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Abstract 

This thesis describes the synthesis and new reactions of oxetan-3-ones.  Chapter 1 

gives an introduction to oxetanes and includes discussion of methods for their 

synthesis, their reactions, specifically those involving the use of oxetan-3-ones, 

and their relevance in medicinal chemistry and natural products. 

 

Chapter 2 begins with an introduction to multi-component reactions (MCRs) and 

moves on to describe our efforts in incorporating oxetanes into structurally 

diverse compounds using Passerini three-component reactions (P-3CRs) and Ugi 

four-component reactions (U-4CRs).  A range of 3,3-disubstituted oxetanes are 

successfully made in 23-98% yield by reaction of oxetan-3-ones with various 

carboxylic acids and isocyanides.  The synthesis of chiral 2-substituted oxetan-3-

ones using the SAMP chiral auxiliary method is also demonstrated, specifically 

oxetan-3-one is converted into 2-benzyloxetan-3-one in 51% overall yield and 

74% ee in three steps. 

 

Chapter 3 details our efforts towards the incorporation of the oxetane unit into 

tetrahydro-β-carbolines using the Pictet-Spengler reaction.  Several oxetan-3-ones 

are demonstrated to take part in Pictet-Spengler reactions with tryptamine and 

tryptophan ethyl ester derivatives.  The chemistry is successfully extended in 

azetidinones. 
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1.1. Introduction 

This thesis will detail efforts to incorporate oxetanes into structurally diverse 

molecules using multi-component reactions (MCRs) and reactions involving 

iminooxetanes.  With the main subject matter revolving around the chemistry of 

oxetanes, this chapter provides an introduction to their synthesis, reactions and 

applications, particularly in the important area of medicinal chemistry. 

1.2. Introduction to Oxetanes 

Oxetane (1) is a four-membered heterocyclic ring containing a single oxygen 

atom.  The first reported synthesis of this simple molecule was in 1878 by Reboul 

via the base induced ring closure of chloro-alcohol 2 (Scheme 1.2.1).
1
  

Interestingly, studies have shown that the oxetane ring is much less puckered than 

the analogous cyclobutane.
2-4

  Its strong ability as an acceptor for hydrogen bonds 

compared to other cyclic ethers such as tetrahydrofuran and tetrahdyropyran has 

also been noted.
5
 

 

Scheme 1.2.1 

1.3. Synthesis of Oxetanes 

The Williamson ether synthesis has been used to synthesise oxetanes in a number 

of instances.  For example, Soai et al. developed a method for their asymmetric 

synthesis starting from chloro-ketone 3 using a chiral reduction catalyst generated 

in situ from chiral ligand 4 and LiBH4 (Scheme 1.3.1).
6
  Subsequent ring-closure 

of chiral alcohol 5 afforded 2-phenyl oxetane 6 in good enantiomeric excess.  
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Scheme 1.3.1 

Wender et al. successfully installed the oxetane substituent of taxol at a late stage 

in their synthesis.
7
  Stereoselective ring closure of the primary alcohol 7 could be 

achieved using Hünig’s base in excellent yield (Scheme 1.3.2).  Subsequent 

acetylation with acetic anhydride provided 8, which was only 4 steps away from 

taxol (9). 

 

Scheme 1.3.2 

Another common approach towards the synthesis of oxetanes 10 is the Paternò-

Büchi [2+2]-cycloaddition reaction between a carbonyl-containing compound 

(11) and an alkene (12) under the irradiation of light (Scheme 1.3.3).
8
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Scheme 1.3.3 

Bach et al. showed that the classical Paternò-Büchi [2+2] cycloaddition reaction 

may be used for the diastereoselective synthesis of oxetanes.
9,10

  For example, 

reaction between racemic alkoxy silyl enol ether 13 and benzaldehyde provided 

diastereomers 14a and 14b with good diastereoselectivity (Scheme 1.3.4).
10

 

 

Scheme 1.3.4 

Both the Paternò-Büchi and Williamson ether synthesis have been thoroughly 

investigated and discussed in reviews.
11,12

  Recent efforts towards the synthesis of 

structurally diverse oxetanes, including the studies in this thesis, have largely 

revolved around the chemistry of oxetan-3-ones, the synthesis and chemistry of 

which are discussed herein. 

1.4. Oxetan-3-ones 

Oxetan-3-ones provide a useful entry point into the chemistry of oxetanes.  

Unsubstituted oxetan-3-one (15) was first isolated and characterised by Marshall 

et al. in 1952.
13
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Figure 1.4.1 

1.4.1. Synthesis of Oxetan-3-ones 

Oxetan-3-one (15) has been synthesised using a variety of methods, however, 

traditional methods for its synthesis were generally low yielding.
13-16

  Owing to its 

known volatility and water solubility,
14

 purification of the final product is often 

difficult to achieve, requiring preparative gas chromatography (GC).
14

  In 

response to this, Carreira and co-workers developed a more efficient four-step 

method, starting from dihydroxyacetone 16.  In the final step, refluxing 2,2-

dimethoxypropane 17 with Montmorillonite K10 provided oxetan-3-one (15) in 

an improved yield, although careful distillation of the final mixture was still 

required (Scheme 1.4.1).
17

  Oxidation of oxetan-3-ol also provides an alternative 

method for the large scale synthesis of oxetan-3-one (15).
18

   

 

Scheme 1.4.1 

Chiral 2-substituted oxetan-3-one 18 has been synthesised via a three-step method 

reported by Zhang and co-workers.
19

  Chiral propargyl alcohol 19 was first 

synthesised from substituted aldehyde 20 and trimethylsilyl acetylene (21).
20

  The 
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TMS-protecting group of propargyl alcohol 19 was then removed using TBAF 

providing 22.  Finally, cyclisation to the corresponding 2-substituted oxetan-3-one 

18 was possible under acidic, gold-catalysed conditions using a pyridine N-oxide 

as oxidant (Scheme 1.4.2).  A number of racemic, substituted oxetan-3-ones were 

also synthesised using this methodology.  These authors also demonstrated the 

synthesis of oxetan-3-one (15) itself, although they did not attempt its direct 

isolation. 

 

Scheme 1.4.2 

As part of their synthesis of (±)-pseudodeflectusin, Maegawa et al. disclosed a 

new one-pot method for the preparation of substituted oxetan-3-ones via the 

cyclisation of acyclic phosphonate-esters 23.
21

  Treatment of 24 with LDA and 

TMEDA provided phosphonate 23, which was then subjected to an in situ Horner-

Wadsworth-Emmons olefination reaction using a range of aldehydes (Scheme 

1.4.3).  This method provided a variety of 2,2,4-trisubstituted oxetan-3-ones 25 in 

good yield. 
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Scheme 1.4.3 

Substituted allenes have also been shown to be useful precursors in the synthesis 

of oxetan-3-ones.  Sharma et al. demonstrated that after diepoxidation of allenes 

26 with dimethyldioxirane (DMDO), two methods could be used to synthesise the 

corresponding oxetan-3-ones 27 (Scheme 1.4.4).
22

  Epoxide opening of 28 with 

LiBr followed by intramolecular displacement of the halide provided a range of 

substituted oxetan-3-ones 27 in good yields.  Alternatively it was found that 

simple heating of the bisepoxide intermediates led to 27 in good yield.  An 

enantiomerically enriched 2,2,4-disubstituted oxetan-3-one was also synthesised 

using this method, although the authors did not report its enantiopurity. 
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Scheme 1.4.4 

1.4.2. Reactions of Oxetan-3-ones 

Oxetan-3-one (15) is capable of taking part in a variety of useful reactions.
23

  The 

reactivity of oxetan-3-ones can be broadly categorised in two ways; ring opening 

reactions and transformations of the carbonyl group.
23

   

1.4.3. Ring-Opening Reactions of Oxetan-3-ones 

There have been a number of explorations into the ring opening reactions of 

oxetan-3-ones.
23

  Ring expansion of the oxetane ring is also possible, an early 

example of which involves the oxidation of tetra-substituted oxetan-3-one 29 with 

peracetic acid (Scheme 1.4.5).
24

  The formation of 30 using this method remains 

the only example of a Baeyer-Villiger type oxidation of an oxetan-3-one. 

 

Scheme 1.4.5 
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1.4.4. Transformations of the Carbonyl Group 

Oxetan-3-one (15) is suitable for a variety of carbonyl transformations, a selection 

of which are depicted Scheme 1.4.6.  A variety of methods for the reduction of 15 

to the corresponding oxetan-3-ol (31) have been developed
23

 and work by 

Carreira and co-workers has shown that the molecule will react with stabilised 

ylids and nitromethane to form esters 32, nitro alkenes 33 and nitriles 34.
17,25

  

Reaction with aryl lithiums gives compounds such as 35,
17

 whilst Horner-

Wadsworth-Emmons and Wittig type reactions can be used to produce the 

corresponding phosphonate 36 and aldehyde 37 respectively.
18

  Oxetan-3-one has 

also been shown to take part in Wittig-Horner type reactions, providing protected 

amino ester 38.
26

  Nassoy et al. have shown that oxetane-substituted sydnones 

may be generated from 15 and subsequently used in the synthesis of pyrazole 

building blocks.
27
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Scheme 1.4.6 

During their investigations into the synthesis of compounds for the inhibition of 

phosphoinositide 3-kinase α (P13K-α), Heffron et al. demonstrated that oxetan-3-

one (15) could be used to trap lithiated thiophenes 39, producing the 

corresponding oxetan-3-ol 40.
28

  This compound was a key intermediate in the 

synthesis of oxetane-containing compound 41, which was found to be a good 

growth inhibitor of the brain tumour glioblastoma.
28
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Scheme 1.4.7 

In research focussed on the optimisation of aqueous solubility and metabolic 

stability of GPR119 agonist 45, Scott et al. sought to replace the tert-butyl 

constituent with a variety of different functional groups, including oxetane.  

Nucleophilic addition of a CF3 group onto oxetan-3-one (15), followed by 

reaction of the intermediate alcohol 43, provided key building block 44.  

Subsequent transformations led to GPR119 agonist 42, which was shown to have 

superior solubility, stability and reduced lipophilicity compared with 45.
29
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Scheme 1.4.8 

1.4.5. Reactions of Iminooxetanes 

There are almost no reports of the chemistry of iminooxetanes.  Originally 

reported by Kozikowski et al., the Strecker three-component reaction performed 

on oxetan-3-one (15), remains as one of the few examples of the reactivity of 

iminooxetanes.
15

  In this reaction, oxetan-3-one (15) was reacted with sodium 

cyanide and benzylamine to produce compound 46 via imine 47.  Subsequent 

hydrolysis and reduction of the benzyl group provided amino acid 48 in low yield 

(Scheme 1.4.9). 
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Scheme 1.4.9 

Zhang and co-workers similarly presented the Strecker reaction of oxetan-3-one 

(15), which was formed in situ from propargyl alcohol.
19

 

More recently, Hamzik et al. demonstrated that it is possible to form oxetan-3-N-

tert-butylsulfinimine 49 in moderate yield from oxetan-3-one (15) and tert-

butylsulfonamide 50 using titanium(IV) ethoxide as a dehydrating reagent 

(Scheme 1.4.10).
30

  This imine is then a suitable substrate for 1,2-addition 

reactions with a variety of organo-lithium species, forming 3-aminooxetanes 51 in 

good yield.  Moreover, aziridination of sulfinimine 49 using 

trimethyloxosulfonium methylide 52 under mild conditions provided 

sulfinylaziridine 53 in high yield.  Ring opening of the aziridine was achieved 

with a variety of nucleophiles, providing access to substituted 3-aminooxetanes 54 

in generally excellent yields.   
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Scheme 1.4.10 

In related work, Ellman and co-workers reported the Rh-catalysed addition of 

arylboroxines 55 to N-tert-butylsulfinimines 49 or 56 (Scheme 1.4.11).
31

  Under 

optimised conditions, oxetane and azetidine containing amines 57 or 58 

respectively could be synthesised in good to excellent yields. 

 

Scheme 1.4.11 

It is known that oxetan-3-one (15) may form oxime 59 via reaction with 

hydroxylamine (Scheme 1.4.12).
32

  Oxime species 59 can then be hydrogenated to 

the corresponding 3-aminooxetane 60. 
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Scheme 1.4.12 

Finally, it has been reported that preparation of lithium salt 61 is possible.  It was 

subsequently shown that this compound takes part in a fragmentation, providing 

the ring-opened compound 62, via carbene intermediate 63 (Scheme 1.4.13).
33

 

 

Scheme 1.4.13 

1.5. Oxetanes in Natural Products and Drug Discovery 

Of the few natural products that contain the oxetane ring, taxol (9) is probably the 

most well-known (Figure 1.5.1).  This complex terpene was first isolated from the 

bark of the western yew (Taxus brevifolia)
34

 and is currently used as a cancer 

chemotherapeutic drug.  The compound is known to act by stabilising 

microtubules during cell division.
35,36

  Due to the large size and complex nature of 

taxol, it has been difficult to elucidate the specific role of the oxetane moiety.  A 

computational study deduced that the inclusion of the oxetane unit in taxol leads 

to greater structural rigidity.
37

  Further studies also show that it may act as a 

hydrogen-bond acceptor.
38

  Replacement of the oxygen atom of the oxetane unit 

with nitrogen, sulfur and selenium provided analogues with lower activity.
36,39
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Figure 1.5.1 

Other examples of naturally occurring compounds that contain the oxetane ring 

include oxetin (64),
40

 thromboxane A2 (65)
41

 and bradyoxetin (66)
42

 (Figure 

1.5.2).  Oxetin (64) is an example of a simple 2,3-disubstituted oxetane that was 

isolated from a broth of Streptomyces sp. OM-2317 (Figure 1.5.2).
40

  Studies are 

on-going into its possible herbicidal and antibacterial properties.
40

  Thromboxane 

A2 (65) is a compound that is synthesised by platelets in the blood and promotes 

vasoconstriction, platelet aggregation and bronchoconstriction.  Interestingly, this 

compound has a short half-life of only thirty seconds, which is controlled by 

hydrolysis of the oxetane ring.
35,41

   Finally, bradyoxetin (66), which was isolated 

from symbiotic soybean bacterium B. Japonicum, is stated to be a potential 

antibiotic.
35,42

  

 

Figure 1.5.2 
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1.6. Oxetanes in Medicinal Chemistry 

In the development of potential anticancer compounds, Pei et al. screened a 

variety of compounds that act by inhibiting the kinase mTOR, which is the 

mammalian target of the drug rapamycin.
43

  They opted to introduce an oxetane 

unit at the end of the synthesis via a reductive amination between intermediate 67 

and oxetan-3-one 15 using sodium triacetoxyborahydride (Scheme 1.6.1).  Of all 

the medicinally relevant compounds that were synthesised, 68 proved to be the 

most potent and competitive inhibitor of mTOR. 

 

Scheme 1.6.1 

Hirsch et al. utilised the oxetane unit to increase the solubility of a potential drug 

candidate 69 (Scheme 1.6.2).
44

  In order to incorporate the oxetane, a multistep 

approach was used, starting with the low-yielding Michael addition of 5-

iodocytosine 70 to oxetane-ester 32.   Iodide 71 was then reacted with alkyne 72 

via a Sonogashira cross-coupling, affording 69 in good yield. 
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Scheme 1.6.2 

Although oxetanes have been known for over a century, until recently there have 

been very few studies regarding their use in medicinal chemistry.  As an early 

example, in 1959 it was found that 3,3-diethyloxetane (73) displays 

anticonvulsant activity in rats, whilst 3-ethyloxetane (74) was found to be a toxic 

but weak anaesthetic (Figure 1.6.1).
45

  

 

Figure 1.6.1 

1.6.1. Isosteric Replacement of Functional Groups with Oxetanes 

In recent years, Carreira and co-workers have carried out a variety of 

investigations into the medicinally relevant properties of oxetanes and related 
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structures.
4,17,18,35,46

  Of particular note is their research into the possible benefits 

of replacing functionalities commonly used in drug discovery with the oxetane 

sub-unit.   

The incorporation of gem-dimethyl and the related tert-butyl and isopropyl groups 

into potential drug molecules is often performed in order to improve their 

metabolic stability.  For example, benzylic positions are often prime candidates 

for gem-dimethyl group incorporation owing to their susceptibility to metabolic 

attack.
47,48

  There are instances, however, where the gem-dimethyl group itself can 

become prone to metabolic degradation.
49

  Furthermore, its addition can lead to an 

increase in the lipophilicity of a compound and it can also reduce aqueous 

solubility.
17

  It has been proposed that oxetane can be viewed as an oxygen-

bridged gem-dimethyl group (Figure 1.6.2).
17

 

 

Figure 1.6.2
17

 

A comparison of the partial molar volumes of oxetane (61.4 cm
3
 mol

-1
) and 

propane (70.7 cm
3
 mol

-1
) illustrates the compact nature of the oxetane unit.

50,51
  

Carreira and co-workers have investigated a variety of properties such as 

solubility, lipophilicity and metabolic stability of oxetane containing compounds 

such as 75 (Table 1.6.1).
17

  tert-Butyl-containing 76 was used for comparison.   
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Solubility (µg mL
-1

) <1 4400 

Lipophilicity (logP) 4.3 3.3 

Metabolic stability 

(hCLint, min
-1

mg
-1

µL) 
16 0 

Table 1.6.1 

Model compound 76 was considered to be virtually insoluble in water, however, 

replacement of the tert-butyl component with an oxetane provided 75 with far 

greater solubility.  In order to estimate the lipophilicity of molecules 75 and 76, 

the authors compared partition coefficient (LogP) values, which are the 

lipophilicities of the neutral bases, derived from the experimental pKa and the 

distribution coefficient (LogD) values.  They found that the incorporation of the 

oxetane unit lowered the lipophilicity by one unit, 75, compared with 76.   

For comparison of the metabolic stabilities of 75 and 76, the researchers incubated 

the compounds with human and mouse microsomes.  The levels of non-

metabolised compound were measured by HPLC/MS/MS at regular time 

intervals.  The intrinsic clearance rate measured in human microsomes (hCLint) 

was calculated, which, in this case, was the rate constant of the first-order decay 

of the compounds.  The experiments showed that 76 was easily metabolised, 

however, oxetane-containing 75 was much more stable.  Oxetanes have since 

been successfully used as replacements for gem-dimethyl groups in 1,25-

dihydroxyvitamin D3 analogues, providing compounds of increased polarity, 

solubility and stability.
52
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As a further example of the potential advantages of including oxetanes in drug 

scaffolds, it has been shown that spirocyclic compound 77 is more soluble and 

metabolically stable than its morpholine analogue 78 (Table 1.6.2).
46,53

   

 

 
   

Solubility (µg mL
-1

) 8000 24000 

Metabolic stability 

(hCLint, min
-1

mg
-1

µL) 
9 3 

Table 1.6.2 

Carreira and co-workers also went on to explore the synthesis of non-symmetrical 

azaspiro[3.3]heptanes 79.
54

  These might prove to be suitable alternatives to 

potentially metabolically and chemically labile structures such as 80 (Figure 

1.6.3).
55

  The incorporation of an oxetane unit into γ-secretase inhibitors has also 

been shown to be beneficial to the metabolic stability of the resultant 

compounds.
56

 

 

Figure 1.6.3
55

 

Finally, carbonyl groups can be problematic when they are included in drug-like 

scaffolds.  This is due to the susceptibility of carbonyl groups towards enzymatic 

attack, possible epimerisation of adjacent stereogenic centres and their potential 
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for covalent bonding.
46

  The strong hydrogen-bonding capability of oxetanes has 

been reported.
5,46,57

  The lone pair of electrons on both the carbonyl and oxetanes’ 

oxygen occupies similar spatial arrangements and both species polarise similarly 

(Figure 1.6.4).
6
  In terms of its hydrogen bonding acceptor ability, oxetane 

compares favourably with other carbonyl compounds such as ketones, aldehydes 

or esters, however, it is much weaker when compared with amide carbonyl 

groups.
18

  Also, it has been proposed that the greater distance between the ether-

oxygen and the 3-position of the oxetane might allow for deeper oxygen 

placement in a receptor pocket.
18

 

 

Figure 1.6.4
35

 

A series of spirooxetane analogues of pyrrolidones, piperidones and azetidinones 

have been synthesised.
46,53

  For example, piperidone 81 was synthesised along 

with oxetane analogue 82 (Table 1.6.3).  For comparison, piperidone 83 

containing a gem-dimethyl group in the 4-position was also synthesised. 
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Solubility (µg mL
-1

) 4000 1400 220 

Lipophilicity (logP) 1 1.2 2.3 

Metabolic stability 

(hCLint, min
-1

mg
-1

µL) 
120 6 23 

Table 1.6.3 

As can be seen, the inclusion of an oxetane in the 4-position of the piperidone 

lowers the solubility of the compound and leads to a small increase in 

lipophilicity.  This places the oxetane ring between a carbonyl and a gem-

dimethyl group in terms of solubility and lipophilicity.  More strikingly, 82 

appears to have the best metabolic stability.  A change in the lipophilicity and pKa 

of the piperidones, depending on the position of the group on the ring has been 

noted.
46

   

1.7. Conclusions 

The synthetic chemistry and medicinal applications of oxetanes continues to be of 

considerable interest.  Recent research has shown that the parent oxetane may be a 

useful medicinally relevant isostere for numerous functional groups and efforts 

into exploring its properties and incorporation into larger scaffolds are on-going.
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2.1. Introduction 

As highlighted in Chapter One, oxetanes are useful scaffolds for drug discovery.  

It became apparent to us that the development of new efficient routes to drug-like 

molecules containing this heterocycle would be of considerable value.  In this 

regard, we became interested in their synthesis through multi-component reactions 

(MCRs).  This chapter describes our attempts to synthesise oxetanes using 

isocyanide-based MCRs.  Before describing our studies, it is important to 

highlight the key features of isocyanide-based MCRs which are of relevance to 

our studies. 

2.2. Introduction to Multi-Component Reactions  

The traditional method of synthesis involves the often laborious, costly and 

inefficient process of the repeated combination of two molecules over a series of 

steps (Scheme 2.2.1). 

