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Abstract

This thesis is about the construction of low dimensional diffusion models of climate

variables. It assesses the predictive skill of models derived from a principled averag-

ing procedure and a purely empirical approach. The averaging procedure starts from

the equations for the original system then approximates the “weather” variables by a

stochastic process. They are then averaged with respect to their invariant measure.

This assumes that they equilibriate much faster than the climate variables. The

empirical approach argues for a very general model form, then parameters are esti-

mated using likelihood based inference for Stochastic Differential Equations. This is

computationally demanding and relies upon Markov Chain Monte Carlo methods.

A large part of this thesis is focused upon techniques to improve the efficiency of

these algorithms.

The empirical approach works well on simple one dimensional models but

performs poorly on multivariate problems due to the rapid increase in unknown

parameters. The averaging procedure is skillful in multivariate problems but is

sensitive to lack of complete time scale separation in the system. In conclusion,

the averaging procedure is better and can be improved by estimating parameters in

a principled way based on the likelihood function and by including a latent noise

process in the model.
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Chapter 1

Introduction

The Earth’s climate is a complex system consisting of several coupled sub-components

such as the atmosphere, oceans, biosphere and cryosphere (glaciers, sea ice and

snow), which evolve on different time scales. The deterministic equations govern-

ing the physics of these systems are derived from the classical laws of mechanics,

thermodynamics and fluid flow. In the case of the atmosphere, the dynamics are

governed by the non-linear Navier-Stokes equations for compressible flow on a ro-

tating sphere. Together with the equation of state, and conservation of mass and

energy, they determine the changes in velocity, temperature, pressure and density,

as well as the amount of water vapour in the air. Fundamentally, it is these equa-

tions which must be solved to provide weather predictions or climate simulations.

However, the Navier-Stokes equations are much too detailed for climate prediction

as they resolve processes with length scales ∆x = O(10−3m) and time scales as

small as ∆t = O(10−1s). They include a range of processes from sound waves, with

time scales of milliseconds, to the thermohaline circulation of the ocean.

Whether simulating the full climate system or making short term weather

predictions, whatever the time scale of interest, approximations are made, which

express the fields of interest as composed of an average component and small high

frequency perturbations from this balanced state. The model is simplified by fil-

tering out the high frequency variability. Due to the interaction between different

scales in the system the averaged equations are not closed with respect to the high

frequency fields. Closed equations are obtained by introducing a parametrisation: a

law that specifies the effects of the unresolved processes on the large scale dynam-

ics. Parametrisations could be based on a physical or empirical relation. Examples

include the representation of clouds, sub-grid scale turbulence and radiation pro-

cesses. They are an important component of a climate model and potentially a
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major source of error in a simulation.

A parametrisation can be considered a statistical mechanics treatment of the

system. Macroscopic quantities arise as the most likely state given the ensemble

of microstates which are distributed according to some stationary probability dis-

tribution. More usefully one can employ a mesoscopic treatment of the sub-grid

scale processes. Then we allow the probability distribution of microstates to evolve

in time governed by some PDE. Now our macroscopic quantity obeys a stochastic

process akin to a Brownian particle buffeted by invisible fluid particles.

Stochastic parametrisation is a method of including model uncertainty in our

predictions. Alternatively, we can consider the initial condition uncertainty due to

our imperfect observations of the system. One can consider the initial conditions

as random variables with a known probability distribution. This randomness then

propagates into the solution. This has implications for predictability since the at-

mosphere is a highly non-linear chaotic system. Systems evolving from different

initial conditions can have diverging solutions and so one simulation may not cap-

ture the full range of possible dynamics given our knowledge of the initial state. It

is therefore useful to perform an ensemble of simulations with varying initial condi-

tions. This is done routinely at the European Centre for Medium Range Weather

Forecasting.

Given the importance of climate science in preparing humanity for a changing

future and the role that weather prediction plays in everything from insurance claims

to the price of energy it is vital that Earth system research continues to make

improvements in the predictive skill of models. Improvements in parametrisations,

finer grid resolutions and the use of satellite data to initialise weather simulations

have made great progress. However, there is a growing appreciation that, due to

the scale invariance of the system, sub grid scale processes will always be important

and the error can not be reduced to zero. This motivates further study of stochastic

parametrisations and stochastic modelling in climate science with a view towards the

probabilistic Earth-System Simulator. At least with this we will have an accurate

estimate of our prediction uncertainty.

1.1 Aims of this Thesis

This thesis is about low dimensional stochastic modelling of atmospheric systems.

The closure problem discussed above introduces stochastic terms and unknown pa-

rameters into these models. This thesis focuses on the problem of statistical estima-

tion of these parameters. Given a functional form for a model of 1− 10 dimensions
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we research and develop suitable methodology to estimate the unknown parameters

from time series observations of the system. Specifically we work with Stochastic

Differential Equations (SDEs).

Although this empirical approach to constructing SDEs for atmospheric pro-

cesses has been done in the literature in several ways we focus on the difficult

statistical problem of likelihood based inference. This is challenging because non-

linearity of the models forces an approximation of the likelihood function. Funda-

mental results show that this approximation converges to the true likelihood as the

observation interval goes to zero. However, this is not necessarily obtained by a real

data sampling strategy.

In order for the methods to be useful in practice we consider the scenario

of infrequent observations. In this case the literature suggests augmenting the data

by repeatedly simulating additional points between observations, adopting a Monte-

Carlo strategy to integrate over the missing data. Maximum likelihood estimation

is difficult in this case due to the noise introduced by the Monte Carlo method

leading to a non-convex optimisation. Instead we use a Bayesian approach. We

aim to estimate the posterior distribution of the unknown parameters given the

observations and the additional uncertainty introduced by the missing data. We

now have an integration rather than a maximisation problem.

One of the aims of this thesis is to continue the research into efficient Markov

Chain Monte Carlo (MCMC) methods for this problem. Specifically, we investigate

the performance of missing data sampling strategies as the dimension of the system

increases. We also consider the problem of poor mixing of MCMC due to the de-

pendency between missing data and diffusion parameters. We review the literature

of methods proposed to tackle this problem and compare them with other MCMC

strategies.

One issue is the computational effort required in the inference of multi-

dimensional systems. We aim to implement efficient code written in a low level

language such as C/C++. We also assess the performance gains from using mas-

sively parallel computation with Graphics Processor Units (GPUs).

One problem encountered early in the research was that the subset of param-

eter space leading to a stable SDE becomes small as the dimension of the system

increases. A lot of the posterior mass was on parameter values which lead to solu-

tions exploding to infinity in finite time. Predictions from these models are obviously

not useable. The Bayesian approach is useful because we can include prior infor-

mation about parameters which restricts them to the subspace leading to stable

solutions. An aim of this thesis is to investigate how this prior information can be
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included and how it affects the inference strategy.

We aim to assess a current stochastic modelling strategy which predicts the

functional form for the reduced model but introduces several parameters which

must be estimated from data. We apply our inference algorithm to these unknown

parameters. A crucial working assumption of this method is that there exists time

scale separation between resolved and unresolved modes of the system. We aim to

assess the performance when there is imperfect separation of time scales. To do this

we use a series of toy models, starting with those where the time scale separation

is explicit and known, then moving to more sophisticated models of geophysical

dynamics where time scale separation is an assumption. We aim to use consistent

measures of predictive skill to determine the ability of reduced models to reproduce

the statistics of the full. Finally we aim to apply our methods to data from a

sophisticated atmospheric model.

1.2 Outline of this Thesis

This thesis is broadly divided into methods (Chapters 4 and 5-7) and applications

(Chapters 3 and 8) although, firstly, in Chapter 2 we present some theory of

Stochastic Differential Equations (SDEs). We briefly recap some properties of Brow-

nian motion and diffusion processes. We state some useful results regarding the

existence and stability of solutions of SDEs, which will be used later to restrict the

parameter space through prior information. We also discuss the Girsanov change

of measure theorem which is crucial to understanding likelihood based inference for

SDEs and the problems that arise. We introduce bridge processes which will be

used as part of the inference methods in Chapters 4 and 5.

In Chapter 3, we review the existing literature on stochastic modelling in

climate science. Here we discuss how the field developed from Hasselmann’s seminal

work of 1976 and the successful application of these ideas to the understanding of the

El Nino system. We also review more recent work on low dimensional modelling of

the atmosphere and the methods of statistical inference that have been employed.

In this Chapter we also introduce some of the mathematical theory of averaging

and homogenisation which underpins the stochastic mode reduction strategy that

motivates this thesis. We then present the three toy problems with which we will

work, and derive reduced models for each case.

Chapter 4 builds upon the theory of Chapter 2 applied to the inference prob-

lem. We discuss the literature, briefly mentioning non-likelihood based approaches

and other algorithms that have been developed for our problem. We focus on some
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key contributions from the literature regarding likelihood based inference and in par-

ticular on the Bayesian approach and Markov Chain Monte Carlo (MCMC) meth-

ods. We demonstrate the potential problems encountered with naive algorithms and

review more sophisticated methods. We argue for a particular flexible algorithm,

taken from the literature, as suitable for our applications and we give details of the

implementation.

In Chapter 5 we focus on improving the efficiency of MCMC methods ap-

plied to our particular class of model. We introduce the use of the multivariate

non-time homogeneous linear bridge as an efficient method to propose missing data.

We discuss sampling diffusion parameters and the difficulty associated with models

having low dimensional noise. We present a Gibbs sampler for the drift parame-

ters and investigate the computational improvements gained from using Graphics

Processing Units for sampling diffusion parameters.

SDEs driven by red noise are one possibility for modelling systems with lack

of time scale separation. This introduces latent, unobserved processes into the SDE

model. Inference methods for imputing latent processes are derived in Chapter 6.

In Chapter 7 we discuss the problem of restricting the parameter space in

order to obtain stable SDEs and we present one method of solving this problem.

From this arises the problem of inference for positive definite matrices. We present

several algorithms which tackle this problem, one of which is based on a novel use

of the non-central Wishart distribution.

In Chapter 8 we apply our methods to a range of toy problems which, to

varying degree, represent the type of non-linear dynamics with time scale separa-

tion one could expect from the atmosphere. We start with double well dynamics,

coupled to the chaotic Lorenz system. We compare the cubic models, with parame-

ters inferred empirically, with the theoretically motivated model resulting from the

homogenisation procedure. The next step is to consider a bivariate model. For

this we consider a triad model coupled to a the Burgers equation. We then move

onto a model with more realistic features of atmospheric flow, namely the Quasi-

Geostrophic Model on the Beta Plane with mean flow. In this case the time scale

separation is not explicitly known. In each case we compare the stationary proba-

bility density and autocorrelation functions of the reduced model with the full. We

summarise our findings in Chapter 9.
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Chapter 2

Stochastic Differential

Equations

In this thesis we work extensively with Stochastic Differential Equations (SDEs). In

this Chapter we will collect some definitions and results needed to work with SDE

models and that will be required for the rest of the thesis. The Chapter is largely

based upon the books by Øksendal [2007], Gardiner [2004] and Kloeden and Platen

[1992].

SDEs are a widely used modelling framework. They continue to be exten-

sively used in mathematical finance since the seminal work of Black and Scholes

[1973] on option pricing and have been used in equilibrium economics as models of

interest rates [Cox et al., 1985]. Techniques for fitting nonlinear models have been

developed and applied to the Eurodollar exchange rate [Elerian et al., 2001] and

stock prices [Bibby and Sorensen, 2001]. Stochastic volatility models have become

popular to capture the time dependent noise in stocks; methods for fitting mod-

els with latent, unobserved processes have therefore been developed [Eraker, 2001].

Rigorous treatment of topics in mathematical finance, including option pricing and

optimal control, is given by Karatzas and Shreve [1997]. The extension to modelling

markets with jumps (diffusions with discontinuous paths) is given in Øksendal and

Sulem [2007].

In physics, SDEs have been used in the development of non-equilibrium sta-

tistical mechanics since the early 20th century. They are used to describe the time

dependence of fluctuations in macroscopic quantities such as pressure and energy in a

system with an enormous number of variables [van Kampen, 1997]. Einstein derived

an equation to describe the old problem of Brownian motion of a particle in a fluid

from a probabilistic view while Langevin took an approach based on the mechanics
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of individual particles. The resulting Langevin equation (or the Ornstein-Uhlenbeck

model [Uhlenbeck and Ornstein, 1930]) has now been generalised for nonlinear mod-

els [van Kampen, 1981; Ramshaw, 1985]. Specific applications include molecular

dynamics [Feller et al., 1995; Gordon et al., 2009; Pokern et al., 2009; Hegger and

Stock, 2009], chemical reaction dynamics [Gillespie, 2000], quantum mechanics [Ford

et al., 1988; Olavo et al., 2012], neuron firing [Ota et al., 2009], nuclear fission [Abe

et al., 1996] and turbulence [POPE, 1994].

Applications in medicine and biology include modelling gene regulatory net-

works [Golightly and Wilkinson, 2005, 2008], molecular reaction networks [Sjberg

et al., 2005], nonlinear models in epidemiology [Chen and Bokka, 2005], modelling

the growth of blood vessels in tumours [Capasso and Morale, 2009] and population

genetics [Fearnhead, 2006].

Examples in Earth Sciences include the work of Ditlevsen [1999] on modelling

sudden climate change observed in ice core data; modelling drought and flood risk

using SDEs [Unami et al., 2010]; stochastic modelling of soil salinity [Suweis et al.,

2010]; stochastic parametrisations of unresolved processes in climate models [Wilks,

2008] and hedging climate risk exposure using financial markets [Chaumont et al.,

2006]. A lot of work has been done on modelling fast chaotic processes in the

atmosphere as noise, resulting in an SDE model for the slow variables (see for

example Franzke et al. [2005]). This is closely related to the work in this thesis and

the associated literature will be reviewed in Chapter 3.

An SDE is an extension of an Ordinary Differential Equation (ODE) to

include a random component. Consider extending a d dimensional ODE system to

include a random component as in

dXt

dt
= µ(Xt, t) + a(Xt, t)W t, X0 = x0, X ∈ Rd (2.1)

where µ : Rd × R+ → Rd, a : Rd × R+ → Rd×m and W t ∈ Rm is a standard

Gaussian white noise. Solutions to this equation can be written, formally, as

Xt = x0 +

∫ t

0
µ(Xs, s)ds+

∫ t

0
a(Xs, s)W sds . (2.2)

In Section 2.2 we discuss the meaning of the second integral, but we first recall some

mathematical preliminaries.
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2.1 Some Mathematical Preliminaries

Here we recall some concepts related to random variables and stochastic processes,

fixing the notation for the thesis. For further details refer to Øksendal [2007]. If Ω is

a set then a σ-algebra F on Ω is a collection of subsets with the following properties

• ∅ ∈ F

• F ∈ F ⇒ FC ∈ F , where FC is the compliment of F

• A1, A2, . . . ∈ F ⇒ A = ∪∞i=1Ai ∈ F

The pair (Ω,F) is called a measurable space. A probability measure P on (Ω,F) is

a function P : F → [0, 1] such that

• P(∅) = 0

• P(Ω) = 1

• If A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint then

P (∪∞i=1Ai) =

∞∑
i=1

P(Ai) .

The triple (Ω,F ,P) is called a probability space.

A d dimensional random variable X is a function from the probability space

to the d dimensional real numbers X : Ω → Rd. To denote an observation of the

random variable we use the informal notation X(ω) = x, where ω ∈ Ω is an event.

For each Borel set U ⊂ Rd a random variable induces a probability measure, defined

by

πX(U) = P(X−1(U)) .

πX(U) is called the distribution of X. The expectation of a function is defined

E[f(X)] =

∫
Rd
f(x)dπX(x)

In this thesis we work with probability measures that have a density p(x) with

respect to Lebesgue measure so that

E[f(X)] =

∫
Rd
f(x)p(x)dx .

A stochastic process {Xt}t∈T ∈ Rd, on probability space (Ω,F ,P), is a

collection of vector valued random variables indexed by time t ∈ T . For each fixed
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time t we have an observation function xt : ω → Xt(ω), ω ∈ Ω. For fixed ω ∈ Ω we

call the function Xt : t→ Xt(ω) the path of the stochastic process.

Relevant for later theory in Section 2.5 and the literature review in Chapter

4 are the concepts of a filtered probability space and a martingale. A filtration,

on measurable space (Ω,F), is an increasing family of σ-algebras Ft ⊂ F so that

0 ≤ s < t⇒ Fs ⊂ Ft .

We use the notation (Ω,F ,P, {Ft}) to refer to a filtered probability space. A d-

dimensional stochastic process {Xt} on (Ω,F ,P) is a martingale with respect to

filtration Ft if

• Xt is Ft-measurable for all t

• E[|Xt|] <∞ for all t

• E[Xt|Xs] = Xs for all t ≥ s,

where the expectations are taken with respect to P.

Associated with a stochastic process is a transition probability density, de-

fined by

P(Xt ∈ A|Xs = xs) =

∫
y∈A

p(t,y|s,x)dy .

In general a stochastic process can depend upon its full path history so

that the transition probability density to be in state x1 at time t1, is written

p(x1, t1|x2, t2;x3, t3, · · · ), where t1 > t2 > t3 > · · · . We say that the process is

Markov if

p(x1, t1|x2, t2;x3, t3, · · · ) = p(x1, t1|x2, t2) , (2.3)

i.e the transition density only depends upon the current state. In real systems,

observations at fine intervals are likely to depend upon some of the recent history.

However, a Markov process may be appropriate on the time scale we are interested

in and is a useful modelling framework.

In this thesis we will only consider stochastic processes with continuous sam-

ple paths. This excludes models with jumps that are gaining popularity in finance.

A sample path is continuous if it satisfies the Lindeberg condition

lim
∆t→0

1

∆t

∫
|x−z|>ε

dxp(x, t+ ∆t|z, t) = 0 , (2.4)

where ε > 0. This states that the probability for x to be finitely different from z

goes to 0 faster than ∆t.
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2.2 Brownian Motion and the Ito Integral

Now that we have introduced notation for stochastic processes we can consider

an important example. Brownian motion was first proposed as a model for the

movement of pollen grains undergoing “random” movements. This has been studied

mathematically as a stochastic process and generalised to d dimensions. Here, we

recap some of the theoretical properties of mathematical Brownian motion that will

allow is to understand and evaluate integrals such as the one in Eq. (2.2). With

regards to Eq. (2.2) we introduce the notation dBt = W tdt. The stochastic process

given by

Bt =

∫ t

0
dBs

is known as standard Brownian motion and has the following properties

1. B0 = 0

2. Almost surely continuous paths Bt

3. Independent, stationary increments

4. Bt −Bs ∼ N (0, t− s) , 0 ≤ s ≤ t

Sometimes referred to as the Wiener process, its existence was proved by Wiener

[Wiener et al., 1966]. We state some of the key facts that allow one to integrate

with respect to Brownian motion.

The first integral in Eq. (2.2) is to be understood in the usual Riemann-

Stieltjes sense. To appreciate why the second integral can not be treated this way

consider the one dimensional problem of computing∫ 1

0
BsdBs . (2.5)

First define the step function as any function that can be written as

f(x) =

n∑
i=0

αiIAi(x) ,

where αi are real numbers, Ai are intervals and I is the indicator function (I[t1,t2](t) =

1 if t1 ≤ t < t2, 0 otherwise). Approximating the integrand in Eq. (2.5) as the step

function over the interval [0, 1] as

B(t, ω) ≈ f (n)
1 (t, ω) =

2n−1∑
j=0

Bj2−nI[j2−n,(j+1)2−n](t) , (2.6)
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the integral has expected value

E

[∫ 1

0
f

(n)
1 (s, ω)dBs(ω)

]
=

2n−1∑
j=0

E[Bj2−n(B(j+1)2−n −Bj2−n)] = 0 .

Here we have used the independence of the increments of Brownian motion. Alter-

natively, if the integrand is approximated as

B(t, ω) ≈ f (n)
2 (t, ω) =

2n−1∑
j=0

B(j+1)2−nI[j2−n,(j+1)2−n](t) , (2.7)

then we get

E

[∫ 1

0
f

(n)
2 (s, ω)dBs(ω)

]
=

2n−1∑
j=0

E[B(j+1)2−n(B(j+1)2−n −Bj2−n)]

=

2n−1∑
j=0

E[(B(j+1)2−n −Bj2−n)2]

=
2n−1∑
j=0

2−n = 1 ,

where we have used properties 3 and 4 of standard Brownian motion. This example

shows that the integral depends upon which point of the interval [j2−n, (j+1)2−n) we

choose to approximate the function, unlike the Riemann integral which converges

regardless of the point chosen. This phenomenon is due to the large increments

of the Brownian motion path; it can be shown that Brownian motion is nowhere

differentiable [Øksendal, 2007]. Also, the total variation of almost all Brownian

motion sample paths over an interval [s, t] is unbounded, i.e

lim
∆tk→0

∑
s≤tk<t

|Bti+1 −Bti | =∞ , (2.8)

Since the integrator dBt is not a bounded variation process the Riemann-Stieltjes

interpretation of the integral does not necessarily exist [Øksendal, 2007]. However,

Brownian motion has finite quadratic variation, given by

lim
∆ti→0

∑
s≤ti<t

(Bti+1 −Bti)2 = (t− s) in L2 . (2.9)

Therefore, the sums can be shown to converge in L2 and so the integral is well
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Figure 2.1: Brownian Motion. Sample path of the process (left) and quadratic
variation as a function of log time interval (right).

defined even though different for each choice of approximation. Figure 2.1a shows

a sample path of Brownian motion over the time interval [0, 10]. Figure 2.1b shows

the quadratic variation converging to the value in Eq. (2.9) as the discretisation

interval goes to zero.

Integration with respect to Brownian motion depends upon the point where

the integrand is approximated. Choosing the left point t∗j = tj , as in Eq. (2.6),

leads to the Ito integral, denoted∫ t

0
σ(Xs, s)dBs = lim

n→∞

∑
j

f(Xtj , tj)(Bj+1 −Bj) ,

Another common choice is to use t∗j = (tj+1 − tj)/2, the mid point of the interval.

This is called the Stratonovich Integral and is written∫ t

0
σ(Xs, s) ◦ dBs = lim

n→∞

∑
j

f(X(tj+1−tj)/2, (tj+1 − tj)/2)(Bj+1 −Bj) .

There are different cases where each integral is more appropriate and there exist

relations between the two.

In this thesis we write Eq. (2.1) in the standard notation for SDEs

dXt = µ(Xt, t)dt+ a(Xt, t)dBt ,X0 = x0 , (2.10)

where in general the Brownian motion may be of different dimension to X, so

that X ∈ Rd,B ∈ Rm, µ : Rd × [0,∞) → Rd and a : Rd × [0,∞) → Rd×m. It

is understood that the second term is integrated in the sense of Ito. Eq. (2.10)

sets the notation used throughout the thesis: µ(Xt, t) is referred to as the drift
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function and a(Xt, t) as the diffusion function. We will usually work with

autonomous SDEs, where there is no explicit time dependence in the drift and

diffusion functions. It is also often useful to write the drift and diffusion function’s

dependence on a parameter vector θ explicitly. Those cases where there is split

between the components entering the drift and diffusion functions we write θ =

{γ,σ} and the SDE in Eq. (2.10) is written

dXt = µ(Xt,γ)dt+ a(Xt,σ)dBt X0 = x0 . (2.11)

In contexts where we want to emphasize a function’s dependence upon the under-

lying probability space we write, for example, a(t, ω) to mean a(Xt(ω),σ).

2.3 Ito’s Formula

Ito’s formula is the SDE analogue of the chain rule. It is a key tool when working

with SDEs and in particular is needed to integrate equations like Eq. (2.11). Ito’s

formula is a rule for changing variables when working with SDEs. It is used to

determine the governing equation for a smooth function f : Rd × [0,∞)→ Rp.
Let Y = f(Xt, t) then expanding the differential to second order we have

dYk =
∂fk
∂t

(Xt, t)dt+
∑
i

∂fk
∂xi

(Xt, t)dXi +
1

2

∑
i,j

∂2fk
∂xi∂xj

(Xt, t)dXidXj . (2.12)

In the usual chain rule only the first two terms are of order O(dt). The third term

is O(dt2) and not included. In the case of SDEs, if we substitute the expressions for

dXi from Eq. (2.11) into the third term we get terms of the form dBidBj . These

are retained as they are of order O(dt). To see this consider property 4 of Brownian

motion: the variance of an increment ∆Bj is equal to the time difference ∆tj . One

can derive rigorously that

∑
j

f(Xj , tj)(∆Bj)
2 →

∫ t

0
f(Xs, s)ds in L2(P) as ∆tj → 0 .

and the rules: dBidBj = δijdt, dBidt = 0 (see Øksendal [2007]). Applying these to
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calculate the O(dt) terms from dXidXj in Eq. (2.12) gives

dYk =

∂fk
∂t

(Xt, t)dt+
∑
i

∂fk
∂xi

(Xt, t)µi(Xt, t) +
1

2

∑
i,j,l

∂2fk
∂xi∂xj

(Xt, t)ailajl

 dt

+
∑
i,j

∂fk
∂xi

(Xt, t)aij(Xt, t)dBj . (2.13)

Ito’s formula can be used to compute integrals such as Eq. (2.5). Using the

change of variables Yt = B2
t we have

dB2
s = 2BsdBs +

1

2
2ds .

Then ∫ t

0
BsdBs =

∫ t

0
(dB2

s − ds) = B2
t − t , (2.14)

so that the integral differs from the equivalent finite variation process by the factor

−t.

2.4 The Fokker-Planck Equation

The Fokker-Planck (FP) is a Partial Differential Equation (PDE) for the time evo-

lution of the transition density of a SDE (see Gardiner [2004]). In Chapter 3 it is

used to derive the reduced dimensional climate model.

Consider SDE of the form Eq. (2.11). If Σ(x, t) = aT (x, t)a(x, t) is the co-

variance matrix of the process then the Fokker-Planck equation for the transition

density is

∂p(x, t|z, t′)
∂t

= −
∑
i

∂

∂xi

(
µi(x, t)p(x, t|z, t′)

)
+

1

2

∑
i,j

∂2

∂xi∂xj

(
Σij(x, t)p(x, t|z, t′)

)
,

(2.15)

where we have

µi(x, t) = lim
∆t→0

∫
Rd

(zi − xi)p(z, t+ ∆t|x, t)dz (2.16)

and

Σi,j(x, t) = lim
∆t→0

∫
Rd

(zi − xi)(zj − xj)p(z, t+ ∆t|x, t)dz . (2.17)

Solutions of the equation are diffusion processes. This equation defines the drift

and diffusion coefficients of the SDE in Eq. (2.11) as the functions in Eqns (2.16)
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and (2.17) respectively, connecting the stochastic differential equation and diffusion

descriptions of the same system. The Fokker-Planck equation is known in mathe-

matics as the Forward Kolmogorov equation.

