THE UNIVERSITY OF WARWICK

Original citation:

Zammit, Charlotte M. and Wills, Martin. (2013) Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron: Asymmetry, Volume 24 (Number 13-14). pp. 844-852.

Permanent WRAP url:
http://wrap.warwick.ac.uk/59008

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-forprofit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher's statement:

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Pergamon

Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer.

Charlotte M. Zammit and Martin Wills*
Department of Chemistry, Warwick University, Coventry, CV4 7AL, UK

Abstract

The cycloaddition of a chiral ligand containing a terminal alkyne to a soluble polymer containing an azide provides a convenient means for the attachment of an asymmetric transfer hydrogenation catalyst to a soluble polymer support. Using these ligands in complexes with $\mathrm{Ru}(\mathrm{II})$, good results were obtained in terms of conversion and enantioselectivity (up to 95% ee) in ketone reduction reactions. © 2015 Elsevier Science. All rights reserved

1. Introduction

A series of asymmetric transfer hydrogenation (ATH) catalysts based on the ' $\mathrm{Ru}(\mathrm{II}) / \mathrm{TsDPEN}$ ' system have been reported and successfully applied to the enantioselective reduction of ketones to alcohols. ${ }^{1}$ The first of this series was the complex 1, reported in 1995 by Noyori and co-workers. ${ }^{2}$ Since then, many applications have been reported ${ }^{1-3}$ and a number of related derivatives have been developed, including the tethered complexes 2 and 3. ${ }^{4}$

Significant efforts have been made towards the development of 'supported' versions of the $\mathrm{Ru}(\mathrm{II}) / \mathrm{TsDPEN}$ catalyst system. Popular methods include immobilisation via a covalent attachment to a support, or entrapment within a support (e.g.silica or polystyrene). ${ }^{5}$ In other cases the catalyst is converted into a form which permits its ready removal from a reaction mixture e.g. as a surfactant ${ }^{6}$ or as a derivative containing polyethylene glycol (PEG) chains. ${ }^{7}$ In the majority of examples the linkage (to silica or polymer) is made to the sulfonyl group, the η^{6}-arene ring or a side chain of the diamine unit, thereby leaving a primary amine group to co-ordiante to the metal. Complex 4 represents an unusual example where a soluble PEG chain is attached via the basic nitrogen atom, without significent reduction to the catalyst activity. ${ }^{7 a}$ This mirrors our own findings with N-alkylated TsDPEN derivatives 5 , in which a linear alkyl chain is tolerated by the catalyst. ${ }^{8}$
In earlier studies, we employed copolymers of methyl methacrylate (MMA) and hydroxyethylmethacrylate (HEMA) as the basis of soluble catalysts. ${ }^{9}$ In this paper,
we describe a method for attachment of an ATH catalyst to a soluble methacrylate polymer using a cycloaddition reaction.

2. Results and Discussion

To attach a $\mathrm{Ru}(\mathrm{II}) / \mathrm{TsDPEN}$ catalyst to a soluble polymer, we used the well-established cycloaddition of an azide with an alkyne (a 'click' reaction), ${ }^{10}$ which has been used to attach biologically-active groups to polymers. ${ }^{11}$ As it has been demonstrated that a proximal triazole ring can itself become involved in co-ordination to the ruthenium atom, and participate in catalysis, ${ }^{12}$ we investigated systems where this was distant from the TsDPEN unit. We first prepared derivative 6 containing a terminal alkyne (Scheme 1). This was then reacted in a copper-catalysed $[3+2]$ cycloaddition reaction with azide 7 (prepared from 2benzyloxyethanol in two steps) to furnish the triazole product $\mathbf{8}$, a model for the supported compound.

[^0]

Reagents and conditions: (i) 2,6 -lutidine, $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N},(R, R)$-TsDPEN, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\mathrm{rt}, \mathrm{o} / \mathrm{n}, 64 \%$ ($\mathrm{X}=\mathrm{O}$), $39 \%\left(\mathrm{X}=\mathrm{CH}_{2}\right)$; (ii) for $8: \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, tBuOH: $\mathrm{H}_{2} \mathrm{O}, 30^{\circ} \mathrm{C}, 5 \mathrm{~h}, 60 \%$. (iii) for 9: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{NaN}_{3}$,
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, tBuOH: $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}, 67 \%$.

Scheme 1. Preparation of triazole-functionalised TsDPEN derivatives.

The same procedure was adopted for the synthesis of 1,4disubstituted 1,2,3-triazole $\mathbf{9}$ by reacting $\mathbf{1 0}$ with benzyl azide $\mathbf{1 1}$ (formed in situ), ${ }^{13} 5 \mathrm{~mol} \%$ copper(II) sulfate pentahydrate and $10 \mathrm{~mol} \%$ sodium ascorbate. The catalytic activity of each ligand was investigated in the ATH of acetophenone (Table 1) by preparing catalysts in situ from the $\mathrm{Ru}(\mathrm{II})$-pre-catalyst $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$. Using formic acid/triethylamine (FA/TEA) as the hydrogen donor, at 28 ${ }^{\circ} \mathrm{C}$ each derivative demonstrated good catalytic activity (92 -99%) and enantioselectivity ($93-95 \%$ ee).

Table 1: Evaluation of (R, R)-TsDPEN and ligands $\mathbf{6}, 8$ 10 in the ATH of acetophenone.

Entry	Ligand	$\mathrm{t} / \mathrm{h}^{\mathrm{a}}$	Conv./ $\%^{\mathrm{b}}$	Ee $/ \%^{\mathrm{b}}$
1	$(R, R)-\mathrm{TsDPEN}$	6	>99	95
2	$(R, R)-\mathbf{6}$	53	92	93
3	$(R, R)-\mathbf{8}$	136	99	95
4	$(R, R)-\mathbf{9}$	71	97	95
5	$(R, R)-\mathbf{1 0}$	45	97	95

a. Number of hours necessary to observe a levelling-off in conversion. b. Conversion and ee determined by GC analysis.

The ligands exhibited lower activities but similar enantioselectivities compared to (R, R)-TsDPEN and other N^{\prime}-alkylated TsDPEN ligands. ${ }^{2-4}$ Using the (R, R) configuration ligands in each case, the alcohol of R configuration was always formed. The nitrogen of the triazole moiety in $\mathbf{8}$ and 9 might be coordinating to ruthenium in a reversible manner, ${ }^{12}$ reducing the catalytic activity.

Investigations into the immobilisation of the chiral ligand onto a polymer support were undertaken. ${ }^{14}$ The synthesis of copolymers $\mathbf{1 2}$ was achieved by catalytic chain transfer polymerisation (CCTP) using methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in a 70:30 mixture, in combination with 4,4'-azobis(4cyanovaleric acid) and $\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{Co}-\left(\mathrm{dmgBF}_{2}\right)_{2}(\mathrm{CoBF})$ as the initiator and chain-transfer catalyst respectively (Scheme 2). ${ }^{14}$ The first sample (12a) was prepared without active CoBF, and this was found to have a high molecular weight, as expected. We prepared a sample of CoBF, ${ }^{15}$ and the FTIR spectrum of this sample matched that of a standard. ${ }^{16}$ Similar molecular weights were obtained and the dispersity (PDI) was approximately 2 for copolymer sample 12b (Table 2) prepared with the fresh CoBF and the standard. ${ }^{16}$ A higher molecular weight HEMA/MMA copolymer (12c) was prepared using half the amount of CoBF (Table 2). All the polymers prepared exhibited monomodal distributions, and the M_{n} values calculated by ${ }^{1} \mathrm{H}$ NMR for the low molecular weight polymer 12b correlated well with those calculated by GPC.

Table 2: Molecular weight $\left(\mathrm{M}_{\mathrm{n}}\right)$ determination by ${ }^{1} \mathrm{H}$ NMR and GPC analysis for the HEMA/MMA copolymers prepared using different samples of CoBF.

$\begin{aligned} & \text { En- } \\ & \text { Try } \end{aligned}$	Polymer	Ratio ${ }^{\text {a }}$	${ }^{1} \mathrm{H}$ NMR $\mathrm{g} / \mathrm{mol}$ M_{n}	GPC $\mathrm{g} / \mathrm{mol}$ M_{n}	$\begin{aligned} & \text { GPC } \\ & \mathrm{g} / \mathrm{mol} \\ & \mathrm{M}_{\mathrm{w}} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { GPC } \\ \mathrm{g} / \mathrm{mol} \end{array} \\ & \mathrm{PDI}^{\mathrm{b}} \end{aligned}$
1	12a	$\mathrm{A}^{\text {c }}$	$\mathrm{n} / \mathrm{a}^{\text {d }}$	146K	337 K	2.30
2	12b	A^{16}	1,570	970	1,790	1.84
3	12b	A	2,430	1,080	2,710	2.50
4	12c	B	$\mathrm{n} / \mathrm{a}^{\text {d }}$	2,710	9,210	3.40

a. [HEMA]:[MMA]:[CoBF] ratios: $\mathbf{A}=[0.42]:[1.0]:\left[4.27 \times 10^{-5}\right]$ and $\mathbf{B}=[0.42]:[1.0]:\left[2.14 \times 10^{-5}\right]$. b. PDI (polydispersity index) $=$ $\mathrm{M}_{\mathrm{n}} / \mathrm{M}_{\mathrm{w}}$. c. inactive CoBF. d. polymer too large for M_{n} to be calculated accurately by ${ }^{1} \mathrm{H}$ NMR.

The HEMA:MMA copolymer ratio of $3: 7$ was calculated using the integration of the methylene signals of the HEMA unit $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$ at 4.12 and 3.85 ppm and the methoxy signal of the MMA unit $\left(\mathrm{OCH}_{3}\right)$ at 3.61 ppm . This ratio was utilised to calculate the hydroxyl group functionalisation value ($f_{\text {hydroxyl }}$) as $2.77 \mathrm{mmol} / \mathrm{g}$. The molecular weight $\left(\mathrm{M}_{\mathrm{n}}\right)$ of the copolymer was calculated from the ${ }^{1} \mathrm{H}$ NMR spectrum by integrating the vinyl protons of the end group with respect to the methylene protons of the HEMA repeating unit and the methyl protons of the MMA repeat unit (Scheme 2). Tosylation of copolymer 12a-c using a known procedure ${ }^{9}$ furnished 13ac. The O-tosyl group was subsequently substituted for an azide upon reaction of $\mathbf{1 3 a} \mathbf{- c}$ with 3 equivalents of sodium
azide to afford copolymer 14a-c. The conversion of the HEMA/MMA copolymer 12a-c to the tosylated polymer 13a-c was confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy through the appearance of the aromatic signals at 7.8 ppm and 7.4 ppm together with the methyl signal at 2.5 ppm of the O-tosyl (OTs) group. A change in chemical shift to higher frequency was observed for the methylene group adjacent to the OTs functionality (3.8 ppm to 4.1 ppm) of the HEMA repeating unit, and indicated quantitative conversion. Subsequent disappearance of the characteristic signals belonging to the OTs group, in combination with a chemical shift for the methylene group to a lower frequency value of 3.5 ppm , gave strong evidence for the complete formation of the azido derivatised copolymer 14a-c. The FTIR spectrum of the azido derivatised copolymer 14a-c showed a strong absorption signal at 2104 cm^{-1} that is characteristic of the azide group, and this was used as a diagnostic tool to monitor the subsequent click reaction.

