
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/59178

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

The Use of Artificial Neural Networks in Classifying Lung
Scintigrams Volume 1 (of 2)

Denis Anthony
Thesis Submitted for the Award of PhD in Engineering

Department of Engineering
Warwick University

February 1991
Supervised by Dr. E. L. Hines

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page2

SUMMARY
An introduction to nuclear medical imaging and artificial neural networks (ANNs)

is first given.
Lung scintigrams are classified using ANNs in this study. Initial experiments using

raw data are first reported. These networks did not produce suitable outputs, and a data
compression method was next employed to present an orthogonal data input set contain-
ing the largest amount of information possible. This gave some encouraging results, but
was neither sensitive nor accurate enough for clinical usc.

A set of experiments was performed to give local information on small windows of
scintigram images. By this method areas of abnormality could be sent into a subsequent
classification network to diagnose the cause of the defect This automatic method of
detecting potential defects did not work, though the networks explored were found to act
as smoothing filters and edge detectors.

Network design was investigated using genetic algorithms (GAs). The networks
evolved had low connectivity but reduced error and faster convergence than fully con-
nected networks. Subsequent simulations showed that randomly partially connected net-
works performed as well as GA designed ones.

Dynamic parameter tuning was explored in an attempt to produce faster conver-
gence, but the previous good results of other workers could not be replicated.

Classification of scintigrams using manually delineated regions of interest was
explored as inputs to ANNs, both in raw state and as principal components (PCs). Neither
representation was shown to be effective on test data.

The Use 0/Artificial Neural Networks in Classifying Lung Scintigrams Page3

VOLUME 1 : THESIS

Chapter 1Overview 12

Chapter 2 Nuclear Imaging 16

Chapter 3 Lung Scintigrams 20

Chapter 4 Introduction to ANNs 25

Chapter 5 Rationale for Using MLPs with Error Back Propagation 35

Chapter 6 ANNs Using Raw Data 44

Chapter 7 Data Compression Using Principal Components Analysis and ANNs 53

Chapter 8 ANNs Using Principal Components 67

Chapter 9 Dynamic Parameter Tuning of Parameters Applied to

Impedance Imaging and Pixel Prediction 73

Chapter 10Local Prediction Techniques 96

Chapter 11 Optimising Network Structures With Genetic Algorithms 109

Chapter 12 Reducing Connectivity in Compression and Prediction Neural Networks 121

Chapter 13 Classification of Defects Using Local Techniques 131

Chapter 14 Conclusion 140

References 143

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page4

VOLUME 2 : APPENDICES

Table of Contents

Appendix 1 Source Code of Image Processing System

Appendix 2 Source Code of MATI..AB Functions Created for Study

Appendix 3 Source Code of C Programs Created for Unix Environment

Appendix 4 Medical Imaging System

Appendix.5 Infonnation Taken from Experts inNuclear Medicine

The Use 0/Artificial Neural Networks in Classifying Lung Scintigrams PageS

List of Tables

Table 3.1 Disorders Seen in Lung Scintigrams

Table 3.2 Evaluation of PE

Table 7.1 Group A and B 64 to 16 Unit Compression using PCA

Table 7.2 Group A and C 64 to 16 compression using Neural Networks

Table 7.3 Group B and C 512 to 128 Dimension Compression Using PCA

Table 7.4 Group Band C 512 to 128 compression using Neural Networks

Table 8.1 Network Results All Patterns for PE

Table 8.2 Network Results Perfusion Patterns Only for PE

Table 10.1 Errors of Neural Net on Training Set After 100 Epochs

Table 10.2 Errors of Neural Net on Test Set

Table 10.3 Errors Using Mean Value Prediction Method on Test Set

Table 10.4 Errors of Neural Net on Training Set After 10 Epochs

Table 10.5 Errors of Neural Net on Test Set

Table 11.1 : 2 by 2 Pixel Target Network

Table 11.2 : 2 by 2 Pixel Target

Table 11.3 : 5 by 5 pixel Target Network

Table 11.4 : 5 by 5 pixel Target Network

Table 11.5 : 2 by 2 Pixel Net (10,000 Trials)

Table 11.6: 5 by 5 Pixel Net (4,000 Trials)

Table 12.1 Compression Network tsse after 100 epochs with nets of

best and worst initial tsse 124

Table 12.2 Compression Networks Fully Connected (8 by 8 Segments) 124

Table 12.3 GA Designed Compression Networks (8 by 8 Segments) 124

Table 12.4 Actual Connectivity of Compression Networks 125

Table 12.5 Small Prediction Network tsse after 100 epochs 127

Table 12.6 Small Prediction Networks Fully Connected (4 by 4 to 2 by 2 Segments) 127

Table 12.7 Small Prediction Networks (4 by 4 to 2 by 2 Segments) 127

22

23

61

62

63

63

70

71

101

101

101

102

103

113

113

114

114

118

118

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page6

Table 12.8Large Prediction Network tsse after 100epochs 128

Table 12.9Large Prediction Networks Fully Connected (8 by 8 to 4 by 4 Segments) 128

Table 12.10Large Prediction Networks (8 by 8 to 4 by 4 Segments) 128

Table 13.1Numbers of Segments at Various Confidence Levels for PE Output 135

Table 13.2Numbers of Segments at Various Confidence Levels for COAD Output 135

Table 13.3Numbers of Segments at Various Confidence Levels for PE Output 136

Table 13.4Numbers of Segments at Various Confidence Levels for COAD Output 136

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page7

List of Figures

Figure 3.1 Pulmonary Scintigram Image

Figure 4.1 Simple Linear Network

Figure 4.2 Connected and Unconnected Shapes Not Recognisable

as Such by Local Methods

Figure 5.1 Simple Multilayer Perceptron

Figure 6.1 Segmentation Procedure in Stages

20

26

33

39

48

Figure 7.1 Compression Network Topology 56

Figure 7.2 64-16-64 Network Topology: Trained on Group A, then Group B 62

Figure 7.3 nmsse Group A and Busing PCA Reduction 65

Figure 9.1 Unseen Conductivity Distributions (left) and the ANN Restored Images 75

Figures 9.2 Pattern Learning Data tsse Set A 1'1 = 0.005 78

Figures 9.3 Pattern Learning Data tsse Set A 1'1 = 0.1 79

Fig 9.4 Pattern Learning Data Set B tsse 1'1 = 0005 79

Fig 9.5 Pattern Learning Data Set B tsse 1'1 = 0.1 80

Fig 9.6 Data Set A Epoch Learning tsse 1'1 = 0.005 80

Fig 9.7 Data Set A Epoch Learning tsse 1'1 = 0.05 81

Fig 9.8 Epoch Learning Data Set B 1'1 = 0.005 81

Figure 9.9 Epoch Learning Dynamic Parameter Tuning 1'Ii = 0.05 83

Figure 9.10 Data Set A Epoch Learning Dynamic Parameter Tuning 1'Ii = 0.001 84

Figure 9.11 Data Set B Epoch Learning Dynamic Parameter Tuning 1'Ii = 0.001 85

Figure 9.12 Data Set A Epoch Learning Dynamic Parameter Tuning

1'Ii = 0.005 86

Figure 9.13 Data Set A Epoch Learning Dynamic Parameter Tuning

1'Ii = 0.1 88

Figure 9.14 Data Set B Epoch Learning Dynamic Parameter Tuning

1'Ii = 0.1 89

Figure 9.15 Epoch Learning Data Set C 1'1 = 0.1 91

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page 8

Figure 9.16 Epoch Learning Data Set C 11= 0.1

11i = 0.1, 111 = 0.0001 92

Figure 9.17 Pattern Learning Data Set C 11= 0.1 93

Figure 9.18 Pattern Learning Data Set C Dynamic Parameter Tuning 11i = 0.1 94

Figure 10.1 Prediction of Inner Segment from Outer Segment ANN 97

Figure 10.2Network Convergence Training Predicting 1Pixel 99

Figure 10.3Network Convergence Training Predicting 4 Pixels 99

Figure 10.4 Network Convergence Training Predicting 9 Pixels 100

Figure 10.5Network Convergence Training Predicting Pixels Using Digital Data 100

Figure 10.6 Pulmonary Embolus Image:

Perfusion Images (left) and ventilation Images (right) 104

Figure 10.7 Pulmonary Embolus Image Perfusion Image:

Binary Smooth (right) and Sobel Filtered (right) . 105

Figure 10.8 Pulmonary Embolus Perfusion Images:

Error (left) and Restored Images (right) 106

Figure 13.1 Convergence of Perfusion Classification Net 133

Figure 13.2 ROC Curve Training Data PE Classification 137

Figure 13.3 ROC Curve Training Data COAD Classification 137

Figure 13.4 ROC Curve Test Data PE Classification 138

Figure 13.5 ROC Curve Test Data COAD Classification 138

The Use of Anificial Neural Networks in Classifying Lung Scintigrams Page9

Acknowledgments

Dr. David Taylor and Mr. John Barham of the Nuclear Medicine Department,

Walsgrave Hospital, Coventry for their help and advice in this study, and assistance in

experimental procedures.

Mr Philip Neaves for allowing access to impedance images generated by him,

advice on the technique of impedance imaging, and assistance with several headaches.

My parents for their support throughout my studies.

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page 10

Key to Abbreviations

ADALINE Adaptive Linear Element

AI Artificial Intelligence

ANN Artificial Neural Network

AP Anterior-posterior

ART Adaptive Resonance Theory

BAM Bi-directional Associative Memory

BP Back Propagation

CVS Cardiovascular System

COAD Chronic Obstructive Airways Disease

DVT Deep Vein Thrombosis

GA Genetic Algorithm

LL Left Lateral

LPO Left Posterior Oblique

MAA Macroaggregates of Albumin

MADALINE Multiple Adaptive Linear Element

MLP Multilayer Perceptron

PA Posterior-anterior '

PC Principal Component

PCA Principal Components Analysis

PE Pulmonary Embolus

PTE Pulmonary Thromboembolism

PIT Prothrombin Time

RL Right Lateral

ROC Receiver Operating Characteristic

RPO Right Posterior Oblique
,

SLE Systemic Lupus Erythematous

SNR Signal to Noise Ratio

The Use of Artificial Neural Networks in Classifying Lung Scintigrams Page 11

TB

psse

ntsse

tsse

Tuberculosis

Pattern Sum Square Error

Normalised Total Sum Square Error

Total Sum Square Error

Overview Page 12

1. OVERVIEW

Previous work by the author! , attempted to process scintigraphic images to

improve the diagnostic results of human experts. Various colour scales and pre-

processing techniques were applied to images to hopefully make abnormalities in images

easier to detect. This was not successful. It may be that humans act as sophisticated pre-

processors to such an extent that the filters and colour scales used offered no improve-

ment. The failure to improve on human perception by pre-processing led to considering

emulating, rather than aiding, the human cognitive skills. To this end an artificial neuron

based system was considered.

The aim of this study is to produce a system for classifying nuclear images. An ideal

system would take pixel values, which here would relate to the radioactive counts of a

scintigram, as data for input, and produce a diagnosis which is both highly sensitive and

totally accurate. It would provide the information required by clinicians to enable them to

offer the most appropriate treatment to patients. Interrogation of the system should

ideally offer rationale and reasoning behind the advice given by the system. The system

should work in real time, and not put any extra burden on clinical or other staff.

Many of the above requirements conflict. Accuracy against sensitivity is one such

situation, where the more sensitive a system is to a diagnosis (ie. the more likely it is to

give a positive result when a condition exists) the less accurate it becomes, as it starts to

give false positives. Ie. the ratio of true positives to false positives increases, and true

negatives to false negatives decreases as the confidence point above which one declares a

diagnosis is raised, and conversely the true positives to false positives decreases, and true

negatives to false negatives increases as the confidence point above which one declares a

diagnosis is lowered.

Using different methodologies various of the requirements are met with differing

levels of success, and a review of the various options showed systems that are optimal in

one or more areas. A compromise solution was accepted that did not address the capabil-

Overview Page 13

ity to interrogate the system for reasoning, but was fully automatic and did not require

user input Conventional expert systems have been fed pre-processed data e.g2. and the

proposed system could be embedded in an expert system to provide such information

interactively if this was required at a later stage. A similar approach has been imple-

mented by other workers3, for example, who used an ANN as one component in an

expert system.

The following sections will describe the problems and potential solutions in nuclear

medical imaging (Chapter 2 and 3), and neural networks (Chapters 4 and 5) and then the

current work will be fully discussed (Chapters 6 - 13). Finally a conclusion is presented,
(Chapters 14).

The thesis will cover the following areas :-

1.1. Nuclear Imaging (Chapter 2)

A general overview of scintigraphic techniques as applied to human studies for

diagnostic purposes.

1.2. Lung Scintigrams (Chapter 3)

The particular modality of pulmonary scintigrams will be discussed.

1.3. Introduction to Artificial Neural Networks (Chapters 4 and 5)

Artificial Neural Networks (ANNs) are discussed in general terms, and in some

detail the particular model, multilayer perceptrons (MLPs) employing error back propa-

gation, used in this study.

1.4. ANNs Using Raw Data (Chapter 6)

ANNs were utilised to classify lung scintigrams. Initially unprocessed data was

used, ie. the pixel values of the image in their raw state. This was unsatisfactory, and the

results are presented in this chapter.

Overview Page 14

1.5. Data Compression Using Principal Components Analysis and Artificial Neural

Networks (Chapter 7)

Principal Components Analysis (PCA) gave the most important principal com-

ponents (PCs) of the data space of scintigram images to allow data compression. This

technique was compared with a more novel approach using ANNs.

1.6. ANNs Using Principal Components (Chapter 8)

PCA was shown to be better at compressing images with respect to total sum square

error (tsse), and thus PCs were used to provide a reduced data input to an ANN. Some

limited ability was discovered in classifying images.

1.7. Dynamic Parameter Tuning of ANNs (Chapter 9)

The dynamic tuning of learning rate and momentum in MLPs using error back pro-

pagation was explored. This used data from impedance imaging supplied by an MSc stu-

dent.

1.8. Local Prediction Techniques (Chapter 10)

Scanning images with a window of an appropriate size to include a typical abnor-

mality was here explored with a view to producing a system which flagged areas of an

image with a potential defect.

1.9. Optimising Network Structures With Genetic Algorithms (Chapter 11)

The design of ANNs was automated using Genetic Algorithms (GAs).

1.10. Reducing Connectivity in Compression and Prediction Neural Networks

(Chapter 12)

The connectivity of nets is relevant to the speed of execution, and reduced connec-

tivity nets are less likely to fall into uninteresting one to one mappings. Fully connected

networks require -larger training sets than sparsely connected ones. This chapter explores

more sparsely connected networks.

Overview Page 15

GAs were compared with randomly allocated network structures, which were found

to be roughly equivalent to GA designed nets.

1.11. Classification of Defects Using Local Techniques (Chapter 13)

The prediction technique failed to give useful segments for further classification,

and areas were subsequently manually identified for the classification network. The

classification success rate is presented.

1.12. Conclusion (Chapter 14)

An overall statement of the work is presented.

Nuclear Imaging Page 16

2. NUCLEAR AND IMPEDANCE IMAGING

2.1. Nuclear Imaging

Nuclear imaging is a particular medical imaging technique, where gamma rays

are employed, in place of X-Rays, ultrasonic beams etc. A gamma ray emitting radio-

substance with a short half-life is introduced into a patient via intravenous injection

inhalation or some other method. Gamma rays are collected by a crystal which is con-

nected to a battery of photo-multipliers. The intensity of the rays and the position of

emissions may be calculated by the relative intensities found at the photo-multipliers.

The substance used will distribute itself according to structure and function of the

body. Whereas in conventional radiographs (X-Rays) anatomical structure is seen, in

scintigraphy function of an organ is more important in determining an image.

Radio-pharmaceuticals used in pulmonary scintigraphy include 4 :

Particles 99"'Tc-HAM. 99"'Tc-MAA

Gases 133Xe. ISO. 12('02, »c in CO.

Aerosols 99". Tc •

2.1.1. Display of Images

A problem with nuclear imaging is that the signal to noise ratio (SNR) is low and

images are difficult to interpret. Once the image has been collected the display of the

image will be affected by the resolution of the screen, the number of grey levels or

colours allocated, and the contrast. These parameters may be optimised, but the improve-

ment is limited by the quality of the original data.

2.1.2. Subjectivity of Images

The images produced by nuclear medicine in common with most medical

images have the human perceiver as a component in the imaging apparatus. While

some quantitative methods are employed (e.g. cardiac ventricular function testing)

Nuclear Imaging Page 17

most images are viewed by a clinical expert to qualitatively reach a diagnosis. In these

cases it is therefore not sufficient to evaluate equipment alone, the assessments of

observers should be tested. A clinical trial of a system using observers can make use of

Receiver Operating Characteristic (ROC) curves5 (e.g.) to judge the efficacy of an image

enhancement technique. Automatic systems may similarly tested, and be compared with

observers using ROC analysis.

2.1.3. Physical Limitations of Equipment

The equipment used in scintigraphy is finite in its resolution capabilities, and this

will influence the degree to which software can manipulate the image meaningfully. The

resolution is determined by the dimensions of the collimators. The longer the collimator,

and the smaller its cross sectional area, the more scattered radiation is shielded, but the

lower the count. As the radioactive process is a random one, which may be modeled by

Poisson noise, very low counts become increasingly affected by background noise. The

SNR is thus lowered as resolution increases, and a compromise has to be struck between

the two features.

2.1.4. Accuracy of Diagnosis

Nuclear images contain significant levels of noise, and may be difficult to interpret.

The use of experts in diagnosing such images is therefore necessary, but even experts

disagree with each other on some diagnoses, and one expert may give different opinions

on the same image when presented with it on separate occasions.

2.1.5. Automatic Diagnostic System

It would appear advantageous to build an automatic reporting system for nuclear

images. Such a system would give more consistent reporting, and may give more accu-

rate reporting. It would also allow analysis of the parameters used to diagnose an image.

Pulmonary radiographs have been classified using texture feature and moment

Nuclear Imaging Page 18

parameter feature analyses6. Systems have been built which perform automatic reporting

of nuclear images, e.g7• and8.

These systems are tailor made for specific organs, and do not readily transfer to

other organs. Specific knowledge is assumed about the organ under consideration, for

example'',

Expert systems have been utilised to give reports9 , but these are also based on

specific information known about the domain under consideration.

Individualised systems are time-consuming to build, and are hence expensive. Rules

must be known, stated explicitly, and correctly. One flaw in the program may allow seri-

ous errors to result. Consequently the systems are not necessarily robust. The use of

fuzzy logic and/or Bayesian statistics can assist in areas where the knowledge is uncer-

tain. Conventional computing techniques may give.optimal solutions to particular prob-

lems, but are unlikely to be applicable to other problem areas.

For reasons discussed in later chapters (Chapters 4 and 5) ANNs may offer a more

general purpose but robust framework around which to design automatic detection sys-

tems.

2.2. Impedance Imaging

Images may be constructed from electrical measurements of an organ. The tech-

nique consists of surrounding the area to be imaged with a number of electrodes, apply-

ing a constant current source across two of the electrodes, and measuring the voltage at

all other ·electrodes10. In principle the conductivity distribution may be calculated from

these measurements. The mathematics involved in however non-trivial and not fully

developed. The relatively new technique of impedance imaging offers several promising

advantages. Such systems would be cheap to produce, and could be used for continuous

monitoring. Similar problems concerning resolution, subjectivity, physical resolution and

accuracy apply to impedance imaging as to nuclear imaging. In a related study by an

MSc student this imaging technique has been explored, and the use of ANNs in solving

Nuclear Imaging Page 19

the inverse problem has been attempted II, Further analysis of the data from that study

has been undertaken, and is explored in Chapter 9,

Lung Scintigrams Page 20

3. LUNG SCINTIGRAMS

Lung scintigrams, an example of which appears in Figure 3.1, are used for the diag-

nosis of pulmonary emboli (PE, also known as pulmonary thromboembolism PTE).

Figure 3.1 Pulmonary Scintigram Image

nb. The image is rotated 90 degrees.

3.1. Pulmonary Embolism

This term describes a condition where an occlusion occurs in the pulmonary circula-

tion by a blood clot. A thrombus (blood clot) can become detached and move in the

direction of blood flow, a thrombus which moves in this way is termed an embolus. In PE

the emboli arise typically from detached thrombi of the deep veins of the leg (deep vein

thrombosis or DVT).

Lung Scintigrams Page2]

DVT is classically a condition associated with immobility, and is common in debili-

tated, immobile patients. Post-operative patients are at risk from DVT, and the risk.

increases the more their surgery renders the patient bedridden.

The embolus from a DVT passes through the heart, and is most likely to lodge in

the pulmonary circulation, as the blood vessels bifurcate and become progressively nar-

rower. Eventually one is encountered that the embolus cannot pass through.

The effect of an embolus is variable, depending upon the size of the vessel

occluded, the number of emboli (multiple emboli are common) and the general condition

of the patient Thus the clinical picture may be anything from asymptomatic, through to

chest pain and breathlessness, and to collapse, respiratory arrest and imminent death.

The treatment for PE is anti-coagulant therapy, using enzymes (heparin) or drugs

(e.g. warfarin). Failure to treat is dangerous as subsequent PE are not uncommon, and

anti-coagulant treatment additionally to removing emboli acts as a prophylaxis for such

sequalae. However aggressive treatment of suspected PE from clinical history unsup-

ported from objective tests is inappropriate as post-surgical patients are at risk from inter-

nal bleeding if their clotting time (Prothrombin Time, PTT, the time taken for blood to

form a clot) increases.

There is an obvious need to get the diagnosis right, to correctly identify those

patients who will benefit from anti-coagulant therapy, and those for whom it is inap-

propriate. Clinical history gives some indication as to the diagnosis, but other conditions

may mimic PE, for example chest pain and breathlessness may be of cardiac origin.

Some non-invasive imaging technique would appear to be appropriate, to directly visual-

ise the abnormality. Chest radiographs do not show PE, though they may be useful in

eliminating other disorders, and hence some other imaging modality is required.

3.2. Scintigraphic Techniques

A pulmonary scintigram of the blood vessels (perfusion scintigram) may be

obtained by injecting the patient with a radio-isotope. ""'Te micro spheres are used, but

Lung Scintigrams Page22

more commonly 99iIITc labelled macroaggregates of albumin (MM) are employed.

These have an average size of 10 - 40 um, and pass into the pulmonary circulation where

the obstruction of a small number of vessels "fixes" them12 In a normal subject the

uptake of the isotope is seen over the whole lung field, with the exception of a cardiac

shadow (the heart overlies the lungs and shields part of the radiation output) in the ante-

rior view on the left of centre.

The expert who views scintigraphic images looks for specific patterns which are

indicative of known diseases or conditions. For instance the outlines of the lungs should

be smooth; in the posterior view the lungs should come down to the same level. A normal

image, showing these and other attributes effectively excludes the diagnosis of PE.

In PE areas of reduced uptake are seen where the isotope cannot reach the blood

supply of a vessel occluded by an embolus. Unfo~ately other conditions may produce

such areas, examples of which are given in Table 3.1 :-

me 0 strucnve airways
Pleural effusion.
Bronchospasm
Asthma
Pneumonia with Consolidation
Cardiomegaly
Tuberculosis (113)
Venous Hypertension
Extrapulmonary Abnonnallties (e.g. aneurysm)

The defects may be segmental, subsegmental or non segmental. Segmental defects

are indicative of PE, non segmental defects suggest other pathologies, and sub segmental

defects are non specific.

In PE the circulation is affected, but the ventilation system of bronchi, bronchioles

and alveoli are either unaffected, or affected to a much lesser degree. Thus a ventilation

scintigram will show a mismatch in the areas of reduced uptake, but other conditions do

not show this mismatch, Consequently a ventilation study is often performed using a

variety of agents with different advantages and restrictions, examples of such agents are

Lung Scintigrams Page23

Several views are taken as the defect may be easily seen in one view, but obscured

in another. Typical views are anterior-posterior (AP), posterior-anterior (PA), right poste-

rior oblique (RPO) and left posterior oblique (LPO).

3.3. Diagnosis of PE

In addition to the factors mentioned above, the clinical history may indicate PE.

Chest X Ray may provide useful additional information. The following patterns in Table

3.2 suggest different evaluations for PE. In this table rough probabilities are given, e.g. p

< 0.05 PE, which means the probability of PE is less than 0.05, or only 5% likely12.

able 3.2 Evaluation of PE
lean Chest X Rav ~T
~ormal Normal NoPE
Sub segmental perfusion defects Normal

. p <0.05 PE
or defects with matched
ventilation defects
Segmental, lobar or large non- Normal p <:0.05 PE
sezmental matched defects
Bilateral segmental unmatched Normal p >0.9SPE
nerfusion defects
One lung with matched defects, Corresponding abnormality p>0.9SPE
the other with multiple segmental with matched defect Probable pulmonary
unmatched nulmonarv 'defects infarct
Multisegmental perfusion Normal p >O.SPE
defect in one lung only
with normal ventilation
Matched perfusion/ventilation Associated defect p > 0.3 (non diagnostic)
abnormality Pulmonary angiography

mav hP. • d

The literature survey has thrown up some rules that may be used in diagnosing PE,

and some general comments concerning such diagnosis. For example it is unusual for

ventilation images to show defects that are not seen in perfusion images, though this does

sometimes happen in pneumonia. Where matched defects are seen typically the perfu-

sion defects are more pronounced. In COAD the primary defect is in the airways obstruc-

tion, but this causes a secondary arteriolar obstruction. In PE sometimes minor ventila-

tion defects are seen which correspond to infarction (where the blood supply to an area is

Lung Scintigrams Page24

totally occluded, and the tissue supplied by that vessel consequently dies). Artificial

mismatching may occur in severe parenchymal disease due to clumping of tracer in

major bronchi and branches12•

In addition to a literature survey, medical physics departments were visited in the

West Midlands, to interview experts and obtain local information. This information could

be used to build an expert system (for an introduction to expert systems in medical sys-

tems see 13), of which the ANN is a constituent part. The details are given in Appendix

5.

Introduction to ANNs Page25

4. INTRODUCTION TO ANNs

ANNs are biologically inspired algorithms, where ideas taken from nervous system

anatomy and physiology have been used to attempt to simulate a (very simplified)

artificial nervous system. The reason for this project is to build systems which are capa-

ble of performing actions or analysis that conventional computer programs are poor at,

but which living organisms perform well. Introductions to this multi-disciplinary branch

of science can be found inl4 ,and IS (e.g).

ANNs are difficult to analyse, and most work has been empirical, based on simula-

tions. These have frequently been "toy" problems such as the XOR problem, found in16,

or grossly simplified problems, e.g. the synthetic amoeba which learns to find food17 ,

and the learning of linguistic concepts (e.g.), ,and to represent conceptual structuresl8

19, . ANNs have been implemented in realistic problem domains, to build knowledge

processors20 and for industrial scene analysis (e.g.)21.

4.1. What is a Network, What are Units

In an analogy with the nervous system of animals, artificial neurons (often called

units) are linked by artificial axons (usually called links). The units and links are grossly

simplified compared with real neuronal systems. The units are often identical in structure,

or consist of only a few different types. Real neurons are in many cases highly special-

ised although the cerebral cortex contains cells which are not highly differentiated, and

so there is some justification for using identical units to model cognitive functions. The

links are. typically simple summing devices, where the output of several units are

weighted by some value, which is potentially different for each unit, and adaptable, and

some function is often then applied to the sum. A squashing function such as the logistic

function is popular as it ensures outputs that are in a well defined range only are allowed.

The logistic function is defined by :

I
f(x)= I+e-x

Introduction to ANNs Page26

where in this case x is the output value of the unit.

The simplicity of activation functions of artificial networks may be compared with

the tens to hundreds of thousands of different neurotransmitters (the number is not known

even approximately) found in the human nervous system.

Even these simple artificial neural networks (ANNs) are difficult to analyse

mathematically, and before one attempts to employ more complex systems, much work

needs to be undertaken both theoretically and experimentally to understand simple sys-

tems.

A typical network structure is shown in Figure 4.1.

Figure 4.1 Simple Linear Network

Outputs

Inputs

.ficial Neuro
(Unit)

Artificial axon
(1irik) •

where ii is an input and OJ is an output.
Hebb 22 proposed that if neurons are simultaneously activated, the connections

between them become stronger. This rule is the basis of many ANN algorithms, several

of which are discussed below. So-called Hebbian learning is epitomised by the update

Introduction to ANNs Page27

rule for a change in weight 4w :

4Wij='f\ajt; (4.1)

where aj = activation of a unit j, Ii = target value of unit i, n= learning rate and Wij =

weight between input j and target i23•

The above would be used to associate an input with a target output, where connec-

tions (weights) are made between the units (which are simulations of neurons, grossly

simplified). This rule works for linear relations where the input vectors are mutually

orthogonal, or at least linearly independent.

If two different input sets (an input set is often referred to as a pattern) are linearly

dependent, then a linear network is not able to give a correct answer for both inputs. This

is because the linear network is in practice solving a set of linear equations.

For an example take the OR problem. It is the following function :-

(0,0) -> °
(1,0) -> 1

(0,1) -> 1

(1,1) -> 1

Note the vector (1,1) can be II18flefrom (0,1) + (1,0), and hence the inputs are not

linearly independent. In a linear net the solution of the following equations will be

attempted :-

a IX l+a 2X'FOutPut

for each Xi, where ai is some scalar. This gives :-

alO+azO=O

alO+azl=l

all+azO=l

(4.1)

(4.2)
(4.3)

all+azl=l (4.4)

equation 4.2 gives al=l and equation 4.3 az=t. Thus the following mapping may be given

by the net r-

Introduction to ANNs Page28

(0,0) ->°(Correct)
(0,1) -> 1 (Correct)

(1,0) -> 1 (Correct)

(1,1) -> 2 (Incorrect)

Other learning rules are more appropriate for linearly dependent and for more gen-

eral (e.g. non linear) cases.

Units may be grouped in levels, and the outputs of one level become the inputs of

another. Connections may be made in one direction only (feedforward), in both direc-

tions (bi-directional), allowed within a layer, and a unit may feedback to itself. Groups of

such units are referred to as networks. Arbitrarily designed networks are notoriously

difficult to analyse and predict the behaviour of, and severe restrictions are usually put on

a particular network, to allow some form of analysis to be performed. Examples of such

restrictions are networks where no feedback is allowed to a unit, or between units of a

layer.

4.2. Activation Functions

The output from a set of units, connected to another unit, may be simply summed to

provide the input to the receiving unit. Such a simple function ie. l:aij where j = index
I

of receiving unit, is an example of an activation function. Non-linear functions which

"squash" the value into a prescribed range are much more commonly used, egothe logis-

tic function.

4.3. Rationale for Using Networks

Neural networks are based on the paradigm of information processing, as typified

by the cognitive functions of animals. It has been made apparent that the speed of neu-

rons is such that sequential processing is not practicable for real-time usage24. This is

especially pertinent to vision and speech. The visual system uses concentric rings of reti-

Introduction to ANNs Page 29

nal cells. These are massively connected to intermediate levels of neurons before termi-

nation in the visual cortex. For sufficient speed much of the processing must be com-

pleted in parallel, though some sequential steps may be involved as well. It has been

pointed out, for example in 25 , that the number of connections in the human visual sys-

tem is enormous, given roughly lOS neurons in the retina, and each cell being connected

to between hundreds to tens of thousands of others. Such a system is able, even with the

slow neuronal transfer speeds, which are in the order of milliseconds, to allow real-time

response to complicated scenes at around 20-30 frames per second. This is far more

impressive than the performance of very powerful computers using sequential algo-

rithms. But the number of steps performed by anyone neuron can only be in the order of

tens to hundreds. It seems inconceivable that the complex visual performance of humans

can be handled by so few serial steps, it must involve massive parallelism, whereby many

different but small tasks are computed simultaneously.

A better paradigm for image analysis may be to mimic the mammalian visual sys-

tem by using massively parallel computation, using simple individual processes. A large

variety of such artificial neural networks exists, which may be employed dependent upon

the application. All the artificial networks have some common characteristics :

1. There are processes which may run independently, and thus in parallel.

2. The networks "learn" or "discover" patterns or results.

3. A network consists of one or more layers of such processes.

4. Individual processes may affect other processes in the same or other layers, or

provide feedback into themselves.

5. The inputs from some processes are subject to some function or rule to give an

activation value to a process, this value may be used as an output to other units.

4.4. Network Paradigms

Introduction to ANNs Page30

4.4.1. Auto-associative:

These networks accept input and produce output using the same units. They attempt

to match an input with a previously seen target pattern. Rotational and translational

invariance, or pattern filling are typical applications of such nets.

4.4.1.1. Brain State in a Box

This network is similar to a simple linear associator. The units are given a rangeof

possible values though, typically [-1, 1]. An activation rule 16 has the effect of pushing

the value into a vertex of the hyper-cube, where in an N unit network, there are 2N such

vertices.

Taking Wi} to be the weight between units subscripted ij. If aj is in [-1,1].

aj(t+ l)=aj(/}+ tWijai(t)
I

(4.5)

else if aj(/+l»1 then

else

Learning takes place by adjusting the weights in one of two formulae :

(4.6)
or

L\Wij=='Il(ti-tli)aj

where Ii is a teaching input

(4.7)

4.4.1.2. Boltzmann Machines

There is a class of problems that are intractable by exhaustive searching for a solu-

tion, which are named NP-Complete. InNP-Complete problems (for a general introduc-

tion see 26) as the number of variables in the problem increases, the time taken to com-

pute the answer increases dramatically. An example quoted in 26 for different time com-

Introduction to ANNs Page3}

plexity functions is that for size n=60 and linear function I=«. time=O.OOOO6secs, for a 5th

power function !=ns'time=13.0 minutes, (both polynomial functions), but !=2",time=366

centuries, and 3'" time=1.3xl013 centuries.

A similar calculation in 27 where each calculation takes one nano-second gives 800

years for an problem with n! solutions where n=20.

The list of known NP-Complete and NP-Hard (a related set of problems, also

intractable with exhaustive searching) is large, and contains many real-life problems, e.g.

the traveling salesman problem. Optimising with quite small numbers of variables and

such high times is clearly impractical for the NP-Complete cases, and approximation

methods become pertinent. One such class of approximation techniques are local search

methods, where a cost function is minimised by exploring neighbouring solutions. How-

ever the upper bound for the time taken to solve a problem is not known for many prob-

lems28• Consequently some modifications may need to be made to the algorithm. One

solution is to restart the algorithm many times with different initial conditions. Another

method is to allow a cost function to increase in a probabilistic fashion.

The method named simulated annealing (for a discussion see29) uses this latter

modification. It is so-named as it resembles the slow cooling of a metal to form a crystal

lattice. The probability of the cost function increasing is governed by a function named

temperature, where temperature is related to the probability of the cost function being

allowed to increase, to avoid local minima. The temperature is slowly decreased, initially

the likelihood of the cost function increasing is high, and so if a local minimum is

encountered, the system will be unlikely to remain in it, and finally the probability is very

low, and a minimum is encountered which will hopefully be close to optimal.

Boltzmann machines perform this type of optimisation, and the algorithm may be

performed sequentially or in parallel using a neural net. There are critics of the tech-

nique, for example30 who claim the Boltzmann machines are "not much more powerful

then combinatorial circuits built from gates which compute Boolean threshold functions

Introduction to ANNs Page32

and their negations".

4.4.1.3. Hopfteld Net.

The network consists of a fully inter-connected net, each unit may have excitory or

inhibitory connections to other units, and the connections are symmetric, ie. the weight

from unit i to j is the same as that from j to i.The learning rule is 31

AWij=(2xi-I)(2xr I)

where Xi is output of the current unit, Xj is the input from some other unit.

Hopfield nets have been used in target recognition, and it is possible to implement a

(4.8)

large net using optical technology31.

4.4.2. Hetero-associative:

In hetero-associative networks separate units are used for input and output, and the

number of inputs units does not in general equal the number of outputs, Classification

tasks are typical applications, where frequently a high dimensional input space is mapped

to a much smaller classification space, e.g. the inputs of individual dogs could be

classified into the breeds of dog.

4.4.2.1. Perceptrons.

These networks are essentially linear associators, with the addition of a threshold

for the output of units. It has been shown that these networks are capable of solving any

problem for which a linear solution exists32• However it has also been shown that prob-

lems that are not of this nature may not have a solution 32 , and one particular such exam-

ple is that of connectedness in space. To illustrate this concept imagine a set of pixels

which are turned on or off (ie binary). Looking at a small area of an image pixels, which

are not joined locally may be thought to be in separate shapes. However as one stands

back from the image, on a larger scale the pixels are seen to be in the same shape, or con-

nected together (see Figure 4.2). It can be proved there is no local method of solving this

Introduction to ANNs Page33

problem. One must look at the whole picture to rule out that two areas are not con-

nected32•

Figure 4.2 Connected and Unconnected Shapes Not Recognisable as Such by Local
Methods

: : : : : : : : : I I
Linking Segment

No Linking Segment

4.4.2.2. Kohonen

Kohonen suggested a network that is unsupervised, and learns to cluster data. An

input data space is mapped to a lower dimension output space. The networks are "topo-

logically correct" which means that the topological relations of input and output space

are similar. A brief description may be found in 33 and a fuller description by its creator

is in34.

Applications include the exploratory analysis of data3S.

4.4.2.3. Wisard

This classification system is novel in that it is implemented in RAM. A description

may be found in36

4.4.2.4. Counter Propagation

A marriage between Grossberg learning and Kohonen networks, this hybrid is five

layered. Two input layers feed directly to a Kohonen layer, which is connected to two

Introduction to ANNs Page34

Grossberg layers. The inputs are presented, and different unit in the Kohonen layer

becomes predominant with varying pattern pairs. After learning, incomplete patterns will

tend to be filled in. A short review of this network can be found in37.

4.4.2.5. Bi-Directional Associative Memory (BAM)

Using a four layer structure the BAM network is designed to store associated pairs

of vectors. A description of BAM may be found in38. The first and fourth layers are

input and output buffers, the middle two layers are adaptive. Upon presentation of a

noisy pattern pair, oscillations between these inner layers eventually stabilise to give the

closest learned association. The BAM inner layers are fully connected, and employ Heb-

bian learning.

4.4.2.6. Adaline

The delta rule which is described by the relation .!\Wjj=1l(/j-Qj)oj, where Tt is a scalar,

Ij a target value and iii the output for units i . has been used to produce the ADaptive

LINear Element (ADALINE)39. This rule effectively changes weights to reduce error

between input and output of an element. It was the first successful commercial ANN, and

is today used in modems. Several ADALINE units may be combined to fonn a Multiple

ADALINE (MADALINE).

Rationale for Using MLPs with Error Back Propagation Page35

s. RATIONALE FOR USING MLPs WITH ERROR BACK PROPAGATION

5.1. Advantages of ANNs

The advantages of the network over traditional AI techniques are :

1. Speed. Each pixel may be computed in parallel.

2. No reasoning is required to be given, or a priori knowledge used, other than the

simple constraints used in pre-processing.

3. The system may be applied to other organs, images.

4. Systems are resistant to error and incomplete knowledge. With increasingly

incomplete data, or noise, the system exhibits worsening performance, but not a

catastrophic failure. (This is usually referred to as "graceful degradation").

5. New rules can be "learned".

5.2. Disadvantages of ANNs

Disadvantages include :

1. The reasoning of the network is difficult to analyse.

2. A solution is not guaranteed, and in particular local minima may be encountered.

3. The networks scale poorly with size.

4. Network architectures are difficult to design optimally.

5.3. Network Paradigm Chosen

The network paradigm chosen was an MLP using error back propagation. The rea-

sons are discussed below.

The images are required to have a particular diagnosis as an output. The inputs will

be pixel values, or some representation of pixel values. A hetero-associative network is

required rather than an auto-associative, since the inputs and outputs are of different

type, and different dimensionality. Auto-associative networks may be used as a pre-

Rationale for Using MU's with Error Back Propagation Page36

processing stage. Such pre-processing might be to obtain invariance for orientation, or to

complete partial images, or reduce noise etc. Invariance to size and orientation of images

was obtained in other conventional ways where needed, as explained in a later chapters

(Chapter 6).

Of the hetero-associative networks, the perceptron may not be appropriate as it

would not be able to recognise connected areas, or other non-linear patterns. There are

several network paradigms to choose amongst which do permit the use of non-linearities.

It would not be possible within the time scale of this study to test the applicability of

each type to each problem tackled. Thus the literature was consulted for similar applica-

tions to give a lead as to the most appropriate network. The MLP was used to compress

data, perform prediction, and to categorise patterns. These particular tasks could be

implemented using other network paradigms of course, and such alternatives are referred

to in the Chapter 4. However for all of these tasks MLPs have been successfully used in

studies for similar ends. Papers showing positive results include40 in which images were

compressed which subjectively appeared close to the original41, which showed categori-

sation of images of soda bottles into correct classes was possible, and42 discuss the use

of prediction MLPs, and quote references to studies in which such nets were used suc-

cessfully. MLPs have been used to make simple expert systems for medical diagnosis of

back pain43 ,dyspepsia44 and headache45• An MLP has also been shown to perform as

successfully as an expert system in the forecasting of solar flares46, in which study the

authors suggest that if a connectionist system can perform as well as a rule based expert

system, then one should, by examining the internal representations of the network, be

able to elicit rules. This aspect has been looked ar47 by activating inputs one by one, and

in groups, and noting the affect on the outcome. MLPs may be faster to implement, and

once trained, faster to run than conventional systems. Quoted in the solar flare study46

the time taken to build the rule based expert system was one man year, and the process-

ing time for a single prediction was 5 minutes. this compared with one week for the MLP

development, and a processing time of a few milliseconds. However in that study the

Rationale for Using MLPs with Error Back Propagation Page37

expert system already was designed prior to the ANN being built, and it is possible that

the knowledge gained in building the expert system helped speed up the design of the

ANN system.

It has been shown that linear MLPs are equivalent to discriminant analysis48 which

is the technique whereby data is organised into well separated clusters. This method

would take high dimensional data and project it onto an optimal subspace. The use of

nonlinear elements could improve the performance above that of conventional discrim-

inant analysis. Simulations using a hidden layer with more units than the number of

expected classes have in fact shown an improvement48• Since the scintigrams are to be

placed into classes, viz those with particular abnormalities, nonlinear MLPs seem to be a

reasonable net design.

An assessment of MLPs versus human observers has been made comparing the

recognition of a simulated "nodule". In49 a noisy background of a 5 by 5 pixel array, had

a 3 by 3 pixel signal imposed in 50% of an image set. Receiver operating curves (ROC)

showed MLPs at least as good as humans in detecting the signals at low SNR. As the

authors admitted the images were much less complicated than real radiological (or scinti-

graphic) images, but the study shows that in principle the use of MLPs in signal detection

in worth exploring.

Conventional techniques such as expert systems and image processing algorithms

may also have a complementary place with ANNs.

5.4. Mathematics of Error Back Propagation.

Using linear activation functions a multilayer perceptron(MLP) can be reduced to

an equivalent simple perceptron, and so does not solve non-linear problems. For if the

network layer is linear, the input to the jth layer from the ith layer may be expressed as

I=AI

where I is the output from layer i, I is input to layer I, and A is a matrix. But:

Rationale for Using MLPs with Error Back Propagation Page38

K=BJ

describes the connection between the kth andjth layer, and

K=(BA)I

But BA is just a matrix, and therefore :

K=CI

where C = BA is some matrix, ie. simply equivalent to 2 layers, an input and output.

Using non-linear activation functions, a multi-layer network has been suggested16.

This is the multilayer perceptron (MLP) using error back propagation as the learning

rule.

A variety of activation functions and thresholds may be used, but the basic principle

is that the result of sending inputs through a series of layers (with weights originally set

to small random values) is compared to some target value, used in "training" the network.

Errors are sent back through the network, and used to update the weights in each layer, so

as to minimise the error. A typical network layout is shown in Figure 5.1.

Rationale for Using MLPs with Error Back Propagation Page39

Figure 5.1 Simple Multilayer Perceptron

Output

Hidden Units

Inputs

cial Neuro
(Unit)

Artificial axon
(hllk) I

This type of network is known to be able to learn non-linear functions such as the

XOR problem that a simple perceptron is unable to "learn". The XOR problem is simply

the functional mapping :-

(0,0) -> °
(0,1) -> 1
(1,0) -> 1
(1,1) -> °

Since the MLP is the paradigm chosen for this study a slightly more detailed

description of the algorithm will be given, which can be found in 16.

Assume initially a linear network. If the rule for changing weights is

(5.6)

Rationale for Using MUs with Brror Back Propagation Page40

tpj=jth wget output for pattern p

opj=jth output elemelllfrom pattern p
ipj=jth input elemelllfrom pattern p

Let an energy term E be defined as

(5.7)

We wish to show that

-rp =1lxa ·i .
Wjj 'PJ "

(5.8)

Where 11is a scalar. Ie. gradient descent occurs because the differential of the error

with respect to change in weights is proportional to the current error. The steps are :

aa· .rw;=Jpi
-:!;=apjipi (5.9)

QED.

5.5. Adding hidden units

Let

(5.10)

Where OJ:;j ifunit i is an input unit

Semilinear functions are functions characterised by a near linear area in one part of

their range. A semilinear activation function is given by

(5.11)

where f is differentiable and non-decreasing. The logistic function which is often

used in ANNs is approximately linear in the mid portion of its range, and is increasingly

nonlinear as one moves away from the midrange values. Set:

Rationale for Using MLPs with Error Back Propagation Page41

11,wji=-k :;~, • k is constant
JI

8E 8E &et,
~=~ 8Wj~1

8net ' 8
~= 8Wji ~WjkOpi

(5.12)

=0 'pc

define:

(5.13)

To make gradient descent make weight changes according to :

Applying chain rule

-8E 8E 80,8pi=-=::L=-=::L ...=l!LOnetpj OOpj Onetpj
80 ' ,
8ne~~j =fJ(netpj)

g;P, =-(tpj-Dpj)for output units
PI

8pj=(tpj-Dpj)f j(netpj) for output units

~ 8:Jj. 8f&;'! =~ ~Jj. .Jpj ~WaOpi otherwise

8E
=~~Wkj

=-~8piwkj

8pj=f j(netpj)~8pi Wkj gives a recursive rule

if s;Wji=rtfJpjOpi

If unitj is an output unit

(5.15)

8pj=(tpj-Dpj)f j(netpj)

If unitj is hidden unit

8pj=f j(netpj)~8pi Wkj

If the activation function is the logistic function then :

(5.16)

(5.17)

Rationale for Using MLPs with Error Back Propagation Page42

The error for an output unit is :

8pj=(tpj-Opj)opj (l-Opj)

The error for an arbitrary hidden unit is :

(5.18)

(5.19)

5.6. Software Implementation of Networks

The networks used in this study were implemented initially using a commercially

available neural network package (NeuralWare). This system allows rapid prototyping

but is rather limited in the number of processing units it will allow under MS DOS. When

running under MS DOS a further, more critical, restriction is the memory required to set

up the weights for the units. The interface used b.y NeuralWare was easy to use, but

lacked the flexibility required of an experimental system, in particular logging of vari-

ables, and dynamic parameter changes were difficult to accomplish. Thus although a

good tutorial introduction to ANNs, NeuralWare was not considered a good choice of

package for many parts of this study.

Subsequently the networks were reconfigured under Unix, using another package

(PDP by McLelland and RumelhartSO), to allow bigger networks, and better control. The

Rochester system, which is more adaptable still, was considered. This system allows

arbitrary connections with a user defined activation function. However as the extra

power of this system was not strictly needed for this project, it was not used.

5.7. Parallel Implementation

The above mentioned software runs on sequential processors, and thus does not util-

ise one of the potential benefits of neural networks in terms of speed, the power of paral-

lel processing. The individual processes are independent, and may be run simultaneously.