For insight, and to demonstrate an application of Ito’s formula, we provide

a derivation of the Fokker-Planck equation for a 1 dimensional process. Using Ito’s

formula, consider the time evolution of the expectation of an arbitrary twice con-

tinuously differentiable function f(X(t)), where X(t) is the process in Eq. (2.11)

with initial condition X(0) = y. Taking expectations with respect to the transition

density we have

dE[f(x(t))]

dt
=

∫
dxf(x)

∂p(x, t|y, t0)

∂t

= E
[
df(x(t))

dt

]
= E

[
µ(x, t)

∂f

∂x
+

1

2
a(x, t)2∂

2f

∂x2

]
=

∫
dx

(
µ(x, t)

∂f

∂x
+

1

2
a(x, t)2∂

2f

∂x2

)
p(x, t|y, t0)

=

∫
dxf(x)

(
−∂[µ(x, t)p(x, t|y, t0)]

∂x
+

1

2

∂2[a(x, t)2p(x, t|y, t0)]

∂x2

)
,

where we have used integration by parts, discarding surface terms. Since f(x) is

arbitrary we have, with the appropriate initial condition p(x, t0|y, t0) = δ(x − y),

the Fokker-Planck equation in 1 dimension

∂p(x, t|y, t0)

∂t
= −∂[µ(x, t)p(x, t|y, t0)]

∂x
+

1

2

∂2[a(x, t)2p(x, t|y, t0)]

∂x2
. (2.18)

It is sometimes easier to work with the backward Fokker-Planck equation [Gar-

diner, 2004]:

∂p(x, t|y, t0)

∂t
= −

∑
i

µi(y, t0)
∂[p(x, t|y, t0)]

∂yi
− 1

2
aij(y, t0)2∂

2[p(x, t|y, t0)]

∂yi∂yj
. (2.19)

The difference is that now the variables x at time t are fixed and y varies. Eq.

(2.19) is also referred to as the backward Kolmogorov equation. We will use it

several times in this thesis.
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2.5 Girsanov’s Change of Measure Theorem

Intuitively Girsanov’s theorem states that if we change the drift of an Ito diffu-

sion then the law of the new process will be absolutely continuous with the law of

the original process. Girsanov’s theorem is extensively used for option pricing in

mathematical finance. It is also central to likelihood based inference for diffusion

processes, discussed in detail in Chapter 4.

Let Xt be an Ito process, on filtered probability space (Ω,F ,P, {Ft}), of the

form

dXt = µ(t, ω)dt+ dBt . (2.20)

Let Mt be given by

Mt(ω) = exp

(
−
∫ t

0
µ(s, ω)dBs −

1

2

∫ t

0
µT (s, ω)µ(s, ω)ds

)
.

The Novikov condition

E

[
exp

(
1

2

∫ t

0
µT (s, ω)µ(s, ω)ds

)]
<∞ ,

is sufficient to guarantee that this is a martingale with respect to the filtration

Ft (see Øksendal [2007]). If P is the law associated with process (2.20) then the

Girsanov transformation gives a new measure on Ft by

dQ(ω) = Mt(ω)dP(ω) .

and the process Xt is a Brownian motion with respect to Q. The theorem implies

that for all sets F1, . . . , Fk ⊂ R and all t1, . . . , tk ≤ t we have

Q(Xt1 ∈ F1, . . . ,Xtk ∈ Fk) = P(Bt1 ∈ F1, . . . ,Btk ∈ Fk) .

Equivalently we can say that Q is absolutely continuous with respect to P, written

P� Q. Then we can write
dQ
dP

= Mt on Ft .

and call Mt the Radon-Nikodym derivative of Q with respect to P.

For the law Pa of a SDE with general diffusion function

dXt = µ(t, ω)dt+ a(t, ω)dW t ,
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the Radon-Nikodym derivative is

dQa

dPa
(ω) = exp

(
−
∫ t

0
µT (s, ω)a−1(s, ω)dW s −

1

2

∫ t

0
µT (s, ω)a−1(s, ω)µ(s, ω)ds

)
= exp

(
−
∫ t

0
µT (s, ω)a−1(s, ω)dXs +

1

2

∫ t

0
µT (s, ω)a−1(s, ω)µ(s, ω)ds

)
.

(2.21)

This ratio serves as the likelihood function for the parameters entering the drift

function. However, the Radon-Nikodym derivative between measures induced by

diffusions with differing diffusion functions does not exist. This is because they do

not have the same sets of measure zero: they are mutually singular. As discussed

further in Chapter 4 one can not use Eq. (2.21) as the likelihood for inferring

parameters in the diffusion function as there is no common dominating measure.

Therefore, it is sometimes useful to transform a SDE to one of unit diffusion (so

all unknown parameters are in the drift function) before performing inference. This

can be done using the Lamperti Transform. Consider the one dimensional SDE

dXt = µ(X, t)dt+ a(Xt)dBt , Xt0 = x0

and let

Yt = g(Xt) =

∫ Xt du

a(u)
. (2.22)

Then, using Ito’s formula, Yt satisfies the SDE

dYt =

(
µ(g−1(Yt), t)

a(g−1(Yt))
− 1

2

∂a

∂x
(g−1(Yt))

)
dt+ dBt , Yt0 = g(x0) ,

which has unit diffusion. However, this transformation can not be performed for

general multivariate diffusion. The change of variable g is the solution of ∇g(x) =

a−1(x). A solution exists if the inverse of a is a gradient, i.e

∂[a−1]ij(x)

∂xk
=
∂[a−1]ik(x)

∂xj
(2.23)

for all triples i, j, k = 1, . . . , n, where n is the dimensionality [Ait-Sahalia, 2008].

2.6 Existence, Uniqueness and Stochastic Stability

Here we state some qualitative results about the solution to SDEs such as Eq. (2.11).

Although analytic solutions can only be found in a few cases one can determine
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global properties such as the stability of the solutions or the existence of a limiting

invariant measure for the system. In applications we can decide a priori that our

model should have these properties. One of the aims of this thesis is to show how

the parameter space can be restricted in order to enforce the stability property.

This is achieved through the use of prior information in a Bayesian setting and is

demonstrated in Chapter 7. Here we state some definitions and introduce stability

criteria for Ito diffusions that will be used later in the thesis.

The existence and uniqueness criteria for SDEs are analogous to those for

ODEs. In order for a solution to the SDE (2.11) to exist and be unique within the

time interval [t0, T ] it is sufficient for the drift and diffusion functions to satisfy

1. Lipschitz Condition: there exists a constant C such that

|µ(x, t)− µ(y, t)|+ |a(x, t)− a(y, t)| ≤ C|x− y|

for all x and y and all t ∈ [t0, T ].

2. Growth Condition: there exists a constant K such that for all t ∈ [t0, T ]

|µ(x, t)|+ |a(x, t)| ≤ K(1 + |x|) . (2.24)

For time invariant systems the Lipschitz condition implies the growth condition. The

above conditions are very restrictive and are often violated in practice, meaning that

the solution may explode to infinity. However, these global Lipschitz conditions can

be weakened to local ones. Then one can use results from Lyapunov stability theory

to ensure sufficient conditions for global existence and uniqueness of solutions. Lya-

punov theory for SDEs proceeds similarly to that for ODEs (see Thygesen [1997]).

Here we consider only the time homogeneous case.

Associated with Eq. (2.11) we define the differential operator mapping twice

differentiable functions of coordinate space V : X → R as

LV (x) =
∂V

∂x
(x) · µ(x) +

1

2
tr a′(x)

∂2V

∂x2
(x)a(x) . (2.25)

The operator L is known as the Infinitesimal Generator associated with SDE

(2.11)

LV (x) = lim
t↓0

Ex[V (Xt)]− V (x)

t
,

where the expectation Ex[V (Xt)] is for initial condition x.
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A function V : X → R is proper if it satisfies

a(|x|) ≤ V (x) ≤ b(|x|)

for some strictly increasing functions a and b for which a(0) = b(0) = 0 and a(x)→
∞ for x → ∞. A Lyapunov function is a proper continuous, twice differentiable

function of X. Given that our process obeys local Lipschitz conditions we would

like to know what further conditions guarantee that finite escape times occur with

probability 0. The following theorem is from Thygesen [1997]

Theorem 1. Let there exist a proper, twice differentiable function V and numbers

K > 0, c > 0 and ε ≥ 0 such that for |x| > K we have LV ≤ cV + ε. Then, with

probability 1 the sample paths do not converge to ∞ in finite time.

2.7 Ergodicity and Stationarity

Intuitively stationarity implies that a process has settled to a steady state. We

say that a stochastic process X is stationary if X(t) and X(t+ ∆) have the same

statistics for all ∆ and denote the stationary probability density ps(x). This is

equivalent to saying that all joint probability distributions are invariant to time

translation

p(x1, t1;x2, t2; . . .xn, tn) = p(x1, t1 + ∆;x2, t2 + ∆; . . .xn, tn + ∆) .

Conditional probabilities only depend upon the time difference. In practice we make

estimates of the stationary statistics of a process by recording successive measure-

ments in time.

Now consider calculating a time average

X̄(T ) =
1

2T

∫ T

−T
dtXt . (2.26)

Clearly the expectation of this quantity is the average of the process Xt. The

variance of Eq. (2.26) can be shown to be

E[X̄(T )2]− E[Xt]
2 =

1

4T 2

∫ 2T

−2T
dtR(t)(2T − t) , (2.27)

where R(t) is the stationary autocorrelation function. A sufficient condition for
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the variance to go to zero is ∫ ∞
0

dt |R(t)| <∞ .

This is satisfied if R(t) ∼ exp(−t/tc), where tc is the characteristic decay time.

This form of autocorrelation is often met asymptotically in practice and so the

variance of X̄(T ) goes to zero and we say that the estimate converges in mean

square. With similar reasoning one can also show that the autocorrelation function

can be measured from time averages.

If we wanted to estimate the stationary distribution ps(x) from successive

times then this is essentially measuring the time average of the indicator function

for a grid of intervals (x1, x2). This would give an estimate of
∫ x2

x1
ps(x)dx. We

follow the same reasoning as for the time average of the process and find that a

sufficient condition is that the limit

lim
t→∞

p(x, t|x0, t0) = ps(x) (2.28)

is approached sufficiently rapidly. Under this condition all statistics of the process

can be estimated using time averages and we will call the process ergodic.

2.8 Some Exact Solutions

Consider the following SDE

dXt = γXtdt+ σXtdBt . (2.29)

The solution of this equation is known as Geometric Brownian motion and can

be obtained as follows. First make the change of variables f(x) = log(X) then using

Ito’s formula

dft =
∂f

∂x
dXt +

1

2

∂2f

∂x2
(dXt)

2

=
1

X
dXt −

1

2X2
(dXt)

2

=
1

X
(γXtdt+ σXtdBt)−

1

2X2
σ2X2dt

=

(
γ − σ2

2

)
dt+ σdBt .
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This implies that

ft =

(
γ − σ2

2

)
t+ σBt .

Changing back to the original variables gives

Xt = exp

((
γ − σ2

2

)
t+ σBt

)
. (2.30)

Solutions of this equation are shown in Figure 2.2.

Another soluble process, which we shall use, is the multivariate Ornstein-

Uhlenbeck process [Gardiner, 2004]. It is given by

dXt = −AXtdt+ CdBt , (2.31)

with solution

Xt = exp(−At)X0 +

∫ t

0
exp(−A(t− s))CdBs . (2.32)

This is a Gaussian process with mean

E[Xt] = exp(−At)E[X0] (2.33)

and covariance

Cov(Xt, Xs) = exp(−At)Var(X0) exp(−As)

+

∫ min(t,s)

0
exp(−A(t− r))CCT exp(−AT (s− r)) dr . (2.34)

This matrix can be calculated simply if A and C commute. Otherwise it can be

computed component wise.

2.9 The Ito-Taylor Expansion

Taylor expansions are a useful tool for theoretical and numerical studies of smooth

deterministic functions. In this section we present the analogous methodology for Ito

SDEs, which is based upon the repeated application of the Ito formula. We will use

these tools in later sections to both simulate an SDE and construct approximations

of its transition density. Consider the time homogeneous SDE

dXt = µ(Xt)dt+ a(Xt)dBt ,X0 = x0 , (2.35)
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with formal solution

Xt = X0 +

∫ t

0
µ(Xs)ds+

∫ t

0
a(Xs)dBs . (2.36)

Applying Ito’s formula to the functions µ(x) and a(x) gives

Xt = Xt0 +

∫ t

t0

[
µ(Xt0) +

∫ s

t0

(
µT

∂µ

∂x
(Xr) +

1

2
aTa

∂2µ

∂xT∂x
(Xr)

)
dr

+

∫ s

t0

a
∂µ

∂x
(Xr)dBr

]
ds

+

∫ t

t0

[
a(Xt0) +

∫ s

t0

(
µ
∂a

∂x
(Xr) +

1

2
aTa

∂2a

∂xT∂x
(Xr)

)
dr

+

∫ s

t0

a
∂a

∂x
(Xr)dBr

]
dBs . (2.37)

If we discard the inner integrals we obtain the Euler approximating process

Y δ
t = Y δ

t0 + µ(Y δ
t0)(t− t0) + a(Y δ

t0)(Bt −Bt0) ,

where δ = t − t0 is the time step. The difference between this approximation and

the exact solution can be quantified as the expectation of the absolute difference

at some time t. We say an approximation has strong, pathwise convergence of

order α if

E[|Xt − Y δ
t |] ≤ Cδα

and weak convergence, with respect to function g ∈ G, with order β if

|E[g(Xt)]− E[g(Y δ
t ))] ≤ Cδβ ,

where δ is the largest step size and C is a constant that does not depend upon δ. The

Euler scheme has strong order α = 0.5 and weak order β = 1 [Kloeden and Platen,

1992] essentially because the random increments are of order
√
δ. If we retain the

next order in Eq. (2.37) we have

Y δ
t = Y δ

t0 + µ(Y δ
t0)(t− t0)

+ a(Y δ
t0)(Bt −Bt0) + a(Y δ

t0)
∂a

∂x
(Y δ

t0)

∫ t

t0

∫ s

t0

dBrdBs

= Y δ
t0 + µ(Y δ

t0)(t− t0) + a(Y δ
t0)(Bt −Bt0)

+
a(Y δ

t0)

2

∂a

∂x
(Y δ

t0)((Bt −Bt0)2 − (t− t0)) , (2.38)
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(a) Sample path of Eq. (2.29) for param-
eters γ = 1.5 and σ = 1.0 for time T = 2
and δ = 2−6. The black line is the exact
solution.
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(b) Absolute error for the two schemes on
a log2 scale. The Milstein error has a slope
approximately 1 while the Euler’s is 0.5.

Figure 2.2: Comparison of Euler and Milstein schemes for simulating the SDE in
Eq. (2.29). The Euler simulations are in blue and the Milstein in red.

where we have used Eq. (2.14). This is known as the Milstein scheme and is

of strong order α = 1. From this we notice that the approximation will not be

Gaussian if the diffusion coefficient has non-zero derivative. In Figure 2.2 we have

compared the Euler and Milstein schemes applied to simulating Eq. (2.29). We

used parameter values γ = 1.5 and σ = 1.0 and simulated for a total time of

T = 2.0. Figure 2.2a compares a sample path of the exact solution with the Euler

and Milstein approximations. The same underlying Brownian motion was used and

the exact solution was obtained from Eq. (2.30). Notice that the Milstein scheme

appears to stay close to the exact solution for a lot longer than the Euler scheme.

The benefit from using the Milstein scheme can be quantified by calculating the

absolute error at the final time of the simulation. The absolute error is given by

ε = E[|XT − Y δ
T |] ,

which we estimate using M repeated simulations

ε̂ =
1

M

M∑
i=1

|X(i)
T − Y

(i),δ
T | .

Figure 2.2b shows log2(ε̂) plotted against δ: the simulation time step. The slope

of the Milstein error is approximately 1 and the Euler 0.5. Kloeden and Platen

[1992] prove that these are the respective strong orders of these algorithms. In this

thesis we use the Milstein scheme for simulation. In Chapter 6 we use higher order

Ito-Taylor expansions, to propagate noise to all components, for likelihood inference.
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Chapter 3

Stochastic Climate Modelling

In this Chapter we review previous work on stochastic modelling in climate science,

particularly focussing on Low Frequency Variability (LFV) of the atmosphere. We

discuss the various methods of reducing a large non-linear geophysical system to a

low dimensional approximation. We review work on flow regimes and large scale

persistent patterns, observed in the real atmosphere; the importance of which was

highlighted by work on the simple geophysical model of Charney and De Vore [1979].

We give details of model reduction strategies based on the seminal work of Hassel-

mann [1976]. We discuss methods of multiple time scales: an important approach

to understanding stochasticity in slow-fast systems.

Fast chaotic variables in a system can be approximated by a suitable ran-

dom process. Formally this leads to a perturbation argument: either the theory

of averaging or homogenisation. This is an important background for the work in

this thesis so we present informal derivations of the procedure following Pavliotis

and Stuart [2008]. We review the application of this theory to geophysical problems,

particularly the work of Majda and coworkers [Majda et al., 1999, 2001, 2002, 2003].

We analyse the relative success of this approach in comparison to other methods

that are more data driven. Here we discuss the approach taken in this thesis, which

is a combination of analytical and empirical methods. Finally, we introduce the

model problems that we will apply our methods to in Chapter 8.

3.1 Low Frequency Variability

We focus our attention on the type of problems that arise in modelling Low Fre-

quency Variability (LFV) of the atmosphere. This encompasses time scales from 10

days to 6 months and is manifest in large scale patterns in pressure in the tropo-
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sphere. This intraseasonal variability is most apparent in the wintertime extratropics

(see e.g Pandolfo [1993]). LFV is the time scale at which numerical weather predic-

tion starts to lose significant skill, due to the chaotic dynamics, and has therefore

been the focus of much attention for extended range forecasts. Reduced dimension-

ality models work well at these time scales as LFV systems can often be well repre-

sented by just a few modes of variability [D’Andrea and Vautard, 2001; D’andrea,

2002].

A key property for a system to be predictable by a simple stochastic model

is its persistence. Many investigations have been conducted into the predictability

of persistent planetary flow regimes (e.g Dole and Gordan [1983]). It is essential

to model these phenomena in order to understand atmospheric variability beyond

the time scale of weather fluctuations. An early example of the identification of

a flow regime was the phenomenon of blocking. Blocks are atmospheric pressure

fields that are nearly stationary. They often have a region of high pressure known

as the blocking high or blocking anticyclone. They can persist for weeks and cause

a region to have the same weather for a significant time. Over the Atlantic a simple

description of a block is that it is a breakdown in the usual strong westerly flow to a

more cellular flow initiating a train of cyclonic and anticyclonic vortices [Rex, 1950].

They are associated with “heatwaves”, droughts and severe winters. Significant

progress was made by Charney and De Vore [1979] in explaining these modes using

a simple barotropic model on the beta plane. They showed that, in this model,

multiple equilibria could arise from the interaction of the topographic wave and the

zonal mean flow.

Of particular interest for predictability are teleconnection patterns. These

are correlations in the field of some meteorological variable separated over distance.

They were originally defined by determining the correlation between a geographical

location and all others and repeating this for each point. The teleconnections are

then the centres of strongest negative correlation. Wallace and Gutzler [1981] docu-

ment the teleconnections for winter 500mb height variability. They find at least four

patterns: the North Atlantic and North Pacific Oscillations, a zonally symmetric

see-saw in sea level pressure and the Pacific North American Oscillation. According

to Barnston and Livezey [1987] this method of finding the most anti-correlated cen-

tres does not help in finding the most representative of patterns or their evolution.

They suggest using rotated principal component analysis.

Multiple flow regimes have been investigated by Kimoto and Ghil [1993]

who fitted bivariate Probability Density Functions (PDFs) to the first two Empir-

ical Orthogonal Functions (EOFs) (principal components of the data) of Northern
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Hemisphere wintertime 700 mb height anomalies. They argue that the existence of

multiple nodes of the PDF indicates differing flow regimes. However, as stated by

Franzke et al. [2008] long run integrations of General Circulation Models (GCMs)

show very nearly Gaussian statistics precluding the possibility of multiple regime

identification by analysing the PDF. They proceed by stating that multiple regimes

could still exist but are unobserved variables. They suggest using Hidden Markov

Models (HMMs) to identify regimes. HMMs have a prescribed number of Gaussian

mixtures and transition probabilities between them. The eigenvalue structure of the

Markov transition matrix is used to determine the existence of metastable regimes.

The authors show that the barotropic quasi-geostrophic equation can have a dif-

ferent number of metastable regimes depending on the topographic height. They

demonstrate that the nearly Gaussian PDF of the mean flow can be decomposed

into the PDFs of three metastable states. They also find regime behaviour in the

three level Quasi-Geostrophic (QG) model of Marshall and Molteni [1993] but not in

a more realistic GCM. The method presented here is limited to the analysis of uni-

variate time series. Application to multivariate time series would be an interesting

extension.

Franzke et al. [2009] extend this work by using the regime identification

method of Horenko et al. [2008]; Horenko [2009]. For a given number of clusters this

method minimises the observed data from a cluster trajectory. It simultaneously

identifies clusters and transitions between them, although they are not generally

Markov in nature. Franzke et al. [2009] use the concept of embedding dimension

to determine an effective Markov model before determining the metastable states.

In this case the regime identification is applied to the full multivariate data set.

For the barotropic model on a beta plane this analysis indicated three metastable

regimes agreeing with the HMM analysis of Franzke et al. [2008]. They apply the

method to the comprehensive National Center of Atmospheric Research (NCAR)

Community Climate Model, version 0, which represents well LFV. They focus on

a 100 dimensional subspace of the EOFs of 500mb height anomalies. They find

that there is evidence for seven regimes, one of which corresponds to the Northern

Annular mode. This is in contrast to Franzke et al. [2008] where no regimes were

found for this model.

3.2 Model Reduction

To model low frequency dynamics one aims to retain the large scale features while

approximating the small fast features, often by some stochastic process. The model
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reduction procedure consists of two steps. First an optimal basis to represent the

dynamics is chosen and then the system is truncated. Secondly a closure scheme is

used to account for the affects of the unresolved variables on the retained modes.

This split is often designed to separate the large scale, slow modes from the small,

fast modes. The closure procedure could be based on fitting linear stochastic damp-

ing terms empirically [Selten, 1995] or predicting stochastic corrections using theory

valid in the limit of complete time scale separation [Majda et al., 1999].

Crommelin and Majda [2004] investigated the importance of the choice of

basis for the reduced system. Empirical Orthogonal Functions (EOFs) are often

used as a basis. EOFs are constructed by finding the mode that accounts for the

most variability in the system. Then subsequent modes account for the most vari-

ability subject to being orthogonal to the first and so on. EOFs are calculated by

computing the eigenvectors of the covariance matrix. They can drastically reduce

the number of dimensions in a system while retaining nearly all of the variance (see

e.g Preisendorfer [1988]). However, they can fail to reproduce the correct dynamics,

even if they account for 99% of the variance. This is particularly true in systems

with bursty regime transitions, where low variability modes can be crucial in forcing

the system between metastable states [Crommelin and Majda, 2004]. An alternative

is to consider Optimal Persistence Patterns (OPPs) [DelSole, 2001]. In this case the

basis is chosen to optimise persistence measures: either the integrated autocorre-

lation function or square integrated autocorrelation. This is a natural basis if one

is aiming for long term predictive skill. Another choice are Principal Interaction

Patterns (PIPs) [Kwasniok, 1996]. These take account of the dynamics of the sys-

tem and so are a natural choice, although their calculation is more complicated.

Basically, one minimises the integrated difference between the full system and the

low dimensional system up to some final time to calculate the projection operator.

Expressions for the gradient of the error can be calculated to facilitate the minimi-

sation [Kwasniok, 1997]. A problem with the approach is that the calculation of

PIPs can be sensitive to the final time chosen.

Crommelin and Majda [2004] calculated EOFs, OPPs and PIPs for the

barotropic model on the beta-plane: the much studied model of Charney and

De Vore [1979]. They studied the six dimensional truncated model and assessed

the ability of the dimension reduction strategies to reproduce the regime transitting

behaviour. They found that, even with five variables, the EOFs were not able to

simulate the regime switching. OPPs also failed to produce the chaotic nature of the

regime switching. Instead the five dimensional model produced periodic behaviour.

The authors conclude that short time scale behaviour must be important to produce
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regime switching, which OPPs fail to retain. The PIP models are able to reproduce

the regime switching. However, the behaviour of the reduced model was noted to

depend upon the final time for the “training”. If a short time is used then PIP

models can fail to reproduce the climate statistics; a long time and the variability

of the reduced system can be too low. These problems with PIPs, applied to a

semi-realistic model of the atmosphere, were noted by Kwasniok [2004].

Another related technique are Principal Oscillation Patterns (POPs) [Von Storch

et al., 1995]. POPs are the normal modes of the linearised system and correspond to

the unstable modes calculated from linear stability analysis. POP analysis includes

both stages of the model reduction with the closure problem already solved by the

resulting linear system. POP analysis can be used for prediction but the linearity

of the model means extended forecasts have little skill.

In this thesis we will focus on the second stage of the model reduction: the

closure problem. We focus on the type of problems that apply to LFV. We use the

term climate to refer to the resolved modes of the system and occasionally refer

to the fast modes as weather variables in agreement with terminology used in the

literature.

As mentioned in the Introduction a characteristic of the climate system is its

variability on multiple time scales. One way of explaining this variability has been to

find external forcing factors driving the system at a range of frequencies such as some

unknown solar forcing. In 1976 Hasselmann, with his seminal papers [Hasselmann,

1976; Frankignoul and Hasselmann, 1977], initiated a field of research aiming to

explain this variability as part of the internal dynamics of the system. He considered

the slow changes in climate to be the integrated response of rapid fluctuations in

weather similar to the way a Brownian particle integrates the many collisions with

faster moving fluid particles. The idea was to treat the fast deterministic motion as

a stochastic process and then average the equations to leave an effective equation

for the slow climate variables. This has been the starting point for much research

into stochastic climate models. In this chapter we review some of this work but first

we introduce some of the mathematical language as summarised by Arnold [2001].

Consider the full description of the climate given by the vector z. A climate

model starts with a set of deterministic equations

dz

dt
= h(z) .

Hasselmann considered the case where there exist separate components of z

z = (x,y)
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that evolve on different time scales. In this case x could represent climate variables

with characteristic time τx and y could be weather variables with characteristic time

τy. In the atmosphere τy would be the order of one day and τx could be on the scale

of weeks to months representing the intraseasonal variability associated with large

scale teleconnections. To represent different response times we introduce a small

scaling parameter ε and write the (non-dimensionalised) system as

dx

dt
= f(x,y) ,x0 = X ∈ Rn

dy

dt
=

1

ε
g(x,y) ,y0 = Y ∈ Rm

such that τy ≈ ε � τx ≈ 1. We would like an approximate equation with solution

ut ∈ [0, T ] such that limε→0 x
ε
t = ut. The simplest case where g(x,y) = g(y) can

be treated by the classical method of Averaging, which Hasselmann refers to as a

Statistical Dynamical Model. In this case the forcing term for x is averaged over y

giving the approximate equation

du

dt
= F (u) ,

where

F (x) = lim
T→∞

1

T

∫ T

0
f(x,yt)dt =

∫
f(x,y)µ(dy) .

Here, µ is the unique invariant measure for y and ergodicity is assumed. Calculating

F (x) is known as the closure problem. The next step is to consider the error in this

approximation. It was shown by Khasminskii [1966] that if the fast variables are a

stochastic process then on the interval t ∈ [0, T ], there is a Central Limit Theorem

(CLT) such that

ξεt =
1√
ε
(xεt − ut)

has a limiting Gaussian distribution as ε → 0. Over longer time periods there are

many phenomena that are not captured by the Method of Averaging or the Central

Limit Theorem. These could include xt hopping between stable attractors of the

system. This could be described as a Large Deviation phenomena. The concepts

of Averaging (a Law of Large Numbers), the CLT and Large Deviations are three

fundamental concepts in asymptotic probability theory. In this thesis we will be

focussing on approximations using the CLT.

At this point we have only considered the classical case where g(x,y) = g(y).

