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Measurement ofD0– �D0 Mixing Parameters and Search for CP Violation Using
D0 ! Kþ�� Decays
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(LHCb Collaboration)
(Received 25 September 2013; published 18 December 2013)

Measurements of charm mixing parameters from the decay-time-dependent ratio of D0 ! Kþ�� to

D0 ! K��þ rates and the charge-conjugate ratio are reported. The analysis uses data, corresponding

to 3 fb�1 of integrated luminosity, from proton-proton collisions at 7 and 8 TeV center-of-mass

energies recorded by the LHCb experiment. In the limit of charge-parity (CP ) symmetry, the mixing

parameters are determined to be x02 ¼ ð5:5� 4:9Þ � 10�5, y0 ¼ ð4:8� 1:0Þ � 10�3, and RD ¼
ð3:568� 0:066Þ � 10�3. Allowing for CP violation, the measurement is performed separately for D0

and �D0 mesons yielding AD ¼ ð�0:7� 1:9Þ%, for the direct CP-violating asymmetry, and 0:75< jq=pj
<1:24 at the 68.3% confidence level, for the parameter describing CP violation in mixing. This is the

most precise determination of these parameters from a single experiment and shows no evidence for

CP violation.

DOI: 10.1103/PhysRevLett.111.251801 PACS numbers: 11.30.Er, 12.15.Ff, 13.25.Ft, 14.40.Lb

Mass eigenstates of neutral charm mesons are linear
combinations of flavor eigenstates jD1;2i¼pjD0i�qj �D0i,
where p and q are complex parameters. This results in
D0– �D0 oscillation. In the limit of charge-parity (CP) sym-
metry, the oscillation is characterized by the difference in
mass �m � m2 �m1 and decay width �� � �2 � �1

between the D mass eigenstates. These differences are
usually expressed in terms of the dimensionless mixing
parameters x � �m=� and y � ��=2�, where � is the
average decay width of neutralDmesons. If CP symmetry
is violated, the oscillation rates for mesons produced asD0

and �D0 can differ, further enriching the phenomenology.
Both short- and long-distance components of the amplitude
contribute to the time evolution of neutralDmesons [1–3].
Short-distance amplitudes could include contributions
from non-standard-model particles or interactions, possi-
bly enhancing the average oscillation rate or the difference
betweenD0 and �D0 meson rates. The study of CP violation
inD0 oscillation may lead to an improved understanding of
possible dynamics beyond the standard model [4–7].

The first evidence for D0– �D0 oscillation was reported in
2007 [8,9]. By 2009, the hypothesis of no oscillation was
excluded with significance in excess of 10 standard devia-
tions [10] by combining results from different experiments
[8,9,11–17]. In 2012, the LHCb experiment reported the
first observation from a single measurement with greater
than 5 standard deviation significance [18], which has been
recently confirmed by the CDF experiment [19].

This Letter reports a search for CP violation in D0– �D0

mixing by comparing the decay-time-dependent ratio of
D0 ! Kþ�� toD0 ! K��þ rates with the corresponding
ratio for the charge-conjugate processes. An improved
determination of the CP-averaged charm mixing parame-
ters with respect to our previous measurement [18] is also
reported. The analysis uses data corresponding to 1:0 fb�1

of integrated luminosity from
ffiffiffi
s

p ¼ 7 TeV pp collisions
recorded by LHCb during 2011 and 2:0 fb�1 from

ffiffiffi
s

p ¼
8 TeV collisions recorded during 2012. The neutral D
flavor at production is determined from the charge of the
low-momentum pion �þ

s in the flavor-conserving strong-
interaction decay D�þ ! D0�þ

s . The inclusion of charge-
conjugate processes is implicit unless stated otherwise.
The D�þ ! D0ð! K��þÞ�þ

s process is denoted as right
sign (RS), and D�þ ! D0ð! Kþ��Þ�þ

s is denoted as
wrong sign (WS). The RS decay rate is dominated by a
Cabibbo-favored amplitude. The WS rate arises from the
interfering amplitudes of the doubly Cabibbo-suppressed
D0 ! Kþ�� decay and the Cabibbo-favored �D0 !
Kþ�� decay following D0– �D0 oscillation, each of similar
magnitude. In the limit of jxj, jyj � 1, and assuming
negligible CP violation, the time-dependent ratio RðtÞ of
WS-to-RS decay rates is [1–4]

RðtÞ � RD þ ffiffiffiffiffiffiffi
RD

p
y0

t

�
þ x02 þ y02

4

�
t

�

�
2
; (1)

where t is the decay time, � is the average D0 lifetime,
and RD is the ratio of suppressed-to-favored decay rates.
The parameters x0 and y0 depend linearly on the mixing
parameters as x0 � x cos�þ y sin� and y0 � y cos��
x sin�, where � is the strong-phase difference between
the suppressed and favored amplitudes AðD0!Kþ��Þ=
Að �D0!Kþ��Þ¼� ffiffiffiffiffiffiffi