Traditional Synthesis: 

 

Scheme 2.2.1 

Although often effective, this method remains a long way from the “ideal 

synthesis”.
58

  An alternative approach is to combine all of the reagents in a single 

reaction vessel, whereby the multiple-components react cleanly to form the 

product in quantitative yield through multiple, controlled bond formation (Scheme 

2.2.2).   
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Multi-Component Reaction: 

               

Scheme 2.2.2 

MCRs may be defined as “…reactions where more than two starting materials 

react to form a product, incorporating essentially all of the atoms of the 

educts.”
59,60

  Historically significant MCRs include the Strecker synthesis
61

 and 

the Mannich,
62

 Biginelli,
63,64

 Passerini,
65

 and Ugi
66,67

 reactions.  The power and 

scope of MCRs has been well documented in numerous reviews over the years 

and interest in the area continues to grow.
59,68-71

 

2.2.1. The Passerini 3-Component Reaction (P-3CR) 

The three-component reaction (3-CR) between a carboxylic acid, an isocyanide 

and an aldehyde or ketone, first discovered by Mario Passerini in 1924, allows for 

the one-step synthesis of α-alkoxy carboxamides.
72

  Although Passerini originally 

proposed that during the reaction, hemiacetals are formed between the aldehyde 

and carboxylic acid components, a more commonly accepted mechanism is 

depicted in Scheme 2.2.3.  Combination of the acid and aldehyde or ketone leads 

to hydrogen-bonded intermediate 84.  After α-addition of the isocyanide onto the 

electrophilic carbonyl carbon, followed by nucleophilic attack of the acid oxygen 

onto the isocyanide carbon, adduct 85 is formed.  This then undergoes irreversible 

acyl migration, forming the stable α-alkoxy carboxamide 86.
68

  Recent 

      
  

  

  

    + + + 
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computational studies have shown that a further equivalent of the carboxylic acid 

component may take part in one of the intermediate steps.
73

 

 

Scheme 2.2.3 

2.2.2. The P-3CR in Natural Product Synthesis 

The α-acyloxy-carboxamide unit 86 is found in numerous medicinally relevant 

natural products, such as azinomycin B (87) (Figure 2.2.1).   

 

Figure 2.2.1 

Indeed, an early use of the P-3CR in natural product synthesis was by Armstrong 

et al., whereby a variety of isocyanides, aldehydes and carboxylic acids such as 

88, 89 and 90 respectively, were reacted in a combinatorial approach to produce 
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several simple analogues of the azinomycins (Scheme 2.2.4).  For example, 91 

was readily produced via a solution-based combinatorial method and found to 

display in vitro cytotoxicity in human colon cancer cell lines (IC50 4.4 µM).
74

 

 

Scheme 2.2.4 

2.2.3. The Synthesis of Heterocycles Using the P-3CR 

Passerini-type reactions have also found use in key steps towards the synthesis of 

heterocyclic compounds.  It has been demonstrated that oxazoles such as 92 may 

be assembled using α-oxoaldehydes 93, carboxylic acids 94 and cyclohexyl 

isocyanide (95).  Cyclisation of the intermediate N-alkyl-2-acyloxy-3-aryl-3-

oxopropanoic amides 96 to the corresponding oxazoles 92 occurs upon refluxing 

with ammonium formate in acetic acid (Scheme 2.2.5).
75
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Scheme 2.2.5 

2.2.4. Stereoselectivity in the P-3CR 

Although a new stereocenter is formed during the P-3CR, the ability to control the 

diastereochemical outcome of the reaction is seldom reported.  Chiral isocyanides 

generally exert no influence on the diastereoselectivity.
68

  One exception to this is 

the use of chiral, camphor isocyanide 97 in the reaction with acetic acid and 

simple aldehydes such as 98, providing the Passerini product 99 with good 

diastereoselectivity (Scheme 2.2.6).
76

  The authors did not, however, confirm the 

stereochemistry of the major diastereomer formed in the reaction. 

 

Scheme 2.2.6 
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N-Boc and phthaloyl-protected α-amino acids 100a and 100b have been shown to 

take part in P-3CRs with cyclohexanone 101 and chiral isocyanide 102 (Scheme 

2.2.7).  The authors noted that the choice of protecting group was crucial in order 

to prevent racemisation of the isocyanide.  The reactions generally proceeded in 

good yields providing the products (R,S)–103a/b.
77

   

 

Scheme 2.2.7 

Building on their earlier work, Denmark et al. showed that Lewis base catalysed 

Passerini-type reactions could be performed with high yields and enantiomeric 

ratio (er), using a catalytic system of silicon tetrachloride and chiral, Lewis base 

bisphosphoramide 104 (Scheme 2.2.8).
78,79

  It was postulated that the reaction 

proceeded via imidoyl chloride species 105.  By using an aqueous workup they 

were able to synthesise α-hydroxy tert-butyl amides 106.  Quenching the reaction 

at low temperature with MeOH, followed by basic workup provided the α-

hydroxy methyl esters 107.  A multitude of aldehydes could be used in the 
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reaction, however, it was found that using isocyanides other than tert-butyl 

isocyanide led to a drop in enantioselectivity. 

 

Scheme 2.2.8 

Wang et al. showed that salen-aluminium catalysts of type 108 effectively 

promoted the P-3CR, providing the Passerini products in good yields and 

enantiomeric excesses of up to >99%.
80

  Also, the same researchers demonstrated 

that chiral 5-(1-hydroxyalkyl)tetrazoles 109 can be synthesised in high yield and 

ee via a catalytic, enantioselective, Passerini-type 3-CR of aldehydes, isocyanides 

and hydrazoic acid 110 (Scheme 2.2.9).
81
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Scheme 2.2.9 

The enantioselectivity arising from these types of reactions is believed to derive 

from coordination of the Lewis acidic catalyst 108 to the oxygen of the aldehyde, 

blocking the Si-face.  Addition of the isocyanide onto the aldehyde then occurs 

from the Re-face (Figure 2.2.2).
82

 

 

Figure 2.2.2
82
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2.2.5. The Ugi 4-Component Reaction (U-4CR) 

Probably one of the most widely studied MCRs, the U-4CR, was first documented 

by Ugi et al. in 1959.
66

  The reaction is essentially an expansion of the P-3CR as it 

consists of the union of an isocyanide, a carboxylic acid, an aldehyde or ketone 

and an additional amine component.  In the first step of the reaction, the amine 

condenses with the aldehyde or ketone providing an imine, which is then 

protonated by the acid.  Attack of the nucleophilic isocyanide followed by 

nucleophilic addition of the carboxylate onto the electrophilic iminium forms 

intermediate 111.  This then undergoes irreversible acyl migration, forming the 

final product 112 (Scheme 2.2.10).
66,67

  The formation of one new C–C bond and 

two heteroatom–C bonds in one single step makes the U-4CR particularly 

powerful.  Unlike the P-3CR, the U-4CR is more commonly carried out in polar, 

protic solvents such as MeOH or EtOH.
68,83

   

 

Scheme 2.2.10 
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2.2.6. The U-4CR in Drug Discovery and Natural Product Synthesis 

From its inception, the U-4CR has been used as a key step in the synthesis of 

potential drug candidates and natural products.  Ugi et al. showed that a three-

component Ugi-like reaction could be used in the one-pot synthesis of a variety of 

local anaesthetics, such as those shown in Scheme 2.2.11.
66

 

 

Scheme 2.2.11
66

 

Fukuyama and co-workers demonstrated the power of the U-4CR in the synthesis 

of natural product analogues.
83

  The group wanted to explore the chemistry of the 

core 3,8-diazabicyclo[3.2.1] skeleton found in (-)-lemonomycin (113) and 

employed the U-4CR as an early key step.  Reaction between simple aldehyde 

114, chiral, primary amine 115, chiral carboxylic acid 116 and phenol carbonate 

isocyanide 117 led directly to key precursor 118.  After a further 15 steps, the 

synthesis of 119 was accomplished (Scheme 2.2.12).  
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Scheme 2.2.12 

Recently, powerful methodology featuring an Ugi/Michael/aza-Michael cascade 

sequence has been developed.
84

  This reaction brings together a variety of 

substituents, forming six bonds contiguously as well as four stereocentres and one 

quaternary centre.  The use of 4-hydroxy-1-naphthaldehyde 120 and fumaric acid 

monoethyl ester 121 as the aldehyde and acid components respectively, along 

with tert-butyl isocyanide and benzylamine, set up the Ugi product 122 for the 

cascade process (Scheme 2.2.13).  After conjugate addition of the hydroxyl-

substituted naphthyl group onto the ester to form intermediate 123, a 5-exo-trig 

aza-Michael addition then occurs, providing azaspiro tricycle 124 in excellent 

yield and dr. 
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Scheme 2.2.13 

Recent work by Dömling and co-workers illustrates how a variation of the U-4CR 

can be combined with a Pictet-Spengler cyclisation, forming a variety of 

heterocyclic scaffolds.
85

  Through the combination of an aldehyde or ketone, 

isocyanide, aminoacetaldehyde dimethyl acetal 125 and tryptophan derivative 

126, a number of indoles 127 could be synthesised (Scheme 2.2.14).  If the 

tryptophan derivative was substituted with a phenylalanine 128, then isoquinoline 

compounds 129 were obtained.  Also, in contrast to much of the literature 

regarding Ugi reactions (see section 2.2.8), the main substrates chosen were both 

cyclic and heterocyclic ketones, including strained systems such as 

cyclobutanones. 
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Scheme 2.2.14 

2.2.7. Stereoselectivity in the U-4CR 

As the product of the U-4CR may be viewed as an amino acid-derived bisamide, 

there have been numerous attempts to perform the process enantioselectively.
86

 

Indeed, Joullié and co-workers were able to demonstrate the synthesis of 

unnatural, heterocyclic α-amino acids, using U-4CR methodology.
87

  

Unfortunately in contrast to the P-3CR, there are no reports of efficient 

enantioselective U-4CRs.  As with the P-3CR, modified U-4CRs are known, 

however, as List and co-workers demonstrated with a catalytic U-3CR, such 

reactions do not proceed with appreciable levels of enantioselectivity.
88
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Although enantioselective U-4CRs are unknown, examples of diastereoselective 

U-4CRs have been published.  Kunz et al. demonstrated that chiral amine 130 

could be used with formic acid and a Lewis acid such as zinc chloride, forming 

Ugi product 131, before hydrolysis to the target α-amino acids 132 (Scheme 

2.2.15).
89

  The same research group later expanded this methodology in the 

synthesis of L-amino acids.
90

 

 

Scheme 2.2.15 

Recently it was reported by Sureshbabu and co-workers that β-lactam 

peptidomimetics such as 133 may be synthesised in good yields and excellent de, 

using chiral N
β
-Fmoc amino alkyl isocyanides such as 134 (Scheme 2.2.16).

91,92
  

Combination of isocyanide 134 with simple acid 135 and chiral amino ester 136 

under mild conditions provided the expected β-lactam product in good yield and 

excellent dr.  In order to rationalise the high dr, it was postulated that the reaction 

proceeds via oxazepinone intermediate 137.   
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Scheme 2.2.16 

Although the classical U-4CR involves one-pot imine formation, it is possible to 

start the reaction with the imine preformed.  When conducted with chiral, cyclic 

imines, the products of the reaction can be quite diverse.  Commonly referred to 

as the Ugi-Joullié reaction, this Ugi four-centre three-component reaction (U-4C-

3CR) may begin with chiral, 5-membered imines such as 138.  As demonstrated 

by Znabet et al., these preformed imines take part in U-4C-3CRs with simple 

isocyanides and carboxylic acids to form substituted prolyl peptides 139 in very 

good yield and as single diastereomers, with almost no racemisation (Scheme 

2.2.17).
93
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Scheme 2.2.17 

2.2.8. Ugi Reactions of Ketones 

Although there are a variety of P-3CR reactions of ketones in the literature, there 

are very few examples of U-4CR reactions.  Simple ketones are known to react, 

albeit in low yields.  For example Kalinski et al. have shown that acetone and 

cyclohexanone perform modestly as Ugi components in a one-pot Ugi-tetrazole 

reaction, which is a key step in their synthesis of quinoxalines 140 (Scheme 

2.2.18).
94

 

 

Scheme 2.2.18 
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Ugi reactions of N-benzyl substituted piperidones are also known
95,96

 and a 

variety of N-alkyl and aryl substituted piperidinones have been employed in Ugi 

reactions for the synthesis of spirodiketopiperazines 141, as demonstrated by 

Habashita et al. (Scheme 2.2.19).
97

  For this chemistry, the isocyanide component 

142 was immobilised on a solid support and a variety of ketones, such as N-

benzylpiperidinone 143 were used.  

Scheme 2.2.19 

During the course of their investigations into the formation of alkaloids and other 

natural products, Martin and co-workers reported the Ugi reaction of several 

heterocyclic, ketones such as 144, forming Ugi products such as 145 (Scheme 

2.2.20).
71 



 

 

 

Chapter 2: Synthesis of Oxetanones and their Applications in MCRs 

52 

 

 

 

Scheme 2.2.20 

2.2.9. Other Isocyanide-Based MCRs 

Although the P-3CR and U-4CR remain the most widely exploited isocyanide-

based MCRs (IMCRs), a variety of other IMCRs have been developed.  For 

example, isocyanides have been shown to take part in transition metal catalysed 

MCRs to form indoles
98

 and in cycloaddition-type reactions with acetylenes, to 

form a variety of heterocycles.
99

   

2.3. Passerini Reaction of Oxetan-3-ones 

Due to its operational simplicity, we decided to begin our own studies by 

exploring the Passerini reaction of simple oxetan-3-ones.  At the outset of our 

work, we were aware of only a single MCR of an oxetane, originally reported by 

Kozikowski et al.
15

  This involved Strecker reaction of oxetan-3-one (15) with 

benzylamine and sodium cyanide to give 46 in 90% yield (Scheme 2.3.1). 

 

Scheme 2.3.1 
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We imagined that a Passerini reaction involving an oxetan-3-one 146, an 

isocyanide 147 and a carboxylic acid 148, could provide a simple and flexible 

route to 3,3-disubstituted oxetanes 149 (Scheme 2.3.2). 

 

Scheme 2.3.2 

Owing to the considerable expense of commercially available oxetan-3-one (15) 

(supplied by Sigma Aldrich Ltd. at approximately £39.70 g
-1

), we decided to 

make it in situ from propargyl alcohol (150) according to a modified procedure of 

Zhang  and co-workers.
19

  These researchers had synthesised oxetan-3-one (15) 

starting from propargyl alcohol (150) and subsequently performed an in situ 

Strecker reaction, forming 46 in good overall yield (Scheme 2.3.3).  This process 

required the use of pyridine N-oxide 151 and also a gold catalyst, both of which 

are not commercially available. 

 

Scheme 2.3.3 
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We decided to modify this procedure for the synthesis of oxetane-3-one (15) by 

using commercially available pyridine N-oxide 152 and gold catalyst 153 (see 

Scheme 2.3.5).  The gold catalyst 153 was synthesised over two steps.  This 

catalyst was chosen due to the limited expense and high availability of PPh3 

compared to (2-biphenyl)Cy2P.  Compound 154 (1.0 equiv.) was reacted with 

PPh3 (1.0 equiv.) and the resultant compound was subsequently treated with 

AgNTf2 (1 equiv.), producing 153 in high overall yield (Scheme 2.3.4).  We were 

confident that both 153 and 152 would be suitable for the reaction as both were 

reported to be effective under similar conditions, albeit in lower yields.
19

 

 

Scheme 2.3.4 

With the starting materials in hand we next attempted the synthesis and 

subsequent P-3CR of oxetan-3-one (15).  Propargyl alcohol (150) (1 equiv.) was 

treated with N-oxide 152 (2 equiv.) and HNTf2 (1.2 equiv.) under gold-catalysed 

conditions in DCE (Scheme 2.3.5).  After stirring for 2 h, the DCE solution was 

washed with a saturated aqueous solution of NaHCO3 in order to neutralise any 

remaining acid and the organic layer dried over MgSO4.  The organic layer was 

then treated with tert-butyl isocyanide (0.5 equiv.) and acetic acid (1 equiv.) and 

the reaction mixture stirred for 18 h, providing 155 in 48% yield after column 

chromatography.   
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Scheme 2.3.5 

Confirmation of the structure of 155 was initially achieved using 
1
H and 

13
C 

NMR.  
1
H NMR analysis of 155 in CDCl3 provided a pair of AB-doublets at 4.91 

and 4.73 ppm, which integrated to a total of four hydrogens and were assigned as 

the two methylenes of the oxetane ring.  A broad singlet at 5.91 ppm, 

corresponding to the NH was also observed.  The CH3 and tert-butyl groups gave 

rise to singlets at 2.17 and 1.37 ppm, integrating to three hydrogens and nine 

hydrogens respectively.  The 
13

C NMR provided two carbonyl signals at 169.5 

and 167.0 ppm, along with a quaternary signal for the oxetane C–3 at 78.4 ppm.  

Confirmation of the structure of 155 was later achieved using X-ray 

crystallography on a single crystal of 155, which was grown from CH2Cl2/pentane 

(Figure 2.3.1). 
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Figure 2.3.1 X-ray structure of 155 

Although this process used the widely available and cheap propargyl alcohol, the 

costs associated with using HNTf2 and the gold catalyst, alongside the difficulties 

of handling the volatile oxetan-3-one offered little benefit.  Also, it was difficult 

to optimise the reaction as the intermediate oxetan-3-one (15) was not isolated.  

Thus, we decided to purchase oxetan-3-one (15) for further studies.  We repeated 

the reaction using 15 purchased from Synthonix, U.S.A.  Treatment of 15 (1 

equiv.) with acetic acid (1.2 equiv.) and tert-butyl isocyanide (1.2 equiv.) in DCE 

for 18 h, followed by simple filtration of the crude reaction mixture through a 

plug of silica gel provided the Passerini product 155 in excellent yield (Scheme 

2.3.6).  The reaction also worked well in other aprotic solvents such as CH2Cl2 
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(91%), however, switching to a polar, protic solvent such as MeOH led to much 

lower yields (20%).   

 

Scheme 2.3.6 

The scope of this reaction was then explored using a variety of different, 

commercially available isocyanides (Table 2.3.1, entries 1-4) and carboxylic acids 

(Table 2.3.1, entries 5-8).  Good to excellent yields were observed in most cases, 

however, (S)-α-methylbenzyl isocyanide provided Passerini product 159 in only 

modest yield (entry 4). 
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Entry R R
1 

Product Yield (%) 

1 CH3 Cy 

 

79 

2 CH3 
n
Bu 

 

51 

3 CH3 Bn 

 

62 

4 CH3 CHCH3Ph 

 

23 

5 CbzNHCH2 
t
Bu 

 

47 
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6 Ph 
t
Bu 

 

92 

7 2-Thienyl 
t
Bu 

 

85 

8 
2-(3-Bromo-

thienyl) 
t
Bu 

 

52 

Table 2.3.1 

The chemistry was subsequently applied to oxetan-3-ones bearing 2- and 2,4-

substituents.   In order to synthesise these substituted oxetan-3-ones, it was first 

necessary for us to prepare the corresponding propargyl alcohol precursors. 

Known propargyl alcohols 164-165 were readily synthesised according to the 

procedure of Zhang and co-workers.
19

  We chose these examples as we wanted to 

ensure that the final product oxetan-3-ones had a high molecular weight and hence 

a lower volatility, which would facilitate their isolation and handling.  Treatment 

of TMS acetylene (1.5 equiv.) with 
n
butyllithium (1.6 equiv.), quenching with 

aldehyde 166 or 167 (1.0 equiv.) and subsequent TMS deprotection using TBAF 

provided the expected propargyl alcohols 164 and 165 in good yield over two 

steps (Scheme 2.3.7).   
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Scheme 2.3.7 

For the synthesis of 2,2,4-trisubstituted oxetan-3-one 168, the propargyl alcohol 

precursor 169 was made using different methodology.
19

  Treatment of ethyl 

propiolate 170 (1.0 equiv.) with LDA (1.05 equiv.), made in situ from 

n
butyllithium and diisopropylamine (DIPA), and subsequently quenching with 

acetone (171) (2.0 equiv.) gave propargyl alcohol 169 in excellent yield (Scheme 

2.3.8). 

 

Scheme 2.3.8 

Conversion of these propargyl alcohols to their corresponding oxetan-3-ones was 

realised using the same procedure as we had previously used for the in situ 

synthesis of unsubstituted oxetan-3-one (15).  Propargyl alcohols 164, 165 and 

169 were treated with pyridine N-oxide 152(2 equiv.), PPh3AuNTf2 (153) (5 mol 

%), and HNTf2 (1.2 equiv.) in DCE (Scheme 2.3.9).  For the synthesis of 2-

substituted oxetan-3-ones 170 and 171, this reaction was performed at room 

temperature for 4 hours, however, warming to 50 °C for 18 hours was required for 

trisubstituted oxetan-3-one 168.  Gratifyingly, although the yields obtained for 
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these compounds were lower than those reported in the literature, it was possible 

to produce them in large enough quantities for subsequent reactions.
19

  The lower 

yields presumably arise because we used cheaper and more readily accessed 

pyridine N-oxide and Au-catalyst components, 152 and 153 respectively.  

Although this multi-step route was efficient in providing these substituted oxetan-

3-ones in modest yield, our development of an alternative, less laborious and 

enantioselective route for their synthesis is discussed later in this chapter. 

 

Scheme 2.3.9 

Treatment of these mono- and tri-substituted oxetanones under the same 

conditions previously described afforded the Passerini products in good yields 

(Table 2.3.2).  Switching from acetic acid to benzoic acid, however, led to a lower 

yield of the expected product 175 (Table 2.3.2, entry 4).  It was found that good 

levels of stereoselectivity were seen in these reactions when the substituent at C–2 

of the oxetane was relatively large.  For example, 173 with a cyclohexyl group at 

C–2 gave better levels of diastereocontrol than 172 bearing the corresponding 

phenyl-ethyl substituent (Table 2.3.2, entry 1 cf. entry 2).   
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Entry Oxetan-3-one R
2 

Product a/b Yield (%) dr
[a] 

1 

 

CH3 

 

76 1.7:1 

2 

 

CH3 

 

97 4:1 

3 

 

CH3 

 

79 2.8:1 

4 

 

Ph 

 

49 3.4:1 

[a] 
Estimated from 

1
H NMR. 

Table 2.3.2 
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In order to determine the stereochemical course of these reactions, it was possible 

to separate 173a and 173b by column chromatography.  Minor diastereomer 173b 

was sufficiently crystalline to enable elucidation of the structure using X-ray 

crystallography, which was performed upon a single crystal of 173b grown from 

CH2Cl2/pentane (Figure 3.3.2). 

 

Figure 2.3.2 X-ray structure of 173b 

For major diastereomer 173a, the acetate group was first removed via simple ester 

hydrolysis with K2CO3 in MeOH (Scheme 2.3.10).   
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Scheme 2.3.10 

It was then possible to solve the structure of the resultant α-hydroxyamide 176 

using X-ray crystallography (Figure 2.3.3).  Knowing the relative stereochemistry 

of 176, that of 173a could be deduced with confidence. 