Arnold [2001] calls the generalisation “Hasselmann’s case”. Now the slow and fast

variables are coupled and the situation is now much more complicated. The fast
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dynamics now have invariant measures µx(dy) which depend upon x. If we consider

x to be frozen, the solution operator of y maps the initial condition y0 = Y forward

in time: (t,Y )→ φxt (Y ). Then we can write the averaged forcing as

F µx(x) =

∫
Rm
f(x,y)µx(dy) = lim

T→∞

1

T

∫ T

0
f(x, φxt (Y ))dt .

Then we have the approximate equation

du

dt
= F µut

(ut) ,u0 = X

and limε→0 x
ε
t(X,Y ) = ut(X).

Averaging for ODEs is known as Anosov’s theorem [Pavliotis and Stuart,

2008]. For the results to follow it is sufficient that the fast dynamics are a hyperbolic

system [Kifer, 2001]. In this case one can also say something about the deviations

from the average system. Kifer [1995] proved that the deviations from the averaged

system are a Gaussian diffusion process. The problem is that the ergodicity and fast

mixing assumption often fails for ODEs. It is easier to work with an SDE where

there is a stochastic term entering into the equation for the fast dynamics as

dx

dt
= f(x,y), x(0) = x0,

dy

dt
=

1

ε
g(x,y) +

1√
ε
β(x,y)

dV

dt
, y(0) = y0 , (3.1)

where V is a standard Brownian motion. Given certain conditions on the coefficients

g(x,y) and β(x,y) it can be shown that the invariant measures for y have a density

with respect to Lebesgue measure, µx(dy) = ρx(y)dy. In simple cases this density

is known explicitly.

3.3 Averaging and Homogenisation for SDEs

In this thesis we will start with the assumption that the fast dynamics are driven

by a diffusion process such that the density ρx(y) can be calculated. This follows

the stochastic mode reduction procedure of Majda et al. [2001] and related work.

Therefore the first step in deriving a stochastic climate model is to approximate the

non-linear fast dynamics by a diffusion process. This involves introducing some pa-

rameters that are to be determined empirically and motivates the inference problem

we study later. For now we assume that we are given the form in Eq. (3.1) and we

derive the averaged equation, following Pavliotis and Stuart [2008]. First define the
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generators

L0 = g(x,y) · ∇y +
1

2
C(x,y) : ∇y∇y,

L1 = f(x,y) · ∇x , (3.2)

where C(x,y) = β(x,y)β(x,y)T and : denotes the inner product between matrices.

The operator L0 has a null space characterised by

L∗0ρ(y|x) = 0 , (3.3)

where L∗0 is the adjoint operator of L0. We work with the backward Kolmogorov

equation (see Section 2.4). For an arbitrary function of state space h(x(t),y(t)),

define

v(x,y, t) = E (h(x(t),y(t))|x(0) = x,y(0) = y) .

Then the backward equation for SDE (3.1) is

∂v

∂t
=

1

ε
L0v + L1v .

We seek a multiscale solution to this equation

v = v0 + εv1 +O(ε2)

and equating powers of ε we get

O(1/ε) : L0v0 = 0, (3.4)

O(1) : L0v1 = −L1v0 +
∂v0

∂t
. (3.5)

Eq. (3.4) implies that v0 is a function only of (x, t). The Fredholm alternative (see

Pavliotis and Stuart [2008, Theorem 2.42]) implies that

−L1v0 +
∂v0

∂t

is orthogonal to the null space of L∗0. Using (3.3) and (3.2) this implies that∫
Y
ρ(y|x)

(
∂v0

∂t
(x, t)− f(x,y) · ∇xv0(x, t)

)
dy = 0 ,
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where Y is the domain of y. Since ρ(y|x) is a probability density we have

∂v0

∂t
−
(∫

Y
f(x,y)ρ(y|x)dy

)
· ∇xv0(x, t) = 0 . (3.6)

Defining

F (x) =

∫
Y
f(x,y)ρ(y|x)dy

we get
∂v0

∂t
− F (x) · ∇xv0 = 0 .

This is the backward equation (see Section 2.4) for

dX

dt
= F (X), X(0) = x0 .

Therefore, up to times O(1), X approximates the solution of Eq. (3.1).

Averaging can be considered first order perturbation theory or as a form

of the law of large numbers. Homogenisation or second order perturbation

theory is a form of the central limit theorem [Pavliotis and Stuart, 2008]. The

homogenisation procedure describes the dynamics on the longer, diffusive time scale.

For generality we consider second order perturbation theory with three time

scales. The linear operator has the form

L =
1

ε2
L0 +

1

ε
L1 + L2 . (3.7)

Again following Pavliotis and Stuart [2008], consider the SDEs

dx

dt
=

1

ε
a(x,y) + b(x,y) +α(x,y)

dU

dt
, x(0) = x0,

dy

dt
=

1

ε
ω(x,y) +

1

ε2
γ(x,y) +

1

ε
β(x,y)

dV

dt
, y(0) = y0 , (3.8)

where U and V are standard Brownian motions. Then we can define the operators

that enter Eq. (3.7) as

L0 = γ · ∇y +
1

2
C : ∇y∇y,

L1 = a · ∇x + ω · ∇y,

L2 = b · ∇x +
1

2
A : ∇x∇x, (3.9)
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where

A(x,y) = α(x,y)α(x,y)T ,

C(x,y) = β(x,y)β(x,y)T .

Again the generator L0 is a differential operator in y, where x enters as a parameter.

has null space as in Eq. (3.3). We also assume that a(x,y) averages to zero under

this measure. This is known as the centring condition∫
Y
a(x, y)ρ(y|x)dy = 0, ∀x ∈ X . (3.10)

We seek a multiscale solution

v = v0 + εv1 + ε2v2 + · · ·

of
∂v

∂t
=

(
1

ε2
L0 +

1

ε
L1 + L2

)
v, for (x,y, t) ∈ X × Y × R+ .

Equating powers of ε we have

O(1/ε2) : −L0v0 = 0 (3.11)

O(1/ε) : −L0v1 = L1v0 (3.12)

O(1) : −L0v2 = −∂v0

∂t
+ L1v1 + L2v0 . (3.13)

Eq. (3.11) implies that v0 = v0(x, t). Solvability for Eq. (3.12) requires expectation

zero with respect to the invariant measure on y. Eq. (3.12) can be written

−L0v1 = a(x,y) · ∇xv0(x, t) . (3.14)

Using Eq. (3.9) the general solution of Eq. (3.14) has the form

v1(x,y, t) = Φ(x,y) · ∇xv0(x, t) + Φ1(x, t) .

The function Φ1 plays no further role so it can be set to zero. Substituting Φ into

Eq. (3.14) we see that it solves the so called cell problem

−L0Φ(x,y) = a(x,y),

∫
Y

Φ(x,y)ρ(y|x)dy = 0, (3.15)

which, by the Fredholm alternative for elliptic PDEs, has a solution if the centring
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condition (Eq. (3.10)) holds. Substituting the expression for v1 into Eq. (3.13) we

have

−L0v2 = −∂v0

∂t
+ L1 (Φ · ∇xv0) + L2v0 .

For solvability we need the right hand side to be in the null space of L0. Analogous

to Eq. (3.6) this requires

∂v0

∂t
=

∫
Y
ρ(y|x)L2v0(x, t)dy +

∫
Y
ρ(y|x)L1 (Φ(x,y) · ∇xv0(x, t)) dy . (3.16)

As in Pavliotis and Stuart [2008] we split the problem into separate integrals. Firstly,

let

I1 =

∫
Y
ρ(y|x)L2v0(x, t)dy

=

∫
Y
ρ(y|x)

(
b(x,y) · ∇x +

1

2
A(x,y) : ∇x∇x

)
v0(x, t)dy

= F 1(x) · ∇xv0(x, t) +
1

2
A1(x) : ∇x∇xv0(x, t) , (3.17)

where

F 1(x) =

∫
Y
ρ(y|x)b(x,y)dy and A1(x) =

∫
Y
ρ(y|x)A(x,y)dy .

Also

I2 =

∫
Y
ρ(y|x)L1 (Φ(x,y) · ∇xv0(x, t)) dy

=

∫
Y
ρ(y|x) (a⊗ Φ : ∇x∇x + (a∇xΦ + ω∇yΦ) · ∇x) v0(x, t)dy

= (F 0(x) +G0(x)) · ∇xv0(x, t) +
1

2
A0(x) : ∇x∇xv0(x, t) ,

where

F 0(x) =

∫
Y
ρ(y|x)a(x,y)∇xΦ(x,y) dy, G0(x) =

∫
Y
ρ(y|x)ω(x,y)∇yΦ(x,y) dy

and

A0(x) = 2

∫
Y
ρ(y|x)a(x,y)⊗Φ(x,y) .

Combining this with Eq. (3.17) gives

∂v0

∂t
= F (x) · ∇xv0 +

1

2
A(x)A(x)T : ∇x∇xv0 , (3.18)
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where

F (x) = F 1(x) + F 0(x) +G0(x)

A(x)A(x)T = A1(x) +A0(x) . (3.19)

Note that it can be shown that A(x)A(x)T ,x ∈ X is positive definite [Pavliotis and

Stuart, 2008]. Eq. (3.18) is the backward equation for the SDE

dX

dt
= F (X) +A(X)

dB

dt
, X(0) = x0 .

Solutions to this equation then approximate solutions to Eq. (3.8) for times t of

order O(1). Note that this approximation is in the sense of measures.

3.3.1 Averaging and Homogenisation for Climate Modelling

The above theory has been applied to climate modelling by Andrew Majda and

coworkers in a series of papers: Majda et al. [1999], Majda et al. [2001], Majda

et al. [2009], Majda et al. [2002], Majda et al. [2003]. The authors refer to this

Stochastic Mode Reduction Strategy as the MTV procedure and it is presented

for the general case in Majda et al. [2009]. It is applied to simple toy models with

explicit time scale separation in Majda et al. [1999] and Majda et al. [2002] and

demonstrated on a simplified model of atmospheric flow in Majda et al. [2003].

Franzke et al. [2005] applied the method to a realistic barotropic model of climate.

The MTV procedure considers the case where we have a climate model, for

state variable z ∈ Rd, of the following form

dz

dt
= f(t) +Lz +Q(z, z) , (3.20)

so that we have a linear operator L and a quadratic operator Q. As in Hasselmann

[1976] we assume that there are two subsets of variables z = (x,y) so that the

resolved variables x ∈ Rn evolve on the slow time scale and the unresolved variables

y ∈ Rm on the fast. Then we can write the model as

dx

dt
= f1(t) +L11x+L12y +Q1

11(x,x) +Q1
12(x,y) +Q1

22(y,y)

dy

dt
= f2(t) +L21x+L22y +Q2

11(x,x) +Q2
12(x,y) +Q2

22(y,y) . (3.21)

The authors of MTV then make the assumption that the non-linear self interaction

of the unresolved variables y can be represented by an ergodic stochastic process.
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As mentioned above this means that we can work with the better understood ho-

mogenisation theory for ergodic stochastic processes rather than that for determin-

istic systems. This stochastic approximation is

Q2
22(y,y) ≈ −Γ

ε
+

Σ√
ε
Ḃ(t) ,

where Γ,Σ ∈ Rm×m are matrices and B is a m-dimensional Brownian motion.

The authors assume that Γ and Σ are diagonal but this could be generalised. The

parameter ε � 1 is introduced here to represent our assumption that these terms

are large and force the y variables to equilibriate quickly. If we coarse grain time in

equations (3.21) so that t→ εt we have

dx =
1

ε

(
f1

(
t

ε

)
+L11x+L12y +Q1

11(x,x) +Q1
12(x,y) +Q1

12(y,y)

)
dt

dy =
1

ε

(
f2

(
t

ε

)
+L21x+L22y +Q2

11(x,x) +Q2
12(x,y)

)
dt− Γ

ε2
ydt+

Σ

ε
dB(t) .

(3.22)

In order to derive a model for the climate variables we follow some assumptions of

Majda et al. [2001]. We assume that there is damping on the climate time scale, i.e

we add a term −Dx, and that the external forcing acts on the climate time scale so

that
1

ε
f1

(
t

ε

)
→ F 1(t) .

We assume that the non-linear interaction of the climate variables is a slow time

scale effect: Q1
11(x,x)/ε → Q1

11(x,x). The operators Q1
22,Q

1
11,Q

2
11 are symmet-

ric in their arguments. Finally we assume that the non-linear interactions in y

have expectation zero with respect to the invariant measure of the fast process:

EQ1
22(y, y) = 0. In particular, this will be the case if the diagonal terms are zero.

Also for the derivation here we assume that there are no fast wave effects, i.e L11 = 0.

In terms of components our model is now written
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dxj = Fj(t) +
∑
k

(
−Djkxk +

1

ε
L12
jkyk

)
dt

+
∑
k,l

(
1

2
Q111
jkl xkxl +

1

ε
Q112
jkl xkyldt+

1

2ε
Q122
jkl ykyl

)
dt

dyj =
∑
k

(
1

ε
L21
jkxk +

1

ε
L22
jkyk

)
dt

+
∑
k,l

(
1

2ε
Q211
jkl xkxl +

1

ε
Q221
jkl ykxl

)
dt− γj

ε2
yj +

σj
ε
dBj(t) .

We can now define the operators as in Eq. (3.9):

L0 =
∑
j

(
−γjyj

∂

∂yj
+
σ2
j

2

∂2

∂y2
j

)

L1 =
∑
j,k

(
L12
jkyk +

1

2

∑
l

(2Q112
jkl xkyl +Q122

jkl ykyl)

)
∂

∂xj

+
∑
j,k

(
L21
jkxk + L22

jkyk +
1

2

∑
l

(Q211
jkl xkxl + 2Q221

jkl ykxl)

)
∂

∂yj

L2 =
∑
j

Fj(s)−∑
k

Djkxk +
1

2

∑
k,l

Q111
jkl xkxl

 ∂

∂xj
.

Using the notation of Eq. (3.9) these operators imply

λ = −
∑
j

γjyj

Qjj = σ2
j

aj =
∑
k

(
L12
jkyk +

1

2

∑
l

(2Q112
jkl xkyl +Q122

jkl ykyl)

)

ωj =
∑
k

(
L21
jkxk + L22

jkyk +
1

2

∑
l

(Q211
jkl xkxl + 2Q221

jkl ykxl)

)

bj = Fj(s)−
∑
k

Djkxk +
1

2

∑
k,l

Q111
jkl xkxl .

Firstly we find the solution to the cell problem, which is equivalent to inverting the
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Ornstein-Uhlenbeck operator:

∑
j

γjyj
∂

∂yj
Φi(x,y)− 1

2

∑
j

σ2
j

∂2

∂y2
j

Φi(x,y) =
∑
j

(
L12
ij yj +

1

2

∑
k

Q122
ijk yjyk

)
(3.23)

+
∑
j

∑
k

Q112
ijk xjyk . (3.24)

We consider solutions of the form

Φi(x,y) =
∑
k

Aikyk +
1

2

∑
k,l

Ciklykyl, Cikl = Cilk .

Substituting into Eq. (3.24) gives

Aij = (L12
ij +

∑
k

Q112
ikj xk)/γj , Cijl =

Q122
ijl

γj + γl
.

By assumption Qijj = 0 and so Φ satisfies the normalisation condition and is in fact

a unique solution to Eq. (3.15). We now compute the integrals in Eq. (3.16) with

respect to the stationary measure of the fast variables

ρ∞(y|x) =
∏
j

N

(
0,
σ2
j

2γj

)
. (3.25)
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Using the notation from Eq. (3.18)

F 1(x) = Fj(s)−
∑
k

Djkxk +
1

2

∑
k,l

Q111
jkl xkxl

F 0(x) =
∑
j

∑
k

Q112
ijkL

12
jkσ

2
k

2γ2
k

+
∑
l,k

Q112
ijl Q

112
jkl xkσ

2
l

2γ2
l


G0(x) =

∑
j

L12
ij

γj

∑
k

L21
jkxk +

1

2

∑
k,l

Q211
jkl xkxl

+
∑
l,k

Q112
ilj L

21
jkxlxk

γj

+
∑
l,k,m

Q112
ijl

γj + γl
Q211
jkmxlxkxm +

∑
l

Q122
ijl

γj + γl

(
L22
jl σ

2
l

2γl
+
∑
m

Q221
jlmxm

σ2
l

2γl

)
A0(x) =

∑
k

L12
ik

(
L12
jk +

∑
n

Q112
jnkxn

)
σ2
k

2γ2
k

+
∑
k,l

Q112
ikl xk

(
L12
jl +

∑
n

Q112
jnmxn

)
σ2
l

2γ2
l

+
1

4

∑
k,l

Q122
jklQ

122
jkl

γk + γl

σ2
kσ

2
l

γkγl
.

The Fokker-Planck equation (3.18) then follows, which is equivalent to the following

system of SDEs

dxj = Fj(t)dt−
∑
k∈σ1

Djkxkdt−
1

2

∑
k,l∈σ1

Q111
jkl xkxldt

+ ajdt−
∑
k∈σ1

γjkxkdt+
∑
k,j∈σ2

σjkldBkl(t)

+
1

2

∑
k∈σ1

∑
m∈σ2

σ2
m

γ2
m

Q112
jkm

L12
km +

∑
l∈σ1

Q112
klmxl

 dt

+
∑
l∈σ1

∑
n∈σ2

1

γn

L12
jn +

∑
k∈σ2

Q112
jknxk

(L21
nlxl +

1

2

∑
m∈σ1

Q211
nlmxlxm

)
dt

+
∑
l∈σ2

σl
γl

L12
jl +

∑
k∈σ1

Q112
jkl xk

 dBl(t) , (3.26)

whereBj , Bjk are independent Brownian motions satisfying EBj(t)Bk(s) = δjk min(t, s),

EBjk(t)Bmn(s) = δjmδkn min(t, s) and where we have defined

aj =
1

2

∑
k,l∈σ2

σ2
l Q

122
jklL

22
kl

γl(γk + γl)
, γjk = −1

2

∑
l,m∈σ2

σ2
l Q

122
jlmQ

221
mlk

γl(γl + γm)
, (3.27)
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σjkl =
Q122
jkl σkσl

2
√

(γk + γl)γkγl
. (3.28)

This result, obtained by a different method, is in agreement with that of Majda

et al. [2001].

3.4 Empirical Methods to Model Reduction

The MTV strategy described above relies upon the approximation of nonlinear terms

by a stochastic process. This inevitably introduces some unknown parameters. In

practice these are estimated from observations of very long runs of the full model.

Generally there are one or two unknown parameters for each degree of freedom in the

system. This would not be possible if trying to produce a model from observations

of the real atmosphere. In this case only observations of the variables of interest

may be available: an empirically derived model may work as well. In this section

we discuss some data driven methods to producing low dimensional models of the

atmosphere and ocean.

Penland [1996] used the centred Ornstein-Uhlenbeck (OU) process

dx = Cxdt+ ΣdB

to model sea surface temperature anomalies and test their potential for predicting

the El-Nino Southern Oscillation (ENSO). ENSO is a basin wide warming phe-

nomenon in the South Pacific Ocean which occurs quasi-periodically with approx-

imate period 18 months. Parameters of the OU process are estimated by taking

moments of the Fokker-Planck equation. One computes an estimate of the so called

Green’s function matrix as

G(τ0) = exp(Bτ0) =< x(t+ τ0)x(t)T >< x(t)xT (t) >−1 .

The eigenvalues of the matrix GTG are known as POPs Principal Oscillation Pat-

terns (POPs) or Empirical Normal Modes and are discussed earlier in the chapter.

The Linear Inverse Model (LIM) employed here is a closely related technique to

POP analysis.

The author uses the Green function matrix to determine the optimal ini-

tial structure for the system to evolve to the most probable prediction. This is

determined to be the leading eigenfunction of GTG(τ0).

The OU process is fitted to monthly mean data taken from a 4◦ × 10◦ grid

between 1950-1991. The first 15 EOFs account for 65% of the variance. G(τ0) is
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estimated with τ0 = 4 months. Subsequent estimates of B are found insensitive

to τ0 which supports the choice of a linear model. Penland [1996] finds that the

decay time scale of the estimated POPs are less than that of the ENSO oscillation.

This may suggest that there is some interaction between modes or that this linear

model is inappropriate. They look at predictability for lead times of 3, 6 and 9

months using Root Mean Square error. The 3 month lead time has some predictive

skill but performs poorly during the strong warm phase of ENSO. It is found that

this forecasting method can capture the ENSO pattern and persistence but not the

magnitude. This could again indicate a problem with using a linear model.

Further work has been done on fitting LIMs to ENSO. Johnson et al. [2000]

find an improvement in their model of sea surface temperature EOFs by including

the first two EOFs of subsurface heat content anomalies as measured by RMS er-

ror. Penland and Matrosova [1998] apply LIM to Atlantic sea surface temperature

anomalies to determine if there is any predictive skill gained by using global Sea

Surface Temperatures as predictors. They confirm that this is the case. In terms

of applications to atmospheric data most have focussed upon the related problem

of determining POPs from data. POPs are derived from the assumption of a lin-

ear model and represent the normal modes of the dynamics. They are different to

EOFs in that they are not optimised for explained variance and they do not form a

set of orthogonal patterns. They are dynamical modes of the system, not standing

patterns like EOFs. For example, Xu and von Storch [1990] determine POPs for

sea level pressure between 15◦S and 40◦S in order to describe the development of

the Southern Oscillation. They discovered that the 30-60 day oscillation may be

predicted by the POP forecast scheme for several days, better than persistence and

an Auto-Regressive Moving Average (ARMA) model. von Storch and Baumhefner

[1991] extend this work to predictions of the equatorial velocity field and examine

the accuracy using the anomaly correlation skill score.

A LIM is applied to Northern Hemisphere wintertime low frequency vari-

ability by Winkler et al. [2001]. 30 EOFs, capturing 90% of the variability, were

computed for combined 250 hPa and 750 hPa Northern Hemisphere (NH) stream-

function anomalies together with 7 EOFs, capturing 70% of the variability, for tropi-

cal diabatic heating 30◦S to 30◦N. The LIM was then formed from this 37 component

vector using the same methods as Penland [1996], discussed above. The measure of

predictive skill used is the local anomaly correlation in 250 hPa streamfunction at

a lead time of 14 days. By this measure the LIM outperforms forecasts based on

climatology, persistence, a barotropic numerical model and a baroclinic model. The

LIM competes with the skill of the then medium range prediction model of NCEP
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with O(106) variables. The authors attribute the skill of the LIM to its ability to

approximate some of the nonlinear effects that do not appear in models constructed

by linearising the full system. They also note the importance of including the trop-

ical diabatic heating as a dynamic variable rather than an external forcing which

is gives a marked improvement on the work of Penland and Ghil [1993]. They also

apply a LIM to extratropical variability with tropical heating as a dynamical vari-

able and report predictive skill only modestly better than the persistence prediction.

Although their poor result could be more to do with their attempt to build a model

for all seasons. Winkler et al. [2001] conclude that the dynamics of extratropical

variability are essentially linear and stable if sufficient variables are included in the

model although LIM still fails to capture the full amount of wintertime variability.

In many geophysical systems linear dynamics with white noise forcing are not

sufficient. Kravtsov et al. [2005] suggest a data driven approach to constructing a

nonlinear stochastic model. In particular they consider quadratic models such that

the inference is still linear in the parameters. They estimate the parameters from

model data using the least squares procedure where the dependent variables are the

time derivatives. Their novel suggestion is to account for the autocorrelation in the

residuals by adding extra unobserved levels. Each extra level is a linear equation

for the residual. In this way more levels are added until the residuals on the final

level are uncorrelated in time. Their model equations are

dxi = (xTAix+ b
(0)
i x+ c

(0)
i )dt+ r

(0)
i dt

dr
(0)
i = b

(1)
i [x, r(0)]dt+ r

(1)
i dt

dr
(1)
i = b

(2)
i [x, r(0), r(1)]dt+ r

(2)
i dt

· · ·

dr
(L)
i = b

(2)
i [x, r(0), r(1), . . . , r(L)]dt+ dr

(L+1)
i .

Only the first level has nonlinear terms for climate variable x, the others are linear

equations for the residuals. They iteratively add more levels until the lag 1 auto-

correlation is zero. The structure is similar to a multivariate autoregressive moving

average model except nonlinear terms are included.

They demonstrate this method by estimating parameters for the three dimen-

sional Lorenz model, which is a deterministic chaotic system, and also for stochastic

cubic models. They report that their method is able to reproduce the parameters for

the nonlinear terms but that there is dependence upon the data sampling strategy.

In particular the estimated errors are large for infrequent observations. One of the

main themes of this thesis is to develop an inference method that works with infre-
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quent observations. Kravtsov et al. [2005] also discuss the problem of having such a

large number of parameters that the problem is ill-conditioned. In their application

to a semi-realistic atmospheric model they have over 3,000 parameters to estimate

for a 15 dimensional system. They use a regularisation procedure which makes the

inference well posed: specifically the methods of principal component regression and

partial least squares. Motivated by this problem, in this thesis, we use a Bayesian

approach where one places priors on the parameters. This leads to a well posed

inverse problem.

Kravtsov et al. [2005] apply their method to the barotropic quasi-geostrophic

three level model of Marshall and Molteni [1993]. They use a cross validation method

to determine the number of variables for the reduced model. By splitting the data

into two sets they train the model on one and test its predictive performance on

the other. They then determine the number of levels needed to account for the

autocorrelation in the noise. They settle for using 15 variables and three levels and

report that the reduced model has a similar climatology to the full. They analyse

the PDFs for the full and reduced by fitting Gaussian mixture models to the data. In

both cases four mixture components was the optimal and they had similar clusters to

each other. They looked at the ability of the reduced model to attribute the correct

probability mass to regions associated with persistent flow regimes for the Northern

Hemisphere. They confirm that the reduced model can capture the statistics of the

positive and negative phases of the Arctic Oscillation and North Atlantic Oscillation.

They use Singular Spectrum Analysis to determine the skill of the reduced model

in capturing the low frequency variability. They compare their results to those

from a single level model and conclude that this model is indistinguishable from

a red spectrum whereas the multilevel model can capture the correct spectrum of

the principal components of the full model. Moreover, they state that the single

level model is sensitive to the particular realisation of the noise used and can have

trajectories which diverge away from the stable patterns of the full model.

As argued by Majda and Yuan [2012] multilevel, quadratic regression can

produce nonphysical behaviour such as finite time blow up and non-existence of an

invariant measure. They also note the effects of error due to the sampling inter-

val of the training data. They argue that a physics based model (motivated by

the homogenisation procedure outlined above) with cubic non-linearity has more

predictive skill.

In this section we have argued that linear models are insufficient to model

well low frequency variability of the atmosphere; sparse observations can lead to

errors and inconsistency in estimates of parameters for diffusion models and that it

43



is desirable to use physically motivated non-linear models as in those resulting from

the rigorous homogenisation (MTV) procedure. However, the MTV procedure relies

upon the estimation of hundreds of parameters from observations of the full system

and may be inappropriate when there is lack of time scale separation. Therefore,

we argue for a data driven approach where the parametric model is motivated by

the MTV procedure: in quadratic models of the atmosphere this is usually a cubic

model with noise that is linear in the state. We also argue in favour of theoretically

well understood likelihood based inference to estimate the parameters. This leads to

estimates with quantifiable errors. In particular the Bayesian approach will allow us

to overcome any possible ill-posedness of the inference and will also prove useful in

restricting the parameter space to give stable models. To overcome the problem of

errors associated with infrequent observations we develop data imputation methods

proposed in the SDE inference literature. In the next section we introduce the

models with which we will work.