Reagents and conditions: (i) dioctylsulfosuccinate sodium salt, 4,4'-azobis(4-cyanovaleric acid), CoBF, $80^{\circ} \mathrm{C}, 4 \mathrm{~h}$, see Table 2; (ii) TsCl , DMAP, $E t_{3} \mathrm{~N}, \mathrm{DCM}, \mathrm{rt}, 2 \mathrm{~d}$; (iii) $\mathrm{NaN}_{3}, \mathrm{DMF}, 80^{\circ} \mathrm{C}, 2.75 \mathrm{~h}$ then $\mathrm{rt}, 48$ h ; (iv) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CuBr}, \mathrm{TBTA}, \mathrm{DMSO}, 20^{\circ} \mathrm{C}, 24 \mathrm{~h}, 41 \%$ (polymer b), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CuBr}, \mathrm{TBTA}, \mathrm{DMSO}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$, then $50^{\circ} \mathrm{C}, 72 \mathrm{~h}, 66 \%$ (polymer c), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, sodium ascorbate, $\mathrm{tBuOH}: \mathrm{H}_{2} \mathrm{O}, 80^{\circ} \mathrm{C}, 3$ d, 98% (polymer a).

Scheme 2. Preparation of triazole-functionalised TsDPEN derivatives on soluble polymer support.

Copolymers 14a-c were reacted with ligand 10 to afford $\mathbf{1 5 a} \mathbf{a} \mathbf{c}$ as indicated by the disappearance of the azide signal, and were isolated by filtration in moderate to high yield ($41 \%-98 \%$). The high molecular weight polymer, 15a was too insoluble to be analysed by solution phase techniques. The chemical modification of the hydroxyl repeating unit in copolymers $\mathbf{1 2 b}$ and 12c required slightly different work-up procedures due to their distinct solubility behaviour. In addition, the click protocol was modified with the direct use of $\mathrm{Cu}(\mathrm{I})$ in combination with tris-[(1-benzyl-1 H -1,2,3-triazol-4-yl)methyl]amine (TBTA). ${ }^{17}$ Recent ligand screening experiments ${ }^{11}$ have revealed the superior behaviour of this ligand in the $\mathrm{Cu}(\mathrm{I})$-catalysed
alkyne-azide cycloaddition reaction for the formation of glycopolymers.

Owing to the complexity of the ${ }^{1} \mathrm{H}$ NMR spectra obtained for polymer-immobilised ligands 15b and 15c, the vinyl end group protons were not visible. A recent report by Haddleton and co-workers ${ }^{11}$ revealed experimental evidence for the retention of the vinyl end group during the CuAAc reaction between poly(propargyl methacrylate) and cellobiose azide; and this was assumed to be the case for the copolymer-supported 1,2-diamine ligands.

The supported catalysts were tested by pre-mixing 0.5 $\mathrm{mol} \%$ of $\mathrm{Ru}($ II $)$ pre-catalyst, $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$ and 1 mol $\%$ of $(R, R)-15 \mathrm{a}-\mathrm{c}$ in FA/TEA at $28^{\circ} \mathrm{C}$ for 1 h , followed by the addition of acetophenone (1.6 M). Ligand $(R, R)-\mathbf{1 5 a}$ yielded (R)-phenylethanol with 98% conversion and 94% ee (Table 3).

Table 3: Evaluation of the HEMA/MMA copolymersupported ligands ($\mathbf{1 5 a - c}$) in the ATH of acetophenone.

Entry	Cat $^{\mathrm{a}}$ $($ run $)$	$\mathrm{T} /{ }^{\circ} \mathrm{C}$	$\mathrm{t} / \mathrm{h}^{\mathrm{b}}$	Conv./\%	Ee/\% ${ }^{\mathrm{c}}$
1	$\mathbf{1 5 a}(\mathbf{1})$	28	120	98	$94(R)$
2	$\mathbf{1 5 a}(\mathbf{1})$	40	24	98	$94(R)$
3	$\mathbf{1 5 a}(\mathbf{2})$	40	28	33	$91(R)$
4	$\mathbf{1 5 a}(\mathbf{2})^{\mathrm{d}}$	40	46	73	$90(R)$
5	$\mathbf{1 5 c}(\mathbf{1})$	28	136	100	$95(R)$
6	$\mathbf{1 5 c (2)}$	40	48	20	$94(R)$
7	$\mathbf{1 5 b}(\mathbf{1})$	28	144	90	$95(R)$

a. Entry 1: $6.6 \times 10^{-3} \mathrm{mmol}^{2} \mathrm{RuCl}_{2}$ (benzene) $]_{2}, 1.3 \times 10^{-2} \mathrm{mmol}$ ligand in $\mathrm{HCO}_{2} \mathrm{H}: \mathrm{Et}_{3} \mathrm{~N}$; Entries 2: $3.3 \times 10^{-3} \mathrm{mmol}$
$\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}, 3.2 \times 10^{-2} \mathrm{mmol}$ ligand in $\mathrm{HCO}_{2} \mathrm{H}: \mathrm{Et}_{3} \mathrm{~N}$;
Entries 3 and 4: reuse in $\mathrm{HCO}_{2} \mathrm{H}: \mathrm{Et}_{3} \mathrm{~N}$ as in entry 1,
[acetophenone] $=1.6 \mathrm{M}$. Entries 5 and 7: $4.6 \times 10^{-3} \mathrm{mmol}$ $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}, 9.2 \times 10^{-3} \mathrm{mmol}$ ligand in $\mathrm{HCO}_{2} \mathrm{H}: \mathrm{Et}_{3} \mathrm{~N}$;
Entry 6: reuse from entry 5. b. Number of hours necessary to observe a levelling-off in conversion. c. Conversion and ee determined by GC analysis. d. After addition of $0.5 \mathrm{~mol} \%$ $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$.

The acetophenone reduction was repeated at $40{ }^{\circ} \mathrm{C}$ to furnish alcohol in 98% conversion and 94% ee (R) in 24 h (Table 3: entry 2). Upon completion of the reduction, the $\mathrm{Ru}(\mathrm{II})-\mathbf{1 5 a}$ catalyst was recovered by filtration, washed with a $50: 50(\mathrm{v} / \mathrm{v})$ mixture of EtOAc/petroleum ether and neat DCM, and dried under vacuum. The activity of the recovered $\mathrm{Ru}(\mathrm{II})-\mathbf{1 5 a}$ catalyst was assessed by adding fresh portions of FA/TEA and ketone. In this case the ketone was reduced to the alcohol in only 33% conversion although only a slight erosion in ee was observed. Another portion of $\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$, was added to the reaction mixture and conversion rose to 43% after 1 h and to 73% after 46 h . Using $0.5 \mathrm{~mol} \%\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$ and $4.8 \mathrm{~mol} \%(R, R)-$

15a ligand at $40^{\circ} \mathrm{C}$ in FA/TEA, acetylfuran was reduced to the R enriched alcohol 16 in 99% conversion and 98% ee in 24 h and propiophenone to alcohol 17 in 70% conversion and 92% ee (R) after 24 h .

16 98\% ee

17 92\% ee

The high molecular weight ligand $(R, R)-\mathbf{1 5 a}$ displayed almost no activity (1% conversion) in isopropanol/KOH after 24 h at $28{ }^{\circ} \mathrm{C}$. $(R, R)-\mathbf{1 5 a}$ was also evaluated in aqueous phase ATH but gave alcohol in just 3% conversion and 59% ee. Treatment of $1 \mathrm{~mol} \%$ ligand $(R, R)-\mathbf{1 5 b}$ with $0.5 \mathrm{~mol} \%\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$ in $\mathrm{FA} / \mathrm{TEA}$ at $28^{\circ} \mathrm{C}$ afforded (R)-phenylethanol in high selectivity (95% ee) and 90% conversion achieved in 6 days (Table 3: entry 7). The use of $1 \mathrm{~mol} \%$ of $(R, R)-\mathbf{1 5 c}$ in combination with $0.5 \mathrm{~mol} \%\left[\mathrm{RuCl}_{2} \text { (benzene) }\right]_{2}$ in $\mathrm{FA} / \mathrm{TEA}$ at $28{ }^{\circ} \mathrm{C}$ resulted in acetophenone reduction in 100% conversion and 95% ee in 136 h (Table 3, entry 5).

The addition of water, in an attempt to recover the catalyst, precipitated the $\mathrm{Ru}(\mathrm{II})-\mathbf{1 5 c}$ complex. The FA/TEA mixture was then carefully removed, following which the red solid catalyst was washed with fresh portions of FA/TEA. The hydrogen donor and ketone substrate were then recharged for the next cycle. Disappointingly, the recovered polymer-bound catalyst exhibited poor reactivity with 15% conversion in 24 h and only 20% conversion after 48 h (Table 3: entry 6). Sodium formate/water was also unsuccessful with alcohol being produced in only 7% conversion after a 24 h reaction at $40^{\circ} \mathrm{C}$.

3. Conclusion

In conclusion, a series of TsDPEN ligands containing a triazole unit have been prepared and tested in the ATH of ketones. The triazole represents a convenient method for attachment of the ligand to a soluble polymer support. The resulting supported ligand is effective in the ATH of ketones.

4. Experimental

4.1. General

Unless otherwise stated, all reactions were performed in flame or oven-dried glassware under an atmosphere of nitrogen. Room temperature refers to $20-22^{\circ} \mathrm{C}$, and -78 ${ }^{\circ} \mathrm{C}$ refers to a dry ice-acetone bath. Commercially available reagents were used without purification unless otherwise stated. Anhydrous solvents were used as supplied. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis were obtained on Bruker DPX-300 (300 MHz), DPX-400 (400 MHz) and DPX-700 (700 MHz) spectrometers. All NMR chemical shift (δ) values are
reported in parts per million (ppm) downfield from TMS $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ and all coupling constants (J) are in Hertz (Hz). GPC measurements were performed in N, N dimethylformamide ($0.03 \% \mathrm{w} / \mathrm{v} \mathrm{LiBr})$ at $50{ }^{\circ} \mathrm{C}$ and dichloromethane at $30{ }^{\circ} \mathrm{C}$ as appropriate; using Agilent (Polymer Labs) 390-LC systems equipped with a PL-AT autosampler, a PL gel $5 \mu \mathrm{~m}$ bead-size guard column, two PL gel $5 \mu \mathrm{~m}$ Mixed D columns ($300 \times 7.5 \mathrm{~mm}$) and a refractive index detector; and the data was analysed using Cirrus (V3.0) software. Polymethyl methacrylate standards (200 $467,400 \mathrm{~g} \mathrm{~mol}^{-1}$) were used to calibrate the GPC. Low resolution mass spectrometry was run on a Bruker Esquire 2000 electrospray mass spectrometer and high resolution mass spectrometry was run on a Bruker MicrOTOF. Melting points were obtained using a Stuart Scientific Melting Point SMP1 and are uncorrected. Infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR and a Nicolet Model Avatar 320 FTIR. Optical rotations were measured using an Optical Activity Ltd. AA-1000 Polarimeter and are recorded in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. GC analysis was obtained using a Perkin Elmer 8500 chromatograph linked to a PC running DataApex Clarity Software. HPLC measurements were obtained using a Hewlett Packard 1050 HPLC system and the data was analysed using DataApex Clarity Software. The following compounds were prepared following literature methods; bis(methanol)bis((difluoroboryl)dimethylglyoximato)cobalt (II) (CoBF) ${ }^{15}$), benzyl azide. ${ }^{13}$ tris-[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA). ${ }^{17}$