Since the processing is essentially parallel in nature, parallel hardware offers greater

Rationale for Using MLPs with Error Back Propagation Page43

speed. A system which allowed expansion of processing power would be an advantage

in this study, and preferably one which allowed parallel execution. The transputer allows

such a system to be built, and initially a single transputer T4 processor has been used on

a mM PC mounted board. The back propagation has been written in parallel C, so that as

more processors are added, the system will run faster. This system was not actually used

in simulations as it was preferred to use a package with a variety of features such as log-

ging of variables, generation of screen templates etc. built in, rather than create a system

from scratch. The routine built on the transputer merely demonstrated that such an

approach will work.

S.S. Hardware Used

NeuralWare was run on a variety of mM compatible computers running under MS

DOS. The PDP package also could be run on these 'machines, but almost all simulations

were done on Sun 3 and Sun 4 workstations. Both these simulations use serial algorithms.

In principle a network once the weights had been learned using a software simulator

could be implemented in RAM, or in direct hardware. A final system would benefit from

a network implemented in silicon, as this would be faster, and the algorithm would be a

parallel one, to exploit the distributed nature of networks.

ANNs Using Raw Data Page44

6. ANNs USING RAW DATA

In a pilot study 51 coronary scintigram images were classified using an MLP with

error back propagation. It was claimed that correct classification was obtained in all cases

with 29 scans, 12 which were considered normal and the rest with vessel disease (as

judged by a human expert). In that study 15 segments of the images were fed into 45

clusters of input units, a hidden layer of 30 units and a single output unit. It was not

stated whether the data was split into training and test sets. Clearly the claim of 100%

accuracy of classification is meaningless if the ANN simply classified correctly the data

it had been trained on. With such a small data set and a large number of connections the

possibility of one to one mappings or local minima is high.

A subsequent paperS2 discussing the same work in more detail gave a test set

classification rate of around 80%.

6.1. Type of Data Input

An ANN may be fed input data directly, as in52 , or after some pre-processing.

While it is likely that pre-processing will be advantageous, the simplest possible imple-

mentation would be to use raw data. If this failed to produce a reasonable output one

would be justified in examining data manipulation, which would typically mean data

compression. Accordingly the first experiments were conducted using raw pixel data,

with minimal pre-processing, merely a noise reduction median filter, and a standardisa-

tion for size.

6.2. Automatic Reporting System

There are a variety of nuclear images which could be analysed with neural net-

works, e.g. lung scans, dynamic cardiac studies etc. Initially a pulmonary system was

implemented. These had certain operational advantages, viz. there were a large supply of

them, and they are static images, and without the added complications encountered in

cardiac studies (e.g. gating of images). In order to allow the network to function most

ANNs Using Raw Data Page45

effectively, the images were pre-processed for reasons given below.

6.3. Acquisition of Images

The images were obtained by "frame grabbing" analogue images taken from an atlas

of scintigrams53.

6.4. Reduction of Noise

Images may be acquired in screen resolutions of various sizes. Further the "screen

grabbing" will be affected by how close the image is to the video camera, and subjects

have differently sized organs anyway. Also if the uncompressed image is fed directly

into a network, various problems are encountered, associated with the size of the data.

More input units mean more connections, and a larger usage of computer memory. On

micro-computers this may be beyond the resources of the computer. On mainframe or

workstation machines this is capable of being dealt with by virtue of virtual memory. But

a second problem is less tractable. As the number of connections increases the degrees of

freedom of the system increases. This makes it more likely that the network:may act as a

look-up table, rather than learning general features of the images. Ie. a set of weights may

mean a particular image, but a similar image will not necessarily give a similar output,

the system has then not generalised well, it is topologically incorrect.

Since one may need to reduce the size of the image, one should employ a data

compression technique that also reduces noise. The median filter was employed to

reduce noise as the raw images were too large. In a standard median filter approach a

mask is moved over the image pixel by pixel, and the median pixel in the mask is saved.

For the purpose of file reduction a mask was applied to non-overlapping segments, and

one pixel value was saved per mask application. Thus if an n by m mask was applied, an

n times m file reduction was achieved. The median filter was employed as features (e.g.

edges) are better preserved using median filtering than some other methods, e.g. mean

filtering54.

ANNs Using Raw Data Page46

6.5. Locate Region of Interest

One method of locating the region of interest (which in this case is a lung, or in

lateral views where the lungs overlap, both lungs) is to roughly place the area in a rectan-

gle interactively. The maximum row and column counts are obtained, and used to deter-

mine the centre of the lung. A segmentation of the lungs from the background is pro-

duced by searching for connected pixels from the centre of the lung outwards, given

some threshold (discussed later) and requiring the pixel under consideration to be within

that threshold, and to be a neighbour of at least one pixel previously considered to be

within the lung contour. This method assumes that an operator determines where in the

image to start the process, and what the threshold should be.

However in a fully automatic system one may not rely on operator interaction. A

second method has been developed based on a standard segmentation method 55. The

image is scanned row by row and column by column. A threshold is used which is given

as a parameter to the routine. The threshold may be derived as a percentile.

In the images used in this study it was found that a constant value could be used as a

threshold, as the images were similar to each other in terms of illumination. This thres-

hold was found experimentally by interactively setting the threshold until the background

disappeared. It was kept constant in later images, and in every case gave adequate lung

fields. If a pixel value is larger (or smaller, dependent upon whether bright or dark areas

are required for segmentation) then the pixel is assumed to have satisfied the threshold

requirement. Any pixel not satisfying this requirement is allocated to the background, ie.

to no segment. Starting at the bottom left (say) the first pixel which satisfies the thres-

hold requirement in any row is allocated to a new segment, segment 1. If a pixel which

satisfies the threshold requirement follows a pixel in the same row which does not, it is

allocated to a new segment, segment 2, etc. If the pixel satisfies the threshold require-

ment, and one of the three neighbouring pixels below is already in a segment, then the

current pixel is re-allocated to that segment, it is connected to that pixel.

ANNs Using Raw Data Page47

This procedure has the effect of creating stripes of connected pixels. These stripes

are then collected together. See Figure 6.1 for an illustration of the technique. Any seg-

ment which is immediately adjacent to another segment is connected to it, and all pixels

with that segment number are re-allocated to the segment number of the segment adja-

cent to the current segment.

This routine creates many potential lung fields, which could be noise, or image

borders or other artifacts other than lungs. One could state criteria such that inappropriate

regions are "weeded" out, leaving the lung fields as required. This approach contains the

flaw of all such custom made rules, it is not possible to apply such a rule in general to

other areas, with other organs (for example). Rather than create ad hoc rules it was

decided to use neural networks to learn which areas were lungs.

ANNs Using Raw Data Page48

Figure 6.1 Segmentation Procedure in Stages

: : : : : : : : : I I Prior to Segmentation

: 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 I I I After Sweeping F~ Row

: I : I : I : I : I : I : I : I : I I f IAfter Sweeping Second Row

:i:i:i:i:i:i:i:i::II~ Finding 1 and 2 are Joined

6.6. Standardisation of Size of Image Segments

The image is reduced or expanded in both x and y scales to produce a standard size

image. Compression was achieved using the modified median filter described above,

expansion by copying pixel lines in either horizontal or vertical directions. The standardi-

sation of size gives a similar input to the network for each lung field, and avoids the

necessity for the network to learn scaling. The images are always oriented in the same

direction so orientation likewise does not need to be learned. All values were scaled to lie

in the [0,1.0] range.

ANNs Using Raw Data Page49

The standardised pre-processed pixel values are then fed into a neural network. The

network was based on the back-propagation method. This network was fully connected

between adjacent layers. The design for the network is notoriously difficult to optimise. It

has been suggested that two hidden layers are useful, and sufficient56•

Initially the network was implemented with 300 inputs, two hidden layers of 40 and

20, and 7 outputs. Subsequently a net with 1000 input units, 100 units in a hidden layer,

and 7 output units was tried. The output units refer to the presence of a specific abnor-

mality (PE), whether the image is a lung or not (some segments will be artifacts) and the

type of view (anterior-posterior (AP), posterior-anterior (PA), left lateral (LL) or right

lateral (RL». Finally an ANN with 400 units, and a hidden layer of 50 was employed.

Segmented images created using the segmentation routine, having been standar-

dised for size, were input to the neural network. ~f of the images were used as a train-

ing set, and the remainder were used as a test set.

The maximum number of inputs required is determined by the resolution of the

gamma camera, which is about 2 cm. Using an image size of pixels which represent 1 cm

can be seen to be optimal in this respect. A 40 by 25 pixel image yielding 1000 units as

an input layer gives around this resolution. The number of units in the hidden layer is

usually determined by trial and error, and the units in the hidden layer were changed in a

number of simulations to obtain an optimal number. An exhaustive search is not possible,

due to the potentially infinite number of structures possible. This problem of network

architecture is addressed later in the study, in chapters 11 and 12.

Given a set of inputs from a training set, and the known diagnostic output expected

from the network, a series of training cycles were executed to train the network. Subse-

quently new images not previously seen by the network were fed in to test the accuracy

and sensitivity of the network.

The following experiments were performed using images of lung scans taken from

an atlas of lung scintigrams 53 :

ANNs Using Raw Data Page 50

1. Various lung images from a variety of projections (anterior-posterior, posterior-

anterior, left and right lateral) were trained using the known projection to ascertain

whether the network could work out which projection was given.

2. A variety of images with either an abnormality (in this case PE) or with no abnor-

mality were trained to see whether the network could identify one specific abnor-

mality (PE).

3. Segments generated from the segmentation routine were used to train a network

to recognise artifacts from lung fields.

The outputs will never be identical to the target values, as the smaller the error, the

smaller the adjustment made to the weights in training. A threshold is used to determine

whether an output is close enough to be considered correct. A value of above 0.9 was

considered to be 1.0, and one below 0.1 to be zero.

6.7. Results

6.7.1. Initial Net: 300 Inputs, Hidden Layers of 40 and 20 Units, and 7 Outputs

Using a network structure of 300 inputs, hidden layers of 40 and 20, and 7 outputs,

and using the automatic segmentation routine, the network converged on the training set,

ie. it gave the correct outputs for the data it was trained on. Using an "unseen" test set

the network was found to be able to distinguish between lung and non-lung segments.

Thus the network could be used to determine which of several candidate segments are

lung segments, and therefore could be used for further processing. It did not seem able to

distinguish any of the other features (aspect, type, disease state).

In subsequent experiments all the images were lung images, no artifact images were

analysed, and therefore the output unit corresponding to the presence of a lung was

always clamped to unity.

ANNs Using Raw Da/Q Page 51

6.7.2. Large Classification Net: 1000 Inputs, Single Hidden Layer of 100 Units, and

7 Outputs

A larger net was tried to determine whether a higher resolution helps.

The network was trained on a set of 30 image segments. The network converged on

the training set That is to say the training set when put through the network gave results

almost identical with the expected outcome which it had used as a target to aim at.

A test set of similar images, which the network had not "seen" gave very poor

results. The network seemed unable to distinguish between PE and other types of scan.

Furthennore the network was unable to distinguish between various views of the lung.

6.7.3. Small Classification Net: 400 Inputs, Single Hidden Layer of 50, and 7 Out-

puts

The original network consumed a large amount of processor time, taking in the

order of days to converge using a Sun 3 processor, and it was decided to try a smaller

network of 400 input units and a single hidden layer of 50 units to speed up processing.

Using the same data as the large network, the net converged again, but did not give

better results.

6.8. Observations

The network failure could be attributed to one of several reasons :

1. The network was not given sufficient examples. This is likely as 57 has stated

that. to avoid one-to-one mappings the number of patterns should be O(N) where N

= number of connections, which clearly is not so in this case. Alternatively one

may consider that the number of connections were too many allowing one-to-one

mappings (and adding computational cost). These aspects will be further discussed

in Chapters 11 and 12.

2. The network was not given sufficient iterations. The error curve in training

ANNs Using Raw Data Page 52

should asymptote to a value. It is possible that insufficient iterations may result in a

network with a large error remaining. This is not the case as the training set would

then result in large error on recall, which was not the case.

3. The network was too small, ie. of too low a resolution. This if true would be an

impracticable problem to address by increasing the net size as networks scale poorly

with size, and again inappropriate computer time would be required. A solution may

be to compress the input data. This is explored in chapter 7.

4. The problem is not amenable to network analysis. It is not known a priori

whether this is the case, and there exists no known way to test whether this is the

case. However biological networks (the human brain) can solve such problems, so

there is an existence theorem that more complex nets can categorise scintigrams.

The question remains as to whether simple A~N s as used in this study can do like-

wise.

Data Compression Using Principal Components Analysis and ANNs PageS3

7. DATA COMPRESSION USING PRINCIPAL COMPONENTS ANALYSIS

ANDANNs

7.1. Introduction

Barber and Nijran58 have shown that the data of scintigrams is highly correlated.

The redundancy may be exploited by techniques such as Principal Components Analysis

(PCA) to produce a much smaller data set which contains a given level of the informa-

tion in the image (as measured by the amount of variance accounted for). PCA analysis

was used to reduce the number of parameters describing "dixel" (dynamic pixel) curves.

peA analysis has also been used to produce an automatic reporting system59.

If compression of images can be achieved to a representative subset, that subset

may be input to a feature detecting network. This part of the study explores compression

of typical lung scintigrams, of a type which would fonn a set of images to train a feature

detecting network.

ANNs have been used to compress image data using error back propagation in an

MLp40. In this study 8 by 8 segments of an image were used to train an MLP to learn the

identity mapping. As Cottrell noted60 such a network can be considered auto-

associative and unsupervised. It is auto-associative since the input is the target, and unsu-

pervised since the error signal is derived from the input. An alternative method of

compressing images61 is to use several subnets to learn portions of an image. An ANN

compressed 128 by 128 images split into 256 8 by 8 blocks. These blocks were used to

feed 256,subnets, which learned mappings to lower dimensional spaces in parallel. The

subnets learned independently the different segments. This would be appropriate if simi-

lar images were to be compressed, as the subnets would learn the statistics of different

regions of the images. Later workers62 quoted this study, and stated that a novel adapta-

tion would be to use the one net and pass through all 8 by 8 segments of images. The net-

work architecture_wasidentical to40 which62 seemed ignorant of, claiming the technique

as their own. Competitive networks have been used to compress data63 , as have

Data Compression Using Principal Components Analysis and ANNs Page 54

Hopfield nets64.

A compression network may be used to reduce the number of inputs to a subsequent

classification ANN. As previously stated and in65 and 66 raw lung scintigram data has

had no success in classifying the images into normal and abnormal

The failure may in part be due to a lack of pre-processing of the inputs. One possi-

bility is to employ data reduction using conventional techniques such as principal com-

ponent analysis (PCA) or the more novel ANN data compression technique.

Neural networks and PCA are related67 but networks have some theoretical advan-

tages since they are capable of learning non-linear mappings40 unlike PCA which is a

linear mapping68. It has been shown for linear nets employing Hebbian learning that a

model neuron tends to extract the principal component from an input vector sequence69

and a layer of neuron units yields a principal component subspace70. The nonlinear

MLP ANN empirically has been shown to produce a hidden layer which spans the sub-

space generated by PCs40. However the experimental work by Cottrell et al40 has

shown that image compression using a linear network performs similarly to non-linear

networks such as back propagation. They also found that the variances of hidden layer

outputs are roughly equal. This is in contrast to PCA where the successive principal

components (PCs) are monotonically' decreasing. The equal variance found in ANN hid-

den units is a potential advantage where damage may occur to units, as corruption of a

unit containing a large percentage of the information would cause extensive damage.

In order to ascertain whether the ANN technique was an appropriate pre-processing

method f~r the medical images used in this study, it was compared with PCA71.

There are theoretical reasons for assuming that ANNs cannot outperform PCA with

regard to data compression72. However if ANNs did not show a substantial increase in

error compared with PCA (say) then they might still be considered preferable, as once

trained the ANN would be much faster than PCA, especially if neural hardware was util-

ised. When computing PCs it is necessary to create a covariance matrix. This has the

Data Compression Using Principal Components Analysis and ANNs Page 55

dimensionality of N2 where N = number of dimensions. The number of dimensions that

one may compute such a matrix for is limited by the memory of the computer, and disk

swap space. Using 64 by 32 images (2048 dimensions), the PCs were not capable of

being computed because one would require 20482 floating point numbers, and there was

not sufficient swap space even on a Sun 4 system. ANNs however would for the same

problem require memory in relation to the compression required. For if N inputs were to

be reduced to M hidden layers, then 2xNxM connections would be required. Thus as the

compression rates increase ANN are increasingly more efficient than PCA.

Cottrell et al40 raster scanned images with an 8 by 8 window, and put the 64 values

of each scan into an input layer connected to a hidden layer of 16 units, which was con-

nected to a 64 unit output layer. Figure 7.1 shows the network structure. The ANN was

trained to learn the identity mapping, with a 4:1 compression from input to middle layer.

This study used a similar network architecture, and also experimented with segments of

32 by 16pixels, which fermed a 512 input layer, connected to a 128 unit hidden layer (ie.

also 4:1 compression), which was connected to a 512 unit output layer.

Data Compression Using Principal Components Analysis and ANNs Page 56

Figure 7.1 Compression Network Topology

Output Layer (64 units)

Hidden Layer (16 units)

Input Layer (64 units)

7.2. Experimental Methodology

7.2.1. Acquisition of Images

The images were obtained by "frame grabbing" analogue images generated from an

Elscint gamma camera system using a video camera and a digitiser board. A light box

illuminated the image posteriorly, and a subtraction from an image of the light box alone

allowed the effects of unequal illumination to be corrected.

7.2.2. Image Sets

Since the utility of compressing images in this study would be to detect features in

normal and abnormal images.a set of images with both clinically normal, and with com-

mon defects, were used as test data. 20 lung scintigram images were used, one half con-

tained PE, the remaining images were typical non PE examples, of which 5 were

Data Compression Using Principal Components Analysis and ANNs Page 57

clinically normal, and 5 had COAD. Since COAD can be confused with PE, a mixture of

PE, COAD and normal images would constitute a good test of a classification network.

In clinical practice perfusion and ventilation scans are used as it is a mis-match

between these two studies which indicates PE, matched defects indicating typically

COAD. An automatic system may therefore use both studies, or may subtract one from

the other. The latter technique has certain difficulties due to problems of registration.

Ventilation, perfusion and subtraction images of ventilation minus perfusion were used,

and three views, posterior, left and right posterior oblique were given for each image.

7.2.3. Networks Used

An MLP using error back propagation as described by Rumelhart and McLelland73

was used in a similar fashion as in40•

PCA analysis was achieved using MA1LAB, which is a matrix manipulation pack-

age 74. The macro files used are listed in Appendix 2. The image files were converted to

PDP input and target data, and to MATLAB fonnat using the image processing suite,

whose source code is listed in Appendix 1, and described in Appendix 4. Transfer

between MATLAB and PDP, and between other representations of data, was done using

utility C programs listed in AppendixS.

All images were pre-processed using a 2 by 2 median filter5"1 to compress the

image and reduce noise. A 2 by 2 filter was employed as this reduction transformed the

images to a suitable size for viewing on an mM compatible computer screen with EGA

graphics.· Pixel values were scaled to lie in the interval [0,1.0].

Lung fields were obtained interactively by delineating a region of interest, which

was the whole of both lungs, and these fields were scaled using the median filter tech-

nique, described earlier, to make each image 64 by 32 pixels in size. The lung fields

could have been obtained using the automatic segmentation technique used earlier, but it

was not important for the purpose of demonstrating data compression how this was done.

Cottrell et al employed quantisation of outputs of hidden layer units in order that the bits

Data Compression Using Principal Components Analysis and ANNs Page 58

per pixel may be calculated. Ie. the output from a unit was split into several ranges, and

all outputs within a range were set to the same value. This was not done in this study as

we wished to explore how ANNs compared in normal practice with other methods. The

compression ratio might not strictly speaking thus be 4:1, as the degrees of freedom in

non-linear nets tends to increase as learning progresses, because the activation values of

units tend to move away from mid-range, where they are approximately linear, to the

more non-linear extremes of their range75. Empirically the quantisation has been found

to show a relationship with tsse such that as one increases quantisation the tsse con-

verges to a steady value62, and it was found that using 8 bit input data, a quantisation of 4

in the hidden layer was close to optimal, and so the compression factor could be 8:1

rather than 4:1.

Various learning rates were tried on similar images, and a rate ofO.Ol was found to

be satisfactory, high learning rates caused "flooding" of hidden units. Using a momentum

term (a) helps learning by damping convergence. A high momentum allows a higher

learning rate and faster convergence 16. A learning rate 1'1 of 0.01 and a of 0.9 was used in

all the experiments described in this section. The learning rate was found by trial and

error. Essentially the higher the number of units, the lower 11should be to avoid "flood-

ing" of hidden units, whereby the hidden units become stuck at a value. A workable 11

was generally found to be of the order of the reciprocal of the number of input units. A

high a helps speed learning, as16 pointed out a high a of 0.9 allows a low 1'1 to be used

which achieves convergence more quickly than a higher 11with no a term. Furthermore

as stated in25 and76 when convergence is being approached, the a term has the eff~t of

raising the 1'1 term by a factor of 1~' Clearly a of 0.9 gives an equivalent 1'1 an order of

magnitude higher near convergence. However at very large values of a close to unity, for

some values of 11convergence becomes more difficult.

Data Compression Using Principal Components Analysis and ANNs Page 59

7.3. Image Groups

The images were used to create three non-overlapping sets, A, B and C. Three

images not allocated into groups were discarded to keep the number of images in each

group the same. Group A consisted of one randomly allocated subject (ie. 9 images),

Groups B and C both contained 8 randomly allocated subjects.

Groups A and B were rasterised into non-overlapping 8 by 8 pixel segments, and

Groups B and C were also rasterised into non-overlapping 32 by 16 pixel segments. All

groups produced 288 segments. In the case of group A using 8 by 8 pixel segments, and

Groups B and C using 32 by 16 pixel segments all non-overlapping segments were used.

For Group B, which contained many more images than group A, to keep the number of

segments the same as in group A, 288 8 by 8 segments were randomly selected from all

possible non-overlapping segments, and no segment.was allowed to be chosen more than

once. If all segments had been used, Group B would have had a much larger training set,

which would have made any comparison meaningless as larger training sets may give

better results.

7.4. Experiments

PCA and ANNs were used to compress 8 by 8, and 32 by 16 pixel segments of the

three experimental groups A, B and C. In the case of PCA, the first 128 or the first 16

PCs were used for 512 to 128 dimensional, or 64 to 16 dimensional reduction respec-

tively. For the ANN approach the architecture described above as used in Cottrell et al

was employed, and 1()()()epochs were used to train the networks.

PCA analysis is achieved by transforming the data basis to a smaller basis, which

contains a linearly optimal amount of information. The transfonnation from the original

basis onto the full PC basis is :-

B=PA (7.1)

Consequently to go back to original data representation. the segments were

expanded back to full size using an inverse of the PCA matrix on the reduced data set

Data Compression Using Principal Components Analysis and ANNs Page60

A=P-1B

When compressing the data equation 7.1 is used, but only a portion of the PCs are used,

ie the matrix P is reduced to (say) r, and hence when expanding back the matrix A is not

fully recovered.

In the case of ANNs expansion was achieved by the output of the output layer, and

compression by taking the values of the hidden units. After expansion to original size,

the segments were tested for error. For the compression technique the fidelity of the

compression was tested using the total sum square error (tsse).

7.5. Results

7.5.1. Data Compression Using PCA On 64 To 16 Dimensions

To clarify discussion PCs computed using Group A will be called PC" and those

computed using Group B PCB etc. Similarly the network trained on Group A will be N"

and one trained on A and further trained on Group B would be NAB etc. Table 7.1 shows

the results of compression using PCA of Groups A and B in various combinations. It is

seen that the tsse is lower for the group that has been used to obtain the PCs. However
,

the tsse using PCs obtained on another group is still comparable. The sign test was used

to measure significant differences in all comparisons in this study, with a p < 0.05 level

being considered significant. This test makes very few assumptions about the data set,

and in particular does not require normally distributed data, see77 for a description.

Using this test there was a significant difference between Group B using PCB and Group

A using PCB, (p < 0.001). There was no significant difference between Group Busing

PC" and Group A using PC".

Data Compression Using Principal Components Analysis and ANNs Page6J

7.5.2. Data Compression Using Neural Networks With 64 Inputs To Hidden Layer

With 16 Units

Convergence was achieved within 100 iterations for both groups A and B, ie. the

tsse asymptoted to some value much lower than the starting tsse with random weights,

and the outputs for the training set were similar to the target values. Groups A and B had

virtually identical curves for tsse against epoch number, and several repeated simulations

gave virtually identical results (Group B was repeated S times, Group A 3 times). As the

network weights were reset to different random v~ues for each simulation, clearly the

networks were not sensitive to initial weights. In each case the training for a group was

1()()()epochs, and where more than one group was used in training each group was given

1()()()epochs of training.

If a network has been trained on a set of data, it would seem plausible that subse-

quent training using another group would be faster than if one started from scratch. To

test this networks were trained on one group, and then further trained on a second group.

Using a network pre-trained on one group, and giving further training epochs on the other

group did not show much advantage. Convergence took roughly the same time (100

iterations) although the network started at a lower initial error. Figure 7.2 shows the net-

work convergence for Group A, and then Group B. The graph for Group B followed by

Group A was very similar.

Data Compression Using Principal Components Analysis and ANNs Page62

Figure 7.2 64-16-64 Network Topology: Trained on Group A, then Group B

~r-~--~--r-~--~--~~--~--~~
I , , ! I : I I :

2SOO ····..r ····-t....·········..r..·..······l···········..r·..·······t-..·····..t- ····-t·············..I· ·..······

Ii! 2000 L. l.._i., i ~ : ~ ~.._ I_ I .
cl! I I r t I : I :

I I I I I I I j I

i
00 200 400 600 800 1000 1200 1400 1600 1800 2000

Legend
First Run Group B ...
Second Run Group B -.-.

A
A
A
B
B
B

B
B then A
A then B
B
A
A thenB

.
332.997
134.314
354.916
139.952
345.624
150.404

7.5.3. Comparison Between PCA And ANN Compression For 64 To 16 Dimensions

Or Units

The results of using the network trained on a group to compress that same group are

slightly lower than for PCA analysis, though these differences were not significant at p <

0.05 using the sign test. When compressing images that the network has not "seen" how-

ever ANNs gave much worse values than PCA analysis (37% - 72% higher tsse), and

these differences were significant for Group Busing NA compared with Group Busing

PCA (P < 0.00(1) 'though Group A using NB compared with Group A using PCB was not

significant at the p <0.051evel (though it was at p < 0.1).

Data Compression Using Principal Components Analysis and ANNs Page63

7.5.4. Data Compression Using PCA On su To 128 Dimensions

Table 7.3 shows the results of using PCA analysis on 32 by 16 pixel segments. It is

seen that much better results are obtained if PCs are used which were calculated using

the group under test than the other group. This contrasts with the 8 by 8 pixel segments

where the difference was much less pronounced. Between 95 and 99% of the variance of

the group used to compute the PCs was accounted for in one quarter of the 512 pixel seg-

ment pes. This compares with about 90% of the variance being accounted for with

about one quarter of the PCS in 64 pixel segments. The error per pixel is higher in unseen

segments for the larger segments compared with smaller segments. These results suggest

that specific rather than general compression mappings are being used for the larger seg-

ments.

7.5.5. Data Compression Using Neural Networks With 512 Inputs Connected To

Hidden Layer or 128 Units

The time taken to converge in' the 512 to 128 unit network is again about 100

epochs. The solution is then approached asymptotically. Again the groups show very

similar curves, and repeating the simulation, which was done for both groups, showed

almost identical results. The tsse for "unseen" segments is again much higher, and pro-

portionately higher than for smaller segments.

B
C

C
B

300
300

.
5702.012
4347.607

.
3.86
2.95

Data Compression Using Principal Components Analysis and ANNs Page64

7.5.6. Comparison Between PCA and ANN compression for 512 to 128 Dimensions

or Units

Larger segments showed similar trends to the 8 by 8 pixel segments. PCA scored

slightly better for compression of "seen" segments, and though "unseen" segments scored

worse in both techniques, this deterioration was more marked in ANNs, which had a tsse

of about twice that of PCA.

7.5.7. Effect of Raster Scan Size

As a result of previous experiments which showed a substantial effect on error

using different raster scan sizes, varying the segment sizes in PCA was further explored.

Using different raster scan sizes will effect the compression performance. If PCA is used

to compress data to one fourth of its original dimensions, and a raster scan size of 2 by 2

pixels is used, one will use only the first PC, which will be very close to a mean value of

the pixels. Larger scan sizes will allow the statistical nature of the images to be better

represented, and some optimal value may be expected that is less than the full image size.

To test whether the raster scans used were appropriate, Groups A and B were raster

scanned with a range of scan sizes. The results of normalised mean sum square error

(nmsse), as described in Cottrell et al40 were plotted where the dimensions of the data

were reduced to one quarter of the original data.

It is clear from the graph of nmsse against dimension of reduced data set shown in

Figure 7.3 that when "unseen" data is reduced (e.g. Group A data using PCB) there is a

wide plateau where the nmsse is similar, between 8 and 32 dimensions (original data

dimensions of 32 and 128 respectively) and that outside this range the error increases,

especially at high dimensions.

Data Compression Using Principal Components Analysis and ANNs Page65

Figure 7.3 nmsse Group A and Busing PCA Reduction

x1G-3
4.Sr----_,;r----r----.--~-__"T, --..,...,-----,

4 1 _ .; ···········.+······················1··················.·..•t··········.··.·······J~:~:<············
i I I I I .'"
! i i.···· i

~icJe of Reduced Dara Set

Legend

Group A using pes from A_

Group B using pes from A ...

Group A using pes from B -.-.

Group B using pes from B - -

7.6. Observations

PCA analysis is similar to neural networks in data compression of segments that

have been "seen", but is superior in compressing "unseen" images in these tests. The

difference between "seen" and "unseen" images with respect to tsse is more pronounced

in 32 by 16 pixel segments than 8 by 8 segments in PCA compression. Further experi-

mentation showed that the 8 by 8 pixel segments are optimal with regard to tsse on

"unseen" data. ANNs also seem to generalise less accurately on larger segments.

Since the time taken for neural network compression learning is about an order of

magnitude higher than PCA, and PCA is more repeatable in terms of the error magnitude,
-

and produces lower error for "unseen" segments, it would seem preferable to use PCA

Data Compression Using Principal Components Analysis and ANNs Page66

analysis than neural network methods to produce the reduced dimensional input to a

diagnostic network.

It is possible that other network paradigms would show better results than those

given above, in particular it has been suggested78 that linear nets would be an improve-

ment as they do not suffer local minima problems. This is addressed inchapter 12.

ANNs Using Principal Components Page67

8. ANNs USING PRINCIPAL COMPONENTS

8.1. Introduction

ANN have been used as diagnostic aids in back pain 43 , dyspepsia 44 and headache

45 where symptoms are fed into an input layer, and the various possible diagnoses form

an output layer. It has been shown above that raw data from scintigrams is unsatisfactory

for input to an ANN, and that PCA is more efficient than ANN s in data compression of

scintigrams 71. Furthermore several workers have suggested the need to pre-process

ANN inputs, e.g. Hallam et al3 and Hutchinson et al79•

An ANN using error back propagation for learning was used to classify images into

those with, and those without PE and/or COAD, using compressed input data based on

PCA analysis. The ANN was trained to detect the view of the image (anterior, posterior

etc) and abnormalities other than PE. The accuracy with which it gives its output for

"unseen" images was compared for perfusion, ventilation, and images composed by sub-

tracting perfusion from ventilation imagesSO.

8.2. Experimental Methods

Two non-overlapping random groups were created, A and B, each containing scinti-

graphic images from 10 subjects. There were 3 views per subject, posterior, left and

right oblique posterior, and there was 3 types of image per view, perfusion, ventilation,

and ventilation minus perfusion.

The perfusion images are capable of excluding PE if they are normal, and PE may

be diagnosed with some degree of confidence using perfusion alone. However as previ-

ously noted there is improved diagnostic capability if ventilation images are used

together with perfusion. Thus the subtracted images may provide a better input as it is the

mismatching that is important. Ventilation images alone should not be capable of diag-

nosing PE.

Each group contained 90 images. In all cases a diagnosis had been given by a

ANNs Using Principal Components Page68

radiologist expert in the area of nuclear images.

8.3. Method of Image Acquisition

The images were obtained in the same way as in chapter 7.

PCA was used to compress all the images of each group. Each image, which was

standardised in size by a median filter technique to 64 by 32 pixels, was rasterised into 8

by 8 segments, and principal components (pcs) of these segments for each of the groups

were calculated. Using the first 4 PCs, each 8 by 8 segment was reduced from 64 dimen-

sions to 4 dimensions. The 32 segments forming each image were thus reduced from

2048 to 128 dimensions, The values from Group A were then used as input to an MLP

using the error backpropagation learning rule. Outputs were constructed such that a train-

ing value of 1.0 constituted the presence of that feature, and 0.0 its absence. There were 8

outputs which were :-

1. PE output (ie. set to 1.0 if PE present, 0 otherwise).

2. COAD output.

3. Perfusion output.

4. Ventilation output.

5. Subtraction output, ie. ventilation minus perfusion.

6. Posterior output.

7. Left posterior oblique output.

8. Right posterior oblique output.

The compressed values of Group A were used to train the network using a learning

rate of 0.06 and a momentum (a) of 0.09, using a proprietary network package (Neu-

ralWare) running under MS DOS. The reason for using this package in preference to the

PDP was purely pragmatic. There were several micros available, and therefore several

experimental runs could be conducted simultaneously. The reduced size of the networks

due to the input data compression allowed the use of the micros, where previous

ANNs Using Principal Components Page69

experiments using raw data in Chapter 6 were not practicable on micros. The learning

rate n was found empirically by trial and error, though a dynamic method of parameter

adjustment is tested later in Chapter 9. Momentum values were described in the Neu-

ralWare user handbook as optimal in the ratio of 0.6:0.9 for 1l:a. This is not what 16 sug-

gest, but the parameters chosen allowed convergence is nearly all cases, and were

accordingly not changed. (A bigher a would have given faster convergence but the end

result would have probably been similar). Training continued until convergence was

reached, or untUSO,OOOiterations had been completed, whichever was the sooner. Con-

vergence was considered to have been reached when the network correctly identified the

images with respect to type of view, image type, and presence ofPE and COAD. The cri-

terion for convergence to a particular output was that the output was greater than or equal

to 0.8 for an output that should be 1.0, or less than or equal to 0.2 for an output that

should be 0.0.

8.4. Results

8.4.1. Convergence on Training Set

Several network designs were tested, all with 128 inputs and 8 outputs as discussed

above, but with a varied number of hidden units, in one hidden layer. In all 3, 10 and 20

units were used in the hidden layer. The networks using 10 or 20 hidden units converged

on the training set to give the desired outputs. The network with 3 units converged to

give the correct desired outputs for the image type with respect to whether the image was

ventilation, perfusion or subtraction, but gave outputs for the view type that were mostly

in the range 0.2 - 0.4, with a few true negatives, and no true positive values. The outputs

for PE and COAD in the 3 unit hidden layer network did not converge satisfactorily,

even after 50,000 iterations, and while virtually all PE images were correctly positively

identified, so were the non-PE images (falsely) identified as PEs.

The fact that' 3 is too few bidden units is in agreement with48 who state the number

ANNs Using Principal Components Page 70

of hidden units should be at least as many as the number of classes to be described

(which here is 8).

8.4.2. Performance on Unseen Data

No network gave totally acceptable outputs for "unseen" data. The results for PE

from the unseen data are given in Table 8.1. This shows that although in all cases except

the 3 unit hidden layer network, convergence was achieved, consistent learning for PE

occurrence had not occurred. The results for COAD were similar.

The networks gave the correct results for the view of the image, and for the type of

image (perfusion, ventilation etc) in almost all cases, but seemed unable to determine

with complete accuracy whether the image contained an abnormality. The perfusion and

subtraction images had made a reasonable classification in the 10 and 20 unit hidden

layer networks. In each case the true positives outnumbered the false positives by 5 or 4

to 1, and the true negatives were about 2: lover false negatives for perfusion, though sub-

traction images showed a high false negative rate.

10
10
10
20
20

8
8
8
8
8

4
5
5
5
7

1
4
1
1
7

11
2
7
11
1

5
3
5
4
5

e
Perf
Vent
Sub
Perf
Vent

8.4.3. Restricting Learning to Perfusion Images

One should not be able to determine the presence of PE from a ventilation image,

and the results above are consistent in that respect. Further the inclusion of ventilation

images may have made it more difficult for the network to converge to a correct solution

with respect to PE. Therefore a network was trained on only perfusion images, with a

hidden layer of 10 units and 8 outputs. This also however failed to consistently detect PE

on "unseen" images, though it converged on the training set to give the desired output in

ANNs Using Principal Components Page 71

every case. The performance was reduced to 2:1 for true positives against false positives.

The ratio for true to false negatives was not altered. The reduction in performance may

indicate that the subtraction images were giving useful information to the original ANN.

8.4.4. Reducing the Number of Outputs

The number of outputs was reduced to one, namely that for PE, to test whether

conflict with other outputs was causing the inability to give the correct response. This

would also reduce the total number of connections in the network, which as previously

stated is advantageous. With a hidden layer of 20 units and an output layer of 1 unit the

results were only slightly improved compared with the 8 output case, indicating that this

was not the problem. As a final test a network with 100 units in the hidden layer and one

output was tried, with worse results. Table 8.2 contains the results for PE from unseen

data for both 8 and 1output cases.

8.5. Discussion

These results are encouraging. The classification into different views, or into

perfusion/ventilation is not an interesting one, in that this information is known already

by the clinician, but it is shown that the ANN can distinguish this much at least in the

images. The diagnosis of PE is the main reason for performing lung scintigrams, and any

future automated system will need to be able to detect PE. COAD may be diagnosed by

other techniques and clinical examination, however its diagnosis may still be useful,

given that one needs to perform scintigraphy for some other purpose.

The classification for PE, while not perfect, showed some ability as true positives

and true negatives consistently scored higher than false positives and negatives. These

results held for several different network architectures, and with a training set of

ANNs Using Principal Components Page 72

perfusion alone, and additionally with subtraction and ventilation images. Increasing the

hidden layer units above a certain number adds no further accuracy to the system. This is

to be expected as an optimal number for the hidden layer will be found that adequately

represent the data, and an increase over this simply allows a higher probability of unin-

teresting one-to-one mappings.

The network may have had suboptimal performance for several reasons:

1. Too few training patterns

2. An unacceptable image noise level

3. Too few inputs to give the necessary information from which to abstract the

classification.

In order to rectify the noise problem, directly acquired digital data is required. A

larger dimension input set is problematic as a larger: input set increasingly slows the net-

work. A larger number of training patterns also slows the network, but only in a linear

fashion.

8.6. Observations

A direct data transfer system should be used in subsequent simulations. A larger

training set should be given to an ANN, utilising inputs found to be most useful for

classification of PE.

The defects are seen in some views but not all views necessarily, the network may

have been more successful if only views with a noted abnormality were used. Clinical

information available to a doctor, such as X Ray or clinical history was not available to

the network. This information could be mixed with an embedded ANN output in an

expert system using possibly conventional AI techniques. This sort of marriage of con-

ventional AI and ANN s has been done in other areas e.g. 3

Dynamic Parameter Tuning of Parameters Page 73

9. DYNAMIC TUNING OF PARAMETERS APPLIED TO IMPEDANCE IMAG·

ING AND PIXEL PREDICTION

9.1. Introduction

In previous chapters all learning in MLPs used the standard technique as used by

Rumelhart et all6. There are however many potential methods of accelerating learning,

e.g2S• In a comparison of several methods, it was foundSl that adaptive training, where

momentum (a) and learning rate (1'1) are dynamically changed to be faster than the two

other methods tested (conjugate gradient and delta-bar method).

Images used in a related study on impedance imaging were found to be difficult to

obtain convergence on. A dynamic parameter method was explored to solve this prob-

lem, and as the methods could be used also on the data from the lung scintigrams, the

results are reported here, and compared with the' scintigram data. In particular the

impedance data provided a known difficult test case for the dynamic method, which

should it succeed may well offer advantage in converging the scintigram data nets.

9.2. Impedance Tomography

This section uses data from work done by an MSc studenrl]. No work has been

done by the author on impedance imaging practically, but the data supplied byll has

been analysed by the author, and the experiments on dynamic training and data reduction

by PCA were done by the author.

Impedance tomography is concerned with determining the conductivity distribution

of a medium from peripheral voltage measurements for a given injection currentlO• A

constant current source is applied between two electrodes and differential voltage meas-

urements are taken at the remaining electrodes. The current source is then moved to the

adjacent pair of electrodes and the measurement repeated. This process is repeated until

all adjacent pairs have been used. For 16 electrodes this gives 208 voltage measurements.

Due to symmetry only 104 measurements are independent, but in reality superimposed

Dynamic Parameter Tuning of Parameters Page74

noise would make it worthwhile to include all measurements. This measurement set is

not unique, but there is both experimental and theoretical evidence to suggest that this is

a preferred set to provide a unique solution to the problem10•

For a known conductivity distribution, solution for the peripheral voltage measure-

ments is termed the forward problem. In practice, however, we know the peripheral vol-

tages but require the conductivity distribution. This is referred to as the inverse problem

(an excellent review of reconstruction algorithms is given by Yorkey and Webstey82).

For a given conductivity distribution and injection current, the forward problem can

be solved using the finite element technique83•

In the work of 11 two training sets were produced, a set of 60 random conductivity

distributions (Set 1) and a set of 73 rectangular conductivity distributions (Set 2, where

the grey scale represents normalised conductivity) with the square at different positions

and/or different background/foreground conductivity ratios. Figure 9.1 shows some of

the rectangular conductivity distribution data (reproduced by permission of P. Neaves).

Dynamic Parameter Tuning of Parameters Page 75

Figure 9.1 Unseen Conductivity Distributions (lett) and the ANN Restored Images
(right)

The problem was to get an artificial neural network (ANN) to solve the inverse

Dynamic Parameter Tuning of Parameters Page 76

problem, using the known conductances as the training set and the known outputs as the

target set. In the setup described here 208 inputs mapped to 64 outputs with a single hid-

den layer of 100 units. All values were normalised to lie between 0 and 1. While this

training set is too small to guarantee learning, it might converge, albeit to a possibly

incorrect value.

It was found that the network described above converged after 27,000 iterations for

Set 2, but Set 1 failed to converge after 60,000 iterations of training. It was clearly very

expensive in computer resources, and as previously stated it might converge to a local

minimum anyway, as there are so many degrees of freedom in a large network. The data

was passed over to the author at this stage for further analysis.

One reason for the failure of the previous network may be expected to be the small

size of the training set compared with the number of network connections. While this

may as stated above cause a local (suboptimal) minimum solution, it is unlikely to cause

reduced convergence speed. For as84 demonstrated, in situations where the network is

incapable of generalising, the convergence time increases as the number of training pat-

terns increases (in that particular case, with a t power dependence), and perfect general-

isation should give a constant convergence time regardless of the number of patterns.

Rather than consider increasing the 'training patterns for raw data, one must therefore

look for a different solution. Changing the architecture and/or reducing the input data set

are obvious possibilities.

Principal component analysis (PCA, see Jolliffe 68 for a good introduction) allows

information in correlated data to be represented more efficiently by re-expressing the

data with a reduced number of orthogonal vectors, called principal components (PCs). 13

PCs contained 100% of the data in Set 2, and 20 PCs contained over 98% of the data in

Set 1.

A second set, of networks using the first 20 PCs of the data, and 10 units in a hidden

layer, with 64 outputs were trained. These were orders of magnitude faster, and contained

Dynamic Parameter Tuning of Parameters Page 77

a much reduced connectivity due to the reduction in inputs and hidden units. However

they still sometimes failed to converge in a satisfactory manner (see below for details).

9.3. The Accelerated Convergence Method

The method described by VogI et at 85 has been used to produce convergence by

dynamically adjusting the parameters of momentum and learning rate. It has been shown

that this allows convergence where static parameters failed, and speeds convergence.

Essentially one increases 11by a constant multiplier (0) when the total sum square error

(tsse) is decreasing from one epoch to the next, and decrease it by a different value (p)

when the tsse is increasing by more than a few percent (they suggest 1-5%), setting

momentum to zero until tsse decreases again. In particular they stressed the utility of

making weight changes at the end of epochs (ie. after every pattern has been presented)

rather than after each pattern. Weights were reset 'to previous values every time tsse

increased.

9.4. Use of the Method on Impedance Training Set

The following terms will be used :

tsse = total sum square error

11= learning rate

11;= initial learning rate

111 = lowest bound for learning rate

o = scalar to multiply 11by when tsse decreasing

p = scalar to multiply 11by when tsse increasing by more than 1%

Various learning regimes were applied to a PCA reduced Set 1 (Data Set A), and

PCA reduced Set 2 (Set B). 10,000 epochs of training were given in each experimental

run.

Dynamic Parameter Tuning of Parameters Page7B

9.5. Updating Weights After Each Pattern

Using this standard technique Data Set A quickly converged to a tsse of around 200

with 1\ = 0.005 (Figure 9.2), and slightly more rapidly to the same value for 1\ = 0.1 (Fig-

ure 9.3), though the curve here is not as smooth. This may be caused by a higher 1\ allow-

ing the network to move from side to side across an error ravine. For if the error function

contains a ravine, and the CUITenterror is placed on one side of it, the largest gradient is

straight down the ravine, but if one proceeds in that direction too quickly, one ends up on

the other side of the ravine, and not at its base.

Momentum was fixed at 0.9 (and was kept at this value in all subsequent experi-

ments using static parameters, or switched between 0.0 and 0.9 in dynamic parameter

training), as according to 16 a high momentum allows a high 1\ and faster convergence.

Data Set B however showed convergence at 1\ = 0.005 (Figure 9.4) and no convergence at

1\ = 0.1 (Figure 9.5).

Figures 9.2 Pattern Learning Data tsse Set A 1\ = 0.005

320

300

I 280

1260
J

240

220

2000 1000 2000 3000 4000 sooo 6000 7000 8000 9000 10000

Dynamic Parameter Tuning of Parameters

Figure 9.3 Pattern Learning Data tsse Set A 11= 0.1

300

1000 2000 3000 4000 sooo 6000 7000 8000 9000 10000

Figure 9.4 Pattern Learning Data Set B tsse 11= ~5

3SO

300

I 2SO

I200J
ISO

100

SO0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Page79

Dynamic Parameter Tuning of Parameters Page80

Figure 9.5 Pattern Learning Data Set B tsse 1'1 = 0.1

300

450

400

I1 350

J

2000 1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000

9.6. Updating Weights After Each Epoch

Data Set A converged to a similar tsse with an 1'1 = 0.005 as in pattern. updating, Fig-

ure 9.6). An 1'1 of 0.1 failed to converge. An 1'1 of 0.05 converged, but only after 6,500

iterations (Figure 9.7), the tsse was still fluctuating considerably.

Figure 9.6 Data Set A Epoch Learning tsse 1'1 = 0.005

320

300

I 280

I 260J
240

220

2000 1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000

Dynamic Parameter Tuning of Parameters

Figure 9.7 Data Set A Epoch Learning tsse 11= 0.05 (lower)

320

300

I 280

J
J

Page Bl

EpodIs

Data Set B failed to converge at any of the 11values tried, 0.1, 0.05 and even 0.005

failed to produce a tsse below the random starting value (Figure 9.8), and oscillated

wildly.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 9.8 Epoch Learning Data Set B 11= 0.005

440

420

I1400

J
380

h'-.J-_-+- __ ...J

360

3400 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dynamic Parameter Tuning of Parameters Page82

9.7. Dynamic Learning Rate Change After Epochs

The dynamic method as described by Vogl et al was then applied, where any

increase above 1% of the tsse caused a reduction in 11. As in the previous study e was set
to 1.05, and p to 0.7, and these values were used for all experiments.