3.5 Model Problems

We apply our methods to a range of toy models becoming more sophisticated ap-

proximations of the real atmosphere. We work with these particular models to

highlight some of the difficulties in the estimation: we can control the time scale

separation between “climate” and “weather” variables to quantify how this affects

the parameter estimates; with the triad model we can investigate the practical dif-

ficulties associated with multivariate problems (the number of parameters grows

large) and using the Burgers heat bath we can assess the suitability of approximat-

ing chaotic dynamics with a linear stochastic process. Finally we demonstrate a

geophysical model, discuss its derivation and some of its properties.

3.5.1 Chaotic Lorenz Model

The homogenisation procedure can be applied in the case where our original system

is fully deterministic. As long as it is ergodic and mixing a reduced SDE can be

derived. For example, Mitchell and Gottwald [2012] assess the potential of using

a reduced model for data assimilation. They consider the following deterministic
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system

dx

dt
= x− x3 +

4

90ε
y2

dy1

dt
=

10

ε2
(y2 − y1)

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3)

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3) . (3.29)

Here, the slow variable x moves inside a double well kicked by the chaotic Lorenz

system, which is of order ε faster. Mitchell and Gottwald [2012] show that the

reduced system is

dX = X(1−X2)dt+ σdBt , (3.30)

where
σ2

2
=

(
4

90

)∫ ∞
0

(
lim
T→∞

1

T

∫ T

0
y2(s)y2(t+ s)ds

)
dt

due to Birkhoff’s ergodic theorem . Mitchell and Gottwald [2012] estimate σ using a

quadratic variation method. They find that the reduced model Eq. (3.30) is a good

approximation of the full model Eq. (3.29) for time scale ε = 0.01 by analysing the

PDFs and autocorrelation time scale though they note that the quality is sensitive to

the estimate of σ. They find that the reduced model outperforms the full model when

used for data assimilation: it is better at tracking the truth, given noisy observations,

as measured by RMS error. They argue that this is due to the larger variance in the

ensemble Kalman filter when using the reduced model. In Chapter 8 we estimate σ,

for the reduced model in Eq. (3.30), using the likelihood based inference techniques

discussed in Chapter 4. We study the affect of time scale separation on the results.

We also fit a model with a latent, unobserved noise process and find that this is a

good model when there is lack of time scale separation. We analyse the effect of low

frequency observations upon the estimation of parameters and the implications for

the skill of the resulting model.

3.5.2 Multiplicative Triad System

We consider now an example with two dimensions and multiplicative noise terms.

This system was studied by Majda et al. [1999] and Majda et al. [2002]. Consider
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Figure 3.1: Example of solution for triad model in Eq. (3.31) for ε = 0.1 with x1

shown in black and x2 in red.

the triad equations below

dx1 =
b1
ε
x2x3dt

dx2 =
b2
ε
x1x3dt

dx3 =
b3
ε
x1x2dt−

γ

ε2
x3dt+

σ

ε
dBt . (3.31)

This system is stable provided that b1 + b2 + b3 = 0. The Manley-Rowe

relation M = b1x
2
2− b2x2

1 is conserved [Majda et al., 2002]. An example data set for

x1 and x2 from this model is shown in Figure 3.1. The system moves on an ellipse if

b1b2 < 0 or a hyperbola if b1b2 > 0. We use the values b = (0.9,−0.5,−0.4), σ = 0.5

and γ = 0.9 so the system is confined to an ellipse with invariant density (see Majda

et al. [2002])

p(x1, x2, x3) =
1

Z
exp

(
−β(b1x

2
3 − b3x2

1)
)
δ(b1x

2
2 − b2x2

1 −M) ,

where β = γ/b1σ
2 and δ(x) = 1 if x = 0 and δ(x) = 0 otherwise. Numerical

approximations to the invariant distributions are shown in Figure 3.2.

We are interested in eliminating x3 leaving equations for just x1 and x2. The

small parameter ε represents the time scales within the system. The variable x3 has

fastest time scale of order O(1/ε2) compared to O(1/ε) for x1 and x2. As ε→ 0 we

can use the method of homogenisation for SDEs to eliminate the fast variable x3.

For this simple system the result can be derived by direct calculation. The
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Figure 3.2: Invariant distributions for variables in Eq. (3.31) for ε = 0.1.

solution of the third equation is

x3(t) = e−γt/ε
2
x3(0) +

b3
ε

∫ t

0
e−γ(t−s)/ε2x1(s)x2(s)ds+

σ

ε

∫ t

0
e−γ(t−s)/ε2dBs .

After substituting this expression into the equations for x1 and x2 we multiply by

a factor of 1/ε. As we take the limit ε→ 0 we have

1

ε
e−γ(t−s)/ε2 → 0

and for the second term

b3
ε2

∫ t

0
e−γ(t−s)/ε2x1(s)x2(s)ds→ b3

γ
x1(t)x2(t) .

For the noise term, if we define

g(t) =
σ

ε

∫ t

0
e−γ(t−s)/ε2dBs

then this has zero mean and covariance

〈g(t)g(t′)〉 =
σ2ε2

2γ
(e−γ|t−t

′|/ε2 − e−γ(t+t′)/ε2) .

For arbitrary test function ψ(t, t′) we have

1

ε2

∫ T

0

∫ T

0
ψ(t, t′)〈g(t)g(t′)〉dtdt′ → σ2

γ2

∫ T

0
ψ(t, t)dt
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so that as ε→ 0, g(t) is a white noise process, i.e

1

ε
g(t)dt→ σ

γ
dBt .

Note that as a process with finite correlation time dBt must be interpreted in the

Stratonovich sense (see Section 2.2). In the limit ε→ 0 the system in (3.31) becomes

dx1(t) =
b1b2
γ
x2

2(t)x1(t)dt+
σ

γ
b1x2(t) ◦ dBt

dx2(t) =
b2b3
γ
x2

1(t)x2(t)dt+
σ

γ
b2x1(t) ◦ dBt .

Written in Ito form this is

dx1(t) =
b1
γ

(b3x
2
2(t) +

σ2

2γ
b2)x1(t)dt+

σ

γ
b1x2(t)dBt

dx2(t) =
b2
γ

(b3x
2
1(t) +

σ2

2γ
b1)x2(t)dt+

σ

γ
b2x1(t)dBt . (3.32)

3.5.3 Burgers Equation

Here we use the same triad model as before but now, instead of the stochastic term,

the equations are coupled to a high dimensional non-linear deterministic system.

This will serve as a test of the first step of the MTV procedure: the approximation

of chaotic dynamics by a Ornstein-Uhlenbeck process. For this purpose we use the

inviscid Burgers equation
∂u

∂t
+ u

∂u

∂x
= 0 (3.33)

with complex Fourier amplitudes ûk = yk + izk and reality condition û−k = û∗k. We

simulate the Galerkin truncated system for modes 1 ≤ k ≤ Λ

dyk
dt

= −Re
ik

2

∑
p+q+k=0

û∗pû
∗
q

dzk
dt

= −Im
ik

2

∑
p+q+k=0

û∗pû
∗
q

We simulate the system using a pseudo-spectral method [Peyret, 2002]. Figure 3.3

shows the solution u at different times for truncation Λ = 50. The exact solution of

3.33 develops a shock discontinuity, whereas the Galerkin truncation dissipates the

energy to the other modes.

The equations satisfy the Liouville property: they are measure preserving

and conserve energy. This implies that the canonical Gibbs measure is a stationary
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Figure 3.3: Solution of the Galerkin truncation of the Burgers equation for times
t = 0, 0.4, 1.5, 20

distribution for the system

pβ =
1

Z
exp

(
−β

Λ∑
k

|uk|2
)

for fixed β. The Gibbs measure predicts equipartition of energy between modes and

so the system is a good approximation to a thermal heat bath and a suitable toy

model of the atmosphere (see e.g Majda and Wang [2006]). As shown in Figure 3.4

this system is chaotic with different time scales. It represents the type of dynamics

observed in atmospheric variables and is an ideal toy model to test stochastic mode

reduction methods.

The Burgers system is coupled to the triad model through the mode k = 1

as follows
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Figure 3.4: Evolution of Fourier amplitudes for k = 1, 5, 10, 20

dx1

dt
= b1x2y1

dx2

dt
= b2x1y1

dyk
dt

= b3x1x2δ1,k − Re
ik

2

∑
p+q+k=0

û∗pû
∗
q

dzk
dt

= −Im
ik

2

∑
p+q+k=0

û∗pû
∗
q (3.34)

The first step of the Stochastic Mode Reduction procedure is to make the approxi-

mation

dy1 = b3x1x2dt− γy1dt+ σdBt ,

where the parameters γ and σ are unknown. Then the homogenisation procedure

is implemented as for the model in Eq. (3.31).

3.5.4 Quasi-Geostrophic Model on the β-plane with Mean Flow

Here we introduce a toy model with more of the physics of the real atmosphere. It

is based on the much studied barotropic model in a beta channel of Charney and
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De Vore [1979]. We first give a rough outline as to the origin of this equation. For a

rigorous derivation see Pedlosky [1987] and for a further discussion of its properties

see Majda and Wang [2006].

Consider first the shallow water equations in a rotating frame

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ 2Ωv sinφ

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
− 2Ωu sinφ , (3.35)

where u and v are longitudinal and latitudinal velocity, p is pressure, ρ is

the density, Ω is the rotation of the Earth and φ is the polar angle. The left hand

side is the advection of velocity and is simply the acceleration in a moving reference

frame. The right hand side consists of forces due to the gradient in pressure and

the rotation of the Earth.

The velocity is assumed to be close to geostrophic. Geostrophic flow is when

the velocity is parallel to the isobars (lines of constant pressure). The pressure field

completely determines the flow. For example, in a geostrophic atmosphere in the

northern hemisphere the wind blows anti-clockwise around regions of low pressure.

The geostrophic flow is perpendicular to the pressure gradient

−2Ωvg sinφ = −1

ρ

∂p

∂x

2Ωug sinφ = −1

ρ

∂p

∂y
.

It is assumed that the size of the system is small and so the curved surface

of the Earth can be represented as a tangent plane, such that

2Ω sinφ ≈ f + βy .

Then in the shallow water equations Eq. (3.35) all velocities, except the leading

Coriolis terms are approximated by the geostrophic flow

dug
dt
− fv − βyvg = −1

ρ

∂p

∂x

dvg
dt

+ fu+ βyug = −1

ρ

∂p

∂y
.
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This gives the system of equations

− 1

ρf

∂2p

∂y∂t
− 1

ρ2f2
J

(
p,
∂p

∂y

)
− fv − β

ρf
y
∂p

∂x
= −1

ρ

∂p

∂x

1

ρf

∂2p

∂x∂t
+

1

ρ2f2
J

(
p,
∂p

∂x

)
+ fu− β

ρf
y
∂p

∂y
= −1

ρ

∂p

∂y
,

where J(a, b) = (∂a/∂x)(∂b/∂y)−(∂b/∂x)(∂a/∂y). Differentiating the top equation

by y and the bottom by x, then substituting into the continuity equation

∂u

∂x
+
∂v

∂y
= 0

yields
∂

∂t
∇2p+

1

ρf
J
(
p,∇2p

)
+ β

∂p

∂x
= 0 .

Recasting in terms of the stream function ψ = p
ρf and potential vorticity

q = ∆ψ, we have
∂q

∂t
+ J(ψ, q) + β

∂ψ

∂x
= 0 . (3.36)

We equip the system with periodic boundary conditions in a channel domain

ψ(x+ 2π, y, t) = ψ(x, y + 2π, t) = ψ(x, y, t) ,∫
ψ(x, y, t)dxdy = 0 .

The most general stream function satisfying the boundary conditions has the form

ψ = ψ′−Uy. Here we have introduced a background mean flow U in the longitudinal

direction. The wind velocity is then given by

(u, v) = ∇⊥ψ′ =

(
−∂ψ
∂y + U
∂ψ
∂x

)
.

Introducing the bottom topography h(x, y), the potential vorticity is

q = ∆ψ + h(x, y) .
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The total energy of the system is

Etotal = Emean flow(t) + Esmall scale(t)

= AR
1

2
U2(t) +

1

2

∫
|∇ψ′|2

= constant . (3.37)

The second term is called topographic stress [Majda and Wang, 2006] and it can

be shown that
dEsmall scale(t)

dt
= U(t)

∫
∂h

∂x
ψ′ .

Differentiating Eq. (3.37) gives an equation for the evolution of the mean flow

dU

dt
=

1

4π2

∫
h
∂ψ

∂x
dx dy , (3.38)

which completes the dynamical description of the model. Initially we consider the

simple topography in the longitudinal direction

h(x) = H(cos(x) + sin(x)) . (3.39)

The value of H is important in determining the strength of the topographic stress.

Combining the equation for mean flow with Eq. (3.36) gives the Quasi-Geostrophic

Equations on the beta-plane with Mean Flow and bottom topography:

∂q

∂t
+∇⊥ψ · ∇q + U

∂q

∂x
+ β

∂ψ

∂x
= 0

q = ∆ψ + h,
dU

dt
=

1

4π2

∫
h
∂ψ

∂x
dxdy . (3.40)

Figure 3.5 demonstrates the non-linear dynamics of the mean flow U . The predom-

inant flow is the negative zonal direction with regime transitions to positive flow.

We derive a diffusion model for the mean flow U . Firstly we state some results

about the stationary measure of the truncated system from Majda and Wang [2006].
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Figure 3.5: Example of dynamics of Mean flow Ut from Eq. (3.40)

Taking the Fourier transform of the system Eq. (3.40) gives

dU

dt
= i

∑
1≤|k|2≤Λ

kxh−kψk (3.41)

dψk
dt

=
ikxβ

|k|2
ψk − ikxUψk +

ikxUhk
|k|2

−
∑

l +m = k

|l|2 ≤ Λ

|m|2 ≤ Λ

l⊥ ·m
|k|2

ψl(−|m|2ψm + hm) , (3.42)

where k = (kx, ky) is the wave number of the mode in the x and y directions. We

restrict the model with spherical cut-off 1 ≤ |k|2 ≤ Λ. The truncated energy EΛ is

conserved for this system

EΛ =
1

2
U2 +

1

2

∫
|∇⊥ψΛ|2dx =

1

2
U2 +

1

2

∑
1≤|k|2≤Λ

|k|2|ψk|2 . (3.43)

The enstrophy is also conserved. This is given by the integral of the square of the

vorticity and is often used as a measure of dissipation in a system of fluids. In this

model the truncated enstrophy

εΛ = βU +
1

2

∫
q2dx = βU +

1

2

∑
1≤|k|2≤Λ

| − |k|2ψk + hk|2 (3.44)

is conserved To prove energy conservation differentiate Eq. (3.43) with respect to
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time

dEΛ

dt
= U

dU

dt
+
∑
k

|k|2ψ−k
dψk
dt

= Ui
∑
k

kxh−kψk +
∑
k

|k|2ψ−k
(
ikxβ

|k|2
ψk − ikxUψk +

ikxUhk
|k|2

−
∑

l+m=k

l⊥ ·m
|k|2

ψl(−|m|2ψm + hm)

)
. (3.45)

The second and third terms on the right equal zero due to being anti-symmetric in

kx. For the last term∑
l+m=k

l⊥ ·mψ−kψl(−|m|2ψm + hm))

=
∑

−k+m=−l
l⊥ ·mψ−kψl(−|m|2ψm + hm))

=
∑

l+m=k

−k⊥ ·mψlψ−k(−|m|2ψm + hm))

=
∑

l+m=k

−(l +m)⊥ ·mψlψ−k(−|m|2ψm + hm))

= −
∑

l+m=k

l⊥ ·mψ−kψl(−|m|2ψm + hm))

and therefore vanishes leaving

dEΛ

dt
= iU

∑
k

kxh−kψk + iU
∑
k

kxhkψ−k = 0 .

Conservation of enstrophy can be proved similarly.

Since the equations satisfy the Liouville property we can use these conserva-

tion laws and equilibrium statistical mechanics to write an invariant Gibbs measure

for the ensemble

ρα,θ = C exp

−α
βU +

1

2

∑
1≤|k|2≤Λ

| − |k|2ψk + hk|2


− θ

1

2
U2 +

1

2

∑
1≤|k|2≤Λ

|k|2|ψk|2
 . (3.46)
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Figure 3.6: Comparison of predicted density from equilibrium statistical mechanics
and the empirical density for the mean flow.

Normalising gives a Gaussian density with mean

(Ū , ψ̄k) = (−−β
µ
,

hk
µ+ |k|2

)

and variance

Var(U) =
1

αµ

Var(ψk) =
1

α|K|2(µ+ |k|2)
.

Figure 3.6 compares the Gibbs ensemble predicted by statistical mechanics

with the numerically computed invariant density. The statistical mechanics pre-

diction is a good approximation, only lacking the skewness of the true invariant

distribution.

We now write the equations where the non-linear terms for the stream func-

tions have been parametrised by a complex linear stochastic process and time-scale

separation has been identified with small parameter ε

dψk
dt

=
i

ε
kxHkU −

γk(U)

ε2
ψk +

σk
ε
Ḃk

dU

dt
=

2

ε
Im
∑
k

kxHkψk ,

where γk(U) = γk + iΩk + ikx/
√
αµU and γk, σk ∈ R. The corresponding Fokker-
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Plank equation, with test function v, is

∂v

∂t
=

1

ε2
L0v +

1

ε
L1v , (3.47)

where L0 and L1 are the operators

L0 = −
∑
k

γk(U)ψk
∂

∂ψk
+

1

2

∑
k

σ2
k

∂2

∂ψk∂ψ
∗
k

= g · ∇ψ +
1

2
B : ∇ψ∇ψ

L1 = 2Im
∑
k

kxHkψk
∂

∂U
+
∑
k

ikxHkU
∂

∂ψk
= f0 · ∇U + f1 · ∇ψ .

Now, expanding v as v = v0 + εv1 + ε2v2 + O(ε3), substituting into Eq. (3.47) and

equating coefficients of ε gives

O(1/ε2) : −L0v0 = 0 (3.48)

O(1/ε) : −L0v1 = L1v0 (3.49)

O(1) : −L0v2 = −∂v0

∂t
+ L1v1 . (3.50)

Eq. (3.48) implies that v0 = v0(U, t). Eq. (3.49) becomes

−L0v1 = f0(U,ψ) · ∇Uv0(U, t) (3.51)

giving solution

v1(U,ψ, t) = Φ(U,ψ) · ∇Uv0(U, t)

since L0 is a differential operator in ψ alone. Substituting this into Eq. (3.51) gives

the so called “cell problem”

∑
k

γk(U)ψk
∂Φ

∂ψk
(ψ,U)− 1

2

∑
k

σ2
k

∂2

∂ψk∂
∗
k

Φ(ψ,U) = 2Im
∑
k

kxHkψk , (3.52)

which has solution

Φ(ψ,U) = 2i
∑
k

kxHkγk
|γk(U)|2

ψk .

Note that this is centred (expectation zero) with respect to the invariant measure

of the fast variables

ρ∞(ψ;U) =
∏
k

N (0,
σ2
k

2Reγk(U)
)N (0,

σ2
k

2Imγk(U)
) .
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The solvability condition for Eq. (3.50) gives

∂v0

∂t
=

∫
ψ
ρ∞(ψ;U)L1(Φ(ψ,U) · ∇Uv0(U, t))dψ . (3.53)

Note that

L1(Φ
∂v0

∂U
) = f0Φ

∂2v0

∂U2
+ f0

∂Φ

∂U

∂v0

∂U
+ f1 · ∇ψΦ

∂v0

∂U
.

Consider the first term in Eq. (3.53)∫
ρ∞f0Φ

∂2v0

∂U2
dψ

= 4

∫
ρ∞
∑
k

kxHkγkψk
|γk(U)|2

∑
k

kxHkψk
∂2v0

∂U2
dψ

= 4

∫ ∑
k

k2
xH

2
kγk

|γk(U)|2
(Reψk)

2N (0,
σ2
k

2γk
)
∂2v0

∂U2
dψ

= 2
∑
k

k2
xH

2
kσ

2
k

|γk(U)|2
∂2v0

∂U2
.

The second term gives∫
ρ∞f0

∂Φ

∂U

∂v0

∂U
dψ

= −8

∫ ∑
k

k2
xH

2
kγk

|γk(U)|4
kx√
αµ

(Ωk +
kxU√
αµ

)(Reψk)
2N (0,

σ2
k

2γk
)
∂v0

∂U
dψk

= −4
∑
k

k2
xH

2
kσ

2
k

|γk(U)|4
kx√
αµ

(Ωk +
kxU√
αµ

)
∂v0

∂U
dψk

and the third ∫
ρ∞g∇ψΦ

∂v0

∂U
dψ = −2

∑
k

k2
xH

2
kγk

|γk(U)|2
∂v0

∂U
.

Bringing these together gives

∂v0

∂t
= −γ̃(U)U

∂v0

∂U
+ γ′(U)

∂v0

∂U
+ γ(U)

∂2v0

∂U2
, (3.54)

where

γ(U) = 2
∑
k

k2
xH

2
kσ

2
k

|γk(U)|2
and γ̃(U) = 2

∑
k

k2
xH

2
kγk

|γk(U)|2
.

This gives the reduced SDE for the mean flow U

dU = (−γ̃(U)U + γ′(U))dt+
√

2γ(U)dB . (3.55)
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Majda et al. [2003] completed this model with estimates for γk and σk calcu-

lated from observations of the full original system. In Chapter 8 we estimate these

parameters using likelihood based techniques and observations of U . The problem

with this approach is that it is only possible if there are not many terms in the

sums in Eq. (3.54). This will be the case using the simple topography in Eq. (3.39)

as Hk = 0 for k 6= (1, 0). In other cases the parameters γk and σk are not easily

identifiable from observations of U .

In this chapter we have reviewed various approaches to stochastic climate

modelling. We discussed the choice of basis and the method of reducing the number

of variables in a system. We provided some background theory to the Stochastic

Model Reduction method of Majda et al. [1999], Majda et al. [2001], Majda et al.

[2009], Majda et al. [2002], Majda et al. [2003] and reproduced their result by an

independent method. Using a set of minimal assumptions about the components

of the original climate model and allowing for time scale separation between the

resolved and unresolved variables one arrives at a reduced climate model. This

model is a Stochastic Differential Equation and includes cubic terms in the drift

function and linear additive and multiplicative noise in the diffusion function. We

also derived a reduced model for some specific cases. We will use these as test cases

in Chapter 8.

In Chapter 5 we develop methodology to infer the parameters of general cubic

drift models with linear diffusion function. This is motivated from the general form

of stochastic climate model derived from the full system in Eqns.. (3.20) and (3.21)

and resulting in the model in Eq. (3.26). This resulting software is then applicable

to most stochastic climate models. In Chapter 8 we compare the approach based on

homogenisation and estimation of the few remaining parameters to the purely data

driven approach of Chapter 5.
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Chapter 4

Estimating Parameters in

Stochastic Differential Equation

Models

In this chapter we review inference methods used to estimate parameters of stochas-

tic differential equations. Previous reviews include Sorensen [2004] and Hurn et al.

[2007]. We focus our review on methods that could be applicable to the models

derived in Chapter 3. We start by introducing the likelihood function and discuss

the difficulties with this inference problem, particularly for the estimation of pa-

rameters in the diffusion function from discrete observations of the system. We also

state some of the asymptotic properties of estimators of the drift parameters and

how they relate to the frequency of observations. In Section 4.2 we demonstrate

these issues for an example through a numerical study of the maximum likelihood

estimator of the Ornstein-Uhlenbeck Process, which was introduced in Section 2.8.

For general non-linear problems, such as those in Chapter 3, the likelihood function

can not be calculated in closed form, although there are various ways in which it

can be approximated. We review these in Section 4.3. In particular the theory in

Section 4.3.3, which is based on the pivotal work of Pedersen [1995], provides the

foundation for the Markov Chain Monte Carlo (MCMC) Methods of Section 4.3.4,

which are the main focus of the methodology of this thesis. In that section, MCMC

methods are discussed in the context of inference for diffusions. Problems of conver-

gence, highlighted by Roberts and Stramer [2001], are central to these algorithms

and are discussed here. Note that issues relating to the algorithmic efficiency and

optimisation of the MCMC algorithms are left to Chapter 5, where they are intro-

duced in the context of a particular SDE model. Finally, in Section 4.3.4, we give
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details of a flexible MCMC algorithm named the Innovation Scheme. We write

these in full pseudo-code in Algorithms 4.1 and 4.2 for reference later in the thesis

as these form the foundation of the methods used in Chapters 5-8.

In Section 4.3 we review other ways of approximating the likelihood function.

In particular, we discuss methods of local linearisation, which will form the foun-

dation for an improved MCMC algorithm that we introduce in Chapter 5, Section

5.2.1. In Section 4.4 we discuss an alternative approach, where the exact likelihood

function can be used. At present, this can only be done for a restricted class of

models, but it is being generalised through a series of papers (Beskos et al. [2006],

Beskos et al. [2008]) and might eventually be applicable to models of Chapter 3.

Due to the difficulty of likelihood based estimation several researches have pursued

non-likelihood based methods. For completeness, these are reviewed in Section 4.5.

In the final section we discuss our reasoning for choosing to base our work on the In-

novation Scheme of Section 4.3.4 with regards to the inference problem we motivated

in Chapter 3.

4.1 Background

We assume that we have the model

dXt = µ(Xt,θ)dt+ a(Xt,θ)dBt , X0 = x0 , t ∈ [0, T ] (4.1)

with filtered probability space (Ω,F ,P, {Ft}). We consider the inference problem

for unknown parameter θ ∈ Rp, state space X ∈ Rd and m-dimensional Brownian

motion B. We restrict our attention to time homogeneous processes and require

regularity conditions on the functions µ : Rd → Rd and a : Rd → Rd×m for all θ as

discussed in Chapter 2 to guarantee a unique weak solution.

If X were observed in continuous time then the parameters σ entering into

the diffusion coefficient would be completely determined by the Quadratic Varia-

tion ∫ t

0
Σ(Xs,σ)ds = lim

‖P‖→0

n∑
k=1

(Xtk −Xtk−1
) · (Xtk −Xtk−1

)T , (4.2)

where Σ = aaT and the limit, in the supremum of the partition P , is valid for any

time interval t. So in continuous time the parameters in the diffusion function can

be considered known. This is a path property of diffusions as discussed in Chapter

2.

We assume that the parameters σ entering a are identifiable from observa-
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tions of the quadratic variation. If the parameters partition as θ = {γ,σ} such that

γ are the remaining parameters not entering the diffusion function then they can

be determined from the continuous time likelihood function lc(γ). If Q is the law

of the driftless version of Eq. (4.1) then the continuous time likelihood is just the

change of measure theorem discussed in Section 2.5. See Øksendal [2007, Chapter

8.6] for a proof. This is given by Girsanov’s formula

lc(γ) =
dP
dQ

(X|γ) = exp

(∫ T

0
µ(Xs,γ)Σ−1(Xs,σ)dXs

−1

2

∫ T

0
µ(Xs,γ)TΣ−1(Xs,σ)µ(Xs,γ)ds

)
(4.3)

However, continuous time observation is not realistic in applications so we

assume observations xt at discrete times t0 < t1 . . . < tk < tk+1 < . . . < tN , with

interobservation interval ∆tk = tk+1 − tk.
Due to the Markov property, Eq. (2.3), the likelihood function for θ can be

written as the product of transition densities between observations. These densities

are defined from the transition probabilities as follows. At time s we observe Xs =

xs then the probability of the process being in measurable set A at time t is

Pθ(Xt ∈ A|Xs = xs) =

∫
y∈A

p(t,y|s,x;θ)dy (4.4)

then p(t,y|s,x;θ) is the probability density for the process. For clarity we introduce

the index notation for observations xk = xtk . The log likelihood function is then

written

lN (θ) =
N−1∑
k=1

log p(tk+1,xk+1|tk,xk;θ) . (4.5)

For ergodic diffusions, the maximum likelihood estimator has the usual good prop-

erties of consistency, asymptotic normality and efficiency as N → ∞ [Dacunha-

Castelle and Florens-Zmirou, 1986]. The problem is that the transition density is

rarely available in closed form so many inference methods are based upon suitable

approximations of the transition density.