4.2. Synthesis of 2-(2-propynyloxy)ethanol. ${ }^{18}$

To a stirred solution of ethylene glycol (16.70 g, 269.1 mmol) under nitrogen was slowly added, portionwise, sodium hydride ($2.69 \mathrm{~g}, 67.3 \mathrm{mmol}, 60 \%$ in mineral oil). Once effervescence stopped, propargyl bromide (10.0 g , $67.3 \mathrm{mmol}, 80 \%(\mathrm{w} / \mathrm{w})$ in toluene) was added to the white suspension, heated to $45^{\circ} \mathrm{C}$ and stirred at this temperature for 7.5 h . after cooling to rt , water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the mixture was extracted with chloroform ($3 \times 10 \mathrm{~cm}^{3}$). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using gradient elution from 30/70 v/v diethyl ether/petroleum ether to 100 \% diethyl ether to give the product $(2.91 \mathrm{~g}, 29.1 \mathrm{mmol}$, 43.2%) as a pale yellow oil; (found (EI): $\mathrm{M}^{+}+\mathrm{Na}$, 123.0416. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NaO}_{2}$ requires M 123.0417); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $3398(\mathrm{OH}), 3281(\equiv \mathrm{CH}), 2934$ and $2870\left(\mathrm{CH}_{2}\right), 2116$ (C $=\mathrm{C}$), 1354, 1104 (C-O-C), 1065, 1027, 888; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.22\left(2 \mathrm{H}, \mathrm{d}, J 2.4, \equiv \mathrm{CCH}_{2}\right), 3.80-3.75(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.67-3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 2.48(1 \mathrm{H}, \mathrm{t}, J 2.4$, $\equiv \mathrm{CH}), 2.33(1 \mathrm{H}, \mathrm{t}, J 6.0, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 79.42$ $(\equiv \mathrm{CH}), 74.67(\mathrm{C} \equiv \mathrm{CH}), 71.16\left(\mathrm{CH}_{2}\right), 61.63\left(\mathrm{CH}_{2}\right), 58.36$ $\left(\mathrm{CH}_{2}\right)$; ESI-MS m/z (CI) $123\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.3. Synthesis of 2-(benzyloxy)ethanol. ${ }^{19}$ To a stirred solution of ethylene glycol ($11.13 \mathrm{~g}, 179.3 \mathrm{mmol}$) in a $\mathrm{N}, \mathrm{N}-$
dimethylformamide:methanol solution ($1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~cm}^{3}$) was added sodium hydride $(1.04 \mathrm{~g}, 26.0 \mathrm{mmol}, 60 \%$ in mineral oil) portion wise over a period of $20-25$ minutes. The resulting solution was stirred at $20-22{ }^{\circ} \mathrm{C}$ for 17 h , followed by the dropwise addition of benzyl bromide (3.07 $\mathrm{g}, 18.0 \mathrm{mmol}$). The reaction mixture was stirred at $20-22$ ${ }^{\circ} \mathrm{C}$ for 24 h , quenched with $10 \%(\mathrm{v} / \mathrm{v}) \mathrm{HCl}$ solution (11 cm^{3}) and extracted with ethyl acetate ($3 \times 20 \mathrm{~cm}^{3}$). The organic layers were combined, washed with saturated NaCl solution $\left(60 \quad \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated under reduced pressure to give the product $(1.09 \mathrm{~g}, 7.16 \mathrm{mmol}, 39.9 \%)$ as a colourless oil. This was used directly without further purification in the next step; (found (EI): $\mathrm{M}^{+}+\mathrm{Na}$ 175.0732. $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}_{2}$ requires M 175.0730); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $3394(\mathrm{OH}), 2927$ and 2865 $\left(\mathrm{CH}_{2}\right), 1719,1453,1115$ (C-O-C), 1068, 1028, 892, 739 and $698(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.27(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.75\left(2 \mathrm{H}, \mathrm{t}, J 4.5, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.59\left(2 \mathrm{H}, \mathrm{t}, J 4.5, \mathrm{CH}_{2} \mathrm{OH}\right), 2.25(1 \mathrm{H}, \mathrm{br}$ s, OH$)$; $\delta_{\mathrm{C}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 137.90 (C), 128.42 (2 x CH), 127.76 (overlapping CH and 2 xCH), $73.25\left(\mathrm{CH}_{2}\right), 71.34\left(\mathrm{CH}_{2}\right)$, $61.83\left(\mathrm{CH}_{2}\right)$; ESI-MS m / z (CI) $175\left(\mathrm{M}^{+}+\mathrm{Na}\right)$. The spectroscopic data was in agreement with the literature values.
4.4. Synthesis of 2-(phenylmethoxy)ethanol-1-(4-4.4 methylbenzenesulfonate). ${ }^{20}$ To a stirred solution of 2(benzyloxy)ethanol ($0.92 \mathrm{~g}, 6.0 \mathrm{mmol}$) in pyridine $\left(9 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added p-toluenesulfonyl chloride $(1.15 \mathrm{~g}, 6.05$ mmol). The reaction mixture was stirred overnight at room temperature, diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether ($3 \times 7 \mathrm{~cm}^{3}$). The organic layers were combined, washed with saturated NaHCO_{3} solution (10 cm^{3}) and saturated NaCl solution ($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was then purified by flash column chromatography using gradient elution from 10/90 to 12/88 v/v EtOAc/petroleum ether to give the product $(0.32 \mathrm{~g}, 1.04 \mathrm{mmol}, 17.4 \%)$ as a colourless oil; (found (EI): $\mathrm{M}^{+}+\mathrm{Na}$ 329.0816. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}$ requires M 329.0818); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $2864\left(\mathrm{CH}_{2}\right), 1353$ and $1174\left(\mathrm{SO}_{2} \mathrm{O}\right), 1095(\mathrm{C}-\mathrm{O}-\mathrm{C}), 814(p-$ substituted Ph$), 722$ and $698(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.79 ($2 \mathrm{H}, \mathrm{d}, ~ J 8.4, \mathrm{ArH}$), 7.36-7.24 (7 H, m, ArH), 4.48 (2 $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}$), 4.21-4.18 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTs}$), 3.67-3.64 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}$), 2.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ of OTs); $\delta_{\mathrm{C}}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 144.74 (C), 137.50 (C), 132.95 (C), 129.77 $(2 \times \mathrm{CH}), 128.38(2 \times \mathrm{CH}), 127.94(2 \times \mathrm{CH}), 127.77(\mathrm{CH})$, $127.62(2 \times \mathrm{CH}), 73.19\left(\mathrm{CH}_{2}\right), 69.24\left(\mathrm{CH}_{2}\right), 67.45\left(\mathrm{CH}_{2}\right)$, $21.61\left(\mathrm{CH}_{3}\right)$; ESI-MS $m / z(\mathrm{CI}) 329\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.5, Synthesis of [(2-azidoethoxy)methyl]benzene $7 .{ }^{21}$ To a stirred solution of 2-(phenylmethoxy)ethanol-1-(4methylbenzenesulfonate) ($0.10 \mathrm{~g}, 0.33 \mathrm{mmol}$) in $N, N-$ dimethylformamide ($3 \mathrm{~cm}^{3}$) was added sodium azide (0.032 $\mathrm{g}, 0.49 \mathrm{mmol}$); and the reaction mixture was heated to $85-$ $90^{\circ} \mathrm{C}$, and stirred at this temperature for 3.5 h . After
cooling rt, water ($3 \mathrm{~cm}^{3}$) was added to the pale yellow solution and extracted with diethyl ether ($3 \times 3 \mathrm{~cm}^{3}$). The organic layers were combined, washed with water $\left(10 \mathrm{~cm}^{3}\right)$ and saturated $\mathrm{NaCl}\left(10 \mathrm{~cm}^{3}\right)$ successively, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated under reduced pressure to give 7 ($0.042 \mathrm{~g}, 0.24 \mathrm{mmol}, 72.7 \%$) as a pale yellow oil; (found (EI): $\mathrm{M}^{+}+\mathrm{Na}, 200.0799 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}$ requires M 200.0794); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2923 and $2861\left(\mathrm{CH}_{2}\right), 2092$ $\left(\mathrm{N}_{3}\right), 1107$ (C-O-C), 1092, $697(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.38-7.27 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.66(2 \mathrm{H}$, $\left.\mathrm{t}, J 5.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.41\left(2 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 137.69 (C), 128.41 (2 x CH), 127.73 $(\mathrm{CH}), 127.58(2 \mathrm{x} \mathrm{CH}), 73.23\left(\mathrm{CH}_{2}\right), 68.81\left(\mathrm{CH}_{2}\right), 50.77$ $\left(\mathrm{CH}_{2}\right)$; ESI-MS m/z (CI) $200\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.6, Synthesis of $\quad N-[(R, R)$-2-(prop-2-ynyloxyethylamino)-1,2-diphenylethyl]-4-methyl
benzenesulfonamide 6. To a stirred solution of 2-(2propynyloxy)ethanol ($0.25 \mathrm{~g}, 2.5 \mathrm{mmol}$) and 2,6-lutidine ($0.35 \mathrm{~g}, 3.3 \mathrm{mmol}$) in dichloromethane ($5 \mathrm{~cm}^{3}$) was added dropwise trifluoromethanesulfonic anhydride $(0.70 \mathrm{~g}, 2.5$ $\mathrm{mmol})$ at $0-5^{\circ} \mathrm{C}$. The solution was then stirred at $5-10$ ${ }^{\circ} \mathrm{C}$ for 45 minutes, heated to $22{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1.5 h . In a separate round-bottomed flask, triethylamine ($0.37 \mathrm{~g}, 3.7 \mathrm{mmol}$) was added to a solution of (R, R)-TsDPEN ($0.57 \mathrm{~g}, 1.6 \mathrm{mmol}$) in dichloromethane (3 cm^{3}) at $5{ }^{\circ} \mathrm{C}$. The triflate solution was then added dropwise to this TsDPEN solution whilst maintaining the temperature between $0-5{ }^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and left to stir overnight. The solution was then diluted with saturated $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was further washed with saturated $\mathrm{NaHCO}_{3}\left(2 \times 20 \mathrm{~cm}^{3}\right)$, water $\left(20 \mathrm{~cm}^{3}\right)$, saturated $\mathrm{NaCl}\left(20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash column chromatography (20/80 v/v $\mathrm{EtOAc} /$ petroleum ether) to give $6(0.45 \mathrm{~g}, 1.0 \mathrm{mmol}$, yield 64.3%) as a colourless oil; (found (EI): $\mathrm{M}^{+}+\mathrm{H}, 449.1896$. $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}, 449.1893$); $[\alpha]_{\mathrm{D}}{ }^{30}+5.6$ (c 0.22 , CHCl_{3}); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 3273 (三CH), 2919 and 2856 $\left(\mathrm{CH}_{2}\right), 2100(\mathrm{C} \equiv \mathrm{C}), 1598,1323$ and $1154\left(\mathrm{SO}_{2}\right), 1090(\mathrm{C}-$ $\mathrm{O}-\mathrm{C}), 812(\mathrm{Ph}), 762$ and $698(\mathrm{Ph}), 665$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.38(2 \mathrm{H}, \mathrm{d}, J$ 8.4, ArH), 7.13-6.89 ($12 \mathrm{H}, \mathrm{m}$, ArH), 6.31 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHTs}$), 4.23 ($1 \mathrm{H}, \mathrm{d}, J \mathrm{~J} .0$, PhCHNHTs), 4.06 ($2 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$), $3.65(2 \mathrm{H}, \mathrm{d}$, J 8.0, $\mathrm{PhCHNHCH}_{2}$), 3.60-3.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{a} \mathrm{H}_{\mathrm{b}}$), 3.523.47 ($1 \mathrm{H}, \quad \mathrm{m}, \quad \mathrm{NHCH}_{\mathrm{a}} H_{b}$), 2.67-2.61 (1 H, m, $\mathrm{CH}_{2} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{O}$), 2.51-2.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{b} \mathrm{O}$), 2.44 (1 $\mathrm{H}, \mathrm{t}, J 2.4, \equiv \mathrm{CH}), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of NTs$), 1.72(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.68$ (C), 139.10 (C), 138.27 (C), 137.08 (C), 129.10 ($2 \times \mathrm{CH}$), 128.32 ($2 \times \mathrm{CH}$), $127.89(2 \times \mathrm{CH}), 127.63(2 \mathrm{x} \mathrm{CH}), 127.50(\mathrm{CH}), 127.45(2$ x CH), $127.26(\mathrm{CH}), 127.17(2 \times \mathrm{CH}), 79.64(\equiv \mathrm{CH}), 74.62$ $(C \equiv \mathrm{CH}), 69.18\left(\mathrm{CH}_{2}\right), 67.78(\mathrm{CH}), 63.13(\mathrm{CH}), 58.17$ $\left(\mathrm{CH}_{2}\right), 46.46\left(\mathrm{CH}_{2}\right), 21.45\left(\mathrm{CH}_{3}\right)$; ESI-MS m/z (CI) 449 $\left(\mathrm{M}^{+}+\mathrm{H}\right), 471\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
5.7. Synthesis of $N-[(R, R)-2-(h e x-5-y n y l a m i n o)-1,2-$ diphenylethyl]-4-methyl benzenesulfonamide 10. То a stirred solution of hexyn-1-ol $(1.04 \mathrm{~g}, 10.6 \mathrm{mmol})$ and $2,6-$ lutidine ($2.38 \mathrm{~g}, 22.2 \mathrm{mmol}$) in dichloromethane $\left(21 \mathrm{~cm}^{3}\right)$ was added dropwise trifluoromethanesulfonic anhydride $(4.78 \mathrm{~g}, 16.95 \mathrm{mmol})$ at $0-5{ }^{\circ} \mathrm{C}$. The solution was then stirred at $5-10{ }^{\circ} \mathrm{C}$ for 1 h , heated to $22{ }^{\circ} \mathrm{C}$ and stirred at this temperature for 1.5 h . In a separate round-bottomed flask, triethylamine ($1.61 \mathrm{~g}, 15.9 \mathrm{mmol}$) was added to a solution of (R, R)-TsDPEN $(2.32 \mathrm{~g}, 6.33 \mathrm{mmol})$ in dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ at $5{ }^{\circ} \mathrm{C}$. The triflate solution was then added dropwise to this TsDPEN solution whilst maintaining the temperature between $0-5^{\circ} \mathrm{C}$. The reaction mixture was warmed to rt and left to stir overnight. The solution was then diluted with saturated $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane ($24 \mathrm{~cm}^{3}$). The organic layer was washed further with saturated NaHCO_{3} (3 x 20 cm^{3}), water ($2 \times 50 \mathrm{~cm}^{3}$), saturated $\mathrm{NaCl}\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash column chromatography ($16 / 84 \mathrm{v} / \mathrm{v}$ EtOAc/petroleum ether) to give $\mathbf{1 0}(1.11 \mathrm{~g}, 2.49$ mmol, 39.3%) as a white solid; $\mathrm{Mp} 95-97{ }^{\circ} \mathrm{C}$; (found (EI): $\mathrm{M}^{+}+\mathrm{H}, 447.2105 . \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires M 447.2101); $[\alpha]_{\mathrm{D}}{ }^{24}-26.6$ (c 0.38, CHCl_{3}); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (solid) $3281(\equiv \mathrm{CH})$, 2932 and $2859\left(\mathrm{CH}_{2}\right), 2324(\mathrm{C} \equiv \mathrm{C}), 1601$, 1326 and $1159\left(\mathrm{SO}_{2}\right), 1086(\mathrm{C}-\mathrm{O}-\mathrm{C}), 816(\mathrm{Ph}), 762$ and $699(\mathrm{Ph}), 669 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38(2 \mathrm{H}, \mathrm{d}, J 8.4$, ArH), 7.14-6.89 (12 H, m, ArH), 6.25 ($1 \mathrm{H}, \mathrm{br}$ s, NHTs), 4.25 ($1 \mathrm{H}, \mathrm{d}, J 8.0$, PhCHNHTs), 3.61 ($2 \mathrm{H}, \mathrm{d}, J 8.0$, $\mathrm{PhCHNHCH}_{2}$), 2.44-2.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2}$), 2.33 (3 $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$ of NTs), 2.33-2.26 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}_{2}$), 2.15-2.12 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 1.93(1 \mathrm{H}, \mathrm{t}, J 2.6, \equiv \mathrm{CH})$, 1.56-1.41 (4H, m, NHCH $\mathrm{CH}_{2} \mathrm{CH}_{2}$), $1.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.63(\mathrm{C}), 139.19(\mathrm{C}), 138.25(\mathrm{C})$, 136.97 (C), $129.01(2 \times \mathrm{CH}), 128.21$ (2 x CH), 127.81 (2 x $\mathrm{CH}), 127.48(2 \mathrm{x} \mathrm{CH}), 127.37(\mathrm{CH}), 127.32(2 \mathrm{x} \mathrm{CH})$, $127.16(\mathrm{CH}), 127.04(2 \mathrm{x} \mathrm{CH}), 84.12(\equiv \mathrm{CH}), 68.47$ $(C \equiv \mathrm{CH}), 67.74(\mathrm{CH}), 63.01(\mathrm{CH}), 46.49\left(\mathrm{CH}_{2}\right), 28.95$ $\left(\mathrm{CH}_{2}\right), 25.87\left(\mathrm{CH}_{2}\right), 21.35\left(\mathrm{CH}_{3}\right), 18.14\left(\mathrm{CH}_{2}\right)$. ESI-MS m / z (CI) $447\left(\mathrm{M}^{+}+\mathrm{H}\right), 469\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.8. Synthesis of $N-[(R, R)$-2-(1-benzyl-1H-1,2,3-triazol-4-yl)butylamino)-1,2-diphenylethyl]-4-methylbenzenesulfonamide 9. To a stirred solution of benzyl bromide $(0.083 \mathrm{~g}, 0.48 \mathrm{mmol})$ in tert-butanol:water $(1: 1 \mathrm{v} / \mathrm{v}, 1.2$ $\left.\mathrm{cm}^{3}\right) \quad$ was added $\quad N-[(R, R)$-2-(hex-5-ynylamino)-1,2-diphenylethyl]-4-methylbenzene-sulfonamide $10(0.22 \mathrm{~g}$, 0.49 mmol) and sodium azide ($0.033 \mathrm{~g}, 0.51 \mathrm{mmol}$). Sodium ascorbate ($9.6 \times 10^{-3} \mathrm{~g}, 0.048 \mathrm{mmol}$) and copper(II) sulfate pentahydrate ($6.0 \times 10^{-3} \mathrm{~g}, 0.024 \mathrm{mmol}$) were then added sequentially to this solution and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h (whilst monitoring by TLC and mass spectrometry). The resultant brown solution was quenched with cold water $\left(1.8 \mathrm{~cm}^{3}\right)$ and 10% aqueous ammonia solution $\left(0.4 \mathrm{~cm}^{3}\right)$; and the mixture was stirred for