  

Figure 2.3.3 X-ray Structure of 176 
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The formation of 173a as the major diastereomer from 171, with the bulky tert-

butyl and cyclohexyl groups on the same face of the oxetane ring was not 

anticipated.  It was expected that the isocyanide would attack the ketone from the 

opposite face to that of the C–2 substituent (Scheme 2.3.12).  The literature 

contains very few examples of investigations into the stereochemical outcome of 

such reactions. However, the examples we have found support our initial incorrect 

expectation.  For example, it has been reported that chiral 2-substituted 

cyclopentanone 177 takes part in Passerini-type, pyridinium trifluoroacetate-

mediated reactions producing 178 in low yield as a single diastereomer (Scheme 

2.3.11).
60,100

 

 

Scheme 2.3.11 

In order to account for the formation of the seemingly more hindered diastereomer 

173a as the major product, it is necessary to refer to the commonly accepted 

mechanism of the reaction (Scheme 2.3.12).  Both 179a and 179b are produced 

under equilibrating conditions through the addition of 
t
BuNC and AcOH to both 

faces of 171.  The diastereoselectivity likely then arises from differences in the 

rates of acyl migration from 179a to 173a and from 179b to 173b.  The preference 

for the formation of 173a is explained by suggesting that increased steric 

crowding between the cyclohexyl group and imidate substituent in 179a 
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encourages faster acyl transfer.  Adjustment of the equilibrium therefore funnels 

both 179a and 179b through to the observed major product 173a. 

 

Scheme 2.3.12 

By analogy, we postulate that the major diastereomers in the other examples 

reported in Table 2.3.2 have the same sense of stereochemical induction. 

2.3.1. Attempted Ugi Reaction of Oxetan-3-ones 

Encouraged by the success with the P-3CR of oxetan-3-ones reported in the 

previous section, we were interested in exploring the more challenging, but 

potentially more useful U-4CR of oxetan-3-ones. As discussed previously, 

examples of Ugi reactions involving cyclic ketones (see section 2.2.8) are rather 

scarce.  To begin with, treatment of oxetan-3-one (15) (1 equiv.) with 
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benzylamine (1.2 equiv.), acetic acid (1.2 equiv.) and tert-butyl isocyanide (1.2 

equiv.), under the same conditions used in the Passerini reactions did not provide 

the expected Ugi product 180 (Scheme 2.3.13). 

 

Scheme 2.3.13 

Although this reaction was attempted at room temperature, we were concerned 

that the volatile oxetan-3-one (15) might still have the potential to evaporate from 

the reaction mixture and lead to a failed reaction.  With this in mind, the reaction 

was repeated with 2-substituted oxetanone 170 in either DCE or MeOH, however, 

this reaction also failed to provide the expected Ugi product 181.  Significant 

amounts of the Passerini product 172 were isolated when the reaction was 

performed in DCE (Scheme 2.3.14). 

 

Scheme 2.3.14 

The preference for the formation of the Passerini product was unexpected, 

although there is some precedent in the literature.  For example, Pirrung et al. 
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noted that when they attempted an U-4CR with diketone 182, they observed only 

the Passerini product 183 in a low yield and none of the expected Ugi product 

184.
101

   

 

Scheme 2.3.15 

The mechanisms of the U-4CR and P-3CR share similarities, however, the Ugi 

reaction begins with an additional condensation step between a carbonyl 

compound such as an oxetan-3-one (185) and an amine to form imine 186 

(Scheme 2.3.16).  Presumably, the formation of 186 is slow compared to the 

direct addition of the isocyanide to the protonated carbonyl species 187.  Owing to 

the slow formation of 186 compared to 187, under equilibrating conditions, the 

Passerini route effectively out-competes the Ugi route leading to the favourable 

formation of Passerini product 188 over 189.  The strain associated with the four-

membered ring may discourage formation of an sp
3
 centre at C–3 of the 

intermediate hemiaminal species that leads to imine 186. 
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Scheme 2.3.16  

The rationale that imine formation of oxetan-3-ones may be difficult is in contrast 

to the known Strecker MCR of oxetan-3-one, which also proceeds via an 

iminooxetane species (see Scheme 2.3.1).  Therefore, dissatisfied with our 

explanation, we sought to further study the synthesis and chemistry of 

iminooxetane species.  In order to probe the imine formation, a study was carried 

out by an MChem student, Abimbola Alli-Balogun, under my supervision.  In this 

study, oxetan-3-one 170 (1 equiv.) was stirred with benzylamine (1.2 equiv.) and 

4 Å molecular sieves in CDCl3 (Scheme 2.3.17).
102

  Molecular sieves were added 

to the reaction mixture in order to remove the water produced during the 

condensation and therefore encourage imine formation.   
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Scheme 2.3.17 

The reaction was monitored using 
1
H NMR spectroscopy, with samples taken 

from the reaction mixture at 20 h and 45 h.  At 20 h, 
1
H NMR still indicated the 

presence of benzylamine, characterised by a singlet at 3.8 ppm.  However, after 

45 h a decrease in the intensity of this signal and the appearance of several new 

signals, tentatively assigned as the hydrogens of the iminooxetane species 190 

were observed.  At this point, an attempt was made to isolate the imine, however, 

efforts to purify the reaction mixture using column chromatography met with 

failure, with complex mixtures being obtained.  With this result in mind, an 

alternative approach was subsequently developed to explore the formation of 

iminooxetane species, by using Pictet-Spengler reactions (see Chapter 3), and 

further efforts to develop U-4CRs of oxetanes were abandoned. 

2.4. Conclusions 

In summary, oxetan-3-ones have been shown to be excellent substrates for 

Passerini reactions providing a direct, simple and efficient route to the 

pharmaceutically important 3,3-disubstituted oxetane scaffold.  High yields are 

observed when the reaction is performed using a variety isocyanides and 

carboxylic acids and useful levels of diastereocontrol are observed with oxetanes 

bearing bulky substituents at C-2.  Interestingly, the stereochemical outcome was 

contrary to our initial expectations.  Extension of this P-3CR into an U-4CR, 
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however, was unsuccessful.  The Passerini reaction appears to be competitive and 

initial attempts to pre-form the iminooxetane were unsuccessful. 

2.5. Synthesis of Chiral 2-Substituted Oxetan-3-ones  

The chemistry used earlier in this chapter to produce the 2-substituted oxetan-3-

ones is far from ideal (see Scheme 2.3.9).  It is lengthy, employs expensive 

reagents and catalysts, and generates racemic products.  Although Zhang and co-

workers have shown it can be used for the formation of chiral derivatives, this 

further increases the length of the reaction sequence.
19

  To address these issues, 

we wished to examine an alternative approach to 2-substituted oxetan-3-ones that 

might be applicable to asymmetric synthesis. 

We imagined that the asymmetric synthesis of chiral 2-substituted oxetan-3-ones 

191 might be achieved via the diastereoselective alkylation of either the SAMP or 

RAMP hydrazone 192, followed by cleavage of 2-substituted oxetane-hydrazone 

intermediate 193 to give the enantiomerically enriched oxetan-3-one 191 (Scheme 

2.5.1).  We reasoned that this method would be operationally simple and direct, 

and provide a potentially general route to chiral 2-substituted oxetan-3-ones. 

 

Scheme 2.5.1 

Prior to detailing our work in this area, it is pertinent to discuss the relevant 

literature. 



 

 

 

Chapter 2: Synthesis of Oxetanones and their Applications in MCRs 

72 

 

 

2.5.1. Asymmetric Synthesis using SAMP/RAMP Methodology 

In 1976, Enders et al. pioneered alkylation reactions of (S)-1-amino-2-

methoxymethylpyrrolidine (SAMP) and (R)-1-amino-2-methoxymethyl 

pyrrolidine (RAMP) hydrazones.
103

  A number of reviews on the subject have 

been published and a brief overview of the chemistry is discussed herein.
104-106

  

Alkylations based on SAMP hydrazones usually follow a common sequence of 

steps, allowing for the stereochemistry of the alkylated products to be reliably 

predicted.  Firstly, the pre-formed SAMP hydrazone 194 is treated with a base 

such as LDA to form azaenolate species 195 (Scheme 2.5.2).  Although there is 

the possibility of four geometrical isomers at this stage, only the isomer depicted 

in Scheme 2.5.2 results upon deprotonation with LDA.
104,107

  Chelation of the 

lithium to the methoxy group allows only for electrophilic addition from the least-

hindered face of azaenolate 195, allowing for the stereochemical outcome of 

alkylated hydrazone products 196 to be accurately predicted.  Final cleavage of 

hydrazone 196 to the free, chiral ketone 197 may be achieved using a number of 

methods.
108
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Scheme 2.5.2
104

 

Alkylations of strained ring systems are infrequently found within the literature.  

During their investigations, Hazelard et al. disclosed that chiral hydrazone 

derivatives of cyclobutane could be alkylated with a limited selection of 

electrophiles in moderate yields and enantiomeric excess.
109

  For example, RAMP 

cyclobutane hydrazone 198 was treated with LDA at low temperatures and then 

quenched with 
n
octyl bromide.  The resulting product was treated in situ with 

oxalic acid, providing alkylated cyclobutanone 199 (Scheme 2.5.3).   

 

Scheme 2.5.3 
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2.5.2. Metallation/Alkylation of SAMP-Hydrazones 

Lithium and potassium azaenolates are the most commonly used metallated 

hydrazones.
105,110,111

  Other metallated hydrazones such as zinc and copper 

azaenolates have also been used effectively.
112,113

  For example, Nakamura et al. 

showed that both cyclic and acyclic SAMP hydrazones such as 200 may be 

alkylated with cyclopropene acetal 201 using zinc chloride and 
n
butyllithium.  It 

was postulated that intermediate azaenolate 202 was formed in the reaction 

mixture.  Compound 203 was then formed in high yield and diastereoselectivity 

(Scheme 2.5.4).
112

 

 

Scheme 2.5.4 

Other lithium bases commonly used for the formation of azaenolates include 

n
butyllithium as well as tert-butyllithium.  For example, it was shown that 

heteroatom-containing ketones take part in azaenolate formation using 

n
butyllithium as base.

114
  Similarly, Enders et al. showed that dioxanone-SAMP-

hydrazone 204 may be metallated using tert-butyllithium.
115,116

  Moreover, these 

researchers showed that hydrazone 204 could be metallated up to four-times, 



 

 

 

Chapter 2: Synthesis of Oxetanones and their Applications in MCRs 

75 

 

 

allowing for the synthesis of multi-substituted SAMP-hydrazones such as 205 

(Scheme 2.5.5).  Good overall yields and excellent de’s were obtained, although it 

was found that the final alkylation would only proceed in high yields in the 

presence of DMPU. 

 

Scheme 2.5.5 

The alkylations of SAMP/RAMP metallated hydrazones have found many uses in 

organic synthesis.  The methodology tolerates a large number of electrophilic 

partners, and has been especially well used in natural product synthesis.
104,105

  For 

example Smith et al. reported the low temperature alkylation of SAMP hydrazone 

206 using benzylic bromide 207 as the electrophile.
117

  Only one diastereomer of 

208 was formed, which was a key intermediate in their synthesis of heptacyclic 

core 209, found in (-)-nodulisporic acid D (Scheme 2.5.6). 
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Scheme 2.5.6 

2.5.3. Formation of SAMP-Oxetane Hydrazones 

The synthesis of SAMP hydrazones is usually achieved by the gentle heating of a 

mixture of SAMP and the ketone, whilst the condensation with aldehydes may 

take place at lower temperatures.  Less reactive species such as aromatic ketones 

often require the addition of an acid catalyst, refluxing in benzene with removal of 

the water generated during the condensation.
118,119

  

We began with the synthesis of oxetane-SAMP hydrazone 210 (Scheme 2.5.7).  

Heating oxetan-3-one (15) with commercially available SAMP overnight afforded 

the expected oxetane-SAMP hydrazone 210 in excellent yield after column 

chromatography.
109

  The 
13

C NMR of 210 displayed a downfield, quaternary 
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signal indicative of the C=N bond at 140.0 ppm, whilst high resolution mass 

spectrometry (HRMS) showed the expected [M+H]
+
 at 185.1288.  The IR 

spectrum also contained the characteristic C=N absorption at 1662 cm
-1

.  Further 

assignment of the structure was possible using 2D NMR spectroscopy.   

Compound 210 was also found to have an optical rotation of     
  –8.8 (c 0.12, 

CHCl3), confirming it was enantiomerically enriched. 

 

Scheme 2.5.7 

2.5.4. Metallation of Oxetane-SAMP-Hydrazone 

In order to investigate the metallation of oxetane-SAMP-hydrazone derivatives, 

we decided to carry out a screen of suitable bases.  By treating hydrazone 210 

with different bases and then quenching the reaction with deuterated methanol, it 

was possible to estimate the extent of deuterium incorporation in product 211 by 

mass spectrometry (Table 2.5.1).  LDA was found to be less effective, failing to 

lead to complete azaenolate formation even with excess base (entries 1-3) or 

extended reaction times (entry 4).  In contrast, the same reaction with 

n
butyllithium for 1 h or 2 h (entries 5 and 6 respectively) allowed for much higher 

incorporation of up to 90%.  tert-Butyllithium also allowed for near complete 

lithiation within 1 h with 1.1 equiv. of base (entry 7). 
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Entry Base Equiv. Time (h) Incorporation (%) 

1 LDA 1.1 2 59 

2 LDA 1.5 2 79 

3 LDA 2.0 2 77 

4 LDA 1.5 4 68 

5 
n
BuLi 1.1 1 90 

6 
n
BuLi

 
1.5 2 84 

7 
t
BuLi 1.1 1 90 

Table 2.5.1 

2.5.5. Alkylation of Oxetane-SAMP-Hydrazone 

Having identified alkyllithiums as good bases for the reaction, the next task was to 

investigate the ability of the hydrazone to be alkylated.  
n
Butyllithium was 

selected for the initial studies as it is less basic and less hazardous than tert-

butyllithium.  After deprotonation of 210 with 
n
butyllithium (1.1 equiv.) at –78 °C 

and subsequent quenching with benzyl bromide (1.1 equiv.), the reaction was 

allowed to warm slowly to room temperature.  The expected alkylated hydrazone 

212 was obtained in an encouraging 45% yield after column chromatography 

(Scheme 2.5.8).   
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Scheme 2.5.8 

Although 212 was separable as, what appeared to be a single compound by TLC, 

the NMR spectra was complicated by the possible presence of diastereomers.  By 

NMR spectroscopy, it was difficult to determine whether these diastereomers 

arose from low selectivity in the alkylation step, racemisation at C–2 of the 

oxetane, or from E/Z isomerism about the C=N bond.  To answer this question, 

cleavage to the corresponding ketone was pursued (see section 2.5.6).   

Characterisation of 212 was made possible using 
1
H NMR, which indicated the 

presence of signals in the aromatic region which integrated to five hydrogens, 

corresponding to the benzylic group.  The loss of one hydrogen from the oxetane 

ring was also evident from examination of the 
1
H NMR.  Inspection of the COSY 

also revealed the coupling between the C–2 hydrogen of the oxetane ring and the 

newly installed benzylic CH2.  Further to this, as well as displaying the benzylic 

CH2 signal at 39.0 ppm, the 
13

C NMR revealed the presence of a new CH signal at 

93.3 ppm which corresponded to the new CH at C–2 of the oxetane ring.  HMQC 

and HMBC spectra were also used to identify these key correlations.  HRMS of 

212 provided a [M+H]
+
 peak at 275.1759 and IR was also useful, displaying a 

strong absorption at 1686 cm
-1

 which indicated the continued presence of the C=N 

bond. 
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In order to improve the efficiency of the alkylation step, we reasoned that the 

addition of an additive such as TMEDA (1.1 equiv.) might help (Scheme 2.5.9).  

In fact, no change in yield was observed by introduction of TMEDA.  Use of a 

less polar solvent, namely diethyl ether, proved detrimental, with no alkylated 

product observed.  

 

Scheme 2.5.9 

We thought that the alkylation might benefit from higher temperatures.  However, 

performing the lithiation at –40 °C and, after addition of the electrophile and 

subsequent warming to r.t., provided a trace amount of product 212, as indicated 

by crude 
1
H NMR.  Performing the reaction at 0 °C failed to give any of the 

expected product 212.  Consideration was also given to the sterics of the reaction, 

specifically the bulkiness of benzyl bromide, therefore a less bulky electrophile, 

namely iodomethane was tried (Scheme 2.5.10).  Unfortunately, the crude 
1
H 

NMR of this reaction indicated a complex mixture of unidentifiable signals and 

none of the expected product 213 could be isolated. 
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Scheme 2.5.10 

Although 
n
butyllithium had provided some of the desired hydrazone 212, we 

wanted to find a way of improving the modest 45% yield.  With this in mind, we 

next decided to examine the use of tert-butyllithium, which we knew was also 

effective from the deuteration studies (see Table 2.5.1).  Hydrazone 210 (1 equiv.) 

was deprotonated with tert-butyllithium (1.1 equiv.) and then quenched with 

benzyl bromide (1.2 equiv.) (Scheme 2.5.11).
120

  In this case, 1.2 equiv. benzyl 

bromide was used to ensure complete quenching of any nucleophilic species left 

in solution.  Initially, the reaction mixture was stirred at –78 °C for 1 h before 

quenching with benzyl bromide, providing the expected product 212 in a much 

improved 67% yield when compared with 
n
butyllithium.  Gratifyingly, the yield 

improved to 73% when stirred at –78 °C for 2 h, before quenching with benzyl 

bromide.  The sense of induction at the newly generated stereocenter was initially 

assigned on the basis of the established mnemonic (Scheme 2.5.2).  This was later 

confirmed through experiment (vide infra). 

 

Scheme 2.5.11 
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2.5.6. Cleavage of Hydrazones 

Methods for the cleavage of hydrazones generally fall into three categories: 

oxidative, hydrolytic and reductive cleavage.
108

  In many cases it is possible to 

recycle the chiral hydrazine starting material.
118

  In all these procedures, it is 

essential to provide the aldehyde or ketone in high yield and without racemisation 

of the newly formed chiral centre. 

A particularly well studied method is ozonolysis.  Among the advantages of using 

O3 are its mild reaction conditions, low temperatures, short reaction times and its 

tolerance to a wide range of potentially sensitive functional groups such as 

thioethers,
121

 α-hydrazino- and α-aminoketones,
122

 and borane-protected 

phosphines.
108,123

  The procedure generally involves the bubbling of O3 through a 

cooled solution of the hydrazone.  The mechanism is believed to proceed as 

depicted in Scheme 2.5.12.  After [3+2] cycloaddition of the hydrazone 214 with 

O3 to give 215, rearrangement of either 215 or 216 occurs, providing one 

equivalent of oxygen and the expected aldehyde or ketone 217 (Scheme 2.5.12).  

A further equivalent of O3 is then used to convert the diazene 218 side product 

into nitrosamine 219.
108,110
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Scheme 2.5.12 

Hydrolytic cleavage of hydrazones using oxalic acid is an attractive alternative.  

Enders et al. reported that a variety of hydrazones such as 220 could be cleaved 

using saturated oxalic acid under mild conditions, providing the expected ketone 

221 in excellent yield and enantiomeric excess.
124

  Oxidation-sensitive vinyl 

groups and acid-sensitive acetals withstand these reaction conditions.  From a 

practical perspective the reaction is also notable in that, unlike ozonolysis, no 

toxic nitrosamine by-products are formed.  A simple method for the recovery of 

the chiral hydrazine was also reported. 



 

 

 

Chapter 2: Synthesis of Oxetanones and their Applications in MCRs 

84 

 

 

 

Scheme 2.5.13 

The use of a methyl iodide/HCl mixture is also used for the cleavage of 

hydrazones, as are low valent TiCl3 and SnCl2.
125

 

2.5.7. Formation of Substituted Oxetanones via Hydrazone Cleavage 

Of the variety of methods for SAMP-hydrazone cleavage in the literature, we 

began by trialling ozonolysis.  After bubbling the gas through a solution of 212 in 

dichloromethane for 1 h, the expected oxetan-3-one 212 was obtained in an 

encouraging 51% yield (Scheme 2.5.14).   

 

Scheme 2.5.14 

The structure of 222 was identified using a number of techniques.  
1
H NMR 

displayed a benzylic doublet at 3.11 ppm which integrated to two hydrogens and 

coupled with the C–2 methine of the oxetane ring.  Also, the 
13

C NMR contained 

a carbonyl signal at 201.2 ppm, which corresponds with the ketone in 222.  Both 

1
H and 

13
C NMR spectra showed the absence of signals that correspond to the 

SAMP hydrazone protons and carbons respectively.  The IR also no longer 
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contained the characteristic C=N absorption band that was previously present.  

Finally, the HRMS displayed the [M+H]
+
 peak at 163.0759 expected for 222.  

Further evidence for its structure was later obtained via an X-ray crystal structure 

of its corresponding Pictet-Spengler adduct (see section 2.5.8). 

Although oxetan-3-one 222 was successfully obtained, we sought methods to 

improve the yield.  Due to procedural simplicity, the use of saturated aqueous 

oxalic acid was next explored for hydrazone cleavage.  Rapid stirring of 

hydrazone 212 with saturated oxalic acid produced the expected oxetan-3-one 222 

in a much improved yield (Scheme 2.5.15).  Encouragingly, the optical rotation of 

    
  –60 (c 0.07, CHCl3) derived from the oxalic acid hydrolysis suggested it was 

enantiomerically enriched to a significant extent. 

 

Scheme 2.5.15 

Next, we wanted to determine the % ee of ketone 222.  Prior to commencing this, 

however, it was necessary to synthesise a racemic sample of 222 for comparison.  

To this end, in collaboration with co-worker Dr Joanna Geden, we developed a 

route to a racemic sample of 222.  The reaction between oxetan-3-one (15) (1.2 

equiv.) and dimethylhydrazine (223) (1.0 equiv.) produced achiral dimethyl 

hydrazone 224 in excellent yield, which was used without further purification 

(Scheme 2.5.16).  
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Scheme 2.5.16 

Hydrazone 224 (1.0 equiv.) was treated with tert-butyllithium (1.1 equiv.) and 

stirred at –78 °C for 2 h.  Benzyl bromide (1.2 equiv.) was then added and the 

mixture allowed to warm slowly to room temperature (Scheme 2.5.17).  Initial 

attempts to purify the intermediate alkylated oxetane-hydrazone led to large 

material losses, therefore, after removal of the solvent, the crude mixture was 

dissolved in diethyl ether and treated with excess saturated oxalic acid.  

Purification using column chromatography yielded (±)-222 in a low 11% yield.  

Although this yield was disappointing, only a small amount of (±)-222 was 

required for analysis, therefore, no attempts to improve this yield were made. 

 

Scheme 2.5.17 

With both racemic and enantiomerically enriched 222 in hand, we next set about 

trying to determine the % ee of (S)-222 using chiral shift NMR reagents such as 

Pirkle’s alcohol
126

 and lanthanide shift reagents, however, these methods were 

unsuccessful.
127

  No separation of the enantiomers was seen using HPLC on 

CHIRALPAK
®
 IA, IB, IC, OD, OB and AD columns.  Limited separation of the 
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enantiomers was observed using GC, using both CP-ChiraSil-DEX CB and 

Chrompac cyclodextrin-B columns.   