The learning rate would on occasions dive to such low levels that the network

stopped learning and remained static, To avoid this a low cutoff 11 was set, A cutoff limit

of 0.001 was then tried for the lower learning rate limit (111). and the algorithm adapted

to revert to normal back propagation and maintain a steady 11 rather than go outside this

range, but keep momentum to zero until the tsse went down again, weights being updated

as normal. A low 11; was tried to rule out the possibility of initial saturation of the net-

work.

High 11, significantly above one, have been shown to be effective in some cases86• It

has been reported that genetic algorithms (GAs) trained to give an 11 for a network at a

given point in the convergencef", sometimes gave an 11 significantly higher than unity,

up to 12.8. The 11 here never reached very high values, and no upper range was allocated

for its value.

Using Data Set A network with an 11; of 0.05 convergence was achieved (Figure

9.9a). The 11value (Figure 9.9b) reduced from an 11;of 0.05 to a stable value around

0.005. The convergence is however no improvement over the static epoch learning with

the 11of 0.005 (Figure 9.6). It is better than the the static 11of 0.05 (Figure 9.7). Reducing

the 11; to 0.001 (Figure 9.10a) gave much faster convergence, and the learning rate oscil-

lated between values close to zero and about 0.025 (Figure 9.10b). 11;appears to be a

critical factor, and should be a low value, the 11 is then allowed to increase under the

algorithm to an optimal value.

Data Set B converged with 11;= 0.001, (Figure 9.11a). The 11stabilised at about

0.01, which is twice the 11of Figure 9.8 which failed. It is likely that the 11of Figure 9.8

was too high to initiate the network learning, sending the network into a local minimum

Dynamic Parameter Tuning of Parameters Page83

from which it could not escape.

Figure 9.9a Data Set A Epoch Learning Dynamic Parameter Tuning 1\; = 0.05

I
1
J

320

2OO0~~--~--~~~~--~--~~--~~
1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000

Figure 9.9b Data Set A Epoch Learning Dynamic Parameter Tuning 1\i = 0.05

0.04

0.05

0.02

00 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Dynamic Parameter Tuning of Parameters Page 84

Figure 9.10a Data Set A Epoch Learning Dynamic Parameter Tuning T\i = 0.001

300

500

~ 400

l
<I) 350J

250

2000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

Figure 9.10b Data Set A Epoch Learning Dynamic Parameter Tuning T\i = 0.001

0.035.----,.---,---..---,--..,.--,....----,---,---...---,

0.03

0.025

OD

j 0,015

0.005

oL-~-~-~-~-~-~~~~-~~~o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

Dynamic Parameter Tuning of Parameters Page 85

Figure 9.11a Data Set B Epoch Learning Dynamic Parameter Tuning 11i = 0.001

900

800

700

600..
~ sooa
VJ 400g
VJ

300

200

100

0
0 1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000

Epochs

Figure 9.11b Data Set B Epoch Learning Dynamic Parameter Tuning 11i = 0.001

0.06

O.OS

0.04

oS
~

I0.03

0.02

0.01

O~~_ULL--~~~~~~~~~~~~~~
o 1000 2000 3000 4000 SOOO 6000 7000 8000 9000 10000

Epochs

Increasing the 11i for Data Set A to 0.005 (Figure 9.12a) gave a near identical result

as for 11i of 0.001 (Figure 9.lOa), and not intermediate between Figure 9.lOa and 9.9a (11i

0.05), thus the 11i appears to have a threshold value above which it is poorly behaved, and

below which it is not critical for convergence speed.

Dynamic Parameter Tuning of Parameters Page 86

Figure 9.12a Data Set A Epoch Learning Dynamic Parameter Tuning 11i = 0.005

650

600

550

500

~ 450i
rI) 400
~
rI)

350

300

250

200
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

Figure 9.12b Data Set A Epoch Learning Dynamic Parameter Tuning 11i = 0.005

~ o.ois..
j 0.01

0.005

°0~-:1~00:-:-0---:-2000_'__---3000'__-4_"000--:5000-::':--60"_00-7-'00-0-8000-':--9000"':--:1~0000

Epochs

9.S. Adaptive Learning Rate After Pattern Presentation

The algorithm of Vogi et al was adapted then for pattern learning, ie. where weights

are updated after each pattern presentation as opposed to each epoch. The weights at each

epoch were stored, and after another epoch, if the tsse was increased, the weights were

restored to their values during the previous epoch and 11 was reduced and momentum

Dynamic Parameter Tuning of Parameters Page87

stopped, or if decreased 11was scaled upwards and momentum restarted. One could have

stored weights after each pattern, but this would have slowed the learning process down

much more. In the cases of l1i = 0.1 the network converged for Data Set A (Figure 9.l3a)

similarly compared with the conventional method of weight adjustment and an 11of

0.005, or 11= 0.1 (Figures 9.1 and 9.3). Data Set B converged to a similar value as in

epoch learning (Figure 9.l4a), but more quickly, despite a higher 1li. This particular case

worked even though the l1i was 0.1, the value that was shown in Figure 9.5 not to work..
for static 11.Figure 9.l4b shows that the 11goes down from l1i of 0.1 to 0.01, at which it

stabilises.

PAGES
MISSING

IN
ORIGINAL

Dynamic Parameter Tuning of Parameters Page 90

these results were the exception rather than the rule. One could have added noise to the

data synthetically, and this would have the additional advantage of increasing the training

set (by adding noise on the same pattern several times). However impedance images are

not a primary focus of this thesis, and the experiments of 11 were not repeated.

Rather a set of noisy images (Data Set C) were used to create a prediction network

as described in Chapter 10, where 4 pixels were to be predicted from their nearest neigh-

bours. The images in this study were lung scintigram images, which are subject to noise,

as the original source is a radio-active agent It had been found experimentally88 that

fully connected networks with two hidden layers and direct connections from input to

output in addition to hidden layer connections gave a low tsse. The learning curve had

been smooth, and convergence reached within 3-5 epochs of training (127 patterns) in

many consecutive runs using pattern learning. The tsse returned by an unseen test set was

similar to the training set. It was of interest to see whether the technique would improve

convergence on this "well behaved" data.

With a constant 11of 0.1 the network had converged smoothly within 300 epochs

using epoch training (Figure 9.15), and a test set not previously seen by the network gave

similar tsse. This is orders of magnitude slower than pattern training with identical 11

(Figure 9.17).

Dynamic Parameter Tuning of Parameters Page 91

Figure 9.15 Epoch Learning Data Set C 11= 0.1

100

90

80

70

I 60
,

I SO

J 40

~30

20

10
~

00 SO 100 150 200 2SO 300 3SO 400 4SO SIlO

Epochs

In all cases using dynamic 11adjustment the networks converged. Figure 9.16a

shows a greatly improved convergence time compared with the static technique. The 1'1

curve (Figure 9.16b) shows a reduction in 11to a very low rate after convergence appears

to have been obtained. and an increase towards the end of the training which had little

effect.

Dynamic Parameter Tuning of Parameters Page92

Figure 9.16a Epoch Learning Data Set C Dynamic Parameter Tuning 1\i = 0.1

20

II IS

J
10

Figure 9.16b Epoch Learning Data Set C Dynami~ Parameter Tuning 1\i = 0.1

0.14

0.12

! 0.1

f 0.08

0.06

0.04

0.02

o~----------------------~~--~~o SO lOO ISO 200 2SO 300]SO 400 4SO soo

Dynamic Parameter Tuning of Parameters

Figure 9.17 Pattern Learning Data Set C 11 = 0.1

20

I1 IS

!
10

S

Page 93

Dynamic Parameter Tuning of Parameters Page 94

Figure 9.188 Pattern Learning Data Set C Dynamic Parameter Tuning 1\; = 0.1

S

20

I1 is

J to

00 so tOO tSO 200 2SO 300 3SO 400 4SO soo

Figure 9.18b Pattern Learning Data Set C Dynamlc Parameter Tuning 1\; = 0.1

O.04S

0.04

0.03S

0.03

!0.02Sf 0.02

O.OIS

0.01

O.OOS
~

0
0 so

Epoclu

Looking at adjustment of weights after each pattern, with adjustment to 1\ after

epochs as described above, there is little discernible difference between the two slopes

for static and dynamic parameter learning (Figures 9.17 and 9.18a), and both are an

improvement on either of the epoch training methods,

As in the epoch dynamic learning, the pattern dynamic learning showed a rapid

reduction in 1\, but there was only a minimal final rise.

Dynamic Parameter Tuning of Parameters Page 95

9.10. Conclusion

These two sets of data, one exact, the other with noise, exhibited different

behaviour. The scintigram data showed little difference for constant 11 against the

dynamic 11adjustment method for pattern learning, though epoch learning was improved

with the dynamic method. The epoch method was no improvement over pattern learning.

However it should be noted that in these simulations all patterns were presented in ran-

dom order, and if many patterns of the same class were presented in batches the results

may have been very different.

The impedance image data was significantly better using dynamic 11adjustment. A

cutoff of 11/may be necessary. An initial n, needs to be chosen with care as the networks

are sensitive to high 11;.Updating the weights after each epoch does not seem necessarily

to be an improvement to updating after each pattern, quite the reverse in some of these

particular cases.

The impedance data (Data Sets A and B) seemed much more difficult to obtain con-

vergence on than the prediction data (Data Set C), and it was on this more "difficult" data

that the accelerated method was an improvement.

The networks were sensitive to 11;.This latter point arises since on the first epoch of

the network learning, there is no previous tsse against which to compare, and the network

is forced to accept the result and update the weights, which may lead to "flooding" of the

units if too high an 11;is used.

Accordingly in the remaining chapters dynamic training has not been implemented,

as it appears to offer no particular advantage over the standard method with the data used

in this study, though under other circumstances it may be advantageous. One particular

use would be to start the network at a very low 11;,and use the dynamic method as a

means of establishing an appropriate 11,where a priori it is not known at what level to set

the learning rate.

Local Prediction Techniques Page96

10. LOCAL PREDICTION TECHNIQUES

10.1. Introduction

As in previous chapters for the experiments described below one paradigm was used

only. This was the multi-layered perceptron (MLP) using error back propagation as

described in Rumelhart and McLelland73.

The point of implementing a prediction network is to provide a pre-processor for a

subsequent classifying network. Prediction may be achieved by a variety of methods,

linear methods being the most common, but nonlinear methods (e.g.89) allow more gen-

eral cases to be analysed (e.g. chaotic time series)42. Neural nets have been suggested42

in prediction problems.

The method described here is to train a network on normal images, where some

group of pixels locally predict a neighbouring group of pixels. It may be the case that

when images with abnormalities are presented to such a network, that the predicted pix-

els and the actual pixels of the abnormal area will be very different, and produce a high

tsse, which could be used to flag areas of potential further classification.

Thus the prediction network should output a larger error if it is trained on normal

images and then given images with abnormalities, since it has not "seen" the abnormal

areas. The error should be localised to the portions of the image that contain these abnor-

malities. Such segments could be fed into a classifying ANN to distinguish between (say)

PE, chronic obstructive airways disease (COAD) and artifacts. An assessment of such

nets for prediction is presented in90 and in this chapter.

In all cases the networks consisted of 3 layers, an input layer, an output layer, and

between them the "hidden" layer. The layers were fully connected to the layer below or

above, ie. all units were connected to all other units in the adjacent layers. The particular

net in Figure 10.1b was one of the net used, where the 12 input units are the pixels of a 4

by 4 segment with the middle 4 pixels removed, the output unit is trained to give the

missing pixels (see Figure to.1a).

Local Prediction Techniques Page 97

Figure 10.la Prediction of Inner Segment from Outer Segment ANN

Input Input Input Input

Input Target Target Input

Input Target Target Input

Input Input Input Input
,

Input = Input pixel value to ANN

Target = Target pixel value to ANN

Figure 10.1b Prediction of Inner Segment from Outer Segment ANN: Network To-
pology

Local Prediction Techniques Page98

10.2. Local Prediction of SubSegments

Where chaotic data is used, local methods may provide greater accuracy than global

ones. Nonlinear mappings have been "learned" using a local approximation with success

by Farmer and Sidorowitch, 89 where they suggested ANNs could be employed to pro-

duce a similar mapping. The data used in their study were time series, but similar

methods could be used on images, where one part of the image is approximated by con-

sidering neighbouring points. Furthermore feeding part of an image to a network, scan-

ning the image section by section, offers the possibility of stating where an abnormality

exists in the image. Experiments were performed to test the viability of such an approach.

10.2.1. Video Acquired Images

Using an atlas of nuclear images, two lung scintigram images were "frame grabbed"

using a video camera. One was used to create a training set, and the other to create a test

set. The images were standardised using a median filter technique to 64 by 32 pixels in

size. The pixel values were scaled to lie in the range [0,1], Segments of an image ofvari-

ous square sizes with values in square subsegments removed, were presented to a MLP in

an attempt to predict the missing sub-segment. The results were compared to a prediction

method based on using the mean of the larger segment to predict the missing data points.

The networks gave much better results than a simple mean value, except for the one pixel

case surrounded by only its nearest neighbour. Here the network gave similar results, and

is probably simply computing an average value.

From Figure lO.2-5, which show the total sum square error against epochs, it is evi-

dent that convergence was achieved within a few epochs of training.

Local Prediction Techniques

Figure 10.2 Network Convergence Training Predicting 1 Pixel

I
I
J

Legend
Segment Surrounding Subsegment by One Pixel __ .
Segment Surrounding Subsegment by Two Pixels '"
Segment Surrounding Subsegment by Three Pixels -,-,

Figure 10.3 Network Convergence Training Predicting 4 Pixels

.. . : .

I ····..1················1"··············1···.... ·······

I
J

20 ~:t:;:;~~;;.t~~t::.l:t;;.l~~~~=±=:
~ w ~ ~ ~ ~ ~ m ~ ~ ~

Legend
Segment Surrounding Subsegment by One Pixel_ ...,
Segment Surrounding Subsegment by Two Pixels ..,
Segment Surrounding Subsegmentby Three Pixels -,-,

Page 99

Local Prediction Techniques PagelOO

Figure 10.4 Network Convergence Training Predicting 9 Pixels

1~~~---r--~--~~~~--~--~--~~

160 I J L J - .1.. J - _L._ ..I. J J ..
t· t' iii iii i

I ! ! i ! i ;140 - _·····..·r-·..·_ ·r -r · · ·r..·_ ·..t..· ····! ···· I·..· ..

I
!
J

Legend
Segment Surrounding Subsegment by One Pixel __ .
Segment Surrounding Subsegment by Two Pixels ...
Segment Surrounding Sub segment by Three Pixels -.-.

Figure 10.5 Network Convergence Training Predicting Pixels Using Digital Data

\ i
i l

100 \·············f····..······ ··;··..··············!·····"···········~······..···..····f·················t······ ~ l .

Im\l-l+~j--r-T-r-

123 4 S 6 7 8 9 W

Legend
Segment Surrounding Subsegment by One Pixel __
Segment Surrounding Subsegment by Two Pixels _
Segment Surrounding Sub segment by Three Pixels -.-.

Local Prediction Techniques Page 101

It is seen from Tables 10.1-10.3 that the network gives similar values for training

and test data. It is stated from empirical studies 57 that the number of training patterns

should be at least of the order of the number of connections in the network. Smaller

sized training sets allow the network to obtain one to one mappings which do not allow

the network to "generalise". The largest network had 657 connections, (72 - 9 - 9 net-

work) and the number of training patterns were 1680, ie. comfortably in the range O(N),

N = connections.

.
24 1 1 3.257
48 1 1 5.176
12 4 4 5.258
32 4 4 7.331
60 4 4 7.751
16 9 9 16.165
40 9 9 13.876

.
24 1 1 6.812
48 1 1 2.174
12 4 4 6.830
32 4 4 5.872
60 4 4 8.186
16 9 9 11.917
40 9 9 13.759

.
8.179
16.215
36.582
60.182
96.763
154.159
293.670

24
48
12
32
60
16
40

1
1
4
4
4
9
9

Local Prediction Techniques Page 102

The error for networks using increasing numbers of neighbouring points does not

improve, but rather slowly increases. Consequently there seems no obvious advantage to

using larger segments surrounding a given subsegment size, especially as these add to the

connections thus requiring larger training sets, and the nets take longer to compute errors.

10.2.2. Directly Acquired Digital Images

Using a recently acquired RS232 interface and supporting software, images were

taken directly from the gamma camera system, thus avoiding the problem of addition of

noise. The experiments for prediction were repeated with some amendments :-

1) Subsegments were predicted from the next larger segment that surrounds the sub-

segment only. Three tests were conducted, 2 by 2 subsegment from a 4 by 4 seg-

ment, 3 by 3 from 5 by 5 and 4 by 4 from 6 by 6.

2) The images were not standardised for size. The training image was the left lung

and the test image the right lung of the same image, thus standardisation was not

required.

3) Not all segments were used, as this would have produced too large a training set.

One in 10 segments were randomly chosen to go into the training and test sets.
<,

4) Only 10 epochs of trainingwere employed, because the previous experiments

showed this to be a sufficient number of epochs.

The results of the networks are shown in Tables 10.4 and 10.5. The numbers of

training patterns used were 1482, 1413 and 1451 for the 2 by 2, 3 by 3 and 4 by 4 pixel

subsegments respectively, and so were of the order of the largest number of connections

in any network. The test set contained 1218, 1221 and 1178patterns.

16 9 9
.

15.032
.

0.118

Local Prediction Techniques Page 103

16 9 9
.

14.636

Errors per pixel were calculated for these experiments, and it may be seen that the

error in the test patterns rose slightly as the sub segment size increased. Since this did not

occur in the training set it seems that an incomplete generalistion of the prediction

method has occurred, despite the large training set However the error per pixel for the

largest subsegments is still quite low.

10.3. Images Generated by the Prediction Network

A subjective assessment of the prediction technique may be made by comparing the

output of the prediction net with the original images, An example of the images used in

the study are displayed in Figure 10.6. These images were "frame grabbed" images. The

network trained for prediction with normal images was presented with all the PE perfu-

sion images as a test set Using 4 by 4 pixel segments, the inner 2 by 2 pixels were

predicted by the network, and these were output to create a "predicted" image. Similarly

error images were created. For each output-pixel the pattern sum square error (psse) for

the 2 by 2 pixel sub segment was calculated, This is simply the sum of the square differ-

ences between the target values and the output values. By normalising the errors so that

the maximum error was given a value corresponding to white (255 in this case as 8

bitslpixel are used) and linearly interpolating all over values, an image is produced which

shows high error as bright and low error as dark. Figure 10.7 shows both error images

(left) and restored images (right). It is clear the output images are close to the original

(Figures 10.7 cf 10.6), and that the error image does not appear to show areas of potential

PE. The figures show the effect on one image, all other images showed very similar

results.

Local Prediction Techniques Page 104

Figure 10.6 Pulmonary Embolus Image: Perfusion Images (left) and ventilation Im-
ages (right)

Top Images - posterior-anterior
Middle Images - Left Posterior Oblique
Bottom Images - Right Posterior Oblique

PlSApru

PlSB.pras

PlSC.pras

PlSAvru

PlSB.vras

PlSC.vras

PAGE
MISSING

IN .
ORIGI,NAL

Local Prediction Techniques Page 106

Figure 10.8 Pulmonary Embolus Image Perfusion Image: Binomial Smooth (left)
and Sobel Filtered (right)

Top Images - posterior-anterior
Middle Images - Left Posterior Oblique
Bottom Images - Right Posterior Oblique

PISAbin

PISB.bin

PISC.bin

10.3.1. Smoothing Effect of Prediction Net

PISA.sob

PlSB.sob

PISC.sob

It seems that prediction nets act as a smoothing filter, and indeed if one compares

Local Prediction Techniques Page 107

the original images with the restored images using the prediction nets much of the noise

has been removed. As a comparison with a standard technique, the binomial smooth was

applied to the same images (left images in Figure 10.8), and it appears that the resultant

images are very similar.

Given that the prediction net need not be fully connected (see Chapter 12), and

indeed a 20% connected net performs similarly to a fully connected net with the 12 pix-

els predicting inner 4 case, it is pertinent to ask whether the net would be an efficient

smoothing technique.

With a 12 unit input layer, and hidden layers of 8 and 4, and an output layer of 4,

with full connectivity between all layers, one has C connections where :-

C=(12+8+4)x4+(12+8)x4+12x8

C=96+8O+96=272

If a fully connected net were employed (as is done in Chapter 11) there would be

272 connections between units, and a further 16 bias links, ie. 288 additions and 288

multiplications to update the net, and since the outputs from all but the input layer are put

through the logistic function, 16 logistic calculations. If a network topology as used in

this chapter were used, the number of unit connections is reduced to 144.
\

In comparison a binomial filter,uses 9 additions and 5 multiplications to compute

each pixel, so an equivalent number for a 2 by 2 block would be 36 additions and 20 mul-

tiplications. A fully connected net would be much less efficient Furthermore the bino-

mial smooth would typically use integer arithmetic. However there may still be a place

for the ANN approach, as the filter may be locally adaptive.

10.3.2. Edge Detection using Error of Prediction Net

The error of the prediction net has been used to restore images after applying the

prediction net, and an example of this is shown in Figure 10.7. As a comparison, the

Sobel filter, a standard spatial domain edge detector, is shown in Figure 10.8 (right

images). It is clear that while the prediction error image is a sort of edge detector, it is

Local Prediction Techniques Page 108

not a particularly good one compared with the Sobel.

10.4. Condusion

Prediction nets are not useful pre-processors for classification nets. They make

smoothing filters however that subjectively appear similar to binomial smoothing filters,

and the error gives a crude edge detector.

Optimising Network Structures With Genetic Algorithms Page 109

11. OPTIMISING NETWORK STRUCTURES WITH GENETIC ALGORITHMS

11.1. Introduction

A problem with neural network design is optimising the connections between units,

and the number of hidden units. For any input or output unit numbers there are an infinity

of ways of joining them via arbitrary numbers of hidden units. Even if the number of hid-

den units required is known, and currently this is a matter of rule of thumb, there are

many permutations of connectivity. In the previous chapters, experiments were under-

taken where total connectivity was assumed, however the layout of retinal cells does not

have this pattern, and restricting connections from certain inputs to one or a few hidden

units, and similarly from hidden to output units, may be more appropriate. Furthermore

the reduced networks would run more quickly.

As91 has explained, many complex systems are sub-optimally designed using a

priori assumptions, and it is suggested that Genetic algorithms (GAs) and other adaptive

strategies may help reduce this problem.

11.2. Genetic Algorithms

GAs are algorithms used to optimise a Set of functions, based on ideas taken from

genetics and evolution. Binary strings are used to represent the functions, and an evalua-

tion of the functions determines "fitness".A population of initially randomised strings are

mutated (some bits switched in a random manner), and portions of strings are inter-

changed between strings. The new population (next generation) is further tested. A gen-

eral overview is given in 92 , for a discussion of GAs and classifier systems see93

11.3. Need for Optimisation

Work has shown that using principal components (pcs) of lung scintigrams one

may classify the images with a limited accuracy into those with specific abnormalities

(pulmonary embolism (PE) and chronic obstructive airways disease (COAD»94. In an

attempt to improve the capability of the system, it was decided to scan the image, pick

Optimising Network Structures With Genetic Algorithms Page 110

out the areas which were possibly abnormal, and use these in a subsequent classification

algorithm.

The technique would involve feeding in the pixels of a square area minus an inner

subsegment as the input layer, and giving the inner segment as the training layer. Thus

the network would be predicting the inner segment from the outer segment. This is a

form of pattern completion, and where the predicted segment is in error in excess of

some stated threshold, one could use this area as a pattern for the next (classification of

abnormalities) ANN.

One can use auto-associative networks such as the distributed memory model 50 ,

but it was considered worthwhile to use the multi-layered perceptron (MLP) using error

back propagation as it can map non-linearities.

As was shown in Chapter 10, these nets did pot perform the function they were

designed for, rather they acted as edge detectors and smoothing filters. However large

training sets may readily be made for such nets, they make good test sets for exploring

optimising network architecture.

A problem of ANNs is to determine an optimum network design. The number of

different networks that can be built on even a small problem is forbidding. Even in the

smallest network worth considering, which has four inner pixels, determined by the 12

pixels which surround it, there is a large number of permutations, and indeed if any arbi-

trary number of hidden layers and/or units is considered it is infinite.

There are good reasons for being concerned about the specific network structure

used. It is not sufficient to use a net structure obtained that converges on a training set.

The point has previously been made (e.g. Chapter 6) that the size of the network affects

performance, speed and accuracy on a test set. In addition it has been shown that over-

training of a network, which is characterised by overfitting of data, is less critical in a

reduced network size75. This is related to the Runge effect, where counter-intuitively

adding data points to interpolate between allows in extremis arbitrarily large errors for

Optimising Network Structures With Genetic Algorithms Page 111

the interpolated points. In networks the error is actually bounded because the outputs of

units are bounded, a less extreme effect is therefore seen. If a network is trained beyond

the point of convergence, overtraining may occur. The tsse continues to be reduced, but

the error of particular patterns or particular outputs actually increases.

Since it is not known a priori when a network will converge, network structures that

minimise this problem are advantageous. It has been shown7S empirically that the

smaller a network in terms of connectivity, the less overtraining to be a problem.

11.4. Genetic Algorithms and Network Design

GAs can search solution spaces efficiently and quickly, and are suited to high

dimensional systems87• GAs have been used to evolve network architectures. Harp et

al87 used a GA to design ANNs. This system used genes to map to learning rate, con-

nection density and other parameters, in a network trained to learn digits from their

binary images. Previous work has shown that GAs can improve network construction.

Whitley 9S experimented with GAs learning the connection weights in the XOR prob-

lem, a 424-encoder and an addition problem. Genotypes represented connection weights,

and 8 bits were used to represent each weight, These weights were used in a network, and

the network generated an error in the same way that an MLP using back-propagation

would. He found that very small errors could be generated (e.g. 0.00001 average in XOR

after 1500 recombinations and a population of 200). Smaller populations gave faster and

more accurate results, but were less reliable.

Network architecture has been optimised using GAs. Schaffer et al 96 used a GA to

learn the momentum, learning rate, initial weight range, and the connectivity between

units. The problem addressed in their work was the minimum interesting coding prob-

lem, where the first two bits of a four bit string are noise. The evolved networks were

sparsely connected and gave a lower total sum square error (tsse) than a fully connected

network.

Optimising Network Structures With Genetic Algorithms Page 112

Miller et al 97 designed networks for the XOR problem, the four quadrant problem,

and pattern copying, where the connectivities between units were switched on or off by

the genes. They found additional connections were made between input and output,

which increased the rate of learning in the MLP, and they stated the solutions were non-

intuitive.

de Garis 98 has built a genetically programmed neural network which teaches a pair

of sticks to walk. The GA learns the weights in a feedback time dependent network.

Dodd99 showed GAs out-performed pseudo-gradient descent and random search for two

problems, one a "toy" problem and the other a large problem (5,000 connections) con-

cerning identification of dolphin sounds.

11.5. Initial Experiments

To gain an idea of what a standard network could do, an MLP was constructed with

full connectivity between the input layer, two hidden layers and an output layer. Initially

all layers were connected to all other layers (net A), then only connections between adja-

cent layers were allowed (net B), then the connections between the hidden layers and the

output were cut (net C), and finally a network with only input and output layers was con-
\

structed (net D, a purely linear network). The rationale for testing net C is that it was
)

desirable to determine whether hidden units unconnected to outputs reduced perfor-

mance.

These nets were tested on two different problems, the prediction of 2 by 2 pixel seg-

ments from the concentric ring surrounding them, ie. 12 units predicting 4, and the pred-

iction of 5 by 5 pixel blocks from the two surrounding concentric rings, ie. 56 units

predicting 25. A learning rate of 0.05 was used for the larger network, and 0.1 for the

smaller one. In all cases the networks converged.

The number of training patterns used in both training and testing were 115. They

were generated ftom two separate lung scintigram images, where randomly about 1 in a

100 segments were chosen. The number of patterns is small is comparison to the number

Optimising Network Structures With Genetic Algorithms Page 113

of connections, and as empirically it is known that pattern number should be of the same

order as connectivity 57 , there is a risk of falling into uninteresting one to one mappings.

It is clear that on these runs this did not happen as the tsse reported from the test image,

which the network had not previously seen is similar to the training error. Hence the

"worst possible case" scenario was not encountered.

In the small network there is little difference in the tsse for the different net designs,

and it may be that the relationship is linear, though slightly lower errors were obtained

using hidden units where no connection was made directly from input to output.

In the larger network, designs with hidden units performed much better than the two

linear networks, the fully connected network performing best. It seems likely that large

sub segments are related to surrounding areas in a more non-linear fashion. In every case

the test data supported the training data .

. The convergence rate was fastest for the fully connected network in both small and

large networks. The slope was smooth in all cases except in the case of networks with

adjacent layers only connected. In both cases there was a period of slow convergence,

and in the larger network a sharp kink into what may have been a local minimum.

Optimising Network Structures With Genetic Algorithms Page 114

11.6. Genetic Approach

It has been suggested that GAs work better given a priori knowledge about the

domain in which they seek a solution 100 , and that such knowledge may not need to be

substantial. An example they quote is the traveling salesman problem, where the heuristic

added is that typically "good" tours have short edges.

The assumptions built into the GA should not be such as to stop the GA from

exploring reasonable solutions. A weak specification has the advantage of greater speed

and compactness, but may suffer from this problem. Miller et al 97 noted that strong net-

work specifications have an obvious advantage of reducing human design bias, and a

strong specification was used in this work, whereby every connection could be indepen-

dently sC?tby the GA. As in their study, the software used was the PDP package by

Rumelhart and McLelland 50 combined with Grenfenstatte' s 92 genetic algorithm sys-

tem. This GA system uses biologically inspired techniques. A "population" of "genomes"

(bit strings) are mapped to "phenotypes" (some user defined mapping, which here is net-

work structure) and "fitter" genomes are allocated more "offspring". The population is

changed over time by "recombination" which is a mixture of random mutation of bits by

flipping certain locations, and by "crossover", where sections of strings are swapped.

Optimising Network Structures With Genetic Algorithms Page 115

This system uses the improvement offered by Baker101•

It is known that hidden units are necessary to solve non-linearities, and it is sug-

gested 56 that two hidden layers may have some advantage over one layer. It was

decided therefore to allow two hidden layers in the networks to be designed, but arbitrary

mapping were to be allowed, with the exception that connections within a layer are not

allowed. This allows the MLP error back propagation technique to be used. As shown

previously direct links from input to output may be beneficial, and these are permitted in

this model. It was also demonstrated that unconnected hidden units will not necessarily

impair the net performance, and a specific check on redundant connections while useful

to reduce connectivity, is not required for optimising performance.

The error used as a criterion of fitness by the GA may vary according to the require-

ments of the user. Shaffer et al used the tsse of the network. Harp et at 87 used the

integral area of the tsse curve. Here the tsse was used, but it was modified to reduce con-

nectivity, as described below.

11.7. Genetic Experiments

The genes were decoded to provide a 'connectlon with a variable weight, or one

fixed at zero, the latter being identic~ to no connection. For the large network the input

layer was fixed by the pixel numbers at 56, and likewise the outputs at 25 units. The

number allocated to the first hidden layer was 44, and the second 25. The small network

had 12 inputs, 8 in the first hidden layer, 4 in the second and 4 in the output.

The·GA could in principle reduce any hidden units to redundancy by setting all their

connections off. Connections from inputs or to outputs can be also set to zero. Thus after

a series of generations one would expect a near optimal number of units and connectivity

to be learned. However as 87 noted GAs tend to allocate connections readily if some

check is not put on them. It has been suggested that several parameters might be added to

produce an overall fitness criterion, of which tsse is but one. Clearly one would wish to

have a network with a low connectivity, both for speed of operation, and for a better

Optimising Network Structures With Genetic Algorithms Page 116

ability to generalise.

Accordingly the tsse was weighted to reflect connectivity. One required a function

that encourages low connectivity. One might scale the error by the ratio of total possible

connections to actual connections. This might however give unacceptably large weight-

ings. In the extreme a network with a few connections would have two to three orders of

magnitude advantage over a fully connected one. This is comparable with the observed

difference between an error generated by an untrained network and a converged one.

A solution is to use the logistic function as used in the MLP error back propagation.

Thus the following formula for error was employed.

1error=tssex -c
l+e cf,-

where c, = total possible connections and C,. is the actual connections in the net-

(11.1)

work. This was compared with using the more crude :-

error=tssex g: (11.2)

and also against using the raw tsse seore :-

error~sse (11.3)

The larger network is more interesting in that it appears to exhibit non-linearity, but

the time consuming nature of testing hundreds of large networks made it useful to test the

smaller networks for response to error sealing. The smaller networks showed that the best

function to use was surprisingly that described by equation 2.

Using this error sealing method two large network simulations were run. In one the

error returned was the training error, which may have a tendency to lead the network

weights into a local minimum. In the second a test set was used after the network had run

through its epoch of training. The tsse from the test was reported back to the GA to be

used in evaluation, which may be expected to give more optimal nets than the training

error.

Optimising Network Structures With Genetic Algorithms Page 117

In all the experiments described below a population of 50 was used, with a mutation

rate of 0.01, and a crossover rate of 0.6. One could have explored changing these parame-

ters. From previous work though it is known that a mutation rate of the order of 0.01 or

less, and a population size of 30-100 have been effective87• The number of trials

required is not known a priori, and a large number was chosen to best test whether the

GA could succeed in this problem. The GA was tested until 10,000 trials had been

achieved for the smaller network, and 4,000 for the larger network (a lower figure simply

as the computational resources required were larger for the larger network).

11.8. 4 Pixel From 12 network

11.8.1. tsse Used as Error

The GA produced a best individual of error 14.76 (using tsse as a test criterion) in

the first generation, this fell over 68 generations (2123 trials) to 11.49, after which it

remained static till generation 188 (4007 trials) where it fell to 11.14, which remained the

best until generation 973 (9606 trials), falling slightly to 11.05. Thus very small changes

were made for a lot of computation. The GA was ended at generation 1000 (10,000 tri-

als). Of a total possible connectivity of 272,\he GA initially started with approximately

half the connections switched on, and ended with between 149 and 151 connections in

the last generation. All the values of this generation were in the range 11.14 to 16.25.

11.8.2. Logistic of tsse Used as Error

Starting at a best error of 8.25, over 41 generations (1321 trials) this was reduced to

7.514, where it remained static until 10,000 generations were completed. The connec-

tivity was between 125 and 126, and the error ranged from 7.514 to 11.84 in the final

generation.

11.8.3. Ratio o~ Connectivity to Total Allowed Connectivity Times tsse Used as

Error

Optimising Network Structures With Genetic Algorithms Page 118

Starting at 7.30 the best error fell to 4.44 over 128 generations (3305 trials), where it

remained till 400 generations (5500 trials) where it sharply fell to 1.60, and it terminated

at 1.55 after 10,000 trials. The connectivity was between 67 and 78, and the error ranged

from 1.55 to 42.82.

11.9. 25 Pixel from S6 Network

Only equation 2 was used in these experiments. This had been shown in the previ-

ous experiments to be the most effective in reducing connectivity, and yet did stabilise at

a reasonable number of connections.

11.9.1. Using Training Data Error

In 14 generations (735 trials) the error fell from 28.82 to 26.28, where it stayed until

the experiment ended after 4,000 trials. Of a total possible connectivity of 8089, the last

population had between 3969 and 40 17 connections, with an error ranging from 26.2 to

38.9.

11.9.2. Using test data Error

The error fell from 31.42 to 25.97 in 32 generations (1612 trials) where it remained

static till 4,000 trials were completed. The final error ranged from 25.97 to 42.07, with a

connectivity of 3923 to 3977. Thus there is no apparent advantage in using test data over

training data for error reporting.

The results are summarised in Tables 11.5 and 11.6. It appears that the more fully

connected networks have little variance, as one might expect. Lower connectivities show

Optimising Network Structures With Genetic Algorithms Page 119

wide variance in the final population, where one surmises that changing a few connec-

tions would have greater effect. This may explain the sudden jumps seen in the 2 by 2

network trained by the GA using equation 2. Note that the errors quoted in Table 11.5 are

scaled by different amounts due to the three different equations used, and a direct com-

parisonisnotapp~priate.

11.10. Comparison of Genetically Designed Nets and Fully Connected Nets

The best fully connected network was the one where all layers were connected to

each other. This was compared for both networks, the 4 pixel and the 25 pixel output

nets. Convergence was much more quickly reached with the GA designed nets. They

both converge in a fewer number of epochs than the fully connected ones. Furthermore

since the number of connections is far fewer (272 compared with 73 for the smaller net,

and 8089 compared with 4002) the net would take less time to compute an epoch.

11.11. Conclusion

Using GAs to design ANNs can produce low connectivity networks which give

similar or better tsse than fully connected networks. There is obvious advantage in hav-

ing such reduced networks as they run faster, and are less prone to produce one to one

mappings. The reduction in error produced by a GA with no check on connectivity is

very moderate, and it tends to increase connections. The equation 1 error seems to keep

the connectivity roughly at the starting value of 50% in the smaller network, and using

the equation 2 error reduces it to about 25 - 30%. The larger network remains at 50%

connectivity even with the equation 2 error.

There is little difference in the results obtained using the test set error against the

training set error.

Regarding the lack of improvement after a given point in the GA simulations, it has

been suggestedl0~ that mutation rates should be increased when GAs cease giving sub-

stantial improvement, This may be related to the biological effect of punctuated equili-

Optimising Network Structures With Genetic Algorithms Page 120

bria, where organisms evolve rapidly and then remain static for long periods, and after

(typically) a change in the environment, evolve quicldy again in a subsequent period. A

technique employing this idea103 has been evaluated, whereby several competing popula-

tions occasionally send individuals to other groups. This has shown improved perfor-

mance, and thus the notion of punctuated equilibrium applied to GAs may not be fanci-

ful.

It has been suggested 104 that crossover may be unnecessary or even counter-

productive in GAs learning highly non-linear structures such as ANN networks. The

effect of random connectivities is explored in a further chapter (Chapter 12).

Reducing Connectivity in Compression and Prediction Neural Networks Page 121

12. REDUCING CONNECTIVITY IN COMPRESSION AND PREDICTION NET-

WORKS

12.1. Introduction

Discussed above and in 94 was the use of artificial neural networks (ANNs) com-

pared with principal components analysis (PCA) for data compression. It was found that

using a multilayer perceptron (MLP) with error back propagation, PCA gave a lower

total sum square error (tsse) than ANNs for "unseen" data.

A review of this work 78 , discusses a weakness in using MLPs, which is the well

known problem of local minima. In this review it is stated that the increase in tsse shown

in the.ANNs over PCA is probably due to local minima. The reviewer suggests a linear

auto-associator may be a better option as it does not suffer this effect, and refers to previ-

ous work using a linear network in reducing the 'dimensionality of speech spectrum

data105.

An alternative approach to avoiding local minima might be to change the connec-

tivity of units in an MLP. As previously stressed the connectivity of a net affects the

learning rate, and the number of patterns required to avoid one to one mappings57.

Reducing connectivity speeds up the network convergence and reduces the number of

training patterns required.

The degrees of freedom of an MLP network are not the same as the number of units.

As 75 has pointed out, the degrees of freedom in nonlinear nets change as the network

learns, since the activations tend to move away from mid-range, and hence from the

linear part of the activation function (assuming the logistic function is used). This can

have the effect of overfitting of data, and is referred to as overlearning. Stopping training

at convergence would avoid this effect, but one does not necessarily know in advance

when convergence will occur. Backtracking from an overtrained net is not practicable as

at each pattern presentation, the weights would need to be saved, and one would very

quickly run out of disk space on all but the most trivial problem. It has been shown 75

Reducing Connectivity in Compression and Prediction Neural Networks Page 122

that lowering the connectivity reduces the overfi.ttingproblem, and allows the network to

continue training beyond convergence with little ill-effect.

As106 has pointed out, in real nervous systems, the space occupied by neurons is

negligible compared with that occupied by the connections. As the number of neurons

increase, the number of connections increases exponentially if full connectivity is

assumed, and in the brain partial connectivity is observed. Apart from being necessary in

large networks, there are advantages in partial connectivity. Using a Hopfield net, it was

found that a partially connected network stores more information per connection than a

fully connected onelO6. As the network size increases, the partially connected network

becomes increasingly efficient in its use of space, communication times and storage

capacityl06.

The networks in 94 was allowed to proceed beyond convergence, and suffered from

the disadvantage of being fully connected. The reason a fully connected network topol-

ogy was used is that it is not known a priori the connectivity that is optimal.

Reducing the structural size of a network has been attempted by several methods.

One may use relevance of units107, calculating the importance of individual units on the

outcome, and deleting those with low relevance. As pointed out in that study, one can not

use the absolute output value of a unit, for a high value output may be fed into a unit

which is saturated, and consequently makes little impact. The value Pi=EwitItoNtrMllllir'£widHJ..

1liii, where E is the error and P the measure of relevance was used. PCA has been used108

on weight vectors to determine those carrying most information in the Shannon sense,

and to delete connections which are low in information passing.

12.2. Genetic Algorithms

Genetic algorithms (GAs) have been used by a variety of workers, for example87 to

optimise network design, and above in Chapter 11. Good results have been quoted on

small "toy" problems, e.g. XOR, and a minimal encoding problem. Good results have

also been quoted on larger problems99.

Reducing Connectivity in Compression and Prediction Neural Networks Page 123

12.3. Compression Networks

By this term is meant the auto-associative MLPs used in Chapter 7 and in40•

A GA was employed to look at reducing the connectivity of compression networks,

by biasing the error towards lower connectivity. This was done simply by multiplying the

tsse after one epoch by the ratio of connections to total possible connections, a method

used in88.

Training and test sets of 3 views of 3 images, each set consisting of 576 patterns

were used. A GA was used to optimise the network structure, where only connections

between adjacent layers were permitted. It was found that the decrease in error was not

very substantial, after one generation the best structure gave an error of 539.8, but after

47 generations (2001 trials) the error was 453.7. Raising the mutation rate from 0.001 to

0.01, did not improve the best error. The final connectivities were close to 40% for muta-

tion ofO.001, and 48% for mutation rate = 0.01.

Compression nets with randomly allocated connections were created and tested. For

each potential connection a pseudo-random number generator was used to determine

whether the connection was present or not. If N% of the connections were to be created,
-,

then if the random number returned was R, then if (R mod 100) < N the connection is

made.

50 such nets were created. Results are shown in Tables 12.1 and reported in 109 ,

where the best and worst net (as measured by the error criteria) after one epoch were

further trained to 100 epochs. The fully connected network figures are shown in Table

12.2. Results are given for test and training data sets. GA designed nets are shown in

Table 12.3.

Reducing Connectivity in Compression and Prediction Neural Networks Page 124

raming
1% 1248.91 3.39 1211.09 3.29
5% 1190.00 3.23 729.29 1.98
10% 1000.76 2.71 353.21 0.96
20% 232.50 0.63 158.58 0.43
30% 440.01 1.19 101.90 0.28

est
1% 1768.50 4.80 1712.14 4.64
5% 1677.36 4.55 1016.40 2.76
10% 1390.93 3.77 496.93 1.35
20% 822.59 2.23 614.26 1.67
30% 592.75 1.61 156.26 0.42

nb. Lower errors were here obtained than found in Chapter 7, for similar networks,

however the training sets were here larger.

The GA designed nets were disappointing, the 48% net (mutation rate = 0.(01)

being worse than a random 50% net, and the 40% net (mutation rate 0.01) about the same

as a 50% random net.

The compression nets showed a substantial difference between best and worst net-

work, typically by a factor of 3 to 4. The actual connectivities are shown in Table 12.4,

and it is clear that the number of connections is not the only factor, as in some cases the

worst structure has more connections than the best, and in others it has less. However

from Table 12.1, there is an obvious increase in error with decreasing connectivity.

Reducing Connectivity in Compression and Prediction Neural Networks Page 125

102
183
390
592

107
217
374
621

5%
10%
20%
30%

12.4. Prediction Networks

Similar experiments with prediction networks (where a rectangular group of pixels

had an inner segment removed, and the inner segment predicted from the outer pixels, ie.

the inner segment was the target, other pixels in the rectangle were inputs) have been per-

formed. It was found that there was little difference between the best and worst randomly

generated network for a particular connectivity value. Thus a GA would not be able to

optimise the performance other than by changing the, connectivity.

Using data from nuclear medical images a GA was employed to look at reducing

the connectivity of prediction networks, by biasing the error towards lower connectivity.

This was done simply by multiplying the tsse after one epoch by the ratio of connections

to total possible connections, a method used above in Chapter 11, and in88•

Two such networks have been built, using a 4 by 4 pixel segment predicting an

inner 2 by 2 segment, (ie. 12 surrounding pixels predicting the 4 central ones) and an 8

by 8 segment with a 4 by 4 inner segment (48 pixels predicting inner 16). Both nets used

the same image data as a training set (3 views of a lung scintigram standardised to 64 by

32 pixels), the smaller network using 768 patterns and the larger 192 patterns. A test set

of equal size was also created with data the net had not been trained on.

An Ml.Pwith 12 inputs, a hidden layer of 8 units, a second hidden layer of 4 units,

and 4 outputs, was randomly given connections from input to hidden and output, and hid-

den to output layers. Connectionswere allowed between all layers as this has been found

to give faster convergence and lower tsse88• Initially 50% connectivity was allocated.

From an initial population of 50 such networks, a GA then generated a new generation,

Reducing Connectivity in Compression and Prediction Neural Networks Page 126

selecting the better network designs. Crossover was 0.6 in all experiments below, muta-

tion rates were either 0.001 or 0.01.

Although the GA produced networks that were similar with respect to performance

to fully connected networks, the successive improvement over generations was not sub-

stantial. At a mutation rate of 0.001 the best error after one generation was 25.6, and

dropped to 23.7 after 44 generations (2010 trials). The connectivity had been reduced

from 50% to 30%, and the reduced error can be explained by the lower connectivity

alone. The mutation rate was raised from 0.001 to 0.01 to provide greater variability of

the populations, and this improved the best error to 17.5, however it reached this stage at

12 generations, and remained there till 145th generation (2001 trials).

To explore whether GAs were any better than randomly generated nets, an initial

randomly generated population of 50 small prediction nets was examined. The network

structure with the largest error and that with the smallest error after one epoch, were

trained to convergence and compared. Fully connected nets were at convergence within

3-5 epochs. 100 epochs was chosen to train the nets, to ensure that if the nets failed to

converge, they did so orders of magnitude after fully connected nets were successful.

Various connectivities were tried, and the results are shown in Table 12.5, results for a

fully connected network are shown ~ Table 12.6. These are compared with the perfor-

mance of nets designed by GAs in Table 12.7

It can be seen that the best GA network is better than a similarly connected (30%)

best of 50 random network. With respect to test tsse the 20% connected network is the

best of all the sparsely connected nets, and is better than the GA designed ones.

Reducing Connectivity in Compression and Prediction Neural Networks Page 127

41.52
13.77
6.48

0.0135
0.45
0.21

8.88
3.01
6.51

0.29
0.10
0.21

nb. The error results are better than found in similar nets in Chapter 11, but again

the training sets were larger.

It seems that up to a critical point of about 20% connectivity there is little difference

in the tsse for randomly generated networks, ie. the best and worst networks after one

epoch are not very different from each other after 100 epochs. Below this point however

large differences are noted. The larger network (192 patterns) showed a similar pattern,

but a lower connectivity was possible, see Tables 12.8 and 12.9, and the nets designed by

GAs in Table 12.10. The optimal sparse network appeared to be at 30%, and only below

5% was it really poor. Unlike the smaller net no critical point seemed to exist, where best

and worst were very different.