RD

p
e�i�. Allowing forCP violation,
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the WS rates RþðtÞ and R�ðtÞ of initially produced D0 and
�D0 mesons are functions of independent sets of mixing
parameters ðR�

D; x
02�; y0�Þ. A difference between Rþ

D and

R�
D arises if the ratio between the magnitudes of suppressed

and favored decay amplitudes is not CP symmetric (direct
CP violation). Violation of CP symmetry either in mixing
jq=pj � 1 or in the interference between mixing and
decay amplitudes ��arg½qAð �D0!Kþ��Þ=pAðD0!
Kþ��Þ����0 are usually referred to as indirect CP
violation and would result in differences between
ðx02þ; y0þÞ and ðx02�; y0�Þ.

The LHCb detector [20] is a single-arm forward spec-
trometer covering the pseudorapidity range 2<�< 5,
designed for the study of particles containing b or c quarks.
Detector components particularly relevant for this analysis
are the silicon vertex detector, which provides reconstruc-
tion of displaced vertices of b- and c-hadron decays; the
tracking system, which measures charged particle mom-
enta with relative uncertainty that varies from 0.4% at
5 GeV=c to 0.6% at 100 GeV=c, corresponding to a typi-
cal mass resolution of approximately 8 MeV=c2 for a two-
body charm-meson decay; and the ring-imaging Cherenkov
detectors, which provide kaon-pion discrimination [21].
The magnet polarity is periodically inverted, and approxi-
mately equal amounts of data are collected in each configu-
ration to mitigate the effects of detection asymmetries. The
online event-selection system (trigger) [22] consists of a
first-level hardware stage based on information from the
calorimeter and muon systems, followed by a software
high-level trigger.

Events with D�þ candidates consistent with being pro-
duced at the pp collision point (primary vertex) are
selected following Ref. [18]. In addition, a WS candidate
is discarded if resulting from a D0 candidate that, associ-
ated with another pion, also forms a RS candidate with
MðD0�þ

s Þ within 3 MeV=c2 of the known D�þ mass. This
removes about 15% of the WS background with negligible
signal loss. The two-body D0�þ

s mass MðD0�þ
s Þ is com-

puted using the known D0 and �þ masses [23] and their
reconstructed momenta [18]. In Ref. [18], we used events
selected by the hardware trigger based on hadron calorime-
ter transverse-energy depositions that were geometrically
matched with signal final-state tracks. In the present ana-
lysis, we distinguish two trigger categories. One category
consists of events that meet the above trigger requirement
(triggered-on-signal, TOS). The other comprises events
with candidates failing the track-calorimeter matching
and events selected based on muon hardware triggers

decisions (TOS). The two subsamples contribute approxi-
mately equal signal yields with similar purities. However,
they require separate treatment due to their differing kine-
matic distributions and trigger-induced biases.

The RS and WS signal yields are determined by fitting
the MðD0�þ

s Þ distribution of D0 candidates with recon-
structed mass within 24 MeV=c2 of the known value. The

time-integrated MðD0�þ
s Þ distributions are shown in

Fig. 1. The smooth background is dominated by favored
�D0 ! Kþ�� decays associated with random �þ

s candi-
dates. The sample contains 1:15� 105 (1:14� 105) signal
WSD0 ( �D0 ) decays and approximately 230 times more RS
decays. Yield differences between D0 and �D0 decays are
dominated by differences in charm-anticharm production
rates and reconstruction efficiencies. Each sample is div-
ided into 13 subsamples according to the candidate’s
decay time, and signal yields are determined for each using
shape parametrizations determined from simulation and
tuned to data [18]. We assume that for a given D� meson
flavor, the signal shapes are common toWS and RS decays,
while the descriptions of the background can differ. The
decay-time-dependent WS-to-RS yield ratios Rþ and R�
observed in the D0 and �D0 samples, respectively, and their
difference are shown in Fig. 2. These are corrected for the
relative efficiencies for reconstructing K��þ and Kþ��
final states.
The mixing parameters are determined by minimizing a

�2 variable that includes terms for the difference between
the observed and predicted ratios and for systematic devi-
ations of parameters
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FIG. 1 (color online). Distribution of MðD0�þ
s Þ for selected

(a) right-sign D0 ! K��þ and (b) wrong-sign D0 ! Kþ��
candidates.
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�2 ¼ X
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� þ �2
B

þ �2
p: (2)