As determining the enantiomeric excess of (S)-222 was proving difficult, it was 

decided that ketone (S)-222 (1.0 equiv.) should be reduced to alcohols 225a/b 

using NaBH4 (1.5 equiv.), with the hope that it may provide improved separation 

on GC (Scheme 2.5.18).  As one might expect, the reduction proceeded with very 

little diastereoselectivity, as determined by integration of the 
1
H NMR signals.   

 

Scheme 2.5.18 

Gratifyingly, it was then possible to analyse the diastereomeric mixture containing 

oxetan-3-ol 225a/b, after routine conversion to its corresponding acetate, using 

GC analysis on a CP-ChiraSil-DEX CB column (Figure 2.5.1).   This separated 

the sample into two major and two minor peaks.  For comparison, (±)-222 was 

also reduced and converted to its corresponding acetate and subjected to the same 

analysis (Figure 2.5.2).  As the reduction was virtually non-selective, it was 

possible to assign the peaks and derive an estimate of 74% ee for 225 and hence 

(S)-222, from which it was derived.  The method that was used to establish the 

absolute stereochemistry of (S)-222 is discussed in section 2.5.8.  
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Figure 2.5.1 GC chromatograms of enantioenriched 225 CP-ChiraSil-DEX CB 

25m x 0.25 m x 0.25 µm, T = 160°C, P = 18 psi, carrier gas = He 

 

 

 

 

 

Figure 2.5.2 GC chromatograms of (±)-225 CP-ChiraSil-DEX CB 25m x 0.25 m 

x 0.25 µm, T = 160°C, P = 18 psi, carrier gas = He  
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2.5.8. Pictet-Spengler Reaction of Chiral Oxetan-3-ones 

Later in this thesis, we demonstrate that Pictet-Spengler reactions on 2- 

substituted oxetan-3-ones proceed in good yields (see section 3.3).  Moreover, the 

products are highly crystalline and the structures and stereochemistry can be 

obtained using X-ray crystallography.  In contemplating a method for the 

determination of the absolute configuration of 222, we imagined that Pictet-

Spengler reaction of it with enantiopure L-tryptophan ethyl ester 226 could be 

used to produce a diastereomerically pure adduct, whose relative configuration 

could be established by X-ray crystallography.  Knowing the (S)-configuration of 

the L-tryptophan, the absolute configuration of the oxetane centre could then be 

derived. 

L-tryptophan ethyl ester (226) was obtained in good yield via reaction between L-

tryptophan (227) (1.0 equiv.) and SOCl2 (1.5 equiv.) in ethanol (Scheme 2.5.19). 

 

Scheme 2.5.19 

Chiral 2-benzyl oxetan-3-one  (222)  (1 equiv., 75% ee) was then reacted with (S)-

226 (1.2 equiv.), with a catalytic amount of I2, in acetonitrile producing 

tetrahydro-β-carbolines 228a/b in good yield and in high diastereoselectivity.  

Separation of the diastereomers was possible using column chromatography and, 

as expected from the work in Chapter 3, only two diastereomers were isolated.   
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Scheme 2.5.20 

It was possible to crystallise both of the isolated diastereomers from this reaction 

and subject them separately to X-ray crystallography, in order to determine their 

relative configurations (Figure 2.5.3 and Figure 2.5.4).  The (S)-enantiomer of 222 

produced major diastereomer 228a, whilst the small amount of (R)-enantiomer 

was responsible for minor diastereomer 228b.  It should be noted that the dr in 

this reaction broadly parallels the ee of oxetan-3-one 222, indicating no 

racemisation of 222 under the cyclisation conditions.  From the Pictet-Spengler 

reaction and product stereochemistries, it was then possible to confidently assign 

the stereochemistry of the major enantiomer of oxetane 222 as (S)-configured. 
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Figure 2.5.3 Major (228a) Figure 2.5.4 Minor (228b) 

2.5.9. Conclusions and Future Work 

For the first time we have shown that oxetan-3-one (15) is a suitable candidate for 

enantioselective alkylations using SAMP-hydrazone methodology.  Specifically, 

we have shown that this paves the way for the fast and efficient synthesis of 2-

substituted oxetan-3-ones.  The synthesis begins with reaction of oxetan-3-one 

(15) with SAMP hydrazine under mild heating to produce SAMP-oxetane 

hydrazone 210 in excellent yield.  This may then be lithiated using tert-

butyllithium at –78 °C before being diastereoselectively alkylated with benzyl 

bromide, producing alkylated hydrazone 212 in very good yield.  Conversion of 

this product to enantioenriched oxetan-3-one 222 is made possible by hydrolysis 
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using saturated aqueous oxalic acid under mild conditions in good yield and ee 

(Scheme 2.5.21). 

 

Scheme 2.5.21 

The stereoselectivity that arises in this reaction has been unambiguously 

established and can be explained by referring to studies carried out by Enders (see 

section 2.5.1).  Preferential attack of the electrophile to the less hindered Si-face 

of the conformationally rigid and chelated structure 229 occurs (Figure 2.5.5). 

 

Figure 2.5.5 
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Time constraints did not allow the full development of this chemistry, however, in 

future work, the scope of the alkylation will be explored by using different 

electrophiles.  Indeed, ongoing work by co-worker Dr Joanna Geden has 

demonstrated that alkyl and allylic electrophiles work well.  To improve the 

enantioselectivity, alkylations could be attempted at lower temperatures.  In 

keeping with the idea of using oxetan-3-ones as building blocks, multiple 

alkylations could be attempted on the 2- and 4-positions of the oxetane ring in 

210, which would allow for a variety of interesting oxetane-containing structures 

230 to be synthesised (Scheme 2.5.22).  These preliminary results should pave the 

way for the development of a simple, direct new method of chiral 2-substituted 

oxetane synthesis. 

 

Scheme 2.5.22 
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3.1. Introduction 

In the previous chapter we had little success in performing U-4CRs with oxetan-3-

ones (section 2.3.1) and as such, we were interested in further exploring whether 

the reason for this failure might be the inability of oxetan-3-ones to efficiently 

form reactive imines.   

Condensation between tryptamine (231) and oxetan-3-ones 146 would give imine 

intermediate 232 which, if successful, would rearrange to give access to the 

pharmaceutically important tetrahydro-β-carboline (THBC) 233, containing the 

oxetane nucleus (Scheme 3.1.1).  As well as verifying the broader feasibility of 

using iminooxetanes in synthesis, the introduction of the oxetane nucleus might 

modulate the properties of the resulting THBC.  For example, the inclusion of the 

oxetane unit might enrich the metabolic stability of such compounds, or perhaps 

alter other biological properties such as bioactivity and bioavailability. 

 

Scheme 3.1.1 
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This chapter describes our efforts to do this through the development of Pictet-

Spengler reactions of oxetanones and related heterocycles.  Before discussing our 

work, it is pertinent to highlight key literature relating to Pictet-Spengler 

reactions. 

3.2. The Pictet-Spengler Reaction 

The Pictet-Spengler reaction, first discovered by Pictet and Spengler in 1911, 

remains one of the simplest and most successful methods for synthesising the 

isoquinoline and indole alkaloid scaffolds.
128

  Through the combination of β-

phenylethylamine 234 and formaldehyde (235), under acidic conditions, 1,2,3,4-

tetrahydroisoquinoline (THQ) 236 was formed in one step (Scheme 3.2.1). 

 

Scheme 3.2.1 

Later, Tatsui discovered that a modified procedure, using tryptamine (231) as the 

amine component, allowed for the synthesis of the tetrahydro-β-carboline THBC 

skeleton 237 (Scheme 3.2.2). 

 

Scheme 3.2.2 
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The mechanism for the formation of THBCs via the Pictet-Spengler reaction has 

been the subject of debate.  Condensation between tryptamine (231) and a suitable 

carbonyl compound first occurs to form imine species 238.  The indole then 

attacks the iminium ion from either the 2-position to form 239, or as is more 

commonly accepted, via the 3-position to form spiroindolenine 240 (Scheme 

3.2.3).  Further proton loss from 239 provides the observed THBC 241.
129

   

 

Scheme 3.2.3 

Although some studies have suggested that 238 directly rearranges to 241,
130

 

strong evidence for the involvement of 240 exists from isotopic labelling studies 

performed by Bailey (Scheme 3.2.4).
131

  Hydrazine 242 was condensed with 

isotopically enriched formaldehyde.  Analysis of the mixture using 
1
H NMR and 

mass spectrometry revealed the formation of a roughly equal mixture of 244, 245, 

246 and 247.  It was reasoned that the reaction mechanism must go via the spiro-

intermediate 248 in order to obtain 246 and 247.  The statistical mixture obtained 

was consistent with an equilibrium formed between a spiro-intermediate and 
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reversible imine formation-hydrolysis.  From this it was possible to conclude that 

formation of the tetrahydro-3-aza-β-carboline 244 was slow in comparison with 

these processes. 

 

Scheme 3.2.4 

3.2.1. Tetrahydro-β-Carbolines (THBCs) 

A large number of biologically active compounds contain the THBC 

functionality.
132,133

  For nearly 60 years, naturally occurring, THBC-containing 

reserpine has been used extensively in the treatment of hypertension and mental 

disorders (Figure 3.2.1).
134

  The use of THBCs in other therapeutic areas has also 

been explored, most notably in the synthesis of tadalafil, which is primarily used 

in the treatment of erectile dysfunction.
135,136
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THBCs have also been found in every day commodities such as chocolate
9
 and 

fruit juices,
137,138

 where they are thought to be associated with the prevention of 

oxidative decay.
138

  Compounds containing the THBC have also been located in 

the human brain and other tissues.
139

 

 

Figure 3.2.1 

3.2.2. Stereocontrol in the Pictet-Spengler Reaction 

The use of enzymes to control the stereochemical outcome of Pictet-Spengler 

reactions has been widely developed.
140

  Beyond these biosynthetic examples of 

stereocontrol, there are a number of notable, non-enzymatic, stereochemically-

controlled Pictet-Spengler reactions.
140

  Investigations initially led by Cook and 

co-workers showed that tryptophan derived THBCs could be formed under aprotic 

conditions.
141

  Later on, it was shown that N-benzyltryptophan ethyl ester 249 

takes part in a stereospecific Pictet-Spengler reaction with various aldehydes, 

exclusively providing the trans-isomer of N-benzyl derivatives 250 (Scheme 

3.2.5).
142

  The benzyl group could then be removed via hydrogenation affording 

β-carbolines 251 in very good yields. 
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Scheme 3.2.5 

Following on from the diastereoselective Pictet-Spengler reaction of tryptophan 

derivatives, a number of attempts have been made to emulate its success when 

using tryptamines.  The use of chiral auxiliary groups to influence the 

diastereoselectivity in Pictet-Spengler reactions of tryptamines with aldehydes has 

also been studied.  For example, Gremmen et al. showed that chiral sulfoxide-

tethered tryptamines 252 react with a variety of alkyl aldehydes, providing 253 as 

single diastereomers (Scheme 3.2.6).
143

  Removal of the chiral auxiliary under 

mild, racemisation-free conditions gave the enantiopure THBCs 254 in good 

yield. 



 

 

 

Chapter 3: Reactions of Iminooxetanes 

101 

 

 

 

Scheme 3.2.6 

Lewis and Brønsted acids have also been used to influence the enantioselectivity 

of Pictet-Spengler reactions.  The asymmetric formation of 1,1-disubstituted 

THBCs via Lewis acid mediated processes has recently been achieved by 

Leighton and co-workers.
144

  By using chiral, silyl-compound 255, a variety of 

tryptamines 256 could be reacted in a one-pot reaction with both alkyl and aryl α-

(alkyl)ketoamides 257.  The product α-amino amides 258 were isolated in good 

yield and high enantioselectivity, however, the Lewis acid had to be used in 

stoichiometric quantities. 

 

Scheme 3.2.7 
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In 2004 Jacobsen and co-workers presented the first catalytic enantioselective 

Pictet-Spengler reaction.
145

  They employed the use of chiral thiourea catalysts as 

weak Brønsted acids.  Later work by Jacobsen and co-workers showed that a 

combination of thiourea catalyst 259 and benzoic acid as a co-catalyst could be 

used to induce higher yields and enantioselectivities in the reaction between 

tryptamine 260 and several aldehydes, producing THBCs 261 (Scheme 3.2.8).
146

   

 

Scheme 3.2.8 

Chiral carbonyl compounds have also found use in the enantioselective synthesis 

of THBCs.  Of particular note is the enantioselective one-pot Michael addition-

Pictet-Spengler sequence developed by Wu et al., which allows for the synthesis 

of indoloquinolizidines 262 (Scheme 3.2.9).
147

  This sequence begins with the 

organocatalysed Michael addition of β-keto ester 263 onto allyl aldehyde 264, 

using catalytic 265.  The resulting chiral hemiacetal 266 is then condensed with 

tryptamine (231), selectively providing indoloquinolizidines 262 in good yield 

and enantioselectivity. 



 

 

 

Chapter 3: Reactions of Iminooxetanes 

103 

 

 

 

Scheme 3.2.9 

3.3. Pictet-Spengler Reaction of Oxetan-3-ones
1
 

In response to the scant literature coverage of reactions involving iminooxetanes, 

we began by exploring their chemistry using the Pictet-Spengler reaction.  In 

order to test the feasibility of performing Pictet-Spengler reactions on oxetanones, 

oxetan-3-one (15) (1 equiv.) was reacted with tryptamine (231) (1.2 equiv.) under 

various conditions, altering the catalyst and solvent (Table 3.3.1).   

  

                                                 

1
 Preliminary investigations into the Pictet-Spengler reactions of oxetan-3-ones 

were carried out by an MChem student, Abimbola Alli-Balogun, under my 

supervision. 
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Entry Activator Solvent Temp. (°C) Conversion
[a]

 (%) 

1 - CH3CN 82 75
b 

2 CF3COOH (2%) CH2Cl2 r.t. 4 

3 CF3COOH (2%) CH3CN 82 25 

4 Yb(OTf)3 (10%) CH2Cl2 r.t. 8 

5 BF3·OEt (3 equiv.) CH2Cl2 40 0 

6 I2 (5%) CH3CN 82 48
b 

a
Calculated from 

1
H NMR using 1,3,5-trimethoxybenzene as an internal standard.  

b
Yield after column chromatography.

  
 

Table 3.3.1 

Gratifyingly, THBC 267 was produced under a variety of conditions.  The 

structure of 267 was confirmed using NMR spectroscopy.  
1
H NMR of 267 

displayed a set of aromatic signals integrating to a total of four hydrogens, which 

correspond to the indole hydrogens of 267.  The oxetane signals became split into 

a pair of AB doublets at 5.02 and 4.74 ppm respectively and integrating to a total 

of four hydrogens.  As well as providing the necessary aromatics (specifically 

four CH carbons and four quaternary carbons) the 
13

C NMR also revealed signals 

for the oxetane methylenes at 84.2 ppm, along with the quaternary carbon at 

57.3 ppm.  HRMS of 267 also gave the expected [M+H]
+
 peak at 215.1178.   

It was noteworthy that the best yield was obtained when no activator was 

employed in the reaction (Table 3.3.1, entry 1).  This result was unexpected as 

uncatalysed Pictet-Spengler reactions are not commonly reported.
141,148

  Catalytic 
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I2 in acetonitrile also provided the expected product in a reasonable yield (entry 

6).  We were inspired to use iodine as a catalyst because it had previously been 

reported as a useful catalyst in the Pictet-Spengler reactions of tryptamines and a 

variety of unactivated ketones.
149,150

  Catalytic TFA in both dichloromethane and 

acetonitrile did not provide appreciable amounts of 267 (entries 2 and 3 

respectively).  Lewis acid catalysts proved ineffective for this transformation 

(entries 4 and 5). 

With the knowledge that several conditions could be employed, the scope of the 

reaction was next investigated.  Oxetan-3-one (15) (1 equiv.) was reacted with 

three different amines 226, 268 and 269 (1.2 equiv.), providing products 270-272 

(Table
 
3.3.2).  As with the synthesis of 267, amine 268 bearing a 5-methoxy group 

on the indole worked well without any catalyst in acetonitrile, giving product 270 

(entry 1).  Repetition of this reaction in acetonitrile with catalytic I2 led to a lower 

yield.  Reaction with enantiopure L-tryptophan ethyl ester (226), which was 

synthesised from L-tryptophan (227) (see Chapter 2, Scheme 2.5.19), in the 

presence of I2 in acetonitrile gave 271 in excellent yield (entry 2), whilst lower 

yields were observed when the reaction was attempted using no catalyst.  For the 

N-substituted indole-containing product 272, a low yield was obtained using 

catalytic I2 (entry 3).  Unfortunately, due to the lack of the necessary amine 

starting material, the synthesis of compound 272 was not attempted under any 

other conditions. 
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Entry Amine Product Yield (%) 

1 

  

85
[a]

/69
[b] 

2 

 
 

50
[a]

/89
[b]

 

ee≥96%
[c] 

3 

  

52
[b] 

 

[a]
 No catalyst 

[b] 
I2 (5 mol %) 

[c]
 ee determined using chiral shift 

1
H 

NMR with (S)-1-Anthracen-9-yl-2,2,2-trifluoroethanol (Pirkle’s 

alcohol).
126

 

Table 3.3.2 

In the case of (S)-271, we verified that little or no racemisation occurred during 

the reaction.  This was done by chiral shift NMR analysis using (S)-1-anthracen-

9-yl-2,2,2-trifluoroethanol (Pirkle’s alcohol) [(S)-273] (1 equiv.) in CDCl3 as an 

NMR solvent (see Figure 3.3.1).  For comparison, the corresponding racemic 

derivative of (S)-271, (±)-271, was made starting from (±)-226 via a route 

identical to that used in the synthesis of (S)-271.  A region in the 
1
H NMR where 

the two sets of peaks are well separated was selected for analysis.  In this case, it 

was convenient to select a doublet at 5.0 ppm which corresponds to one of the 
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hydrogens on the oxetane ring.  When the NMR sample contained only (S)-271 

and (S)-273, only one set of peaks are present (Figure 3.3.1, A).  Conversely, 

when the NMR sample containing (±)-271 and (S)-273 was analysed, two sets of 

peaks became apparent, which corresponded to the presence of both (S)-271 and 

(R)-271 (Figure 3.2.1, B).  From this, it was possible to obtain the chemical shift 

values for the (R)-enantiomer.  Subsequent integration of these areas for the 

sample containing predominantly (S)-271 allowed for an estimation of the 

quantity of (R)-271 in the sample and, hence, its enantiomeric excess (≥ 96% ee). 
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Figure 3.3.1 - A: (S)-271 (1.0 equiv.), (S)-273 (1.0 equiv.) B: (±)-271 (1.0 equiv.), 

(S)-273 (1.0 equiv.). 
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The scope of the reaction was further extended by performing it with substituted 

oxetan-3-one 170 (1.0 equiv.) and amines 231 or 268 (1.2 equiv.), producing 

THBCs 274 and 275 in good yields (Scheme 3.3.1).  For compound 274, the use 

of catalytic I2 gave a yield of 62%, however, the use of no catalyst led to a lower 

yield.  The stereochemistry of 274 was solved by X-ray crystallography (vide 

infra).  With these results in mind, the synthesis of structurally similar product 

275 was only attempted using I2 as a catalyst, providing 275 in 72% yield. 

Scheme 3.3.1 

As catalytic I2 appeared to be working well for this transformation, we decided to 

continue with its use in further reactions of 2-substituted oxetan-3-ones.  Thus, 

reaction of 170 with L-tryptophan ethyl ester (226) with catalytic I2 provided 

276a/b in very good yield (Scheme 3.3.2).   
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Scheme 3.3.2 

When the reaction was attempted using the bulky 2-cyclohexyl oxetan-3-one 

(171) and 226, the product 277 was obtained in low yield (Scheme 3.3.3).   

 

Scheme 3.3.3 
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In all of these Pictet-Spengler reactions, all of the oxetane starting materials were 

used as racemic mixtures.  Generally, the reactions proceeded in a relatively clean 

fashion by TLC analysis and products 274, 275 and 276 and 277 were isolated as 

single diastereomers after column chromatography.   

Further analysis of the crude 
1
H NMRs of 274, 275, 276 and 277 revealed a 

separate set of unidentifiable signals, estimated by integration at 20%, 15%, 13% 

and 63% respectively of the samples.  These signals could result from the 

presence of other diastereomers or perhaps the imine intermediate.  In this regard, 

it is notable that the lowest yielding example (277) appeared to contain a large 

amount (63%) of this impurity.  This might be due to the bulky cyclohexyl group 

preventing efficient cyclisation to 277 and therefore stalling at the imine 

intermediate, which is subsequently present in the NMR solution.  However, 

despite numerous attempts using column chromatography, the compounds giving 

rise to these signals could not be isolated.   

Crucially, it was possible to grow crystals of 274 from CH2Cl2/pentane that were 

suitable for X-ray crystallography.  This revealed the relative configuration of the 

isolated diastereomer.  The X-ray crystal structure revealed the bulky ethyl phenyl 

chain of the oxetane ring and the large indole system to be on opposite faces of 

the oxetane ring (Figure 3.3.2).  
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Figure 3.3.2 X-ray structure of 274 

An explanation for the high level of diastereoselectivity is proposed in Scheme 

3.3.4.  After condensation of tryptamine (226) and oxetan-3-one 170 to form 

imine 278, the indole preferentially attacks C-3 of the oxetane-iminium species 

from the face opposite to that of the oxetane C-2 substituent, before finally 

rearranging to give 274 as the major diastereomer (Scheme 3.3.4).   

 

Scheme 3.3.4 
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The relative stereochemistry of 274 could be deduced using NOE experiments 

(Table 3.3.3).  Irradiation of the indole NH (H
1
) gave enhancements of oxetane 

hydrogens H
2
 and H

3
 but, crucially, not H

4
.  Irradiation of H

2
 gave a strong 

enhancement of the signal corresponding to H
4
 and H

3
, however, irradiation of H

3
 

did not lead to an enhancement of the signal corresponding to H
4
.  H

2
 and H

3
 were 

therefore determined to reside on the same face of the oxetane ring.  No 

enhancement of the H
5
 signal was observed when any of the other hydrogens were 

irradiated.
 

 

Irradiated H
1
 (%) H

2 
(%) H

3
 (%) H

4
 (%) 

H
1
 - 1.61 2.64 0 

H
2
 1.73 - 0.58 13.3 

H
3
 2.34 0.35 - 0 

H
4
 0 13.3 0 - 

Table 3.3.3 

As we had determined the relative configuration of 274 using NOE experiments, 

and conclusively confirmed these findings by using X-ray crystallography, we 

were able to use NOE to assist in the stereochemical assignment of 276 and 277.  

The relative (1S*, 2S*) stereochemistry of 277 was readily determined using 

NOESY 
1
H NMR experiments.  Specifically, NOE enhancements (cross-peaks) 

between H
1
, H

2
 and the indole NH were observed (Figure 3.3.3), as were 
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interactions between H
3
 of the oxetane and H

4
 of the cyclohexyl ring.  These 

findings were identical to those seen for 274. 