One approach is to consider the discretised system as a Markov Chain based

upon approximations to Eq. (4.1). As discussed in Section 2.9, the simplest discre-

tised version of Eq. (4.1) is

Xk+1 = Xk + µ(Xk,θ)∆tk + a(Xk,θ)(Bk+1 −Bk) (4.6)
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known as the Euler-Maruyama scheme. In this case the transition density can be

approximated as a Gaussian density with mean and variance

Eθ(Xk+1|Xk = xk) = xk + µ(xk,θ)∆tk

Varθ(Xk+1|Xk = xk) = Σ(xk,θ)∆tk , (4.7)

where Σ = aTa.

Approximations of the likelihood based on Eq. (4.6) were studied by Florens-

Zmirou [1989]. They assumed that the parameters of the model divided between

those in the drift γ and those in the diffusion σ. To estimate the diffusion parameter

they assumed that the diffusion had the form a(Xt,σ) = σa(Xt), for which they

could then use the quadratic variation as an estimator. For the drift parameters

they used the approximate likelihood function based on Eq. (4.7)

lEuler
N (θ) = − 1

2∆tk

N−1∑
k=0

(xk+1−xk−∆tkµ(xk,θ))TΣ−1(xk)(xk+1−xk−∆tkµ(xk,θ))

(4.8)

The maximum likelihood estimator from this approximate likelihood function has

good asymptotic properties with some restrictions on the maximum observation

interval h = maxk ∆tk. In the case where Nh2 → 0 the estimator is asymptotically

efficient [Florens-Zmirou, 1989]. This scenario is the increasing experimental

design assumption of Prakasa-Rao [1983]. For applications, including atmospheric

science, it is more likely that the observation interval is fixed and the number of

observations will increase. Florens-Zmirou [1989] showed that estimates based on

the Euler-Maruyama scheme are biased to the order of the observational interval

due to the misspecification of the mean and variance in the Gaussian approximation.

An improvement over the standard Euler-Maruyama approximation would

be to use the Milstein scheme (see Section 2.9). This discretised system is given by

Xk+1 = Xk +µ(Xk,θ)∆tk +a(Xk,θ)
√

∆tkξk +
a(Xk,θ)

2

da

dx
(Xk,θ)∆tk(ξ

2
k− 1) ,

where ξ ∼ Nm(0, 1). Since this includes the square of ξk, the approximating transi-

tion density is not Gaussian. Elerian [98] showed that the density can be computed

in closed form and involves a hyperbolic cosine function. This method is more accu-

rate than the Euler method but one must take care that the approximating density

gives numerically stable results: it is possible that the argument of the hyperbolic

cosine can have non-zero imaginary part [Hurn et al., 2007].
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4.2 Maximum Likelihood for the Ornstein-Uhlenbeck

Process

As a demonstration of the importance of the size of the sampling interval in SDE

inference we consider here the Maximum Likelihood Estimator (MLE) for the

Ornstein-Uhlenbeck (O-U) process. In this case the exact transition density is

tractable and the continuous time MLE is available in closed form. We compare

this to the MLE derived from the approximation in (4.6).

The O-U model we consider is

dXt = φXtdt+ σdBt, t ∈ [0, T ] , (4.9)

with φ ∈ (−∞, 0) and σ ∈ (0,∞). We consider observations at fixed, constant

interval ∆. Given Xt, the exact solution for Xt+∆ (see Section 2.8) is

Xt+∆ = eφ∆Xt +

√
−σ2

2φ
(1− e2φ∆)ξt, ξt ∼ N (0, 1)

whereas the Euler model gives

Xt+∆ = Xt + φXt∆ + σ
√

∆ξt, ξt ∼ N (0, 1) .

The continuous time MLE is

φ̂N =
1

N
log

(∑N−1
i=0 X(i+1)∆Xi∆∑N−1

i=0 X2
i∆

)
→ φ0

σ̂2
N =

−2φ̂N

N(1− exp(2∆φ̂N ))

N−1∑
i=0

(X(i+1)∆ −Xi∆ exp(∆φ̂N ))2 → σ2
0

where φ0 and σ2
0 are the true values and the limit is N →∞ [Pedersen, 1995]. The

MLE is asymptotically Normal with variance

V (φ0, σ
2
0,∆) =

1

N

 1−e2φ0∆

∆2e2φ0∆

2σ2
0

∆ +
σ2

0
φ0∆2

(1−e2φ0∆)

e2φ0∆

2σ2
0

∆ +
σ2

0
φ0∆2

(1−e2φ0∆)

e2φ0∆

σ4
0

φ2
0∆2

1−e2φ0∆

e2φ0∆ +
4σ4

0
φ0∆ +

2σ4
0(1+e2φ0∆)

1−e2φ0∆
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The discrete time MLE is

φ̃n =
1

∆

(∑N−1
i=0 X(i+1)∆Xi∆∑N−1
i=0 XN−1

(i=0 X
2
i∆

− 1

)
→ exp(∆φ0)− 1

∆
> φ0

σ̃2
N =

1

N∆

N−1∑
i=0

(X(i+1)∆ −Xi∆)2 → σ2
0

1− exp(∆φ0)

−∆φ0
< σ2

0 .

Therefore, these estimators are not consistent. The sampling variance of this esti-

mator can also be shown to be asymptotically Normal (see e.g Broze et al. [1998])

with variance

V∆(φ0, σ
2
0,∆) =

1

N

1− exp(2φ0∆)

2∆2φ2
0

(
2φ2

0 0

0 σ4
0(1− exp(2φ0∆)2

)
.

Figures 4.1 and 4.2 show the results of a simulation study comparing the

continuous and discrete time MLEs for the parameters in Eq. (4.9). For each value

of ∆ ∈ {0.1, 0.5, 1.0} and T ∈ {50, 200, 1000} we simulated Eq. (4.9) 1000 times

and calculated both MLEs. We plotted the distribution of the continuous estimates

in blue and the discrete in red. The theoretical asymptotic distributions are also

displayed. For all cases the true values were (φ0, σ
2
0) = (−0.8, 0.5).

For φ̂ the empirical distributions converge quickly to the asymptotic distribu-

tions, whereas there is some discrepancy between the empirical and asymptotic dis-

tributions for σ̂2. The distributions of the discrete MLE φ̃ are biased until ∆ ≤ 0.1.

The problem of estimation based on the discrete model gets worse as T increases:

there is no overlap between the distributions of φ̂ and φ̃. Also, the distributions of

σ̃2 show that until ∆ ≤ 0.1 the estimates are wrong.

In this thesis we assume that we have a fixed constant observation interval ∆.

All the methods studied can be easily extended to a variable observation interval.

We assume that ∆ is large enough such that the naive maximum likelihood discussed

above introduces significant errors.

Only for simple models like the Ornstein-Uhlenbeck process, Geometric Brow-

nian motion and the Cox-Ingersol-Ross model are the continuous time transition

densities available. In other cases the likelihood must be approximated. Figures 4.1

and 4.2 show that the simple Euler approximation is not sufficient even in simple

models like the O-U process. It is likely to be much worse in nonlinear models. It is

vital to improve upon this simple approximation. There are several ways of doing

this, which we discuss in the next section.
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Figure 4.1: Maximum Likelihood Estimates for φ in the O-U process model Eq.
(4.9). The blue (red) histogram are the estimates from the continuous (discrete)
time model. The blue (red) curve is the asymptotic distribution of estimates of the
continuous (discrete) time model. The true value is φ = −0.8.
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Figure 4.2: Maximum Likelihood Estimates for σ2 in the O-U process model Eq.
(4.9). The blue (red) histogram are the estimates from the continuous (discrete)
time model. The blue (red) curve is the asymptotic distribution of estimates of the
continuous (discrete) time model. The true value is σ2 = 0.5.
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4.3 Approximations of the Likelihood Function

4.3.1 Numerical Solutions of the Fokker-Planck Equation

One method, to approximate the transition densities, is through the solution of the

Fokker-Planck (FP) equation (see Section 2.4). LO [1988] applied this approach

to geometric Brownian motion, jump processes and a system with an absorbing

barrier. In these cases the FP equation could be solved analytically. They discuss

the asymptotic consistency and normality of the maximum likelihood estimator θ̂

so that in the limit of increasing observation period

lim
N→∞

θ̂ = θ,
√
N(

~̂
θ − θ) ∼ N (0, I−1(θ)) ,

where the Fisher information matrix

I(θ) = lim
N→∞

1

N

N∑
k=1

E
[
−∂p(xk|xk−1;θ)

∂θ∂θ′

]
.

Maximum likelihood through numerical integration of the Fokker-Planck

equation was investigated by Jensen and Poulsen [2002]. Details of the method

are given in Hurn et al. [2007]: standard central difference formula lead to a system

of tri-diagonal equations which must be solved at each value of θ. The problem with

this approach is the need for a very fine spatial grid in order to approximate the

initial condition, which is a delta function, as a smooth Gaussian. Care needs to

be taken in including boundary conditions and large amounts of computation time

are needed to repeatedly solve the PDE accurately. Hurn et al. [2007] suggest that

a representation in terms of the Cumulative Density Function (CDF) can give bet-

ter results for lower grid resolutions as the initial condition is now a step function.

The obvious drawback is that this introduces higher order derivatives into the FP

equation and would only be straight forward for a one dimensional problem.

Another approach is to solve the FP equation using spectral methods. Hurn

and Lindsay [1999] use Chebyshev polynomials as basis functions leading to a sys-

tem of ODEs that can be solved numerically. The benefit of this approach is the

exponential rate of convergence in the number of Chebyshev polynomials although

before one can apply this solution method a mapping to the interval [−1, 1] must

be found.

Hurn et al. [2003] use a simulation approach of the actual SDE to estimate

the transition density. They integrate the SDE from initial condition xi−1 to some

point y and then use Kernel density estimation to approximate the transition density.
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Repeating this M times gives the estimator

p̂M (ti, xi|ti−1, xi−1; θ) =
1

Mh

M∑
j=1

K

(
xi − yj
h

)
,

where h is the bandwidth and K is a kernel function. The same underlying Wiener

process is used to estimate the density for each parameter.

Crommelin and Vanden-Eijnden [2006] use a non-parametric method based

on the F-P equation. The drift and diffusion functions are optimised such that

the eigenspectrum of the F.P operator is as close as possible to the eigenspectrum

estimated from the observed data. This method is applied to the estimation of

reduced climate models in Majda et al. [2009].

4.3.2 Particle Filters

If the diffusion path is updated at the same time as σ so that they are always

consistent then the algorithm should not deteriorate for large m. However, due

to updating such a large vector of variables, this is likely to lower the acceptance

rate unless effective proposals are used. One method that aims to do this is the

particle filter of Golightly and Wilkinson [2006a,b]. Their idea is to approximate

the joint density of Xj and θ, given the observations up to that time, by a collection

of particles {X(i)
j ,θ

(i)}i=1...P for some large P . This discrete distribution is then

smoothed and used as an approximate prior when sampling the next path segment

Xj+1 . . .Xj+m−1 and parameter θ, conditional on the next observation Xj+m. In

this way the diffusion and parameter are consistent and only one block of data

need be sampled at once. P new paths are sampled using the Metropolis-Hastings

algorithm, the end points of which are retained as the particles for the next path

segment: {X(i)
j+m,θ

(i)}i=1...P . The algorithm can be applied to any multivariate

diffusion and also has the benefit that it can be applied to online estimation:

inference can include new data without reusing the whole data set. A downside to

this approach is the need to have a large number of particles for the approximation

and the need to choose some smoothing bandwidth that could propagate errors from

one approximation to the next. There are guidelines for choosing the bandwidth

but these may not be as reliable in high dimensional problems.

4.3.3 Importance Samplers

The inference method in this section covers some of the theoretical foundation for

methods used later in this thesis and will be used to fix notation. Let Xtim = xtim
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be a sequence of observations of process 4.1 at times tim, i = 0, . . . , N for integer m.

Without loss of generality we consider equal observation times so that tim = im∆

for fixed ∆ > 0.

The Simulated Maximum Likelihood of Pedersen [1995] is a method to

estimate the transition density p(t(i+1)m,xt(i+1)m
|tim,xtim ;θ) between observations

by partitioning the interval ∆ = t(i+1)m− tim into m smaller subintervals δ = ∆/m.

This introduces m − 1 unobserved random variables per observation interval. We

write Xim+k = Xtim+k
, i = 0 . . . N and k = 0 . . .m, where tim+k = tim + kδ, to

denote the complete data of observed and “missing” variables.

Consider a single observation interval. For notational convenience, and with-

out loss of generality, this can be for t0 = 0 to tm = ∆ so that i = 0. The transition

probability for a fixed subinterval k can be approximated by the Euler-Maruyama

discretisation

p(1)(tk+1,xk+1|tk,xk;θ) ≈ φ(xk+1|xk + δµk, δΣk) ,

where µk = µ(xk,θ) and Σk = Σ(xk,θ). Then the transition density for the

complete interval can be approximated as

p(tm,xm|t0,x0;θ)

≈ p(m)(tm,xm|t0,x0;θ) =

∫
X
· · ·
∫
X

m−1∏
k=0

p(1)(tk+1,xk+1|tk,xk;θ)dx1 . . . dxm−1 ,

(4.10)

where X is the domain of the process. Pedersen [1995] proves L1 convergence of

p(m)(tm,xm|t0,x0;θ) to p(tm,xm|t0,x0;θ) as m→∞. Note that xk are not obser-

vations: they are missing variables between observation times so must be integrated

out.

Consider the case with m = 2 so that there is only one missing variable x1.

The transition density in Eq. (4.10) is estimated using the Chapman-Kolmogorov

equation∫
X
p(1)(t2,x2|t1,x1;θ)p(1)(t1,x1|t0,x0;θ)dx1 = E(p(1)(t2,x2|t1,x1;θ)) , (4.11)

where the expectation is with respect to density p(1)(t1,x1|t0,x0;θ). The proposed

scheme is then based upon integrating out the unobserved paths of the diffusion by

simulation. Pedersen [1995] suggests computing the expectation using the Monte
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Carlo estimator of Eq. (4.11)

p̂m,n(t2,x2, t0,x0) =
1

n

n∑
i=1

p(1)(t2,x2|t1,x(i)
1 ;θ) , (4.12)

where, in this case, m = 2 and x
(i)
1 is the end point sampled from the Euler-

Maruyama scheme up to time t1. This can be generalised to larger m, to estimate

Eq. (4.10), so that the estimate converges to the true transition density. Pedersen

[1995] prove convergence asymptotically but, in general, it is not known how large

m should be in practice. To compute the MLE the transition density for all i is

recalculated for multiple θ and maximised.

In practice Eq. (4.12) may be a poor estimator due to the samples x
(i)
1 having

low mass under the density p(1)(t2,x2|t1,x(i)
1 ;θ), simply because x

(i)
1 is not close to

x2. Durham and Gallant [2002] propose techniques to reduce the variance of this

sampler. They suggest generating samples from a process that is conditioned on the

end point X2 = x2. This, bridge process, has density

p(x1|x0 = x0,X2 = x2;θ) ∝ p(t1,x1|t0,x0;θ)p(x2|t1,x1;θ)

≈ φ(x1;x0 + µ̃0δ, Σ̃0δ) ,

where

µ̃k =
xm − xk
tm − tk

, Σ̃k =

(
tm − tk+1

tm − tk

)
Σk . (4.13)

Using this proposal distribution for x1 gives the importance sampling estimator

p̂m,n(t2,x2, t0,x0) =
1

n

n∑
i=1

p(1)(t2,x2|t1,x(i)
1 ;θ)ρ(x

(i)
1 ) , (4.14)

where the weight function

ρ(x
(i)
1 ) =

φ(x
(i)
1 |x0 + µ0δ,Σ0δ)

φ(x
(i)
1 |x0 + µ̃0δ, Σ̃0δ)

(4.15)

corrects for the fact that we are not sampling from the Euler approximation.

For arbitrary m the importance weights are

ρ(x
(i)
m−1) =

∏m−2
k=0 φ(x

(i)
k+1|xk + µkδ,Σkδ)∏m−2

k=0 φ(x
(i)
k+1|xk + µ̃kδ, Σ̃kδ)

(4.16)

Durham and Gallant [2002] note that, for general m, the importance sampler in Eq.
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(4.14) is an estimate of

p(m)(tm,xm|t0,x0;θ) =

∫
p(1)(tm,xm|xm−1, tm−1)dP(m)(xm−1)

=

∫
p(1)(tm,xm|xm−1, tm−1)ρ(m)(xm−1)dQ(m)(xm−1) ,

where ρ(m)(xm−1) is the Radon-Nikodym derivative between P(m)(xm−1), the law

of the Euler discretisation and Q(m)(xm−1), the law of the importance sampler. In

the modified bridge sampler above the Radon-Nikodym derivative is given by the

importance weights in Eq. (4.15). In continuous time, as m → ∞, we have the

expression

p(tm,xm|t0,x0;θ) =

∫
p(tm,xm|xm−1, tm−1)dP(xm−1)

=

∫
p(tm,xm|xm−1, tm−1)ρ(xm−1)dQ(xm−1) ,

which is equivalent to Eq. (4.11). Now P(xm−1) is the law of the continuous time

process in Eq. (4.1) and Q(xm−1) is the law of the continuous time importance

sampler given by

dX̃t = µ̃(X̃t,θ)dt+ a(X̃t,θ)dB̃t . (4.17)

The Radon-Nikodym derivative is given by Girsanov’s theorem

ρ(Xt) =
dPθ
dQθ

(Xt) = exp

(∫ t

0
Σ−1(Xs,θ)b(Xs,θ)dXs

−1

2

∫ t

0
b(Xs,θ)TΣ−1(Xs,θ)b(Xs,θ)ds

)
, (4.18)

where

b(Xs,θ) = µ(Xt,θ)− µ̃(Xt,θ) . (4.19)

In continuous time the modified bridge sampler is given by

dX̃ =
xm − X̃t

tm − t
dt+ a(X̃t,θ)dB̃t , X̃m = xm , X̃0 = x0 . (4.20)

It is vital that the importance sampler has the same diffusion function as the

target process because, as mentioned in Section 2.5, probability laws for processes

with different diffusion functions are mutually singular. This is due to the quadratic

variation property: in continuous time the diffusion parameters can be perfectly de-

termined by the quadratic variation of the process. The Radon-Nikodym derivative,
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between processes with different diffusions, would not exist in the continuous time

limit and the importance sampler weights would be meaningless. All algorithms

should take account of this fact if they are to be meaningful in the continuous time

limit. Proposals for missing data should be consistent with the diffusion function

of the target process. Otherwise one would notice very poor convergence of the

estimator as m increases. Durham and Gallant [2002] report dramatic decreases in

variance when using the modified bridge over the Brownian bridge as expected.

4.3.4 Markov Chain Monte Carlo Methods

It may not always be possible to find an importance sampler that works well, es-

pecially in high dimensional problems. An alternative is to construct a Markov

Chain that has invariant distribution equal to the distribution of the missing data.

Markov Chain Monte Carlo (MCMC) is a widely used technique for sampling

from high dimensional distributions. Subsequent samples are not i.i.d but effective

algorithms can be designed to have low autocorrelation and fast mixing times for

specific problems. A popular method is the Metropolis-Hastings algorithm (MH).

Consider the problem of sampling a collection of missing data X according to a

probability density p(X). In the MH algorithm one first samples X∗ from a simpler

distribution X∗ ∼ q(X∗|X), where q may depend on the current value of X. This

proposal is then accepted with probability

α =
p(X)q(X|X∗)
p(X∗)q(X∗|X)

. (4.21)

It can be shown that the resulting Markov Chain is reversible with respect to p(X)

and so leaves this distribution invariant. One need only then ensure ergodicity of the

Markov Chain to guarantee convergence to the target (see e.g Robert and Casella

[2005] and Gilks and Spiegelhalter [1996]).

In our problem the target density, with respect to Lebesgue measure, is the

product in Eq. (4.10)

p(X1 · · ·Xm−1|X0 = x,Xm = y;θ) =
∏m−1

i=0
p(1)(τk+1,xk+1|τk,xk;θ) , (4.22)

where p(1) is approximated by the Euler transition density given in Eq. (4.7). Equiv-

alently we can write the target as a density with respect to a dominating measure

Q, which is the law of a driftless version of the process

dXt = a(Xt,θ)dBt , X0 = x0 , t ∈ [0, T ] . (4.23)
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Then Q is the law of the local martingale and the target density is given by

Girsanov’s formula Eq. (4.18).

Consider now the Bayesian problem where we specify priors on θ and wish

to perform inference based on the posterior distribution. We augment the ob-

served data Xobs with missing data Xmiss as discussed in Section 4.3.3 in order to

facilitate accurate computation of the likelihood function. The target distribution

for our MCMC algorithm is the observed data posterior for p(θ|Xobs) but what

we can evaluate is the full data posterior p(θ|Xobs,Xmiss). If we alternate between

sampling values of missing data from p(Xmiss|Xobs,θ) then the parameters from

p(θ|Xobs,Xmiss) we can average over the missing data to estimate the observed data

posterior. This type of data augmentation algorithm was shown to converge by

Tanner and Wong [1987].

In the context of MCMC this is an example of the Gibbs algorithm and

is central to the inference in this thesis. Sahu and Roberts [1999] showed that the

convergence properties of the Gibbs algorithm are closely related to those of the EM

algorithm for maximum likelihood. Meng and vanDyk [1997] discuss how the rate

of convergence of the EM algorithm is closely related to the ratio of information in

the observed data to missing data. Roberts and Stramer [2001] highlight how this

fact is very important in the current context of inference for diffusions. The problem

stems from the quadratic variation relation in Eq. (4.2) which states that there is

an infinite amount of information about the diffusion parameters if it is observed

continuously. Therefore, there is complete dependence between the missing data

and the diffusion parameters. Updating one just confirms the value of the other.

This phenomenon has been the focus of much research into SDE inference. The

slowing down of the Gibbs sampler as the amount of missing data increases was

noted by Elerian et al. [2001] in a simulation study and predicted from a theoretical

viewpoint by Roberts and Stramer [2001]. An algorithm that alternates between

sampling Xmiss and σ will break down as m → ∞, where m − 1 is the amount of

missing data per observation interval as in the importance samplers discussed in

Section 4.3.3. This is because the dominating measure Q in Girsanov’s theorem

Eq. (4.18) depends on the value of σ and the measures Qσ and Qσ∗ are mutually

singular for σ 6= σ∗. Using Eq. (4.18) as a likelihood for σ would result in a

posterior which is just a point mass on the value given by the quadratic variation.

In the following sections we review some approaches that attempt to overcome this

problem.
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Reparametrisation of the Dominating Measure

In the practical implementation of a discrete approximation to Eq. (4.18), Roberts

and Stramer [2001] argue that the mixing time of the algorithm would be O(m).

They suggest a reparametrisation which is equivalent to refactorising the dominating

measure so that it is independent of σ. Firstly the data is transformed via the

Lamperti transformation Ẋ = h(X), where the function h(X) satisfies

dh

dx
= a(X,σ)−1 (4.24)

to the unit diffusion process

dẊt = b(Ẋ,θ) + dBt , (4.25)

where

b = a(h−1
θ (Ẋ),σ)−1µ(h−1

θ (Ẋ),θ)− 1

2

da(h−1
θ (Ẋ),θ)

dx
. (4.26)

Eq. (4.25) does not suffer due to the dependence on diffusion parameters σ.

The second step is to transform the data such that X0 = Xm = 0. The unique

linear transformation that does this is

X̂j = η(Ẋ) = Ẋj +
(m− j)Ẋ0 + (j −m)Ẋm

m
(4.27)

According to Girsanov’s change of measure theorem, under the dominating measure,

each interval of missing data is a Brownian bridge process. We write this law as

B = ⊗N−1
i=1 B(ti+1, 0|ti, 0), where B(t, 0|s, 0) is the law of the standard Brownian

Bridge. The likelihood of the missing data in Eq. (4.18) is then

dPθ
dB

(X̂miss|Ẋobs) ∝ G(η−1(X̂), b, 1) (4.28)

so that the dominating measure is independent of σ.

In terms of the transformed data the conditional posterior for σ can be

written

p(σ|X̂,Xobs,γ) ∝ G(η−1(X̂), b, 1)f(t,Xobs,σ)p(σ) , (4.29)

where f(t,Xobs,σ) is the density of the observations with respect to Lebesgue

measure under the dominating measure. For example, for a one dimensional SDE
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with constant σ this is the Gaussian density

f(t,Xobs, σ) =
1

(2πσ2)N/2
exp

(
− 1

2σ2

N−1∑
i=1

(Xi+1 −Xi)

2(ti+1 − ti)

)
.

Updating of γ and σ can be achieved using Metropolis-Hastings steps within the

Gibbs sampler. For updating the missing data, Roberts and Stramer [2001] suggest

using an independence sampler which is absolutely continuous with respect to the

target

dŻ = ξ(Ż)dt+ dBt , (4.30)

where there are several possibilities for the drift function ξ(·), then transforming to

Ẑ = η(Ż) to agree with the end point conditions Ẑ0 = Ẑm = 0. A new segment of

data is accepted with the MH acceptance probability

α = min

(
1,
G(η−1(Ẑ), b, 1)G(η−1(X̂), ξ, 1)

G(η−1(X̂), b, 1)G(η−1(Ẑ), ξ, 1)

)
. (4.31)

The simplest method is to choose ξ = 0 then the proposal is just a Brownian bridge.

Roberts and Stramer [2001] also suggest a linear process.

We need to be able to simulate from Ẋ easily, which in practice restricts us to

using linear SDEs only. In Chapter 5 we investigate the efficiency of different choices

for ξ in the independence sampler albeit in the context of a different algorithm. In

particular we demonstrate the efficiency of the linear approximation for multivariate

processes.

Roberts and Stramer [2001] implement the algorithm on a one dimensional

cubic model and the Cox-Ingersol-Ross model for interest rates [Cox et al., 1985].

They show that the posterior distributions converge for increasing m and that the

algorithm does not deteriorate. The algorithm is applied to a multivariate problem

by Kalogeropoulos et al. [2011]. The algorithm is well motivated theoretically but

unfortunately relies upon the existence of a transformation to unit volatility: a

solution to Eq. (4.24). Ait-Sahalia [2008] showed that a necessary and sufficient

condition is given by Eq. (2.23). This greatly restricts the range of models and in

fact the form of model, for which we argued in Chapter 3, is outside of this class:

the diffusion matrix should be linear in the state variables. To satisfy Eq. (2.23)

we would have to set all off diagonal terms of the diffusion matrix to zero and the

diagonal terms aii(X,σ) = aii(Xi,σ). This would seem overly restrictive.
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Time Change Transformation

An alternative reparametrisation that aims to overcome the dependence between

the missing data and quadratic variation is the time change transformations of

Kalogeropoulos et al. [2010]. Again the aim is to write the likelihood with a pa-

rameter free dominating measure so that the diffusion parameters do not enter

Girsanov’s formula. For constant diffusion σ this is relatively straightforward. A

new time scale is defined as

s = η1(t, σ) =

∫ t

0
σ2dω = tσ2 .