15 minutes. The mixture was concentrated under reduced pressure to remove tert-butanol and the residue was dissolved in a solution of water $\left(5 \mathrm{~cm}^{3}\right)$ and $\operatorname{EtOAc}\left(6 \mathrm{~cm}^{3}\right)$. The water layer was re-extracted with ethyl acetate $\left(5 \mathrm{~cm}^{3}\right)$ and the organic layers combined, washed with water (10 cm^{3}), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash column chromatography using gradient elution from 70/30 to 80/20 v / v EtOAc/petroleum ether (silica column pre-treated with 1% triethylamine) to give $9(0.19 \mathrm{~g}, 0.33 \mathrm{mmol}, 66.6 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{30}+4.7\left(c 0.315, \mathrm{CHCl}_{3}\right)$; (found (EI): $\mathrm{M}^{+}+\mathrm{H}, 580.2758 . \mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$ requires M 580.2741); $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) $3254(\mathrm{NH})$, 2926 and $2858\left(\mathrm{CH}_{2}\right)$, 1600, 1454, 1320 and $1153\left(\mathrm{SO}_{2}\right), 811$ (p-substituted Ph), 760 and $698(\mathrm{Ph}), 666 ; \delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.38-7.33$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28-7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ of triazole), 7.11-7.10 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.04-6.98 ($5 \mathrm{H}, \mathrm{m}$, ArH), 6.91-6.87 (4 H, m, ArH), $6.35(1 \mathrm{H}, \mathrm{br}$ s, NH), 5.50 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}$), 4.23 ($1 \mathrm{H}, \mathrm{d}, J$ 9.1, PhCHNHTs), 3.59 (1 $\mathrm{H}, \mathrm{d}, J$ 9.1, PhCHNHCH 2$), 2.64\left(2 \mathrm{H}, \mathrm{t}, J 8.8, \mathrm{CH}_{2} \mathrm{C}(\mathrm{C}) \mathrm{N}\right)$, 2.43-2.39 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2}$), $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of NHTs), 2.32-2.27 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}_{2}$), 1.66-1.55 (2 H , $\mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.48-1.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 148.33$ (C), 142.65 (C), 139.17 (C), 138.18 (C), 136.97 (C), 134.95 (C), 129.02 ($4 \times \mathrm{CH}$), $128.56(\mathrm{CH}), 128.23(2 \mathrm{x} \mathrm{CH}), 127.98(2 \times \mathrm{CH}), 127.80(2$ $\mathrm{x} \mathrm{CH}), 127.54(2 \mathrm{x} \mathrm{CH}), 127.40(\mathrm{CH}), 127.36(2 \mathrm{x} \mathrm{CH})$, $127.16(\mathrm{CH}), 127.06(2 \times \mathrm{CH}), 120.65(\mathrm{CH}$ of triazole $)$, $67.69(\mathrm{CH}), 63.04(\mathrm{CH}), 53.96\left(\mathrm{CH}_{2}\right), 46.64\left(\mathrm{CH}_{2}\right), 29.30$ $\left(\mathrm{CH}_{2}\right)$, $26.78\left(\mathrm{CH}_{2}\right), 25.36\left(\mathrm{CH}_{2}\right), 21.38\left(\mathrm{CH}_{3}\right)$. ESI-MS m / z (CI) $580\left(\mathrm{M}^{+}+\mathrm{H}\right), 602\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.9. Synthesis of $N-[(R, R)-2-(1-p h e n o x y m e t h y l-1 H-1,2,3-$ triazol-4-yl)methoxy ethylamino)-1,2-diphenylethyl]-4methylbenzenesulfonamide 8 . To a stirred solution of [(2azidoethoxy)methyl]benzene $7(0.030 \mathrm{~g}, 0.17 \mathrm{mmol})$ in tert-butanol:water ($8: 2 \mathrm{v} / \mathrm{v}, 1.3 \mathrm{~cm}^{3}$) was added $N-[(R, R)-2-$ (prop-2-ynyloxyethylamino)-1,2-diphenylethyl]-4methylbenzene sulfonamide $6(0.076 \mathrm{~g}, 0.17 \mathrm{mmol})$. Sodium ascorbate ($3.3 \times 10^{-3} \mathrm{~g}, 0.017 \mathrm{mmol}$) and copper(II) sulfate pentahydrate ($0.021 \mathrm{~g}, 0.08 \mathrm{mmol}$) were added sequentially and the reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 5 h whilst monitoring by TLC $\left(\mathrm{R}_{\mathrm{f}}\right.$ product $=0.48, \mathrm{R}_{\mathrm{f}}$ starting alkyne $=0.85$; eluent: $\mathrm{EtOAc}=100 \%$; potassium permanganate stain). The pale blue solution was concentrated under reduced pressure and the oily residue was dissolved in a mixture of water ($2.5 \mathrm{~cm}^{3}$) and ethyl acetate $\left(3 \mathrm{~cm}^{3}\right)$. The water layer was re-extracted with EtOAc ($3 \mathrm{~cm}^{3}$) and the organic layers combined, washed with $6 \%(\mathrm{w} / \mathrm{v}) \mathrm{NaCl}$ solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash column chromatography using gradient elution from $70 / 30$ to $75 / 25 \mathrm{v} / \mathrm{v} \mathrm{EtOAc} /$ petroleum ether to give $8(0.064 \mathrm{~g}, 0.10 \mathrm{mmol}, 60.5 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}{ }^{32}+6.7$ (c 0.115, CHCl_{3}); (found (EI): $\mathrm{M}^{+}+\mathrm{H}$, 626.2801. $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}, 626.2796$); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$
(thin film) $3272(\mathrm{NH}), 2919$ and $2866\left(\mathrm{CH}_{2}\right), 1720,1600$, 1453, 1319 and $1154\left(\mathrm{SO}_{2}\right), 1093,932,813$ (p-substituted $\mathrm{Ph}), 768$ and $699(\mathrm{Ph}), 667 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71$ (1 $\mathrm{H}, \mathrm{s}, \mathrm{CH}$ of triazole), 7.37-7.25 (7 H, m, ArH), 7.10-7.09 (3 $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.01-6.95 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 6.92-6.86 (4 H, m, ArH), 4.59 (overlapping $2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{C}) \mathrm{N}$ and $2 \mathrm{H}, \mathrm{t}, J$ 5.2, $\mathrm{PhCH}_{2} \mathrm{OCH}_{2}$), $4.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OCH}_{2}\right), 4.25(1 \mathrm{H}$, d, J 8.2, PhCHNHTs), 3.87 (2 H, t, J 5.2, $\mathrm{PhCH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2}$), $3.67\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 8.2, $\left.\mathrm{PhC} H \mathrm{NHCH}_{2}\right)$, 3.61-3.56 ($\left.1 \mathrm{H}, \mathrm{qd}, \mathrm{NHCH}_{2} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 3.51-3.47(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}_{2} \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{O}$), 2.68-2.63 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{O}$), 2.52-2.46 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{\mathrm{a}} \mathrm{H}_{b} \mathrm{CH}_{2} \mathrm{O}\right), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right.$ of NHTs); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 144.88$ (C), 142.58 (C), 139.18 (C), 138.21 (C), 137.12 (C), 129.01 ($2 \times \mathrm{CH}$), $128.49(2 \times \mathrm{CH}), 128.21(2 \times \mathrm{CH}), 127.91(\mathrm{CH}), 127.78$ (2 x CH), $127.68(2 \mathrm{xCH}), 127.54$ (overlapping CH and 2 x $\mathrm{CH}), 127.53(2 \mathrm{x} \mathrm{CH}), 127.40(\mathrm{CH}), 127.08(2 \mathrm{x} \mathrm{CH})$, $123.71\left(\mathrm{CH}\right.$ of triazole), $73.25\left(\mathrm{CH}_{2}\right), 69.29\left(\mathrm{CH}_{2}\right), 68.28$ $\left(\mathrm{CH}_{2}\right), 67.55(\mathrm{CH}), 64.32\left(\mathrm{CH}_{2}\right), 63.28(\mathrm{CH}), 50.33\left(\mathrm{CH}_{2}\right)$, $46.44\left(\mathrm{CH}_{2}\right), 21.38\left(\mathrm{CH}_{3}\right)$; ESI-MS m/z (CI) $626\left(\mathrm{M}^{+}+\mathrm{H}\right)$, $648\left(\mathrm{M}^{+}+\mathrm{Na}\right)$.
4.10. Synthesis of HEMA/MMA copolymers 12a-c. The synthesis of polymer $\mathbf{1 2 b}$ is provided as a representative procedure for the polymerisation of HEMA and MMA with 4,4'-azobis(4-cyanovaleric acid) as the initiator and CoBF as the catalyst. MMA and HEMA were purified by passing through basic alumina to remove inhibitors and acidic impurities; and degassed by bubbling nitrogen gas for 30 minutes. The water was also degassed by bubbling nitrogen gas for 30 minutes prior to use. All three polymers were prepared using a [HEMA]:[MMA] molar ratio of [30]:[70]. The $[\mathrm{HEMA}] /[\mathrm{MMA}] /[\mathrm{CoBF}]$ ratios for $\mathbf{1 2 a} / \mathbf{b}$ and 12c were $[0.42] /[1.0] /\left[4.27 \times 10^{-5}\right]$ and $[0.42] /[1.0] /\left[2.14 \times 10^{-5}\right]$ respectively. Functionalisation of hydroxyl groups $f_{\text {hydroxyl }}=$ $2.77 \mathrm{mmol} / \mathrm{g}$, calculated from ${ }^{1} \mathrm{H}$ NMR analysis. The spectroscopic data was in agreement with the literature values. ${ }^{9}$