 

Figure 3.3.3 

Reaction between (±)-170 and 226 provided two diastereomers; 276a and 276b as 

an inseparable mixture after column chromatography in near equal quantities 

(Scheme 3.3.5).  Both of these diastereomers derive from nucleophilic attack of 

the indole nucleophile onto the face of the iminooxetanes species opposite the 

phenethyl substituent (see Scheme 3.3.4).  The fact there was no 

diastereoselectivity (dr 1.1:1) is consistent with the fact that the oxetan-3-one 

starting material is a racemic mixture, hence both (R)-170 and (S)-170 could 

equally take part in the reaction.   

 

Scheme 3.3.5 
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The stereochemical assignments of 276a and 276b were determined using 

NOESY 
1
H NMR experiments.  In each case, interactions between the indole NH 

and H
1
 and H

2
 were observed, with no interaction between the indole NH and 

either H
3
 or the oxetane 2-substituent, confirming that the C–2 substituent and 

indole NH are on opposite faces of the oxetane ring, as depicted in Figure 3.3.4.  

These NOESY experiments did not enable us to unambiguously differentiate 

between these two diastereomers.  The close structural similarity between 276a/b 

and 228a/b, whose structures were deduced by X-ray crystallography (Figure 

2.3.3) lends further weight to these assignments. 

 

Figure 3.3.4 

  



 

 

 

Chapter 3: Reactions of Iminooxetanes 

116 

 

 

3.3.1. Pictet-Spengler Reactions of Azetidin-3-ones 

Having shown that oxetanes can be successfully incorporated into THBC 

skeletons, we were interested to see if other four-membered heterocyclic ketones, 

such as N-tosylazetidin-3-one 279 would also take part in the reaction (Scheme 

3.3.6).  Reaction of 279 (1.0 equiv.), which was provided by laboratory co-worker 

Nicola Powell, with amine 231 (1.2 equiv.) and catalytic I2 afforded the expected 

product 280 in low yield.  However, use of catalytic TFA led to a significant 

improvement in yield.  Satisfied with these results and also due to the small 

amount of 279 available, the same reaction was not performed in the absence of a 

catalyst.  The structure of 280 was assigned using NMR spectroscopy, as well as 

HRMS.  The 
1
H NMR in d6-DMSO displayed a downfield singlet at 10.94 ppm 

characteristic of the indole NH, as well as eight aromatic hydrogens.  The oxetane 

signals appear as a set of AB-doublets at 4.07 and 3.67 ppm.  The 
13

C NMR 

provided eight aromatic CH carbons, as well as a quaternary carbon at 50.8 ppm 

for the oxetane C–3.  By use of the HMQC and HMBC experiments, it was 

possible to further assign all of the hydrogen and carbon atoms of 280.  The 

HRMS provided the expected [M+H]
+
 peak at 368.1424. 

 

Scheme 3.3.6 
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As with the oxetanones, it was possible to expand the scope of the reaction further 

via the use of L-tryptophan ethyl ester (226) (1.2 equiv.) (Scheme 3.3.7).  In this 

case catalytic I2 was used, producing 281 in good yield with essentially no 

racemisation.  

 

Scheme 3.3.7 

The enantiomeric excess of (S)-281 was determined using chiral shift 
1
H NMR, 

using (S)-1-anthracen-9-yl-2,2,2-trifluoroethanol (Pirkle’s alcohol) [(S)-273] as 

chiral shift reagent.
126

  For comparison, (±)-281 was synthesised via a route 

analogous to that used in the synthesis of (S)-281, using (±)-tryptophan [(±)-226] 

(1.2 equiv.) as the starting material.   

The 
1
H NMR of a 1:1 mixture of (S)-281 and (S)-273 in CDCl3 displays a doublet 

at 3.81 ppm that corresponds to one of the hydrogens attached to the oxetane ring 

(Figure 3.3.5, A).  This NMR sample was then doped with (±)-281 and the 

resultant mixture analysed by 
1
H NMR (Figure 3.3.5).  This experiment provided 

the chemical shift of one of the oxetane hydrogens of the (R)-enantiomer.  By 

integration of these regions in the 
1
H NMR of the (S)-281 and (S)-273 mixture 

(Figure 3.3.5, A), it was possible to estimate an enantiomeric excess of ca ≥98%. 
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Figure 3.3.5 – A: (S)-281 (1 equiv.), (S)-273 (1 equiv.); B: (S)-281 (1 equiv.), (S)-

273 (1 equiv.), (±)-281. 

 

3.3.2. Attempted Synthesis of Tetrahydroisoquinolines 

The Pictet-Spengler reaction was originally used for the synthesis of 

tetrahydroisoquinolines (THQs).
128

  In an effort to further extend the scope of the 

Pictet-Spengler reaction of oxetan-3-ones, it was of interest to examine if THQ 

products 282 could also be synthesised using this newly developed methodology 

(Scheme 3.3.8). 

 

Scheme 3.3.8 

A 

 

B 
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To begin with, the reaction was attempted with substituted oxetanone 170 (1 

equiv.) and 3,4-dimethoxyphenylamine (283) (1.2 equiv.), using I2 as a catalyst 

(Scheme 3.3.9).  Although there was no starting material left at the end of the 

reaction and the 
1
H NMR splitting pattern of oxetane hydrogens had become more 

complex, it was not possible to isolate any of the expected product, 284, cleanly 

from the crude mixture. 

Scheme 3.3.9 

Undeterred, we repeated the reaction using the parent oxetanone 15 under the 

same conditions (Scheme 3.3.10).  Initially, the crude 
1
H NMR looked promising; 

the oxetane signals were clearly split into two separate signals at 4.82 and 5.19 

ppm.  However, careful inspection of the aromatic region indicated the presence 

of an additional aromatic hydrogen, which was inconsistent with ring closure.  

Analysis of the 
13

C NMR also revealed three aromatic CH signals, rather than the 

two required.  These observations are consistent with the reaction stalling at 

iminooxetane 285.  Although LRMS revealed the expected [M+H]
+
 peak at 236, 

this was unhelpful as both the expected product 286 and intermediate 285 have 

the same molecular mass. 
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Scheme 3.3.10 

Although this result was disappointing, similar situations are reported in the 

literature.
151,152

  In the case of ketones, the reaction often has to be performed 

stepwise by preforming the imine using a Lewis acid catalyst and subsequently 

heating in acid.
153

  The difficulty associated with the cyclisation may also be 

attributed to the lower nucleophilicity of the phenyl ring in 283 compared to the 

indole ring in tryptamine derivatives.
154

  Our attempts to promote the cyclisation 

by repeating the reaction using ethanol as a solvent, using TFA (10 mol %) as a 

catalyst or subjecting the reaction to microwave irradiation (300W, 20 min, 100 

°C) all provided the imine, rather than the desired THQ.  With no signs of the 

desired THQ by NMR, attempts to explore the synthesis of these compounds were 

abandoned. 

3.3.3. Conclusions and Future Work 

We have shown that both oxetan-3-ones and azetidin-3-ones take part in Pictet-

Spengler reactions with both tryptamines and tryptophan ethyl ester (Figure 

3.3.6).  Generally, the reactions proceed in very good yields and, in some cases, 

good yields can be obtained without the addition of any catalyst.  Iodine and TFA 
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were also shown to be effective catalysts for other examples.  A total of nine 

compounds were synthesised, with the reaction tolerating substitution of the 

indole ring nitrogen and substituents at C–2 of the oxetane ring.  Where 

applicable, only one diastereomer of the products was isolated from the reaction 

mixture.  The stereochemical course of the reaction can be rationalised through 

addition of the indole nucleophile to the least hindered face of the imine 

intermediate. 

 

Figure 3.3.6 

This work confirms that oxetan-3-ones and azetidine-3-ones may be converted to 

their ketimine analogues, allowing for exploitation of the imine functionality in 

subsequent reactions.  Interestingly these reactions appear to proceed with 

excellent diastereoselectivity and we were able to assign the stereochemistry of 

the products using a combination of X-ray crystal structures and NOE/NOESY 

measurements.  In our hands the chemistry could not be extended to the synthesis 

of THQs, however, by conducting a more thorough screen of suitable conditions 

success might be achieved in the future. 

 

The THBC skeleton is of particular pharmacological interest.  It would therefore 

be interesting to test the compounds in relevant biological assays in order to 
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ascertain whether they have useful pharmacological properties and to explore how 

the properties of the THBC nucleus are modulated by the introduction of the 

oxetane ring. 
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General Information 

Anhydrous solvents were purchased in Sure/Seal
TM

 bottles from Sigma-Aldrich 

Co. All other solvents and reagents were used as received or purified by standard 

protocols. Petroleum ether refers to the fraction of petroleum ether having a 

boiling point between 40-60°C. All experiments were performed under an inert 

atmosphere in oven-dried or flame-dried glassware as required. Column 

chromatography was carried out using Fluorochem LC60A 40-63 micron silica. 

Thin layer chromatography was performed on pre-coated aluminium-backed 

plates (Merck TLC silica gel 60 F254) and visualised using UV light and staining 

with potassium permanganate or ceric ammonium molybdate followed by heating. 

Melting points were recorded on a Gallenkamp MPD350 apparatus. Single crystal 

X-ray diffraction data were obtained using an Oxford Diffraction Gemini XRD 

system. Optical rotations were measured with an AA1000 polarimeter. Infrared 

spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer or a 

Bruker Alpha Platinum ATR spectrometer with internal calibration and are given 

in cm
-1

. 
1
H and 

13
C NMR spectra were recorded at 300 MHz and 75 MHz 

respectively on a Bruker Spectrospin DPX300; at 400 MHz and 100 MHz 

respectively on a Bruker Spectrospin DPX400; at 500 MHz and 125 MHz 

respectively on a Bruker Spectrospin DPX500.  Chemical shifts are reported in 

ppm. Signals are reported as singlets (s), doublets (d), triplets (t) etc., which refer 

to the spin-spin coupling patterns. Coupling constants are reported in Hertz.  High 

resolution mass spectra were obtained using a Bruker ESI-Micro TOF instrument. 

Warwick Analytical Service carried out all elemental analysis.  
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[Bis(trifluoromethanesulfonyl)imidate](triphenylphosphine)gold(I) (153) 

Silver carbonate (720 mg, 2.60 mmol) and 

bis(trifluoromethane)sulfonimide (1.50 g, 5.20 

mmol) were dissolved in H2O (26 mL) and the 

reaction mixture was heated at reflux for 3 h.  After cooling, the reaction mixture 

was concentrated in vacuo to give silver bis(trifluoromethanesulfonyl)imide as a 

cream solid.  Meanwhile, chloro(dimethylsulfide)gold(I) (154) (553 mg, 1.88 

mmol) and triphenylphosphine (493 mg, 1.88 mmol) were dissolved in anhydrous 

CH2Cl2 (50 mL) and the solution was stirred at r.t. for 30 minutes.  The reaction 

mixture was concentrated in vacuo and the resultant solid was washed with 

hexane, filtered and the remaining solvent removed in vacuo to give 

chloro(triphenylphosphine)gold(I) (678 mg, 93%) as a white solid.  

Chloro(triphenylphosphine)gold(I) (572 mg, 1.16 mmol) was added to a solution 

of silver bis(trifluoromethanesulfonyl)imide (448 mg, 1.16 mmol) in anhydrous 

CH2Cl2 (29 mL) and the reaction mixture was stirred at r.t. for 30 min.  The 

solution was filtered through celite
®
, washing through with CH2Cl2 and the solvent 

removed in vacuo to give the title compound as a white solid (825 mg, 96%).  δH 

(300 MHz, CDCl3) 7.40-7.10 (m, ArH); δC (75 MHz, CDCl3) 133.6 (CH, Ar), 

133.5 (CH, Ar), 133.4 (CH, Ar), 132.4 (CH, Ar), 131.9 (CH, Ar), 129.5 (CH, Ar), 

129.45 (CH, Ar), 129.4 (CH, Ar), 129.0 (CH, Ar), 128.8 (CH, Ar), aromatic 

quaternary carbons not observed; δP (121.5 MHz, CDCl3) 30.31.  Procedure taken 

from literature.
155
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3-(tert-Butylcarbamoyl)oxetan-3-yl acetate (by one pot method from 

propargyl alcohol (150)) (155) 

To a stirred solution of 150 (29 µL, 0.5 mmol), 152 

(164 mg, 1 mmol) and HNTf2 (169 mg, 0.6 mmol) in DCE 

(2.5 mL) was added 153 (19 mg, 0.025 mmol).  The 

mixture was stirred at r.t. for 2 h and then washed with a saturated NaHCO3 

solution (5 mL) and the organic layer was dried over MgSO4 and filtered.  Acetic 

acid (29 µL, 0.5 mmol) was then added to the stirred solution followed by tert-

butyl isocyanide (28 µL, 0.25 mmol) and the reaction mixture was then stirred at 

r.t. for 18 h.  The crude mixture was diluted with CH2Cl2 and then washed with 

saturated aqueous NaHCO3 solution (2 x 10 mL) and brine (10 mL).  The organic 

layer was dried over MgSO4, filtered and the solvent removed in vacuo.  

Purification was achieved using column chromatography (40% EtOAc in 

petroleum ether) affording the title compound (10 mg, 48%) as a white solid.  

M.p. 105-107 °C;  IR (solid) 3381, 2972, 2150, 1745, 1668, 1533, 1448, 1367, 

1228, 1198 cm
-1

;  δH (400 MHz, CDCl3) 5.91 (1H, br s, NH), 4.91 (2H, d, J = 7.9, 

CH2), 4.73 (2H, d, J = 7.9, CH2), 2.17 (3H, s, CH3), 1.37 (9H, s, CH3); δC (100 

MHz, CDCl3) 169.5 (C=O), 167.0 (C=O), 78.4 (CH2), 78.4 (C), 51.7 (C), 28.6 

(CH3), 20.7 (CH3); MS (ES
+
) 238 [M+Na]

+
; HRMS (ES

+
) calcd. for 

C10H17NNaO4 [M+Na]
+
: 238.1050; found: 238.1047. 
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Synthesis of 3-substituted oxetanes 155-163:  

 

General Method 1.   

To a stirred solution of oxetan-3-one (15) (0.5 mmol) in DCE (1 mL) was added 

the carboxylic acid (0.6 mmol) and isocyanide (0.6 mmol).  The reaction was 

stirred for 18 h at r.t. then diluted with CH2Cl2 (10 mL), washed with a saturated 

aqueous NaHCO3 solution (2 x 10 mL) followed by brine (10 mL).  The organic 

layer was dried over MgSO4, filtered through a plug of silica gel, washing with 

CH2Cl2, and the solvents removed in vacuo.  

  

3-(tert-Butylcarbamoyl)oxetan-3-yl acetate (from oxetan-3-one (15)) (155). 

Reaction of 15 (32 µL) with acetic acid (34 µL) and tert-

butyl isocyanide (68 µL) according to General Method 1 

afforded the title compound (97 mg, 90%) as a white solid.  

Data as previously reported. 

 

3-(Cyclohexylcarbamoyl)oxetan-3-yl acetate (156). 

 Reaction of 15 (32 µL) with acetic acid (34 µL) and 

cyclohexyl isocyanide (74 µL) according to General 

Method 1 afforded the title compound (95 mg, 79%) as a 

white solid.  M.p. 125-127 °C; IR (film) 3307, 2934, 2852, 1736, 1656, 1541, 

1451, 1371, 1348, 1240, 1188, 1166 cm
-1

; δH (400 MHz, CDCl3) 5.95 (1H, br d, J 

= 7.2, NH), 4.93 (2H, d, J = 7.9, CH2), 4.75 (2H, d, J = 7.9, CH2), 3.86-3.76 (1H, 
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m, cy), 2.17 (3H, s, CH3), 1.93-1.89 (2H, m, cy), 1.72-1.66 (2H, m, cy), 1.63-1.58 

(1H, m, cy), 1.42-1.31 (2H, m, cy), 1.24-1.13 (3H, m, cy); δC (100 MHz, CDCl3) 

169.6 (C=O), 167.0 (C=O), 78.4 (C), 78.7 (CH2), 48.5 (CH), 32.9 (CH2), 25.4 

(CH2), 24.7 (CH2), 20.7 (CH3);  MS (ES
+
) 264 [M+Na]

+
; HRMS (ES

+
) calcd. for 

C12H19NNaO4 [M+Na]
+
: 264.1206; found: 264.1205. 

 

3-(Butylcarbamoyl)oxetan-3-yl acetate (157). 

Reaction of 15 (32 µL) with acetic acid (34 µL) and n-

butyl isocyanide (63 µL) according to General Method 

1 afforded the title compound (55 mg, 51%) as a white 

solid.  M.p. 60-65 °C; IR (film) 3388, 2959, 2359, 2342, 1744, 1665, 1541, 1350, 

1193 cm
-1

; δH (400 MHz, CDCl3) 6.11 (1H, br s, NH), 4.94 (2H, d, J = 8.4, CH2), 

4.76 (2H, d, J = 8.4, CH2), 3.35-3.30 (2H, m, CH2), 2.18 (3H, s, CH3), 1.55-1.47 

(2H, m, CH2), 1.38-1.29 (2H, m, CH2), 0.93 (3H, t, J = 7.4, CH3); δC (100 MHz, 

CDCl3) 169.6 (C=O), 167.8 (C=O), 78.4 (C), 78.3 (CH2), 39.5 (CH2), 31.5 (CH2), 

20.7 (CH2), 20.0 (CH3), 13.7 (CH3); MS (ES
+
) 238 [M+Na]

+
; HRMS (ES

+
) calcd. 

for C10H17NNaO4 [M+Na]
+
: 283.1050; found: 283.1048. 

 

3-(Benzylcarbamoyl)oxetan-3-yl acetate (158) 

Reaction of 15 (32 µL) with acetic acid (34 µL) and 

benzyl isocyanide (73 µL) according to General 

Method 1 afforded the title compound (77 mg, 62%) 

as a white solid.  M.p. 100-103 °C; IR (film) 3316, 2936, 2358, 1744, 1665, 1534, 

1352, 1189 cm
-1

; δH (400 MHz, CDCl3) 7.32-7.21 (5H, m, ArH), 6.36 (1H, br s, 
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NH), 4.95 (2H, d, J = 8.1, CH2), 4.76 (2H, d, J = 8.1, CH2), 4.49 (2H, d, J = 5.9, 

CH2), 2.14 (3H, s, CH3); δC (100 MHz, CDCl3) 169.7 (C=O), 167.9 (C=O), 137.6 

(C, Ar), 128.9 (CH, Ar), 127.8 (CH, Ar), 127.6 (CH, Ar), 78.3 (CH2), 78.3 (C) 

43.7 (CH2), 20.7 (CH3);  MS (ES
+
) 272 [M+Na]

+
; HRMS (ES

+
) calcd. for 

C13H15NNaO4 [M+Na]
+
: 282.0893; found: 272.0893. 

 

(S)-3-(1-phenylethylcarbamoyl)oxetan-3-yl acetate (159). 

Reation of 15 (32 µL) with acetic acid (34 µL) and 

(S)-α-methylbenzyl isocyanide (81 µL) according to 

General Method 1 afforded the title compound (30 

mg, 23%) as a white solid.  IR (film) 1743, 1666, 1530, 1450, 1350, 1237, 1190, 

1136, 1061; δH (400 MHz, CDCl3) 7.33-7.22 (5H, m, ArH), 6.28 (1H, br d, J = 

7.3, NH), 5.13 (1H, p, J = 7.3, CH), 4.90 (2H, dd, J = 10.8, 7.5, CH2), 4.73 (2H, d, 

J = 7.5, CH2), 2.12 (3H, s, COCH3), 1.49 (3H, d, J = 6.8, CHCH3); δC (700 MHz, 

CDCl3) 169.6 (C=O), 167.0 (C=O), 142.4 (C, Ar), 128.8 (CH, Ar), 127.6 (CH, 

Ar), 126.0 (CH, Ar), 78.3 (OCH2), 78.2 (OCH2), 78.1 (C), 49.0 (CH), 21.4 (CH3), 

20.6 (CH3); MS (ES
+
) 286 [M+Na]

+
; HRMS (ES

+
) calcd. for C14H17NNaO4 

[M+Na]
+
: 286.1049; found: 286.1050. 

 

3-(tert-Butylcarbamoyl)oxetan-3-yl 2-(benzyloxycarbonylamino)acetate (160) 

Reaction of 15 (32 µL) with Cbz-glycine (125 mg) and 

tert-butyl isocyanide (68 µL) according to General 

Method 1 afforded the title compound (87 mg, 47%) as 

a white solid.  M.p. 126-128 °C; IR (film) 3361, 2970, 
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1704, 1678, 1530, 1456, 1349, 1188, 1135, 1056 cm
-1

; δH (400 MHz, CDCl3) 

7.35-7.32 (5H, m, ArH), 6.26 (1H, br s, NH), 5.39-5.28 (1H, br m, NH), 5.14 (2H, 

s, CH2), 4.97 (2H, d, J = 7.8, CH2), 4.64 (2H, d, J = 7.8, CH2), 4.00 (2H, d, J = 

5.8, CH2), 1.36 (9H, s, CH3); δC (100 MHz, CDCl3) 168.4 (C=O), 166.5 (C=O), 

157.0 (C=O), 136.1 (C, Ar), 128.6 (CH, Ar), 128.4 (CH, Ar), 128.0 (CH, Ar), 

79.6 (C), 78.1 (CH2), 67.4 (CH2), 51.9 (C), 43.2 (CH2), 28.5 (CH3); MS (ES
+
) 387 

[M+Na]
+
; HRMS (ES

+
) calcd. for C18H24N2NaO6 [M+Na]

+
: 387.1527; found: 

387.1529. 

 

3-(tert-Butylcarbamoyl)oxetan-3-yl benzoate (161).   

Reaction of 15 (32 µL) with benzoic acid (73 mg) and tert-

butyl isocyanide (68 µL) according to General Method 1 

afforded the title compound (127 mg, 92%) as a white 

solid.  M.p. 108-111 °C;  IR (film) 3409, 2917, 1989, 1710, 1688, 1520, 1453, 

1281, 716 cm
-1

;  δH (400 MHz, CDCl3) 8.05-8.00 (2H, m, ArH), 7.64 (1H, dd, J = 

7.7, 1.3, ArH), 7.49 (2H, dd, J = 7.7, 1.3, ArH), 5.92 (1H, br s, NH), 5.08 (2H, d, 

J = 8.2, CH2), 4.88 (2H, d, J = 8.2, CH2), 1.35 (9H, s CH3); δC (100 MHz, CDCl3) 

167.0 (C=O), 165.1 (C=O), 134.0 (CH, Ar), 130.0 (CH, Ar), 128.7 (CH, Ar), 

128.6 (C, Ar), 79.0 (C), 78.3 (CH2), 51.7 (C), 28.6 (CH3);  MS (ES
+
) 300 

[M+Na]
+
; HRMS (ES

+
) calcd. for C15H19NNaO4 [M+Na]

+
: 300.1206; found: 

300.1202. 
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3-(tert-Butylcarbamoyl)oxetan-3-yl thiophene-2-carboxylate (162).   