Reducing Connectivity in Compression and Prediction Neural Networks

rammg
1% 71.04 2.31 97.26 3.17
5% 9.59 0.31 8.75 0.28
10% 11.86 0.39 6.44 0.21
20% 7.25 0.24 5.62 0.18
30% 6.94 0.23 5.45 0.18

est
1% 92.23 3.00 124.63 4.06
5% 17.76 0.58 14.14 0.46
10% 17.82 0.58 10.61 0.35
20% 12.16 0.40 8.75 0.28
30% 10.96 0.36 6.94 0.23

12.5. Discussion

Page 128

In small networks, such as that 'SOlving the XOR problem, the specific connections

are important, but as the network size increases this may not be the case. An analogy may

be drawn with statistical dynamics, where the overall behaviour of large scale systems is

not dependent upon the states of individual entities, but exhibit stability due to the large

number of such entities. It is suggested that in the compression network of the size

described here (64 inputs, 16 hidden units, 64 outputs) that the specific connectivity is

less important than the number of connections.

It is instructive to compare the results given here with the paper by Dodd99 where in

a large problem (5,000 connections) GAs were significantly better than random search

strategies for network connections design. It may be that some large networks are more

Reducing Connectivity in Compression and Prediction Neural Networks Page 129

sensitive to precise topology than suggested by the above simulations. It is not clear from

the Dodd paper quite how the genotypes (bit strings) were mapped to the phenotypes

(network structure). Further it was stated in99 that fitness was proportional to error and

network complexity, but did not give details of how this was achieved. Thus it is possi-

ble the simulations were not comparable with those undertaken in this study.

If these moderately sized networks are dependent upon the connectivity per se,

rather than the precise topology, it will be more constructive to determine the level of

connectivity that is compatible with the error requirement, and choose the best of a ran-

domly generated population.

Lower connectivity networks are faster than fully connected nets, and would be

expected to give fewer local minima problems. For the prediction nets, and especially for

the larger of the nets, quite substantial reduction in connectivity can be obtained with

minimal increase in tsse for a test set.

The difference between the behaviour of the networks is partly determined by size,

the larger prediction network allowing much lower connectivities than the smaller. How-

ever the nature of the problem or the type of structure may be as important. The compres-

sion network is between the two prediction networks in size (maximum number of con-

nections in larger prediction net 5928, small prediction net 272 and compression net

2048), but the prediction net has two hidden layers in comparison to the one layer of the

compression network, and connections are allowed between all layers, as opposed to

adjacent layers only.

The' reason GAs were of no great utility in prediction nets was presumably because

there is little difference in the random nets, and so all a GA can do is reduce the connec-

tivity. This may help to explain why 98 found crossover of no utility when designing

nets.

Reducing Connectivity in Compression and Prediction Neural Networks Page 130

12.6. Conclusion

There is a limited capability for reduction of connections in compression networks.

If a higher error can be tolerated this may be a useful approach, otherwise linear nets may

as78 suggests be more appropriate.

In prediction networks of the type described above randomly connected network

structures may be used to speed up convergence and reduce the possibilities of one to one

mappings. In smaller networks a critical point may occur below which the precise con-

nections become important. Compression networks seem more dependent upon the actual

connectivity, though this may be because of the different structure type rather than the

nature of the problem being solved. For compression networks there is a more limited

capability for reduction of connections.

Classification of Defects Using Local Techniques Page 131

13. CLASSIFICATION OF DEFECTS USING LOCAL TECHNIQUES

13.1. Multi-Network Systems

Rather than build one network to solve a whole problem, many workers are building

systems composed of several subnets, each trained separately to do a particular task. This

speeds up training, as each net in isolation may be quite small. CottreU60 has built

ANNs for face recognition, where a first hidden layer extracts features for a second out-

put layer to classify the faces into different groups. Initially a network with input, output

and one hidden layer was trained to learn the identity mapping. The output layer was then

replaced with a new set of output units for classification, the weights from input to hid-

den clamped, and the system trained to learn classification.

Similarly one could train one network to recognise abnormal areas, and separately

to train another network to classify abnormal areas. The two networks could then be

linked such that the first network filtered input images, and only passed on abnormal

areas to the second network. Specialised network designs have been described for

classification purpose e.g110. but the MLP approach was used in this study as an MLP

simulator was immediately available, and it is easy to connect MLPs together.

A network designed to perform the first task, that of picking out the potential seg-

ments, was tested in Chapter 10. However the prediction network used there acted as a

smoothing filter, and the error returned gave an edge detector, and did not give appropri-

ate segments for classification.

One might try other techniques for extracting the relevant areas, but given the time

scale of the project it was considered advantageous to press on with the second problem,

that of classification. Accordingly areas have had to be manually delineated for further

classification.

Such an approach was tested to determine whether it would give satisfactory results.

If this were so then networks could be trained on other specific abnormalities. One

advantage would be that a smaller set of images would be needed, as many images would

Classification of Defects Using Local Techniques Page 132

contain several defects.

A classifier network would be trained on local segments. This would help avoid the

problem of majority bias, where a network is trained on a large proportion of normal

cases, and only a few abnormal ones. In that case the network can give a low tsse while

essentially ignoring the abnormal cases, since they effect the tsse to a limited extent. In

the following experiments the classifier was given training and test sets with 50% PE and

50% non PE segments.

The local nature of the networks would allow the abnormality to be located spa-

tially. In addition the size of the abnormality may be seen. This would be most useful for

showing serial changes in patients, to monitor improvement or deterioration following

clinical intervention. This is particularly pertinent to anti-coagulant therapy following

PE. The networks should be capable of showing more than one disease or artifact on an

image due again to the fact that local areas are used, and not the whole image. Colour

coding for different abnormalities could be employed to show the different areas in cases

of complicated pathology.

In clinical practice perfusion and ventilation images are used, and by looking at

both images, a mismatch where a perfusion defect is not seen on the ventilation image

indicates PE. However limiting the, network to perfusion images avoids problems of

registration. Networks were trained on both perfusion, and perfusion plus ventilation

images.

13.2. Experimental Methodology

A medical physicist picked out areas of pulmonary scintigrams which contained PE.

A transparency with a grid splitting the 64 by 32 image into 32 8 by 8 segments was

overlaid printed images of the scintigrams. Examining the original analogue images the

physicist determined which segments contained PE. These segments were used to pro-

duce a training and test set of PE images. COAD and normal images which were previ-

ously paired with the PE images had the same segments extracted and placed in the

Classification of Defects Using Local Techniques Pagi133

training and test sets. The desired outputs were set to 1.0 or 0.0. These were two in

number, one for PE and the other for COAD. Experiments were executed on perfusion

images, and with data from paired perfusion and ventilation images combined.

A network was trained with 64 inputs and 2 outputs with a hidden layer of 16 units,

adjacent layers being fully connected. This network was only given perfusion images, as

ventilation images cannot discern PE. The results of an attempt to converge the network

is shown in fig 13.1. It clearly does not converge to a satisfactory error, since the con-

verged error is only slightly below the initial error, which was that obtained with ran-

domised weights. Various learning rates were tried with little difference in the result,

Figures 13.1 was obtained using a 11of 0.005. A file was next set up which contained

paired perfusion and ventilation data, this had 128 inputs, a hidden layer of 32 and 2 out-

puts. The error curve obtained was very similar as in the perfusion case, and little

improvement in tsse was seen.

Figure 13.1 Convergence of Perfusion Classification Net

20

120

100

I ~r-----------------------~I~
J

Bpoc:hs

Both experiments were repeated with a network fully connected between all layers.

No improvement was noted with respect to tsse.
.

The input data set was reduced to 4 from an original 64 dimensions for each 8 by 8

Classification of Defects Using Local Techniques Page 134

segment, using PCA. A net was constructed with 4 inputs, 2 outputs and a hidden layer

of 4 units. Ordinary error back propagation using a learning rate of 0.1 and 0.01 were

tried, both produced poor results.

The learning rate 1'1 was reduced to 0.()()()()2, and a similar convergence was

achieved as in the previous simulations, with no improvement in tsse. In an attempt to

speed convergence dynamic parameter tuning as described in Chapter 9 was employed.

Epoch learning with parameter tuning produced no improvement in tsse.

A second network with combined ventilation and perfusion data was trained. The

network had 8 inputs, 8 hidden units and 2 outputs. Both pattern and epoch learning

were attempted with similar results. Pattern and epoch learning with parameter tuning

both failed to improve the tsse.

13.3. Accuracy of ANN Classification

An ROC curve is constructed by plotting the true positive against false positive

values. The percentage of true positives above a given conficence level is plotted against

the percentage of false positives above the same level. Typically about 5 levels are used

which may be for example : very confident, confident, not sure, confidently not, and very

confidently not A set of points will be plotted which will, if the classification is random,

form a straight line going from left lower corner to top right corner, ie. at each level the

ratio of true positive to false positive is constant If however the classification is near per-

fect, most of the true positive values occur at very high confidence levels, and most of the

false positives occur at low confidence levels, and so the ratio changes with confidence,

and a curve is traced which lies to the left of the diagonal formed by random guessing.

The further away from this diagonal, the better the classification. For an introduction to

ROC analysis see111).

Since the uncompresseddata network did not even converge to a solution at all,

there was obviously no point in assessing the accuracy of the results given from it. The

compressed data network, using 4 PCs of segments showed a high error. It may be that 4

Classification of Defects Using Local Techniques Page 135

PCs are simply too few, and therefore a higher number was tried. Using 20 PCs of a

perfusion/ventilation input data set did reduce its tsse substantially, and the results from

these networks were explored. Using the fully connected network, with 20 inputs, of

which PCs of an original128 raw data inputs (64 perfusion and 64 ventilation, from the 8

by 8 segments) and a hidden layer of 10units, and 2 outputs, test images were evaluated.

The outputs for each image segment were placed in one of 5 groups, viz the inter-

vals [0.8,1.0], [0.6,0.8], [0.4,0.6], [0.2,0.4], and < 0.2. The numbers of images in each

group can be considered to belong to confidence levels, where the higher the value, the

more confident one is about the output. True positive/false positive and true

negative/false negative ratios can be built from these values, which may be used to con-

struct an ROC curve.

The values from the training set are shown in Table 13.1 and 13.2. In the below

tables the figures are given separately for PE, COAD and normal images. le. the 3

columns represent respectively the numbers at each output level of the subsegments with

PE, COAD and those that are normal.

These value look encouraging as the number of true positives /false positives and

true negatives / false negatives are high. E.g. at above the 0.8 level for PE output the true

positives /false positives ratio is 12:3, and below 0.2 the true negatives / false negatives

Classification of Defects Using Local Techniques Page 136

ratio is 25:2. However this was the training set on which convergence may be achieved

without true learning. A test set gave very different results, see Tables 13.3 and 13.4.

The results contrast strongly with the training set The PE images are generally

given a low value « 0.2). The number of true positives ffalse positives above 0.8 is 6:4.

The true negatives f false negatives below 0.2 is 26: 14. The results for COAD are worse,

0:9 and 31: 11 respectively. ROC curves for PE and COAD have been computed for the

training and test data, and these are shown in Figure 13.2- 13.5.

Classification of Defects Using Local Techniques Page 137

Figure 13.2 ROC Curve Training Data PE Classification

!
90, . .. + _ + .

::=-1=1=1=1=t so 1. ..1. 1 L .
!
1#

40 s; ! ··..··..···..·· ··········t···········..········

: :.::.:..::.:.::::.:..1.: : ! : :..::..:I.: ::::f: ···::::..::::..:
10 ..· ··l. ···· ·I ···· ·~ ···· ·t ··· ..

i i~~---W~---4O~---~~---~~--~I00

Figure 13.3 ROC Curve Training Data COAD Classification

l00~--~----~--~----~--~

: :::=[::±=[1=-
70 .1 ..1 1 ...1 .

l ! j t:1 ~ ..···· ··+ ····· ! ·f· ·····+ ..
l. so 1. ..I. l 1.. .! 40 :.t ~ , l .

: :=1+=1::1:::
10 L ! l. ~ .: i : ~

w 40 ~ ~ 100

.. Faile Pulitivea

Classification of Defects Using Local Techniques Page 138

Figure 13.4 ROC Curve Test Data PE Classification

::~~=$:~~:+=
:1 60 ..·..··..·······..··l····· ······..·..··j· ·· __ ·· t· · ·t···..··· ·
! 50 "~ ! ~ ~ .
!
" 40 ..····..·············..··..···....·········..·1··.. ·········· .. ···.. ··~········· .. ············t···..················

Figure 13.5 ROC Curve Test Data COAD Classift~tion

loor---~----r---~----~--~

30 ·····················t········..··········..·!·······················~···..··················t····..············.

: ..:.::: 1 : :.:.::::::.:.:.1:.:: ::: :1:.:..::..:::..:::: 1 :::: .. I . !O~--~----~--~----~--~o 20 40 60 80 100

!
9() { ······I························~······················.;.

13.4. Global Learning Revisited

Clearly the local methods using raw data are not suitable as the error scarcely

reduces below its initial random level, and fails to converge using raw data. Networks

using PCs do converge, but to a local minimum as the test set gives much poorer results

than the training set.

Classification of Defects Using Local Techniques Page 139

It may be the case that global information is required, and that local techniques can

not produce a solution. Initial results for raw data reported above were quite hopeless, but

this used no data compression, Results from pes of 8 by 8 segments were more

encouraging, but still most images were mis-classified. If one assumes that the improve-

ment in using pes was due to the reduction in data, and that 8 by 8 segments do not

allow classification as they are too local in nature, then it follows that PCs of whole

images may be of utility.

The set of training images was used to produce PCs. The computational load of

obtaining PCs from 2048 dimensional data is too great for the computing resources, how-

ever 32 by 32 segments (ie. half of an image, corresponding roughly to a single lung

field) were able to have their PCs computed. It was found that over 95% of the variance

was in the first 8 PCs. 10 PCs were used to create a training set, and nets of 10 inputs, 8

hidden units and 2 outputs were constructed. The network was fully connected between

all layers. A low learning rate of 0.01 was given. The network performed poorly for per-

fusion data alone, that is the networks did not converge.

Conclusion Page 140

14. CONCLUSION

In this study, a novel approach to classification of pulmonary scintigrams is

presented. Such an approach has not previously been used in pulmonary nuclear images.

14.1. Use of Raw Data

The data, compressed by means of a median filter to standardise for size, did not

allow correct classification of lung scintigrams into PE, COAD and normal images. It did

not even allow detection of the view (PA, LPO, RPO). It did however successfully rule

out artifact regions output from a segmentation procedure. A simple raw data network

could be used therefore to determine which segments are suitable for further analysis. In

lung scintigrams this is not very useful, as the lung fields are going to be in roughly the

same screen area from image to image.

14.2. Data Compression

ANNs can be used to significantly compress raw data. In a comparison with PCA

though, pes were found to give better reconstruction of data than ANN networks on

identical unseen data. No previous experimental study is known comparing PCA with

ANNs.

14.3. ANNs with Principal Components

PE and eOAD could be classified using pes of image segments. The results were

still poor, but a true positive to false positive of 4-5:1 showed the networks were capable

of a limited classification capability. The main problem was that in many images the net-

work did not give any meaningful output. The use of PCs as inputs to an ANN is not

known to have been previously published.

14.4. Parameter Tuning

To speed up the network convergence, parameter tuning of the learning rate and

momentum was tested. The results on scintigram data were not promising. In particular

Conclusion Page 141

epoch learning (updating the network weights after presentation of the whole epoch) did

not seem to be an advance over pattern learning (updating after each pattern presenta-

tion). These results are at variance with previously published papers using "toy problem"

data. Parameter tuning did help in impedance image data, where the learning rate sta-

bilesed to a value that was at least as good as any static learning rate.

14.5. Local Prediction of Subsegments

A prediction network, which was expected to be useful in picking out segments

which were abnormal and suitable for further classification was not found to be useful.

The network acted as an edge detector and smoothing filter, and did not output areas of

known abnormalities. No previous published work is known demonstrating nets acting as

smoothing filters or edge detectors.

14.6. Genetic Algorithms for Optimising Networks

Initially encouraging results for reducing connectivity of networks was found using

a GA approach. Reduced connectivity networks gave similar errors as fully connected,

and ran much faster. They would be less susceptible to local minima and acting as look-

up tables. These results initially suggested a confirmation of previous work using GAs to

design networks in other unrelated areas.

14.7. Reducing Connectivity Randomly

Prediction and Compression networks with connectivities reduced randomly were

found to be as good as those generated by GA techniques. It is likely that in these

moderately large networks the precise topology is less important than the amount of con-

nectivity. Prediction networks were capable of much reduced connectivity, with an

optimal range of connections which was less than full connectivity. Compression net-

works deteriorated with respect to tsse as the connectivity was reduced. Previous pub-

lished work comparing GA designed and randomly generated nets showed improved per-

formance using GAs. The size of the nets used in this study are moderately large, and this

Conclusion Page 142

may have significant bearing on the reported differences.

14.8. Local Classification Techniques

Using areas of scintigrams picked out as containing PE, and an identical number of

non PE segments in other images, classification was attempted using an ANN. This was

found to be completely unsuccessful in PE or COAD.

14.9. Discussion

The classification of lung scintigrams by automatic methods seems to be a non-

trivial problem. Simple ANN techniques using raw data are hopeless, some data

compression seems to be essential. The results of some feature detector, in this study

pes, shows promise in a classification network. The problems of network design may be

addressed by randomly cutting connections until performance deteriorates to an unac-

ceptable level.

The noise added to the data due to the acquisition technique may have caused the

networks to be unable to classify the scintigrams, whereas "clean" data may have

worked. A digital link now exists from the gamma camera to a PC, and this recent facil-

ity should be used in any future projects of this type. However the images were capable

of being diagnosed by a human observer even with this excess noise. Thus data reduced

in noise fed into a network as explored above is unlikely to result in a system which

classifies correctly. Unfortunately the lung scintigram images at the Walsgrave Hospital

are not available via the digital link, as they reside on a separate system, and the experi-

ments detailed in this study can not be repeated with "clean" data at the present.

As a result of this study one may be guardedly optimistic that ANNs using

compressed input data from scintigrams are capable of being classified. The classification

is not as good as human observers at present, and techniques will need to be refined and

developed.

References Page 143

References
1. Anthony D.M, Hines E.L, Taylor D, and Barham J, "An Investigation into the Use

of Colour and Image Processing Techniques in Nuclear Medicine," Medical & Bio-
logical Engineering & Computing, vol. 28, pp. 489-492, 1990.

2. Sagerer G, "Automatic Interpretation of Medical Image Sequences," Pattern
Recognition Letters, vol. 8 NO 2, pp. 87-102, 1988.

3. Hallam N.J, Hopgood A.A, and Woodcock N, "Defect Classification in Welds
Using a Feedforward Network Within a Blackboard System," INNS Int. Neural
Networks Conference, vol. 1, pp. 353-356, Paris, 1990.

4. Schneider P.B, Treves S" Nuclear Medicine in Clinical Practice, Elsevier/North
Holland Biomedical Press, 1978.

5. Todd-Pokropek A.E" "The Comparison of a Black and White and a Color Display:
An Example of the Use of Receiver Operating Characteristic Curves," IEEE Tran-
sactions, vol. MI-2, pp. 19-23, 1983.

6. He L.J, "Computer Aided Diagnoses of Lung Diseases Through Radiographs,"
SPIE Close-Range Photogrammetry Meets Machine Vision, vol. 1395, pp. 1220-
1226, 1990.

7. Burton G.H, Vernon P, and Seed W.A, "An Automated Quantitative Analysis of
Ventilation-Perfusion Lung Scintigrams," Journal o/Nuclear Medicine, vol. 25, pp.
564-570, 1984.

8. Burton G.H, Seed W.A, and Vernon P, "Computer Analysis of Ventilation-
Perfusion Scans for Detection and Assessment 'of Lung Disease," Thorax, vol. 40,
pp. 519-525, 1985.

9. Niemann H, Bunke H, Hofmann I, Sagerer G, Wolf F, and Feistel H, "A
Knowledge Based System for Analysis of Gated Blood Pool Studies," IEEE Tran-
sactions, vol. PAMI-7:3, pp. 246-259, 1985.

10. Barber D.C, and Brown B.H, "Applied Potential Tomography," Physical
Electronics: Scientific Intrumentation, vol. 17, pp. 723-732, 1984.

11. Neaves P, Design and Development 0/ a Complex Impedance Measurement System
for Impedance Tomograhpy (MSc Thesis, Warwick University), 1991.

12. Fogelman I, and Maisey M, An Atlas of Clinical Nuclear Medicine, Martin Dunitz,
London, 1988.

13. Holman J.G, and Cookson M.J, "Expert Systems for Medical Applications," J 0/
Medical Engineering & Technology, vol. 11 NO 4, pp. 151-159, 1987.

14. Josin G, "Neural-Network Heuristics," Byte, vol. OCT, pp. 183-192, 1987.
15. Kohonen T, "An Introduction to Neural Computing," Neural Networks, vol. 1 NO

1, pp. 3-16, 1988.
16. Rumelhart D.E, Hinton G.E, and Williams N, Learning Internal Representations by

Error Propagation (in Parallel Distributed Processing ed Rwnelhart and McLel-
land), 1, pp. 318-362, 1986.

17. Carnevali P, and Patamello S, Neural Networks "Living" in an External Environ-
ment (in Parallel Architectures and Neural Networks, ed. Cianiello E.R, World
Scientific), pp. 77-88, 1988.

18. Touretzky D.S, "Representing Conceptual Structures in a Neural Network," IEEE
Proc. Int. Con/. Neural Network, vol. II, pp. 279-286, San Diego, 1987.

19. Parisi D, and Nolfi S, S~me Mental Abilities that Can be Learned by Neural Net-
works (in Parallel Architectures and Neural Networks, ed. Cianiello E.R, World
Scientific), pp. 177-187, 1988.

References Page 144

20. Voevodsky J, "Plato/Aristotle: A Neural Net Knowledge Processor," IEEE Proc.
Int. Con/. Neural Network, vol. II, pp. 399-407, San Diego, 1987.

21. Buttner W, "Neural Network Research at Siemens," 2nd European Seminar on
Neural Computing, London, 1989.

22. Hebb 0.0, The Organization of Behavior, Wiley, New York, 1949.
23. Rumelhart D.E, Hinton G.B, and Williams N, A General Framework for Parallel

Distributed Processing (in Parallel Distributed Processing ed Rumelhart and
McLelland), 1, pp. 45-76, 1986.

24. McLelland J.G, Rumelhart D.E, Hinton G.E, The Appeal of Parallel Distributed
Processing (in Parallel Distributed Processing ed. Rumelhart and McLelland), 1,
pp. 3-44, 1986.

25. Chan L, Adaptive and Invariant Connectionist Models for Pattern Recognition
(PhD Thesis, cambridge University Engineering Department, 1989),1989.

26. Garey M.R, and Johnson D.S, Computers and Intractability (W.H. Freeman), 1979.
27. Lawler, Combinatorial Optimization: Networks and Matroids, Holt Rinehart and

Winston, 1976.
28. Aarts E, and Korst J, Simulated Annealing and Boltzmann Machines, John Wiley,

1989.
29. Kirkpatrick S, Gelatt C.D, and Vecchi M.P, "Optimisation by Simulated Anneal-

ing," Science, vol. 220, pp. 671-680, 1983.
30. Parberry I, and Schnitfer G, "Relating Boltzmann Machines to Conventional

Models of Computation, ' Neural Networks, vol. 2, pp. 59-67, 1989.
31. Kolonay M.A, and Klimasauskas C.C, An Introduction to Neural Computing, Neu-

ralWare Professional, 1987.
32. Minsky M.L, and Papert S.A, Perceptrons (Expanded edition), MIT Press, 1988.
33. Pao Y, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, 1989.
34. Kohonen T, "Self Organized Formation of Topologically Correct Feature Maps,"

Biological Cybernetics, vol. 43, pp. 59-69, 1982.
35. Ultsch A, Sieman H.P, "Kohonen's Self Organising Feauture Maps for Exploratory

Data Analysis," INNS Int. Neural Networks Conference, vol. 1, pp. 305-308, Paris,
1990.

36. Aleksander I, "Bxploding the Engineering Bottleneck in Neural Computing," 2nd
European Seminar on Neural Computing, pp. 1-7,London, 1989.

37. Stanley J, Introduction to Neural Networks, California Scientific Software, 1989.
38. Guiver J, Networks 2 (In NeuraLWorksManual), pp. 435-499, 1988.
39. Widrow B, and Hoff M.E, "Adaptive Switching Circuits," Inst. Radio Eng.,W.

Electronic Show & Conv., Conv. Record, vol. 4, pp. 96-104, 1960.
40. Cottrell G.W, Munro P, and Zipser 0, "Learning Internal Representations from

Gray-Scale Images: An Example of Extensional Programming," Cognitive Science
Soc. Annual Conference, vol. 9TH PROCS., pp. 461-473, Seattle, 1987.

41. Glover D~E, "An Optical/Electronic Neurocomputer Automated Inspection Sys-
tem," IEEE Proc. Int. Con/. Neural Network ,vol. I, pp. 569-576, San Diego,
1988.

42. Farmer J.D, and Sidorowitch J.J, Exploiting Chaos to Predict the Future and
Reduce Noise (Technical Report, Theoretical Division and Center for Nonlinear
Studies, Los Alamos National Laboratory), pp. 1-54, 1988.

43. Bounds D.G; and Lloyd P.J, "A Multi Layer Perceptron Network for the Diagnosis
of Low Back Pain," IEEE Proc. Int. Con/. Neural Network, pp. 1I-481-489, San
Diego, 1988.

References Page 145

44. Scalia F, Marconi L, Ridella S, Arrigo P, Mansi C, and Mela G.S, "An Example of
Back Propagation: Diagnosis of Dyspepsia," lEE Int. Conference on Neural Net-
works, pp. 332-336, London, 1989.

45. Saito K, and Nakano R, "Medical Diagnostic Expert System Based on PDP
Model," IEEE Proc. Int. Con/. Neural Network ,vol. I, pp. 255-262, San Diego,
1988.

46. Bradshaw G, Fozzard R and Ceci L, A Connectionist Bxpert System that Actually
Works (In Advances in Neural Information Processing Systems 1 ed Touretzku D.S),
pp. 248-255, Moran Kaufman, 1989.

47. Saito K, and Nakano R, "Rule Extraction from Facts and Neural Networks," INNS
Int. Neural Networks Conference, vol. 1, pp. 379-382, Paris, 1990.

48. Gallinari P, Thiria S and Fogelman F, "Multilayer Perceptrons and Data Analysis,"
IEEE Proc.lnt. Con/. Neural Network, vol. I, pp. 391-399, San Diego, 1988.

49. Boone J.M, Sigillito V.G, Shaber G.S, "Neural Networks in Radiology: An Intro-
duction and Evaluation in a Signal Detection Task," Medical Physics, vol. 17:2, pp.
234-241, 1990.

50. McLelland J.L, and Rumelhart D.E, Explorations in Parallel Distributed Process-
ing, MIT Press, 1988.

51. Sochor H, Dorffner G, Porenta G, "Classification of Thallium-201 Scintigrams
Using a Neural Network Trained by Back Propagation," Journal of Nuclear Medi-
cine, vol. JULY, p. 1314, 1988.

52. Porenta G. Dorffner G. Schedlmayer J. Sochor H., "Parallel Distributed Processing
as a Decision Support Approach in the Analysis of Thallium-201 Scintigrams," in
Proc. Computers in Cardiology, pp. 259-262, Washington, 1988.

53. DeLand F.H, and Wagner H.N, Atlas of Nuclear Medicine, Vo12, Lung and Heart,
W.B. Saunders, 1970.

54. Gonzalez R.C, Wintz P, Digital Image Processing, Addison Wesley, 1986.
55. Castleman K.R, Digital Image Processing, Prentice Hall, 1979.
56. Lippmann R.P,IEEE ASSP Magazine, vol. APRIL, 1987.
57. Hinton G.E, "Connectionist Learning Procedures," Artificial Intelligence, vol. 40,

pp. 185-234, 1989.
58. Barber D.C, "The Use of Principal Components in the Quantitative Analysis of

Gamma Camera Dynamic Studies," Physics in Medicine & Biology, vol. 25 NO 2,
pp.283-292,1980.

59. Nijran K.S, and Barber D.C, "Towards Automatic Analysis of Dynamic Radionu-
elide Studies Using Principal-Components Factor Analysis," Physics in Medicine &
Biology, vol. 30 NO 12, pp. 1315-1325,1985.

60. Cottrell G.W, "Face Recognition Using Feature Extraction," INNS Int. Neural Net-
works Conference, vol. 1, pp. 322-325, Paris, 1990.

61. Nakane K, "Image Data Compression using a Neural Network Model," IEEE Proc.
Int. Con/. Neural Networks, vol. IT, pp. 35-41, San Diego, 1989.

62. Sicuranza G.L, and Ramponi G, "Artificial Neural network for Image Compres-
sion," Electronic Letters, vol. 26:7, pp. 477-479, 1990.

63. Sirat J.A, Viala J.R, and Remus C, "Image Compression with Competing Mul-
tilayer Perceptrons," lEE Int. Conference on Neural Networks, pp. 404-408, Lon-
don, 1989. .

64. Naillon M, Theeten J.B, and Krauth W, "Self Organising Hopfield Network
(SOHN) Application to TV Image Compression," lEE Int. Conference on Neural
Networks, London, 1989.

References Page 146

65. Anthony D.M, Hines E.L, Taylor D, and Barham I, "An Investigation into the Use
of Neural Networks for an Expert System in Nuclear Medicine Image Analysis,"
lEE Conference on Image Processing, pp. 338-342, Warwick University, Coventry,
1989.

66. Anthony D, Barham I, Hines E.L, Taylor D, , IJCNN International Joint Confer-
ence on Neural Networks, 1, pp. 339-344, San Diego, 1990.

67. Baldi P, and Hornik K, "Neural Networks and Principal Component Analysis:
Learning from Examples without Local Minima," Neural Networks, vol. 2, pp. 53-
58, 1989.

68. Jolliffe I.T, Principal Component Analysis, Spinger-Verlag, 1986.
69. Oja E, "A Simplified Neuron Model as a Principal Component Analyzer," Journal

of Mathematical Biology, vol. 15, pp. 267-273, 1982.
70. Oja E, "Neural Networks, Principal Components, and Subspaces," Int. Journal of

Neural Systems, vol. 1 NO 1, pp. 61-68, 1989.
71. Anthony D.M, Hines E.L, Taylor D, and Barham I, A Study of Data Compression

using Neural Networks and Principal Component Analysis (lEE Coloquiuum on
Biomedical Applications of Digital Signal Processing), pp. 2/1-2/4, London, 1989.

72. Bourland H, and Kamp Y, "Auto-Association by Multilayer Perceptrons and Singu-
lar Value Decomposition," Biological Cybernetics, vol. 59, pp. 291-294, 1988.

73. Rumelhart D.E, Hinton G.E, and Williams N, "Learning Representations by Back-
Propagating Errors," Nature, vol. 323 NO 9, pp. 533-536, 1986.

74. Moler C, Little I and Bangert S, Pro-Matlab for Sun Workstations. User's Guide,
The MathWorlcsInc, 1987.

75. Chauvin Y, Generalization Performance of Overtrained Back-propagation Net-
works (in Neural Networks ed Almeida L.B and Wellekens CJ, Springer-Verlag),
pp. 46-55, 1987.

76. Chan L, Fallside F, "An Adaptive Training Algorithm for Back Propagation Net-
works," Computer Speech and Language, vol. 2, pp. 205-218,1987.

77. Bajpai A.C, Calus I.M, Fairley I.A, Statistical Methods for Engineers and Scien-
tists, John Wiley, 1978.

78. Leen T.K, "Neural Network Data Encoding and PCA," Neural Network Review,
1990.

79. Hutchinson RA" "Development of an MLP Feature Location Technique Using
Preprocessed Images," INNS Int. Neural Networks Conference, vol. 1, pp. 67-70,
Paris, 1990.

80. Anthony D.M, Hines E.L, Taylor D, and Barham I, "The Use of Neural Networks
to Classify Lung Scintigrams," lASTED Conference on Applied Informatics, pp.
240-242, 1990.

81. Chan L, "Efficacy of Different Learning Algorithms of the Back Propagation Net-
work (in Conference Proc. Computer and Communication Systems, TENCON
90)," Proceedings of the IEEE Region 10, 1990.

82. Yorkey T.I, and Webster I.G, "A Comparison of Impedance Tomographic Recon-
struction Algorithms," Physical Physiology Measurement, vol. 8 SUPPL. A, pp.
55-62, 1987.

83. Murai T, and Kagawa Y, "Electrical Impedance Computed Tomography Based on
a Finite Element Model," IEEE Transactions, vol. BME 32, pp. 177-184, 1985.

84. Tesauro G, "Scaling Relationships in Back-Propagation Learning: Dependence on
Training Set Size," Complex Systems, vol. 1:2, pp. 367-372,1987.

References Page 147

85. VogI T.P, Mangis J.K, Rigler A.K, Zink W.T, and Alkon D.L, "Accelerating the
Convergence of the Back-Propagation Method," Biological Cybernetics, vol. 59,
pp.257-263,1988.

86. Cater J.P, "Successfully Using Peak learning Rates of 10 (and Greater) in Back-
propagation Networks with the Heuristic Learning Algorithm," IEEE Proc. Int.
Cor(. Neural Network, vol. IT,pp. 645-651, San Diego, 1987.

87. Harp S.A, Samad T, and Guha A, "Towards the Genetic Synthesis of Neural Net-
works," Int. Conference on Genetic Algorithms, pp. 360-369, MIT, Cambridge,
Massachusetts,1989.

88. Anthony D.M, Hines E.Lt Taylor Dt and Barham Jt "The Use of Genetic Algo-
rithms to Learn the Most Appropriate Inputs to a Neural Network," lASTED Corf,
Artificial Intelligence App. & Neural Networks, pp. 223-226, Zurich, 1990.

89. Farmer J.D, and Sidorowitch J.1, "Predicting Chaotic Time Series," Physical
Review Letters, vol. 59 NO 8, pp. 845-848, 1987.

90. Anthony 0, Barham J, Hines E.L, Taylor 0, "The Use of Artificial Neural Net-
works in Diagnosis of Lung Scintigrams," Royal Society of Medicine Meeting on
Computers in Medicine, Chester, Great Britain, 1990.

91. De Jong K, "Adaptive System Design: A Genetic Approach," IEEE Transactions,
vol. SMC-10:9, pp. 566-574, 1980.

92. Grenfenstette J.J, A User's Guide to GENESIS (Technical Report CS-84-11, Com-
puter Science Dept., Vanderbilt Univ, Nashville), 1984.

93. Holland J, "Genetic Algorithms and Classifier Systems: Foundations and Future
Directions," Proc. Int. Cor(. on Genetic Algorithms, pp. 82-89, 1987.

94. Anthony D.M, Hines E.L, Taylor 0, and Barham J, "The Use of Neural Networks
in Classifying Lung Scintigrams," INNS Int. Neural Networks Conference, vol. 1,
pp. 71-74, Paris, 1990.

95. Whitley 0, "Applying Genetic Algorithms to Neural Network Learning (in
Proceedings of the 7th Conference of the Society for the Study of Artificial Intelli-
gence and Simulation of Behaviour, ed Cohn A)," Robotics Neural Networks and
Vision, pp. 137-144, 1989.

96. Schaffer J.D, Caruana R.A, and Eshelman L.1, Using Genetic Search to Exploit the
Emergent Behavior of Neural Networks (Technical Report, Phillips Labs, New
York), pp. 1-8, 1989. -

97. Miller G.F, Todd P.M, and Hegde S.U, "Designing Neural Networks Using Genetic
Algorithms," Int. Conference on Genetic Algorithms, pp. 379-384, MIT, Cam-
bridge, Massachusetts, 1989.

98. De Garis H, WALKER, A Genetically Programmed, Time Dependent, Neural Net
Which Teaches a Pair of Sticks to Walk (Technical Report, Center for AI, George
Mason Univ, Virginia), 1989.

99. Dodd N, "Optimisation of Network Structure using Genetic Algorithms," INNS Int.
Neural Networks Conference, vol. 2, pp. 693-696, Paris, 1990.

100. Sub J.Y, van Gucht 0, "Incorporating Heuristic Information into Genetic Search,"
Proc. Int. Cor(. on Genetic Algorithms, pp. 100-107,1987.

101. Baker J.E, "Reducing Bias and Inefficiency in the Selection Algorithm," Proc. Int.
Con/. on Genetic Algorithms, pp. 14-21, 1987.

102. Penfold H.B, Diessel 04F and Bentink M.W, "A Genetic Breeding Algorithm
Which Exhibits Self-Organizing in Neural Networks," lASTED Con/. Artificial
Intelligence ~pp. & Neural Networks, pp. 293-296, Zurich, 1990.

103. Cohoon J.P, Hegde S.U, Martin W.N, and Richards 0, "Puntuated Equilibria: A
Parallel Genetic Algorithm," Proc. Int. Con/. on Genetic Algorithms, pp. 148-154,

References Page 148

1987.
104. De Garis H, Genetic Programming, Modular Neural Evolution for Darwin

Machines (Technical Report, Machine Learning and Inference Laboratory, George
Mason University), 1989.

105. Leen T.K, Rudnick M and Hammerstrom 0, "Hebbian Feature Discovery Improves
Classifier Efficency," IEEE Proc. Int. Con/. Neural Network ,vol. 1, pp. 51-56,
San Diego, 1990.

106. Canning A, Neural Network Models with Partial Connectivity (in Neural Networks
from Models to Applications ed Personnaz L and Dreyfus G), pp. 326-335, 1988.

107. Mozer M.C, and Smolensky P, "Using Relevance to Reduce Network Size
Automatically," Connection Science, vol. 1:1, pp. 3-16, 1989.

108. Darbel N, Jutland F, and Trotin A, "A Neural net Sized by Data," lASTED Co","
Artificial Intelligence App. &: Neural Networks, pp. 45-49, Zurich, 1990.

109. Anthony D.M, "Reducing Connectivity in Compression Networks," Neural Net-
work Review, 1990.

110. Compiani M, Montanari 0, Serra R, and Valastro G, Classifier Systems and Neural
Networks (in Parallel Architectures and Neural Networks, ed. Cianiello E.R, World
Scientific), pp. 105-118, 1988.

111. Swets J.A, "ROC Analysis Applied to the Evaluation of Medical Imaging Tech-
niques," Investigative Radiology, vol. 14 PT 2, pp. 109-121, 1979.

The Use of Artificial Neural Networks in Classifying Lung
Scintigrams Volume 2 (of 2)

Denis Anthony

Thesis Submitted for the Award of PhD inEngineering
Department of Engineezing

Warwick University
February 1991

Supervised by Dr. E. L. Hines

Appendices Page2

APPENDICES

Contents

Appendix 1 Source Code of Image Processing System
Appendix 2 Source Code of MA1LAB Functions Created for Study
Appendix 3 Source Code of C Programs Created for Unix Environment
Appendix 4 Medical Imaging System
Appendix 5 Infonnation Taken from Experts in Nuclear Medicine

Appendix 1 Source Code of Image Processing System
This appendix gives the source for the header files and functions used in the image process-

ing suite. All the code is written in the C language, and is compiled under Borland (trademark)
Turbo C. As it uses extended Turbo C functions and MSOOS calls it will not transfer directly to
another processor environment, and may need modification if another compiler is used.

Appendix 1Source Code of Image Processing System Page2

1* PHD.H */

1* This header file contains defintions for use in all parts of the program. It includes relevant header files.
definitions are given, and all the functions are listed under the file that they reside in, and with the callin!
parameters required. */

#include <dos.h>
#include <stdio.h>
#include <fcntl.h>
#include <stdllb.h>
#include <limits.h>
#include <time.h>
#include <dos.h>
#include <dir.h>
#include <graphics.h>
#include <ctype.h>
#include <string.h>
#include <fcntl.h>

/* #define EVOR 1 */ /* This means 512 by 512 images for Evor Hines */
/* remove above line if images 768 by 288 (Digit fonn) */
#include <graphics.h>
#define DELAY 2000 /* time for delay of messages on screen before moving on */
#define VIDEO Oxl0 .
#define MOUSE 1
#define MSDOS 0x21
#define KEYBOARDCALL Ox16
#define MSYSCALL Ox33
#define MAX_MENU_ITEMS 20
#define MAX_Fll..ES 99
#define MAX_SEGMENTS 255
#define THRESHOLD 10
#define NO_TARGETS 12
#define FROM_Fll..E 0
#define OK 1
#define TRUE 1
#define FALSE 0
#define MAX_MEDIAN_FILTER_SIZE 6
#define PIXEL_BITS 8
#define MONO 0 1* non zero for monochrome, 0 for colour */
#define PIXEL_SIZE 16
#define FILE_BYTE_SIZE 256
#ifdefEVOR
#define XSIZE 512
#define YSIZE 512
#define PC_X_SIZE 640 1* size of cols on PC */
#define PC_Y_SIZE 200 /* 200 size of rows on PC */
#else
#define XSIZE 768 1* 768 Horizontal (row) size of image file */
#define YSIZE 288 1* 288 Vertical (column) size of image file */
#define PC_X_SIZE 640/* size of cols on PC */
#define PC_ Y_SIZE 200 1* 200 size of rows on PC */
#endif .
#define SpecialKey 0
#define LOOK '1'

Appendix J Source Code of Image Processing System Page3

#define ESC Ox1b
#define CR 13
#define Fl Ox3b
#define F2 Ox3c
#define F3 Ox3d
#define F4 Ox3e
#define FS Ox3f
#define F6 Ox40
#define F7 Ox41
#define F8 Ox42
#define F9 Ox43
#define FlO Ox44
#define Fll 0xS4
#define CURS_PLUS Ox2b
#define CURS_MINUS Ox2d
#define CURS_UP Ox48
#define CURS_DOWN ODO
#define CURS_LEFI' Ox4b
#define CURS_RIGHT Ox4d

typedef char FileName[13];
typedef char ShStr[20];
typedef char LongStr[40];

typedef struct {
int left;
int right;
int bottom;
int top;
} corners;

typedef struct {
corners c;
FileName name;
int LowThreshold;
int HighThreshold;
struct palettetype palette;
} imagetype;

typedef struct {
int noitems;
int position;
char *banner;
char *item[MAX_MENU_ITEMS];
char *choice;
} menutype;

typedef struct {
FIleName search,infile,outfile,dfile,tfile;
FileName *RandFiles;
char *buffer;
struct ftblk ftblk,d_ftblk;
int TotFilesUsed,NoRectX,NoRectY,NoFiles;
int width,height;
int NW,UseDFile,done,d_done;

Appendix 1Source Code 0/ Image Processing System Page4

comers c;
} ConvType;

typedef struct {
struct ftblk ftblk,ftblkS;
int done,doneS,index,NoSubs,NoFiles;
long int *fsize;
FtleName *list;
int CharHeight,CharWidth,FilesLine,NoLines;
int FilesPage,back,fore,OptionColour;
int FiNaLen;
void *buffer;
size;
} dirtype;

typedef struct {
FileName search,infile,outfile,tfile;
char *StanBuffer;
int XStan, YStan, width,height,rows,cols,ROW,COL;
int done;
FILE *InFilePtr, *OutFilePtr;
char temp;
long int position;
char *buffer;
struct ftblk ffblk;
comers c;
} stantype;

1* phdconc.c *'
int CtoPDp(ConvType *p);
int SetConvertO;
int SetPhil2Mat(ConvType *p);
int SetCtoMA T(ConvType .p);
int SetCtoNW(ConvType .p);
int SetCtoPDP(ConvType .p);
int SetRanCtoNW(ConvType .p);
int SetNWorPDPtoC(ConvType .p);
int CtoMAT(ConvType .p);
int CtoNW(ConvType *p);
int Phil2Mat(ConvType .p);
int PDPtoC(ConvType *p);

1* phdgraph.c .,
int WritePixel(int screen,int x,int y,int z);
int SetGraphModeO;
int SetGraphModeQ;
int OpenGraphicsO;
int TestGraphicsO;
float TimeSec(struct time *t);
int Pflime(struct.time ·t);
int OoseGraphicsO;
int SetAcquire(int DisplayType);

Appendix 1 Source Code of Image Processing System Page5

int ShowComers(FtleName *infile);
int acquire(int screen,FtleName *infile);
char ReadPixe1(int screen,int x,int y);
int SetOear();
int Write2S6Pixel(int x,int y,int z);
int acquire256(FtleName *infile);
int VgaMode{int mode);
int clear(int screen);
int SetA1temateScreenO;
int SetPage(int screen);
int SetPixelDisplayO;
int PixelDisplay(int screen);
int print(char *s);
int GrW ait(int message);
int SetCopyScreenO;
int CopyScreen{ int screenl, int screen2);
int AcquireCompressedImage{int screen,FileName *infile);
int SaveCompressedImage(int screen,FileN ame *outfile);
int CopyComers(comers*from,comers =to);
int CheckComers(int screen);

1* phdlut.c *'
int VgaRGBO;
int VgaMonoO;
int hot_bodyO;
int SetRedGreenBlueQ;
int RedGreenBlue(int screen);
int SetColourQ;
int Colour(int screen);
int SetMonoO;
int Mono(int screen);

1* phdmask.c *'
int SetFilterMaskO;
int F'tlterMask(FileName *infile,FileName *outfile,int filt_type);

1* phdmed.c *'
int SetMedianO;
int median(int compress,char *suffix,int ESPFile,FileName *infile,int XFiltWidth,int YFiltWidth);

1* phdmouse *'
int InitMouseO;
int OearMouseO;
int MouseButton();
int MouseGet(int *dx,int *dy);
int SetMouse(int x,int y,int z);
int GetMouseCh(int *x,int *y);
int MouseKeyGetO;

1* phdnwoIts *'
int colors(int fore,int back);
int DispMenu(menutype *menu);
int phdnwoIkO;
int ManipulateMenuO;

Appendix 1 Source Code of Image Processing System Page6

int SetDirO;
int dir(char ·spath,FileName ·file,int GetFtle,char ·string);
int GetNextDirScreen(dirtype .p);
int OleckRoom(void ·pointer,char ·function);

1* phdrastc .,
int rasterQ;
int save_rasters(corners ·r,int x_size,int y_size,int x_disp,int y_disp,FileName ·infile);

1* phdrect .,
int SetDrawRect();
int DrawRect(int screen,comers =c);
int GetIncForRect(int .x_increment,int ·y_increment,comers *c,int loop,int key);
int SetSubtractRect();
int MoveRect(int screen,corners =current.comers ·from);
int SUbtractRect(FileName filel,FileName file2,FileName file3,int XDiff,int YDiff);
int ShowSubtractParameter(int screen,int *MinScore,comers *from,comers =current);
int SetSaveRectO;
int SaveRect(int screen,comers ·rect,FtleName =outfile);

1* phdseg.c·'
int SetSegmentO;
int segment(FileName ·infile);
int grow _region(FileName ·infile,FILE ·OutFilePtr);
int LinklPixels(int x,int y,int ·SegNo);
int Link2Pixels(int x,int y);
int save_seg(FtleName *infile,FileName *outfile,comers seg,int *LowThreshold,int *HighThreshold);
int OipScreen(int screen);

1* phdsob·,
int SetSobelO;
int sobel(FileName ·in_file,FileName =outjile);

1* phdstan .,
int SetStanO;
int stanl(stantype .p);
int stan2(stantype *p);
int ExpandFile(FileName *infile,FileName *outfile,int XScale,int YScale,comers *c);

1* phdsub.c *'
int SetSubFileO;

1* phdthre *'
int Set'lbresholdO;
int Get'lbreshold(int screen);

1* phdtum *'int SetTumRoundO;
int TumRoundlmage(FileName *infile,FileName *outfile);
int SetXReflect();
int SetYReflectO;
int SetExpandO; -
int Lef(foRightO;
int UpsideDownO;