4.11. Synthesis of HEMA/MMA copolymer 12b.

Dioctylsulfosuccinate sodium salt ($0.29 \mathrm{~g}, 0.67 \mathrm{mmol}$) was added to deoxygenated water ($65 \mathrm{~cm}^{3}$) in a 150 mL 3 necked round-bottomed flask under nitrogen. The aqueous mixture was further degassed by two freeze-pump-thaw cycles before being heated to $80^{\circ} \mathrm{C}$. The monomer/catalyst feed was then prepared in a Schlenk tube, whereby deoxygenated and inhibitor-free MMA (18.72 g, 187.0 mmol) and HEMA ($10.34 \mathrm{~g}, 79.46 \mathrm{mmol}$) were added; and the tube was pump-filled with nitrogen three times. The catalytic chain transfer agent, $\operatorname{CoBF}\left(3.6 \times 10^{-3} \mathrm{~g}, 8.0 \times 10^{-3}\right.$ mmol) was then added, and the mixture was left to stir for 10 minutes until all the CoBF dissolved to give an orange solution. Immediately prior to the transfer of the monomer/catalyst feed, 4, ${ }^{\prime}$-azobis(4-cyanovaleric acid) $(0.29 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added to the aqueous solution at 80 ${ }^{\circ} \mathrm{C}$. The monomer/catalyst feed was then transferred to the
aqueous solution via syringe at a rate of $3 \mathrm{~mL} \mathrm{~min}^{-1}$ during which the aqueous solution turned opaque. Once addition was complete the mixture was left to stir at $80^{\circ} \mathrm{C}$ for 4 h . The water was then removed from the polymer by concentrating the mixture at $90^{\circ} \mathrm{C}$ under reduced pressure to give the HEMA/MMA copolymer as a pale yellow paste. This was triturated with petroleum ether, filtered, dried under reduced pressure and ground using a pestle and mortar to give the HEMA/MMA (3:7 ratio) copolymer 12b ($28.4 \mathrm{~g}, 98.1 \%$ based on mass) as a white solid; $v_{\text {max }} / \mathrm{cm}^{-1}$ (solid) $3502(\mathrm{OH}), 2992$ and 2952, $1721(\mathrm{C}=\mathrm{O}), 1480$, 1448, 1387, 1240, 1147, 1075, 987, 965; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 6.26-6.20 (m, CH), $5.62-5.48(\mathrm{~m}, \mathrm{CH}), 4.12(2 \mathrm{H}$ of HEMA, br s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.84 (2 H of HEMA, br s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.61 (3 H of MMA, br s, OCH_{3}), 2.18-1.83 (2 H of polymer, $\mathrm{br} \mathrm{m}, \mathrm{CH}_{2}$), 1.27-0.84 (3 H of polymer, br m , $\left.\mathrm{CCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.01(\mathrm{C}=\mathrm{O}), 176.73$ $(\mathrm{C}=\mathrm{O}), 66.67\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 60.27\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 54.27$ $\left(\mathrm{CH}_{2}\right), 52.89(\mathrm{C}), 51.71\left(\mathrm{OCH}_{3}\right), 44.84\left(\mathrm{CH}_{2}\right), 44.43\left(\mathrm{CH}_{2}\right)$, $18.64\left(\mathrm{CH}_{3}\right), 16.85\left(\mathrm{CH}_{3}\right) ;$ GPC $m / z \mathrm{M}_{\mathrm{n}}=973, \mathrm{M}_{\mathrm{w}}=1789$, PDI $=1.84 ;$ ESI-MS $m / z(C I) ; M_{n}$ was also determined to be $1570 \mathrm{~g} / \mathrm{mol}$ by the integration of the multiplets at 6.2 $\mathrm{ppm}(0.11 \mathrm{H})$ and $5.6 \mathrm{ppm}(0.11 \mathrm{H})$; the two CH_{2} signals at $4.1 \mathrm{ppm}(0.95 \mathrm{H})$ and $3.8 \mathrm{ppm}(0.95 \mathrm{H})$; and the CH_{3} signal at $3.6 \mathrm{ppm}(3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

4.12. Synthesis of Tosylated HEMA/MMA Copolymers

13a-c. The synthesis of tosylated HEMA/MMA copolymer 13b is a representative procedure for the functionalisation of copolymers 12a-c. Functionalisation of tosyl groups $f_{\text {tosyl }}$ $=1.93 \mathrm{mmol} / \mathrm{g}$, calculated from ${ }^{1} \mathrm{H}$ NMR analysis. This compound has been reported and fully characterised; and the spectroscopic data was in agreement with the literature values. ${ }^{9}$