The measured WS-to-RS yield ratio and its statistical
uncertainty in the decay-time bin i are denoted by r�i and
��

i , respectively. The predicted value for the WS-to-RS
yield ratio ~R�

i corresponds to the time integral over bin i of
Eq. (1) including bin-specific corrections. These account
for small biases due to the decay-time evolution of the
approximately 3% fraction of signal candidates originating
from b-hadron decays (�B) and of the about 0.5% compo-
nent of peaking background from RS decays in which both
final-state particles are misidentified (�p) [18]. The rela-

tive efficiency ��r accounts for instrumental asymmetries
in the K� reconstruction efficiencies, mainly caused by
K� mesons having a larger interaction cross section with
matter than Kþ mesons. These asymmetries are measured
in data to be in the range 0.8%–1.2% with 0.2% precision
and to be independent of decay time. They are derived
from the efficiency ratio �þr ¼ 1=��r ¼ �ðKþ��Þ=
�ðK��þÞ, obtained from the product of D� ! Kþ����
and Dþ ! K0

Sð! �þ��Þ�þ event yields divided by the

product of the corresponding charge-conjugate decay
yields. No CP violation is expected or experimentally
observed [23] in these decays. Asymmetries due to

CP violation in neutral kaons and their interaction cross
sections with matter are negligible. The 1% asymmetry
between Dþ and D� production rates [24] cancels in this
ratio, provided that the kinematic distributions are consis-
tent across samples. We weight theD�!Kþ���� events
so that their kinematic distributions match those in the
Dþ!K0

S�
þ sample. Similarly, these samples are weighted

as functions of K� momentum to match the RS momen-
tum spectra. The parameters associated with �B, �p, and

�r are determined separately for TOS and TOS subsets and
vary independently in the fit within their Gaussian con-
straints �2

B, �
2
p, and �2

� [18].

To avoid experimenters’ bias in the CP violation para-
meters, the measurement technique is finalized by adding
arbitrary offsets to the WS-to-RS yield ratios for the D0

and �D0 samples, designed to mimic the effect of different
mixing parameters in the two samples. To rule out global
systematic uncertainties not accounted for in Eq. (2), the
data are first integrated over the whole decay-time spec-
trum and subsequently divided into statistically indepen-
dent subsets according to criteria likely to reveal biases
from specific instrumental effects. These include the num-
ber of primary vertices in the events, the K laboratory
momentum, the �s impact parameter �2 with respect to
the primary vertex, the D0 impact parameter �2 with
respect to the primary vertex, the magnetic field orientation,
and the hardware trigger category. The variations of the
time-integrated charge asymmetry inWS-to-RS yield ratios
are consistent with statistical fluctuations. Then, we inves-
tigate decay-time-dependent biases by dividing the time-
binned sample according to the magnet polarity and the
number of primary vertices per event. In the TOS sample,
differences of WS-to-RS yield ratios as functions of decay
time for opposite magnet polarities yield �2 values of
12, 17, and 14 (for 12 degrees of freedom), for events
with one, two, and more than two primary vertices, respec-

tively. The corresponding �2 values in the TOS sample, 9,
11, and 8, suggest a systematically better consistency.
Hence, the statistical uncertainty of each of the WS-to-RS
ratios in the TOS samples is increased by a factor offfiffiffiffiffiffiffiffiffiffiffiffiffi
17=12

p
, following Ref. [23]. These scaled uncertainties

are used in all subsequent fits. Independent analyses of
the 2011 and 2012 data yield consistent results. The ratio
between RS D0 to �D0 decay rates is independent of decay
time with a 62% p value and a standard deviation of 0.16%,
showing no evidence of correlations between particle iden-
tification or reconstruction efficiency and decay time.
Three fits are performed to the data shown in Fig. 2. The

first allows direct and indirect CP violation, the second
allows only indirect CP violation by constraining R�

D to a
common value, and the third is a CP-conserving fit that
constrains all mixing parameters to be the same in the D0

and �D0 samples. The fit results and their projections are
shown in Table I and Fig. 2, respectively. Figure 3 shows the
central values and confidence regions in the ðx02; y0Þ plane.
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FIG. 2 (color online). Efficiency-corrected ratios of WS-to-RS
yields for (a) D�þ decays, (b) D�� decays, and (c) their differ-
ences as functions of decay time in units of D0 lifetime.
Projections of fits allowing for (dashed line) no CP violation
(CPV), (dotted line) no direct CP violation, and (solid line) full
CP violation are overlaid. The abscissa of the data points
corresponds to the average decay time over the bin; the error
bars indicate the statistical uncertainties.
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For each fit, 104 WS-to-RS ratio data points are used,
corresponding to 13 ranges of decay time, distinguishing

D�þ from D�� decays, TOS from TOS decays, and 2011
data from 2012 data. The consistencywith the hypothesis of
CP symmetry is determined from the change in�2 between
the fit without and with CP violation, taking into account
the difference in number of degrees of freedom. The result-
ingp value, for the fitwith direct and indirect (indirect only)