Appendix 1 Source Code of Image Processing System Page7

1* phdutil.c *'
int IsOetCharCRO;
int WriteComers(FILE *OutFilePtr,comers *c);
int ReadComers(FILE *InFilePtr,comers *c);
int putsuffix(char *infile,char *suffix);
int SaveFtle(FtleName *outfile);
int contowO;
int file_check(FtleName *infile,FILE *in_file_ptr);
int c1s0;
int waitO;
int exit1(int value);
int dummyt);
int matches(char *s1,char *s2,int n);
int CheckSuffix(char *infile,char *string);

1* PHDNW.H *'
#define MAX_FILES 99
#define MAX_SEGMENTS 99
#define FILE_NAME_LEN 12
#define OKO
#define TRUE 1
#define FALSE 0
#define FILE_BYTE_SIZE 256
#define PC_X_SIZE 256/* 640 size of cols on PC *'
#define PC_Y_SIZE 96/* 200 size of rows on PC *'
#define THRESHOLD 192
#define SHOW_GRAPHICS 1
#define PIXEL_SIZE 16
*define SpecialKey 0
#define LOOK 'I'
*define ESC Ox1b
#define CURS_PLUS Ox2b
#define CURS_MINUS Ox2d
#define CURS_UP Ox48
#define CURS_DOWN Ox50
#define CURS_LEFf Ox4b
#define CURS_RIGHT Ox4d

Appendix 1 Source Code of Image Processing System

1* PHDCONV.C *'
#include <phd.h>
##include <phdext.h>

SetConvertO
{
1* PHDCONV.C *'
1* Converts integer file for entry to NWORKS or PDP *'
1* definitions *'
menutype menu = {

8,
0,
"CONVERSIONS to or from various NETWORK programs",
tIC from NWORKS/POP",
"JIELP",
"MATLAB from C",
"NWORKS from C",
"PDP from C",
"Philip files (NWORKS) to MATLAB",
"Random files to NWORKS from C (Max 100 files)",
"Restore Image from PDP .log file",
" " " ", ,
" " " " " " " " " " " " " " " " " " " ", , , , t , t , , ,

" "
);

ConvType *p;

1* working *'strcpy(menu.choice," "); 1* should not be necessary, just to make sure *'
p = ma1loc(sizeof(ConvType»;
if (CheckRoom(p,"SetConvert"» {

while (strncmpi(menu.choice,"quit" ,4)) (
setgraphmode(O);
OispMenu(menu);
if (lstrncmplunenu.choice.Ic fro" ,4»

SetNWorPOPtoC(p);
else if (!strncmpi(menu.choice, ''help'' ,4»

SetHelp(menu);
else if (!strncmpi(menu.choice, "matl" ,4»

SetCtoMAT(p);
else if (!strncmpi(menu.choice, "nwor" ,4»

SetCtoNW(p);
else if (!strncmpi(menu.choice,"pdp ",4»

SetCtoPOP(p);
else if (!strncmpi(menu.choice, "phil" ,4»

SetPbi12Mat(p);
else if (!strncmpi(menu.choice,"rand",4»

SetRanCtoNW{p);
else if (!strncmpi(menu.choice,"rest",4»

POPtoC(p);
}

}
free(p);
setgraplupode(O);
retum(O);

Page8

Appendix 1Source Code of Image Processing System Page9

}

int SetPhil2Mat(p)
ConvType .p;
{r- definitions .,
int c;

r-womng·,
while «c = dir(spath,p->infile,"File to transfer to MATLAB"» 1=ESC & c 1=CR).,
if (c 1=ESC) {

printf("\nOutput file (will be appended to if already exists\n");
scanf(" %s", p->outfile);
p->done = findfirst(p->search,p->ftblk,O);
while (Ip->done) (

strcpy(p->infile,p->ftblk.ff_name);
p->done = findnext(p->ftblk);
Phil2Mat(p);
}

}
}

int SetCtoMA T(P)
ConvType .p;
{
r- definitions .,
int c;

r- woddng·'
while «c = dir(spath,p->search,"File to tranferto MATLAB"» 1=ESC & c != CR).,
if (c 1=ESC) (

strepytp-oinfile.p-offblk.ffname);
printf("\nOutput file (will be appended to if already exists\n");
scanf(" %s", p->outfile);
p->done = findfirst(p->search,p->ftblk,O);
while (Ip->done) (

CtoMAT(P);
p->done = findnext(p->ftblk);
}

}
free(p);
}

int SetCtoNW(p)
ConvType .p;
{
r- definitions .,
int c;

r- working .,

Appendix 1 Source Code 0/ Image Processing System Page 10

while «c = dir(spath,p->search,"File to tranfer to NWORKS"» != ESC & c!= CR).,
if (c != ESC) (

p->done = findfirst(p->search.p->ftblk,O);
printf(''\np->Use Desired Output file (0 no, 1 yes)\n");
scanf(" %d", p->UseDFlle);
if (p->UseDFile) {

while «c = dir(spath,p->search."Desired output file for NWOIts"» != ESC & c != CR).,
if(c I=ESC)

p->UseDFile = 0;

else
strcpy(p->dfile," ");

printf(''\nFile for output (appended to if already existing)");
scanf(" %s", p->outfile);

if (p->UseDFile)
p->d_done = findfirst(p->search,p->d_ftblk,O);

else
p->d_done = 0;

while (!p->done & !p->d_done) (
strcpy(p->infile,p->ftblk.ff_name);
if (p->UseDFile) (

strcpy(p->dfile,p->d_ftblk.ff_name);
CtoNW(P);
p->d_done = findnext(p->d_ftblk);
}

else
CtoNW(p);

p->done = findnext(p->ftblk);
}

}
}

int SetCtoPDP(p)
ConvType *p;
{
1* definitions *'
int c;

1*wotking *'while «c = dir(spath,p->search,"Input file to PDP"» != ESC & c != CR)
,

if (c != ESC) (
p->done = findfirst(p->search,p->ftblk,O);
printf("Use a desired output file, (default yes)");
p->UseDFile = IsGetCharCRO;
if (p->UseDFile) {

while «c = dir(spath,p->search,"Desired output for PDP"» != ESC & c != CR)
,

if(c=ESC)
p->UseDFile = 0;

else

Appendix 1Source Code of Image Processing System Page 11

p->d_done = findfirst(p->search,p->d_ftblk,O);
}

else
p->d_done = 0;

printf(~ile for output (appended to if already existing)");
scanf(" %s", p->outfile);
while (Ip->done & Ip->d_done) {

strcpy(p->infile,p->ffblk.ff_name);
if (p->UseDFtle) {

strcpy(p->dfile,p->d_ftb1k.ff_name);
CtoPDP(p);
p->d_done = findnext(p->d_ffblk);
}

else
CtoPDP(p);

p->done = findnext(p->ftblk);
}

}

int SetRanCtoNW(p)
ConvType *p;
{
'* definitions *'
int c.i;

1* working *'
while «e = dir(spath,p->seareh,"Random Input file to PDP"» 1=ESC & c 1=CR).,
if(e I=ESC) {

printf(''\nFile for output (in transfer from C appended to if already existing)\n");
scanf(" %s", p->outfile);
p->done = findfirst(p->search,p->ffblk,O);
p->NoFiles = 0;
while (Ip->done) {

p->done = findnext(p->ftblk);
p->NoFiles++;
}

p->RandFiles = malloc(sizeof(FileName) * (p->NoFiles + 1»;
if (CheekRoom(p->RandFiles,"SetRandCtoNW")) {

p->done = findfirst(p->search,p->ffblk,O);
i= 0;
while (Ip->done) {

strncpy(p->RandFiles[i],p->ffblk.ff_name, 12);
i++;
p->done = findnext(p->ffblk);
}

printf(''\nNumber of Files to choose randomly from is %d",p->NoFiles + 1);
printf("\nHow many files required It);
printf("\n(Unlimited number as files can be used more than once\n");
scanf(" %d", p->TotFilesUsed);
printf(''\nUse Same File as Desired Output (default yes)\n");
scanf(" %d", p->UseDFile);
randomizet);

Appendix 1 Source Code of Image Processing System Page 12

for (i = O;i < p->TotFllesUsed;i++) (
strcpy{p->infile,p->RandFiles[random{p->NoFiles)]);
printf(''\nFlle %s" ,p->infile);
if (p->UseDFile)

CtoNW(p);
else

CtoNW(P);
}

}
}

free{p->RandFlles);
}

int SetNWorPDPtoC(p)
ConvType *p;
{
1* definitions *'
int c;

'* working *'
while «c = dir(spath.p->infile,"C image file to tranfer into PDP, NO Wildcard allowed"»
!=ESC&c !=CR).,
if(c != ESC) (

printf("\nFile for output \n");
scanf(" %s",p->outftle);
printf(''\nThis routine recovers an image file rasterised for entry to NWORKS/PDP");
printf{''\nIt is assumed that non-overlapping regular rectangles have heed used");
printf(''\nThe following propts find out the size and number of thse rectangles");
printf(''\n Width of rectangles used\n");
scanf(" %d", p->width);
printf(''\nHeight of rectangles used\n");
scanf(" %d", p->height);
printf(''\nNumber of rectangles used inX axis\n");
scanf(" %d", p->NoRectX);
printf(''\nNumber of rectangles used inY axis\n");
scanf(" %d", p->NoRectY);
p-obuffer = malloc(sizeof(char) * p->width * p->height * p->NoRectX * p->NoRecty);
if (CheckRoom{p->buffer,"SetNWorPDPtoC"» {

printf(''\nNWorks or PDP used as source (1 forNWORKS (.nni files) 0 for PDP (.pat files»\
scanf(" %d", p->NW);
if (p->NW)

NWtoC(p);
else

PDPtoC{p);
}.

}
free{p->buffer);
}

int CtoMAT(p)
ConvType *p;

Appendix 1Source Code of Image Processing System

{
1* definitions *'
int i;
FILE *InFilePtr, *OutFilePtr;
inte;
int x,y;

1* workings *'printf(''\nConversion of file for entry to MATLAB software H);
printf("\nOpening file %s for inputs, %s for outputs" ,p->infile,p->outfile);
InFtlePtr = fopen(p->infile,"rb");
if (file_eheck(p->infile,InFilePtr) == 0)

retum(O);
OutFilePtr = fopen(p->outfile,"at");
if (file_check(p->outfile,OutFilePtr) = 0)

retum(O);
ReadComers(InFilePtr,p->e);
for (y = p->e.bottom;y < p->e.top;y++) {

for (x = p->eJeft;x< p->e.right;x++) {
if «e = getc(lnFilePtr» = EOF)

e=O;
fprintf(OutFilePtr," %d" ,e);
}

}
fprintf(OutFilePtr, ''\n ");
felose(InFilePtr);
felose(OutFilePtr);
retum(O);
}

int CtoNW(p)
ConvType *p;
{
1* definitions *'
int i;
FILE *InFilePtr, *OutFilePtr;
int e;
int x,y;
float temp;
int AllSame;

Page 13

..
1* worltings *'
printf(''\nConverting file %s for entry to NWORKS" ,p->infile);
InFtlePtr = fopen(p->infile,"rb");
file_eheek(p->infile,InFilePtr);
OutFilePtr = fopen(p->outfile,"at");
file_cheek(p->outfile,OutFilePtr);
printf(''\nOpened file inputs %s desired outputs %s" ,p->infile,p->dfile);
fprintf(OutFtlePtr,''\n* BEGIN%s" ,p->outfile);
ReadComers(InFilePtr,p->e);
fprintf(OutFilePtr,''\n* CORNERS %d %d %d %d",p->eJeft,p->e.right,p->e.bottom,p->e.top);
fprintf(OutFtlePtr, ''\ni ");
i= 0;

Appendix 1 Source Code of Image Processing System Page 14

for (y = p->e.bottom;y < p->e.top;y++) {
for (x = p->eleft;x < p->e.right;x++) {

if «c = getc(InFilePtr» = BOF)
c=O;

if(i >= 8) (
fprintf(OutFUePtr, ''\n'');
i=0;
}

temp = (float) c , (float) FILE_BYTE_SIZE;
fprlntf(OutFilePtr," %O.3f' ,temp);
i++;
}

}
fprintf(OutFilePtr,''\o* END INPUT %s",p->infile);
if (p->dfile[O] != ' ') (

fprlntf(OutFilePtr, ''\n* START DESIRED OUTPUT %s" ,p->dfile);
fprintf(OutFilePtr, ''\od ");
fclose(lnFilePtr);
InFilePtr = fopen(p->dfile,"rb");
file_check(p->dfile,InFilePtr);
ReadComers(InFllePtr,p->e);
for (y = p->e.bottom;y < p->e.top;y++) {

for (x = p->e.left;x < p->e.right;x++) {
if «c = getc(InFilePtr» = BOF)

c=O;
if(i >= 8) (

fprintf(OutFilePtr, ''\n ");
i=O;
}

temp = (float) c , (float) FILE_BYTE_SIZE;
fprintf(OutFilePtr," %O.3f' ,temp);
i++;
}

}
fprintf(OutFilePtr,''\o* END DESIRED OUTPUT %s",p->dfile);
}

fclose(InFilePtr);
fclose(OutFilePtr);
retum(O);
}

int CtoPDP(p)
ConvType *p;
{
1* definitions *'
int i;
FILE *InFilePtr, *OutFilePtr;
int c;
int x,y;
float temp;
ShStr patt_name;
FileName s;

1* worldngs *'

Appendix 1Source Code of Image Processing System

printf("'flConversion of file for entry to PDP software ");
printf("'nOpening file %s for inputs, %s for desired outputs II,p->infile,p->dfile);
InFtlePtr = fopen(p->infile,"rb");
if (file_check(p->infile,InFilePtr) = 0)

return(O);
OutFilePtr = fopen(p->outfile,"at");
if (file_check(p->outfile,OutFilePtr) = 0)

return(O);
strcpy(patt_name,"p"); ,. to make sure name does not begin with a number *1
strcat(patt_name,p->infile);
ReadComers(InFilePtr,p->c);
itoa(p->c.left,s, 10);
strcat(patt_name,IL");
strcat(patt_name,s);
strcat(patt_name,IR");
itoa(p->c.right,s, 10);
strcat(patt_name,s);
strcat(patt_name,"B ");
itoa(p->c.bottom,s, 10);
strcat(patt_name,s);
strcat(patt name "T")'_ , ,
itoa(p->c.top,s,10);
strcat(patt_name,s);
fprintf(OutFilePtr,I%s",patt_name);
i= 0;
for (y = p->c.bottom;y < p->c.top;y++) {

for (x = p->c.left;x < p->c.right;x++) {
if «c = getc(1nFilePtr» =EOF)

c= 0;
if(i >= 10) (

fprintf(OutFilePtr, '\nil);
i= 0;
}

temp = (float) cl (float) FILE_BYTE_SIZE;
fprintf(OutFilePtr," %O.3f',temp);
i++; -
}

}
i= 0;
if (p->dfile[O] != ' ') (

fprintf(OutFilePtr, '\nil);
fclose(lnFilePtr);
lnfilePtr = fopen(p->dfile,"rb");
if (file_check(p->dfile,InFilePtr» (

ReadComers(InFilePtr,p->c);
for(y = p->C.bottom;y < p->c.top;y++) {

for (x = p->c.left;x < p->c.right;x++) {
if «c = getc(InFtlePtr» = EOF)

c=O;
if(i >= 10) (

fprintf(OutFilePtr, '\11");
i=0;
}

temp = (float) cl (float) FILE_BYTE_SIZE;
fprintf(OutFilePtr, II %0.3f' ,temp);

Page 15

Appendix 1Source Code of Image Processing System Page 16

i++;
}

}
}

}
fprlntf(OutFIlePtr, ~");
fclose(lnFi1ePtr);
fclose(OutFilePtr);
retum(O);
}

NWtoC(p)
ConvType *p;
{
'* definitions *'
Fll..E *InFilePtr,*OutFilePtr;
float temp;
int x,y;
char s[17]; '* itoa only returns max 17 *'
int ij;
int c;

1* worldngs *'
printf(~Convening file %s for entry to C program" ,p->infile);
InFilePtr = fopen(p->infile,"rb");
if (file_check(p->infile,InFilePtr) =0)

retum(O);
OutFilePtr = fopen(p->outfile,"wb");
if (file_check(p->outfile,OutFilePtr) = 0)

retum(O);
p->c.1eft = O;p->e.bottom = 0;
p->e.right = p->width • p->NoRectX;
p->e.top = p->height • p->NoRectY;
WriteComers(OutFilePtr,p->c);
x =O;y=O;
for (i = O;i< p->NoRectX;i++) {

for (j= O~< p->NoRectY;j++) {
while (fscanf(lnFilePtr,"%s" .s) != EOF
& (stmcmp(s,"r",l») 1* next r *'.,
for (y = j * p->height;y < (j + 1) * p->height;y++) {

for (x = i * p->width;x < (i + 1) * p->width;x++) {
fscanf(InFilePtr, "%s" ,s);
c = (int) (atof(s) * FILE_BYTE_SIZE);
if(c < 0)

c= 0;
p->buffer[(y * p->width * p->NoRectX) + x] = (char) c;
}

}
}

}
for (y = O;y< p->NoRectY * p->height;y++) {

for (x = O;x< p->NoRectX * p->width;x++) {

Appendix 1 Source Code of Image Processing System Page 17

c = p->buffer[y * p->NoRectX * p->width + x];
putc(c,OutFilePtr);
}

}
for (y = O;y < p->NoRectY * p->height;y++) (

printf(''\n'');
for (x = O;x < p->NoRectX * p->width;x++) (

printf("%d" ,p->buffer[y * p->NoRectX * p->width + x]);
}

}
wait();
fclose(InFilePtr);
fclose(OutFilePtr);
}

int Phil2Mat(p)
ConvType *p;
(
1* definitions *'
FILE *InFilePtr, *OutFilePtr;
int c;
char s[20];

1*workings *'
printf("\nConverting Philip file %s to %s for entry to MATI..AB" ,p->infile,p->outfile);
InFtlePtr = fopen(p->infile,"m");
file_check(p->infile,InFilePtr);
OutFilePtr = fopen(p->outfile," at");
file_check(p->outfile,OutFilePtr);
while (fscanf(InFilePtr,"%s",s) != EOF) (

if (sunCIDp(s,"i",l) = 0) {
while «fscanf(InFilePtr,"%s" ,s) != EOF)
& (atof(s) > 0»

fprintf(OutFilePtr," %s" ,s);
fprintf(OutFilePtr, "\n");
}

}
fclose(InFilePtr);
fclose(OutFilePtr);
}

int PDPtoC(p)
ConvType *p;
{
1* definitions *'
FILE *InFilePtr, *OutFilePtr;
char temp[80],s[5];
int ij,k,c;
float f;
int result = 0;

Appendix 1Source Code 0/ Image Processing System

1* workings *'while «c = dir(spath.p->infile,''PDP to C image file"» != ESC & c != CR).,
if(c !=ESC)

retum(O);
printf("\nOutput file (Numbers from 0will be added to this, you may put' ."');
printf("\nat end of name if an extension of numbers is wanted");
scanf(" %s", p->tfile);
if «InFllePU' = fopen(p->infile,"rb"» =NULL) {

printf(''\nFailed to open input file %s" ,p->infile);
exit(O);
}

temp[O) = ' ';
while (temp[O)!= 'p')

fscanf(InFilePtr, "%s" ,temp);
i=0;
while (result!= BOp) {

fclose(OutFilePtr);
if (temp[O) != 'p') (

fclose(InFilePtr);
retum(1);
}

strcpy(p->outfile,p->tfile);
itoa(i,s,36);
strcat(p->outfile,s);
if «OutFilePtr = fopen(p->outfile,"wb"» =NULL) {

printf(''\nFailed to open output file %s",p->outfile);
waitO;
retum(O);
}

if (temp[O) != 'p')
retum(O);

j =0;
while (temp[j] 1= '.')

j++;
while (temp[j] 1= 'L')

j++;
k=O;
while (temp[j] 1= 'R')

s[k++) = temp[++j);
s[k) =' ';
p->e.left = atoi(s);
k;:O;
while (temp[j] 1= 'B ')

s[k++) = temp[++j);
s[k) =' ':
p->e.right = atoi(s);
k=O;
while (temp[j] != 'T')

s[k++) = temp[++j);
s[k) =' ';
p->e.bottom = atoi(s);
k=O;
while (temp[j] 1=' ')

s[k++) = temp[++j);

Page 18

Appendix 1Source Code of Image Processing System Page 19

s[k] =' ';
poe.top = atoi(s);
WriteComers(OutFllePtr,p->e);
temp[O] =' ';
while (temp[O] != 'p') (

fscanf(InFilePtr,"%s" ,temp);
if (temp[O] = '0' IItemp[O] = 'I') (

f = atof(temp);
f= f* 255.0;
c = (int) f;
putc(c,OutFllePtr);
}

}
i++;
}

fclose(InFilePtr);
fclose(OutFilePtr);
}

Appendix 1 Source Code 0/ Image Processing System Page20

~ PHDDIR.C *'
*include <phd.h>
*include <phdexth>

int colors(fore,back)
int fore,back;
(
setcolor(fore);
setbkcolor(back);
}

int DispMenu(menu)
menutype *menu;
(
~ definitions *'
int size,i;
int cj;
int XMargin,back;
int CharWidth,CharHeight;
signed int x,Y;
void *buffer;
int YOffset = 2;
int OptionColour = 3;

r working *'
SetPage(O);
CharHeight = textheight(menu->banner);
CharWidth = textwidth(" A");
clear(O);
XMargin = strlen(menu->banner);
for (i = O;i <menu->noitems;i++)

if (strlen(menu->item[iD > XMargin)
XMargin = strlen(menu->item[i]);

XMargin *= CharWidth;
XMargin = (getmaxxO - XMargin) ,2;
size = imagesize(XMargin,O,getmaxxO - 2 * XMargin,CharHeight - 1);
buffer = malloc(size);
if (CheckRoom(buffer,"dir buffer"» (

setwritemode(XOR_PUT);
setfillstyle(SOLID_FILL,OptionColour);
bar(XMargin,O,getmaxxO - XMargin,CharHeight - 1);
floodfill(XMargin,O,OptionColour);
getimage(XMargin,O,getmaxxO - XMargin,CharHeight -1,buffer);
outtextxy(XMargin,O,menu->banner);
for (i = O;i<menu->noitems;i++)

outtextxy(XMargin,(i + YOffset) *CharHeight,menu->item[i]);
if (!mouse & mouse)

outtextxy(XMargin,(menu->noitems + YOffset + 1) * CharHeight,
"Make choice using cursor keys and RETURN, ESC to quit");

..'....

else
outtextxy(XMargin,(menu->noitems + YOffset + 1) * CharHeight,
"MaKe choice using mouse and right button, left button to quit");

c = ' '; 1* anything but 13 (return) *'
putimage(XMargin,(menu->position + YOffset) * CharHeight,buffer,XOR_PUT);

Appendix} Source Code 0/ Image Processing System Page2}

stmcpy(menu->choice,menu->item [menu->positionl ,4);
if (mouse)

OearMouseO;
while (c != CR & c != ESC) (

c = GetMouseCh(x,y);
if (c= CURS_UP II c= CURS_DOWN) (

putimage(XMargin,(menu->position + YOffset) * CharHeight,buffer,XOR_PUT);
if (c= CURS_UP)

menu->position--;
else if (c=CURS_DOWN)

menu->position++;
if (menu->position < 0)

menu->position = menu->noitems - 1;
else if (menu->position >= menu->noitems)

menu->position = 0;
putimage(XMargin,(menu->position + YOffset) * CharHeight,buffer,XOR_PUT);
stmcpy(menu->choice,menu->item[menu->position],4);
}

}
clearviewportO;
if(c =ESC) (

strcpy(menu->choice," ");
if(mouse) (

OearMouse();
outtextxy(O,o,"Press Right Mouse key or ESC again to quit (Left to continue) ");
while «c = GetMouseCh(x,y» != CR & c != ESC)

}
else {

outtextxy(O,O,"PressESC key again to quit (any other key to continue) ");
c = getchO;
}

if(c=ESC)
strcpy(menu->choice,"quit");

}
}

free(buffer);
retum(I);
}

int SetDirO
(
char s[13]; 1* not used, provided for compatibility in calling dir *'
dir(spath.s," ");
}

1* DIR *'int dir(spath,file.string)
FileName *fi1e;1* used by SetAcquire *'
char *spath, *string;
{
I*definitions *' .
dirtype *p;
int c,i;

Appendix 1 Source Code of Image Processing System Page22

FileName temp;
signed int x,y,dx,dy;
1* although x,y are usually non negative, negative values indicate out of range and are therefore used */

1* worldng *'p = malloc(sizeof(dirtype»;
if (CheckRoom(p,"dir pIt)= 0)

retum(O);
p-> FiNaLen = sizeof(FlleName) + 7;
p->OlarHeight = textheight("h");
p->CharWidth = textwidth("h"); ,. any old letter will do *'
p->FilesLine = getmaxxO / (p->CharWidth * p->FiNaLen);
p->NoLines = 20;
p->size = imagesize(O,O,p->CharWidth * p->FiNaLen,p->CharHeight);
p->FilesPage = p->FilesLine * p->NoLines;
p->buffer =malloc(p->size);
p->list = malloc(sizeof(FileName) * p->FllesPage);
p->fsize = malloc(sizeof(long int) * p->FilesPage);
SetPage(O); .
clear(O);
c= 0;
setwritemode(XOR_PUT);
p->OptionColour = 3;
setfillstyle(SOLID_FILL,p->OptionColour);
bar(O,O,p->CharWidth * p->FiNaLen,p->CharHeight);
ftoodfill(O,O,p->OptionColour);
getimage(O,O,p->CharWidth * p->FiNaLen,p->CharHeight - 1,p->buffer);
strcpy(p->list[O), "NEXT");
strcpy(p->list[1),"WILD");
while (c= 0 & CheckRoom(p->buffer,"dirp->buffer") &
CheckRoom(p->list,"dir p->list") & CheckRoom(p->fsize, "dir p->fsize"» (

clear(O);
p->doneS = findfirst("*" ,p->ftblkS,22);
p->done = findfirst(spath,p->ftblk,O);
c=O;
while «!p->done II!p->doneS) & c != ESC & c != CR) (

clear(O);
outtextxy(O,(p->NoLines + 2) * p->OlarHeight,

"ESC - Quit, RET - choose, space - next screen, w - wild card");
outtextxy(O,(p->NoLines + 4) * p->CharHeight,string);
GetNextDirScreen(p);
for (i = O;i< p->NoFiles;i++) {

x = «i % p->FilesPage) % p->FllesLine) * p->CharWidth * p->FiNaLen;
y = «i % p->FilesPage) 'p->FllesLine) * p->CharHeight;
strcpy(temp,p->list[i));
if (i < p->NoSubs & i > 1)

strcat(temp,"f');
outtextxy(x,y ,temp);
if (i < p->NoSubs)

strcpy(temp," ");
else

ltoa(p-> fsize[i) ,temp, I0);
- outtextxy(x + 13 * p->CharWidth,y,temp);
}

putimage(O,O,p->buffer,XOR_PUT);

Appendix I Source Code 0/ Image Processing System Page23

c=x=y=O;
while (c != CR & c 1=ESC) (

c = GetMouseCh(dx,dy);
p->index = (y 'p->CharHeight) • p->FllesLine;
p->index += x] (p->CharWidth • p->FtNaLen);
if (c= CURS_UP II c= CURS_DOWN

II c= CURS_LEFf II c= CURS_RIGHT) (
putimage(x,y,p->buffer,XOR_PlIT);
if (c= CURS_DOWN)

Y += p->CharHeight;
else if (c= CURS_UP)

y -= p->CharHeight;
else if (c= CURS_LEFT)

x -= p->CharWidth • p->FiNaLen;
else if (c= CURS_RIGHT)

x += p->CharWidth • p->FiNaLen;
if (x >= p->CharWidth· p->FiNaLen· p->FilesLine) {

x e D;
y += p->CharHeight;
}

else if (x <0) {
x = p->CharWidth • p->FiNaLen • (p->FilesLine - 1);
y -= p->CharHeight;
}

if(y <0)
y=O;

if (y >= p->CharHeight • (p->NoLines + 2»
y=O;

putimage(x,y,p->buffer,XOR_PlIT);
} 1* end if CURSOR keys .,

}
if (p->index =0 & c != ESC)

c=O;
} 1* end while (c != CR & c != ESC) .,

if (c != ESC) {
if (p->index = 1) (

clear(O);
printf(''\nWild card chosen, give wild specification\n");
scanf(" %s", file);
}

else if (p->index < p->NoSubs) (
chdir(p->list[p->index));
c= 0;
}

else
strcpy(file,p->list[p->index));

}

} 1* end CheckRoom .,
free(p->buffer);
free(p->fsize);
free(p->list);
free(p);
clear(O);
return(c);

Appendix 1 Source Code of Image Processing System Page24

}

int GetNextDirScreen{p)
dirtype *p;
{
int i= 2;
while (1p->doneS & i< p->FilesPage) {

if (p->ftblkS.ff_attrib 16) {
strcpy(p->list[i],p->ftblkS.ff_name);
i++;
}

p->doneS = findnext(p->ffblkS);
} 1* end if !p->doneS */

p->NoSubs = i;
while (!p->done & i < p->FilesPage) {

strcpy(p->list[i] ,p-> ffblk.ff_name);
p->fsize[i] = (p->ffblk.ff_fsize);
p->done = findnext(p->ffblk);
i++;
} 1* end if !p->done */

p->NoFiles = i;
}

Appendix 1Source Code 0/ Image Processing System Page25

1* PHDGRAPH.C .,
#include <phd.h>
#include <phdext.h>

1*WRITEPIXEL .,
int WritePixel(screen,x,y,z)
int screen,x,y,z;
(
setactivepage(screen);
putpixel(x,y,z);
}

1* SET_GRAPH_MODE .,
int SetGrapbModeO
(
1* definitions .,
int max_col,max_x,max_y;
struct viewporttype view;

1* working .,
max_col = (int) getmaxcolorQ;
max_x = (int) getmaxxt);
max_y = (int) getmaxyt);
getviewsettings(view);
printf("\nleft %d bottom %d right %d top %d clip
%d" ,view .left, view .top,view .right, view .bottom, view .clip);
printf(''\nNumber of colours %d" ,max_col);
printf("\nMax x %d" ,max_x);
printf(''\nMax y %d",max_y);
printf(''\nCurrently in mode %d" ,getgrapbmode();
printf(''\nMax mode %d" ,getmaxmode(»;
printf(''\nChange to mode\n");
scanf(" %d", grapbmode);
setgrapbmode(grapbmode);
}

I*OP~_GRAPHICS·· .
• Open and initialize image processing hardware •.. ,
1* Purpose - to set up graphics environment for pluto or mM

compatible.

Method - If the pluto board is used then the board is initialised
and low resolution is chosen, and a partition is allocated. If
mM compatible is used then the colours are re-allocated to give
a red-green-blue display which is easier to view with than
the default..,

int OpenGraphicsO
{
int grapbmode;
int erroreode;
int graphdriver;
int c.i;

Appendix I Source Code 0/ Image Processing System Page26

1* worldngs ./

graphdriver = DETECf; 1* detect and initialize graphix ./
initgraph(graphdriver, graphmode, ".H);
errorcode = graphresultO;
if (errorcode 1=gtOk) {

printf("graphics error: %s'n" ,grapherrormsg(errorcode), 1);
delay(2000);
retum(O);
}

setgraphmode(O);
setviewport(0,0,639,199, I); 1*modes 0 and 1 are not recognised properly

and give wrong viewport settings, hence need to set manulally "'/
for (i = O;i < 4;i++) {

im[i).c.1eft = im[i).c.bottom = 0;
im[i).c.right = getmaxxt);
im[i).c.top = getmaxyt);
im[i).LowThreshold = 0;
im[i).HighThreshold = getmaxcolor();
getpalette(im[i).palette);
}

cor.1eft = O;cor.bottom = 0;
cor. right = getmaxxO;cor.top = getmaxy();
retum(O);
}

1*WRITEPIXEL "'/
int writepixel(x,y,z)
int x,y,z;
{
union REGS regs;
regs.h.dh = regs.h.ch = 0;
regs.h.d1 = x;
regs.h.c1 = y;
regs.h.al = z;
regs.h.ah = OXOC;
int86(Ox 10,regs,regs);
}

1* CLOSE_GRAPHICS "'''''''''''''.'''''''''.'''''''''''''''''''''.'''''''''''''''''''''''''''''''''''' ...''''''''' "'''''''''''''''''''''''''''''''''''''''''''''''"
'" Oose image processing hardware '"
"''''''''''~'''''''''''''''... ''' '''''''''''''''''''''''''''''' ...'''...''''''''''''.''''''''''''''''''''''''''' ''''''''''''''''''.'''"''''''''''''''''''' "'''''''''''''''''''''''''''''''/

/'" Purpose - Oose down graphics environment

Method - Pluto requires no specific close-down. mM compatibles
are returned to text display.

"'/

int OoseGraphicsO
{
restorecrtmode();-
retum(O);
}

Appendix 1Source Code 0/ Image Processing System Page27

,. SET_ACQUIRE ••
• get an image file for diplay •.. ,
,. Purpose - to find out which image is to be displayed

Method - The file name, scrren to display on are entered and
acquire is executed ..,

int SetAcquire(DisplayType)
int DisplayType; ,. 0 - normal file, 1- 256 file,2 - show comers only·'
{
,. definitions .,
struct ffblk ffblk;
FileName infile;
int c,done;
int screen;

r worldng .,
while «c = dir(spath,infile,"Choose File for Display"» != CR & c != ESC).,
if (! DisplayType & c != ESC) {

printf(''\nFile Chosen %s'n",infile);
printf(''\nOn page (screen) ?-nIt);
scanf(" %d", screen);
SetPage(screen);
}

else if (DisplayType == 2)
clear(O);

if (done = findfirst(infile,ffblk,O» {
printf("\nFue %s not found" ,infile);
c = DelayOrKeyRead(DEL TIME);
}

while (!done) {
if (DisplayType = 1)

acquire256(ffblk.ff_name)!
else if (!DisplayType)

acquire(screen,ffblk.ff_name);
else ShowComers(ffblk.ff_name);
done = findnext(ffblk);
if (!done)

c = DelayOrKeyRead(DEL TIME);
if(c=ESC)

done = 1;
}

if (DisplayType = 1)
setgraphmode(graphmode);

else if (DisplayType = 2)
wait();

SetPage(O);
retum(O);
}

int ShowComers(infile)
FileName ·infile;

Appendix 1 Source Code of Image Processing System

{
comerse;
Fll...E *InFtlePtr;
InFtlePtr = fopen(infile,"rb");
if (lfile_check(infile,InFilePtr»

retum(O);
SetPage(O);
if (ReadComers(InFilePtr,e» {

printf(''\nFtle %13s Left %3d",infile,eleft);
printf(" Right %3d" ,e.right);
printf(" Bottom %3d" ,e.bottom);
printf(" Top %3d" ,e.top);
printf(" Width %3d Height %3d" ,e.right - e.lefi,e.top - e.bottom);
}

felose(InFilePtr);
retum(OK);
}

int acquire256(infile)
FileName *infile;
{
1* definitions *'
Fll...E *InFilePtr;
int x,y;
ehar far *buffer;

1* workings *'
buffer = MK_FP(OxAOOO,O);
InFilePtr = fopen(infile,"rb");
if (! file_eheck(infile,InFilePtr»

retum(O);
strcpy(im[O) .name,infile);
if (ReadComers(InFilePtr,im[O].e» {

VgaMode(OxI3);
for (y = im[O).e.bottom;y < im[O).e.top;y++) {

for (x = im[O).e.left;x < im[O).e.right;x++)
buffer(y lie 320 + x] = getc(InFilePtr);

}
GrWait(O);
VgaMonoO;
GrWait(O);
VgaRGBO;
GrWait(O);
cor.left = im[Ol.e.left;cor.right = im[Ol.e.right;
cor.bottom = im[Ol.e.bottom;eor.top = im[O).e.top;
}

felose(InFilePtr);
free(buffer);
retum(OK);
}

int Write256Pixel(x,y,z)
int x,y,z;
{

Page28

Appendix 1 Source Code of Image Processing System Page29

union REGS regs;
regs.ab = OXOC;
regs.al = z;
regs.cx= x;
regs.dx= y;
int86(VIDEO,regs,regs);
}

int VgaMode(mode)
intmode;
(
union REGS regs;
regs.ab= 0;
regs.al = mode;
int86(VIDEO,regs,regs);
}

~ACQUIRE·I
int acquire(screen,infile)
FileName ·infile;
int screen;
(
~ definitions ·1
FILE ·InFilePtr;
int x,y;
int scale;

~ workings ·1
InFilePtr = fopen(infile,"rb");
if (!file_check(infile,InFilePtr»

reium(O);
strcpy(im[screen].name,infile);
if (ReadComers(InFilePtr,im[screen].c» (

scale = FILE_BYTE_SIZE 1PIXEL_SIZE;
SetPage(screen); ,
for (y = im(screen].c.bottom;y < im(screen].c.top;y++)

for (x = im[screen].c.1eft;x < im[screen].c.right;x++)
putpixel(x,y ,getc(InFilePtr)/scale);

}
fclose(InFilePtr);
retum(OK);
}

~ READ PIXEL ** **.**** .
• Read a single pixel from image memory location x,y ••••••* *••***** *••**•••••**.** ***** ·**·***·* ***·***1

char ReadPixel(screen,x,y)
int screen,x,y;
(
setactivepage(screen);
retum(getpixel(x,y»;

Appendix I Source Code 0/ Image Processing System Page30

}

int SetClear()
{
int page;
printf(~ge to clear");
scanf(" %<1", page);
clear(page);
retum(O);
}

1* CLEAR*/
int clear(screen)
int screen;
{
SetPage(screen);
clearviewport();
SetPage(O);
}

int SetAltemateScreenO
{
1* definitions */
int screen;
int i;
int dx,dy;

1* worldng */
SetPage(O);
clear(O);
screen= 0;

for (i = O;i < 4;i++)
printf(''\nScreen %d image %s last pasted in" .i,im[i].name);

if(mouse) {
printf(''\nUse left button to advance page, right to escape, or

number for screen");
while «i = GetMouseCh(dx,dy» != ESC) {

if(i =CR) {
screen = ++screen;
screen %=4;
SetPage(screen);
if (mouse)

OearMouseO;
}

else if (i >= '0' & i<= '4')
SetPage(i - '0');

}
}

else {

Appendix I Source Code of Image Processing System Page 31

printf(''\nPress number 0-3 for screen required, or ESCAPE to
return");

while «i = getchQ) 1=ESC) (
screen = i - '0';
SetPage(screen % 4);
}

}
SetPage(O);
return(O);
}

I'" SETPAGE "'I
int SetPage(screen)
int screen;
(
setactivepage(screen);
setvisualpage(screen);
setallpalette(im[screen].palette);
retum(O);
}

I'" SET_PIXEL_DISPLAY "'I
int SetPixelDisplayO
(
I'" definitions "'I
int screen;

I'" worldngs "'I
printf(''\nScreen to look aM");
scanf(" %d", screen);
PixelDisplay(screen);
}

int PixelDisplay(screen)
int screen;
(
I'" definitions "'I
int x,y;
intdx = 0;
intdy= 0;
int x_increment,y _increment;
unsigned char c;

I'" worldng "'I
setwritemode(XOR_PUT);
SetPage(screen);
x=y=2;
y_increment = I ;x_increment = 1;
c = ' ';
while (c != ESC) (

c = GttMouseCh(dx,dy);

Appendix I Source Code 0/ Image Processing System Page32

if «c > '0') & (c <= '9'»
x_increment = y_increment = c - '0';

if (c = CURS_LEFI' II c = CURS_RIGHT II c = CURS_UP
II c = CURS_DOWN II c=CR) (

rectangle(x - t,y - t,x + t,y + t);
x+=dx;
y+=dy;

if(dx=O&dy=O) (
switch(c) {

case CURS_LEFr :
x -= x_increment;;
break;

case CURS_RIGHT :
x += x_increment;
break;

case CURS_UP :
y -= y_increment; 1* screen goes

from 0 at top to PC_Y_SIZE at base ""
break;

case CURS_DOWN :
y += Y_increment;
break;

}
}

if(c == CR) (
SetPage(O);
printf(''\n VaIue of pixel at x %d y %d is

%d",x,y,ReadPixel(screen,x,y»;
waitO;
SetPage(screen);
break;
}

if (x < 0 II x > getmaxxO)
x=O;

if (y < 0 II Y> getmaxyO)
y=O;
rectangle(x - t,y - t,x + t,y + t);
}

}
SetPage(O);
}

int print(s)
char "'s;
(
I'" definitions ""
static int y;
int CharSize;

1* workings ""
CharSize = textheight(s);
if «y + 0) '" CharSize > getmaxyO)

y=O;

Appendix 1Source Code of Image Processing System

else
y++;

outtextxy(O,y· OlarSize,s);
moveto(O,(y + I) • OlarSize);
}

int GrWait(message)
int message;
{
if (message)

ouuext("Press a key to continue");
while (I getchO)

}

int SetCopyScreenO
{
int screen 1,screen2;
printf('~Screen to copy\n");
scanf(" %d", screenl);
printf('~reen to copy to 'n");
scanf(" %d", screen2);
CopyScreen(screen 1,screen2);
SetPage(O);
}

int CopyScreen(screen 1,screen2)
int screen 1,screen2;
{
1* definitions .,
int x,y;
void ·buffer;
int size;

1*worldng *'
SetPage(screenl);
size:
lmagesize(im[screenl].c.left,im[screenl].c.bottom,im[screenl].c.right,im[scre
enl].c.top);
buffer: malloc(size);
if (CheckRoom(buffer,"CopyScreen") = NULL) {

for (x: lm[screenl].c.left;x < im[screenl].c.right;x++)
for(y: im[screenl].c.bottom;y < im[screenl].c.top;y++)

WritePixel(screen2,x,y ,ReadPixel(screenl ,x,y»;
}

else {

getimage(im[screenl].c.left,im[screenl].c.bottom,im[screenl].c.right,im[scree
nl].c.top,buffer);

lm[screen2].cleft: im[screenl].c.lefi;
im[screen2].c.right: im[screenl].c.right;
im[screen2].c.bottom : im[screenl].c.bottom;
im[screen2).c.top: im[screenl].c.top;
strcpy(im[screen2].name,im[screenl].name);
Se&age(screen2);

Page33

Appendix 1 Source Code of Image Processing System

putimage(im[screen2].cJeft,im[screen2].c.bottom,buffer,COPY _PUT);
free(buffer);
}

}

AcquireCompressedImage(screen,infile)
int screen;
FileName ·infile·, ,
{
1* definitions .,
FILE ·bit_file_ptr;
int size;
void ·buffer;

1* workings .,
size=
imagesize(im[screen].c.left,im[screen].c.bottom,im[screen].c.right,im[screen]
buffer = malloc(size);
if (CheckRoom(buffer," AcquireCompressedImage") =NULL)

retum(O);
bit_file_ptr = fopen(infile,"rb");
if (bit_file_ptr = NULL)

retum(O);
read(bit_file_ptr,buffer,size);
putimage(im[screen].c.left,im[screen].c.bottom,buffer,COPY_PUT);
free(buffer);
fclose(bit_file_ptr);
retum(l);
}

SaveCompressedImage(screen,outfile)
int screen;
FileName ·outfile;
{
1* definitions .,
FILE ·bit_file_ptr;
struct ftblk ftblk;
void ·buffer;
int size;

1* workings .,
if (! findfirst(outftle,ffblk,O»

retum(O); 1* it already exists·'
size=
imagesize(im[screen].c.left,im[screen].c.bottom,im[screen].c.right,im[screen)
buffer = malloc(size);
if (CheckRoom(buffer,"SaveCompressedImage") =NULL)

retum(O);
bit_file_ptr = fopen(outftle,"wb");
if (bit_file_ptr != NULL) (

getimage(im[screen).c.left,im[screen).c.bottom,im[screen).c.right,im[screen).
c.top,buffer);

Page34

Appendix 1 Source Code of Image Processing System Page35

write(bit_fileJ)tr,buffer .size);
}

fc1ose(bit_fileJ)tr);
free(buffer);
retum(l);
}

CopyComers(from,to)
comers *from, *to;
{
to->left = from->left;
to->right = from-oright;
to-e-bottom = from->bottom;
to-e-top = from-stop;
}

CheckComers(screen)
int screen;
{
SetPage(O);
if (im[screen].c.left < 0 IIim(screen].c.bottom < 0) {

printf(''\nNegative screen values encountered");
retum(O);
}

if (im[screen].c.left >= im[screen].c.right IIim(screen].c.bottom >=
im(screen].c.top) {

printf(''\nLeft >= right OR bottom >= top ");
retum(O);
}

if (im[screen].c.right > getmaxxO IIim(screen].c.top > getmaxyO) (
printf(''\nOutside Screen Range");
retum(O);
}

SetPage(screen);
retum(l);
}

Appendix 1Source Code of Image Processing System Page36

1* PHDHELP.C *'
#include <phd.b>
#include <phdext.h>

int SetHelp(menu)
menutype *menu;
{
1* definitions *'
int position;
LongStr banner;

1* workings *'
position = menu->position; '* store main menu defaults *'
strcpy(menu->choice," It);
clear(O);
printf(''\nEntering Help on %s ,choose menu item for help");
wait();
if (lstmcmpitmenu-obarmer.vmain'vl)

MainHelp(menu);
else if (!stmcmpi(menu->banner,"conv" ,4»

ConvHelp(menu);
else if (!stmcmpi(menu->banner,"rast" ,4»

RastHelp(menu);
strcpy(menu->choice, "help");
menu->position = position;
wait();
retum(l);
}

int MainHelp(menu)
menutype *menu;
{
printf(''\nHelp on Main Menu Not Written yet");
}

int ConvHelp(menu)
menutype *menu;
{
printf(''\nHelp on Cony Menu Not Written yet");
retum(O);
while (stmcmptrmenu-ochoice.vquit'vt) {

setgraphmode(O);
DispMenu(menu);
}

}

int RastHelp(menu)
menutype *menu;
{
printf(''\nHelp on Raster Menu Not Written yet");
}

Appendix 1Source Code 0/ Image Processing System Page37

,. PHDLUT.C *'
#include <pbd.h>
#include <phdexth>

intVgaRGBO
{
,. sets up vga red-green-blue LUT *'
,. definitions *'
union REGS regs;
int red,green,blue,i;

,. workings *'
regs.ax = Oxl0l0;" call for VGA pallete *'
for (i = O;i< 256;i++) {

if (i < 6411i >= 196) {
red = i ,4;
green = i ,4;
blue = i,4;
}

else if(i >= 64 & i < 128) {
red = (96 - i);
green = (i - 32);
blue= 0;
}

else if(i >= 128 & i < 196) {
red=O;
green = (160 - i);
blue = (i - 96);
}

regs.bx = i; 1* colour number *'
regs.dh = red; ,. red component *'
regs.cl = blue; ,. blue component *'
regs.ch = green; 1* green component *'
int86(VIDEO,regs,regs);
}

}

int VgaMonoO
{
,. sets up vga mono LUT *'
r definitions *'
union REGS in,out;
int i;

'* workings *'in.ax = OxlO1O; 1* call for VGA pallete *'
for (i = O;i< 256;i++) (

in.bx = i; ,. colour number *'
in.dh = i ,4; ,. red component *'
in.cl = i ,4; 1* blue component *'
in.ch = i ,4; ,. green component *'
int86(VIDEO,in,out);
}

Appendix 1 Source Code of Image Processing System Page38

}

/*COLOUR·,
int Colour(screen)
intscreen;
{
/* worldngs .,
im[screen].paleue.colors[O] = EGA_BLACK;
im[screen].palette.colors[l] = EGA_BLUE;
im[screen].palette.colors[2] = EGA_GREEN;
im[screen].palette.colors[3] = EGA_CYAN;
im[screen].palette.colors[4) = EGA_RED;
im[screen).palette.colors[5) =EGA_MAGENTA;
im[screen).palette.colors[6) = EGA_LIGHTGRA Y;
im[screen].palette.colors[7) = EGA_BROWN;
im[screen).palette.colors[8) =EGA_DARKGRA Y;
im[screen).palette.colors[9) = EGA_LIGHTBLUE;
im[screen).palette.colors[lO) =EGA_LIGHTGREEN;
im[screen).palette.colors[ll) = EGA_LIGHTCY AN;
im[screen).palette.colors[12) = EGA_LIGHTRED;
im[screen].palette.colors[13) = EGA_LIGHTMAGENT A;
im[screen).palette.colors[14) = EGA_YELLOW;
im[screen).palette.colors[15) = EGA_WHITE;
setallpalette(lm[screen).palette);
retum(O);
}

/* HOT_BODY •••
• set LUT to hot body scale •.. ,
int hot_bodyO
{
/*

Purpose - To set look-up table to hot body scale

Method - Pluto routines are used to set individual pixel values
from 0 to maximum value in such a way that the display does from
hot to cold colours, black is cold, red throughrange and finally
white for hottest.,

printf(''\nHot body not written");
retum(O);
}

/* SETREDGREENBLUE .,
int SetRedGreenBlueO
{
int screen;

/* worldng .,
printf(''\nScreen to set to RedGreenBlue\n");

Appendix 1Source Code 0/ Image Processing System Page39

scanf(" %d". screen);
RedGreenBlue(screen);
}

1* RED_GREEN_BLUE •••
• set LUT to red green blue colour scale •...•.. /
int RedGreenBlue(screen)
intscreen;
{
1*

Purpose - Toset a Look-up table so that the red-green-blue colour
system is employed.