Then transform the SDE via

Us =

{
Xη−1

1 (s,σ), 0 ≤ s ≤ σ2

Mη−1
1 (s,σ), s > σ2

,

where M is the corresponding driftless process. The new SDE is

dUs =

{
µ(Us,θ)
σ2 dt+ dBU

s 0 ≤ s ≤ σ2

dWU
s s > σ2

,

This has transformed the SDE to one of unit diffusion although there is still depen-

dence on σ2 through the end point condition Uσ2 = y1, where y1 is the endpoint

observation. Like in the two step transformation of Roberts and Stramer [2001] a

second transformation is needed. Kalogeropoulos et al. [2010] suggest changing to

a third time scale via

u = η2(s, σ) =
s

σ2(σ2 − s)

and defining a new process Z via

Us = (σ2 − s)Zη2(s,σ) +
(

1− s

σ2

)
y0 +

s

σ2
y1, 0 ≤ t < σ2 ,

where y0 is the initial observation. Then Z is given by the SDE

dZu =

(
µ(Us, θ)

1 + σ2
+ U2

)
dt+ dBZ

u

where BZ is a Brownian motion on the new timescale, which runs from 0 to∞. The

two transformations imply that σ does not enter into Girsanov’s formula.

In the practical implementation of this algorithm each time σ is updated

a new time scale is defined. This means that new values of the process Z must

77



be imputed between current values. This is likely to lower the acceptance rates

although Kalogeropoulos et al. [2010] report that the algorithm is effective for large

m. The algorithm can also be applied to cases where the noise depends upon an

unobserved process as in the case of stochastic volatility models although the time

scale is also state dependent. It is not clear whether the algorithm could be adapted

to apply to more general processes. For example, if the diffusion depends upon the

state of the observed variable then the Lamperti transform should be applied first.

As in Roberts and Stramer [2001] this greatly limits the scope of the algorithm.

Innovation Scheme

Another algorithm that ensures consistency between the parameters and path was

suggested initially in Chib et al. [2004] and further developed by Golightly and

Wilkinson [2008]. The idea is to overcome the dependency between the diffusion

parameters and the missing data by changing variables to the underlying Brownian

motion B ∈ Rd and conditioning on this, rather than X, when performing the

parameter update.

Assuming we have the SDE in Eq. (4.1) and a(Xt,σ) ∈ Rd×d is invertible

in its first argument then

dBt = a−1(Xt,σ)(dXt − µ(Xt,θ)dt) (4.32)

is a d−dimensional Brownian motion. Let this map be Xt = h(Bt,σ), then the

conditional density of the parameters given the data is transformed via the Jacobian

determinant as

p(σ|X,θ) = p(σ|h(B,σ),θ)

∣∣∣∣ ∂h∂B (B,σ)

∣∣∣∣ , (4.33)

where | · | denotes the determinant. When updating σ one first calculates the

Brownian motion using B = h−1(X,σ) then proposes a new σ∗ ∼ q(σ∗|σ). The

conditional density is now

p(σ∗|X∗,θ) = p(σ∗|h(B,σ∗),θ)

∣∣∣∣ ∂h∂B (B,σ∗)

∣∣∣∣ . (4.34)

and so the data is updated as X∗ = h(B,σ∗).

In practice a discrete approximation

Bj+1 = Bj + a−1(Xj ,σ)(Xj+1 −Xj − µ(Xj ,θ)∆tj) (4.35)

will be used. As discussed by Dargatz [2010] this mapping does not take account
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of the end point conditions so that the reverse mapping may not be consistent with

the observation. If x is observed then h−1(h(x,σ),σ∗) 6= x for σ 6= σ∗.

A better idea is to define the process Z, which conditions on the endpoint

xT , by

dZt = a−1(Xt,σ)

(
dXt −

xT −Xt

T − t
dt

)
, Z0 = 0 (4.36)

where T is the next observation time. If Z was Brownian motion then

dXt = σ(Xt,σ)dZt +
xT −Xt

T − t
dt, X0 = x0 (4.37)

would be the continuous time version of the modified bridge as in Eq. (4.20).

Z is not Brownian motion, however, but it has unit diffusion and so is absolutely

continuous with respect to Brownian motion as shown by Dargatz [2010]. Therefore,

it has the desired property that densities with respect to Z will have parameter free

dominating measure.

In discrete time the transformation is

Xi+1 = Xi + a(Xi,σ)(Zi+1 −Zi) +
xT −Xi

m− i
. (4.38)

Let Xt = g(Zt,σ) denote the transformation of all of the data. The Jacobian

determinant is equal to the product

∣∣∣∣ ∂g∂Z
∣∣∣∣ =

N−1∏
i=1

|a(Xi,σ)| . (4.39)

We use Eqns. (4.38) and (4.39) to write down an algorithm that does not degenerate

as m increases. It is based on the reparametrisation of the conditional density of

the data

p(X|θ,σ) = p(g(Z,σ)|θ,σ)

∣∣∣∣ ∂g∂Z
∣∣∣∣ .

The density on the right hand side can be written as Radon-Nikodym derivative of

the law of Z with respect to a Brownian motion and so the dominating measure is

parameter free [Dargatz, 2010]. This means that the Metropolis-Hastings acceptance

probability will have non zero numerator and denominator.

We sample σ according to Algorithm 4.1. As this algorithm is central to

this thesis we give details useful for implementation in computer software. We use

zero-based numbering and consider there to be N observations and therefore, N −1

observation intervals indexed 0 . . . N − 2. We assume interobservation times ∆ are

all equal and that there are m−1 imputed points per interval, giving a time interval
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δ = ∆/m. We use the notation Xi = Xti and µi = µ(Xti ,θ). The extension

to variable interobservation times is straight forward. For simplicity, we write the

algorithm for perfect observation of the system so that Xim, i = 0, . . . , N − 1 are

fixed.

Algorithm 4.1 Sample parameters entering the diffusion function.

Draw σ∗ ∼ q(σ∗|σ)
Initialise α = log(q(σ|σ∗))− log(q(σ∗|σ)) + log(p(σ∗))− log(p(σ))
for i = 0 to N − 2 do

for j = 0 to m− 2 do

Zim+j+1 = Zim+j + a−1(Xim+j ,σ)
(
Xim+j+1 −Xim+j − Xim+m−Xim+j

m−j

)
X∗im+j+1 = X∗im+j +

Xim+m−X∗im+j

m−j + a(X∗im+j ,σ
∗)(Zim+j+1 −Zim+j)

α = α+ log(φ(X∗im+j+1;X∗im+j + µ∗im+jδ, δΣ
∗
im+j) + log |a(X∗im+j ,σ

∗)|
− log(φ(Xim+j+1;Xim+j + µim+jδ, δΣim+j)− log |a(Xim+j ,σ)|

end for
end for
Set {σ,X} = {σ∗,X∗} with probability min(1, exp(α)) else retain {σ,X}

In Algorithm 4.1 we have written the likelihood in terms of the Gaussian

approximation to the transition density using the Markov property. As mentioned

at the start of this section this is proved to converge to the true likelihood by

Pedersen [1995].

To update missing data between observations we use an independence sam-

pler as in Roberts and Stramer [2001] using the proposal process

dX∗ = ξ(X∗,XT )dt+ a(X∗,σ)dB∗t , (4.40)

where XT is the next observation. This process will have measure that is abso-

lutely continuous with respect to the target process in Eq. (4.1) because of their

common diffusion function. However, we have a choice of drift function ξ. The

major restrictions being that it should be efficient to simulate from, its probability

densities should be available explicitly and it should form a bridge between start

and end observations. The simplest choice is just the modified bridge of Durham

and Gallant [2002]. We investigate the benefits of using more sophisticated drift

functions that approximate the target process in Chapter 5.

To update all of the missing data one proposes a block at a time from Eq.
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(4.40) and then accepts this according to the MH ratio. If the inter observation inter-

val is large then the acceptance rate may become very low and so one may subsample

smaller blocks. However, Shephard and Pitt [1997] and Elerian [1999] showed that

smaller block sizes generally lead to higher autocorrelation in the Markov Chain.

This can be proved for Gaussian models but must be investigated case by case gen-

erally. In Chapter 5 we find that the efficiency of algorithms becomes very low when

subsampling blocks of data for the case of cubic models. One also has the option of

updating more than one block of missing data at a time: this could lead to increases

in efficiency but for simplicity we give implementation details for the case of single

block updates.

For some interval i we set X∗0 = Xim and X∗m = X(i+1)m then we pro-

pose X∗1 : X∗m−1 and accept or reject using the Metropolis-Hastings acceptance

probability

α =
pδ(X

∗
m|X∗m−1,θ)

∏m−2
j=0 pδ(X

∗
j+1|X∗j ,θ)qδ(Xim+j+1|Xim+j , ξ,σ)

pδ(X(i+1)m|Xim+m−1,θ)
∏m−2
j=0 pδ(Xim+j+1|Xim+j ,θ)qδ(X

∗
j+1|X∗j , ξ,σ)

,

(4.41)

where pδ is the transition density of the target Eq. (4.1) over time interval δ and

qδ is the transition density of the proposal. We choose proposal processes so that

given X∗j , X
∗
j+1 is approximately Gaussian distributed. Eq. (4.40) is not a true

Gaussian process because of the state dependent noise term. Details for updating

the missing data are given in Algorithm 4.2.

In Chapter 5 we investigate the efficiency of different choices of ξ(X∗,XT ).

In particular we develop the time dependent linear bridge and demonstrate that it

is more effective than the standard modified bridge of Durham and Gallant [2002]

at least for highly nonlinear processes.

Algorithms 4.1 and 4.2 are combined with standard Metropolis-Hastings up-

dates for the parameters θ entering into the drift function. One could use Random-

Walk proposals but in our case of polynomial models it is more efficient to implement

another Gibbs sampling step. This is described in Chapter 5. Repeatedly alternat-

ing between these three steps will produce MCMC samples that can be used to

estimate the parameters. In practice we increase the amount of missing data m

until we see convergence in the marginal distributions of the parameters.

4.3.5 Analytical Approximations of the Likelihood Function

Ait-Sahalia [2002] devised a method of approximating the transition densities

pX(Xt+δ|Xt,θ) in the likelihood Eq. (4.5) analytically. The idea is to use a con-
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Algorithm 4.2 Sample missing data between observations.

for i = 0 to N − 2 do
Set X∗0 = Xim

Set α = 0
for j = 0 to m− 2 do
X∗j+1 ∼ qδ(X∗j+1|ξ(X∗j ,Xim+m),σ)

α =α+ log(φ(X∗j+1;X∗j + δµ∗j , δΣ
∗
j )

+ log(qδ(Xim+j+1|ξ(Xim+j ,Xim+m),σ))

− log(φ(Xim+j+1;Xim+j + δµim+j , δΣim+j))

− log(qδ(X
∗
j+1|X∗j , ξ(X∗j ,Xim+m),σ))

end for
α = α+ log(φ(Xim+m;X∗m−1 + δµ∗m−1, δΣ

∗
m−1))

− log(φ(Xim+m;Xim+m−1 + δµim+m−1, δΣim+m−1))
if exp(α) > U(0, 1) then

for j = 0 to m− 2 do
Xim+j+1 = X∗j+1

end for
end if

end for

vergent series that adds corrections to the initial Gaussian approximation of the

density. The first step is again to Lamperti transform the equation for X to one

for Y . Then the tails of the transition density pY (Y t+δ|Y t,θ) are “light” enough

for the series to converge. A second transformation to Z centres and normalises

so that Z = (Y − Y 0)/
√

∆, where Y 0 is the peak of Y , so that the density is

close to a N (0, 1) variable. Then a Hermite series expansion is used to approximate

pZ(Zt+∆|Zt,θ).

The Hermite polynomials are given by

Hj(z) = ez
2/2 d

j

dzj

(
e−z

2/2
)
,

The density is approximated as

p
(J)
Z (Zt+∆|Zt,θ) = φ(Zt+∆)

J∑
j=0

η
(j)
Z Hj(Zt+∆) , (4.42)
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where φ is the standard Gaussian density and the coefficients are

η
(j)
Z = 1/j!

∫ ∞
−∞

Hj(Zt+∆)pZ(Zt+∆|Zt;θ)dZt+∆ . (4.43)

Eq. (4.42) indicates that the first term in the expansion is just the Gaussian density.

Ait-Sahalia [2002] show that the back transformed density converges uni-

formly

p
(J)
X (Xt+∆|Xt;θ) −→

J→∞
pX(Xt+∆|Xt;θ)

and they demonstrate that retaining as few as 2 or 3 terms in the expansion can

lead to maximum likelihood estimates with much lower errors than other methods

such as that of Pedersen [1995]. However, the approximation is complicated by the

need to also expand the coefficient functions in a convergent series and, although,

the method has been adapted for multivariate diffusions [Ait-Sahalia, 2008] it still

relies upon the Lamperti transform as do so many other estimation techniques.

4.3.6 Local Linearisation

Ozaki [1992] and Shoji and Ozaki [1998] use a local linearisation method that

approximates the non-linear diffusion over some small time window. Then since the

linear SDE is tractable they perform the estimation on this. It is an extension of

the Euler method: whereas the Euler approximation is piecewise constant the local

linearisation is piecewise linear. Shoji and Ozaki [1998] extend this to multivariate

diffusions and Shoji [1998] analyse the rate of convergence of the linear approxima-

tion. Roberts and Stramer [2001] use a linear approximation, calculate the bridge

distribution and use this in the context of MCMC inference for proposing missing

data for a one dimensional model. They approximate the drift function, at time t

using values at s < t by

µ(Xt,θ) = µ(Xs,θ) + (Xt −Xs)µ
′(Xs,θ) .

This is not the full approximation given by Ito’s Formula. Applying Ito’s formula

to the drift function of multivariate SDE

dXt = µ(Xt)dt+ a(Xt)dBt , (4.44)
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where X ∈ Rd, µ : Rd → Rd and a : Rd → Rd×d we have

dµi(Xt) =
∑
j

∂µi(Xt)

∂xj
dXj +

1

2

∑
j,k,l

ajl(Xt)akl(Xt)
∂2µi
∂xj∂xk

(Xt)dt .

Therefore, we can approximate µ(Xt) by

µi(Xt) ≈ µi(Xs) +
∑
j

∂µi(Xs)

∂xj
(Xj(t)−Xj(s))

+
1

2

∑
j,k,l

ajl(Xs)akl(Xs)
∂2µi
∂xj∂xk

(Xs)(t− s) ,

where 0 ≤ s < t. Substituting this into (4.44) gives the approximating process

dZt = (QZt + r(t))dt+ ΣdBt ,

with

Qij =
∂µi(Xs)

∂xj

ri(t) = µi(Xs)−
∑
j

∂µi
∂xj

Xj(s) +
1

2

∑
j,k,l

ajl(Xt)akl(Xt)
∂2µi
∂xj∂xk

(Xt)(t− s)

Σ = a(Xs) .

In Chapter 5 we study the efficiency of using the linear bridge for multivariate

diffusions as a proposal distribution for missing data in nonlinear diffusions. Note

that the diffusion coefficient, as described above, is constant. With regard to the

remarks at the end of Section 4.3.3 this will not work well as a proposal in the

continuous time limit. Therefore, in Chapter 5 we also investigate the linear bridge

where the diffusion depends upon the state: this is akin to the modified bridge as

discussed in Section 4.3.3.

4.4 Exact Algorithms

Beskos and Roberts [2005] developed an algorithm for simulating diffusion paths

for a certain class of models without discretisation error. This Exact Algorithm

1 (EA1) was followed by EA2 [Beskos et al., 2006] and EA3 [Beskos et al., 2008],

which enlarged the class of eligible diffusions. These algorithms have also been

used to estimate the transition densities between observations in order to estimate
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parameters through maximum likelihood or Bayesian methods [Beskos et al., 2006].

EA1 is applicable to one dimensional diffusions of the form

dXt = µ(Xt,θ)dt+ dBt .

This is not overly restrictive as one dimensional diffusions can be transformed to

this form via the Lamperti transform.

The algorithm is a rejection sampler: one proposes from a simple density

x ∼ g(x) then accepts the proposal with probability Mf(x)/g(x) < 1, where 1/M

is the upper bound of the ratio f(x)/g(x). In the case of diffusions one proposes

Z ∼ Z from an absolutely continuous diffusion then calculates the Radon-Nikodym

derivative with respect to the target X ∼ P. Therefore, we must be able to calculate

Girsanov’s formula and furthermore, it must be bounded.

This places some restrictions on µ. Firstly it must be differentiable so that

Ito’s formula can be applied to the stochastic integral in Girsanov’s formula. In order

to bound Girsanov’s formula Beskos and Roberts [2005] suggest that Z should be a

biased Brownian motion that has an endpoint distributed as h(BT ) ∝ exp(A(BT )−
B2
T /(2T )), where A(BT ) =

∫ BT
0 µ(u)du. Further requirements are

• The integral
∫

exp(A(u)− u2

2T )du <∞ so that h(u) is a probability density

• There exist constants k1, k2 ∈ R such that k1 ≤ 0.5(µ2(u) +µ′(u)) ≤ k2 for all

u ∈ R

• The time interval T is small enough so that 0 ≤ φ(u) ≤ T−1, where φ(u) =

0.5(µ2(u) + µ′(u))− k1

With these constraints Beskos and Roberts [2005] show that the Radon-Nikodym

derivative is
dP
dZ

(X[0,T ]) = exp(−H(X[0,T ])) , (4.45)

where H(X[0,T ]) =
∫ T

0 φ(Xt)dt. This is indeed bounded by 1.

The next step is to consider how to calculate the probability in Eq. (4.45). It

is clear that one can not calculate this exactly because that would require knowledge

of the entire path X[0,T ]. However, it is possible to simulate a skeleton of X which

is accepted or rejected according to Eq. (4.45) then to fill in any gaps. This is

the concept of retrospective sampling and was applied in a different context by

Beskos and Roberts.

Beskos et al. [2006] provided a simpler acceptance criteria than the orig-

inal by Beskos and Roberts [2005]. The acceptance criteria is calculated as fol-
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lows. First simulate points of a Poisson Process with unit intensity on the interval

[0, T ]× [0,M ] where M is an upper bound for φ(u). This gives a collection of points

(t1, y1), . . . , (tk, yk). Now given the endpoint simulated from Z, simulate the pro-

posal at times t1, . . . , tk. The probability that φ(Xtk) < yk for all k is equal to

exp(−H(X[0,T ])). Therefore, if this criteria is met the proposal should be accepted,

otherwise it is rejected.

Beskos et al. [2006] extend the method to EA2. This no longer requires φ(u)

to be bounded above as in EA1. It is now only required that lim supu→∞ φ(u) <∞
or lim supu→−∞ φ(u) < ∞. This is accomplished by decomposing the Brownian

bridge to be conditioned upon its lowest or highest point. This bound is first sim-

ulated, then Bessel processes (see Øksendal [2007]) are used to connect this to the

endpoints. This implies that the bound used to simulate the Poisson process is

stochastic but proves no extra restriction in the implementation of the algorithm,

although one problem is that the length of time (number of Poisson points) needed to

determine if a proposed path is accepted varies strongly according to each proposal.

The one sided boundedness of φ(u) in EA2 is quite restrictive: it is not satis-

fied by the Ornstein-Uhlenbeck process, for example. Beskos et al. [2008] introduce

EA3, which does not require φ(u) to be bounded. The algorithm works by simu-

lating a partition of the sample space. Within each partition φ(u) can be bounded

and the path simulated exactly.

The exact algorithms are advanced methods that are broadly applicable to

the simulation of one dimensional diffusions and can be used in construction efficient

estimators of the likelihood function [Beskos et al., 2006]. However, they are not

as applicable to multivariate diffusions. Firstly, if there is a non-unit diffusion

function then the Lamperti transform must first be used: this is not always possible.

Secondly, the drift function must be the gradient of some potential so that it can

be integrated. In models relevant for low frequency variability of the atmosphere

discussed in Chapter 3 it was argued that, due to the homogenisation procedure, a

linear noise term was important. Even if this could be transformed to unit diffusion

it is not likely that this would produce a drift that was the gradient of a potential.

Even before a transformation we would not expect this to be the case as travelling

waves in the atmosphere would preclude the existence of a potential. Therefore, we

focus on more generally applicable methods that are not exact for finite observation

interval but their error can be reduced systematically by imputing missing data

between observations.
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4.5 Alternatives to Likelihood Estimation

4.5.1 Estimating Functions

In order to estimate a p−dimensional parameter θ then an estimating func-

tion FN ∈ Rp is a function of the observed data and the parameter such that

FN (Xobs,θ) = 0. If the estimating function is the score function (derivative of the

likelihood with respect to θ) then the solution is the MLE, however, as already

discussed, the likelihood is not available for inference in SDEs.

Estimating functions should be unbiased and the parameters should be iden-

tifiable

Eθ0 [FN (Xobs,θ)] = 0, if and only if θ = θ0 , (4.46)

where the θ0 are the true parameters. If the estimating function is the score function

then the solution of

SN (θ) =
N∑
i=1

∂

∂θ
p(Xi+1|Xi;θ) (4.47)

gives the maximum likelihood estimator. Since this is not available one considers

estimating functions that have the same structure

FN (Xobs,θ) =

N∑
i=1

f(Xi+1,Xi,θ) . (4.48)

The score function is a martingale so one choice is to look for estimating

functions that also obey the martingale property

Eθ(FN (Xobs,θ)|FN−1) = FN−1(Xobs,θ) (4.49)

where FN−1 is the σ-algebra generated by the process up to time tN−1. An advan-

tage to using martingale estimating functions is that all of the known asymp-

totic results for N →∞ associated with martingales are applicable [Sorensen, 2004].

The functions in Eq. (4.48) have the structure

f(x,y,θ) =
J∑
j=1

αj(x,θ)hj(x,y,θ) , (4.50)

where J is some integer and the αj are weight functions. The martingale property

then implies

Eθ [hj(x,X1,θ)|X0 = x] = 0 (4.51)
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for all j.

Sorensen [1999] proved that, given suitable convergence of the martingale,

then a solution θ̃ of FN (Xobs,θ) = 0 exists, θ̃ → θ0 in probability and θ̃ will have an

asymptotically Gaussian distribution. Sorensen [1997] derived optimal weights α∗

to minimise the asymptotic variance but discusses the need to use approximations

due to numerical problems.

A usual choice for the functions h1 . . . hN is

hj(x,y,θ) = gj(y,θ)− Eθ [gj(X1,θ)|X0 = x] , (4.52)

for some simple functions gj with finite expectation. Often gj are polynomials:

gj(y,θ) = ykj [Bibby and Sorensen, 1995, 1996]. The expectation in Eq. (4.52) can

be estimated easily by simulation. An alternative is to choose eigenfunctions of the

generator. Then, under some regularity conditions, the expectation in Eq. (4.52)

can be calculated as

Eθ [gj(X1,θ)|X0 = x] = exp(−λj(θ)∆)gj(x,θ) , (4.53)

where λj(θ) are the eigenvalues [Sorensen, 2004].

Alternatives to martingale estimating functions are simple estimating func-

tions with the form

FN (Xobs,θ) =
N∑
i=1

f(Xi,θ) (4.54)

so that f takes, as argument, a state variable at only one time ti. Then Eq. (4.46)

implies Eθ[f(X0,θ) = 0 if and only if θ = θ0. This involves only the marginal

distributions and completely ignores any dependence structure. It is suitable for

estimating parameters that appear in the invariant distribution. Possibilities for f

include the score of the invariant distribution [Sorensen, 2001] or low order polyno-

mials [Kessler, 2000]. Martingale estimating functions are not as easily constructed

in non-Markovian models or when some components of the diffusion are unobserved

such as Stochastic Volatility models. In such cases a useful technique could be

the prediction based estimating function of Sorensen [2000] (see also Sorensen

[2011]).

4.5.2 Generalised Method of Moments

Related to the technique of estimating functions is the Generalised Method of

Moments [Hansen, 1982]. To estimate parameter θ ∈ Rp one chooses p′ > p
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moment conditions

w(θ) = Eθ[f(θ,X)] , (4.55)

where the fj are functions of one or more of the state variables. In practice this is

estimated as

ŵ(θ) =
1

N

N∑
i=1

f(θ,Xi) = 0 (4.56)

and the estimate is obtained by minimising the quadratic form

ŵ(θ)TΩŵ(θ) (4.57)

for some weight matrix Ω. Hansen [1982] shows that the resulting estimator is

consistent, asymptotically normal and that it is efficient with the optimal weight

matrix

Ω =
(
E
[
f(θ0,X)f(θ0,X)T

])−1
. (4.58)

Since this matrix depends upon the unknown true parameter, in practice, it is

calculated iteratively by plugging in preliminary estimates.

An example of moment conditions for SDEs are

Eθ [Aθ(g(Xt))] = 0

Eθ [Aθ(g(Xt))h(Xs)−Aθ(h(Xs))f(Xt)] = 0 , (4.59)

where t > s ≥ 0, h and f are any suitable functions and Aθ is the infinitesimal

generator of the process [Hansen and Scheinkman, 1995].

4.5.3 Estimation Via an Auxiliary Model

Consider dataX with density pN (X|θ). If we can simulate data from p and evaluate

a suitable auxiliary density qN (X|ρ) then we can find a link ρ = f(θ) that we

can use to calculate the MLE of θ [Gourieroux et al., 1993]. The idea is that the

auxiliary model reflects important aspects of the full model and emphasises these in

the estimation.

Firstly one finds the MLE from the auxiliary model

ρ̂ = argmax
ρ

log qN (X|ρ) (4.60)

based on the actual observed data. Then one simulates data from the true model

for a range of different parameters θ and calculates ρ̂ for each. The estimator θ̂
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minimises the difference between the estimate of ρ from the real and simulated data.

(ρ̂− f(θ))TΩ(ρ̂− f(θ)) , (4.61)

where Ω is the weight matrix. If ρ̂ and θ̂ are of the same dimension then f can be

taken as the identity. An alternative scheme called efficient method of moments

[Gallant and Tauchen, 1996] minimises(
∂

∂ρ
log qN (Xθ|ρ̂)

)T
Ω

(
∂

∂ρ
log qN (Xθ|ρ̂)

)
, (4.62)

where Xθ is the data simulated using parameter θ.

The quality of the estimators depend upon the chosen auxiliary model. One

suggestion is just to use the Euler approximation model but another idea would be

to use a linearised version. The method would be useful when performing inference

for complicated models with missing data. For example, models with unobserved

components or unusual structure such as some components that are not directly

driven by noise. However, choosing the auxiliary model is close to guessing and the

technique can be computationally intensive.

4.6 Conclusion

In this chapter we have given a broad overview of methods to estimate parameters

from SDE models. We have summarised the literature explaining why this is a

challenging inference problem and described some approaches to its solution. For our

application we choose to use the Algorithms 4.1 and 4.2 as they are the most flexible,

being applicable to general multivariate diffusions, and can be made arbitrarily

accurate by imputing more missing data. This does introduce a computational

challenge: sampling missing data can become very inefficient in higher dimensions.