4.13. Synthesis of tosylated HEMA/MMA copolymer

 13b.HEMA/MMA copolymer 12b ($5.00 \mathrm{~g}, 13.9 \mathrm{mmol}$ HEMA units), dichloromethane $\left(35 \mathrm{~cm}^{3}\right)$, p-toluenesulfonyl chloride ($4.90 \mathrm{~g}, 25.7 \mathrm{mmol}$), DMAP ($0.25 \mathrm{~g}, 2.1 \mathrm{mmol}$) and triethylamine $(2.46 \mathrm{~g}, 24.3 \mathrm{mmol})$ were reacted according to the general procedure to give the crude product as a red gum. This was triturated using petroleum ether and the pale red solid was filtered and washed with petroleum ether $\left(400 \mathrm{~cm}^{3}\right)$. The polymer was then ground using a pestle and mortar and dried under reduced pressure to give the tosylated HEMA/MMA copolymer $\mathbf{1 3 b}(4.70 \mathrm{~g}$, 9.07 mmol HEMA units, 65.5%) as a pale yellow oil; $v_{\text {max }} / \mathrm{cm}^{-1}$ (thin film) 2991 and 2951, 1724 (C=O), 1481, $1448,1360\left(\mathrm{SO}_{2}\right), 1242,1173\left(\mathrm{SO}_{2}\right), 1147,920,815,749$ $(\mathrm{Ph}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.81\left(2 \mathrm{H}\right.$, br s, $\mathrm{CH} o$ to SO_{2} on OTs), 7.38 (2 H , br s, $\mathrm{CH} o$ to CH_{3} on OTs), 6.21-6.17 (m, CH), 5.55-5.48 (m, CH), 4.22 (2 H of HEMA, br s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$), 4.14 (2 H of HEMA, br s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$), 3.60 (3 H of MMA, br s, OCH_{3}), 2.5 (3 H of HEMA, br s, CH_{3} of OTs), 2.07-1.82 (2 H of polymer, $\mathrm{br} \mathrm{m}, \mathrm{CH}_{2}$), 1.10-
0.83 (3 H of polymer, $\mathrm{br} \mathrm{m}, \mathrm{CCH}_{3}$); $\delta_{\mathrm{C}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $177.63(\mathrm{C}=\mathrm{O}), 176.64(\mathrm{C}=\mathrm{O}), 144.95$ ($\mathrm{C} o$ to SO_{2} on OTs), 132.46 ($\mathrm{C} o$ to CH_{3} on OTs), $129.85\left(\mathrm{CH} o\right.$ to SO_{2} on OTs), 127.72 ($\mathrm{CH} o$ to CH_{3} on OTs), $67.19\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}\right), 61.92$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTs}\right), 54.16\left(\mathrm{CH}_{2}\right), 52.67(\mathrm{C}), 51.60\left(\mathrm{OCH}_{3}\right)$, $44.63\left(\mathrm{CH}_{2}\right), 44.27\left(\mathrm{CH}_{2}\right), 21.47\left(\mathrm{CH}_{3}\right.$ of OTs$), 18.51$ $\left(\mathrm{CH}_{3}\right), 16.23\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{GPC}) \mathrm{M}_{\mathrm{n}}=1773, \mathrm{M}_{\mathrm{w}}=2817$, PDI $=1.59 ; \mathrm{M}_{\mathrm{n}}$ was also determined to be $1617 \mathrm{~g} / \mathrm{mol}$ by the integration of the multiplets at $6.2 \mathrm{ppm}(0.11 \mathrm{H})$ and 5.5 $\mathrm{ppm}(0.10 \mathrm{H})$; the two CH_{2} signals at 4.2 ppm and 4.1 ppm (1.82 H combined); and the CH_{3} signal at $3.6 \mathrm{ppm}(3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.
4.14. Synthesis of Azido Derivatised HEMA/MMA Copolymers 14a-c. The synthesis of azido derivatised HEMA/MMA copolymer $\mathbf{1 4 b}$ is a representative procedure for the functionalisation of tosylated HEMA/MMA copolymers 13a-c. Functionalisation of azido groups $f_{\text {azido }}=$ $2.58 \mathrm{mmol} / \mathrm{g}$, calculated from ${ }^{1} \mathrm{H}$ NMR analysis. This compound is novel.
4.15. Synthesis of azido derivatised HEMA/MMA copolymer 14b. The tosylated HEMA/MMA copolymer 13b $(2.43 \mathrm{~g}, 4.69 \mathrm{mmol})$, sodium azide $(0.93 \mathrm{~g}, 14.3 \mathrm{mmol})$ and anhydrous N, N-dimethylformamide ($61 \mathrm{~cm}^{3}$) were reacted according to the general procedure for 2 days. Dichloromethane ($200 \mathrm{~cm}^{3}$) and water $\left(100 \mathrm{~cm}^{3}\right)$ were then added to the reaction mixture and the organic layer separated, re-extracted with water ($4 \times 100 \mathrm{~cm}^{3}$) and saturated NaCl solution $\left(100 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure. The residue was triturated with petroleum ether, and the resultant solid was filtered and washed with water $\left(100 \mathrm{~cm}^{3}\right)$ and petroleum ether ($100 \mathrm{~cm}^{3}$). The polymer was then dried under reduced pressure at $90{ }^{\circ} \mathrm{C}$ and ground using a pestle and mortar to give $\mathbf{1 4 b}(0.45 \mathrm{~g}, 1.2 \mathrm{mmol}, 25.6 \%)$ as a pale yellow solid; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (solid) 2993 and 2951, $2104\left(\mathrm{~N}_{3}\right), 1722(\mathrm{C}=\mathrm{O})$, $1479,1446,1388,1270,1239,1143,989,965,842 ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 6.30-6.20 (m, CH), 5.60-5.47 (m, CH), 4.12 (2 H of HEMA, br s $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 3.60 (3 H of MMA, br s, OCH_{3}), 3.50 (2 H of HEMA, br s, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}$), 2.07-1.82 (2 H of polymer, $\mathrm{br} \mathrm{m}, \mathrm{CH}_{2}$), 1.26-0.84 (3 H of polymer, br $\left.\mathrm{m}, \mathrm{CCH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 178.33(\mathrm{C}=\mathrm{O}), 177.06$ $(\mathrm{C}=\mathrm{O}), 63.74\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 54.33\left(\mathrm{CH}_{2}\right), 52.87(\mathrm{C}), 51.78$ $\left(\mathrm{OCH}_{3}\right), 49.47\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 44.86\left(\mathrm{CH}_{2}\right), 44.49\left(\mathrm{CH}_{2}\right)$, $18.72\left(\mathrm{CH}_{3}\right), 16.44\left(\mathrm{CH}_{3}\right) ; m / z(\mathrm{GPC}) \mathrm{M}_{\mathrm{n}}=2451, \mathrm{M}_{\mathrm{w}}=$ $7110, \mathrm{PDI}=2.90 ; \mathrm{M}_{\mathrm{n}}$ was also determined to be 2878 $\mathrm{g} / \mathrm{mol}$ by the integration of the multiplets at $6.3 \mathrm{ppm}(0.05$ $\mathrm{H})$ and $5.5 \mathrm{ppm}(0.06 \mathrm{H})$; the two CH_{2} signals at 4.1 ppm $(0.81 \mathrm{H})$ and $3.5 \mathrm{ppm}(0.81 \mathrm{H})$; and the CH_{3} signal at 3.6 ppm $(3 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.

[^1]derivatised HEMA/MMA copolymer 15a was synthesised from the azido derivatised HEMA/MMA copolymer 14a using a $\mathrm{Cu}(\mathrm{II})$ /sodium ascorbate mixture. Polymers 15b-c were synthesised using the $\mathrm{Cu}(\mathrm{I}) / \mathrm{TBTA}$ system. Functionalisation of monotosylated 1,2 -diamine $f_{\text {diamine }}=$ $1.20 \mathrm{mmol} / \mathrm{g}$, calculated from the HEMA:MMA (3:7) ratio of the previous polymers $(\mathbf{1 2} \mathbf{- 1 4})$. This compound is novel.
4.17. Synthesis of $N-[(R, 2 R)$-2-(1-ethoxy-1H-1,2,3-triazol-4-yl)butylamino)-1,2-diphenylethyl]-4methylbenzenesulfonamide derivatised HEMA/MMA copolymer 15a. To a stirred mixture of azido derivatised HEMA/MMA copolymer 14a ($0.24 \mathrm{~g}, 0.62 \mathrm{mmol}$) and N [(R, R)-2-(hex-5-ynylamino)-1,2-diphenylethyl]-4-methyl benzenesulfonamide $\mathbf{1 0}(0.20 \mathrm{~g}, 0.44 \mathrm{mmol})$ in tertbutanol:water ($1: 1 \mathrm{v} / \mathrm{v}, 17 \mathrm{~cm}^{3}$) were added sequentially sodium ascorbate ($0.0009 \mathrm{~g}, 4 \times 10^{-6} \mathrm{mmol}$) and copper(II) sulfate $\left(0.0055 \mathrm{~g}, 2.2 \times 10^{-5} \mathrm{mmol}\right)$. The suspension was heated to $80^{\circ} \mathrm{C}$ and stirred at this temperature for 3 days, following which the solid was filtered and washed with dichloromethane. The filtered polymer was suspended in dichloromethane ($100 \mathrm{~cm}^{3}$) and stirred at $40{ }^{\circ} \mathrm{C}$ for 30 minutes, cooled to room temperature, filtered, washed with dichloromethane and dried under vacuum to give $\mathbf{1 5 a}$ (0.36 $\mathrm{g}, 0.43 \mathrm{mmol}, 97.7 \%$) as a blue solid; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (solid) 2991 and 2949, 1725 (C=O), 1599, 1452, 1387, 1266, 1241, 1146, 985, 966, 914, 812, 757 and $699(\mathrm{Ph}), 665$. Spectroscopic and GPC data could not be obtained due to the insolubility of the functionalised polymer in a range of solvents, namely acetone, chloroform, dichloromethane, N, N-dimethylformamide, dimethylsulfoxide, methanol, tetrahydrofuran, 1,2-dichloroethane, benzene, pyridine, acetonitrile and water. Attempts at dissolving the polymer at higher temperatures were not successful.
4.18. Synthesis of $N-[(R, R)$-2-(1-ethoxy-1H-1,2,3-triazol-4-yl)butylamino)-1,2-di phenylethyl]-4-methylbenzenesulfonamide derivatised HEMA/MMA copolymer 15b. To a stirred solution of azido derivatised HEMA/MMA copolymer $\mathbf{1 4 b}(0.024 \mathrm{~g}, 0.062 \mathrm{mmol})$, triethylamine $(2 \mu \mathrm{l}$, $\left.1.45 \mathrm{mg}, 1.40 \times 10^{-2} \mathrm{mmol}\right)$ and DMSO-d $\mathrm{d}_{6}\left(1.0 \mathrm{~cm}^{3}\right)$ was added N-[(R,R)-2-(hex-5-ynylamino)-1,2-diphenylethyl]-4methylbenzene sulfonamide $10(0.022 \mathrm{~g}, 0.049 \mathrm{mmol})$; and the mixture was degassed by two freeze-pump-thaw cycles before being placed under nitrogen. TBTA $(0.008 \mathrm{~g}, 0.015$ $\mathrm{mmol})$ and copper(I) bromide ($0.002 \mathrm{~g}, 0.014 \mathrm{mmol}$) were then added to the solution, and the reaction was quickly placed under vacuum and then nitrogen. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 24 h , following which the solution was analysed by ${ }^{1} \mathrm{H}$ NMR to determine the extent of reaction. Once the presence of the azido derivatised HEMA/MMA copolymer could not be detected; water (20 cm^{3}) was added to the solution and the precipitated solid was filtered, washed with water ($50 \mathrm{~cm}^{3}$) and petroleum ether $\left(50 \mathrm{~cm}^{3}\right)$, and dried under reduced pressure to give
$\mathbf{1 5 b}(0.017 \mathrm{~g}, 0.02 \mathrm{mmol}, 40.8 \%)$ as a blue solid; $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (solid) 2989 and 2949, 1726 (C=O), 1600, 1455, 1267, $1137,966,911,812,758$ and $670(\mathrm{Ph}), 665 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ of triazole), $7.35-6.85(14 \mathrm{H}$ of diamine, m, ArH), 5.45 (2 H of HEMA, $\mathrm{s}, \mathrm{CH}_{2}$), 4.65 (2 H of HEMA, br s, CH_{2}), 4.35 (2 H of polymer, br $\mathrm{s}, \mathrm{CH}_{2}$), 3.70 (1 H of diamine, s , CH-1,2-diamine), 3.55 (br s, overlapping $3 \mathrm{H}, \mathrm{OCH}_{3}$ and CH_{2}-1,2-diamine), 2.48 (3 H of diamine, $\mathrm{br} \mathrm{s}, \mathrm{CH}_{3}$ of NTs), 2.10-1.40 (2 H of polymer, br $\mathrm{m}, \mathrm{CH}_{2}$), 1.67-1.47 (2 H of diamine, br $\mathrm{m}, \mathrm{CH}_{2}$-1,2diamine), 1.25-0.78 (3 H of polymer, $\mathrm{br} \mathrm{m}, \mathrm{CCH}_{3}$).