Method - Low pixel values are set to red with increasing ammounts
of green added as the value increases toa mid-point of green and then
blue is added till the highest pixel value is pure blue ../

1* workings ./
im[screen].palette.colors[O] = EGA_BLACK;
im[screen].palette.colors[1] = EGA_DARKGRA Y;
im[screen].palette.colors[2] = EGA_BROWN;
im[screen].palette.colors[3] = EGA_RED;
im[screen].palette.colors[4] = EGA_UGHTRED;
im[screen].palette.colors[5] = EGA_MAGENT A;
im[screen].palette.colors(6) = EGA_UGHTMAGENTA;
im[screen).palette.colors[7) = EGA_GREEN;
im[screen].palette.colors(8) = EGA_UGHTOREEN;
im[screen].palette.colors[9] = EGA_CY AN;
im[screen].palette.colors[10] = EGA_UGlITCY AN;
im[screen].palette.colors[ll] = EGA_BLUE;
im[screen].palette.colors[12] = EGA_UGlITBLUE;
im[screen].palette.colors[13] = EGA_ YELLOW;
im[screen].palette.colors[14] = EGA_LIGHTORA Y;
im[screen).palette.colors[15] = EGA_ WHITE;
setallpalette(im[screen). palette);
retum(O);
}

1* SETCOLOUR·/
int SetColour()
(
int screen;

1* worldng ./
printf(''\nScreen to set to default colourn");
scanf(" %d". screen);
Colour(screen);
}

1* SETMONO ./
int SetMonoO

Appendix 1Source Code 0/ Image Processing System Page40

(
int screen;

,. woIting ./
printf(~reen to set to mono\n");
scanf(" %d", screen);
Mono(screen);
}

I*MO~O •••
• sets up display to monochrome •.. /

intMono(screen)
int screen;
{
,. definitions ./
int colour,i;

,. woIting·/
for (i = O;i< getmaxcolor();i++) {

if (i< getmaxcolor() /4)
im[screen].palette.colors[i] = EGA_BLACK;

else if (i < getmaxcolor() /2)
im[screen].palette.colors[i] =EGA_DARKORAY;

else if (i< (3 • getmaxcolor() /4)
im[screen].palette.colors[i] = EOA_UOHTORA Y;

else
im[screen].palette.colors[i] = EGA_WHITE;

setallpalette(im[screen].palette);
}

retum(O);
}

Appendix 1Source Code of Image Processing System

1* PHDMASK..C *'
#include <phd.b>
~ude<phdexth>

int SetFilterMaskO
(
1*

Purpose - to allow one of several spatial masks to be used to
filter an image

Method - H Pluto board used then screens are used to
tranfer transformed pixels. Original image on one screen is sent
after filtering to another screen. This allows faster processing
and portions of a screen may be processed using the square routine.
H no pluto board then files are used as input and output.

*'
1* definitions *'
int choice;
FileName infile,outfile;

1* workings *'
printf(''\nl. Binomial\n2. Sharpen mask\n3. Blurring mask \n4. Laplacian\n");
scanf(" %d", choice);
printf("File fromH);
scanf(" %s", infile);
printf("File to");
scanf(" %s", outfile);
FilterMask(infile,outfile,choice);
}

int FilterMask(infile,outfile,filt_type)
int filt_type;
FileName *infile,*outfile;
{
1*

Purpose - To use a spatial mask on a file or screen and produce
output on a file or screen

Method - A matrix is chosen dependant upon the choice variable.
The elements of that matrix are copied into a work.matrix.
The pixels input from a screen or file are operated upon by this
matrix, and the size of the matrix is used as a divisor to
normalise the resulting pixel.

*'
1* definitions *'
FILE *InFilePtr, *OutFilePtr;
int buffer_size,x,y,iJ,k;
int buffer[3][XSIZE];
int out_buffer[XSIZE + 1];
int matrix[3][3];
int kersharp[] = {-I, -1, -1, 1*Kernel for sharpening *'

Page41

Appendix 1Source Code 0/ Image Processing System

-1. 9. -1.
-1. -1. -I.};

int kerlapla[] = {-I. -1. -1.
-1. 8. -1.
-1. -1. -I.};

1*Kernel for laplacian *'
int kerblur[] = { 1. 1. 1.

1. 1. 1.
1. 1. I.};

int kerbin[] = { 1.2. 1.
2.4.2.
1.2. I.};

1* Kernel for binomial *'
1* workings *'
InFilePtr = fopen(infile."rb");
file_check(infile.lnFilePtr);
OutFilePtr = fopen(outfile."wb");
file_check(outfile.OutFilePtr);
for (i = O;i < 3;i++) {

for (j = O~ < 3;j++) {
if (filt_type = 1)
matrix[i]Ul = kerbin[i * 3 + j];
else if (filt_type = 2)

matrix[i]fj] = kersharp[i * 3 + j];
else if (filt_type = 3)

matrix[i]fj] = kerblur[i * 3 + j];
else if (filt_type = 4)

matrix[i]Ul = kerlapla[i * 3 + j];
else (

printf(''\nIncorrect option mask routine filter_mask");
exit(O);
}

}
}

buffer_size = 0;
for (i = O;i < 3;i++) {

printf(''\n'');
for (j = O;j < 3;j++) {

buffer_size += matrix[i]Ul;
printf("%d ",matrix[i]fj]);
}

}
printf(''\nBuffer size %d" .buffer_size);

for (x = O;x < XSlZE;x++)
out_buffer[x] = 0;

for (y = O;y <= YSlZE;y++) {
for (x = O;x <= XSIZE;x++)

buffer[y % 3][x] = getc(InFilePtr);
for (x = corJeft;x <= cor. right; x++) {

out_buffer[x + 1] = 0;
for (j = O;j < 3;j++)

for (k = O;k < 3;k++)

Page42

Appendix 1Source Code of Image Processing System Page43

out_buffer[x + 1] += buffer[(y + j) % 3][x + k] ...matrixjkljj];
out_buffer[x + 1] /= buffer_size;

}
for (x = cor.left;x <= cor.right;x++)

putc(out_buffer[x] ,OutFllePtr);
if (y % (ySIZE /10) = 0)

printf(''\nSpacial mask %f percent finished",
(float) 100 ...(y - cor.bottom) / (cor.top - cor.bouomj);

}
fc1ose(lnFilePtr);
fc1ose(OutFilePtr);
}

Appendix 1Source Code of Image Processing System Page44

r PHDMED.C .,
#include <phd.h>
#include <phdexth>

int SetMedianO
{
f+ definitions .,
FileName infile,outfile;
FD..E ·inFilePtr, ·OutFilePtr;
struct ffblk ffblk.;
int done;
char suffix[5];
int XFiltWidth, YFiltWidth;
int ESPFtle,c,compress;

f+ worldngs .,
XFiltWidth = 1 + XSlZE' PC_X_SIZE;
YFtltWidth = 1+ YSlZE' PC_Y _SIZE;
printf(''\n1bis utility works on .ESP files or image files with no");
printf(''\nleft, right, bottom or top parameters in file");
printf(''\nand converts it into a file with these parameters");
printf(''\nOR on images with comers defined in first 8 bytes of file");
printf(''\nIt assumes that files with .ESP as suffix are raw images with");
printf(''\nNO comers defined at start of file, and that any other suffix");
printf(''\nmeans file HAS comers in first 8 bytes of file");
printf("\nSuffix to use to store median filtered file \n");
scanf(" %s", suffix);
printf(''\nMedian filter defaults to width %d by height %d",XFiltWidth,YFiltWidth);
if (c = IsGetCharCRQ) {

printf(''\nX Filter Width Size\n");
scanf(" %d", XFiltWidth);
printf(''\n Y Filter Height Size\n");
scanf(" %d", YFiltWidth);
}

priotf(''\nCompression will reduce image by %d by %d",XFiltWidth,YFiltWidth);
priotf(''\nCompress image (RETURN for yes, any other key for oo)\n");
while (! (c = MouseKeyGet(»)

if(c=CR)
compress = 1;

else
compress = 0;

printf(''\DResultant image will be in image format, with first 8 bytes comers of image");
while «c = dir(spatb.infile,"Median Filtering"» != ESC & c != CR).,
if (c != ESC) {

done = findfirst(infile,ffblk.,O);
while (!done) {

ESPFile = CheckSuffix(ffblk.ff_name," .ESP");
if (! CheckSuffix(ffblk..ff_name,suffix»

median(compress,suffix,ESPFile,ffblk.ff_name,xFiltWidth, YFiltWidth);
else {

printf(''\nFile not filtered as %s would be overwritten" ,ffhlk.ff_name);
DelayOrKeyRead(DEL TIME);
}

Appendix 1 Source Code of Image Processing System

done = findnext(ftblk);
}

}
}

1*MEDIAN •• ,
1*
Applies median filter ofXFiltWidth by YFUtWidth pixels and
returns the median value. This gives one pixel for each rectangle
pixels entered, cf median() which moves the filter mask. over each pixel in
turn. Median2 in contrast moves the mask from one rectangle
to the next saving one
pixel each time. This has the effect of compressing the image by a factor
of XFiltWidth times YFiltWidth as well as smoothing it..,
int median(compress,suffix,ESPFile,infile,XFiltWidth,YFiltWidth)
char ·suffix;
int compress,ESPFile;
FileName ·infile;
int XFiltWidth,YFiltWidth;
(

1* definitions .,
int xsize,ysize;
FileName outfile;
int x_screen,y _screen;
int DO_members,middle_member;
int iJ,y2,x,y,yl,c;
char ·buffer, ·med_buffer;
FILE ·InFilePtr, ·OutFilePtr;
int XInc,YInc;
long int position;

1* workings .,

strcpy(outfile,infile);
putsuffix(outfile,suffix);
printf(''\nMedian filtering file %s and results in %s" ,infile,outfile);
DO_members =XFiltWidth • YFtltWidth;
middle_member = no_members ,2;
InFilePtr. = fopen(infile,"rb");
if (file_check(infile,InFilePtr) == 0)

return(O);
OutFilePtr = fopen(outfile,"wb");
if (file_check(outfile,OutFilePtr) = 0)

return(O);
if (! ESPFile) (

ReadComers(InFilePtr,cor);
xsize = cor. right - cor.left;
ysize = cor.top - cor.bottom;
}

else {
xsize = XSIZE;

Page45

Appendix 1Source Code 0/ Image Processing System

ysize = YSIZE;
}

buffer = malloc(sizeof(char) * YFiltWidth * xsize);
if (CbeckRoom(buffer,"median") =NULL)

retum(O);
med_buffer = malloc(sizeof(char) * YFiltWidth * XFiltWidth);
if (CbeckRoom(med_buffer,"median") = NULL)

retum(O);
corleft = cor. bottom = 0;
if (compress) {

cor. right = xsize I XFiltWidth;
cor.top = ysize I YFiltWidth;
}

else {
cor. right = xsize;
cor.top = ysize;
}

WriteComers(OutFilePtr.cor);
if (compress) {

YInc =YFiltWidth;
XInc = XFiltWidth;
}

else
YInc = XInc = 1;

for (y =O;y < ysize;y += YInc) {
if (ESPFile) (

position = (long) (sizeof(char) * y);
position *= (long) xsize;
}

else (
position = (long) (sizeof(char) * y);
position. *= (long) xsize;
position += (long) (sizeof(int) * 4);
}

if (fseek(InFilePtr,position,SEEK;_SET) != 0) (
printf(''\nFile pointer to %8 failed" ,infile);
retum(O);
}

for (i =O;i< YFiltWidth;i++) {
for (j = O;j< xsize;j++) (

c = getc(InFilePtr);
if(c !=EOF)

buffer[i * xsize + j) = c;
else

buffer[i * xsize + j) = buffer[(i - 1) * xsize + j);
}

}
for (x = O;x< xsize;x += XInc) {

for (i = O;i<XFiltWidth;i++) {
for (j = O~<YFiltWidth;j++)

med_buffer[i * XFiltWidth + j) =
buffer(j * xsize + x + i];

, }
qsort{med_buffer ,DO_members,sizeof(char),strcmp);
putc(med_buffer[middle_member) ,00tFilePtr);

Page46

Appendix 1 Source Code of Image Processing System Page47

}
printf("*");

}
free(buffer);
free(med_buffer);
fclose(lnFilePtr);
fclose(OutFilePtr);
retum(l);
}

Appendix 1Source Code of Image Processing System Page48

1* PHDMOUSE.C ""
#include <phd.h>
*include <phdexLh>

testO
{
int x,y.z,dx,dy;
z=64;
while (1) {

printf("x %d y %d z %d",x,y.z);
OrWait(O);
if(x= 1)
x = 32000;

else
x= 1;

if(y= 1)
y = 32000;

else y = 1;
SetMouse(x,y,z);
PixelDisplay(1);
}

1* INITMOUSE ""
int InitMouseO
{
1* definitions ""
union REGS in.out;

'''' worldngs ""
in.x.ax = Ox3500 +MSYSCALL;
int86(MSDOS,in,out);
in.x.ax =0;
int86(MSYSCALL,in,out);
if (out.x.ax != 0)

retum(1);
else

retum(O);
}

int OearMouseO
{ .
if (mouse)

while (MouseButton() != 0) '''' to clear button ""

}

1*MOUSEBUTION ""
int Mouse Button()
{
1* definitions "" _
union REGS in.out;

1* worldngs ""

Appendix 1 Source Code of Image Processing System Page49

in.h.ah = 0;
in.h.al = S;
in.h.bl = in.h.bh = 0;
int86(MSYSCALL,in,out);
retum(outh.al);
}

1* MOUSEGET *'
int MouseGet(dx,dy)
int *dx,*dy; 1* relative movement in x and y respectively *'
{
1* definitions *'
union REGS in,out;

1* workings *'
in.x.ax = 11;
int86(MSYSCALL,in,out);
*dx = outx.cx;
*dy = out.x.dx;
}

int SetMouse(x,y,z)
int x,y,z;
{
1* definitions *'
union REGS in;

1* workings *'
in.x.ax = Ox1a;
in.x.bx = x;
in.x.cx = y;
in.x.dx = z;
int86(MSYSCALL,in,in);
}

int GetMouseCh(x,y)
signed int *x, *y;
1* returns a char from mouse, rather in same way as getchO does *'
{
1* definitions *'
intc=O;
signed int dx,dy;
int XSen = 20;
int YSen = 10;

1* workings *'
while (c= 0) {

if(! mouse)
c = MouseKeyGetO;

else {
if «c = MouseButton()) = 1)

Appendix 1 Source Code of Image Processing System Page 50

c=CR;
else if (c=2)

c=ESC;
else (

MouseGet(dx,dy);
*x += dx;*y += dy;
if (*x < -XSen)

c = CURS_LEFr;
else if (*x > xSen)

c = CURS_RIGHT;
else if (*y > YSen)

c = CURS_DOWN;
else if (*y < -YSen)

c= CURS_UP;
if (abs(*x) > XSen)

*x= 0;
else if (abs(*y) > YSen)

*y=O;
}

if (! c)
c = MouseKeyGetO;

}
retum(c);
}

int MouseKeyGetO
(
1* definitions *'
union REGS in;
intc=O;

1* worldngs *'
in.h.al = 0;
in.h.ab= 1;
int86(KEYBOARDCALL,in,in);
if (in.h.alll (in.h.ab > 1» (

in.h.ab = 0;
int86(KEYBOARDCALL,in,in);
if (in.h.al =0)

c= in.h.ab;
else

c = in.h.al;
}

retum(c);
}

Appendix J Source Code 0/ Image Processing System Page5J

1* PHDNWORK.C ./
##include <phd.b>
##include <phdnworlc.h>

mainO
{
int stat;
strcpy(ScratchFile,"qqq.qqq"); 1* will be used as temporary file only·'
strcpy(spath, "•.• ");
mouse = InitMouseO;
phdnworkf);
strcpy(spath," cenis")'
chdir(spath); ,
printf("'nPROORAM ENDED");
}

1* PHDNWORK .
• main calling program for nuclear medicine neural network •
• image processing system. •
• Copyright D.M. Anthony for Warwick University. ••••••••••••**** *•••**••••*••••*••••***~••**•••••••*.**•••**.*******,
/. Purpose - to give menu and sub-menus of nuclear imaging neural network .

program and proceed to subroutines.

Method - Graphics station is opened and then an infinite for-loop
displays the main menu, conditional if statements determine which
sub-routine to execute ..,

int phdnworkO
{
1* definitions */
int stat;
ShStr s;
int i;
menutype menu = {

19,
0,
"MAIN MENU",
"256 colours file display",
"Alternate screen",
"Acquire image",
"Oear a screen",
"Colour",
"Convert Files to/from NWORKS, PDP, MATLAB ",
"Copy Screen",
"Corners of image show (left,right,bottom,top)",
"Graphics Mode Change",
"HELP",
"Manipulate image directly (cut,negative,subtract etc)",
"Median filter /median filter compression",

Appendix I Source Code 0/ Image Processing System Page 52

"Monochrome" ,
"Raster Sean (or any regular segmentation of image",
"Red Green Blue Display" ,
"Search Criteria for Files Change",
"Segment Image",
"Sobel Fllter",
"Standardise a file or files",
" "
);

,. wolkings .,
OpenGraphicsO;
for (i =O;i< 4;i++)

RedGreenBlue(i);
SetPage(O);
clearviewport();
outtextxy(O,O,"MainNuclear Medicine Neural Network Image Processing Menu");
outtextxy(0,10,"Copyright D.M. Anthony for Warwick University 1988");
#ifdefEVOR

outtextxy(O,20,"Version for 512 by 512 (original) images");
#else

outtextxy(0,20,"Version for 768 by 288 (original digit) images");
#endif
if (mouse)

outtextxy(0,30,"Mouse installed, use mouse OR cursor keys in menus and routines");
else

outtextxy(O,30,"Mouse not installed, use cursor keys in menus and routines");
outtextxy(O,40,"ESC key returns from any menu to previous menu, RETURN to choose item");
outtextxy(0,50, "Press a key to continue");
while (! GetMouseCh(i,i»

,
cor.left = O;cor.right = 8;cor.bottom = O;cor.top= 8;
,. setup to some initial value .,
while (stmcmphmenu.choice.rquit'vl) (

DispMenu(menu);
if (!stmcmpi(menu.choice,"256 tl,4»

SetAcquire(1);
else if (Istmcmpi(menu.choice,"alte" ,4»

SeWtemateScreen();
else if (!stmcmpi(menu.choice,"acqu" ,4»

SetAcquire(O);
else if (!stmcmpi(menu.choice, "clea",4»

SetClearO;
else if (!stmcmpi(menu.choice,"colo" .4»

SetColourQ;
else if (!stmcmpi(menu.choice,"conv" ,4»

SetConvertO;
else if (!stmcmpi(menu.choice, "copy",4»

SetCopyScreenO;
else if (!stmcmpi(menu.choice,"com" ,4»

SetAcquire(2);
else if (!stmcmpi(menu.choice,"grap" ,4»

SetGraphModeO;
else if (!stmcmpi(menu.choice,"help",4»

SetHelp(menu);

Appendix 1Source Code of Image Processing System

else if (lstmcmpi(menu.choice, "mani",4»
ManipulateMenuO;

else if (!stmcmpi(menu.choice, "medi",4»
SetMedianO;

else if (!stmcmpi(menu.choice,"mono",4»
SetMonoO;

else if (!stmcmpi(menu.choice, "mous",4»
test();

else if (!stmcmpi(menu.choice, "rast",4»
raster();

else if (!stmcmpi(menu.choice,"red ",4»
SetRedGreenBlueO;

else if (!stmcmpi(menu.choice,"sear" ,4» (
printf(''\nOld Criteria %s \nNew Search Criteria\n" ,spath);
scanf(" %s", spath);
}

else if (!stmcmpi(menu.choice,"segm",4»
SetSegmentO;

else if (!stmcmpi(menu.choice,"sobe",4»
SetSobelO;

else if (!stmcmpi(menu.choice," stan",4»
SetStanO;

else if (!stmcmpi(menu.choice,"tum",4»
SetTumRoundO;

}
CloseGraphics();
retum(1);
}

1* Purpose - to display sub-menu for look up tables of pixel values

Method - same asmsc,c
*/

int ManipulateMenuO
{
1* Purpose - to display sub-menu for performing simple direct operations

on image

Method - same as msc.c
*/

1* definitions */
menutype menu = {

13,
0,
"MANIPULATE MENU",
"Draw Rectangle on Screen",
"Expand image",
"HELP", ;-
"Left to right image",
"Pixel value display" ,

Page 53

Appendix 1 Source Code 0/ Image Processing System Page 54

"Save rectangle of image",
"Subtract rectangle",
"Take one file from another (Background removal e.g.)",
"Threshold image",
"Tum image 180%",
"X axis Reflection",
fly axis Reflection" ,
"Upside down image",
""""""""""""""

""'"" ");

~ worldng *'
while (strncmpi(menu.choice,"quit",4» (

DispMenu(menu);
if (!strncmpi(menu.choice, "draw" ,4»

SetDrawRectO;
else if (!strncmpi(menu.choice, "expa" ,4»

SetExpandO;
else if (!strncmpi(menu. choice, "help",4»

SetHelp(menu);
else if (!strncmpi(menu.choice,''left" ,4»

LeftToRight();
else if (!strncmpi(menu.choice,"pixe",4» .

SetPixelDisplayO;
else if (!strncmpi(menu.choice,"save",4»

SetSaveRectO;
else if (!strncmpi(menu.choice, "subt" ,4»

SetSubtractRectO;
else if (!strncmpi(menu.choice,"take" ,4»

SetSubFileO;
else if (!strncmpi(menu.choice,"thre" ,4»

SetThresholdO;
else if (!strncmpi(menu.choice, "tum" ,4»

SetTumRoundO;
else if (!strncmpi(menu.c9oice,"x ax",4»

SetXReflectQ;
else if (!strncmpi(menu.choice,"y ax",4»

SetYReflectO;
else if (!strncmpi(menu.choice,"upsi" ,4»

UpsideDownO;
}

Appendix 1Source Code of Image Processing System

r- RASTER.C .,
#include <phd.h>
#include <phdexth>

int rasterQ
{
r- definitions .,
int c,x,y;
int x_start.x_end,y _start,y _end,x_size,y _size,x_disp,y _disp;
FileName infile;
struct ffblk ffblk;
int colour,done;
int Keyboard = 1;
int WholeImageRasterScan = 1;
comers raster;

menutype menu = {
9,
0,
"RASTER SCANNING of images",
"Choose Image Files for Scanning" ,
"Define Raster Scan Size (size of individual raster scans)",
"Displacements Define (of consecutive rasters in X, Y directions)",
"JIELP",
"Keyboard Entry for Scan Size (default ON)",
"Random Raster Scans",
"Show Defaults fo Raster Scans" ,
"Raster Scan Images",
"Whole Image Scan Set (default ON)",
"",
" " " " " " " " " " " " "" " " " """""t"",
" "
};

unsigned int screen = 1;

r working .,
SetPage(O);
strcpy(menu.choice," It); r- should not be necessary, just to make sure *'
while (stmcmpi(menu.choice,"quit" ,4)) (

setgraphmode(O);
DispMenu(menu);
clear(O);
it(!stmcmpi(menu.choice,"help" ,4»

SetHelp(menu);
else if (!stmcmpi(menu.choice,"choo" ,4» {

while «c = dir(spath,infile,
"Raster Sean File Selection"» != ESC & c != CR)

,
r- default for when Whoielmage .,
}

else if (!stmcmpi(menu.choice,"defi" ,4» {
if (!Keyboard) (

DrawRect(l,cor);
x_size = cor.right - cor.left;
y_size = cor.top - cor.bottom;

Page 55

Appendix 1Source Code 0/ Image Processing System Page 56

}
else (

printf(''\n Width of raster scanse");
scanf(" %d" x size)',_ ,
printf(''\oHeight of raster scans'n");
scanf(" %d", y_size);
}

}
else if (lstmcmpi(menu.choice,"disp",4» (

printf("\nDisplacement in x direction between images ");
printf("\n(1 for raster scan) H);
scanf(" %d", x_disp);
printf(''\nDisplacement in y direction between images");
printf(''\n(1 for raster scan) ");
scanf(" %d", y_disp);
printf(''\nWhole Image Scan (default yes)?");
}

else if (!stmcmpi(menu.choice,"keyb" ,4» (
Keyboard = !Keyboard;
if (Keyboard)

printf("Entry from Keyboard for Scan Size");
else

printf(''\nEntry from Mouse for Scan Size");
waitO;
}

else if (!stmcmpi(menu.choice,"ra",2» {
if (!stmcmpi(menu.choice:'rand" ,4» (

printf(''\oHow many random rasters required'n");
scanf(" %d", y_disp);
x_disp= 0;
}

done = findfirst(infile,ftblk,O);
while (!done) (

acquire(screen,ffblk.ff_name);
CopyComers(im[1],c,raster);
if (! WholeImageRasterScan)

DrawRect(1,raster);
save_rasters(raster,x_size,y _size,x_disp,y _disp,screen);
done = findnext(ffblk);
}

}
else if (!stmcmpi(menu.choice:'show" ,4» (

printf("\nDefault Values are:'n");
printf(''\nStart at x %d y %d End at %d %d" ,x_start,y _start,x_end,y _end);
printf(''\nSize of rasters in x direction %d y direction %d" ,x_size,y _size);
printf(,'\nDisplacement between rasters in x direction %d y direction %d" ,x_disp,y _disp);
printf("\nUsing file(s) %s",infile);
waitO;
}

else if (!stmcmpi(menu.choice,"whol",4» (
WholeImageRastetScan = !WholeImageRasterScan;
if (WholeImageRasterScan)

. printf(''\n Whole Image Scan");
else

printf(''\nPartial Image Scan");

Appendix 1 Source Code of Image Processing System

waitO;
}

}

int save_rasters(r,x_size,y _size,x_disp,y _disp,screen)
corners .r;
int x_size,y _size,x_disp,y _disp;
unsigned int screen;
{
1* definitions .,
FileName outfile;
int c,ij,k,x,y;
long int MaxFiles;
int temp;
char sl[4],s2[4];
long int position;
int RandomFiles;
comers segment; ,. used as corners for each raster segment to save to file .,
comers ·CornerBuffer;
int GotCornersAlready = 0;
int radix = 36;

1* workings .,
MaxFiles = (long) radix • (long) radix • (long) radix;
SetPage(O);
strcpy(outfile,im[screen].name);
i=0;
1* r are corners of file to raster .,
,. x_size and y_size are width and height of raster scans .,
1* x_disp and y_disp are displacements made after each raster sean saved *'
1* but ifx_disp = 0 (silly) then RandomFiles is true and MaxFiles = y_disp *'
RandomFiles = Ix_disp;
if (RandomFlles) {

MaxFiles = y_disp;
y_disp = 0;
CornerBuffer = malloc(sizeof(corners) • MaxFiles);
}

if (RandomFiles & ICheckRoom(CornerBuffer,"save_rasters"»
retum(O);

randomizet);
for (y =·r->bottom;y <= r->top - y_size;y += y_disp) {

for (x = r->left;x <= r-e-right - x_size;x += x_disp) {
if (Random Files) {

x = r->left + random(r->right - r-e-left - x_size);
y = r->bottom + random(r->top - r-e-bottom - y_size);
}

if (i >= MaxFiles) {
printf(''\nMaximum of %d files exceeded" ,MaxFiles);
x = r-e-right;
y = r->top;
. }

else {
itoa(i,s 1,radix);

Page 57

Appendix I Source Code of Image Processing System Page 58

if (i< radix)
strcpy(s2, "00");

else if (i < radix • radix)
strcpy(s2, "0");

strcat(s2,s1);
putsuffix(outfile,s2);
printf(~aving file %s",outfile);
segmentleft = x;segment.right = x + x_size;
segment.bottom = y;segment.top = y + Y_size;
for (j = O;j< i~++) {

GotComersA1ready = CompareComers(segment,ComerBuffer[j]);
if (GotComersAlready)

j = i;
}

if (!RandomFiles II !GotComersAlready) {
SaveRect(screen,segment,outfile);
i++;
}

if (RandomFiles) {
x = r->left;
y = r->bottom;
}

}
SetPage(O);
if (RandomFiles)

free(ComerBuffer);
retum(1);
}

Appendix 1 Source Code of Image Processing System Page 59

1* PHDREef.C .,
#include <phd.h>
#include <phdext.h>

int SetDrawRect()
(
1* definitions .,
int screen;

1* workings .,
printf("'nScreen~");
scanf(" %d", screen);
OrawRect(screen,im[screenJ.c);
}

,. ORAW REef ••
• puts a rectangle on the screen, allows translations and scaling of •
• to give boundaries for subsequent operations or to mariean •
·~a •.. ~ ,
int OrawRect(screen,c)
int screen;
comers ·c;
(
1*

Purpose - To draw a rectangle or square and keep the original
image under the rectangle for screen re-freshing. Expansion
of the square, retraction and movement of the square are all allowed.

Method-
Rectangle is drawn using function rectangle and XORing pixels.
A character input determines whether one of several options
is accomplished ..,

1* definitions .,
int colour ,loop;
int key,temp;
int x_tnCrement,y_increment;
int width,height;
int ·dx,·dy;
int button;

1* workings .,

SetPage(screen);
x_increment = 1;_
Y_increment = 1;
setwritemode(XOR_PUT);
if (c->left >= c-c-right IIc-c-left< 0)

Appendix I Source Code of Image Processing System Page60

c->left= 0;
if (c-c-right <= c-c-left II c->right>= PC_X_SIZE)

c->right = PC_X_SIZE -1;
if (c-c-bottom >= c-c-top II c->bottom < 0)

c->bottom = 0;
if (c->top <= co-bottom II c-otop >= PC_y_SIZE)

c-c-top = PC_V_SIZE -1;
rectangle(c->left,c->bottom,c->right,c->top);
for (loop = 1;loop <= 2;loop++) (

if (mouse)
OearMouseO;

key = 0; 1* or anything but ESC .,
while (key != CR & key !=ESC) (

key = GetMouseCh(dx,dy); 1* dx,dy not used .,
if (key = CURS_LEFf IIkey == CURS_RIGHT II
key = CURS_UP II key = CURS_DOWN II
(key>= '0' & key <= '9'» (

CopyComers(c,cor);
key = GetIncForRect(x_increment,y_increment,c,loop,key);
rectangle(cor.left,cor.bottom,cor.right,cor.top);
rectangle(c->left,c->bottom,c->right,c->top);
} 1* end if Cursor keys .,

if (key = '1') (
SetPage(O);
printf(''\nLeft %d Right %d Bottom %d Top %d",c->left,c->right,c->bottom,c->top);
waitO;
SetPage(screen);
break;
}

} 1* end while .,
} 1* end for loop = 1to 2·,

rectangle(c->left,c->bottom,c->right,c->top);
retum(O);
}

int GetIncForRect(x_increment,y _increment,c,loop,key)
comers ·c;
int ·x_increment,·y _increment;
int loop;
int key;
{
if «key.> '0') & (key <= '9'» {

·y_increment = (key - '0');
·x_increment = (.y _increment • getmaxxtj) , getmaxyt);
}

else (
switch(key) {

case CURS_LEFf :
if(loop= 1)

c->left -= ·x_increment;
else if (loop= 2)

c-c-right -= ·x_increment;
break;

case CURS_RIGHT :

Appendix I Source Code of Image Processing System Page6I

if(loop= 1)
c-c-left += ·x_increment;

else if (loop = 2)
c->right += ·x_increment;

break;
case CURS_UP :

if(loop= 1)
c-c-top -= .y _increment;

else if (loop == 2)
c->bottom -= .y _increment;

break;
case CURS_DOWN :

if (loop == 1)
c-c-top += .y _increment;

else if (loop= 2)
c-c-bottom += .y _increment;

break;
case CURS_PLUS:

c-c-top += .y _increment;
c-c-bottom -= .y _increment;
c-c-left -= ·x_increment;
c-o-right += ·x_increment;
break;

case CURS_MINUS:
c-c-top -= ·y_increment;
c-c-bouom += .y _increment;
c->left += ·x_increment;
c-c-right -= ·x_increment;
break;

},. end switch·,
if (c-c-bottom >= c-c-top) {

c-c-bonom -= .y _increment;
c-c-top += ·y_increment;
}

if (c->left >= c-c-right) {
c-c-left -= ·x_increment; ,
c-c-right += ·x_increment;
}

if (c->left < 0)
c->left = cor.left;

if (c-c-right >= getmaxxO)
c-o-right = getmaxxt);

if (c-c-top> getmaxyO)
c-c-top= getmaxyt);

if (c-c-bottom < 0)
cc-bottom = 0;

}
retum(key);
}

int SetSubtractRect()
{
1* definitions .,

Appendix 1 Source Code of Image Processing System Page62

comers from,to,current;
FileName infile,sfile;
FileName pfile,vfile;
int XDiff, YDiff,screen;

1* worldngs *'
clear(O);
SetPage(O);
printf("'nThis routine assumes thresholding has been done, or it assumes");
printf("\ndefault theshold values");
printf("\nName for images, give root only, images will be :\n");
printf('\n.u (for s(U)b), .p (perfusion) .v (ventilation)\n");
scanf(" %s", infile);
strcpy(vfile,infile);strcpy(pfile,infile);strcpy(sfile.inflle);
putsuffix(vfile,"v");putsuffix(pfile,"p");putsuffix(sfile,"u");
printf('\nScreen to subtract rectangle from \n");
scanf(" %d", screen);
printf('\nYou will be asked to put a rectangle around each lung for reference");
printf('\nFirst outline ventilation image");
printf('\nTben the perfusion image which will be moved to cover ventilation");
wait();
CopyCorners(cor,to);
DrawRect(screen,to);
SaveRect(screen,to, vfile);
rectangle(to.left,to.bottom,to.right,to.top);
CopyCorners(to,from);
DrawRect(screen,from);
CopyCorners(from,current);
SaveRect(screen,from,pfile);
if (MoveRect(screen,current,from) =0)

return(O);
rectangle(to.left,to.bottom,to.right,to.top);
XDiff = currenUeft - from.left; YOiff = current.bottom - from.bottom;
if (SubtractRect(pfile,vfile,sfile,XDiff, YDim =0)

return(O);
return(I);
}

1*MOVERECI' *'
int MoveRect(screen,current,from)
int screen;
comers =current, *from;
{
1* definitions *'
void *buffer;
int size;
signed int x_increment = I;
signed int y_increment = 1;
int *dx, *dy;
int c,temp;
int button;
int MinScore;

1* working *'
MinScore = getmaxyt);

Appendix 1 Source Code of Image Processing System

SetPage(screen);
size = imagesize(current->left,current->bottom,current->right,current->top);
buffer = malloc(size);
if (CheckRoom(buffer,"MoveRect") = NULL) (

printf(,'\nInsufficient room for size of rectangle chosen");
printf(''\nYou will need to return and choose a smaller rectangle");
GrWait(l);
retum(O);
}

c = 0; 1* or anything but ESC *'
getimage(current->left,current->bottom,current->right,current->top,buffer);
putimage(current->left,current->bottom,buffer,XOR_PUT);
if (mouse)

OearMouseO;
while (c != ESC) (

c =GetMouseCh(dx,dy); '* dx,dy not used *'
if «c > '0') & (c <= '9'» {

y_increment = (c - '0');
x_increment = (y_increment * getmaxxO)' getmaxyt):
}

else if «c =CURS_LEFr) II(c=CURS_RIGHT) II
(c == CURS_DOWN) II(c= CURS_UP) II(c == CR» (

putimage(current->left,current->bottom,buffer,XOR_PUT);
switch(c) { .

case CURS_LEFI' :
current-c-left -= x_increment;
current->right -= x_increment;
break;

case CURS_RIGHT :
current->left += x_increment;
current->right += x_increment;
break;

case CURS_UP:
current->top -= y_increment;
current->bottom -= y_increment;
break; ,

case CURS_DOWN :
current->top += y_increment;
current->bottom += y_increment;
break;

}
if(c=CR)

ShowSubtractParameter(screen,MinScore,from,current);
if (current-c-left < 0)

current->left += x_increment;
if (current->right >= PC_X_SIZE)

current->right -= x_increment;
if (current->left > current->right) {

temp = current->left;
current->left = current->right;
current->right = temp;
}

if (current->top > PC_Y_SIZE)
current->top -= y_increment;

if (current->bottom < 0)

Page63

Appendix 1 Source Code of Image Processing System

current->bottom += y_increment;
if (current->bottom > current->top) {

temp = current->bottom;
current->bottom = current->top;
current->top = temp;
}

putimage(current->left,current->bottom,buffer,XOR_PUT);
} 1* end if c = .. etc *'

} 1* end while *'
putimage(current->left,current->bottom,buffer,XOR_PUT);
free(buffer);
retum(1);
}

1* SUBTRAcrREcr *'
int SubtractRect(file 1,file2,file3,XDiff, YDift)
char *file 1,*file2, *file3;
int XDiff, YDiff;
(
1* definitions *'
FILE *in_ptr_l, *in_ptr_2, *OutFilePtr;
int x,y;
int c;
comers ft ,n,f3;
int temp,temp 1,temp2,temp3;

1* working *'

'*File 2 is subtracted from file 1, with an offset of XDiff and YDiff
File 3 is created such that it contains both files in its total area, and
the offset area. This allows fields that overlap incompletely to be
created.

*'
in_ptr_l = fopen(filel,"rb");
if (file_check(filel,in_ptr_l) = 0)

retum(O);
in_ptr_2 = fopen(file2,"rb");
if (file_check(file2,in_ptr_2) = 0)

retum(O);
OutFUePtr = fopen(file3,"wb");
if (file_eheck(file3,OutFilePtr) = 0)

retum(O);
ReadComers(in_ptr_l,ft);
ReadComers(in_ptr_2,t2);
ft.bottom += YDiff;
ft.top += YDiff;
ft.left += XDiff;
ft.right += XDiff;
f3.left = min(fl.left,t2.left);
f3.right = max(t2.right,t2.right);
f3.bottom = min(f1.bottom,t2.bottom);
f3.top = max(fl.top,t2.top);
f3.right = f3.right - f3.left;

Page64

Appendix 1Source Code of Image Processing System

f3.top = f3.top - f3.bottom;
f3.bottom = 0;
WriteComers(OutFllePtr,f3);
forCy = f3.bottom;y < f3.top;y++) {

for (x = f3left;x < f3.right;x++) {
if (y >= ft.bottom & y < ft.top & x >= ft.left & x < ft.right)

tempt = getc(in_ptr_t);
else

tempt =0;
if (y >= f2.bottom & y < f2.top & x >= f2.left & x < f2.right)

temp2 = getc(in_ptr_2);
else

temp2 =0;
temp3 = templ - temp2;
temp3 += FILE_BYTE_SIZE;
temp3'= 2;
putc(temp3,OutFilePtr);
}

}
fclose(in_ptr_l);
fclose(in_ptr_2);
fclose(OutFilePtr);
retum(t);
}

int ShowSubtractParameter(screen,MinScore,from,current)
int screen;
int *MinScore;
comers *from, =current;
{

1* For given rectangle with corners at left,right,bottom,top, works out
normalised pixel score of image, by subtraction of same size
rectangle with top (of screen, bottom y value) left comer at
from->left,from->bottom *'

1* definitions *'
int x,y;
int XDiff, YDiff;
long int score = OL;
int maxx,maxy;
int temp;
int rect[J = {O,O,O,O,O,O,O,O};

1* worldng *'
maxx = getmaxxO;
maxy = getmaxyf);
XDiff = from-c-left - current->left;
YDiff = from->bottom - current->bottom;
for Cy= current->bottom;y < current->top;y++) {

for (x = current->left;x < current->right;x++) (
if «getpixel(x,y) >= im[screen].LowThreshold
& getpixel(x,y) <= im[screen].HighThreshold)
II(getpixel(x + XDiff,y+ YDift) >= im[screen].LowThreshOld
& getpixel(x + XDiff,y + YDift) <= im[screen].HighThreshold» {

Page65

Appendix 1 Source Code of Image Processing System

temp = abs(getpixel(x,y) - getpixel(x + XDiff,y +YDiff);
score += (long) temp;
}

}

Page66

}
score *= «(long) maxy' (long) (1 + im[screen].HighThreshold - imlscreenl.Lowfhresholdj);
1* divide to normalise colour range, but times maxy to normalise for height *'
score 1= (long) «curreDt->top - current->bottom) * (current->right - current-c-leftj);
1*Now normalised to between 0 and max height *'
rect[O] = rect[6] =maxx - 10;
rect[2] = rect[4] =maxx;
rect[7] = rect[S] =maxy;
setfillstyle(SOLID_FILL,im[screen].LowThreshold);
fillpoly(sizeof(rect)' (2 * sizeof(int»,rect);
if (score <= *MinScOl-e) (

*MinScore = score;
setfillstyle(SOLID _FILL,im[screen].LowThreshold);
}

else
setfillstyle(EMPrY _FILL,im[screen].LowThreshold);

fillpoly(sizeof(rect) '(2 * sizeof(int»,rect);
rect[l] = rect[3] = (int) score;
setfillstyle(SOLID_FILL,im [screen]. HighThreshold);
fillpoly(sizeof(rect) , (2 * sizeof(int»,rect);
}

int SetSaveRectO
(
1* definitions *'
int screen;
FileName outfile;
int XDiff, YDiff;

1* working *'
SetPage(O); _
printf(''\n1bis routine takes a screen, and saves a rectangle");
printf(''\nwhere the pixel values are set to 0 (below low threshold) It);
printf(''\nmax colour (Above threshold) or the actual pixel value");
printf(''\nThresholds will be set by default to 0 and Max Colour It);
printf(''\nUnless thresholds set specifically");
printf(''\nScreen to take rectangle from~");
scanf(" %d", screen);
printf(''\nFile to store rectangle in~");
scanf(" %s", outfile);
DrawRect(screen,im[screen].c);
SaveRect(screen,im [screen]. c,outfile);
}

int SaveRect(screen,rect,outfile)
int screen;
comers *rect;
FileName *outfile;
{
1* definitions *'
FILE *inFilePtr, *OutFilePtr;

Appendix 1 Source Code of Image Processing System Page67

int x,y;
int temp;
cornersf;
long int position;
intLowThreshold,HighThreshold;
int MaxColour;

r worldng ./
InFtlePtr = fopen(im[screen].name,"rb");
OutFilePtr = fopen(outfile,"wb");
if (I fUe_check(im[screen].name,InFtlePtr»

retum(O);
if (I file_check(outfile,OutFilePtr»

retum(O);
MaxColour = getmaxcolor();
LowThreshold = (im[screen].LowThreshold • FILE_BYTE_SIZE)/ MaxColour;
HighThreshold = (im[screen].HighThreshold • FILE_BYTE_SIZE)/ MaxColour;
WriteCorners(OutFilePtr,rect);
ReadComers(InFilePtr,f);
for (y = rect->bottom;y < rect->top;y++) (

position = 4 • sizeof{int) + sizeof(char)·
«y - f.bottom) • (f.right - f.left) + rect->left - f.left);
fseek(InFilePtr,position,SEEK_SET);
for (x = rect->left;x < rect->right;x++) (

temp = getc(lnFilePtr);
if «temp =EOF) II(temp < LowThreshold»

temp=O;
else if (temp> HighThreshold)

temp e O;
putc(temp,OutFilePtr);
}

}
fclose(InFilePtr);
fclose(OutFilePtr);
}

Appendix 1Source Code of Image Processing System Page68

1* PHDSEG.C .,
#include <phd.h>
#include <phdexth>

1* PHDSEG.T ••••••••••••••••••••••••••• ,
1*
One image file is loaded for transfer to NWORKS.
The areas grown are saved
to disk, after combining overlapping areas. These files may then be
standardised for NWORKS entry ..,
1* SET_SEGMENT .,
int SetSegmentO
{
1* definitions *'
FileName infile;
struct ffblk. ffblk;
int done;

,. working .,

printf('\nFile to segment (Wildcard choice allowed, ");
printf("'wn which case several files may be segmented)\n");
scanf(" %S", infile);
done = findfirst(infile,ffblk,O);
while (!done) (

segment(ffblk.ff_name);
done = findnext(ffblk);
}

SetPage(O);
}

1* SEGMENT .,
segment(infile)
FileName ·infile;
{
1*
PSEUDO-CODE
Begin

Send each pair of centres to grow_region. This routine finds
connected points and returns via a pointer the left, right, bottom
and top of each connected image segment

The images are combined if they overlap.