We explore the limitations of the algorithm and attempt to alleviate some of the

problems in the next chapter specifically focussing on the model class discussed in

Chapter 3.
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Chapter 5

Inference for Models with Cubic

Drift and Linear Diffusion

In this Chapter we study the following D-dimensional model

dXi =

αi +
D∑
j=1

βi,jXj +
D∑
j=1

j∑
k=1

γi,j,kXjXk +
D∑
j=1

j∑
k=1

k∑
l=1

λi,j,k,lXjXkXl

 dt

+
i∑

j=1

ai,jdBj +
D∑
j=1

i∑
k=1

bj,i,kXjdBk , (5.1)

where the parameters α, β, γ, λ, a and b are unknown. This is the most general

form of cubic model with linear noise, which we motivated in Chapter 3. We denote

all of the parameters as θ. We place a prior p(θ) on the parameters then, given

observations Xobs, we aim to estimate the Bayesian posterior distribution

p(θ|Xobs) ∝ p(Xobs|θ)p(θ) , (5.2)

where p(Xobs|θ) is the likelihood function that must be approximated according to

the methods in Chapter 4. The inference is obtained using Markov Chain Monte

Carlo Methods, specifically the Innovation Scheme of Section 4.3.4.

In this Chapter we study the computational aspects of the inferring param-

eters in a model of the form Eq. (5.1). We first consider the growth in parameter

numbers with the dimension of the system. As the dimension D of the system in-

creases the number of parameters in the drift increases rapidly. For each component,

α consists of 1 parameter, there are D in β, D(D+1)/2 in γ and D(D+1)(D+2)/6

in λ. The last two are given by the triangle and tetrahedral numbers respectively.
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In total, for each component, there are

P = 1 +
11D

6
+D2 +

D3

6
(5.3)

parameters and DP parameters in altogether. Therefore, the number of param-

eters in the drift grows as the fourth power of D. The sequence increases as

{4, 20, 60, 140, . . .}, so even for two or three dimensional models there are a lot

of parameters.

The theoretical results of Florens-Zmirou [1989], discussed in Chapter 4, show

that these parameters can be estimated as Nh2 →∞ using the Euler approximation

of the transition density, where h is the maximum interval and N is the number of

observations. However, we aim to achieve an understanding of how much data is

needed in practice and in particular to determine whether it is feasible with a realistic

amount of data that would be available for a study in the atmospheric sciences. We

will do this in Section 5.4.

Consider now the diffusion parameters. There is a coefficient matrix a for

constant terms and one for each linear term bj , j = 1 . . . D. We have constructed

the matrices so that they only have lower diagonal components. This means that

the parameters will be identifiable. In total there will be D(D + 1)2/2 diffusion

parameters so this again grows rapidly in the dimension of the system. From Chapter

4 we know that if we observe the system in continuous time then the diffusion

parameters are known exactly. However, realistically we only observe the process at

discrete intervals of time and this observation frequency may not even be sufficient to

approximate continuous observation satisfactorily. In Section 5.3 we investigate the

data requirements, in order to accurately infer the diffusion parameters, by varying

the observation interval and length. This is also a check on parameter identifiability.

If it happens that our data set is not observed at a high frequency all is

not lost as we can impute data between observations to improve our approximation

of the likelihood function. As discussed in Section 4.3.4 one then implements a

Gibbs sampler to alternate between sampling parameters from p(θ|Xobs,Xmiss) and

missing data from p(Xmiss|Xobs,θ). In Section 5.2 we discuss Metropolis-Hastings

Independence Samplers for missing data with different proposal processes. All al-

gorithms are based on Algorithm 4.2 in Section 4.3.4, but differ in the proposal

distribution used to sample missing segments of data. The variants of this algo-

rithm are summarised in Table 5.1. The efficiency of each proposal is studied for

models of the form Eq. (5.1) and it is demonstrated numerically that the most

efficient algorithm is based on the linear proposal process. This proposal is based
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upon a linearisation of the drift function, as discussed in Section 4.3.6 in a different

context. This is novel applied in a MCMC algorithm and is one of the major contri-

butions of this thesis. The results of an extensive numerical study of the efficiency

of different proposal distributions are shown to be stable as the dimension of the

system increases.

The update of parameters is split between those in the drift and those in the

diffusion. The diffusion parameters are updated according using Algorithm 4.1 of

Section 4.3.4. Numerical verification of the algorithm applied to the model in Eq.

(5.1) is presented in Section 5.3.

The drift parameters enter quadratically into the likelihood function. This

implies that their conditional posterior will be multivariate normal. In Section 5.4

we determine the mean and covariance for this normal distribution and demonstrate

that this indeed regains the true parameter values with sufficiently many observa-

tions.

In this chapter we are concerned with computational issues as well as con-

straints of data. The main algorithms are all implemented in C/C++. However, in

Section 5.5 we investigate the potential benefits of a new computing paradigm that

benefits from the massive parallelisation in Graphics Processing Units (GPU).

We design our standard algorithm to exploit a parallel architecture. We implement

it in the CUDA language, run it on a basic laptop GPU and find massive reductions

in computation time.

Also important for reducing the required computation time is to design effi-

cient MCMC algorithms. Ideally the Markov Chain should move around the space

rapidly to get as close to i.i.d sampling as possible. This is a major theme running

through this Chapter and so firstly, in the next Section, we discuss the issues of

convergence and efficiency of MCMC applied to Bayesian inference.

5.1 Aspects of Bayesian Inference via Markov Chain

Monte Carlo

The problem is to obtain samples distributed according to probability density π(θ)

in order to estimate functionals such as the mean. In Bayesian statistics this would

be a posterior distribution conditional upon observations and we want to estimate

the unknown parameters. It is often not possible to obtain independent, identically

distributed (i.i.d) samples from π. One possibility is to construct a Markov Chain

that has invariant density π. That is a process with transitions θ1 → θ2 → . . . →
θn−1 → θn that for n large enough has θn ∼ π. This technique is known as Markov
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Chain Monte Carlo (MCMC). For an introduction and guide to MCMC in practice

see Robert and Casella [2005] and Gilks and Spiegelhalter [1996]). For a summary

of theoretical results see Roberts and Rosenthal [2004].

A simple way to construct such a Markov chain is to ensure that it is re-

versible with respect to π. If p(θ,θ∗) is the transition density for moving from state

θ to state θ∗ then π(θ)p(θ,θ∗) = π(θ∗)p(θ∗,θ) implies that the Markov Chain is

reversible and therefore stationary with respect to π [Roberts and Rosenthal, 2004].

The Metropolis-Hastings algorithm exploits this property.

One should be able to initialise the Markov Chain at any point in the space

and have it converge to the unique density π. Intuitively this means that all states

should be realisable from any starting point. In particular the chain should not be

reducible since, even if π is a stationary distribution of the Markov Chain, it may

not be unique and the chain may not converge to it. Furthermore, we require the

chain to be aperiodic. If these requirements are fulfilled then we can guarantee that

the chain will converge to π asymptotically, however, practically we want to know

how large n has to be [Roberts and Rosenthal, 2004].

Properties of the Markov chain such as uniform or, the weaker, geometric

ergodicity can be proved to obtain qualitative results about its convergence rate

[Roberts and Rosenthal, 2004]. In some cases one can make quantitative estimates

on the number of iterations to ensure convergence (for example Rosenthal [1995]). In

general cases often convergence is determined empirically by observing the behaviour

of multiple chains applied to the same target. The chains are started in over-

dispersed initial states and then between chain and within chain information is

compared to diagnose convergence [Gelman and Rubin, 1992].

After convergence, MCMC methods can be used to obtain samples from

the distribution and these can then be used to estimate expectations of functions

h : Θ → R. In Bayesian inference one is often interested in the expectation of

unknown parameters under the posterior. Most simply an estimate of unknown

parameter θ is given by

θ̂ =
1

n

n∑
i=1

θ(i) , (5.4)

where the θ(i) are the MCMC output. If the samples were i.i.d then this estimator

would be unbiased and a Central Limit Theorem (CLT) would guarantee conver-

gence to normality with variance σ2/n, where σ2 <∞ is the posterior variance of θ.

For uniformly ergodic Markov Chains the same
√
n CLT applies. For geometrically

ergodic chains a
√
n CLT exists if the 2 + δ moment of the target is finite, where

δ > 0 [Roberts and Rosenthal, 2004].
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Even if a CLT exists, since the MCMC samples are correlated, the effective

sample size is smaller and the errors larger. We aim to design rapidly mixing chains

that have low autocorrelation and smaller errors. We denote the autocorrelation at

lag j as C(j) =
∑

i(θ
(i) − θ̂)(θ(i+j) − θ̂)/ ˆVar(θ), where ˆVar(θ) is an estimate of the

variance. For correlated samples the variance of Eq. (5.4) is

Var(θ̂) = σ2/n

1 + 2
n−1∑
j=1

(1− j

n
)C(j)

 .

(see Robert and Casella [2005]). The difference to the i.i.d case is the term in

brackets and is called the integrated autocorrelation time τ for the algorithm.

The less correlation within the MCMC samples the more efficient the algorithm. As

a measure of efficiency we consider τ for n→∞ so that

τ = 1 + 2
∞∑
j=1

C(j) . (5.5)

In this thesis we are often interested in estimating the efficiency of MCMC algo-

rithms.

Definition 1 (Estimated efficiency of MCMC algorithms). We report the efficiency

of an algorithm as η = 100/τ̂ , where τ̂ is an estimate of the integrated autocorrelation

time of Eq. (5.5): τ̂ =
∑j∗

j=1C(j), where j∗ is the first j such that C(j) < 0.05 and

j > 6.

Various optimisation strategies arise for all the algorithms in this thesis. It

is often possible to design the Markov Chain transition probabilities to account

for some properties of the target. We do this in Section 5.2 by implementing a

linearisation of the target process when sampling missing diffusion paths.

In Metropolis-Hastings algorithms it is sensible to monitor the acceptance

rate of the proposals and adjust the jump size. We do this in Section 5.3 with the

aim of keeping the acceptance rate in the range 0.2−0.4. This is in accordance with

the rate of 0.234 motivated by theoretical arguments in Roberts et al. [1997].

Even if the MCMC algorithm has converged and mixes well one should check

that the true values of parameters are recoverable. When way of doing this is to

quantify the error of the estimate as the amount of data used for the inference

increases. The error of the estimates for each data set can be quantified using the
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∆

δ = ∆/m

Figure 5.1: Illustration of the inference problem. Red circles represent observations
and blue are missing values to impute. The inclusion of missing data reduces the
time interval to δ = ∆/m. Here m = 4.

quadratic Posterior Expected Loss (PEL) function

f(p̂,Xobs) =

∫
Θ

(θ∗ − θ)2p̂(θ|Xobs)dθ , (5.6)

where θ represents all of the parameters, p̂ is the estimated posterior distribution

and θ∗ is the true value of the parameter. Note that the PEL does not distinguish

between parameters with different sizes and may unequally weight those with large

variances. It it important to check that the parameter estimates have variances of

similar magnitude.

5.2 Inference for Missing data

In this section we study the efficiency of methods for simulating diffusion paths

from Eq. (5.1) that are conditioned upon start X0 = x0 and end XT = xT points.

In the introduction this was written p(Xmiss|Xobs,θ). For simplicity consider the

probability density of a single observation interval, where tT − t0 = ∆ is divided

into m equidistant subintervals so that tk+1 − tk = ∆/m = δ and there are m − 1

missing data vectors to sample. As discussed in Chapter 4 this target density, with

respect to Lebesgue measure, is the product

p(X1 · · ·Xm−1|X0 = x0,Xm = xm;θ) =
∏m−1

k=0
p(tk+1,xk+1|tk,xk;θ) , (5.7)

where now p is the transition density for the process in Eq. (5.1) and is, in practice,

approximated by the Euler transition density. An illustration of the problem is given

in Figure 5.1.
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Algorithm Name Proposal Distribution

Brownian Bridge (BB) Eq. (5.11)
Modified Bridge (MB) Eq. (5.13)
Linear Bridge (LB) Eq. (5.21)
Modified Linear Bridge (MLB) Eq. (5.22)

Brownian Bridge Lamperti (BL)
Brownian Bridge of Eq. (5.11) applied
to transformed data of Eq. (5.11)

Linear Bridge Lamperti (LL)
Linear Bridge of Eq. (5.21) applied to
transformed data of Eq. (5.11)

Table 5.1: List of proposal distributions for Algorithm 4.2 that are studied and
tested in this chapter.

We focus on the case of complete (noiseless) observation of the process. This

implies that blocks of missing data are independent and can be considered separately.

For more general cases see, for example, Golightly and Wilkinson [2008].

It is not possible to simulate directly from the law of the conditioned process

in Eq. (5.1) so we use an independence sampler. This is a Metropolis-Hastings

algorithm with proposal density of the form q(X∗|X) = q(X∗) so that it does not

depend upon the current state. It is still a Markov Chain since the current state

enters into the acceptance probability Eq. (4.41).

Here, we consider proposal processes of the form

dX∗ = ξ(X∗t ,XT )dt+ a(X∗,σ)dW ∗ , (5.8)

where a(X∗,σ) is the same diffusion function as that in Eq. (5.1). This is motivated

from the arguments in Chapter 4 about absolute continuity of diffusion measures.

Associated with Eq. (5.8) is the proposal transition density

q(X∗) =

m−2∏
k=0

q(Xk+1|Xk, ξ,σ) (5.9)

and inference is implemented according to Algorithm 4.2. In the following we discuss

possible drift and diffusion functions for the proposal SDE in Eq. (5.8). For conve-

nience Table 5.1 provides a reference of all variants of Algorithm 4.2 we consider in

this chapter.

The simplest choice is the Brownian Bridge (see e.g Gardiner [2004]) pro-

cess

dX∗ =

(
xT −X∗t
T − t

)
dt+ a(X0,σ)dB∗ . (5.10)
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This is designed so that XT = xT . Note that the constant diffusion function means

that the Brownian Bridge can be simulated exactly so that, given a proposed value

x∗k sampled at time tk, the proposal distribution for X∗k+1 is

q(X∗k+1|X∗k) = N
(

(T − tk+1)x∗k + (tk+1 − tk)xT
T − tk

,
(tk+1 − tk)(T − tk+1)

T − tk
Σ(x0,σ)

)
,

(5.11)

Σ(x0,σ) = a(x0,σ)a(x0,σ)T . Given the background in Chapter 4 about absolute

continuity of measures we expect the Brownian Bridge to be poor due to the constant

diffusion function.

An alternative for Eq. (5.8) is the Modified Bridge (MB) proposal of

Durham and Gallant [2002]. In this case

ξ(X∗t ,XT ) =
XT −X∗t
T − t

. (5.12)

In discrete form this implies a proposal distribution

q(X∗k+1|X∗k,θ) = N (X∗k+1;X∗k + µ̃k, Σ̃k) , (5.13)

where

µ̃k =
Xm −X∗k
m− k

, Σ̃k = a(X∗k,σ)a(X∗k,σ)T δ . (5.14)

5.2.1 Linear Bridge as a Proposal Process

The aim of this section is to design an efficient independence sampler for Eq. (5.1)

by focussing on the drift in Eq. (5.8). The proposal is constructed by first linearising

the SDE, then forming the bridge process. The linearisation was demonstrated in

Section 4.3.6 for a multivariate diffusion. Here we demonstrate the approximation

using a two dimensional example

dXt = (2Xt + 3XtYt −X3
t )dt+ YtdB1(t) + dB2(t)

dYt = (Yt −XtYt − Y 3
t )dt+ dB1(t) +XtdB2(t) (5.15)

These equations are linearised as explained in Section 4.3.6 to give the approximating

equation

dZt = (QZt + r(t))dt+ ΣdBt , (5.16)
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Figure 5.2: Sample paths of both components of the non-linear SDE (Eq. 5.15)
(black), the linear approximation (red) and the Brownian motion (blue) using the
same random variables.

with the quantities

Q =

(
2 + 3Ys − 3X2

s 3Xs

−Ys 1−Xs − 3Y 2
s

)

r(t) =

(
2X3

s − 3XsYs + 3(Xs + Ys −Xs(Y
2
s + 1))(t− s)

XsYs + 2Y 3
s − (Xs + Ys + 3Ys(X

2
s + 1))(t− s)

)

Σ =

(
Y 2
s + 1 Xs + Ys

Xs + Ys X2
s + 1

)

Figure 5.2 compares the strong, pathwise solutions to the SDE Eq. (5.15)

with the linear approximation and Brownian motion with constant diffusion. Note

that the linear approximation remains close to the non-linear solution for signifi-

cantly longer than the Brownian motion. Figure 5.3 is concerned with weak solu-

tions. The linear approximation does much better than the Brownian motion at

reproducing the strong drift.

One of the contributions of this thesis is the demonstration of the time in-

homogeneous Linear Bridge distribution for efficient sampling of multivariate diffu-

sions. We are able to do this using results for constructing bridge distributions of

general multivariate linear diffusions of the form in Eq. (5.16) [Barczy and Kern,

2010]. If at time s we have Xs = a and at time T , XT = b then the distribution of

Xt for 0 ≤ s < t ≤ T can be shown to be Gaussian with mean

νa,b(s, t) = Γ(t, T )Γ(s, T )−1m+
a (s, t) + Γ(s, T )T (Γ(s, T )T )−1m−b (t, T ) (5.17)
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Figure 5.3: Comparison of the distributions of the original process in Eq. 5.15
(black/grey) compared with contour plots of the linear approximation in Eq. (5.16)
(red) and Brownian motion (blue) evolving from a fixed initial condition for both
components of Eq. (5.15).

where

Γ(s, t) =

∫ t

s
e(s−u)QΣΣT e(t−u)QT du ,

m+
x (s, t) = x+

∫ t

s
e(s−u)Qr(u)du and m−x (s, t) = x−

∫ t

s
e(t−u)Qr(u)du .

The covariance matrix is given by

Σ(s, t) = Γ(t, T )Γ(s, T )−1Γ(s, t) . (5.18)

For the one dimensional case we can easily calculate the quantities involved:

let v(s) = µ(Xs)− µ′(Xs)µs − 1/2µ′′(Xs)Σ
2s, then

m+
a (s, t) = a+

1

Q
(1−e(s−t)Q)v(s)+

1

2Q

(
(s− e(s−t)Qt) +

1

Q
(1− e(s−t)Q)

)
µ′′(Xs)Σ

2

m−b (s, t) = b+
1

Q
(1−e(t−s)Q)v(s)+

1

2Q

(
(s− e(t−s)Qt) +

1

Q
(1− e(t−s)Q)

)
µ′′(Xs)Σ

2

Γ(s, t) =
Σ2

2Q
sinh((t− s)Q)

Σ(s, t) =
Σ2

2Q

sinh((T − t)Q) sinh((t− s)Q)

sinh((T − s)Q)

In a multivariate problem we can only compute these terms in a nice form if

the matrices Σ and Q commute. In this case

Γ(s, t) = Σ(Q+QT )−1
(
e(t−s)QT − e(s−t)Q

)
ΣT .
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Figure 5.4: Comparison of the distributions of the non-linear bridge process derived
from Eq. 5.15 (black/grey) compared with contour plots of the modified linear
bridge in Eq. (5.21) (red) and Brownian bridge (blue). Here we use a = (3, 2),
b = (2, 1) and ε = 0.1.

In general this matrix can be computed as follows: if we diagonalise Q so that

Q = UΛU−1 then compute the matrix A with components

Aij =
(U−1ΣΣTU−T )ij

Λii + Λjj

(
e(t−s)Λjj − e(s−t)Λii

)
(5.19)

then

Γ(s, t) = UAUT . (5.20)

We compute the bridge process for Eq. (5.15) using Eqns. (5.19,5.20) be-

tween fixed a, b ∈ R2. To test the performance we simulated the target SDE

(Eq. 5.15) with (X0, Y0) = a and accepted paths if XT ∈ [b1 − ε, b1 + ε] and

YT ∈ [b2 − ε, b2 + ε] for some small ε, typically ε ≤ 0.1. This computationally inten-

sive procedure forms an approximation to the nonlinear bridge. For a test example

we have found that there is not much improvement over using a Brownian bridge

for short bridge intervals (T < 0.1, not shown) so we compared the performance for

T = 1. Figure 5.4 shows that the linear bridge performs much better than the Brow-

nian Bridge. The variance is a lot lower and the density tracks the high probability

regions of the target more accurately.

The distribution for sampling Xk+1 given Xk and Xm using the Linear

Bridge (LB) proposal is

q(Xk+1|Xk,Xm,θ) = N (Xk+1;νxk,xm(kδ, (k + 1)δ),Σx0(kδ, (k + 1)δ)) , (5.21)

where νxk,xm(kδ, (k+ 1)δ) and Σx0(kδ, (k+ 1)δ) are given in Esq. (5.17) and (5.18)
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respectively. In this case the matrices Q and Γ are both computed using the value

x0 and we emphasise this with the subscript on the covariance matrix in Eq. (5.21).

As it is, we do not expect the linear bridge to be effective at proposing missing data

for the target SDE. This is for the reasons discussed in Chapter 4. The constant

diffusion matrix means that the law of linear bridge paths will not be absolutely

continuous with respect to the law of the target process.

Instead we introduce the Modified Linear Bridge (MLB) proposal. This

is the same as the linear bridge except that the diffusion matrix in the linear approx-

imation is updated at each imputed point. This means recomputing the matrices

Γ(s, t) at each point although Q and U are only calculated once. The proposal

distribution is only a small modification of Eq. (5.21):

q(Xk+1|Xk,Xm,θ) = φ (Xk+1;νxk,xm(kδ, (k + 1)δ),Σxk(kδ, (k + 1)δ)) , (5.22)

with the xk subscript to emphasise that Σ(xk) is used instead of Σ(x0).

We compare the Modified Bridge, Linear Bridge and Modified Linear Bridge

on the following one dimensional model

dXt = α(1 +Xt +X2
t −X3

t ) +XtdBt, X0 = 1 . (5.23)

we observe the process N = 101 times with ∆ = 0.1. An example of the MCMC

output of the average value for an arbitrary interval is shown in Figure 5.5 for

varying amounts of missing data m. It is clear that the Linear Bridge mixes poorly

compared with the other two algorithms as the amount of missing data increases.

Figure 5.6 shows the autocorrelation functions of the MCMC output averaged over

all data. There is significant autocorrelations in the Linear Bridge output, whereas

the Modified Linear Bridge has a rapidly decaying autocorrelation function even for

large m.

We consider the multivariate generalisation of Eq. (5.23)

dXi = α(Xi(t) +Xi(t)
d∑
j

Xj(t)−X3
i (t))dt+Xi(t)dBi(t), X ∈ Rd , (5.24)

We check that the Modified Linear Bridge reproduces the same distribution of miss-

ing data as the much simpler Modified Bridge. We do this for d = 2, N = 101 and

∆ = 0.1. The results are shown in Figure 5.7 for varying m. It is clear that there is

visual agreement between the densities proposed by the two different distributions.

We now compare the Monte Carlo efficiency of different bridge processes
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Figure 5.5: Trace plots of the MCMC output for sampling missing data from the
model in Eq. (5.23). The data shown is the average value for an arbitrary observa-
tion interval with ∆ = 0.1. The Modified Bridge is on the left, the Linear Bridge is
centre and the Modified Linear Bridge on the right.
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Figure 5.6: Average autocorrelation functions computed for MCMC output of N =
100 data intervals from the model in Eq. (5.23) with interobservation time ∆ = 0.1.
The Modified Bridge is on the left, the Linear Bridge is centre and the Modified
Linear Bridge on the right.
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Figure 5.7: Output from Standard and Linear Bridge samplers applied to Eq. 5.24
in two dimensions observed at ∆ = 0.1. For each MCMC algorithm 105 samples
were retained after discarding a burn in of 104. Plots (a) and (b) show a series of
11 observations over T = 1.0 with imputed data m = 2. At each imputed data
point the density of both samplers is plotted using Kernel Density Estimation and
the “beanplot” package in R. Plots (c) and (d) show the estimated densities for the
imputed data with m = 10 for a single observation interval. Also shown are some
sample paths from both MCMC algorithms.

acting as proposals for missing data applied to the model Eq. (5.24). We use

the SDE in Eq. (5.24) in place of our general model Eq. (5.1) because, while

retaining the non-linearity and state dependent noise, it can be transformed to one

of unit diffusion via the Lamperti transform using Eq. (2.22). This transformation

Yi = log(Xi) leads to

dYi =

α(1 +

d∑
j=1

Yj − e2Yj )− 1

2

 dt+ dBi . (5.25)

The constant diffusion means that the Bridge proposal will be absolutely continuous
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with respect to the target bridge and there will be no discretisation error due to

modifying the diffusion function. We use the standard Brownian Bridge proposal

and linear bridge proposal applied to Eq. (5.25) as a demonstration of efficiency in

the ideal case.

Altogether we compare six proposal methods: the Brownian Bridge (BB)

proposal will serve as a demonstration of how not to do it, the Modified Bridge

(MB) proposal as a benchmark, the Linear Bridge (LB) proposal, the Modified

Linear Bridge (MLB), the Brownian Bridge Lamperti transformed (BL) and

the Linear Bridge Lamperti transformed (LL). These algorithms are listed in

Table 5.1

We estimate the efficiency of the proposal for varying dimension and amount

of missing data m. We also vary α which controls the relative contributions from

the drift and the diffusion terms. In each case the efficiency is averaged over all

missing data points. We use a total of N = 101 observations with fixed interval

∆ = 0.1. The efficiency as given in Definition 1 is calculated from the integrated

autocorrelation function estimated from 105 samples.

The results, shown in Figure 5.8, are for the case of updating all components

simultaneously. Notice that the estimates smoothly converge for increasing m which

implies that sufficient samples have been used for each estimation. As expected the

most efficient proposal is the Lamperti transformed linear bridge (shown in ma-

genta). Of course the Lamperti transformation can not be calculated generally for

multi dimensional models. The Modified Linear Bridge can be applied generally and

it performs better than any other general method. As in the Lamperti transformed

linear bridge the efficiency actually improves with m as the linear model becomes a

better approximation to the target and then reaches a plateau. It does not deterio-

rate at large m as the proposal has measure absolutely continuous with respect to

the target. The original Modified Bridge and the standard Lamperti transformation

method deteriorate for increasing m, which must be due to the increasing dimen-

sion of the problem as they quickly reach a plateau and then do not deteriorate any

further. It is surprising that they do not perform very well for this model as one

would hope the efficiency of an independence sampler higher. The standard Brow-

nian Bridge and Linear Bridge perform very poorly: the efficiency rapidly goes to

zero for increasing m. As mentioned previously this is due to the mutual exclusivity

of their measures.

For α = 1.0 all methods perform poorly as the dimension increases. There is

a strong drift in this case, which it is harder to approximate in higher dimensions.