Reaction of 15 (32 µL) with thiophene-2-carboxylic acid 

(77 mg) and tert-butyl isocyanide (68 µL) according to 

General Method 1 afforded the title compound (120 mg, 

85%) as a white solid.  M.p. 99-102 °C; IR (film) 3408, 3110, 2968, 1706, 1682, 

1516, 1451, 1412, 1358, 1262, 751 cm
-1

; δH (400 MHz, CDCl3) 7.80 (1H, dd, J = 

3.7, 1.2, ArH), 7.66 (1H, dd, J = 4.9, 1.2, ArH), 7.17-7.15 (1H, m, ArH), 5.93 

(1H, br s, NH), 5.04 (2H, d, J = 8.2, CH2), 4.86 (2H, d, J = 8.2, CH2), 1.36 (9H, s, 

CH3); δC (100 MHz, CDCl3) 166.8 (C=O), 160.5 (C=O), 135.0 (CH, Ar), 134.0 

(CH, Ar), 131.7 (C, Ar), 128.2 (CH, Ar), 79.2 (C), 78.2 (CH2), 51.7 (C), 28.6 

(CH3); MS (ES
+
) 306 [M+Na]

+
; HRMS (ES

+
) calcd. for C13H17NNaO4S [M+Na]

+
: 

306.0770; found: 306.0771. 

 

3-(tert-Butylcarbamoyl)oxetan-3-yl 3-bromothiophene-2-carboxylate (163). 

Reaction of 15 (32 µL) with 3-bromothiophene-2-

carboxylic acid (64 mg) and tert-butyl isocyanide 

(68 µL) according to General Method 1 afforded the 

title compound (95 mg, 52%) as a white solid.  M.p. 98-102 °C; IR (film) 3405, 

3108, 2964, 2364, 2344, 1723, 1684, 1522, 1407, 1363, 768 cm
-1

; δH (400 MHz, 

CDCl3) 7.57 (1H, d, J = 5.2, ArH), 7.16 (1H, d, J = 5.2, ArH), 5.99 (1H, br s, 

NH), 5.04 (2H, d, J = 7.4, CH2), 4.90 (2H, d, J = 7.4, CH2), 1.37 (9H, s, CH3); δC 

(100 MHz, CDCl3) 166.5 (C=O), 159.2 (C=O), 133.4 (CH, Ar), 132.7 (CH, Ar), 

126.0 (C, Ar), 118.6 (C, Ar), 79.4 (C), 78.2 (CH2), 51.8 (C), 28.6 (CH3); MS 
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(ES
+
) 365 [M(

81
Br)+H]

+
, 363 [M(

79
Br)+H]

+
; HRMS (ES

+
) calcd. for 

C13H16
79

BrNNaO4S [M+Na]
+
: 383.9876; found: 383.9874. 

 

5-Phenylpent-1-yn-3-ol (164) 

A solution of n-butyllithium in hexanes (2.5 M, 7.24 mL, 

18.1 mmol) was added dropwise to a solution of 

(trimethylsilyl)acetylene (2.42 mL, 17 mmol) in THF (40 mL) at –78 °C.  After 

15 min, a solution of 3-phenylpropanal (166) (1.0 mL, 8.0 mmol) in THF (40 mL) 

was added dropwise to the reaction mixture and the mixture was then stirred for a 

further 4 h.  The reaction was quenched via the slow addition of a saturated 

aqueous NH4Cl solution (30 mL) and allowed to warm to r.t. before extraction 

into Et2O (3 x 40 mL).  The combined organic layers were washed with brine (20 

mL), dried over MgSO4, filtered and the solvent removed in vacuo affording the 

TMS-protected alcohol after column chromatography.  To a stirred solution of this 

alcohol (1.43 g, 6.15 mmol) in THF (50 mL) at 0 °C was added a solution of 

tetrabutylammonium fluoride in THF (1 M, 7.40 mL, 7.40 mmol).  The mixture 

was stirred at 0 °C for 1 h before the addition of a saturated aqueous NH4Cl 

solution (20 mL).  After warming to r.t. the organics were extracted into Et2O (3 x 

10 mL), washed with brine (10 mL), dried over MgSO4, filtered and the solvents 

removed in vacuo.  The mixture was then subjected to column chromatography 

(25% petroleum ether in CH2Cl2) affording the title compound as a colourless oil 

(860 mg, 65% over 2 steps).  δH (300 MHz, CDCl3) 7.32-7.29 (2H, m, ArH), 7.23-

7.19 (3H, m, ArH), 4.40-4.36 (1H, m, CH), 2.82 (2H, t, J = 8.0, CH2), 2.52 (1H, d, 

J = 2.4, CH), 2.10-1.98 (2H, m, CH2), OH not observed; δC (75 MHz, CDCl3) 
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141.2 (C, Ar), 128.5 (CH, Ar), 126.0 (CH, Ar), 84.7 (CH), 73.4 (C), 61.6 (CH), 

39.0 (CH2), 31.2 (CH2);  MS (ES
+
) 183 [M+Na]

+
.  Data is in accordance with 

literature values.
19

 

 

1-Cyclohexylprop-2-yn-1-ol (165)   

A solution of n-butyllithium in hexanes (2.5 M, 6.8 mL, 17 mmol) 

was added dropwise to a solution of (trimethylsilyl)acetylene (2.28 

mL, 16 mmol) in THF (40 mL) at –78 °C.  After 15 min, a solution of 

cyclohexanecarboxaldehyde (167) (1.44 mL, 10.6 mmol) in THF (40 mL) was 

added dropwise to the reaction mixture and the mixture was then stirred for a 

further 4 h.  The reaction was quenched by the slow addition of a saturated 

aqueous of NH4Cl solution (30 mL) and allowed to warm to r.t. before extraction 

into Et2O (3 x 40 mL).  The combined organic layers were washed with brine (20 

mL), dried over MgSO4, filtered and the solvent removed in vacuo affording the 

TMS-protected alcohol after column chromatography.  To a stirred solution of this 

alcohol (2.30 g, 11 mmol) in THF (94 mL) at 0 °C was added a solution of 

tetrabutylammonium fluoride in THF (1 M, 13.2 mL, 13.2 mmol).  The mixture 

was stirred at 0 °C for 1 h before the addition of a saturated aqueous NH4Cl 

solution (20 mL).  After warming to r.t. the organics were extracted into Et2O (3 x 

10 mL), washed with brine (10 mL), dried over MgSO4, filtered and the solvents 

removed in vacuo.  The mixture was then subjected to column chromatography 

(15% EtOAc in petroleum ether) affording the title compound as a colourless oil 

(1.41 g, 84% over 2 steps).  δH (300 MHz, CDCl3) 4.18-4.14 (1H, m, CH), 2.47 

(1H, d, J = 2.1, CH), 1.88-1.76 (5H, m), 1.70-1.66 (1H, m), 1.62-1.51 (1H, m), 
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1.32-1.00 (5H, m); δC (75 MHz, CDCl3) 83.3 (CH), 73.0 (C), 66.5 (CH), 43.3 

(CH), 27.8 (CH2), 27.3 (CH2), 25.7 (CH2), 25.2 (CH2).  Data is in accordance with 

literature values.
19

 

 

Ethyl 4-hydroxy-4-methylpent-2-ynoate (169) 

To a solution of diisopropylamine (4.6 mL, 33.0 mmol) in THF 

(30 mL) at 0 °C, was added, a solution of n-butyllithium in 

hexanes (1.6 M, 20.7 mL, 33.0 mmol).  The reaction mixture was stirred at 0 °C 

for 1 h and then cooled to –78 °C before the dropwise addition of ethyl propiolate 

(170) (3.2 mL, 31.6 mmol) in THF (10 mL).  After stirring for 1 h at –78 °C, 

anhydrous acetone (171) (4.6 mL, 62.6 mmol) was added to the mixture and 

stirring was continued for a further 3 h.  The reaction mixture was quenched with 

a saturated aqueous NH4Cl solution (30 mL) and then allowed to warm to r.t.  The 

organics were extracted into Et2O (4 x 20 mL) and washed with brine (20 mL).  

The organic layer was dried over MgSO4, filtered, and the solvents removed in 

vacuo affording the title compound after column chromatography (20% EtOAc in 

petroleum ether) as an orange oil (4.6 g, 95%).  δH (400 MHz, CDCl3) 4.23 (2H, 

q, J = 7.0, CH2), 2.17 (1H, s, OH), 1.56 (6H, s, CH3), 1.31 (3H, t, J = 7.3, CH3); 

δC (100 MHz, CDCl3) 153.6 (C), 90.9 (C), 74.2 (C), 65.0 (C), 62.1 (CH2), 30.6 

(CH3), 14.0 (CH3); MS (ES
+
) 179 [M+Na]

+
.  Data is in accordance with literature 

values.
19
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2-Phenethyloxetan-3-one (170). 

To a solution of propargyl alcohol 164 (700 mg, 4.4 mmol) in 

1,2-dichloroethane (129 mL) was added at r.t. 3,5-

dichloropyridine N-oxide (152) (1.44 g, 8.8 mmol), 

bis(trifluoromethane)sulfonimide (1.48 g, 5.28 mmol) and PPh3AuNTf2 (153) 

(162.7 mg, 0.22 mmol).  The mixture was stirred at r.t. for 4 h and then washed 

with a saturated aqueous NaHCO3 solution (50 mL).  The aqueous layer was 

washed with CH2Cl2 (25 mL) and the combined organic layers were dried over 

MgSO4, filtered and the solvents removed in vacuo.  Purification was achieved 

using column chromatography (12.5% EtOAc in petroleum ether) affording the 

title compound as a pale yellow oil (494 mg, 64%).  δH (400 MHz, CDCl3) 7.32-

7.28 (2H, m, ArH), 7.23-7.19 (3H, m, ArH), 5.48-5.44 (1H, m, CH), 5.33-5.23 

(2H, m, CH2), 2.86-2.74 (2H, m, CH2), 2.24-2.08 (2H, m, CH2); δC (100 MHz, 

CDCl3) 203.2 (C=O), 140.4 (C, Ar), 128.6 (CH, Ar), 128.5 (CH, Ar), 126.3 (CH, 

Ar), 102.8 (CH), 88.9 (CH2), 32.8 (CH2), 30.2 (CH2).  Data is in accordance with 

literature values.
19

 

 

2-Cyclohexyloxetan-3-one (171) 

To a solution of propargyl alcohol 165 (1 g, 7.2 mmol) in 1,2-

dichloroethane (212 mL) was added at r.t. 3,5-dichloropyridine N-

oxide (152) (2.36 g, 14.4 mmol), bis(trifluoromethane)sulfonimide (153) (2.43 g, 

8.64 mmol) and PPh3AuNTf2 (266 mg, 0.36 mmol).  The mixture was stirred at 

r.t. for 4 h and then washed with a saturated aqueous NaHCO3 solution (75 mL).  

The aqueous layer was washed with CH2Cl2 (35 mL) and the combined organic 
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layers were dried over MgSO4, filtered and the solvents removed in vacuo.  

Purification was achieved using column chromatography (5% EtOAc in 

petroleum ether) providing the title compound as a pale yellow oil (693 mg, 62%).  

δH (300 MHz, CDCl3) 5.26-5.21 (2H, m, CH2), 5.14 (1H, dd, J = 15.1, 4.1, CH) , 

1.88-1.66 (6H, m), 1.29-1.02 (5H, m);  δC (75 MHz, CDCl3) 203.0 (C=O), 107.2 

(CH), 88.1 (CH2), 39.5 (CH), 26.8 (CH2), 26.8 (CH2), 25.5 (CH2), 24.9 (CH2).  

Data is in accordance with literature values.
19

 

 

Ethyl 4,4-dimethyl-3-oxetane-2-carboxylate (168) 

To a solution of propargyl alcohol 169 (400 mg, 2.6 mmol) in 

DCE (51 mL) was added at r.t. 3, 5-dichloropyridine-N-oxide 

(152) (840 mg, 5.1 mmol), bis(trifluoromethane)sulfonimide (863 mg, 3.1 mmol) 

and PPh3AuNTf2 (153) (95 mg, 0.13 mmol, 5 mol %).  The mixture was stirred at 

50 °C for 18 h, cooled to r.t. and then washed with a saturated aqueous NaHCO3 

solution (2 x 10 mL).  The aqueous layer was washed with CH2Cl2 (2 x 30 mL) 

and the combined organic layers were dried over MgSO4, filtered and the solvents 

removed in vacuo.  Purification was achieved using column chromatography 

(10% EtOAc in petroleum ether) affording the title compound as a light yellow oil 

(229 mg, 51%).  δH (400 MHz, CDCl3) 5.71 (1H, s, CH), 4.37-4.22 (2H, m, CH2), 

1.58 (3H, s, CH3), 1.55 (3H, s, CH3), 1.31 (3H, t, J = 7.3, CH3); δC (100 MHz, 

CDCl3) 198.0 (C=O), 165.1 (C=O), 108.6 (C), 93.7 (CH), 62.2 (CH2), 22.9 (CH3), 

22.5 (CH3), 14.2 (CH3); GC-MS
 
(EI) 173 [M+H]

+
.  Data is in accordance with 

literature values.
19
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3-(tert-Butylcarbamoyl)-2-phenethyloxetan-3-yl acetate (172a/b) 

To a solution of 170 (88 mg, 0.5 mmol) in DCE 

(1 mL) was added acetic acid (34 µL, 0.6 mmol) and 

tert-butyl isocyanide (68 µL, 0.6 mmol).  The mixture 

was stirred at r.t. overnight before being diluted with 

CH2Cl2 (10 mL), washed with a saturated aqueous NaHCO3 solution (2 x 10 mL), 

brine (10 mL), then the combined organic layers dried over MgSO4, filtered and 

the solvents removed in vacuo.  Purification by column chromatography (10% 

EtOAc in petroleum ether) provided 172a/b (122 mg, 76%) as an inseparable ca 

1.7:1 mixture of diastereomers as determined by 
1
H NMR spectroscopy.  

Repeated chromatography provided less polar, minor diastereomer 172b: White 

solid, M.p. 90-93°C; IR (film) 3344, 2932, 1738, 1659, 1525, 1455, 1367, 1329, 

754 cm
-1

; δH (300 MHz, CDCl3) 7.24-7.10 (5H, m, ArH), 5.77 (1H, br s, NH), 

4.95 (1H, d, J = 7.9, OCHH), 4.72 (1H, dd, J = 8.8, 4.8, OCH), 4.53 (1H, d, J = 

7.9, OCHH), 2.75-2.65 (1H, m, CHH) 2.59-2.49 (1H, m, CHH), 2.12 (3H, s, 

CH3), 2.21-1.95 (2H, m, CH2), 1.28 (9H, s, CH3); δC (75 MHz, CDCl3) 169.0 

(C=O), 166.9 (C=O), 140.5 (C, Ar), 127.9 (CH, Ar), 127.8 (CH, Ar), 125.5 (CH, 

Ar), 85.9 (CH), 79.0 (C), 75.5 (CH2), 51.1 (C), 32.1 (CH2), 30.0 (CH2), 28.0 

(CH3), 20.1 (CH3); MS (ES
+
) 342 [M+Na]

+
; HRMS (ES

+
) calcd for C18H25NNaO4 

[M+Na]
+
: 342.1676; found: 342.1672; and more polar, major diastereomer 172a: 

white solid, M.p. 109-112°C; IR (film) 3346, 2928, 1751, 1739, 1665, 1526, 1454, 

1366, 750 cm
-1

; δH (300 MHz, CDCl3) 7.23-7.08 (5H, m, ArH), 5.59 (1H, br s, 

NH), 5.04 (1H, d, J = 7.7, OCHH), 4.71 (1H, dd, J = 9.4, 5.0, OCH), 4.39 (1H, d, 

J = 7.7, OCHH), 2.70-2.60 (1H, m, CHH) 2.56-2.46 (1H, m, CHH), 2.12 (3H, s, 
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CH3), 2.13-2.00 (1H, m, CHH), 1.87-1.75 (1H, m, CHH), 1.27 (9H, s, CH3); δC 

(75 MHz, CDCl3) 169.0 (C=O), 166.9 (C=O), 140.5 (C, Ar), 127.9 (CH, Ar), 

127.8 (CH, Ar), 125.5 (CH, Ar), 85.9 (CH), 79.0 (C), 75.5 (CH2), 51.1 (C), 32.1 

(CH2), 30.0 (CH2), 28.0 (CH3), 20.1 (CH3); MS (ES
+
) 342 [M+Na]

+
; HRMS (ES

+
) 

calcd. for C18H25NNaO4 [M+Na]
+
: 342.1676; found: 342.1674. 

 

3-(tert-Butylcarbamoyl)-2-cyclohexyloxetan-3-yl acetate (173a/b) 

To a solution of the 171 (77 mg, 0.5 mmol) in DCE (1 

mL) was added acetic acid (34 µL, 0.6 mmol) and tert-

butyl isocyanide (68 µL, 0.6 mmol).  The mixture was 

stirred at r.t. for 48h before being diluted with CH2Cl2 (10 mL), washed with a 

saturated aqueous NaHCO3 solution (2 x 10 mL), brine (10 mL) and the combined 

organic layers dried over MgSO4, filtered and the solvents removed in vacuo.  

Purification by column chromatography (20% EtOAc in petroleum ether) 

provided 173a/b (145 mg, 97%) as an inseparable ca 4:1 mixture of diastereomers 

as determined by 
1
H NMR spectroscopy. Repeated chromatography provided less 

polar, minor diastereomer (2R*, 3R*)-173: white solid, M.p. 114-119 °C; IR 

(film) 3355, 2918, 1743, 1657, 1516, 1447, 1369 cm
-1

; δH (600 MHz, CDCl3) 5.70 

(1H, br s, NH), 5.16 (1H, d, J = 8.4, OCHH), 4.44 (1H, d, J = 8.4 OCHH), 4.36 

(1H, d, J = 9.7, CH), 2.19 (3H, s, CH3), 2.08-2.01 (1H, m, cy), 1.91 (1H, br d, J = 

12.9, cy), 1.78-1.65 (4H, m, cy), 1.29 (9H, s, CH3) 1.27-1.16 (3H, m, cy), 0.94-

0.84 (2H, m, cy); δC (150 MHz, CDCl3) 169.4 (C=O), 167.6 (C=O), 90.4 (CH), 

80.9 (C), 75.1 (CH2), 51.5 (C), 38.7 (CH), 28.8 (CH3), 28.6 (CH2), 28.1 (CH2), 

27.2 (CH2), 26.4 (CH2), 25.3 (CH2), 20.9 (CH3); MS (ES
+
) m/z = 320 [M+Na]

+
; 
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HRMS (ES
+
) calcd for C16H27NNaO4 [M+Na]

+
: 320.1832; found: 320.1829; and 

more polar, major diastereomer (2R*, 3S*)-173: white solid, M.p. 154-156 °C; IR 

(film) 3355, 2918, 1743, 1657, 1516, 1447, 1369 cm
-1

; δH (400 MHz, CDCl3) 5.73 

(1H, br s, NH), 4.88 (1H, d, J = 7.5, CHH), 4.40 (1H, d, J = 7.5, CHH), 4.36 (1H, 

d, J = 10.5, CH), 2.09 (3H, s, CH3), 1.84-1.48 (6H, m, cy), 1.32 (9H, s, CH3), 

1.20-1.07 (3H, m, cy), 0.85-0.72 (2H, m, cy); δC (100 MHz, CDCl3) 169.4 (C=O), 

165.5 (C=O), 91.4 (CH), 81.0 (C), 74.9 (CH2), 51.8 (C), 39.3 (CH), 28.7 (CH3), 

27.8 (CH2), 27.5 (CH2), 26.2 (CH2), 25.1 (CH2), 24.9 (CH2), 20.7 (CH3); MS 

(ES
+
) 320 [M+Na]

+
; HRMS (ES

+
) calcd. for C16H27NNaO4 [M+Na]

+
: 320.1832; 

found: 320.1830. 

 

Ethyl-3-acetoxy-3-(tert-butylcarbamoyl)-4,4-dimethyloxetane-2-carboxylate 

(174a/b) 

To a solution of 168 (86 mg, 0.5 mmol) in DCE (1 mL) was 

added acetic acid (34 µL, 0.6 mmol) and tert-butyl 

isocyanide (68 µL, 0.6 mmol).  The mixture was stirred at r.t. 

overnight before being diluted with CH2Cl2 (10 mL), washed with a saturated 

aqueous NaHCO3 solution (2 x 10 mL), brine (10 mL) and then the organic layers 

dried over MgSO4, filtered and the solvents removed in vacuo. Purification by 

column chromatography (40% EtOAc in petroleum ether) provided the separable 

diastereomers.  Less polar, minor diastereomer 174b (35 mg, 22%): White solid, 

M.p. 109-111°C; IR (film) 3360, 2979, 1750, 1668, 1524, 1459, 1370, 1221, 1033 

cm
-1

; δH (400 MHz, CDCl3) 5.75 (1H, s, CH), 5.47 (1H, br s, NH), 4.24-4.10 (2H, 

m, CH2), 2.06 (3H, s, CH3), 1.60 (3H, s, CH3), 1.42 (3H, s, CH3), 1.35 (9H, s, 
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CH3), 1.26 (3H, t, J = 7.2, CH3); δC (100 MHz, CDCl3) 169.3 (C=O), 169.2 

(C=O), 165.1 (C=O), 88.1 (C), 82.7 (C), 76.4 (CH), 61.4 (CH2), 51.8 (C), 28.6 

(CH3), 24.7 (CH3), 23.9 (CH3), 20.7 (CH3), 14.0 (CH3); MS (ES
+
) 338 [M+Na]

+
; 

HRMS (ES
+
) calcd for C15H25NNaO6 [M+Na]

+
: 338.1574; found: 338.1573.; and 

more polar, major diastereomer 174a (90 mg, 57%): White solid, M.p. 125-

127°C;  IR (film) 3347, 2978, 2917, 1738, 1729, 1685, 1534, 1467, 1368, 1232, 

1036 cm
-1

; δH (400 MHz, CDCl3) 6.07 (1H, br s, NH), 4.93 (1H, s, CH), 4.37-4.23 

(2H, m, CH2), 2.20 (3H, s, CH3), 1.54 (3H, s, CH3), 1.53 (3H, s, CH3), 1.27 (9H, 

s, CH3), 1.33-1.29 (3H, m, CH3); δC (100 MHz, CDCl3) 169.1 (C=O), 163.5 

(C=O), 87.5 (C), 85.0 (C), 79.8 (CH), 61.5 (CH2), 51.9 (C), 28.5 (CH3), 24.2 

(CH3), 23.9 (CH3), 20.9 (CH3), 14.1 (CH3), C=O not observed; MS (ES
+
) 272 

[M+Na]
+
; HRMS (ES

+
) calcd. for C15H25NNaO6 [M+Na]

+
: 338.1574; found: 

338.1572. 