The images are saved to disk
End

*'
1* definitions *'
int file_no;

Appendix 1 Source Code 0/ Image Processing System Page69

int i,x,y;
Fll..E *OutFi1ePtr;

1* worldngs *'printf("\nSegment program started");
printf('\nAbout to segment");
grow_region(infile,OutFilePtr);
fclose(OutFllePtr);
}

1* GROW_REGION *'
int grow_region(infile,OutFilePtr)
FILE *OutFilePtr;
FileName *infile;
{
1*
PSEUDO-CODE
Algorithm from K.R. Castleman "Digital Image Processing", 1979. Prentice Hall,
p 317-319
Begin

Segment Number = 1
For each line

First_Seg_vat = 0;
First =True (means that whatever segment found
above current one connected to it is first)
For each pixel on line

Ifwithin threshold
Ifpixel to left within threshold

Allocate left segment
to current pixel segment

Else
Allocate left segment + 1 to current
pixel

Ifpixel above within threshold
If first or above = First_seg_ val

Put Segment value into
variable First_Seg_ Val
Make current pixel in same
segment as above segment
Make pixels to left of current
pixel same as above segment
until a pixel found not
in threshold

Else
Do LinkSegmentAbove
(in effect makes above segment
same as current segment)

Else (Pixel above not in segment)
Else (not within threshold)

Allocate no segment
Next column

Appendix 1 Source Code of Image Processing System Page70

Next Row
End

'1 definitions *'
int LColour,RColour;
FileName sfile,tfile;
char tempe4);
int colour;
int c,x,y.iJ;
int FirstAboveSeg,SegNo;
int first;
comers pic_edges[MAX_SEGMENTS);

1* working *'
acquire(IJnfile);
cor.left = im(1).c.left;
cor. right = im[I).c.right;
cor. bottom = im[I).c.bottom;
cor.top = im[I).c.top;
SetPage(O);
printf(''\nChoose area to be segmented");
ClipScreen(I);
SetPage(I);
for (i = O;i < MAX_SEGMENTS;i++) {

pic_edges[i).left = PC_X_SIZE;
pic_edges[i).bottom = PC_Y_SIZE;
pic_edges[i).right = pic_edges[i).top = 0;
}

SegNo= 0;
SetPage(O);
printf(''\nSegmentation started");
clear(2);
clear(3);
GetThreshold(I);
SetPage(1);
for (x = cor.left;x < cor.right;x++)

for (y = cor.bottom;y < cor.top;y++)
if (ReadPixel(1,x,y) > im[I).HighThreshold)

WritePixel(1,x,y,PIXEL_SIZE - I);
else if (ReadPixel(I,x,y) < im[I).LowThreshold)

WritePixel(I,x,y,O);
SetPage(2);
for (y = cor.bottom;y < cor.top;y++) {

for (x = cor.left;x < cor.right;x++) (
if (ReadPixel(1,x,y) >= im[I).LowThreshold &
ReadPixel(1,x,y) <= im[I).HighThreshold)

Link IPixels(x,y ,SegNo);
} 1* end x loop *'

} 1* end for y loop *'
for (y = cor.bottom;y < cor.top - I;y++) {

for (x = cor.left;x < cor.right;x++) (
if (ReadPixel(1,x,y) >= im[I).LowThreshold &
ReadPixel(1,x,y) <= im(1).HighThreshold)

Linic2Pixels(x,y);

Appendix 1 Source Code 0/ Image Processing System Page 71

} 1* end x loop */
} 1* end for y loop */

for (:y = cor.bottom;y < cor.top - l;y++) {
for (x = cor.left;x < cor.right;x++) {

SegNo = ReadPixel(2.x,y) + ReadPixel(3.x,y) * PIXEL_SIZE;
if (pic_edges[SegNo].left > x)

pic_edges[SegNo]Jeft = x;
if (pic_edges[SegNo].right < x)

pic_edges[SegNo].right = x + 1;
if (pic_edges[SegNo].bottom > y)

pic_edges[SegNo].bottom = y;
if (pic_edges[SegNo].top < y)

pic_edges[SegNo].top = Y + 1;
} 1* end x loop */

} 1* end for y loop */
j = 1;
for(i = l;i <= MAX_SEGMENTS;i++) {

cor.left = pic_edges[i].left;
cor.right = pic_edges[i].right;
cor.bottom = pic_edges[i].bottom;
cor.top = pic_edges[i].top;
if (cor.left >= 0 & cor. right <= PC_X_SIZE & cor.bottom >= 0
& cor.top < PC_ Y_SIZE & cor. right > cor.left + 5 & cor.top > cor.bottom + 5) {
1* ignore tiny segments less than 5 pixels wide *1

strcpy(tfile,infile);
itoaG,temp,10);
strcat(tfile,temp);

1* cor.left = pic_edges[i].left;
cor.right = pic_edges[i].right;
cor. bottom = pic_edges[i].bottom;
cor.top = pic_edges[i].top;
DrawRect(I); */
save_seg(infile,tfile,pic_edges[i],im[1].LowThreshold,im[1].HighThreshold);
j++;
}

}
}

int LinklPixels(x,y,SegNo)
int x,y;
int *SegNo;
{
int tx;
int SegL,SegA,SegAL,SegAR,Seg;

1* working */
SegA = ReadPixel(2,x,y - 1) + ReadPixel(3,x,y - 1) * PIXEL_SIZE;
if (x> cor.left)

SegL = ReadPixel(2,x -I,y) + ReadPixel(3,x -t,y) * PIXEL_SIZE;
else

SegL= 0;
if (SegA > 0) (,

WritePixel(2,x,y,ReadPixel(2.x,y - 1»;
WritePixel(3,x,y,ReadPixel(3,x,y - t»;

Appendix 1 Source Code of Image Processing System

tx = x - I;
while (tx >= cor.left & ReadPixel(2,tx,y) > 0) {

WritePixel(2,tx,y,ReadPixel(2,x,y»;
WritePixel(3,tx,y,ReadPixel(3,x,y»;
tx--;
} 1* end while loop .,

} 1* end if current not same as above .,
else if (SegL > 0) {

WritePixel(2,x,y,ReadPixel(2,x - I,y»;
WritePixel(3,x,y,ReadPixel(3,x - I,y»;
}

else { ~
(·SegNo)++;
if «·SegNo) % PIXEL_SIZE = 0)

(·SegNo)++;
WritePixel(2,x,y ,(·SegNo) % PIXEL_SIZE);
WritePixel(3,x,y ,(·SegNo) , PIXEL_SIZE);
}

}

int Link2Pixels(x,y)
int x,y;
{
1* definitions .,
int SegB,Seg,SegC,tx,ty;

,·woIting·'
Seg = ReadPixel(2,x,y) + ReadPixel(3,x,y) • PIXEL_SIZE;
SegB = ReadPixel(2,x,y + I) + ReadPixe1(3,x,y + I)· PIXEL_SIZE;
if (SegB = 0 " SegB = Seg)

retum(O);
for (tx = cor.left;tx < cor.right;tx++) {

for (ty = cor.bottom;ty < cor.top;ty++) {
SegC =ReadPixel(2,tx,ty) + ReadPixel(3,tx,ty) • PIXEL_SIZE;
if (SegC = SegB) {

WritePixel(2,tx,ty ,ReadPixel(2,x,y»;
WritePixel(3,tx,ty,ReadPixel(3,x,y»;
}

}
}

SetPage(2);
}

Page72

1* SAVE SEG *.*.*••••••••*.
• saves a portion of an image file to a file •..**.*••••**••********,
int save_seg(infile,outfile,seg,LowThreshold,HighThreshold)
int .Low1breshold, *HighThreshold;
FileName ·infil~ ·outfile;
comersseg;

Appendix 1Source Code of Image Processing System

(,.
Purpose - To save an image to a file.

Method - A buffer is accepted of pixels and this is output to a file
pixel by pixel as characters.

*'
,. definitions *'
int c,x,y;
FLE *InFilePtr,*OutFilePtr;
int scale = FILE_BYTE_SIZE' PIXEL_SIZE;

Page73

,. woddng *'
SetPage(O);
printf(''\nSaving File %s",outfile);
printf(''\nLeft %d Right %d Bottom %d Top %d",seg.left,seg.right,seg.bottom,seg.top);
InFllePtr = fopen(infile,"rb");
if (file_check(infile,InFilePtr) == 0)

retum(O);
OutFilePtr = fopen(outfile,"wb");
if (file_check(outfile,OutFilePtr) == 0)

retum(O);
ReadComers(InFilePtr,cor); .
WriteComers(OutFilePtr ,seg);
for (y = cor.bottom;y < cor.top;y++) {

for (x = cor.left;x < cor.right;x++) (
c = getc(InFUePtr);
if (x >= seg.left & x < seg.right & y >= seg.bottom
& y < seg.top) {

if (c < *LowThreshold * scale)
c e O;

else if (c > *HighThreshold * scale)
c = FILE_BYTE_SIZE - I;

putc(c,OutFilePtr); .
}

}
}

fclose(OutFilePtr);
}

ClipScreen(screen)
int screen;
(
,. definitions *'
int x,y;

,. woddng *'
DrawRect(screen,im[screen].c);
for (x = im[screen].c.left;x < im[screen].c.right;x++) {

for (y = im[screen].c.bottom;y < cor.bottom;y++)
WritePixel(screen,x,y,O);
for (y = cor.top;y < im[screen].c.top;y++)

Appendix I Source Code 0/ Image Processing System Page74

WritePixel(screen,x,y,O);
for (y = cor.bottom;y < cor.top;y++)

if (x < corleft IIx> cor.right)
WritePixel(screen,x,y,O);

}
SetPage(O);
}

Appendix 1Source Code of Image Processing System Page75

,. PHDSOB.C .,
#include <phd.b>
#include <phdext.h>

int SetSobelO
{
r definitions .,
1nt sq_type;
int screenl,screen2;
FileName in_file,ouLfile;

r workings .,
printf("File from which to sobel filteM");
scanf(" %s", in_file);
printf("File for sobel image to go to\n");
scanf(" %s", out_file);
sobel(in_file,out_file);
retum(l);
}

,. SOBEL ••
• apply sobel operators to determine gradient •... ~ ,
int sobel(in_file,out_file)
FileName ·in_file, ·out_file;
{,.

Purpose - To use the edge detection process of sobel filtering.

Method - The sobel matrices forvertical and horizontal gradient
are applied to every pixel and its neighbours. The results of both
gradients are added and the sum is used to generate a new image.
IfPluto board used then result goes to a different screen, other-
wise files are used as input and output Buffers are employed to keep
three rows of pixels so that the algorithm is the same once the buffer
is loaded for file or screen access ..,

r definitions .,
Fll..E ·InFilePtr, ·OutFilePtr;
int ij,x,y;
int mask[3][3];
int width.height.temp.temp 1,temp2;
int ·buffer;

1* workings .,
InFilePtr = fopen(in_file,"rb");
if (file_check(in_file,InFilePtr) = 0)

return;
OutFilePtr = fopen(out_file,"wb");
if (file_check(out_file,OutFilePtr) = 0)

return(O); _
ReadComers(InFilePtr,cor);
width = cor.right - cor.left;
height = cor.top - cor.bottom;

Appendix 1Source Code of Image-Processing System Page76

buffer = malloc(sizeof(int) * 3 * width);
if (CheckRoom(buffer,"sobel") =NULL)

retum(O);
WriteComers(OutFilePtr,cor);
for (i=O;i < 3;i++)

for (j = 0ti < 3ti++)
mask[ilUl = 0;

tempt = O;temp2 = O;temp = 0;
for (x = O;x< width;x++)

for (i= O;i< 3;i++)
buffer[i * width + x] = 0;

for (y = O;y< height;y++) {
for (x = O;x<width;x++)

buffer[(y % 3) * width + x] = getc(InFilePtr);
for (x = O;x<width;x++) {

if «x = 0) II (x= width - 1) II (y= 0) II (y == height - 1»
temp e O;

else {
for (i = O;i< 3;i++) {

for (j =O~< 3;j++)
mask[ilU] =
buffer[«y + j) % 3) * width + x + i];

}
1* Ox sobel*, templ = (mask[0][2] + 2 * maSk[l][2] + mask[2][2]);

tempt -= (mask[O][O] + 2 * mask[1][O] + mask[2][0]);
'* Oy sobel*' temp2 = (mask[2][0] + 2 * mask[2][1] + mask[2][2]);

temp2 -= (mask[O][O] + 2 * mask[O][I] + mask[0][2]);
temp = abs(tempt) + abs(temp2);
}

if (temp> FILE_BYTE_SIZE)
temp = FILE_BYTE_SIZE -1;

putc(temp,OutFllePtr);
}
printf("*");

}
fclose(InFilePtr);
fclose(OutFllePtr);
free(buffer);
retum(I);
}

Appendix I Source Code of Image Processing System Page77

1* PHDSTAN.C *'
#include <phd.h>
*include <phdext.h>

1* SET_STAN *'
int SetStanO
(
1* definitions *'
stantype *p;
int c;

1* working *'
p =malloctsizeoftstantypej);
if (I CheckRoom(p, "SetStan"»

return(O);
strcpy(p->search,NULL);
printf(''\nTbis routine standardises images files to a stated size");
printf(''\nIfthe standard size is LARGER than the image file it will");
printf(''\nbe saved to a temporary file of suffix .q");
printf(''\nwhich should then be standardised");
printf(''\n You should delete these files later or rename them");
~~ .
while «c = dir(spath,p->search,"Standardise"» 1=ESC & c 1=CR).,
if (CheckSuffix(P->search," .s"» (

printf(''\nFile %s with .s as suffix not used for standardising");
printf(''\nas it would be overwritten Choose another file");
waitO;
}

if (c 1=ESC) (
printf(''\nStandardise to number of pixels in X direction \0");
scanf(" %d", p->XStan);
printf(''\nStandardise to number of pixels in Y direction \0");
scanf(" %d", p-> YStan);
p->done = findfirst(p->search,p->ffblk,O);
p->StanBuffer = malloc(sizeof(char) * p->XStan * p->YStan);
if (CheckRoom(p->StanBuffer,"SetStan"» {

while (!p->done) (
strcpy(p->infile,p->ffblk.ff_name);
stanl(p);
p->done = findnext(p->ffblk);
}

}
p-c-done = findfirst("* .q" ,p->ffblk,O);
if (CheckRoom(p->StanBuffer,"SetStan"» {

while (!p->done) (
strcpy(p->infile,p->ffblk.ff_name);
stanl(p);
p->done = findnext(p->ffblk);
}

}
}

free(p->StanBuffer);
free(p);

Appendix 1 Source Code of Image Processing System Page7B

}

int stan 1(P)
stantype *p;
{
/* definitions *1
int iJ;

/*womng*1
printf(~ AN 1H);
strcpy(p->tfile,p->infile);
putsuffix(p->tfile, "q");
printf(''\nStandardising file %s",p->infile);
strcpy(p->outfile,p->infile);
putsuffix(p->outfile," S");
printf(''\ninfile %s outfile %s" ,p->infile,p->outfile);
p->InFilePtr = fopen(p->infile,"rh");
p->OutFilePtr = fopen(p->outfile,"wb");
if «file_check(p->infile,p->InFilePtr»
& (file_check(p->outfile,p->OutFilePtr») {

ReadComers(p->InFilePtr,p->e);
p->width = p->e.right - p->eleft;
p->height = poe.top • p->e.bottom;
if (p->width < p-> XStan II p->height < p->YStan) {

ExpandFile(p->infile,p->tfile,1 + p->XStan 1p->width,1 + p->YStan 1pc-height):
strcpy(p->infile,p->tfile);
}

else {
p->buffer = malloc(sizeof(char) * (1 + p->width 1p->XStan) * (1+ p-c-height / p->YStan»;
if (CheckRoom(p->buffer, "stanl "»

stan2(p);
free(p->buffer);

}
}

fctose(p->InFilePtr);
fclose(p->OutFilePtr);
printf("\nFinished standardlsauorm"):
retum(OK);
}

int stan2(p)
stantype *p;
/* called from standardise if all checks are OK *1
{
/* definitions */
int a,b,x,y;
int result;

/* worldngs */
printf("'nSTAN 2 Standardising using input file %s output file %s",p->infile,p->outfile);
cor.left = cor.bottom = 0;
cor.right= p->XStan;
cor.top = p-> YStan;

Appendix 1Source Code of Image Processing System

WriteComers(p->OutFilePtr,cor);
p->width = p->e.right - p-oc.left;
p->height = p->e.top - p->e.bottom;
p->ROW = O;p->COL = 0;
for 01= O;y < p->YStan;y++) {

p->rows = (01 + 1) • p->height) / p-> YStan - 01 • p->height) / p-> YStan;
for (x = O;x < p->XStan;x++) {

p->cols = «x + 1) • p->width) / p->XStan - (x • p->width) / p->XStan;
a=O;
while (a < p->rows) {

p->position = sizeof(int) • 4 + sizeof(char) •
(p->ROW + a) • p->width + p->COL;
result = fseek(p->InFilePtr,p->position,SEEK_SET);
b e O;
if (result)

printf("\nEOF found");
while (b< pc-cols)

p->buffer[a • p-c-cols + h++] = getc(p->InFilePtr);
a++;
}

qsort(p->buffer,p->rows • p->cols,sizeof(char),strcmp);
p->temp = p->buffer[(p->rows • pc-cols) /2];
putc(p->temp,p->OutFilePtr);
p->COL += p->eols;
}

p->COL=O;
p->ROW += p->rows;
printf("·");
}

Page79

Appendix I Source Code of Image Processing System Page80

1* PHDSUB.C .,
#include <phd.h>
#include <phdexth>

I*SUB~c:r··· .
• Takes one file and subtracts from another. Used to take out noise •
• added into an image by imaging without the object to view and •
• subtracting this from image with object •.. ,
int SetSubFileO
(,.

Purpose - To remove the effects of unequal illumination of an image

Method - Two files are used. One is the original image file, the
other is the image collected when the object imaged previously has
been removed. Ie. it is the image of the background only. If the
background is removed from the total image then only the object should
remain. Hence one file is simply subtracted from the other. It is
assumed that the first file given is the file from which to subtract
the second ..,

1* definitions .,
int temp,c;
FILE ·file 1_ptr, ·file2_ptr, ·out_file_ptr;
FileName infile 1,infile2,outfile;

1* workings .,
printf('''llFile to subtract (foreground)");
scanf(" %s", infile2);
printf('''llFile to subtract from (background)");
scanf(" %s", infile 1);
printf("\nFile to create (background - foreground)");
scanf(" %s", outfile);
if «filel_ptr = fopen(infile 1,"rb"» =NULL) (

printf(''\nFile error %s" ,infile 1);
exit(O);
}

if «file2_ptr = fopen(infile2,"rb"» =NULL) (
p!"intf('''llFile error %s" ,infile2);
exit(O);
}

if «out_file_ptr = fopen(outfile,"wb"» = NULL) (
printf(''\nFlle error %s" ,outfile);
exit(O);
}

c=O;
while (c 1= BOp) (

temp = getc(filel_ptr);
c = getc(file2_ptr);
temp -= c;
if(temp< 0)

temp = FILE_BYTE_SIZE - 1;

Appendix I Source Code 0/ Image Processing System Page8I

else
temp = FILE_BITE_SIZE - 1 - temp;

putc(temp,out_file_j)tr);
}

fclose(file l_ptr);
fclose(file2_ptr);
fclose(out_file_ptr);
}

Appendix 1 Source Code of Image Processing System

1* PHDSUN.C .,
#include <stdio.h>
*include <pixrect/pixrect_hs.h>

struct pixrect .pr;
int left,right,top,bottom;

mainO
{
1* do nothing .,
}

1* PHDSUN •••••••••••••••••••••••••••••
• routines for SUN graphics board •.. ,

1* NEGATIVE •••••••••••••••••••••
• Change LUT to negate image •................................ ,
negativeO
(
1* definitions .,
unsigned char red[pIXEL_SIZE),green[PIXEL_SIZE),blue[PIXEL_SIZE);
int index,count,i;
unsigned char temp;

1* workings .,
count = PIXEL_SIZE;
index = 0;
pr_getcolonnap(pr,index,count,red,green,blue);
for (i =O;i < PIXEL_SIZE '2;i++) (

temp = red[i);
red[i) = red[pIXEL_SIZE - 1 - i];
red[PIXEL_SIZE - 1 - i) = temp;
temp = green[i);
green[i) = green[PIXEL_SIZE - 1 - i);
green[PIXEL_SIZE - 1 - i) = temp;
temp = red[i);
blue[i) = blue[PIXEL_SIZE - 1 - i];
blue[pIXEL_SIZE - 1 - i) = temp;
}

pr_J)utcolonnap{pr,index,count,red,green,blue);
}

1* HOT_BODY •••••••••••••••••••••••••••••
• set LUT to hot body scale •... ,
hot_bodyO

Page82

Appendix 1Source Code of Image Processing System Page83

{
re

Purpose - To set look-up table to hot body scale

Method - Sun routines are used to set
individual pixel values from 0 to
maximum value in such a way that the display
does from hot to cold colours,
black is cold, red through range and finally
white for hottest

./

re definitions ./
unsigned char red[PIXEL_SIZE],green[PIXEL_SIZE],blue[PIXEL_SIZE];
int index,count,i;
unsigned char temp;

re workings ./
index = 0;
count = PIXEL_SIZE;
for (i = O;i < PIXEL_SIZE;i++) {

if (i >= (9 • PIXEL_SIZE) /10) {
red[i] = PIXEL_SIZE - 1;
green[i] = (i - (9 • PIXEL_SIZE) /10) • 10;
blue[i] = PIXEL_SIZE - 1;
}

else if (i < PIXEL_SIZE /10) {
red[i] = 0;
green[i] = 0;
blue[i] = 10 • i;
}

else {
red[i] = (10 • i) /9;
green[i] = 0;
blue[i] = PIXEL_SIZE - 1;
} ,

}
pr_putcolonnap(pr,index,count,red,green,blue);
}

re RED_GREEN_BLUE •••••••••••••••••••••••••••••••
• set LUT to red green blue colour scale •.....................•.......................... /

red_green_blueO
{
re

Purpose - To set a Look-up table so that the
red-green-blue colour system is employed.

Method - Low pixel values are set to red with
increasing ammounts of green added as the
value increases toa mid-point of green and then
blue is added till the highest pixel value is pure blue.

Appendix I Source Code of Image Processing System

.,
Page84

I'" definitions .,
unsigned char red[pIXEL_SIZE],green[PIXEL_SIZE] ,blue[PIXEL_SIZE];
int index,count,i;
unsigned char temp;

I'" worldngs .,
index= 0;
count = PIXEL_SIZE;
red[O] = green[O] = blue[O] = 0;
red[PIXEL_SIZE - 1] = green[PIXEL_SIZE - 1] = blue[PIXEL_SIZE - 1] = PIXEL_SIZE - 1;
for (i = l;i < PIXEL_SIZE;i++) {

if (i <= PIXEL_SIZE /2) {
red[i] = 2 • (i - 1);
green[i] = 0;
blue[i] = PIXEL_SIZE - 2 • i;
}

else {
blue[i] = (pIXEL_SIZE - 1)- 2 • (i - PIXEL_SIZE '2);
green[i] = 2 • (i - PIXEL_SIZE /2);
blue[i] = 0;
}

}
pr_putcolonnap{pr,index,count,red,green,blue);
}

I'" MONO •••••••••••••••••••••••••••••••••
• sets up display to monochrome •... ,
mono()
{

I'" definitions ./
unsigned char red[PIXEL_SIZE],green[PIXEL_SIZE] ,blue [pIXEL_SIZE];
int index,count,i;
unsigned char temp;

I'" worldngs .,
count = PIXEL_SIZE;
index = 0;
for (i = O;i < PIXEL_SIZE;i++)

red[i] = green[i] = blue[i] = i;
pr_putcolonnap(pr,index,count,red,green,blue);
}

Appendix I Source Code of Image Processing System Page85

, ~ PHDTHRES.C *'
finclude <phd.b>
#include <phdext.h>

~ SE'ITHRESHOLD *'
int SetrhresholdO
{

~ definitions *'
int screen;

~ working *'
elear(O);
printf(''\nScreen to threshold\n");
scanf(" %d", screen);
GetThreshold(sereen);
}

~ GET_THRESHOLD *'
int GetThreshold(screen)
int screen;
{
~ get a threshold for subsequent analysis *'
~
PSEUDO-CODE
Begin

If not upper
Starting from lowest pixel value, set LUT value to zero,
saving old LUT in array

else
Starting from highest pixel value, set LUT value to zero,
saving old LUT in array

When user request end, return last pixel value as threshold
End

*'~ definitions *'
int threshold;
int colour;
int i,e;

~ working *'S~tPage(screen);
getpalette(im[screen).palette);
im[screen).LowThreshold = 0;
im[screen).HighThreshold = getmaxeolor();
for (i = O;i < 2;i++) {

e = ' '; ~ anything but ESC *'
if(i = 0)

colour = im[screen).LowThreshold;
else

colour = im[screen).HighThreshold;
while «c = getch(» !=ESC) {

switch(e) {
case CURS_MINUS:
if(i= I) {

Appendix 1Source Code 0/ Image Processing System Page86

if (colour> 0) {
setpalette(colour,EGA_ WHITE);
colour--;
}

}
else {

if (colour> 0) {
colour--;
setpalette(colour,im[screen].palette.colors[colour]);
}

}
break;
case CURS_PLUS:
if (i= 1) {

if (colour < getmaxcolor() {
colour++;
setpalette(colour,im [screen] .palette.colors[colour]);
}

}
else {

if (colour < getmaxcolor() {
setpalette(colour ,EGA_BLACK);
colour+-:
}

}
break;
}

}
if(i == 0)

im[screen].LowThreshold = colour;
else

im[screen].HighThreshold = colour;
}

for (i =O;i < getpalettesizeO;i++) {
if (i < im[screen].LowThreshold)

im[screen].palette.colors[i] = EGA_BLACK;
else if (i > im[screen].HighThreshold)

im[screen].palette.colors[i] = EGA_WHITE;
}

setallpalette(im [screen]. palette);
retum(O);
}

Appendix 1 Source Code 0/ Image Processing System Page87

~ PHDTURN.C *'
#include <phd.h>
#include <phdext.h>

r SET_TURN_ROUND *'
int SetrurnRoundO
(
~definitions *'
int done,c;
tumtype *p;

~ woddngs *'
P = malloc(sizeof(tumtype»;
if (I CheckRoom(p,"SetTumRound"»

retum(O);
while «c = dir(spath,p->searchfile,"Tuming Image (will have suffix .t)")
1=ESC & c != CR)

if (c != ESC) (
done = findfirst(p->searchfile,p->ftblk,O);
while (!done) (

strcpy(p->outfile,p->ffblk.ff_name); .
putsuffix(p->outfile, "t");
if (! CheckSuffix(p->ffblk.ff_name,"t"»

TumRoundImage(p->ffblk.ff_name,p->outfile);
else (

printf(''\nFile not turned as %s would be overwritten",p->ffblk.ff_name);
DelayOrKeyRead(DEL TIME);
}

done = findnext(p->ftblk);
}

}
free(p);
}

~ TURN_ROUND_IMAGE *'
int TumRoundImage(infile,outfile)
FileName *infile, *outfile;
{
~ definitions *'
FILE *InFilePtr, *OutFilePtr;
unsigned char *buffer;
long int position;
int c,x,y;

~ digit captures images upside down and inside out *'
'* woddngs *'
printf("\nTuming image %s 180 degs to fonn image %s",infile,outfile);
InFilePtr = fopen(infile, "rb");
OutFilePtr = fopen(outfile, "wb");
buffer= malloc(sizeof(char) * (getmaxxO + 1»;
if (CheckRoom (buffer, "TumRoundImage") & file_check(infile,InFilePtr)

& file_check(outfile,OutFilePtr» (
ReadComers(InFilePtr,cor);

Appendix 1Source Code of Image Processing System Page88

WriteComers(OutFilePtr,cor);
for (y = cor.bottom;y < cor.top;y++) {

position = (cor.top - 1- y) * (cor. right - cor.left) +
4 ...sizeof(int);
fseek(InFilePtr,position,SEEK_SET);
for (x = cor.left;x < cor.right;x++) {

if «c = getc(InFilePtr» =BOF)
c=O;

buffer[cor.right - 1- x] = c;
}

for (x = cor left; x < cor.right;x++)
putc(buffer[x],OutFilePtr);

}
}

free(buffer);
fclose(InFilePtr);
fclose(OutFilePtr);
retum(O);
}

r SETXREFLECf */
int SetXReflect()
(
I*definitions */
int done,c;
tumtype *p;

1*workings */
p = malloc(sizeof(tumtype»;
if (I CheckRoom(p,"SetTumRound"»

retum(O);
while «c = dir(spath,p->searchfile,"X Axis Reflect (will have .x suffix"»
I=ESC&c 1=CR).,
if (c 1=ESC) (

done = findfirst(p->searchfile,p->ffblk,O);
while (Idone) (

strcpy(p->outfile,p->ffblk.ff_name);
putsuffix(p->outfile,"x");
if (I CheckSuffix(p->ftblk.ff_name,"x"»

XReflect(p->ftblk.ff_name,p->outfile);
else (

printf("\nFUe not turned as %s would be overwritten",p->ffblk.ff_name);
DelayOrKeyRead(DELTIME);
}

done = findnext(p->ffblk);
}

}
}

1* SETYREFLECf */
int SetYReflectO

Appendix 1Source Code of Image Processing System

{
I*definitions *'
intdone,c;
tumtype *p;

1*woIkings *'
p = malloc(sizeof(tumtype»;
if (I OleckRoom(p, "SetTumRound"»

retum(O);
while «c = dir(spath,p->searchfile,"Y Axis Reflect (will have.y suffix)"»
!=ESC&c I=CR)

Page89

,
if(c!= ESC) {

done = findfirst(p->searchfile,p->ffblk,O);
while (!done) {

strcpy(p->outfile,p->ffblk.ff_name);
putsuffix(p->outfile, "y");
if (! CheckSuffix(p->ffblk.ff_name,"y"»

YReflect(p->ffblk.ff_name,p->outfile);
else {

printf(''\nFile not turned as %s would be overwritten",p->ffhlk.ff_name);
DelayOrKeyRead(DEL TIME);
}

done = findnext(p->ffblk);
}

}
}

1* XReflect *'
XReflect(infile,outfile)
char *infile, *outfile;
{
1* definitions *'
Fll...E *InFilePtr, *OutFilePtr;
unsigned char *buffer,
long int position;
int c,x,y;

1* workings *'
printf(''\nReflecting image %s in X axis to form image %s" ,infile,outfile);
buffer= malloc(sizeof(char) * (getmaxxO + 1»;
InFIlePtr = fopen(infile,"Ib");
OutFilePtr = fopen(outfile,"wb");
if (CheckRoom(buffer,"XReflect") & file_check(infile,InFilePtr)

& file_check(outfile,OutFilePtr» {
ReadComers(InFilePtr,cor);
WriteComers(OutFilePtr,cor);
for (y = cor.bottom;y < cor.top;y++) {

position = (cor.top - 1 - y) * (cor. right - cor.left)
+ 4 * sizeof(int);
fseek(InFilePtr,position,sEEK_SET);
for (x = corlefi;x < cor.right;x++) {

if «c = getc(InFilePtr» = EOF)
c=O;

Appendix 1Source Code of Image Processing System

bufferlx] = c;
}

for (x = corleft;x < cor.right;x++)
putc(buffer[xl,OutFilePtr);

}
}

fclose(InFilePtr);
fclose(OutFllePtr);
free(buffer);
retum(O);
}

,. YReftect *'
int YReftect(infile,outflle)
char *infile, *outfile;
(
,. definitions *'
FILE *InFilePtr,*OutFilePtr;
unsigned char *buffer;
long int position;
int c,x,y;

,. workings *'
printf("\nReftecting image %s in Y axis to fonn image %s" ,infile,outflle);
buffer= malloc(sizeof(char) * (getmaxxO + 1»; .
InFilePtr = fopen(infile,"rb");
OutFilePtr = fopen(outfile,"wb");
if (file_check(infile,InFilePtr) & file_check(outfile,OutFilePtr» (

ReadComers(InFilePtr,cor);
WriteComers(OutFilePtr,cor);
for (y = cor.bottom;y < cor.top;y++) {

for (x = cor.left;x < cor.right;x++) {
if «c = getc(h1FilePtr» = EOF)

c=O;
buffer[cor.right - 1 - xl = c;
}

for (x = cor.left;x < cor.right;x++)
putc(buffer[xl,OutFilePtr);

}
}

fclose(InFilePtr);
fclose(OutFllePtr);
free(buffer);
retum(O);
}

r SETEXPAND *'
int SetExpandO
{
,. definitions *'
int screen,XScale,YScale;

Page90

Appendix 1Source Code 0/ Image Processing System

FileName outfile;
comersc;

1* worldng *'
printf("'nThis routine expands/contracts image, do not use file based routines");
printf("\nSuch as subtract as the image on the screen will not then");
printf("'ncorrespond to the file");
printf("\nScreen to expand/contract \nIt);
scanf(" %<1", screen);
printf("Factor of expansion in X axiM");
scanf(" %<1", XScale);
printf("Factor of expansion in Y axiM");
scanf(" %d", YScale);
printf("'nFile to save to \nIt);
scanf(" %s", outfile);
CopyComers(im [screen). c,c);
DrawRect(screen,c);
SaveRect(screen,c,ScratchFile);
ExpandFile(ScratchFile,outfile,XSca1e,YScale);
}

int ExpandFile(infile,outfile,XScale, YScale)
FileName *infile, *outfile;
int XScale, YScale;
{
1* definitions *'
FILE *InFilePtr, *OutFilePtr;
unsigned char *xbuffer;
int x,y,iJ;
comersc;

1* worldngs *'
SetPage(O);
printf('\nExpanding file %s to ~",infile,outfile);
InFilePtr = fopen(infile,"rb");
OutFilePtr = fopen(outfile,"wb");
if (file_check(outfile,OutFilePtr) & file_check(infile,InFilePtr» {

ReadComers(InFilePtr,c);
cor left = cor.bottom = 0;
cor.right = XScale * (c.right - c.left);
cor.top = YScale * (c.top - c.bottom);
WriteComers(OutFilePtr,cor);
xbuffer =malloc(sizeof(char) * (c.right - c.leftj);
if (CheckRoom(xbuffer, "ExpandFile"» {

for (y = c.bottom;y < c.top;y++) {
for (x = c.left;x < c.right;x++)

xbuffer[x - c.left) = getc(InFilePtr);
for (i = O;i<YScale;i++)

for (x = c.left;x < c.right;x++)
for (j = O;j <XSca1e;j++)

putc(xbuffer[x - c.left),OutFilePtr);
}

}
}

Page 91

Appendix 1 Source Code of Image Processing System Page92

fclose(InFilePtr);
fclose(OutFllePtr);
free(xbuffer);
return(I);
}

~ LEFT_TO_RIGIIT ••
• turns image left to right •.. /

~ Purpose - to mirror an image accross vertical axis

Method - a buffer stores a vertical line, the vertical line
mirroring this vertical is copied into it, and the buffer is
written into the mirror line. This is repeated for half of the image
as on each occasion 2 lines are dealt with.

./
int LeftToRightO
{
~ definitions·/
int x,y,xmax,ymax,screen;
unsigned char ·buffer;

~ wolkings·/
buffer = malloc(sizeof(char) • YSIZE);
if (CheckRoom(buffer,"LeftToRight") =0)

retum(O);
printf("\nScreen to inveJt'n");
scanf(" %d", screen);
SetPage(screen);
xmax = getmaxxt);
ymax = getmaxyt);
for (x = O;x <= xmax /2;x++) {

for (y = O;y <= ymax;y++)
buffer[y] = ReadPi~l(screen,x,y);

for (y = O;y <= ymax;y++) {
WritePixel(screen,x,y,ReadPixel(screen,xmax - x,y»;
WritePixel(screen,xmax - x,y ,buffer[y]);
}

}
free(buffer);
retum(O);
}'

~ UPSIDE_DOWN ••
• turns image upside down ••**•••*••••*.*••••*.***••*••••••••/
~ Purpose - to invert an image by rotating 180 degrees.

Method - A horiziontal buffer is used to store the current
horizontal line. The mirror line along the horizontal axis is
written to the current line in reverse order. The buffer is
then written in reverse order to the mirro line. This is repeated
for each line upt to the centre line, by which time all lines

Appendix I Source Code of Image Processing System

will have been swapped ..,
int UpsideDownO
{
,. definitions .,
int x,y,xmax,ymax,screen;
unsigned char .buffer;

r worldngs .,
buffer = malloc(sizeof(char) • XSIZE);
if (CheckRoom(buffer,"LeftTORight") = 0)

retum(O);
printf(''\nScreen to invert'll");
scanf(" %<I", screen);
SetPage(screen);
xmax = getmaxxO;
ymax = getmaxyt);
for (y = O;y <= ymax '2;y++) {

for (x =O;x <= xmax;x++)
buffer[x] = ReadPixel(screen,x,y);

for (x = O;x <= xmax;x++) {
WritePixel(screen,x,y,ReadPixel(screen,xmax - x,ymax - y»;
WritePixel(screen,xmax - x,ymax - y,buffer[x]);
}

}
free(buffer);
retum(O);
}

Page93

Appendix 1 Source Code 0/ Image Processing System Page94

r PHDUTIL.C *'
#include <phd.h>
#include <phdext.h>

int De1ayOrKeyRead(delay)
int delay;
(
time_t time I ,time2;
int c;
int dx,dy;

time(timel);
time(time2);
if (mouse)

ClearMouseO;
while «c = GetMouseCh(dx,dy» != ESC & c != ' ,

& difftime(time2,timel) < (double) delay)
time(time2);

retum(c);
}

int CheckRoom(pointer,function)
void *pointer;
char *function;
{
if (pointer = NULL) (

printf(''\nInsufficient Memory for variable creation in function %s" ,function);
DelayOrKeyRead(DEL TIME);
retum(O);
}

else
retum(1);

}

int find(infile)
FileName *infile;
(
struct ftblk ftblk;
if (findfirst(infile,ftblk,O»

retum(1);
else

retum(O);

int IsGetCharCRO
(
int c;
printf(''\nEnter RETURN for no change, or other key to change'n");
while (! (c =MouseKeyGet(»)., .
if(c= CR)

retum(l);
else

Appendix I Source Code of Image Processing System Page95

return(O);

int CompareCorners(cl,c2)
corners *c 1,*c2;
{
if (cl->left = c2->left & cl->right =c2->right
& cl->bottom =c2->bottom cl-otop =c2->top)

return(1);
else

return(O);
}

int ReadCorners(lnFilePtr,c)
FILE *InFilePtr;
comers *c;
(
rewind(InFilePtr);
fread(c,sizeof(corners),l,InFilePtr);
if «c->left > c->right) II(c->bottom > c->top) II(c->bottom < 0) II(c-c-left < 0» (

printf(''\nComers outside allowed range");
printf(''\nComers are :");
printf(''\nleft %d right %d bottom %d top %"d",c->left,c->right,c->bottom,c->top);
printf(''\nRoutine ReadComers has returned a failure");
DelayOrKeyRead(DEL TIME);
return(O);
}

else
return(1);

}

int WriteComers(OutFilePtr,c)
FILE *OutFilePtr;
comers =c:
(
rewind(OutFilePtr);
if (c->left > c-c-right IIc-c-bottom > c-c-top IIc->bottom < 0 IIc-c-left < 0) (

printf(''\nComers outside allowed range");
printf(''\nFile still written to, comers written are :");
printf(''\nleft %d right %d bottom %d top %d" ,c->left,c->right,c->bottom,c->top);
DelayOrKeyRead(DEL TIME);
}

fwrite(c,sizeof(comers),l,OutFilePtr);
retum(1);
}

int putsufftx(infile,suffix)
char *infile, *suffix;
{
1* definitions *'
inti=O;

1* woddng *'
while (infile[i] !=' ') {

Appendix 1Source Code of Image Processing System Page96

if (infile[i] = '.')
infile[i] =' ';

else
i++;

}
if (suffix[O] 1= '. ')

sttcat(infile, ".");
strcat(infile,sufftx);
}

1*
SetSaveFileO
(
FileName outfile;
scanf(" %s", outfile);
square(l);
SaveFtle(outfile);
retum(OK);
}.,
1* SAVE_FILE ••
• saves a screen to a file •.. ,
int SaveFile(outfile)
FileName ·outfile;
(
1*

Purpose - To save an image onthe Pluto board to a file.

Method - A buffer is accepted of pixels and this is outputtoa file pixel
by pixel as characters ..,

1* definitions .,
char ·buffer;
int colour,x,y;
FaE ·out_file_ptr;

1* worldng·,
buffer= mallocfsizeoftcharj « PC_X_SIZE);
if'(1 CheckRoom(buffer, "SaveFile"»

retum(O);
out_file_ptr = fopen(outfile,"wb");
file_check(outfile,out_file_ptr);
fwrite(cor Jeft,sizeof(int),l,out_file_ptr);
fwrite(cor.right,sizeof(int),l,out_file_ptr);
fwrite(cor .bottom,sizeof(int),l,out_file_ptr);
fwrite(cor.top,sizeof(int),l,out_file_ptr);
for (y = cor.bottom;y < cor.top;y++)

for (x = cor.left;x < cor.right;x++)
J)utc(getpixel(x,y),out_file_ptr);

fclose(out_file_ptr);
free(buffer);

Appendix 1Source Code of Image Processing System Page97

}

/* FILE_CHECK •••

• sees that a file can be opened properly •.. ,
int file_check(infile.in_file_ptr)
FileName ·infile;
FILE ·in_file_ptr;
{
if (in_file_ptr == NULL) (

SetPage(O);
printf(''\nFIle access error on file %s" ,infile);
DelayOrKeyRead(DEL TIME);
}

retum(OK);
}

/*~ ••

• Oear the screen •.. ,
int clsO
(
printf(" 33[2J");
retum(OK);
}

/*VVAJT·· •••••••••••••••
• wait for an imput so screen may be viewed or to halt program for •
• a while. •... ,
int waitO
(-
union REGS in;
printf(''\nPress a key to continue\n");
in.h.ah = 0;
int86(KEYBOARDCALL,in,in);
retum(OK);
}

/* EXITl ••

• Tailor made exit function. •... ,
int exit1(value)

Appendix I Source Code of Image Processing System Page98

int value;
{
printf(''\nExit %<1" ,value);
switch (value) {

ease2 :
printf("\nFUe access error");
break;

defaullt :
printf("\nUnknown error");
break;

}
retum(OK);
}

1*DUMMY ••
• If a function is required but no action needed. •... ,
intdummyO
{
1*Do nothing .,
retum(OK);
}

CheckSufflx(infile,sufflx)
char ·infile;
char ·suffix;
{
inti=O;
while (infile[i] != '.' & inflle[i] !=' ')

i++;
if (suffix[O] != '. ')

i++;
retum(! strcmpi(infile[i],suffix»;
}

Appendix 1 Source Code of MATLAB Functions Created for Study
TIle macros below are Matlab macros, which are largely devoted to PCA analysis and presenta-
tion of data.

%PCA.M
function [p,N] = pea(A)
% ···PCA •••
% 1bis function returns principal components analysis matrix and
% the number of components required for different amounts of variance
% Format [p,n] = pca(a)
% Where p = pea matrix, each column is the next most important component
% n = matrix of variance for each number of PCs, ie. n(l) is
% variance of 1 PC, n(2) that of first 2 PCs etc
% A is a matrix with rows of observations, columns of which
% are the variables
cov_matrix = cov(A);
[1lO_entries,dummy]= size(cov_matrix);
if dummy < no_entries Idummy> no_entries

disp('Correlation matrix for pea analysis must be square')
return
end

[v,d] = eig(cov_matrix);
clear cov_matrix;
fori = l:no_entries

evalue(i) = d(i,i);
end

cleard;
[sorted,index] = sort(evalue);
clear evalue ;
tot_ev = 0.0;
for i = 1:no_entries

tot_ev = tot_ev + abs(sorted(i» ;
end

N(1) = abs(sorted(no_entries» I tot_ev;
for i = 2:no_entries

N(i) = N(i - 1)+ abs(sorted(1 + no_entries - i» I tot_ev;
end

clear sorted ;
for i = 1:no_entries

IlOIDl_eig= v(:,index(no_entries - i + 1»;
divisor = nOIDl(nolDl_eig,'fro');
nolDl_eig = nOIDl_eigI divisor;
P(:,i) = normeig;
end

clear v ;
clear nOIDl_eig;
clear divisor;
clear index;

Appendix 2 Source Code o/MATLAB Functions Created/or Study

%PCARED.M
function [r] = peared(a,p,n)

% ···PCARED···% This function returns n principal components of matrix a using
% pea matrix p, equivilent to putting other components to zero
% p is assumed to be columns of eigenvectors, with most important first
% followed by next most impotant in adjacent columns
% matrix a is rows of observations, columns of variables
% returning matrix r is similarly rows of observations, and n variables
% Format [r] = peared(a,p,n)
a= a';
p=p' ;
r= p(l:n,:)· a;
r=r' ;

%PCAREST.M
function [a] = pearest(r,p)
% ···PCAREST···
%Fonnat [a] = pearest(r,p)
%This function returns restored components of matrix a using
%pea matrix p
%p is assumed to be columns of eigenvectors, with most important first
%followed by next most impotant in adjacent colwnns
%matrix a is rows of observations, columns of variables
%matrix r is similarly rows of observations, and n variables
%routine is in effect an approximation to an inverse of pcared
%though the degree to which this is attained depends on the variance
%captured in the pcared routine
[no_rows,no_cols] = size(r) ;
a = r· (p(:,l:no_cols»';

%PCA2PAT.M
function [p,n] = pea2roch(a,file,oo_red_dim)
%••• PCA2ROCH (or GENETIC algorithms) •••
%This routine takes .mat files and finds principal components
%using pea function
%a = matrix of rows (observations) and columns (variables)
%file = file to store results into (PCs)
%DO_red_dim = number of Pes to use of reduced data set
%R, is reduced matrice to some number of most important PCAs
%retumed value p matrix ofPCs and n is vector of variance ofPCs
[p,n] = pea(a);
R = pcared(a.p.no_red_dim) ;
[no_patts,oo_cols] = size(a);
fori= l:no~

fprintf(file, 'O%gO,i)
for j = 1:oo_red_dim
fprintf(file,'%g ',R(iJ»
end

end

Page2

Appendix 2 Source Code 0/MATLAB Functions Created/or Study Page3

%PCAERR.M
function [D,E,R,A,S] = pcaerr(X'p,N)
%···PCAERR •••
%Fonnat [D,E,R,A] = pcaerr(X,P,N)
%1bis function gives the nonnalised mean square error (nmse)
%and sum of squares of error (sse) of sucessive rows of
%a matrix X which is original data, rows observations, cols variables
%and matrix A, similarly fonnatted, of restored values by some
%compression of data using PCA
%A is made within the routine by usingmatrix P (PeA components)
%and N, where N = number of components to consider
%The returned values are :
%D - vector of nmse, one for each observation (row) of X,A
%E - vector of sse, one for each observation (row) of X,A
%R - reduced martix made by transforming X using P for N dimensions
%A - restored observations after compression by PCA
%S - sum of square of X
[no_rows,no_cols] = size(X);
R = pcared(X,P,N) ;
A = pcarest(R,P) ;
for i = l:no_rows

[D(i),E(i),S(i)] = nmse(X(i,:),A(i,:» ;
end

return

Appendix 3 Source Code for C Unix Environment Programs
These functions are simple utilities mainly concerned with translation of data formats.

