3388. (b) Nieto, I.; Livings, M. S.; Sacci III, J. B.; Reuther, L. E.; Zeller, M.; Papish, E. T. Organometallics 2011, 30, 6339-6342. (c) Spasyuk, D.; Gusev, D. G. Organometallics 2012, 31, 5239-5242.
16. Cortez, N. A.; Flores-López, C.Z.; Rodriguez-Apodaca, R.; Flores-López, L. Z.; Parra-Hake, M.; Somanathan, R. Arkivoc 2005, vi, 162-171.
17. Ahlford, K.; Livendahl, M.; Adolfsson, H. Tetrahedron Lett. 2009, 50, 6321-6324.
18. (a) Bisai, A.; Prasad, B.; Singh, V. Arkivoc 2007, v, 20-37. (b) Trost, B. M.; Zhang, Y. Chem. Eur. J. 2011, 17, 29162922.
19. Liu, B.; Zhong, Y.; Li, X. Chirality 2009, 21, 595-599.
20. Mei, W.; Wang, S.; Chungu, X.; Wei, S. Chin. J. Chem. 2010, 28, 1424-1428.
21. Compound 11 CCDC 929339; $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}=457.58$, monoclinic, space group P2(1)2(1)2(1), $\mathrm{a}=11.9961(2), \mathrm{b}=$ 18.3565(3), $\mathrm{c}=22.6663(3) \AA, \alpha=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, \mathrm{U}=$ $4991.26(13) \AA^{3}$ (by least squares refinement on 14229 reflection positions), $\mathrm{T}=150(2) \mathrm{K}, \lambda=0.71073 \mathrm{~A}, \mathrm{Z}=8$, $\mathrm{D}(\mathrm{cal})=1.218 \mathrm{Mg} / \mathrm{m}^{3}, \mathrm{~F}(000)=1936 . \mathrm{mu}(\mathrm{MoK}-\alpha)=0.158$ mm^{-1}. Crystal character: colourless block. Crystal dimensions $0.45 \times 0.45 \times 0.40 \mathrm{~mm}$.
22. D. W. Lee, H. Ha, Synth. Commun. 2007, 737-742.

[^0]: * Corresponding author. Tel.: +44-24-7652-3260; fax: +44-24-7652 4112; e-mail: m.wills@ warwick.ac.uk.