 

3-(tert-Butylcarbamoyl)-2-cyclohexyloxetan-3-yl benzoate (175a/b) 

To a solution of 171 (64 mg, 0.4 mmol) in DCE (1 mL) 

was added benzoic acid (61 mg, 0.5 mmol) and tert-butyl 

isocyanide (56 µL, 0.5 mmol).  The mixture was stirred 

overnight at r.t. before being diluted with CH2Cl2 (10 mL), washed with a 

saturated aqueous NaHCO3 solution (2 x 10 mL), brine (10 mL), then the organic 

layers dried over MgSO4, filtered and the solvents removed in vacuo.  Purification 

by column chromatography (10% EtOAc in petroleum ether) provided 175a/b (74 

mg, 49%) as an inseparable ca 3.4:1 mixture of diastereomers as determined by 

1
H NMR spectroscopy.  IR (film) 3326, 2921, 1724, 1677, 1534, 1452, 1362, 
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1273 cm
-1

; δH (400 MHz, CDCl3) 8.05-8.04 (2H, m, ArH), 7.66-7.59 (1H, m, 

ArH), 7.52-7.45 (2H, m, ArH), 5.81 (0.77H, br s, NH), 5.73 (0.23H, br s, NH), 

5.32 (0.23H, d, J = 8.2, OCHH), 5.10 (0.77H, d, J = 7.8, OCHH), 4.60 (0.77H, d, 

J = 9.6, OCH), 4.57 (0.77H, d, J = 7.8, OCHH), 4.52 (0.23H, d, J = 8.2, OCHH), 

4.50 (0.23H, d, J = 10.1, OCH), 1.97-1.67 (6H, m), 1.34 (6.95H, s), 1.32 (2.05H, 

s), 1.24-0.84 (5H, m); δC (100 MHz, CDCl3) 167.5 (C=O), 165.5 (C=O), 164.9 

(C=O), 164.8 (C=O), 134.0 (CH, Ar), 133.9 (CH, Ar), 129.9 (CH, Ar), 129.8 (CH, 

Ar), 129.7 (C, Ar), 128.8 (CH, Ar), 128.7 (CH, Ar), 128.4 (C, Ar), 91.4 (CH), 

90.3 (CH), 81.5 (C), 81.3 (C), 75.0 (CH2), 74.8 (CH2), 51.7 (C), 51.5 (C), 39.2 

(CH), 39.2 (CH), 28.6 (CH3), 28.6 (CH3), 28.3 (CH2), 27.9 (CH2), 27.5 (CH2), 

27.3 (CH2), 26.4 (CH2), 26.3 (CH2), 25.5 (CH2), 25.3 (CH2), 25.1 (CH2), 24.9 

(CH2);  MS (mixture) (ES
+
) 360 [M+H]

+
; HRMS (ES

+
) calcd. for C21H30NO4 

[M+H]
+
: 360.2169; found: 360.2163. 

 

N-tert-Butyl-2-cyclohexyl-3-hydroxyoxetane-3-carboxamide (176) 

To a solution of 173a (70 mg, 0.24 mmol) in MeOH (7.5 mL) 

was added K2CO3 (80 mg, 0.58 mmol) and the mixture stirred 

overnight at r.t.  The solvent was removed in vacuo and the 

residue dissolved in EtOAc (10 mL), washed with water (10 mL) and the organic 

layer filtered through a plug of silica gel and the solvent removed in vacuo 

affording the title compound (61 mg, 100%) as a white solid.  M.p. 107-110 °C; 

IR (film) 3566, 2039, 1610, 1509, 1442, 1244, 1179, 1066, 1026 cm
-1

; 
 
δH (400 

MHz, CDCl3) 6.45 (1H, br s), 4.58 (1H, d, J = 6.6, OCHH), 4.44 (1H, d, J = 10.4, 

OCH),  4.44 (1H, s), 3.38 (1H, d, J = 6.6, OCHH), 1.88-1.65 (5H, m, cy), 1.44 
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(9H, s, CH3), 1.28-1.11 (3H, m, cy), 0.91-0.77 (3H, m, cy); δC (75 MHz, CDCl3) 

170.6 (C), 96.6 (CH), 77.5 (CH2), 75.9 (C), 52.0 (C), 40.0 (CH), 28.9 (CH3), 28.6 

(CH2), 26.2 (CH2), 25.2 (CH2);  MS (ES
+
) 256 [M+H]

+
; HRMS (ES

+
) calcd. for 

C14H26NO3 [M+H]
+
: 256.1907; found: 256.1902. 

 

(S)-2-(methoxymethyl)-N-(oxetan-3-ylidene)pyrrolidin-1-amine (210) 

15 (986 µL, 15.4 mmol) was combined with (S)-1-amino-2-

methoxylmethylpyrrolidine (SAMP) (1.0 mL, 7.7 mmol) and 

heated to 65 °C without solvent for 18 h.  After cooling to r.t. 

excess 15 was removed in vacuo.  Purification by column chromatography (20% 

EtOAc in hexanes, 1% Et3N) afforded the title compound (1.25 g, 88%) as a 

colourless oil.      
  –8.8 (c 0.12, CHCl3); IR (film) 2923, 2857, 1712, 1662, 

1459, 1344, 1196, 1113, 1092, 1040, 956 cm
-1

; δH (300 MHz, CDCl3) 5.44-5.36 

(1H, m, OCHH), 5.34-5.21 (3H, m, OCHH, OCH2), 3.47 (1H, dd, J = 9.2, 4.0, 

CH3OCHH), 3.42-3.37 (1H, m, CH3OCHH), 3.37-3.28 (1H, m, NCH), 3.35 (3H, 

s, CH3), 3.17-3.10 (1H, m, NCHH), 2.79-2.71 (1H, m, NCHH), 1.96-1.80 (3H, m, 

CHH, CH2), 1.75-1.67 (1H, m, CHH); δC (100 MHz, CDCl3) 140.0 (C=N), 82.3 

(CH2), 81.9 (CH2), 74.2 (CH2), 64.3 (CH), 58.7 (CH3), 51.9 (CH2), 25.2 (CH2), 

22.0 (CH2); MS (ES
+
) 185 [M+H]

+
; HRMS (ES

+
) calcd. for C9H17N2O2 [M+H]

+
: 

185.1285; found: 185.1288. 
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N-((S)-2-benzyloxetan-3-ylidene)-2-(methoxymethyl)pyrrolidin-1-amine 

(212)
2
 

To a solution of 210 (64 mg, 0.35 mmol) in THF (2.5 mL) at –

78°C was added dropwise a solution of tert-butyllithium in 

pentanes (1.7 M, 0.23 mL, 0.39 mmol).  The reaction was stirred 

at –78°C for a further 2 h before the addition of benzyl bromide 

(50 µL, 0.42 mmol).  The reaction mixture was stirred at –78 °C for 2 h and then 

allowed to warm to r.t. over 18 h before being diluted with Et2O (5 mL), washed 

with pH 7 buffer (5 mL), brine (5 mL), dried over MgSO4, filtered and the 

solvents removed in vacuo.  Purification by column chromatography (20% EtOAc 

in hexanes, 1% Et3N) afforded the title compound (70 mg, 73%) as a colourless 

oil.  IR (film) 3345, 2973, 2884, 1686, 1453, 1380, 1087, 1087, 1045, 879 cm
-1

; 

δH (400 MHz, CDCl3) 7.25-7.13 (5H, m, ArH), 5.58-5.54 (1H, m, OCH), 4.91-

4.88 (1H, m, OCHH), 4.60 (1H, dd, J = 11.4, 3.5, OCHH), 3.49-3.64 (1H, m, 

CH3OCHH), 3.37-3.28 (2H, m, CH3OCHH, NCH), 3.39 (3H, s, CH3), 3.25-3.20 

(1H, m, NCHH), 3.07-2.96 (2H, m, OCHCH2), 2.66 (1H, q, J = 8.4, NCHH), 

1.97-1.89 (1H, m, CHH), 1.87-1.80 (2H, m, CH2), 1.68-1.60 (1H, m, CHH); δC 

(100 MHz, CDCl3) 145.4 (C=N), 136.4 (C, Ar), 129.9 (CH, Ar), 128.1 (CH, Ar), 

126.4 (CH, Ar), 93.3 (OCH), 79.3 (OCH2), 75.7 (CH3OCH2), 65.9 (NCH), 59.2 

(CH3), 53.6 (NCH2), 39.0 (OCHCH2), 26.6 (CH2), 23.1 (CH2); MS (ES
+
) 275 

[M+H]
+
; HRMS (ES

+
) calcd. For C16H23N2O2 [M+H]

+
: 275.1754; found: 

275.1759. 

                                                 

2
 

1
H and 

13
C NMR data provided for the signals corresponding to the major 

product obtained from the reaction (see 2.5.5). 
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(S)-2-Benzyloxetan-3-one (by ozonolysis) (222) 

O3 (1-2 L h
-1

) was bubbled through a solution of 212 (67 mg, 

0.25 mmol) in CH2Cl2 (10 mL) at –78 °C for 1 h.  The flow of O3 

was then ceased and the solution was allowed to warm to r.t.  The 

solution was then diluted with CH2Cl2 (10 mL), washed with aqueous NaHSO4 

solution (3.5 M, 20 mL), dried over MgSO4, filtered and the solvent removed in 

vacuo.  Purification by column chromatography (5% EtOAc in hexanes, 1% Et3N) 

provided the title compound (21 mg, 51%) as a colourless oil.  IR (film) 3031, 

2917, 1818, 1726, 1496, 1454, 1422, 1219, 1147, 1079, 957, 728, 697 cm
-1

; δH 

(300 MHz, CDCl3) 7.32-7.19 (5H, m, ArH),  5.66-5.61 (1H, m, CH), 5.17 (1H, d, 

J = 15.1, CHH), 4.92 (1H, dd, J = 15.1, 4.5, CHH), 3.11 (2H, d, J = 6.0, CH2); δC 

(100 MHz, CDCl3) 201.2 (C=O), 134.2 (C, Ar), 128.5 (CH, Ar), 127.6 (CH, Ar), 

126.0 (CH, Ar), 102.5 (OCH), 88.0 (OCH2), 36.5 (CHOCH2); HRMS (ES
+
) calcd. 

for C10H11O2 [M+H]
+
: 163.0754; found: 163.0759. 

 

 (S)-2-Benzyloxetan-3-one (by cleavage with oxalic acid) (222) 

To a solution of 212 (260 mg, 0.95 mmol) in Et2O (4 mL) was 

added with vigorous stirring saturated aqueous oxalic acid 

(1.5 mL).  After stirring at r.t. for 2.5 h, the mixture was extracted 

into Et2O (3 x 20 mL).  The combined organic layers were dried over MgSO4, 

filtered and the solvent removed in vacuo.  The residue was then dissolved in 

hexanes (50 mL) and the solid precipitate removed via suction filtration through a 

fine porosity sinter and discarded, before removing the solvent in vacuo.  

Purification by column chromatography (5% EtOAc in hexanes, 1% Et3N) 
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provided the title compound (30 mg, 79%) as a colourless oil.      
  –60 (c 0.07, 

CHCl3); Data as previously reported. 

 

N,N-Dimethyl-N’-oxetan-3-ylidene-hydrazine (224)  

N,N-Dimethylhydrazine (888 l, 11.7 mmol) was added dropwise to 

15 (898 l, 14.0 mmol).  The mixture was heated to 65 °C for 18 h, 

and the excess 3-oxetanone and water was removed under reduced 

pressure to give the title compound as a pale yellow oil (1.26 g, 94%) which was 

used without further purification.  IR (film) 3363, 2952, 2861, 1820, 1685, 1467, 

1446, 1240, 1144, 1024, 960, 857 cm
-1

; H (400 MHz, CDCl3) 5.42 (2H, t, J = 2.9, 

OCH2), 5.29 (2H, t, J = 2.9, OCH2), 2.68 (6H, s, CH3); C (100 MHz, CDCl3) 

142.4 (OCH2C), 82.2 (OCH2), 81.3 (OCH2), 45.7 (NCH3); MS (ES
+
) 115 [M+H]

+
; 

HRMS (ES
+
) calcd. For C5H11N2O 115.0866 [M+H]

+
; Found: 115.0870. 

 

(±)-2-Benzyloxetan-3-one (by cleavage with oxalic acid) ((±)-222) 

tert-Butyllithium in pentanes (1.7 M, 0.23 mL, 0.39 mmol) was 

added drop wise to a stirred solution of N,N-dimethyl-N’-oxetan-

3-ylidene-hydrazine (224) (40 mg, 0.35 mmol) in anhydrous THF 

(2.5 mL) at –78
o
C.  After 2 h, benzyl bromide (50 µL, 0.42 mmol) was added, and 

the solution allowed to warm slowly to r.t. over 18 h.  The reaction mixture was 

diluted with ether (20 mL), and washed with pH 7 buffer solution (1 mL) and 

brine (2 x 5 mL).  The organic layer was dried over MgSO4, filtered, and the 

solvent removed in vacuo. The residue was dissolved in a mixture of saturated 

aqueous oxalic acid solution (1 ml) and diethyl ether (1 mL) and stirred 
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vigorously at r.t. for 2 h.  The reaction mixture was diluted with diethyl ether (10 

mL) and the aqueous layer was extracted with Et2O (3 x 10 mL).  The combined 

organic layers were then dried over MgSO4, filtered and the solvent removed in 

vacuo.  The residue was taken up in hexane (10 mL), filtered and then the solvent 

removed in vacuo.  Purification was achieved using column chromatography (5% 

EtOAc in hexanes, 1% Et3N) affording the title compound (6 mg, 11%) as a 

colourless oil.  Data as previously reported. 

 

(2S’,3R*)- and (2S’,3S*)-2-benzyloxetan-3-ol (225a/b) 

To a solution of 222 (13 mg, 0.08 mmol) in 

MeOH (1 mL) was added at r.t. NaBH4 (5 mg, 

0.12 mmol).  The reaction mixture was stirred 

for 30 min and then partitioned between CH2Cl2 (10 mL) and brine (10 mL).  The 

aqueous phase was extracted with CH2Cl2 (3 x 20 mL), dried over MgSO4, 

filtered and the solvents removed in vacuo, providing 225a/b (12mg, 92%, 74% 

ee
3
) as a ca 1.1:1 mixture of diastereomers as determined by 

1
H NMR 

spectroscopy.  IR (film) 3387, 2920, 1731, 1495, 1454, 1373, 1326, 1124, 957, 

907, 727, 698  cm
-1

; δH (400 MHz, CDCl3) 7.26-7.13 (5H, m, ArH), 4.96 (0.52H, 

q, J = 6.9, OCHBn), 4.48-0.47 (0.52H, m, CHOH), 4.74 (0.52H, m, OCHH), 4.73 

(0.48H, m, OCHBn), 4.52 (0.48H, t, J = 6.5, OCHH), 4.43-4.36 (0.48H, m, 

CHOH), 4.37 (0.52H, m, OCHH), 4.31 (0.48H, t, J = 6.5, OCHH), 3.14 (0.52H, 

dd, J = 14.2, 6.9, OCHCHHPh), 3.03 (0.52H, dd, J = 14.2, 6.9, OCHCHHPh) , 

                                                 

3 ee calculated after conversion of alcohol to corresponding acetate by Dr Joanna 

Geden. 
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2.98 (0.48H, dd, J = 14.1, 6.8, OCHCHHPh), 2.90 (0.48H, dd, J = 14.1, 6.8, 

OCHCHHPh), 2.10 (1H, br s, OH); (100 MHz, CDCl3) 137.3 (C, Ar), 136.4 (C, 

Ar), 129.2 (CH, Ar), 128.6 (CH, Ar), 126.7 (CH, Ar), 126.4 (CH, Ar), 91.5 

(OCHBnmaj), 87.9 (OCHBnmin), 77.8 (OCH2min), 76.4 (OCH2maj), 70.1 (CHOHmin), 

67.5 (CHOHmaj), 41.0 (CH2Phmin), 36.4 (CH2Phmaj); MS (ES
+
) 187 [M+Na]

+
; 

HRMS (ES
+
) calcd. For C10H12NaO2 [M+Na]

+
: 187.0730; found: 187.0736. 

 

(S)-Ethyl 2-amino-3-(1H-indol-3-yl)propanoate (226) 

 To a solution of L-tryptophan (227) (1.00 g, 4.9 mmol) in 

EtOH (20 mL) at r.t. was added thionyl chloride 

(0.54 mL, 7.35 mmol).  The mixture was refluxed for 18 h 

before cooling to r.t. and the volatiles removed in vacuo.  The solid residue was 

suspended in EtOAc (20 mL) and vigorously washed with a saturated aqueous 

NaHCO3 solution (4 x 20 mL).  The combined aqueous layers were extracted into 

EtOAc (3 x 20 mL).  The combined organic layers were dried over MgSO4, 

filtered and the solvent removed in vacuo affording the title compound (1.00 g, 

88%) as a white solid, which was used without further purification.  δH (400 MHz, 

CDCl3) 8.32 (1H, br s, NHindole), 7.63, (1H, d, J = 8.1, ArH), 7.34 (1H, d, J = 8.1, 

ArH), 7.19 – 7.09(2H, m, ArH), 7.02 (1H, d, J = 2.3, ArH), 4.20-4.15 (2H, m, 

OCH2), 3.82 (1H, dd, J= 7.8, 4.9, CH), 3.29 (1H, dd, J = 14.3, 4.9, CHH), 3.05 

(1H, dd, J = 14.3, 7.8, CHH), 1.57 (2H, br s, NH2), 1.25 (3H, t, J = 7.2, CH3); δC 

(100 MHz, CDCl3) 175.0 (C=O), 136.3 (C, Ar), 127.5 (C, Ar), 123.0 (CH, Ar), 

122.2 (CH, Ar), 119.5 (CH, Ar), 118.8 (CH, Ar), 111.2 (CH, Ar), 110.0 (C, Ar), 
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61.0 (CH2), 55.0 (CH), 30.8 (CH2), 14.2 (CH3); MS (ES
+
) 233 [M+H]

+
.  Data is in 

accordance with literature values.
156

 

 

General Method 2a 

 

To a stirred solution of the relevant oxetan-3-one (1 equiv.) in CH3CN was added, 

the amine (1.2 equiv.) and I2 (5 mol %) and the mixture stirred at reflux for 18 h.  

After cooling to r.t. the solvent was removed in vacuo and the residue dissolved in 

EtOAc (10 mL).  The solution was washed sequentially with saturated aqueous 

Na2S2O3 solution (10 mL), saturated aqueous NaHCO3 solution (10 mL) and brine 

(10 mL).  The organic layers were dried over Na2SO4, filtered and the solvents 

removed in vacuo.  Purification of the product was achieved by column 

chromatography. 

General Method 2b 

 

To a stirred solution of the oxetan-3-one (1 equiv.) in CH3CN was added, the 

amine (1.2 equiv.) and the mixture stirred at reflux for 18 h.  After cooling to r.t. 

the solvent was removed in vacuo.  Purification was achieved by column 

chromatography. 
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(1'S,2S,3'S)- and (1'S,2R,3'R)-Ethyl-2-benzyl-2',3',4',9'-

tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole]-3'-carboxylate (228a/b) 

 Prepared according to General 

Method 2a from (S)-222 (57 mg, 

0.35 mmol) and 5-

methoxytryptamine (98 mg, 0.42 mmol) in CH3CN (2.5 mL) providing the title 

compounds as ca 7.4:1 mixture of diastereomers as determined by 
1
H NMR 

spectroscopy.  Purification by column chromatography (20% EtOAc in petroleum 

ether, 1% Et3N) gave the separable diastereomers.  Less polar, major diastereomer 

(1S, 2S, 3S)-228 (89 mg, 67%), off-white solid.  M.p. 60-65 °C; IR (film): 3263, 

2937, 1731, 1494, 1453, 1369, 1182, 967, 742, 701; δH (CDCl3, 400 MHz):  8.97 

(1H, br s, NHindole, Ar), 7.53 (1H, d, J = 7.9, ArH), 7.40 (1H, d, J = 7.9, ArH), 

7.28-7.22 (5H, m, ArH), 7.20-7.14 (2H, m, ArH), 5.16 (1H, dd, J = 9.5, 3.7, 

OCH), 4.83 (1H, d, J = 6.2, OCHHC), 4.80 (1H, d, J = 6.2, OCHHC), 4.33 (2H, q, 

J = 7.1, OCH2CH3), 3.77 (1H, dd, J = 10.5, 4.1, NHCH), 3.39 (1H, dd, J = 14.1, 

9.5, OCHCHH), 3.21 (1H, dd, J = 14.1, 3.7, OCHCHH), 3.15 (1H, dd, J = 15.3, 

4.1, NHCHCHH), 2.86 (1H, dd, J = 15.3, 10.5, NHCHCHH), 2.78 (1H, br s, 

NHpip), 1.39 (3H, t, J = 7.1, CH3); δC (CDCl3, 75 MHz):  173.0 (C=O), 137.1 (C, 

Ar), 136.4 (C, Ar), 133.9 (C, Ar), 129.3 (CH, Ar), 128.6 (CH, Ar), 126.6 (CH, 

Ar), 126.6 (C, Ar) 122.3 (CH, Ar), 119.7 (CH, Ar), 118.3 (CH, Ar), 111.3 (CH, 

Ar), 108.5 (C, Ar), 91.7 (OCHC), 83.1 (OCH2C), 61.4 (OCH2CH3), 58.3 (NHC), 

53.8 (NHCH), 36.8 (CH2Bn), 25.5 (NHCHCH2), 14.2 (CH3); HRMS (ESI) calcd. 

for C23H25N2O3 [M+H]
+
: 377.1860. Found 377.1863.  And more polar, minor 

diastereomer (1S, 2R, 3R)-228 (12 mg, 9%): Off-white solid, IR (film): 3307, 
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2926, 1730, 1495, 1453, 1370, 1182, 977, 744, 701; δH (CDCl3, 400 MHz):  8.75 

(1H, br s, NHindole, Ar), 7.53 (1H, d, J = 8.1, ArH), 7.42 (1H, d, J = 8.1, ArH), 

7.30-7.15 (7H, m, ArH), 5.06 (1H, dd, J = 8.2, 5.8, OCH), 4.94 (1H, d, J = 6.8, 

OCHHC), 4.86 (1H, d, J = 6.8, OCHHC), 4.29 (2H, q, J = 7.1, OCH2), 3.41 (1H, 

dd, J = 9.5, 4.4, NHCH), 3.38 (1H, dd, J = 10.8, 5.8, OCHCHH), 3.19 (1H, dd, J 

= 14.1, 8.2, OCHCHH), 3.08 (1H, dd, J = 15.1, 4.4, NHCHCHH), 2.85 (1H, dd, J 

= 15.1, 9.5, NHCHCHH), 2.85 (1H, br s, NHpip), 1.37 (3H, t, J = 7.1, CH3); δC 

(CDCl3, 75 MHz):  173.1 (C=O), 137.7 (C, Ar), 136.3 (C, Ar), 134.7 (C, Ar), 

129.2 (CH, Ar), 128.6 (CH, Ar), 126.6 (CH, Ar), 126.5 (C, Ar) 122.4 (CH, Ar), 

119.8 (CH, Ar), 118.3 (CH, Ar), 111.2 (CH, Ar), 108.3 (CH, Ar), 93.5 (OCHC), 

81.2 (OCH2C), 61.3 (OCH2CH3), 57.9 (NHC), 54.1 (NHCH), 37.0 (CH2Bn), 25.3 

(NHCHCH2), 14.3 (CH3); HRMS (ESI) calcd. for C23H25N2O3 [M+H]
+
: 377.1860. 