4.19. Representative Procedures for ketone reductions

Method A: A solution of ruthenium dimer (0.008 mmol) and diamine ligand $(0.016 \mathrm{mmol})$ in the formic acid/triethylamine ($5: 2$) azeotropic mixture $\left(1.0 \mathrm{~cm}^{3}\right.$) was stirred at $28^{\circ} \mathrm{C}$ for 1 h , after which the substrate (1.6 mmol) was added. The reaction mixture was then stirred at $28{ }^{\circ} \mathrm{C}$ for the amount of time recorded. At intervals, a small aliquot of the reaction mixture was passed through a short column of silica gel in a Pasteur pipette and eluted with ethyl acetate. This solution was analysed by chiral GC to determine the conversion and enantiomeric excess. Once the specified conversion was achieved, the solution was passed through a column of silica gel, eluted with ethyl acetate, concentrated under reduced pressure and purified by flash column chromatography to afford the alcohol product.

Method B: A solution of ruthenium dimer (0.008 mmol) and diamine ligand (0.016 mmol) in anhydrous isopropanol $\left(0.32 \mathrm{~cm}^{3}\right)$ was stirred at $80{ }^{\circ} \mathrm{C}$ for 25 minutes. After cooling to $28{ }^{\circ} \mathrm{C}$, a 0.1 M potassium hydroxide solution ($0.284 \mathrm{~cm}^{3}, 0.04 \mathrm{mmol}$) was added followed by a solution of substrate (1.6 mmol) in isopropanol ($13 \mathrm{~cm}^{3}$); and the reaction mixture was stirred at $28^{\circ} \mathrm{C}$ for the amount of time recorded. At intervals, a small aliquot of the reaction mixture was passed through a short column of silica gel packed in a Pasteur pipette and eluted with ethyl acetate. The solution was analysed by chiral GC to determine the conversion and enantiomeric excess.

Method C: A solution of ruthenium dimer $\left(6.6 \times 10^{-3}\right.$ mmol) and diamine ligand ($13.2 \times 10^{-3} \mathrm{mmol}$) in water (3 cm^{3}) was stirred at $60^{\circ} \mathrm{C}$ for 1 h . Sodium formate (6.6 mmol) was added to the solution followed by the substrate $(0.6 \mathrm{mmol})$; and the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for the amount of time recorded. At intervals, a small aliquot of the reaction mixture was cooled to room temperature and the product extracted with ethyl acetate. The ethyl acetate layer was passed through a short column of silica gel in a Pasteur pipette and analysed by chiral GC to determine the conversion and enantiomeric excess.
4.20. Procedure for ketone reductions using the polymer-supported diamine ligand: Ruthenium dimer
(6.6 $\times 10^{-3} \mathrm{mmol}$), polymer-supported diamine ligand (0.013 mmol or 0.063 mmol : equivalent to $1 \mathrm{~mol} \%$ and 4.8 $\mathrm{mol} \%$ respectively), substrate (1.3 mmol) and formic acid/triethylamine ($5: 2$) azeotrope $\left(0.8 \mathrm{~cm}^{3}\right.$) were reacted according to method A. After completion of the reaction, the polymeric ligand was removed from the mixture by filtration for the recycle experiment; washed with an appropriate solvent; and dried under reduced pressure. The ligand was then added to a clean Schlenk tube and subjected to fresh portions of formic acid/triethylamine (5:2) azeotrope ($0.8 \mathrm{~cm}^{3}$) and substrate (1.3 mmol); and reduction monitored by GC analysis.

4.21. NMR Monitoring Experiments.

In a NMR tube equipped with a magnetic stirrer was added ruthenium dimer (0.005 mmol), diamine ligand (0.01 mmol) and d^{6}-benzene ($0.05 \mathrm{~cm}^{3}$) in the formic acid/triethylamine (5:2) azeotropic mixture $\left(0.7 \mathrm{~cm}^{3}\right)$. The NMR tube was shaken gently and a NMR cap with holes was then fitted. The catalytic mixture was stirred at $28{ }^{\circ} \mathrm{C}$ for 1 h , following which acetophenone (1.1 mmol) was added using a syringe. The NMR tube was again shaken gently using a cap without holes and then left to stir at 28 ${ }^{\circ} \mathrm{C}$ for the amount of time recorded. The reduction was monitored in two ways: (1) NMR tube was placed in the NMR spectrometer, and the reaction monitored using a preset program which records chromatograms at regular intervals at $28^{\circ} \mathrm{C}$; and (2) at intervals the NMR sample was removed from the oil bath set at $28^{\circ} \mathrm{C}$ and analysed using the NMR spectrometer. Data analysis was performed using the MestreC software. The conversion of acetophenone to 1 -phenylethanol was calculated by comparing the integration of the proton CHOH in the product alcohol (4.9 ppm) with the integration of the 3 protons CH_{3} in acetophenone (2.5 ppm).
4.22. 1-Phenylethanol. ${ }^{4}[\alpha]_{\mathrm{D}}{ }^{28}+52.2\left(\mathrm{c} 1.0 \mathrm{CHCl}_{3}\right) 95 \%$ ee $(R)\left(\right.$ lit. $^{4}[\alpha]_{\mathrm{D}}{ }^{22}+49.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) 98 \%$ ee (R)); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 7.38-7.24 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.88(1 \mathrm{H}, \mathrm{q}, J$ $6.4, \mathrm{PhCH}(\mathrm{OH})), 1.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.49(3 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145.8(\mathrm{C}), 128.5(2 \mathrm{x} \mathrm{CH})$, $127.4(\mathrm{CH}), 125.4(2 \mathrm{x} \mathrm{CH}), 70.4(\mathrm{CH}), 25.1\left(\mathrm{CH}_{3}\right)$; Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}, \mathrm{~T}=115$ ${ }^{\circ} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, gas H_{2}, ketone $10.0 \mathrm{~min}, R$ isomer 15.4 min , S isomer 16.7 min). The spectroscopic data was in agreement with the literature values. The product configuration was determined by comparing the result to an authentic, commercially bought reference sample.
4.23. 2-Furylethanol 16. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.28(1 \mathrm{H}$, d, J 2.0, ArH α to O), $6.24(1 \mathrm{H}, \mathrm{dd}, J 3.4$ and 2.0 , $\operatorname{ArH} \beta$ to O and β to $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 6.14(1 \mathrm{H}, \mathrm{d}, J 3.4$, $\mathrm{ArH} \alpha$ to $\left.\mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 4.78(1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{CHOH}), 2.32(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH}), 1.44\left(3 \mathrm{H}, \mathrm{d}, J 6.4, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $157.58(\mathrm{C}), 141.78(\mathrm{CH}), 110.03(\mathrm{CH}), 105.00(\mathrm{CH}), 63.48$
(CH), $21.17\left(\mathrm{CH}_{3}\right)$; Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- β $236 \mathrm{M}-1950 \mathrm{~m}, \mathrm{~T}=85^{\circ} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, gas H_{2}, ketone 11.2 \min , R isomer $17.2 \mathrm{~min}, S$ isomer 18.3 min). The spectroscopic data was in agreement with the literature values. ${ }^{22}$
4.24. 1-Phenylpropan-1-ol 17. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 7.38-7.24 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.59(1 \mathrm{H}$, td, $J 6.6$ and 3.3, $\mathrm{PhCH}(\mathrm{OH})$), 1.90-1.68 (overlapping $1 \mathrm{H}, \mathrm{d}, J 3.3, \mathrm{OH}$ and $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $0.92\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) $144.56(\mathrm{C}), 128.38(2 \mathrm{x} \mathrm{CH}), 127.48(\mathrm{CH}), 125.94$ $(2 \mathrm{x} \mathrm{CH}), 76.01(\mathrm{CH}), 31.86\left(\mathrm{CH}_{2}\right), 10.13\left(\mathrm{CH}_{3}\right)$; Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}, \mathrm{~T}=115$ ${ }^{\circ} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, gas H_{2}, ketone $13.6 \mathrm{~min}, R$ isomer 20.8 min , S isomer 21.9 min). The spectroscopic data was in agreement with the literature values. ${ }^{23}$

Acknowledgments

The authors would like to thank the EU (ESF) for a STEPS Postgraduate Award (C.M.Z.). We thank Professor D. M. Haddleton and his group for the provision of a standard sample of CoBF for comparison with our own material.

References

1. (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201-2237; (b) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300-1308; (c) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393-406; (d) Gladiali, S. Alberico, E. Chem. Soc. Rev. 2006, 36, 226236; (e) Wang, C.; Wu, X. F.; Xiao, J. L. Chem. Asian J. 2008, 3, 1750-1770; (f) J. S. M. Samec, J. S. M.; Bäckvall, J.E.;Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237-248.
2. (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562-7563; (b) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1996, 118, 2521-2522; (c) Haack, K. J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem. Int. Ed. 1997, 36, 285-288; (d) Casey, C. P.; Johnson, J. B. J. Org. Chem. 2003, 68, 1998-2001; (e) Handgraaf, J.W.; Meijer, E. J. J. Am. Chem. Soc. 2007, 129, 3099-3103. (f) Soni, R.; Cheung, F. K.; Clarkson, G. C.; Martins, J. E. D.; Graham, M. A.; Wills, M. Org. Biomol. Chem. 2011, 9, 32903294. (g) Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem., 2004, 69, 4885-4890.
3. (a) Gagnepain, J.; Moulin, E.; A. Fürstner, A. Chem. Eur. J., 2011, 17, 6964-6972; (b) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc., 1997, 119, 87388739; (c) Okano, K.; Murata, K.; T. Ikariya, T. Tetrahedron Lett. 2000, 41, 9277-9280.
4. (a) Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc., 2005, 127, 7318-7319; (b) Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki; Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 1496014963.