1*MakeNetC *'
main(argc,argv)
int argc;
char *argv[];
{
FILE *fp;
int NoInputs,NoHidden,NoOutputs;

if (argc 1= S) {
printf(,'\nFormat MakeNet <NetName> <NoInputs> <NoHidden> <NoOutputs>");
printf(''\nCreates network with one hidden layer");
printf(''\nand fully connected inputs - hidden - outputs\n");
return;
}

fp = fopen(argv[l],"wb");
if (fp=NULL)

printf(''\nUnable to open file %s",argv[l]);
NoInputs = atoi(argv[2]);
NoHidden = atoi(argv[3]);
NoOutputs = atoi(argv[4]);
fprintf(fp,"definitions:\n");
fprintf(fp,"nunits %d\n",NoHidden +NoInputs +NoOutputs);
fprintf(fp, "ninputs %d\n" ,NoInputs);
fprintf(fp, "noutputs %d\n" ,NoOutputs);
fprintf(fp, "end\nnetworlt:\n");
fprintf(fp,"%%r %d %d %d %d\n",NoInputs,NoHidden,O,NoInputs);
fprintf(fp,"%%r %d %D %d %d\n",NoInputs +NoHidden,NoOutputs,NoInputs,NoHidden);
fprintf(fp, "end\nbiases:\n");
fprintf(fp,"%%r %d %d\n" ,NoInputs,NoHidden +NoOutputs);
fprintf(fp, "end");
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page2

##include <stdio.h>
1* combine_pca_pat.c *'

main(argc,argv)
int argc;
char *argv[];
(
FaE *inI, *in2, *out;
int iJ.result;
char str(20);
int NoInputs;

1* worldng *'
if (argc 1= S) (

printf(''\nCombines targets of PDP file and PCS in MATLAB format to PDP file");
printf(''\ninfilel is PDP file created by pca2roch, infile2 is PDP file from which the matlab file ");
printf(''\nwas created to make infile 1");
printf(''\n*** NB. Pattern names are assumed to begin with pie. pl, p2 etc");

printf(''\nNoInputs is number of inputs in original PDP file (infile2)");
printf(''\nFonnat pdp2mat <infilel> <infile2> <outfile> <NoInputs>\n");
exit(O);
}

if «in I = fopen(argv[1),"rb"» =NULL) (
printf(''\nFailed to open %s\n",argv[l]);
exit(O);
}

if «in2 = fopen(argv[2),"rb"» = NULL) (
printf(''\nFailed to open %s\n" ,argv[2]);
exit(O);
}

if «out = fopen(argv[3),"wb"» = NULL) (
printf(''\nFailed to open %s\n" ,argv[3]);
exit(O);
}

NoInputs = atoi(argv[4]);
i=0;
j =0;
while «result = fscanf(inI,"%s",str» > 0 && str[0) 1= 'p') 1* get first PCA pattern *'

,
fprintf(out,"%s ",str);
while «result = fscanf(in2,"%s" ,str» > 0 && str[0) != 'p') 1* get first raw data pattern *'

,
while (result> 0) {

while «result = fscanf(inI,"%s",str» > 0 && str[O) != 'p') 1* get next PCA pattern *'
fprintf(out,"%s ",str);

fprintf(out, ''\n ");
for (i = O;i < NoInputs;i++)

fscanf(in2,"%s",str); 1* ignore inputs *'
while «result = fscanf(in2,"%s" ,str» > 0 && str[O) 1= 'p') 1* get next raw data pattern *'

fprintf(out, "%s ",str);
fprintf(out,''\n%s ",str);
}

fprintf(out, ''\n ");
fclose(in 1);
fclose(in2);

Appendix 3Source Code o/C Programs Created/or Unix Environment Page3

fclose(out);
}

Appendix 3Source Code o/C Programs Created/or Unix Environment Page4

~ im2matseg.c *'
#include <stdio.h>

main(argc.argv)
int argc;
char *argv[];
{
FILE *in. *out;
int NoRows,NoCols.ImX.1m Y,result;
char str[40];
int iJ,k.x.y;
int *buffer;

r working *'
if (argc 1=7) (

printf("\nConvert image file of several images to segments in");
printf("\nMA 1LAB fonnat");

printf(''\nFonnat im2segmat <infile> <outfile> <No. Cols> ");
printf(''\n<No. Rows> -cIm X size> -dm Y size>\n");
exit(O);
}

if «in = fopen(argv[l]."rb"» = NULL) (
printf("\nFailed to open %s'n".argv[1));
exit(O);
}

if «out = fopen(argv[2]."wb"» =NULL) (
printf(''\nFailed to open %s'n" .argv[2));
exit(O);
}

NoRows = atoi(argv[3));
NoCols = atoi(argv[4));
ImX = atoi(argv[S));
ImY = atoi(argv[6));
printf(''\nNoRows %d NoCols %d Original Size of file x %d by y %d \n" .NoRows,NoCols.lmX.1m V);
buffer = (int *) malloc(sizeof(int) * ImX * 1mY);
if (buffer = NULL) (

printf(''\nUnable to allocate enough memory for buffer");
exit(O);
}

i=j=k=x=y=O;
while «result = fscanf(in. "%s" .str» != EOF) {

if (result> 0) {
if (str[O]= '*') (

printf(''\nSegmenting file %s" .str);
for (y = O;y < 1mY;y++)

for (x = O;x < ImX;x++) (
result = fscanf(in."%d".&buffer[(y * 1mX) + x));
}

for (y = O;y < 1mY;y += NoRows) {
for (x = O;x < ImX;x += NoCols) {

for (i = y;i < y + NoRows;i++) {
for (j = x~ < x + NoCols~++) (

fprintf(out,"%d ".buffer[i * ImX + j));
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page5

fprintf(out,"%c%c",13,lO);
}

}
}

}
}

free(buffer);
fclose(m);
fclose(out);
}

Appendix 3Source Code o/C Programs Created/or Unix Environment Page6

1* im2raster.c .,

*include <stdio.h>
*include <pixrect/pixrect_hs.h>

##define NULL 0
##defineCMS_SIZE 256

unsigned char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];

main(argc,argv)
int argc;
char .argv[];
{
if (argc != 7) {
printf(~ormat ct2raster <infile> -coutfile> <width> <height> <depth> <ColourSca1e>");
printf(''\nWbere ColourSca1e is (r)edgreenblue (m)onochrome (h)otbody (g)rey scale/n");

exit(O); .
}

ct_to_rasterfile(argv[1],argv[2],atoi(argv[3]),atoi(argv[4]),atoi(argv[5]),argv[6]);

}

ct_to_rasterfile(in_file, out_file, width, height, depth,ColourSca1e)
char in_file[20];
char out_file[20];
int width, height, depth;
char ·ColourScale;
{

register int i,c;
int x,y;
FILE ·in, ·out;
struct rasterfile rh;
m.ras_magic = RAS_MAOIC;
m.ras_ width = width; .
m.ras_height = height;
m.ras_depth = depth;
m.ras_length = (width.height);
m.ras_type = RT_ST ANDARD;
m.ras_maptype = RMT_EQUAL_RGB;
m.ras_maplength = 768;
if «in = fopen(in_file, "rb"» =NULL) {

printf("Can't open %s'n", in_file);
}

else if «out = fopen(out_file, "wb"» =NULL) {
printf("Can't open %s'n", out_file);
}

if (ColourScale[O] = 'r')
red_green_blueO;

else if (ColourSca1e[O] = 'h ')
hot_bodyO;

else-if (ColourSca1e[O] = 'g')
grey _scaleO;

else
monoO;

Appendix 3Source Code o/C Programs Created/or Unix Environment Page7

fwrite(&m.sizeof(l'h),l,out);
if (ColourScale[O] 1= 'm ') (

fwrite(red,sizeof(char),CMS_SIZE,out);
fwrite(green,sizeof(char),CMS_SIZE,out);
fwrite(blue,sizeof(char),CMS_SIZE,out);
}

else
fwrite(red,sizeof(char), 1,out);

for (y = O;y < height;y++)
for (x = O;x <width;x++)

putc(getc(in),out);
fclose(in);
fclose(out);

/* NEGATIVE •••••••••••••••••••••
• Change LUT to negate image •................................ /

negativeO
{r definitions .,
int index,i;
unsigned char temp;

/* workings .,
index = 0;
for (I = O;i < CMS_SIZE /2;i++) {

temp = red[i];
red[i] = red[CMS_SIZE - 1- i];
red[CMS_SIZE - 1- i] = temp;
temp = green[i];
green[i] = green[CMS_SIZE - 1- I];
green[CMS_SIZE - 1- i] ~ temp;
temp = red[i];
blue[i] = blue[CMS_SIZE - 1- I];
blue[CMS_SIZE - 1- i] = temp;
}

}

/tltHOT_BODY·····························• set LUT to hot body scale •... /

hot_bodyO
{
r

Purpose - To set look-up table to hot body scale

Method - Sun routines are used to set
indivfdual pixel values from 0 to
maximum value in such a way that the display
does from hot to cold colours,

Appendix 3Source Code o/C Programs Created/or Unix Environment Page8

black is cold, red through range and finally
white for hottest.,

1* definitions .,
int index,i;

1*workings .,
for (1= O;i< CMS_SIZE;i++) {

if (i>= (9 • CMS_SIZE) '10) {
red[i] = eMS_SIZE - 1;
green[i] = (i - (9·eMS_SIZE) '10)· 10;
blue[i] = CMS_SIZE - 1;
}

else if (i < CMS_SIZE '10) {
red[i] = 0;
green[i] = 0;
blue[il= 10• i;
}

else {
red[i] = (10 • i) '9;
green[i] = 0;
blue[i] = eMS_SIZE - 1;
}

}
}

1*RED GREEN BLUE •••••••••••••••••••••••••••••••- -
• set LUT to red green blue colour scale •.. ,
red_green_blueO
{
1*

Purpose - To set a Look-up table so that the
red-green-blue colour system is employed.

Method - Low pixel values are set to red with
increasing ammounts of green added as the
value increases toa mid-point of green and then
blue is added till the highest pixel value is pure blue ..,

r definitions .,
int i;

1* workings·'
red[O] = green[O] = blue[O] = 0;
redeeMS_SIZE - 1]= green[CMS_SIZE - 1]= blue[CMS_SIZE - 1]= CMS_SIZE - 1;
for (i = l;i < eMS_SIZE;i++) {

if (i <= CMS_SIZE '2) {
red[i] = 2 • (i - 1);
green[i] = 0;

Appendix 3Source Code of C Programs Created/or Unix Environment Page9

blue[i] = CMS_SIZE - 2 • i;
}

else {
blue[i] = (CMS_SIZE - 1)- 2 • (i - CMS_SIZE '2);
green[i] = 2 • (i - CMS_SIZE '2);
blue[i] = 0;
}

}
}

1*MONO •••••••••••••••••••••••••••••••••
• sets up display to monochrome •... ,
mono(pr)
{
red[O] = 1;
retum(O);
}

1* GREY_SCALE ••••••••••••••••••••••••• t
grey _scale(pr)
{

1* definitions .,
int index,i;

1* workings .,
index = 0;
for (i = 0;1 < CMS_SIZE;i++)

red[i] = green[i] = blue[i] = i;
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page 10

1*make_nni.c .,

#include <stdio.h>

main(argc,argv)
int argc;
char .argv[];
{
FaH ·inl, .in2, ·out;
int iJ,resutt;
char strl(40),str.2[40),str3[40);

1* worldng .,
if (argc != 4) {

printf(''\nConvert PDP and .nni file made from MATLAB ");
printf(''\nto full .nni file by adding required outputs");

printf(''\nFonnat make_nni <PDP file> <.nni file> <output file>");
printf(''\nTbis program assumes a file (.nni file) has been created");
printf(''\nwhich contains inputs to NeuralWare") ;
printf(''\nThe corresponding pattern file from which it was created") ;
printf(''\nis scanned until a pattern name is found. ");
printf(''\nThe pattern name is used to determine the required output");
printf(''\n32 segments are assumed to complete each image") ;
printf(''\nIe. after 32 sets of numbers from .nni file, a required");
printf("\noutput is added");
exit(O);
}

if «inl = fopen(argv[1),"rb"» =NULL) {
printf("\nFailed to open %M",argv[l]);
exit(O);
}

if «in2 = fopen(argv[2),"rb"» =NULL) {
printf("\nFailed to open %M" ,argv[2]);
exit(O);
}

if «out = fopen(argv[3),"wb"» = NULL) {
printf("\nFailed to open %M" ,argv[3]);
exit(O);
}

while «result = fscanf(inl, "%s" ,strl» !=EOf) {
if (result> 0) {

while «result = fscanf(inl, "%s" ,strl»
!=EOF && strl[O) != 'p' && strl[O) != 'P')

,
1* get next pattern name .,

printf(''\n· input pattern starting at segment %s\n",strl);
fprintf(out,"%c%c. input pattern starting at segment %s%c%ci",13,10,strl,13,lO);

for (i = O;i < 32;i++) {
while «result = fscanf(in2,"%s" ,str.2»
!=EOF && str.2[O)!= '-' && str.2[O)!= '.' && (str.2[O)< '0' IIstr.2[O)> '9'»

,
for (j = O~< 4~++) {

printf(" %s" ,str.2);
fprintf(out," %s",str2);

Appendix 3 Source Code o/C Programs Created/or Unix Environment

result = fscanf(in2, "%s" ,str2);
}

printf('\n.");
fprlntf(out,"%c%c",13,10);

}
,. get 32 segments of reduced PCs */

if (str1[l] = 'P')
strcpy(str3,"d 1.0 ");

else
strcpy(str3, ltd 0.0 ");

if (str1[1]= 'C')
strcat(str3," 1.0 ");

else
strcat(str3,"0.0 ");

if (str1[4]= 'P')
strcat(str3," 1.0 ");

else
strcat(str3,"0.0 ");

if (str1[4]== 'L')
strcat(str3,"1.0 ");

else
strcat(str3,"0.0 ");

if (str1[4]= 'R')
strcat(str3,"1.0 H);

else
strcat(str3,"0.0 ");

if (str1[S] == 'P')
strcat(str3," 1.0 ");

else
strcat(str3,"0.0 ");

if (strl[S]= 'V')
strcat(str3," 1.0 ");

else
strcat(str3,"0.0 ");

if (strl[S]= 'U')
strcat(str3,"1.0 ");

else
strcat(str3,"0.0 ");

printf('\n.%s" ,str3);
fprintf(out,"%c%c%s" ,13,10,str3);
,. put in desired output */
for (i = l;i < 32;i++) {

while «result = fscanf(in1,"%s",str1»
1=EOF && str1[0] 1= 'p' && str1[0] != 'P')

,
1* ditch next 31 pattern names */

}
}
}

fprintf(out, "%c%c", 13, 10);
fclose(in 1);
fclose(in2};
fclose(out);
}

Page 11

Appendix 3 Source Code of C Programs Created/or Unix Environment Page 12

1*mat2pdp.c *'

:##include <stdio.h>

main(argc.argv)
int argc;
char *argv[];
{
~*in,*out;
int i,result;
typedef char string[12];
char str[20];
string *buffer;
int patt_IlOJ.no_cols;

1* working *'
if (argc 1=4) {

printf('~onnat pdp2mat <infile> <outfile> <No. Cols>\n");
exit(O);
}

if «in = fopen(argv[l]."rb"» = NULL) {
printf('~ailed to open %s\n" .argv[1]);
exit(O);
}

if «out = fopen(argv[2]."wb"» =NULL) (
printf('~ailed to open %s\n".argv[2]);
exit(O);
}

buffer= malloc(sizeof(char) * atoi(argv[3]));
if (buffer = NULL) {

printf('~ailed to allocate room for buffer");
exit(O);
}

i= 0;
patt_no= 0;
DO_cols = atoi(argv[3]);
while «result = fscanf(in."%s".str» 1=EOF) {

if (result> 0) {
if (i % no_cols = 0) (

fprintf(out, ''\np%d ".patt_DO);
for (j = O;j < 2~++)

ifG > 0)
fprintf(out, ''\n ");

for (i = O;i < DO_cols;i++)
fprintf(out," %s". buffer[i]);
if(i % 10=0)

fprintf(out, "\n");
}

strcpy(buffer[i % atoi(argv[3])].str);
}

}
fprintf(out;''\n'');
fclose(in);
fclose(out);
}

Appendix 3Source Code o/C Programs Created/or Unix Environment Page 13

#include <stdio.h>
1* n2m.c·'
main(argc,argv)
int argc;
char .argv[];
{
FILE .in,·out;
int ij,resuit;
char str[40];

1* worlting .,
if (argc 1=4) (

printf(''\nConvert NWORKS file to MATLAB fonnat");
printf(''\nFonnat n2m <infile> <outfile> <No. Cols>'n");
exit(O);
}

if «in = fopen(argv[1],"m"» = NULL) (
printf(''\nFailed to open %M",argv[l]);
exit(O);
}

if «out = fopen(argv[2],"wb"» =NULL) (
printf(''\nFailed to open %M" ,argv[2]);
exit(O);
}

i=0;
j =0;
while «result = fscanf(in,"%s",str»!= EOp) {

if (result> 0) {
if (str[O] 1= 'I' && str[O] 1= 'd' && str[O] 1= '.') (

1* as p was used to show pattern names, and • was used in later genetic experiments .,
fprintf(out," %s ",str);

i++;
if (!(i % atoi(argv[3l)) (

i= 0; ~
fprintf(out, "\n");
while «result = fscanf(in,"%s" .str)
1=EOF && str[O] 1= 'i').,

1* because there may be a target vector which we are not interested in .,
}

}
}
}

fprintf(out, "\n");
fclose(in);
fclose(out);
}

Appendix 3 Source Code of C Programs Created/or Unix Environment Page 14

1* p2m.c·/

:f#include <stdio.h>
main(argc,argv)
int argc;
char .argv[];
{
FILE .in.·out;
int iJ,result;
char str[40];

1* worldng */
if (argc 1=4) {

printf(''\nConvert PDP file to MATLAB format");
printf(''\nFonnat pdp2mat <infile> <outfile> <No. Cols>\n");
exit(O);
}

if «in = fopen(argv[l],"rb"» =NULL) {
printf(,'\nFailed to open %rn",argv[l]);
exit(O);
}

if «out = fopen(argv[2],"wb"» == NULL) (
printf(''\nFailed to open %rn",argv[2]);
exit(O);
}

i= 0;
j =0;
while «result = fscanf(in,"%s",str»!= EOF) {

if (result> 0) {
if (str[O] != 'p' && str[O] != 'P' && str[O] != '*') {

1* as p was used to show pattern names, and *was used in later genetic experiments */
fprintf(out, "%s ",str);

i++;
if (I(i % atoi(argv[3D» (

i= 0;)
fprintf(out, ''\n ");
while «result = fscanf(in,"%s",str»
!= EOF && str[O] 1= 'p' && strrO] 1= 'P' && str[O] 1= '*').•1* because there may be a target vector which we are not interested in */

}

}
}

fprintf(out, ''\n ");
fclose(in);
fclose(out);
}
1* translates training pattern for PDP to recall only, ie gets rid of target vectors to save room */

Appendix 3 Source Code o/C Programs Created/or Unix Environment

1* r2tp.c *'
#Rnc1ude <stdio.h>

main(argc,argv)
int argc;
char *argv[];
{
FILE *in, *out;
int i,result,no_inputs;
char str[40];
float *buffer;

'* worldng *'if (argc != 4) {
printf(,'\nFonnat pdp2mat <infile> <outfile> <No. Inputs>\n");
exit(O);
}

no_inputs = atoi(argv[3]);
buffer = malloc(sizeof(float) * atoi(argv[3]));
if(buffer= NULL) (

printf(''\nUnable to allocate enough room for float buffer ");
exit(O);
}

if «in = fopen(argv[I],"lb"» =NULL) (
printf(''\nFailed to open %s\n" ,argv[1]);
exit(O);
}

if «out = fopen(argv[2] ,"wb"» = NULL) {
printf(''\nFailed to open %s\n" ,argv[2]);
exit(O);
}

i=0;
while «result = fscanf(in, "%s" ,str»
1=EOF && str[O] 1= 'p' && str{O] != 'P')

).,
while (result != EOp) (

fprintf(out," %s ",str);
for (i = 1; i <= no_inputs;i++) (

result = fscanf(in,"%s" ,str);
fprintf(out,"%s ",str);

buffer[i - 1] = atof(str);
if«i % 10) =0 && i >0)

fprintf(out, ''\n ");
}

fprintf(out,''\n'');
for (i = 1; i <= atoi(argv[3]);i++) (

fprintf(out, "%f ",buffer[i - 1]);
if«i % 10) =0&& i > 0)

fprintf(out, "\n");
}

while «result = fscanf(in,"%s" ,str»
- != EOF && str[0] != 'p' && str[O] != 'P')

,
1* because there may be a target vector which we are not interested in *'

fprintf(out, "\n");

PageJ5

Appendix 3Source Code o/C Programs Created/or Unix Environment Page 16

}
fclose(in);
fclose(out);
}

Appendix 3Source Code o/C Programs Created/or Unix Environment Page 17

r raster2im.c */
#include <stdio.h>
#include <pixrect/pixrect_hs.h>

##defineTRUE 1
##define NULL 0
##defineCMS_SIZE 256

char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];

main(argc,argv)
int argc;
char *argv[];
{
if (argc != 3) {

printf(''\nFonnat raster2im <infile> <outfile> \n");
exit(O);
}

rasterfile2im(argv[1],argv[2J);
retum(TRUE);
}

rasterfile2im(in_file, out_file)
char in_file[20];
char out_file[20];
{

register int Le;
int x,y;
FILE *in, =out;
struct rasterfile rh;
if «in = fopen(in_file, "rb") =NULL) {

printf("Can't open %s\n", in_file);
}

else if «out = fopen(out_file, "wb") = NULL) {
printf("Can't open %s\n", out_file);
}

fread(&rll,sizeof(rll),l,in);
printf(''\nSize of image x %d y %d depth %d" ,rh.ras_ widtb.rll.ras_height,rh.ras_depth);
fread(red,sizeof(char),CMS_SIZE,in);
fread(green,sizeof(char),CMS_SIZE,in);
fread(blue,sizeof(char),CMS_SIZE,in);
fwrite(&rh.ras_ width,sizeof(int),l,out);
fwrite(&rll.ras_height,sizeof(int),l,out);

for (y = O;y < rll.ras_height;y++)
for (x =O;x < rh.ras_widtb;x++)

putc(getc(in),out);
printf("\n");

fclose(in);
fclose(out);

}

Appendix 3Source Code of C Programs Created/or UnixEnvironment PageJ8

1* raster2pic.c .,

#include <Stdio.h>
*include <pixrect/pixrect_hs.h>

#define TRUE 1
#define NULL 0
#define CMS_SIZE 256

char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];

main(argc,argv)
int argc;
char *argv[];
{
if (argc != 3) (

printf(,'\nFonnat raster2pic <infile> <outfile> \n");
printf('''n<infile> is raster file, <outfile> is ps file\n");

exit(O);
}

rasterfile2pic(argv[1],argv[2]);
retum(TRUE);
}

rasterfile2pic(in_file, out_file)
char in_file[20];
char out_file[20];
{
int Le;
int x,y;
FILE *in, *out;
struct rasterfile m;
if «in = fopen(in_file, "rh"» = NULL) (

printf("Can't open %s\n", ~_file);
} -

else if «out = fopen(out_file, "wb") = NULL) (
printf("Can't open %s\n", out_file);
}

fread(&m,sizeof(m),1,in);
printf(''\nSize of image x %d y %d depth %d'n" ,rh.ras_width,dl.ras_height,rh.ras_depth);
fread(red,sizeof(char),CMS_SIZE,in);
fread(green,sizeof(char),CMS_SIZE,in);
fread(blue,sizeof(char),CMS_SIZE,in);
fprintf(out," %% !PS\n");
fprintf(out, "/picstr %d string def\n" .mras;width);
fprintf(out,"45 140 translate \n");
fprintf(out,"132 132 scale\n");
fprintf(out,"%d %d %d [%d 00 %d 00]\n",
rh.ras_ width,rh.ras_height,rh.ras_depth,m.ras_ width,m.ras_height);
fprintf(out," (currentfile picstr readhexstring pop \nimage\n");
for (y =O;y < rh.ras_height ;y++) {

for (x = O;x < rh.ras_width;x++) {
if «x % 10) =0&& x> 0)

fprintf(out, ''\nH);
c = getc(in);

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page 19

if(e <= 15)
fprintf(out."0");

fprintf(out,"%x ", e);
}

fprintf(out, ''\n");
}

fprintf(out, "image\n");
fpriotf(out,"showpage \nil);
fclose(in);
fclose(out);
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page20

1* seg2pred.c·'

#include <stdio.h>
#include <pixrect/pixrect_hs.h>

#define TRUE 1
#define NULL 0
#define CMS_SIZE 256

char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];
char in_file[20];
char out_file[20];
struct rasterfile rh;

main(argc,argv)
int argc;
char .argv[];
{
~·in,·out;
int x,y,ij,result,Ce,Se,pat_no,image_no,BorderX,BorderY;
int RSample,itemp;
char str[40];
float ·image;
float border,temp,scale;
int NoPatternsUsed = 0;

1* worldng·'
if (argc 1= 8) (

printf(''\nConvert raster image file to Rochester/pDP fonnat");
printf(''\nTakes a series of overlapping segments of the image, puts all bar centre segment");
printf(''\nas a training input, centre segment used as desired output");
printf(''\nPurpose is to get surrounding area to predict inner area");
printf(''\n ••• Warning, use either both odd, or both even for Se, Ce pair and for Se, Ce pair");
printf(''\nAn outer border ~ added to the original image, which contains a specified constant");

printf(''\nFonnat seg2pred <infile> -coutflle> <Ce> <Se> <Border> <Scale> <RSample>\n");
printf("\nwhere Ce is size (length of sides) of central area to predict");

printf(''\nand Se is size of segments");
printf(''\nand Border is the value to set the border to");
printf(''\nand Scale is the scaling factor for inputs");
printf(''\nand RSample is the randomicity component where");
printf("\napprox 1 in <RSample> patterns are included");

printf(''\n ");
exit(O);
}

if «in = fopen(argv[1],"rb"» = NULL) (
printf(''\nFailed to open %s\n",argv[l]);
exit(O);
}

if «out = fopen(argv[2],"wb"» = NULL) (
printf(''\nFailed to open %s\n" ,argv[2]);
exit(O);
}

Ce = atoi(argv[3]);
Ce = atoi(argv[4]);
Se = atoi(argv[5]);

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page21

Se = atoi(argv[6]);
itemp = atoi(argv[7]);
border = (float) itemp;
itemp = atoi(argv[8]);
scale = (float) itemp;
RSample = atoi(argv[9]);
BorderX = (Se - Ce) /2;
BorderY = (Se - Ce) /2;
fread(&m,sizeof(m), 1,in);
printf("\nSize of image x %d y %d depth %d" ,m.ras_ width,rh.ras_height,m.ras_depth);
fread(red,sizeof(char),CMS_SIZE,in);
fread(green,sizeof(char),CMS_SIZE,in);
fread(blue,sizeof(char),CMS_SIZE,in);
printf("\nCreating training patterns useing segment size of %d by %d and central portion of %d by %d"
,Se,Se,Ce,Ce);
printf("\nand border of %d in x and %d in Y axes" ,BorderX,BorderY);
printf(''\nand Scale of %f' ,scale);
printf(''\nWith original image size %d by %d",rh.ras_width,rh.ras_height);
printf(''\nsampling about 1 in %d patterns",RSample);
printf(''\n ");
image = (float *) malloc(sizeof(float) * m.ras_width * m.ras_height);
if (image =NULL) {

printf(''\nInsufftcient room for image matrix to be built\n");
exit(O); .
}

srand(getpidO);
result= 1;
str[O] = ' ';
image_DO = 0;
for (y =O;y < m.ras_height;y++) {

for (x = O;x < rh.ras_width;x++) {
imagery * rn.ras;width + x] = (float) (getc(in» / scale;
}

}
for (y = -BorderY,pat_DO = O;y <:(rh.ras_ooight - Se + Bordery);y++) {

for (x = -BorderX;x < (m.ras_width - Se + BorderX);x++,pat_no++) {
if (randO % RSample = 0) {

NoPatternsUsed++;
fprintf(out, "*p%d ",pat_no);
for (i = O;i < Se;i++) {

for (j = O;j < Se;j++) {
if «i < BorderY II i >= (Se + Ce) /2)
II (j < BorderX II j >= (Se + Ce) /2» {

if (x + j < 0 II Y + i < 0 II x + j >= rh.ras_width
II y + i >= m.ras_height) {

fprintf(out, "%f" ,border);
}

else {
temp = image[(y + i) * rh.ras_width + (x + j)];
fprintf(out,"%f" ,temp);
}

}
}

fprintf(out, ''\n ");

Appendix 3Source Code o/C Programs Created/or Unix Environment Page22

for (i = O;i< Ce;i++)
for (j = O;j< Ce;j++) (

temp = image[(y+(Se-Ce)12 + i) • rh.ras_width + (x + (Se-Ce)/2 +j)];
fprintf(out," %f ",temp);
}

fprintf(out,'''n'');
}

}
}

printf('''n%d patterns used" ,NoPatternsUsed);
fprintf(out, '''n");
fclose(in);
fclose(out);
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page23

1* seg2predNoBorder.c *'
#include <stdio.h>
#include <pixrect/pixrect_hs.h>

#define TRUE 1
#define NULL 0
#define CMS_SIZE 256

char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];
char in_file[20];
char out_file[20];
struct rasterfile rh;

main(argc,argv)
int argc;
char *argv[];
{
FILE *in, *out;
int x,y,iJ,result,Ce,Se,pat_no,image_no,BorderY;
int RSample,itemp;
char str[40];
float *image;
float border,temp,scale;
int NoPatternsUsed = 0;
int Ring,NoOuterRings;

1*worlting *'
if (argc != 7) {

printf(''\nConvert raster image file to Rochester/pDP fonnat");
printf("\nTakes a series of overlapping segments of the image, puts all bar centre segment");
printf(''\nas a training input, centre segment used as desired output");
printf(''\nPurpose is to get surrounding area to predict inner area");
printf("\nSerial square perimeters of decreasing size fonn the input set");

printf(''\nNo outer border is ~ded to the original image");
printf(''\nFonnat seg2predNoBorder <infile> <outfile> <Ce> <Se> <Scale> <RSample>\n");
printf("\nwhere Ce is size (length of sides) of central area to predict");

printf(''\nand Se is size of segments");
printf(''\nand Scale is the scaling factor for inputs");
printf(''\nand RSample is the randomicltycomponera where");
printf(''\napprox 1 in <RSample> patterns are included");

printf("\n");
exit(O);
}

if «in = fopen(argv[1],"rb"» =NULL) {
printf(''\nFailed to open %s\n",argv[l]);
exit(O);
}

if «out = fopen(argv[2],"wb"» = NULL) {
printf(''\nFailed to open %s\n" ,argv[2]);
exit(O);
}

Ce = atoi(argv[3]);
Se = atoi(argv[4]);
if(Se<= Ce II(Se - Ce) % 2) {

printf(''\nSe and Ce must be both odd or even and Se > Ce\n");

Appendix 3Source Code of C Programs Created/or Unix Environment Page24

exit(O);
}

NoOuterRings = (Se - Ce) /2 ;
itemp = atoi(argv[S]);
scale = (float) itemp;
RSample = atoi(argv[6]);
fread(&m.sizeof(rh),I,in);
printf(~ize of image x %d y %d depth %d",rh.ras_width,rh.ras_height,rh.ras_depth);
fread(red,sizeof(char),CMS_SIZE,in);
fread(green,sizeof(char),CMS_SIZE,in);
fread(blue,sizeof(char),CMS_SIZE,in);
printf(''\nCreating training patterns useing segment size of %d by %d and central portion of
%d by %d" ,Se,Se,Ce,Ce);
printf("\nand Scale of %f',scale);
printf(''\nWith original image size %d by %d",rh.ras_width,rh.ras_height);
printf(''\nsampling about 1in %d panerns",RSample);
printf(''\n ");
image = (float.) malloc(sizeof(float) • rh.ras_width· rh.ras_height);
if (image = NULL) {

printf(''\nInsufficient room for image matrix to be builrn");
exit(O);
}

srand(getpidO);
result= 1;
str[O] = ' ';
image_no = 0;
for (y = O;y< rh.ras_height;y++) {

for (x = O;x< rh.ras_width;x++) {
imagery • rh.ras_width + x] = (float) (getcdn) / scale;
}

}
for (y = O,pat_oo = O;y< (rh.ras_height - Se);y++) {

for (x = O;x< (rh.ras_width - Se);x++,pat_no++) {
if (randO % RSample =0) {

NoPatternsUsed++;
fprintf(out, ".p%d ",pat_no);
for (Ring = O;Ring <NoOuterRings;Ring++) {

j=y+Ring;
for (i = x + Ring;i < x + Se - Ring;i++) {

temp = image[j • rh.ras_width + i];
fprintf(out, "%f" ,temp);

}
fprintf(out,''\n'');

for (++j~ < y + Se - Ring;j++) {
temp = image[j • rh.ras_ width + i];
fprintf(out, "%f ",temp);

}
fprintf(out, ''\n ");

for (--i,--j;i > x + Ring;i--) {
temp = image[j • rh.ras_width + i];
fprintf(out, "%f ",temp);

}
fprintf(out,''\n");

for (j--;j > y + Ring;j--) {
temp = image[j • rh.ras_width + i];

Appendix 3Source Code o/C Programs Created/or Unix Environment Page25

fprintf(out,"%f" ,temp);
}
}

fprintf(out, ''\nil);
for (i =O;i< Ce;i++)

for (j = frJ < Ce;j++) {
temp = image[(y+(Se-Ce)/2 + i)· rh.ras_width + (x + (Se-Ce)/2 + j)];
fprintf(out,"%f" ,temp);
}

fprintf(out, "\nil);
}

}
}

printf("\n%d patterns used",NoPatternsUsed);
fprintf(out,''\n");
fclose(in);
fclose(out);
}

Appendix 3 Source Code ojC Programs Created/or Unix Environment Page26

1* seg2predaa.c *1

#include <stdio.h>
#include <pixrect/pixrect_hs.h>

#define TRUE 1
#define NULL 0
#define CMS_SIZE 256

char red[CMS_SIZE],green[CMS_SIZE],blue[CMS_SIZE];
char in_file[20];
char out_file[20];
struct rasterfile rh;

main(argc,argv)
int argc;
char *argv[];
{
FD..E *in, *out;
int x,y,ij,result.seS,pat_DO,image_no;
int RSample,itemp;
char str[40];
float *image;
float temp,scale;
int NoPattemsUsed = 0;
int Ring,NoRings,ys,ye,xs,xe;

1* working *1
if (argc 1= 6) {

printf(I'\nConvert raster image file to PDP format auto-associative (aa) program");
printf(''\nTakes a series of overlapping segments of the image. It);
printf(''\nand creates pattern file as a square matrix, NOT like seg2pred");

printf(''\nFormat seg2pred <infile> <outfile> <Segment Size> <Scale> <RSample>\n");
printf("\nand Scale is the ~aling factor for inputs");
printf(''\nand RSample is the randomicity component where");
printf(''\napprox 1 in <RSample> patterns are included");

printf(''\nlt);
exit(O);
}

if «in = fopen(argv[l] ,"rb"» =NULL) {
printf(''\nFailed to open %m",argv[l]);

. exit(O);
}

if «out = fopen(argv[2],"wb"» = NULL) {
priotf(''\nFailed to open %m" .argv[2]);
exit(O);
}

SeS = atoi(argv[3]);
seS= Ses;
itemp = atoi(argv[4]);
scale = (float) itemp;
RSample =-atoi(argv[S]);
fread(&rh,sizeof(rh),l.in);
printf(''\nSize of image x %d y %d depth %d",rh.ras_ width,rh.ras_height,rh.ras_depth);
fread(red,sizeof(char),CMS_SIZE,in);

Appendix 3 Source Code of C Programs Created/or Unix Environment Page27

fread(green,sizeof(char),CMS_SIZE,in);
fread(blue.sizeof(char),CMS_SIZE,in);
printf('\nCreating training patterns useing segment size of %d by %d ",Ses,SeS);
printf("\nand Scale of %f" ,scale);
printf('\nWith original image size %d by %d" ,rh.ras_width,rh.ras_height);
printf('\nsampling about 1in %d patterns" ,RSample);
printf('\n H);
image = (float *)malloc(sizeof(float)· Ih.ras_width· Ih.ras_height);
if (image = NULL) (

printf("\oInsufficient room for image matrix to be buih'D");
exit(O);
}

srand(getpidO);
result= 1;
str[O] = ' ';
image_no = 0;
for (y =O;y < m.ras_height;y++) {

for (x =O;x <m.ras_width;x++) {
image[y • m.ras_ width + xl = (float) (getc(in» / scale;

}
}

NoRings = ses /2 + SeS % 2;
for (y =O,pat_1lO=O;y < (m.ras_height -SeS);Y++) {

for (x = O;x < (Ih.ras_width - Ses);x++,pat_nO++) {
if (randO % RSample = 0) {

NoPatternsUsed++;
fprintf(out, ".p%d ",pat_DO);
for (i = y;i < y + SeS;i++) {

forG = x;j < x + SeS~++) {
temp = image[i * m.ras_ width + jl;
fprintf(out, "%f" ,temp);
}

}
fprintf(out, '\0.");
}

}
}

printf('\n.%d patterns used" ,NoPatternsUsed);
fprintf(out, '\0. ");
fclose(in);
fclose(out);
}

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page28

1* seg2predaaRing.c *'
*include <stdio.h>
*include <pixrect/pixrect_hs.h>

#define TRUE 1
#define NULL 0
#define CMS_SIZE 256

char red[CMS_SIZE].green[CMS_SIZE].blue[CMS_SIZE];
char in_file[20];
char out_file[20];
struct rasterfile rh;

main(argc.argv)
int argc;
char *argv[];
{
FILE *in.=out;
int x.y.iJ.result.SeS.pat_no.image_no;
int RSample.itemp;
char str[40];
float *image;
float temp.scale,
int NoPatternsUsed = 0;
int Ring,NoRings.ys.ye.xs,xe;

1*woddng *'if (argc != 6) {
printf(''\nConvert raster image file to PDP format auto-associative (aa) program");
printf(''\nTakes a series of overlapping segments of the image. ");
printf("\nand creates pattern file with rings of data as in seg2pred");

printf(''\nFonnat seg2pred <infile> <outfile> <Segment Size> <Scale> <RSample>\n");
pJintf("\nand Scale is the scaling factor for inputs");
printf(''\nand RSample is ~ randomicity component where");
printf(''\napprox 1 in <RSainple> patterns are included");

printf(''\n H);
exit(O);
}

if «in = fopen(argv[1]."rb"» = NULL) {
printf(''\nFailed to open %s\n" .argv[l]);
exit(O);
}

if «out = fopen(argv[2],"wb"» = NULL) {
printf(''\nFailed to open %s\n" .argv[2]);
exit(O);
}

SeS = atoi(argv[3]);
seS = Ses;
itemp = atoi(argv[4]);
scale = (float) itemp;
RSample = atoi(argv[S]);
fread(&rll,sizeof(rll).l,in);
pJintf("\nSize of image x %d y %d depth %d" .m.ras;width,rll.ras_height,rll.ras_depth);
fread(red,sizeof(char).CMS_SIZE,in);
fread(green.sizeof(char).CMS_SIZE,in);

Appendix 3Source Code of C Programs Created/or Unix Environment Page29

fread(blue,sizeof(char),CMS_SIZE,in);
printf("\nCreating training patterns useing segment size of %d by %d ",Ses,SeS);
printf("\nand Scale of%f' ,scale);
printf("\n With original image size %d by %d" ,rh.ras_ width,rh.ras_height);
printf("\nsampling about 1in %d patterns",RSample);
prin1f(''\11");
image = (float·) malloc(sizeof(float) • m.ras_width· m.ras_height);
if (image = NULL) (

prin1f("\nInsufficient room for image matrix to be built'll");
exit(O);
}

srand(getpidO);
result = I;
str[O) = ' ';
image_no = 0;
for (y = O;y< m.ras_height;y++) {

for (x = O;x< rh.ras_width;x++) (
image[y • m.ras_width + x) = (float) (getc(in» / scale;

}
}

NoRings = ses /2 + SeS % 2;
for (y = O,pat_no = O;y < (m.ras_height -SeS);Y++) {

for (x = O;x< (m.ras_width - Ses);x++,pat_nO++) {
if (randO % RSample =0) (.

NoPatternsUsed++;
fprintf(out, "·p%d ",pat_no);
for (Ring = O;Ring <NoRings;Ring++) {

j=y+Ring;
for (i = x + Ring;i < x + seS - Ring;i++) (

temp = imageU • m.ras_width + i);
fprintf(out,"%f" ,temp);

}
fprintf(out, ''\11'');

for (++j~ < y + Ses - Ring;j++) (
temp = imagej] • m.ras_width + i];
fprintf(out, "%f ",temp);

}
fprintf(out, ''\11");

for (--i,--j;i > x + Ring;i--) (
temp = imageU • m.ras_width + i);
fprintf(out, "%f" ,temp);

}
fprintf(out, ''\n'');

for (j--;j > y + Ring;j--) (
temp = imageU • m.ras_width + i);
fprintf(out, "%f" ,temp);

}
fprintf(out, ''\n ");

}
fprintf(out, ''\n'');
}

}
printf(''\n%d patterns used" ,NoPatternsUsed);
fprintf(out, "'n");

Appendix 3 Source Code o/C Programs Created/or Unix Environment Page30

fclose(in);
fclose(out);
}

Appendix 3 Source Code of C Programs Created/or Unix Environment Page31

,. tp2r.c *'

,. translates training pattern for PDP to recall only, ie gets rid of target vectors to save room *'

#include <stdio.h>

main(argc,argv)
int argc;
char *argv[];
{
FILE *in, *out;
int ij,result,no_inputs;
char str[40];

,. woIting *'
if (argc != 4) (

printf(''\nMaking PDP file with only inputs from one with inputs and desired outputs");
printf(''\nFonnat tp2r <infile> <outfile> <No. Inputs>\n");
exit(O);
}

DO_inputs = atoi(argv[3]);
if «in = fopen(argv[I],"rb"» = NULL) (

printf("\nFailed to open %&\o",argv[1]);
exit(O);
}

if «out = fopen(argv[2],"wb"» = NULL) (
printf(''\nFailed to open %&\0",argv[2]);
exit(O);
}

i=j=O;
while «result = fscanf(in, "%s" ,str»
!= EOF && str[O] != 'p' && str[O] != 'P').,
while (result != EOF) (

printf(''\nPanern %d being transferred with %d inputs"j,no_inputs);
j++;
fprintf(out,"%s ",str);
for (i= 1; i <= DO_inputs;i++) (

result = fscanf(in, "%s" ,str);
fprintf(out,"%s ",str);

if«i % 10)=0&& i >0)
fprintf(out, ''\nIt);

}
while «result = fscanf(in,"%s" ,str»

!= EOF && str[0] != 'p' && str[O] != 'P').,
,. because there may be a target vector which we are not interested in *'

fprintf(out, ''\0");
}

fclose(in);
fclose(out);
}

Appendix 4 Medical Imaging System
To manipulate and pre-process images an imaging system was built. For speed and compatibility
with other programs the language C was chosen. Most image processing systems, ANNs and GAs
are built using C. The source code is shown in Appendix 1. This document describes the func-
tions in the package.

1. Main Subroutines
A set of menus are displayed, which may be nested to arbitrary levels, and in which the user
chooses an item by use of the cursor key and the RETURN key. All functions which require a
filename use a function which displays the files available, allowing directory changes, and selec-
tion of the file by use of cursor keys and RETURN key. The mouse is supported as an alternative
to cursor keys and RETURN key.

2. Graphics Functions
Images acquired as frame grabbed or directly transferred from the gamma camera may be
acquired and stored with a header indicating the dimensions of the image. Median filtering is
done to reduce the image where necessary. Images may be displayed in the appropriate mode
(EGA, VGA etc) automatically, and 256 VGA is supported by directly writing to screen memory.
Except in VGA 256 colours, where one screen is allowed, 4 screens are available so that the user
may have up to 3 images ready for display which may be displayed by pressing a number from 1
to 3. Screen 0 is reserved for menu displays, directory infoRnation etc.
Images may be displayed as grey scale, red-green-blue or hot body scale.

3. Pre-processing Functions
The following filters have been implemented :-

I.Median
2. Sobel
3. Arbitrary digital filters using a 3 by 3 spatial domain filter.

Standardisation of images or image segments is effected using a variable size rectangle median
filter technique.

4. File Conversion Functions
As files may be required in a variety of fonnats for mathematical analysis, or input to ANNs etc,
a suite of transfer functions was provided. Images or portions of images may be transferred into
various ANN (pOP, Rochester, NeuralWare) packages. Flies may be specified as wild cards or
single files. Raster scanning and random selection of raster scans are supported.

5. Image Manipulation
Images may be reflected in X or Y axes, or turned around, or upside down. Image expansion is
effected by copying pixels. Rectangular areas may be inserted from other images, or saved to a
new filename. A subtraction of one rectangular area with another is achieved by XORing a mov-
ing rectangle with the image behind it. This was used to obtain perfusion minus ventilation scans.
Segmentation of images is achieved by the technique described in Castleman 1. Thresholding of
images using upper and lower thresholds is allowed. Contouring-is available.

6. Utilities
Many small but useful housekeeping functions were created, e.g. to check a variable is not point-
ing to NULL, checking file existence, setting graphics modes etc.

Appendix 4 Medical/maging System Page2

References
1. Castleman K.R. Digital/mage Processing, Prentice Hall, 1979.

Appendix 5 Information Taken from Experts In Nudear Medidne
To build an expert system the relevant rules must be elicited from experts. This was attempted in
several visits to medical centres, the details of which are given below.

1. Walsgrave Hospital
A series of lung scans were observed with Mr. John Barham, a medical physicist, and he stated
reasons why scintigrams were considered normal or otherwise. The following rules were com-
plied based on these statements :-

1.Lungs should come to a point in the posterior oblique view.
2. Outlines of the lung should be smooth.
3. Lungs should come down to the same level.
4. A reduction in lung area visualised up from the base or down from the top of the lung is
abnormal.
S. A reduction in activity inside a lung is abnormal.
6. A defect which is matched on ventilation and perfusion is not a PE
7. A defect which is present in perfusion but not ventilation is a PE.
8. A defect which is present in ventilation but not perfusion is not a PE but might be
COAD.
9. A slight diminution of activity in perfusion not matched in ventilation but not seen in any
other view is not a definite PE.
10. A PE is usually wedge shaped.
11. Matched raised lung defects are probably effusions.
12. Matched unequal lungs may be old PEs or carcinoma.
13. There should be a straight line across the base of the lungs in the posterior view.
14. An apparent defect in the area of the heart is probably cardiac shadow. If this is seen in
oblique view then the anterior and posterior views should be checked to confirm/deny ori-
gin as cardiac shadow.
15.An enlarged heart gives a larger cardiac shadow.
16. A white line down the mid-line of a lung is caused by the spinal column, sternum and
oesophagus, and is normal.
17. Large breasted females give reduced lower lung uptake.
18. Patchy matched defects or indentations suggest COAD.
19. An indentation may be a defect
20. A defect in the centre of the lung which is matched may be an enlarged hilium.
21. Ail apparent matched defect in the top of the lungs may be a gravitational artifact.
22. A matched mid-line ragged edge may be spinal curvature.

2. Visit to Queen Elizabeth nHospital, Edgbaston, Birmingham,
Further rules were elicited from the Dr. Burroughs, a consultant radiologist specialising in
nuclear medicine.

23. A perfusion defect unmatched in ventilation is a vascular defect which is usually but not
always a PE Other rarer possibilities include vasculitis, collagen diseases (e.g. systemic
lupus erythematous (SLE), polyarteritis nodosa). Non PE defects are only a small minority
of cases.
24. A wedge shaped, peripheral perfusion defect with a clear ventilation study is definitely a
PE

Appendix 5 l'fformation Takenfrom Experts in Nuclear Medicine Page2

25. Pulmonary arteriography is used to confirm diagnoses sometimes.
26. About 75% of diagnoses may be made with confidence. This is similar to the estimate of
typical nuclear imaging of about 70% given in 1.
27. Mediastinal obstruction causes some 2 cm. to be lost on X-Ray view.
28. Early fluid imbalance is not seen on X-Ray, e.g. pulmonary oedema.

Possible uses of lung scans in addition to diagnosing PE suggested include :
i) Tumours - affect ventilation or perfusion.
ii) Inftamatory states - pneumonia, infection in immunosuppressed patients (e.g. tran-
splants).

Incidental findings of lung scans include:
i)COAD
ii) Abnonnal ventilation pattern, which mayor may not have clear evidence on X-Ray.

It is noted that the rules given are sometimes inconsistent For example the rules 7 and 23. In
these cases it appears that a rule has been given which is usually COITeCt, but under some cir-
cumstances fails. In the 7 versus 23 contradiction, it is seen that unmatched perfusion defects are
not always PE, but usually they are, so rule 7 is generally correct, but fails in rare cases.

References

1. Niemann H, Bunke H, Hofmann I, Sagerer 0, Wolf F, and Feistel H, "A Knowledge Based
System for Analysis of Oated Blood Pool Studies, to iEEE Transactions, vol. PAMI-7:3, pp.
246-259, 1985.

	WRAP_thesis_coversheet2_Anthony_1991.pdf
	293883.pdf