Found 377.1865. 

 

2',3',4',9'-Tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole] (267) 

Prepared according to General Method 2b from 15 (20 mg, 

0.28 mmol) and tryptamine (54 mg, 0.34 mmol) in CH3CN 

(5 mL) affording the title compound (44 mg, 75%) after 

column chromatography (3% MeOH in CH2Cl2, 1% Et3N) as a beige solid.  M.p. 

167-170°C; IR (film): 3260, 1449, 1301, 1186, 976, 730 cm
-1

; δH (CD3OD, 400 

MHz):  7.41 (1H, d, J = 7.8, ArH), 7.37 (1H, d, J = 7.8, ArH), 7.12-7.08 (1H, m, 

ArH), 7.02-6.98 (1H, m, ArH), 5.02 (2H, d, J = 6.7, OCH2), 4.74 (2H, d, J = 6.7, 

OCH2), 3.14 (2H, t, J = 5.8, CH2), 2.80 (2H, t, J = 5.8, CH2), indole NH and 

piperidine NH not observed; δC (CDCl3, 100 MHz):  136.0 (C, Ar), 133.8 (C, Ar), 
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126.9 (C, Ar), 122.3 (CH, Ar), 119.7 (CH, Ar), 118.4 (CH, Ar), 111.1 (CH, Ar), 

110.1 (C, Ar), 84.2 (OCH2), 57.3 (C), 41.3 (CH2), 22.3 (CH2); HRMS (ESI) calcd. 

for C13H15N2O [M+H]
+
: 215.1179. Found 215.1178. 

 

6'-Methoxy-2',3',4',9'-tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole] (270) 

Prepared according to General Method 2b from 15 

(20 mg, 0.28 mmol) and 5-methoxytryptamine (65 mg, 

0.34 mmol) in CH3CN (5 mL) affording the title 

compound (58 mg, 85%) after column chromatography (5% MeOH in CH2Cl2, 

1% Et3N) as a beige solid.  M.p. 179-183 °C; IR (film): 3281, 2947, 1455, 1212, 

1168, 970, 800; δH (CD3OD, 300 MHz):  7.25 (1H, d, J = 8.9, ArH), 6.90 (1H, d, J 

= 2.5, ArH), 6.76 (1H, dd, J = 8.9, 2.5, ArH), 4.98 (2H, d J = 6.6, OCHH), 4.70 

(2H, d, J = 6.6, OCHH), 3.80 (3H, s, OCH3), 3.08 (2H, t, J = 5.8, CH2), 2.69 (2H, 

t, J = 5.8, CH2); δC (CD3OD, 75 MHz):  155.2 (C, Ar), 135.0 (C, Ar), 133.3 (C, 

Ar), 128.4 (C, Ar), 112.9 (CH, Ar), 112.7 (CH, Ar), 110.0 (C, Ar), 101.1 (CH, 

Ar), 83.8 (OCH2), 58.6 (C), 56.2 (CH3), 41.7 (CH2), 22.6 (CH2); HRMS (ESI) 

calcd. for C14H17N2O2 [M+H]
+
: 245.1285. Found 245.1284. 

 

(S)-Ethyl 2',3',4',9'-tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole]-3'-

carboxylate (271) 

Prepared according to General Method 2a from 15 (50 

mg, 0.69 mmol) and tryptophan ethyl ester (226) (193 mg, 

0.83 mmol) in CH3CN (5 mL) affording the title 

compound (177 mg, 89%) after column chromatography (60% EtOAc in 
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petroleum ether, 1% Et3N) as a beige solid.  M.p. 157-160 °C;     
  –25 (c 0.1, 

CHCl3); IR (film): 3428, 2928, 1735, 1592, 1339, 1160, 720; δH (CDCl3, 400 

MHz): 8.66 (1H, br s, NHindole, Ar), 7.51 (1H, d, J = 8.0, ArH), 7.40 (1H, d, J = 

8.0, ArH), 7.24-7.20 (1H, m, ArH), 7.15-1.12 (1H, m, ArH), 5.00 (1H, d, J = 6.7, 

OCHH), 4.90 (1H, d, J = 6.7, OCHH), 4.87 (1H, d, J = 6.1, OCHH), 4.79 (1H, d, 

J = 6.1, OCHH), 4.20 (2H, m, OCH2CH3), 3.84 (1H, dd, J = 7.8, 5.0, NHCH), 

3.14 (1H, dd, J = 15.3, 5.0, NHCHCHH), 2.97 (1H, dd, J = 15.3, 7.8, 

NHCHCHH), 2.75 (1H, br s, NHpip), 1.29 (3H, J = 7.1, CH3); δC (CDCl3, 75 

MHz):  172.8 (C=O), 135.6 (C, Ar), 133.2 (C, Ar), 125.9 (C, Ar), 121.8 (CH, Ar), 

119.2 (CH, Ar), 117.7 (CH, Ar), 110.5 (CH, Ar), 107.4 (C, Ar), 84.9 (OCH2), 

83.9 (OCH2), 60.7 (OCH2CH3), 56.4 (NHC), 53.3 (CH), 24.3 (CHCH2), 13.6 

(CH3); HRMS (ESI) calcd. for C16H18N2O3 [M+H]
+
: 287.1390. Found 287.1389.  

Anal. calcd. for C16H19N2O3: C, 67.12; H, 6.34; N, 9.78%.  Found: C, 67.05; H, 

6.43; N, 9.50%. 

 

9'-Methyl-2',3',4',9'-tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole] (272) 

Prepared according to General Method 2a from 15 (24 mg, 

0.34 mmol) and 2-(1-methyl-1H-indol-3-yl)ethanamine (72 

mg, 0.41 mmol) in CH3CN (5 mL) affording the title 

compound (40 mg, 52%)  after column chromatography (10% petroleum ether in 

EtOAc, 1% Et3N) as an off-white solid.  M.p. 140-142 °C; IR (film): 2951, 2878, 

1471, 1442, 1369, 975, 749; δH (CDCl3, 400 MHz):  7.50 (1H, d, J = 7.8, ArH), 

7.36 (1H, d, J = 7.8, ArH), 7.28-7.24 (1H, m, ArH), 7.14-7.10 (1H, m, ArH), 5.08 

(2H, d, J = 7.0, OCH2), 4.82 (2H, d, J = 7.0, OCH2), 4.13 (3H, s, NCH3), 3.10 
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(2H, t, J = 5.5, CH2), 2.76 (2H, t, J = 5.5, CH2), 2.26 (1H, br s, NHpip); δC (CDCl3, 

100 MHz):  137.8 (C, Ar), 133.6 (C, Ar), 126.2 (C, Ar), 122.2 (CH, Ar), 119.4 

(CH, Ar), 118.4 (CH, Ar), 110.4 (C, Ar), 109.1 (CH, Ar), 83.5 (OCH2), 57.3 (C), 

41.1 (CH2), 30.5 (CH3), 22.9 (CH2); HRMS (ESI) calcd. for C14H17N2O [M+H]
+
: 

229.1335. Found 229.1336. 

 

(1R*,2R*)-2-Phenethyl-2',3',4',9'-tetrahydrospiro[oxetane-3,1'-pyrido[3,4-

b]indole] (274) 

Prepared according to General Method 2a from 170 

(18 µL, 0.28 mmol) and tryptamine (54 mg, 0.34 mmol) 

in CH3CN (5 mL) affording the title compound (58 mg, 

65%) after column chromatography (50% EtOAc in petroleum ether, 1% Et3N) as 

a beige solid.  M.p. 165-168 °C; IR (film): 3236, 1452, 970, 904, 872, 727, 692 

cm
-1

; δH (CDCl3, 400 MHz): 8.72 (1H, br s, NHindole), 7.48 (1H, d, J = 7.8, Ar), 

7.39 (1H, d, J = 7.8, ArH), 7.26-7.09 (7H, m, ArH), 4.90 (1H, dd, J = 9.6, 3.8, 

OCH), 4.82 (1H, d, J = 6.6, OCHH), 4.64 (1H, d, J = 6.6, OCHH), 3.17-3.11 (1H, 

m, CH2CHH), 3.05-2.99 (1H, m, CH2CHH), 2.88-2.80 (1H, m, PhCHH), 2.72-

2.69 (2H, m, CH2), 2.64-2.57 (1H, m, PhCHH), 2.42-2.30 (1H, m, OCHCHH), 

2.09-2.01 (1H, m, OCHCHH), 1.91 (1H, br s, NHpip); δC (CDCl3, 100 MHz): 

141.2 (C, Ar), 136.0 (C, Ar), 134.4 (C, Ar), 128.5 (CH, Ar), 126.9 (C, Ar), 126.1 

(CH, Ar), 122.2 (CH, Ar),  119.7 (CH, Ar), 118.4 (CH, Ar), 111.1 (CH, Ar), 110.0 

(C, Ar), 91.2 (OCH), 81.3 (OCH2), 58.1 (NHC), 41.6 (CH2), 32.2 (OCHCH2), 

30.8 (PhCH2), 22.3 (CH2); HRMS (ESI) calcd. for C21H23N2O [M+H]
+
: 319.1805. 

Found 319.1798. 



 

 

 

Chapter 4: Experimental 

154 

 

 

(1S*, 2S*)-6'-Methoxy-2-phenethyl-2',3',4',9'-tetrahydrospiro[oxetane-3,1'-

pyrido[3,4-b]indole] (275) 

Prepared according to General Method 2a from 170 

(121 mg, 0.69 mmol) and 5-methoxytryptamine 

(158 mg, 0.83 mmol) in CH3CN (5 mL) affording the 

title compound (174 mg, 72%) after column 

chromatography (50% EtOAc in petroleum ether, 1% Et3N) as a beige solid.  M.p. 

162-165 °C; IR (film): 3268, 2936, 1458, 1434, 1212, 1163, 966, 749, 698; δH 

(CDCl3, 400 MHz):  8.70 (1H, s, NHindole), 7.28 (1H, d, J = 8.8, ArH), 7.24-7.22 

(2H, m, ArH), 7.19-7.12 (3H, m, ArH), 6.94 (1H, d, J = 2.4, ArH), 6.86 (1H, dd, J 

= 8.8, 2.4, ArH), 4.89 (1H, dd, J = 9.6, 3.9, OCH), 4.82 (1H, d, J = 6.6, OCHH), 

4.63 (1H, d, J = 6.6, OCHH), 3.86 (3H, s, CH3), 3.17-3.11 (1H, m, CH2), 3.05-

3.00 (1H, m, CH2), 2.87-2.80 (1H, m, PhCHH), 2.70-2.66 (2H, m, CH2), 2.64-

2.56 (1H, m, PhCHH), 2.41-2.32 (1H, m, OCHCHH), 2.09-2.00 (1H, m, 

OCHCHH), 1.90 (1H, br s, NHpip); δC (CDCl3, 100 MHz):  154.2 (C, Ar), 141.3 

(C, Ar), 135.3 (C, Ar), 131.1 (C, Ar), 128.5 (CH, Ar), 127.3 (C, Ar), 126.1 (C, 

Ar), 112.0 (CH, Ar), 111.8 (CH, Ar), 111.7 (CH, Ar), 109.9 (CH, Ar), 91.1 

(OCH), 81.3 (OCH2), 58.2 (C), 56.0 (CH3), 41.5 (CH2), 32.2 (OCHCH2), 30.8 

(PhCH2), 22.3 (CH2); HRMS (ESI) calcd. for C22H25N2O2 [M+H]
+
: 349.1911. 

Found 349.1995. 
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(1'S,2R,3'R)- and (1'S,2S,3'S)- Ethyl 2-phenethyl-2',3',4',9'-

tetrahydrospiro[oxetane-3,1'-pyrido[3,4-b]indole]-3'-carboxylate (276a/b) 

Prepared according to General 

Method 2a from 170 (121 mg, 

0.69 mmol) and L-tryptophan 

ethyl ester 226 (193 mg, 0.83 mmol) affording the title compounds (195 mg, 72%) 

after column chromatography (25% EtOAc in petroleum ether, 1% Et3N) as an 

inseparable ca 1.1:1 mixture of diastereomers as determined by 
1
H NMR 

spectroscopy as a beige solid.  M.p. 79-83 °C; IR (film): 3258, 2930, 1728, 1495, 

1452, 1179, 694, 739, 697; δH ((CD3)2CO, 400 MHz):  10.45 (1H, br s, NHindole), 

7.48-7.43 (2H, m, ArH), 7.26-7.20 (3H, m, ArH), 7.17-7.10 (3H, m, ArH), 7.06-

7.01 (1H, m, ArH), 5.17 (0.5H, dd, J = 8.0, 5.8, OCH), 4.89 (0.5H, d, J = 6.7, 

OCHHC), 4.81 (0.5H, dd, J = 9.5, 4.0, OCH), 4.75 (0.5H, d, J = 6.3, OCHHC), 

4.68 (0.5, d, J = 6.7, OCHHC), 4.63 (0.5H, d, J = 6.3, OCHHC), 4.29-4.11 (2H, 

m, OCH2CH3), 3.83-3.77 (1H, m, NHCH), 3.06-2.98 (1H, m, NHCHCHH), 2.86 

(1H, br s, NHpip), 2.84-2.57 (3H, m), 2.40-2.03 (2H, m), 1.30 (1.5H, t, J = 7.2, 

CH3), 1.25 (1.5H, t, J = 7.1, CH3); δC (CDCl3, 100 MHz):  173.1 (C=O), 172.9 

(C=O), 141.1 (C, Ar), 141.0 (C, Ar), 136.4 (C, Ar), 134.4 (C, Ar), 134.0 (C, Ar), 

128.5 (CH, Ar), 128.5 (CH, Ar), 126.7 (C, Ar), 126.7 (C, Ar), 126 (CH, Ar), 

122.4 (CH, Ar), 122.3 (CH, Ar), 119.8 (CH, Ar), 119.7 (CH, Ar), 118.3 (CH, Ar), 

111.2 (CH, Ar), 108.7 (C, Ar), 108.2 (C, Ar), 92.4 (OCH), 90.5 (OCH), 83.3 

(OCH2C), 81.5 (OCH2C), 61.4 (CH2), 58.2 (C), 57.8 (C), 54.3 (NHCH), 53.7 

(NHCH), 32.1 (CH2), 32.0 (CH2), 31.0 (CH2), 30.7 (CH2), 25.5 (CH2), 25.2 
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(CH2), 14.3 (CH3), 14.2 (CH3); HRMS (ESI) calcd. for C24H27N2O3 [M+H]
+
: 

391.2016. Found 391.2021. 

 

(1R*,2R*)-2-Cyclohexyl-2',3',4',9'-tetrahydrospiro[oxetane-3,1'-pyrido[3,4-

b]indole] (277) 

Prepared according to General Method 2a from 171 (106 

mg, 0.69 mmol) and tryptamine (133 mg, 0.83 mmol) in 

CH3CN (5 mL) affording the title compound (46 mg, 

23%) after column chromatography (40% EtOAc in petroleum ether, 1% Et3N) as 

an off-white solid.  M.p. 242-246 °C; IR (film): 3275, 2918, 1443, 1261, 1080, 

1019, 960, 800, 746, 717; δH (CDCl3, 400 MHz):  8.67 (1H, br s, NHindole), 7.49 

(1H, d, J = 7.9, ArH), 7.39 (1H, d, J = 7.9, ArH), 7.20 (1H, t, J = 7.4, ArH), 7.11 

(1H, t, J = 7.4, ArH), 4.75 (1H, d, J = 6.3, OCHH), 4.65 (1H, d, J = 9.9, OCH), 

4.53 (1H, d, J = 6.3, OCHH), 3.27-3.21 (1H, m, CH2CHH), 3.11-3.05 (1H, m, 

CH2CHH), 2.81-2.68 (2H, m, CH2CH2), 2.17-2.09 (1H, m, OCHCHcy), 2.09-1.99 

(1H, m, CHcy), 1.80 (1H, br s, NHpip), 1.70-1.56 (3H, m, CHcy), 1.38-1.25 (3H, m, 

CHcy), 1.20-1.10 (1H, m, CHcy), 1.00-0.91 (1H, m, CHCHHcy), 0.81-0.71 (1H, m, 

CHCHHcy); δC (CDCl3, 100 MHz):  135.0 (C, Ar), 133.3 (C, Ar), 126.0 (C, Ar), 

121.1 (CH, Ar), 118.5 (CH, Ar), 117.3 (CH, Ar), 110.1 (CH, Ar), 108.8 (C, Ar), 

93.4 (OCH), 80.3 (OCH2), 57.7 (C), 40.3 (CH2), 36.9 (OCHCH), 27.7 (CH2), 26.8 

(CH2), 25.4 (CH2), 24.4 (CH2), 24.2 (CH2), 21.3 (CH2). HRMS (ESI) calcd. for 

C19H25N2O [M+H]
+
: 297.1961. Found 297.1962. 
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1-Tosyl-2',3',4',9'-tetrahydrospiro[azetidine-3,1'-pyrido[3,4-b]indole] (280) 

To a stirred solution of 279 (52 mg, 0.23 mmol) in toluene (5 

mL) was added under an atmosphere of anhydrous nitrogen, 

tryptamines (231) (44 mg, 0.28 mmol) and TFA (1 mol %) and 

the mixture stirred at 85 °C for 18 h.  After cooling to r.t. the solvent was removed 

in vacuo and the residue dissolved in CH2Cl2 (10 mL).  The solution was washed 

with saturated aqueous NaHCO3 solution (10 mL) and brine (10 mL) and the 

aqueous layers were extracted into CH2Cl2 (3 x 10 mL).  The combined organic 

layers were dried over Na2SO4, filtered and the solvents removed in vacuo.  The 

title compound (55 mg, 65%) was provided after column chromatography (40% 

EtOAc in petroleum ether, 1% Et3N) as a beige solid.  M.p. 258-261 °C; IR (film): 

3166, 1596, 1339, 1163, 818, 747, 670; δH ((CD3)2SO, 400 MHz):  10.94 (1H, s, 

NHindole), 7.79 (2H, d, J = 8.2, ArH, Ts), 7.53 (2H, d, J = 8.2, ArH, Ts), 7.39-7.34 

(2H, m, ArH), 7.09-7.04 (1H, m, ArH), 6.98-6.94 (1H, m, ArH), 4.07 (2H, d, J = 

8.3, CH2NTs), 3.67 (2H, d, J = 8.3, CH2NTs), 2.80 (2H, t, J = 5.6, CH2), 2.52-

2.49 (2H, m, CH2), 2.47 (3H, s, CH3), piperidine NH not observed; δC ((CD3)2SO, 

100 MHz):  143.9 (C, Ts), 136.2 (C, Ar), 134.9 (C, Ar), 131.8 (C, Ar), 129.9 (CH, 

Ar), 128.1 (CH, Ar), 126.4 (C, Ar), 121.2 (CH, Ar), 118.6 (CH, Ar), 117.7 (CH, 

Ar), 111.6 (CH, Ar), 109.0 (CH, Ar), 62.9 (NTsCH2), 50.8 (C),40.5 (CH2), 21.7 

(CH2), 21.1 (CH3) HRMS (ESI) calcd. for C20H22N3O2S [M+H]
+
: 368.1427. 

Found 368.1424. 
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(S)-Ethyl 1-tosyl-2',3',4',9'-tetrahydrospiro[azetidine-3,1'-pyrido[3,4-

b]indole]-3'-carboxylate (281) 

Prepared according to General Method 2a from 279 (40 

mg, 0.18 mmol) and tryptophan ethyl ester (226) (49 mg, 

0.21 mmol) affording the title compound (50 mg, 64%) 

after column chromatography (30% EtOAc in petroleum ether, 1% Et3N) as a 

beige solid.  M.p. 180-183 °C;     
  – 15 (c 0.02, CHCl3); IR (film): 3428, 2928, 

1735, 1592, 1339, 1160, 720; δH (CDCl3, 400 MHz): 8.39 (1H, s, NHindole), 7.82 

(2H, d, J = 7.9, ArH, Ts), 7.47 (1H, d, J = 7.7, ArH), 7.46 (2H, d, J = 7.9, ArH, 

Ts), 7.35 (1H, d, J = 7.7, ArH), 7.24-7.20 (1H, m, ArH), 7.14-7.10 (1H, m, ArH), 

4.20 (1H, d, J = 8.4, CHHNTs), 4.16 (2H, q, J = 7.3, OCH2CH3), 4.08 (1H, d, J = 

7.8, CHHNTs), 3.91 (1H, d, J = 8.4, CHHNTs), 3.76 (1H, d, J = 7.8, CHHNTs), 

3.76-3.73 (1H, m, NHCH), 3.08 (1H, dd, J = 15.2, 5.3, NHCHCHH), 2.91 (1H, 

dd, J = 15.2, 8.1, NHCHCHH), 2.53 (3H, s, CH3, Ts), 1.26 (3H, t, J = 7.3, 

OCH2CH3) piperidine NH not observed; δC (CDCl3, 100 MHz):  173.1 (C=O), 

144.9 (C, Ar, Ts), 136.3 (C, Ar), 133.3 (C, Ar), 130.4 (C, Ar), 130.1 (CH, Ar), 

128.8 (CH, Ar), 126.2 (C, Ar), 122.7 (CH, Ar), 119.9 (CH, Ar), 118.4 (CH, Ar), 

111.3 (CH, Ar), 108.3 (C, Ar), 65.1 (CH2NTs), 64.3 (CH2NTs), 61.4 (OCH2), 

53.9 (NHCH), 51.1 (C), 24.8 (NHCHCH2), 21.8 (CH3, Ts), 14.2 (CH2CH3); 

HRMS (ESI) calcd. for C23H25N3NaO4S [M+Na]
+
: 362.1458. Found 362.1458. 
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