5 (a) Liu, G.; Yao, M.; Zhang, F.; Gao, Y.; Li, H. Chem. Commun. 2008, 347-349; (b) Xiao, W.; Jin, R.; Cheng, T.;

Xia, D.; Yao, H.; Gao, F.; Deng, B.; Liu, G. Chem. Commun. 2012, 48, 11898-11900; (c) Bai, S.; Yang, H.; Wang, P.; Gao, J.; Li, B.; Yang, Q.; Li, C. Chem. Commun. 2010, 46, 81458147; (d) Yang, Q.; Han, D.; Yang, H.; Li, C. Chem. Asian J.. 2008, 3, 1214-1229; (e) Yang, Y.; Weng, Z.; Muratsugu, S.; Ishiguro, N.; Ohkoshi, S.-I.; Tada, M. Chem. Eur. J. 2012, 18, 1142-1153; (f) Li, Y.; Li, Z.; Li, F.; Wang, Q.; Tao, F. Org. Biomol. Chem. 2005, 3, 2513-2518; (g) Sun, Y.; Liu, G.; Gu, H.; Huang, T.; Zhang, Y.; Li, H. Chem. Commun. 2011, 47, 2583-2585; (h) Wu, L.; He, Y.-M.; Fan, Q.-H. Adv. Synth. Catal. 2011, 353, 2915-2919; (i) Gaikwad, A. V.; Boffa, V.; ten Elshof, J. E.; Rothenberg, G. Angew. Chem. Int. Ed. 2008, 47, 5407-5410; (j) Dimrith, J.; Keilitz, J.; Schedler, U.; Schomäker, R.; Haag, R. Adv. Synth. Catal. 2010, 352, 24972506.
6. Li, J.; Tang, Y.; Wang, Q.; Li, X.; Cun, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J. J. Am. Chem. Soc. 2012, 134, 1852218525.
7. (a) Shan, W.; Meng, F.; Wu, Y.; Mao, F.; Li, X. J. Organomet. Chem. 2011, 696, 1687-1690; (b) Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green. Chem. 2005, 7, 64-82; (c) Li, X.; Chen, W.; Hems, W.; King, F.; Xiao, J. Tetrahedron Lett. 2004, 45, 951-953; (d) Li, X.; Wu, X.; Chen, W.; Hancock, F. E.; King, F.; Xiao, J. Org. Lett. 2004, 6, 3321-3324; (e) J. Liu, J.; Zhou, Y.; Wu, Y.; Li, X.; Chan, A. S. C. Tetrahedron: Asymmetry 2008, 19, 832-837; (f) Huang, L.; Liu, J.; Shan, W.; Liu, B.; Shi, A.; Li, X.; Chirality 2010, 22, 206-211; (g) Zhou, H.-F.; Fan, Q.-H.; Huang, Y.-Y.; Wu, L.; He, Y.-M.; Tang, W.-J.; Gu, L. -Q.; Chan, A. S. C. J. Mol. Catal. A: Chemical 2007, 275, 47-53.
8. (a) Martins, J. E. D.; Clarkson, G. J.; M. Wills, M. Org. Lett. 2009, 11, 847-850; (b) Martins, J. E. D.; Contreras Redondo, M. A.; Wills, M. Tetrahedron: Asymmetry 2010, 21, 22582264.
9. (a) Bastin, S.; Eaves, R. J.; Edwards, C. W.; Ichihara, O.; Whittaker, M.; Wills, M. J. Org. Chem. 2004, 69, 5405-5412; (b) Edwards, C. W.; Haddleton, D. M.; Morsley, D.; Shipton, M. R.; Wills, M. Tetrahedron 2003, 59, 5823-5830.
10. (a) Finn, M. G.; Fokin, V. V. in Catalysis Without Precious Metals, Ed. Bullock, R. M. Chapter 10 Wiley-VCH, Weinheim, 2010; (b) Mindt, T. L.; Schweinsberg, C.; Brans, L.; Hagenbach, A.; Abram, U.; Tourwée, D.; Garcia-Garayoa, E.; Schibli, R. ChemMedChem 2009, 4, 529-539; (c) de la Fuente, V.; Marcos, R.; Cambreiro, X. C.; Castillon, S.; Claver, C.; Pericas, M. A. Adv. Synth. Catal. 2011. 353, 3255-3261; (d) E. Alza, S. Sayalero, P. Kasaplar, D. Almaşi, M. A. Pericàs Chem. Eur. J. 2011, 17, 11585-11595; (e) Cambeiro, X.; Martín-Rapún, R.; Miranda, P. O.; Sayalero, S.; Alza, E.; P. Llanes, P.; Pericàs, M. A. Beilstein J. Org. Chem. 2011, 7, 1486-1493; (f) Ayats, C.; Henseler, A. H.; Pericàs, M. A. ChemSusChem 2012, 5, 320325; (g) Riente, P.; Yadav, J.; Pericàs, M. A. Org. Lett. 2012, 14, 3668-3671; (h) Tsarevsky, N. V.; Bencherif, S. A.; Matyjaszewski, K. Macromolecules 2007, 40, 4439-4445. (i) Gao, H.; Matyjaszewski, K. J. Am. Chem. Soc. 2007, 129, 6633-6639; (j) Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macromolecules 2005, 38, 7540-7545; (k) Shen, Q.; Zhang, J.; Zhang, S.; Hao, Y.; Zhang, W.; Zhang, W.; Chen, G.; Zhang, Z.; Zhu, X. J. Polym. Sci. A Polym. Chem. 2010, 50, 1120-1126; (1) Gacal, B.; Akat, H.; Balta, D. K.; Arsu, N.; Yagci, Y. Macromolecules 2008, 41, 2401-2405; (m) Li, Y.; Yang, J.; Benicewicz, B. C. J. Polym. Sci. A Polym. Chem. 2007, 45, 4300-4308.
11. (a) Vinson, N.; Gou, Y.; Becer, R.; Haddleton, D. M.; Gibson, M. I. Polym. Chem., 2011, 2, 107-113; (b) Nurmi, L.; Lindqvist, J.; Randev, R.; Syrett, J.; Haddleton, D. M. Chem.

Commun., 2009, 44, 2727-2729; (c) Slavin, S.; Burns, J.; Haddleton, D. M. Eur. Polym. J. 2011, 47, 435-446; (d) Becer, C. R.; Gibson, M. I.: Geng, J.; Ilyas, R.; Wallis, R.; Mitchell, D. A.; Haddleton, D. M. J. Am. Chem. Soc. 2010, 132, 15130-15132; (e) Geng, J.; Lindqvist, J.; Mantovani, G.; Haddleton, D. M. Angew. Chem. Int. Ed. 2008, 47, 41804183; (f) Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.; Irwin, J. L.; Haddleton, D. M.; J. Am. Chem. Soc. 2006, 128, 4823-4830; (g) Chevolot, Y.; Zhang, J.; Meyer, A.; Goudot, A.; Rouanet, S.; vidal, S.; Pourceau, G.; Cloarec, J.P.; Praly, J.-P.; Souteyrand, E.; Vasseuar, J.-J.; Morvan, F. Chem. Commun. 2011, 47, 8826-8828; (h) Zhang, Q.; Slavin, S.; Jones, M. W.; Haddleton, A. J.; Haddleton, D. M. Polym. Chem. 2012, 3, 1016-1023; (i) Geng, J.; Mantovani, G.; Tao, L.; Nicolas, J.; Chen, G.; Wallis, R.; Mitchell, D. A.; Johnson, B. R. G.; Evans, S. D.; Haddleton, D. M. J. Am. Chem. Soc. 2007, 129, 15156-15163; (j) Chen, G,; Tao, L.; Mantovani, G.; Ladmiral, V.; Burt, D. P.; Macpherson, J. V.; Haddleton, D. M. Soft Matter. 2007, 3, 732-739.
12. (a) Tinnis, F.; Adolfsson, H. Org. Biomol. Chem. 2010, 8, 4536-4539; (b) Cambeiro, X. C.; Pericàs, M. A.; Adv. Synth. Catal. 2011, 353, 113-124; (c) Johnson, T. C.; Totty, W. G.; Martin Wills, M. Org. Lett. 2012, 14, 5230-5233.
13. (a) Hou, D.; Kuan, T.; Li, Y.; Lee, R.; Huang, K. Tetrahedron, 2010, 66, 9415-9420; (b) Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. 2004, 6, 3897-3899; (c) Appukkuttan, P.; Dehean, W.; Fokin, V. V.; Van der Eycken, E. Org. Lett. 2004, 6, 4223-4225.
14. (a) Soeriyadi, A. H.; Li, G.-Z.; Slavin, S.; Jones, M. W.; Amos, C. M.; Becer, C. R.; Whittaker, M. R.; Haddleton, D. M.; Boyer, C.; T. P. Davis, T. P. Polym. Chem. 2011, 2, 815822; (b) McEwan, K. A.; Slavin, S.; Tunnah, E.; Haddleton,
D.M. Polym. Chem. 2013, 4, 2608-2614; (c) Bon, S. A. F.; Morsley, D. R.; Waterson, J.; Haddleton, D. M.; Lees, M. R.; Horne, T. Macromol. Symp. 2001, 165, 29-42.
15. Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1984, 106, 5197-5202.
16. A standard of CoBF was kindly supplied by the D. M. Haddleton research group.
17. (a) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 17, 2853-2855; (b) Ozkal, E.; Özçubukçu, S.; Jimeno, C.; Pericàs, M. A. Catal. Sci. Technol. 2012, 2, 195-200.
18. Nieman, J. A.; Nair, S. K.; Heasley, S. E.; Schultz, B. L.; Zerth, H. M.; Nugent, R. A.; Chen, K.; Stephanski, K. J.; Hopkins, T. A.; Knechtel, M. L.; Oien, N. L.; Wieber, J. L.; Wathen, M. W.; Bioorg. Med. Chem. Lett. 2010, 20, 30393042.
19. Gosiewska, S.; Soni, R.; Clarkson, G. J.; Wills, M. Tetrahedron Lett. 2010, 51, 4217-4217.
20. Campbell, J. B. J. Chem. Soc. Perkin Trans. I 1983, 12131215.
21. Kuang, G. G.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Zhu, L. J. Org. Chem. 2010, 75, 6540-6548.
22. Matharu, D. S.; Morris, D. J.; Clarkson, G. J.; Wills, M. Chem. Comтии. 2006, 41, 3232-3234.
23. Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71, 7035-7044.

Supplementary Material

Contains details of polymer synthesis and functionalization, and 1H NMR spectra.

[^0]: * Corresponding author. Tel.: +44 247652 3260; fax: +44 247652 4112; e-mail: m.wills@ warwick.ac.uk

[^1]: 4.16. Synthesis of $N-[(R, 2 R)$-2-(1-ethoxy-1H-1,2,3-triazol-4-yl)butylamino)-1,2-diphenylethyl]-4methylbenzenesulfonamide derivatised HEMA/MMA Copolymers 15a-c. The monotosylated 1,2-diamine