CP violation allowed, is 91% (81%), showing that the data
are compatible with CP symmetry.
The uncertainties incorporate both statistical and sys-

tematic contributions, since all relevant systematic effects
depend on the true values of the mixing parameters, and are
thus incorporated into the fit �2. These include the uncer-
tainty in the fraction of charm mesons from b-hadron
decays, and their bias on the observed decay time, the
uncertainty in the fraction of peaking background, and
the uncertainty in the determination of the instrumental
asymmetry. The statistical uncertainty is determined in a
separate fit and used to calculate the systematic component
by subtraction in quadrature.
Direct CP violation would produce a nonzero inter-

cept at t ¼ 0 in the efficiency-corrected difference of
WS-to-RS yield ratios between D0 and �D0 mesons shown
in Fig. 2(c). It is parametrized by the asymmetry measured
in the first fit AD � ðRþ

D � R�
DÞ=ðRþ

D þ R�
DÞ ¼ ð�0:7�

1:9Þ%. Indirect CP violation results in a time dependence
of the efficiency-corrected difference of yield ratios. The
slope observed in Fig. 2(c) is about 5% of the individual
slopes of Figs. 2(a) and 2(b) and is consistent with zero.
From the results of the fit allowing for direct and indirect
CP violation, a likelihood for jq=pj is constructed using
the relations x0� ¼ jq=pj�1ðx0 cos�� y0 sin�Þ and y0� ¼
jq=pj�1ðy0 cos�	 x0 sin�Þ. Confidence intervals are deri-
ved with a likelihood-ratio ordering and assuming that
the correlations are independent of the true values of the
mixing parameters. The magnitude of q=p is determined
to be 0:75< jq=pj< 1:24 and 0:67< jq=pj< 1:52 at
the 68.3% and 95.5% confidence levels, respectively.
Significantly more stringent bounds on jq=pj and addi-
tional information on � are available by combining the
present results with other measurements [10], in particular,
when also using theoretical constraints, such as the rela-
tionship tan� ¼ xð1� jq=pj2Þ=yð1þ jq=pj2Þ [25,26],

TABLE I. Results of fits to the data for different hypotheses on
the CP symmetry [27]. The reported uncertainties are statistical
and systematic, respectively; ndf indicates the number of degrees
of freedom.

Parameter Value

Direct and indirect CP violation

Rþ
D (10�3) 3:545� 0:082� 0:048

y0þ (10�3) 5:1� 1:2� 0:7
x02þ (10�5) 4:9� 6:0� 3:6
R�
D (10�3) 3:591� 0:081� 0:048

y0� (10�3) 4:5� 1:2� 0:7
x02� (10�5) 6:0� 5:8� 3:6
�2=ndf 85:9=98

No direct CP violation

RD (10�3) 3:568� 0:058� 0:033
y0þ (10�3) 4:8� 0:9� 0:6
x02þ (10�5) 6:4� 4:7� 3:0
y0� (10�3) 4:8� 0:9� 0:6
x02� (10�5) 4:6� 4:6� 3:0
�2=ndf 86:0=99

No CP violation

RD (10�3) 3:568� 0:058� 0:033
y0 (10�3) 4:8� 0:8� 0:5
x02 (10�5) 5:5� 4:2� 2:6
�2=ndf 86:4=101
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FIG. 3 (color online). Two-dimensional confidence regions in the ðx02; y0Þ plane obtained (a) without any restriction on CP violation,
(b) assuming no direct CP violation, and (c) assuming CP conservation. The dashed (solid) curves in (a) and (b) indicate the contours
of the mixing parameters associated with �D0 (D0 ) decays. The best-fit value for �D0 (D0 ) decays is shown with an open (filled) point.
The solid, dashed, and dotted curves in (c) indicate the contours of CP -averaged mixing parameters at 68.3%, 95.5%, and 99.7%
confidence level (CL), respectively. The best-fit value is shown with a point.
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which applies in the limit that direct CP violation is
negligible.

In summary, D0– �D0 oscillation is studied using D�þ !
D0ð! Kþ��Þ�þ decays reconstructed in the full sample
of pp collisions, corresponding to 3 fb�1 of integrated
luminosity collected by the LHCb experiment in 2011
and 2012. Assuming CP conservation, the mixing parame-
ters are measured to be x02 ¼ ð5:5� 4:9Þ � 10�5, y0 ¼
ð4:8� 1:0Þ � 10�3, and RD ¼ ð3:568� 0:066Þ � 10�3.
The observed parameters are consistent with, 2.5 times
more precise than, and supersede the results based on a
subset of the present data [18]. StudyingD0 and �D0 decays
separately shows no evidence for CP violation and pro-
vides the most stringent bounds on the parameters AD and
jq=pj from a single experiment.
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iAlso at Università di Genova, Genova, Italy.
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