A potential solution to this problem is to update one component at a time, keeping
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the others fixed. The results of this procedure are shown in Figure 5.9. It is clear

that this approach does not deteriorate as quickly with the dimension. However, this

approach is much more computationally expensive to the extent of being unpractical.
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(a) d = 1, α = 0.1
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(b) d = 1, α = 1.0
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(c) d = 2, α = 0.1
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(d) d = 2, α = 1.0
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(e) d = 3, α = 0.1

●

●

●
● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

0
20

40
60

80
10

0

m

E
ffi

ci
en

cy

●

●
●

●
●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●
● ●

●
●

●
●

●

●

●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●

●

●
●

(f) d = 3, α = 1.0
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(g) d = 4, α = 0.1
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(h) d = 4, α = 1.0
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(i) d = 5, α = 0.1
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(k) d = 6, α = 0.1
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(l) d = 6, α = 1.0
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(m) d = 7, α = 0.1

● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

0
20

40
60

80
10

0

m

E
ffi

ci
en

cy

● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

(n) d = 7, α = 1.0
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(o) d = 8, α = 0.1
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(p) d = 8, α = 1.0

Figure 5.8: Efficiency of different data imputation proposals described in the text:
BB - black, MB - red, LB - green, MLB - blue, BL - cyan, LL - magenta applied to the
model in Eq. (5.24). In this case all components X were updated simultaneously.
The data consisted of N = 101 samples at observation interval ∆ = 0.1. Only
missing data was sampled in these algorithms. Each estimate of efficiency was
calculated using 105 samples from three MCMC chains after a burn in of 104 samples.
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(a) d = 1, α = 0.1
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(b) d = 1, α = 1.0
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(c) d = 2, α = 0.1
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(d) d = 2, α = 1.0
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(e) d = 3, α = 0.1
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(f) d = 3, α = 1.0
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(g) d = 4, α = 0.1
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(h) d = 4, α = 1.0
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(i) d = 5, α = 0.1
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(j) d = 5, α = 1.0
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Figure 5.9: Efficiency of different proposals described in the text for the component-
wise updating: BB - black, MB - red, LB - green, MLB - blue, BL - cyan, LL -
magenta applied to the model in Eq. (5.24). In this case each component of X was
updated separately. The data consisted of N = 101 samples at observation interval
∆ = 0.1. Only missing data was sampled in these algorithms. Each estimate of
efficiency was calculated using 105 samples from three MCMC chains after a burn
in of 104 samples. 111



5.3 Inference for Diffusion Parameters

In this section we consider the sampling of parameters σ that enter into the diffusion

function of Eq. (5.1). Recalling the general form of SDE

dXt = µ(Xt,θ)dt+ a(Xt,σ)dBt , X ∈ Rd , (5.26)

As a test case we use the following

dXi = α(Xi(t) +Xi(t)

d∑
j=1

Xj(t)−X3
i (t))dt+ σiXi(t)dBi(t), X ∈ Rd , (5.27)

A simple way to sample the diffusion parameters is to use the symmetric

Random Walk proposal in the Metropolis-Hastings algorithm. Given the current

value σ a new value is proposed from the Gaussian distribution σ∗ ∼ N (σ, τ)

where τ is a tuning parameter. In this case the proposal density drops out and the

acceptance probability is just the ratio of posteriors

α =
p(σ∗)

p(σ)

∏N−2
i=0

∏m−1
j=0 pδ(Xim+j+1|Xim+j ,σ

∗)∏N−2
i=0

∏m−1
j=0 pδ(Xim+j+1|Xim+j ,σ)

,

where p(θ) is the prior distribution. This parameter update alternates with the

sampling of missing data using Algorithm 4.2. The various choices for proposal dis-

tribution in Algorithm 4.2 are listed in Table 5.1. In this section we use the Modified

Bridge proposal. Trace plots and autocorrelation functions of this algorithm applied

to Eq. (5.27) with d = 1, N = 101 observations, interobservation time ∆ = 0.1,

fixed α = 1.0 and true value σ = 1 are shown in Figure 5.10. The trace plots show

that the mixing of the algorithm becomes very poor as m increases; the autocor-

relation becomes very high for large lags. This is due to the reasons discussed in

Chapter 4: naive methods like the Random Walk actually become degenerate in the

continuous time limit.

To overcome this we use the Innovation Scheme [Chib et al., 2004; Go-

lightly and Wilkinson, 2008; Dargatz, 2010] (see Section 4.3.4). This applies the

change of variables Z = g−1(X,σ) ∈ Rd, to give a process with unit diffusion. The

general background and motivation for this algorithm was given in Chapter 4 and

the detailed implementation in Algorithm 4.1. We applied the Innovation Scheme to

the same problem as Figure 5.10. The results, in Figure 5.11, show that the mixing

is much better than when using the Random Walk. The autocorrelation does not
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Figure 5.10: Output of Random Walk algorithm for σ applied to the one dimensional
model in Eq. (5.27) with N = 101 observations, interobservation time ∆ = 0.1 and
fixed α = 1.0. The true value was σ = 1.0. On the right are the corresponding
autocorrelation functions. Note that the Modified Bridge Sampler was used to
impute missing data (see Table 5.1). 113



increase as more missing data is added. We choose to use the Innovation Scheme

in our applied work in Chapter 8. However, the method still has faults. The main

difficulty is due to having to update all of the missing data every time the diffusion

parameters are sampled. This can result in a low acceptance rate and the step size

must be scaled down. This is particularly apparent when applied to high dimen-

sional problems with a reasonably large interobservation time. Figure 5.12 shows

the output of the Random Walk and Innovation Scheme algorithms applied to a six

dimensional model with large interobservation time ∆ = 1.0 and N = 101 observa-

tions. The value of α = 1.0 was held fixed and the missing data was imputed using

the Modified Bridge algorithm. All six of the parameters entering into the diffusion

function were updated but only the trace plots of σ1 are shown. In this case the

mixing time of the Innovation Scheme becomes comparable to that of the Random

Walk. The problem is that the autocorrelation is large even for low values of m.

This could be due to discretisation error of the map g. The algorithm is proved

rigorously to work in continuous time [Dargatz, 2010]. With large discretisation

error the function g−1 would not accurately map to a continuous time process that

is of unit diffusion. There is certainly scope for an improved method of sampling the

diffusion function but since the Innovation Scheme is very general in applicability

and not too complicated to implement, we determine to use it in our applications.

We apply the Innovation Scheme as detailed in Algorithm 4.1 to the SDE

in Eq. (5.1) in two dimensions. We have already described in the introduction the

structure of the diffusion function and that the number of parameters increases as

d(d+1)2/2. For clarity we give the diffusion function explicitly for a two dimensional

problem

a(X,σ) =

(
σ1 0

σ2 σ3

)
+

(
σ4 0

σ5 σ6

)
Xt,1 +

(
σ7 0

σ8 σ9

)
Xt,2 . (5.28)

The parameters will not be identifiable unless we restrict the domain using the prior.

At the moment there is degeneracy under the mapping (σ1, σ2, σ3)→ −(σ1, σ2, σ3).

and other degeneracies are possible. The parameters are made identifiable by re-

quiring σ1, σ2, σ3 > 0. All other parameters can take negative values.

We performed a simulation study to test the data requirements for inferring

the diffusion parameters. We used a two dimensional model, as in Eq. (5.28),

and varied the interobservation time ∆ = {0.1, 0.01, 0.001} and total time T =

{1, 10, 100} to understand how much data, and at what frequency, is required for

accurate inference. We used randomly generated true values for the parameters in

the diffusion and fixed the drift function parameters with values in Table 5.3. There
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Figure 5.11: Output of Innovation Scheme for σ using the change of variables in
Eq. (4.38) and Eq. (4.39) applied to the same data set used in Figure 5.10. The
Modified Bridge sampler was used to impute missing data (see Table 5.1).
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Figure 5.12: Autocorrelation functions of Random Walk and Innovation Scheme for
σ1 applied to the six dimensional model in Eq. (5.27) with observation interval
∆ = 1.0.
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T = 10 T = 100 T = 1000
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

A00 = 0.17
2.16

(0,6.34)

0.31

(0,0.75)

0.25

(0.06,0.45)

0.01

(0,0.04)

0.15

(0.13,0.16)

0.17

(0.17,0.18)

0.37

(0.11,0.39)

0.28

(0.16,0.28)

0.17

(0.17,0.17)

A01 = 2.23
6.1

(0.22,11.97)

1.81

(1.09,2.55)

1.99

(1.77,2.22)

1.22

(0.66,1.76)

1.88

(1.69,2.03)

2.15

(2.1,2.22)

0.99

(0.62,1.73)

1.48

(1.3,2.24)

2.23

(2.23,2.23)

A02 = 1.46
2.44

(0,7.97)

2.01

(1.4,2.53)

1.46

(1.35,1.57)

2.09

(1.76,2.47)

1.63

(1.54,1.72)

1.54

(1.47,1.57)

2.37

(1.58,2.51)

2.13

(1.46,2.17)

1.46

(1.46,1.46)

A03 = 2.58
6.02

(0.84,14.02)

2.92

(2.26,3.79)

2.69

(2.39,2.97)

2.49

(2.16,2.87)

2.87

(2.53,2.99)

2.7

(2.59,2.73)

8.52

(2.58,8.89)

4.35

(2.59,4.43)

2.58

(2.58,2.58)

A04 = −0.13
5.09

(−4.26,15.96)

−0.8

(−1.63,0.02)

−0.4

(−0.65,−0.16)

−1.16

(−2.01,−0.27)

−0.33

(−0.5,−0.16)

−0.16

(−0.19,−0.08)

−1.41

(−3.04,0.28)

−1.17

(−1.36,−0.12)

−0.13

(−0.13,−0.13)

A05 = 0.38
3.25

(−3.42,12.65)

1.06

(0.34,1.6)

0.39

(0.27,0.5)

0.71

(0.34,1.11)

0.4

(0.29,0.5)

0.37

(0.34,0.4)

0.35

(0.23,0.47)

0.55

(0.3,0.59)

0.38

(0.38,0.38)

A06 = 0.32
−0.01

(−2.08,2.18)

0.41

(0.15,0.7)

0.4

(0.29,0.51)

0.26

(0.22,0.3)

0.36

(0.32,0.37)

0.35

(0.33,0.35)

1.19

(0.36,1.25)

0.56

(0.33,0.57)

0.32

(0.32,0.32)

A07 = 0.1
3.19

(−2.12,8.87)

−0.11

(−0.64,0.42)

−0.04

(−0.2,0.11)

0.36

(−0.04,0.74)

0.3

(0.21,0.4)

0.19

(0.13,0.23)

0.17

(−0.01,0.81)

0.34

(0.09,0.52)

0.09

(0.09,0.09)

A08 = 0.01
1.44

(−3.17,5.95)

0.23

(−0.08,0.52)

0.02

(−0.05,0.09)

0.14

(−0.15,0.4)

−0.07

(−0.14,0)

−0.04

(−0.07,−0.01)

0.06

(−0.38,0.18)

−0.03

(−0.3,0.01)

0.01

(0.01,0.01)

6.41 0.08 0.01 0.11 0.01 0.00 1.21 0.13 0.00

Table 5.2: Diffusion parameter estimates for a two dimensional cubic model with
fixed drift function parameters given in Table 5.3. On the left is the true value of
the parameter. The length of the data set used for the inference is labelled as T
and the observation interval is ∆ = {0.1, 0.01, 0.001}. There was no missing data in
this study. The posteriors were estimated using 3× 106 samples from three MCMC
chains. In each cell the parameter is estimated from the posterior mean and in
brackets is shown the 10-90 percentiles of the posterior. The bottom of the table
shows the Posterior Expected Loss of Eq. (5.6).

was no missing data in this study. The results estimated from 106 MCMC samples

are shown in Table 5.2.

A close look at the numbers in Table 5.2 indicates that the estimates are

converging to the true values for increasing T and decreasing ∆. Estimates using

T = 10 and ∆ = 0.001 are accurate. Other values ∆ = {0.1, 0.01} give posterior

estimates that do not reflect this sampling property correctly. Estimates for T = 100

are close to the true value but do not reflect the correct sampling. This is true for

T = 1000 until ∆ is as small as 0.001.

5.3.1 Low dimensional noise

In Section 3.5.2 the homogenisation procedure applied to the triad model resulted

in a two dimensional model driven by a one dimensional Brownian motion. The

model was of the form

dX1 = (γX1 + αX1X
2
2 )dt+ (σX1 + αλX2)dBt

dX2 = (γX2 + βX2
1X2)dt+ (βλX1 + σX2)dBt (5.29)

This form of model causes problems for the method presented above. The problem

stems from the diffusion coefficient not being invertible, which means that we can
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not write down a unique likelihood function using Girsanov’s theorem. As this

model arose as one of our toy problems, and could be encountered more generally,

we present some simple inference methods for it. We focus on inferring parameter

σ and use the short, high frequency data set, shown in Figure 5.13. Firstly notice
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Figure 5.13: Data set used for inference from Eq. (5.29).

that the model can be transformed to a one dimensional process using Ito’s formula.

Making the change of variables

Yt = βX2
1 − αX2

2

leads to the SDE

dYt = (2γ + σ2 − αβλ2)Ytdt+ 2σYtdBt . (5.30)

We implemented Algorithm 4.1 for Eq. (5.30) to infer σ from high frequency ob-

servations (∆ = 0.01 and N = 100). The estimated posteriors for increasing m,

shown in Figure 5.14a, converge towards σ = 1. Figure 5.14b shows the estimated

posteriors for σ using Eq. 5.29, except now replacing the 1d Brownian motion for

2d Brownian motion. The results show that this is not an acceptable approximation

in this case as the estimates are incorrect. We will need to consider this problem

when applying the Innovation Scheme to models derived using the homogenisation

procedure from Chapter 3.

5.4 Inference for Drift Parameters

In this section we give details of the computational implementation of the sampling

of parameters in the drift function of Eq. (5.1). We describe the algorithm for a

general cubic model and use the Euler approximation for the likelihood function.
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Figure 5.14: Estimates of the posterior distributions of σ. Each curve is an estimate
of the posterior for a different amount of imputed data m. A high frequency data
set with N = 100 observations and interobservation time ∆ = 1.0 from Eq. (5.29)
was used. The true value is σ = 1.0. On the left are the results from fitting the 1
dimensional model Eq. (5.30) and on the right are those estimated from Eq. (5.29)
with 2-dimensional Brownian motion.

At the start of this chapter we noted that the number of parameters in the drift

function of Eq. (5.1) increases as the fourth power of the dimension. Initial work

(not shown) inferring these parameters using a Metropolis-Hastings step and ran-

dom walk proposal indicated that this approach was completely unpractical. Since

the drift parameters enter linearly we can construct a Gibbs sampler where their

conditional posterior is Gaussian. This greatly improves the mixing of the Markov

Chain.

5.4.1 Gibbs Sampler

Consider the general form of a D dimensional cubic SDE with linear noise in

Eq. (5.1). The parameters α, β, γ and λ are of interest in this section. We

write the parameters as one matrix A ∈ RD×P . We allow for the inclusion of

all possible linear, quadratic and cubic terms in the model with linear terms en-

tering first, followed by quadratic then cubic. We include them into matrix A as

Ai,1 = αi, Ai,j+1 = βi,j , Ai,j(j−1)/2+k+D+1 = γi,j,k and Ai,f(j,k,l) = λi,j,k,l, where

i, j ∈ {1, . . . , D}, k ∈ {1, . . . , j} and l ∈ {1, . . . , k}. The index function for the cubic

terms is

f(j, k, l) = 1 +D +D(D + 1)/2 + j(j − 1)(j + 1)/6 + k(k − 1)/2 + l . (5.31)
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This gives the total number of parameters in a row as

P =
11D

6
+D2 +

D3

6
.

Consider N observations of the discretised system with time interval δ. We

set Yt = Xt+1 − Xt and let U ∈ RN−1×P be the design matrix of the data, scaled

by δ. The columns of U are indexed in the same way as the columns of parameter

matrix A. For example, a two dimensional system would have P = 10 and design

matrix

U = δ


1 X1,1 X1,2 X2

1,1 X1,1X1,2 X2
1,2 X3

1,1

...
...

...
...

...
...

...

1 XN−1,1 XN−1,2 X2
N−1,1 XN−1,1XN−1,2 X2

N−1,2 X3
N−1,1

X2
1,1X1,2 X1,1X

2
1,2 X3

1,2

...
...

...

X2
N−1,1XN−1,2 XN−1,1X

2
N−1,2 X3

N−1,2


The log likelihood can be written

L(A;X) = −1

2

N−1∑
t=1

|Σt| −
1

2

N−1∑
t=1

D∑
i,j=1

(
Yti −

P∑
k=1

UtkAik

)
Σ−1
tij

(
Ytj −

P∑
k=1

UtkAjk

)

where the instantaneous covariance matrix Σt is computed from Σ
1/2
t,j,k = (aj,k +∑D

l=1 bl,j,kXt,j)∆
1/2.

We have DP parameters to infer in the matrixA. We set zero mean Gaussian

prior with covariance matrix Γ ∈ RDP×DP . Let Λ ∈ RDP×DP be a matrix with

components

Λ(i−1)P+j,(k−1)P+l =
N−1∑
t=1

UtjΣ
−1
tikUtl + Γ−1

(i−1)P+j,(k−1)P+l

where i, k = 1 . . . D and j, l = 1 . . . P . Let b ∈ RDP with components

b(i−1)P+j =
∑
t,k

Ut,jΣ
−1
tikYtk.

The posterior mean µ(i−1)P+j of Ai,j is given by the solution of Λµ = b and the

posterior covariance is Cov(Ai,j , Ak,l) = Λ−1
(i−1)P+j,(k−1)P+l.

We applied the above Gibbs sampler to a large data set from a two dimen-
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Figure 5.15: Output of Gibbs sampler for 20 drift parameters of two dimensional
model from Eq. (5.1). The observation interval is δ = 10−3 and T = 10, 000. The
true values are shown in red.

sional model with random values for the diffusion parameters. We chose a fine

observation interval of δ = 10−3 and long observation period T = 10, 000. Figure

5.15 displays the trace plots for all 20 parameters (note that the indices are from

0 rather than 1 as in the text). Using this large data set the algorithm is able to

reproduce the true values shown in red.

We performed a further simulation study to test the dependence of the pos-

terior estimates upon the data set used. We inferred all of the drift parameters for

a simple two dimensional cubic model using data sets of length T = {10, 100, 1000}
and with observation interval ∆ = {0.1, 0.01, 0.001}. Note that the diffusion param-

eters are fixed in this model to the values in Table 5.2 and there is no missing data.

The results are shown in Table 5.3. For each parameter we estimated the posterior

mean and the posterior 10-90 percentile. The error of the estimates was quantified

using the Posterior Expected Loss (PEL) of Eq. (5.6). Table 5.3 indicates that all

of the estimated posterior distributions of the parameters are of similar range and
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T = 10 T = 100 T = 1000
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

A00 = 0
2.18

(−2.5,6.89)

−0.44

(−4.79,3.74)

−1.95

(−6.07,2.2)

−0.13

(−1.07,0.77)

0.65

(−0.29,1.6)

0.64

(−0.28,1.58)

0.02

(−0.13,0.17)

0.01

(−0.13,0.17)

0.02

(−0.13,0.18)

A01 = 5
−2.04

(−7.23,3.04)

4.86

(0.84,9.04)

6.21

(2.31,10.12)

2.54

(1.78,3.28)

4.73

(3.93,5.51)

5.22

(4.43,6.03)

2.84

(2.7,2.97)

4.59

(4.45,4.73)

4.86

(4.73,5)

A02 = 0
2.63

(−0.16,5.39)

2.15

(−0.17,4.49)

1.63

(−0.66,4)

0.45

(−0.52,1.41)

0.58

(−0.42,1.6)

0.13

(−0.89,1.13)

−0.08

(−0.22,0.05)

−0.14

(−0.27,0)

−0.19

(−0.32,−0.04)

A03 = 0
1.54

(−2.75,5.84)

−0.17

(−3.12,2.76)

0.26

(−2.62,3.2)

0.27

(−0.38,0.93)

0.01

(−0.72,0.73)

−0.17

(−0.88,0.54)

−0.01

(−0.08,0.06)

0

(−0.07,0.06)

0

(−0.07,0.06)

A04 = 0
−3.51

(−8.17,1.13)

0.61

(−3,4.3)

1.3

(−2.32,5.07)

−0.96

(−2.09,0.2)

−0.58

(−1.8,0.68)

−0.07

(−1.3,1.16)

−0.01

(−0.04,0.01)

−0.02

(−0.04,0.01)

−0.02

(−0.05,0.01)

A05 = 0
0.32

(−2.19,2.81)

0

(−2.31,2.31)

0.19

(−2.11,2.49)

0.66

(−0.11,1.43)

0.02

(−0.79,0.84)

−0.27

(−1.05,0.55)

0

(−0.06,0.07)

0.01

(−0.06,0.07)

0

(−0.07,0.07)

A06 = −3
−0.88

(−2.96,1.24)

−2.58

(−4.3,−0.87)

−3.17

(−4.83,−1.49)

−1.8

(−2,−1.6)

−2.92

(−3.12,−2.71)

−3.05

(−3.25,−2.85)

−1.71

(−1.77,−1.65)

−2.75

(−2.81,−2.69)

−2.91

(−2.97,−2.85)

A07 = 0
0.58

(−1.87,3.06)

−1.32

(−3.32,0.7)

−1.48

(−3.54,0.52)

0.05

(−0.49,0.58)

−0.07

(−0.66,0.51)

−0.22

(−0.79,0.37)

−0.02

(−0.07,0.04)

−0.01

(−0.06,0.05)

0

(−0.05,0.06)

A08 = 0
−0.83

(−3,1.31)

−0.28

(−2.31,1.76)

−0.18

(−2.21,1.86)

−0.48

(−1.03,0.07)

−0.37

(−0.96,0.23)

−0.16

(−0.75,0.42)

−0.02

(−0.08,0.03)

−0.01

(−0.06,0.04)

−0.01

(−0.07,0.04)

A09 = 0
0.71

(−0.11,1.53)

−0.4

(−1.16,0.38)

−0.49

(−1.26,0.27)

0.33

(−0.02,0.67)

0.04

(−0.3,0.39)

0.09

(−0.25,0.44)

0.08

(0.02,0.13)

0.1

(0.04,0.16)

0.12

(0.05,0.17)

A10 = 0
−0.38

(−5.19,4.24)

−2.21

(−6.44,2.03)

−1.17

(−5.21,2.9)

−0.31

(−1.22,0.61)

−0.18

(−1.1,0.75)

0.06

(−0.89,0.99)

0.02

(−0.13,0.17)

0.05

(−0.1,0.2)

0.05

(−0.1,0.2)

A11 = 0
−2.93

(−8.11,2.15)

2.42

(−1.64,6.48)

1.67

(−2.29,5.64)

0.88

(0.1,1.64)

0.39

(−0.4,1.19)

0.33

(−0.48,1.12)

−0.06

(−0.2,0.08)

0.11

(−0.03,0.25)

0.11

(−0.04,0.24)

A12 = 5
5.96

(3.22,8.68)

4.2

(1.89,6.63)

4.72

(2.33,7.09)

1.68

(0.72,2.65)

4.56

(3.52,5.57)

5.09

(4.08,6.12)

2.88

(2.74,3.02)

4.7

(4.56,4.84)

4.98

(4.84,5.11)

A13 = 0
2.68

(−1.67,6.93)

−1.41

(−4.36,1.57)

−1.88

(−4.74,1.02)

−1.05

(−1.72,−0.38)

−0.61

(−1.33,0.1)

−0.74

(−1.46,−0.02)

−0.01

(−0.08,0.05)

−0.03

(−0.1,0.03)

−0.03

(−0.09,0.04)

A14 = 0
−1.13

(−5.84,3.6)

4.67

(1.01,8.45)

4.23

(0.47,7.92)

1.39

(0.24,2.55)

0.78

(−0.44,2.03)

0.91

(−0.33,2.14)

0.02

(−0.01,0.05)

0.03

(0,0.05)

0.03

(0,0.05)

A15 = 0
0.42

(−2.07,2.94)

−0.6

(−2.88,1.77)

−0.84

(−3.13,1.45)

−0.22

(−1.01,0.56)

−0.11

(−0.9,0.7)

−0.24

(−1.06,0.55)

0

(−0.07,0.06)

−0.01

(−0.08,0.05)

−0.02

(−0.09,0.04)

A16 = 0
−0.82

(−2.94,1.29)

0.12

(−1.61,1.83)

0.39

(−1.26,2)

−0.08

(−0.28,0.12)

−0.04

(−0.24,0.17)

−0.02

(−0.22,0.19)

−0.03

(−0.09,0.03)

−0.08

(−0.14,−0.02)

−0.09

(−0.15,−0.03)

A17 = 0
−0.46

(−2.95,2.04)

−3.21

(−5.28,−1.22)

−2.97

(−4.99,−0.93)

−0.71

(−1.25,−0.17)

−0.66

(−1.24,−0.08)

−0.78

(−1.35,−0.19)

0.01

(−0.05,0.06)

−0.01

(−0.06,0.04)

0

(−0.05,0.05)

A18 = 0
0.66

(−1.5,2.86)

1.33

(−0.71,3.35)

1.63

(−0.41,3.6)

0.65

(0.11,1.22)

0.45

(−0.13,1.04)

0.58

(−0.01,1.18)

0.06

(0.01,0.12)

0.02

(−0.03,0.08)

0.03

(−0.02,0.09)

A19 = −3
−2.61

(−3.44,−1.78)

−3.23

(−4.02,−2.45)

−3.47

(−4.24,−2.69)

−1.46

(−1.8,−1.12)

−2.73

(−3.07,−2.38)

−3.04

(−3.39,−2.7)

−1.75

(−1.81,−1.69)

−2.81

(−2.87,−2.75)

−2.98

(−3.04,−2.92)

8.48 5.25 4.96 1.19 0.37 0.36 0.43 0.02 0.01

Table 5.3: Drift parameter estimates for a two dimensional cubic model with fixed
diffusion function parameters given by the values in Table 5.2 and no missing data.
On the left is the true value of the parameter. The length of the data set used for the
inference is labelled as T and the observation interval is ∆ = {0.1, 0.01, 0.001}. The
posteriors were estimated using 3× 106 samples from three MCMC chains. In each
cell the parameter is estimated from the posterior mean and in brackets is shown
the 10-90 percentiles of the posterior. The bottom of the table shows the Posterior
Expected Loss of Eq. (5.6).

the PEL should not be biased towards any one parameter but serve as a measure

for the whole parameter vector.

The table demonstrates the reduction in PEL as the sample length T and

sampling frequency 1/∆ increases. There are large errors for these estimates when

using either a short or sparsely sampled data set. Although the PEL for the case

where T = 1000 and ∆ = 0.1 do not seem large, the estimates are still far from

the true value. The estimate converge for data sets with T = 1000 and ∆ =

{0.01, 0.001}. Note that a few days of computation time was needed to draw 106
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T = 10 T = 100 T = 1000
0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

A00 = 0
2.18

(−2.5,6.89)

−2.46

(−8.46,3.52)

−2.59

(−8.35,3.24)

−0.13

(−1.07,0.77)

−0.68

(−1.84,0.5)

−0.69

(−1.85,0.49)

0.02

(−0.13,0.17)

−0.08

(−0.27,0.09)

−0.08

(−0.26,0.09)

A01 = 5
−2.04

(−7.23,3.04)

4.99

(−0.7,10.61)

4.84

(−0.49,10.22)

2.54

(1.78,3.28)

4.89

(3.83,5.97)

4.76

(3.74,5.79)

2.84

(2.7,2.97)

5.04

(4.87,5.21)

4.88

(4.71,5.03)

A02 = 0
2.63

(−0.16,5.39)

0.61

(−2.94,4.05)

0.39

(−2.95,3.75)

0.45

(−0.52,1.41)

−0.06

(−1.42,1.3)

−0.2

(−1.49,1.13)

−0.08

(−0.22,0.05)

−0.26

(−0.44,−0.08)

−0.28

(−0.45,−0.09)

A03 = 0
1.54

(−2.75,5.84)

3.25

(−1.23,8.07)

3.26

(−1.07,7.77)

0.27

(−0.38,0.93)

0.67

(−0.34,1.67)

0.59

(−0.41,1.59)

−0.01

(−0.08,0.06)

0.02

(−0.06,0.1)

0.02

(−0.06,0.09)

A04 = 0
−3.51

(−8.17,1.13)

−2.53

(−7.76,2.61)

−2.53

(−7.61,2.41)

−0.96

(−2.09,0.2)

−1.6

(−3.35,0.18)

−1.41

(−3.14,0.27)

−0.01

(−0.04,0.01)

−0.03

(−0.05,0)

−0.02

(−0.05,0)

A05 = 0
0.32

(−2.19,2.81)

1.85

(−1.6,5.2)

1.85

(−1.43,5.11)

0.66

(−0.11,1.43)

1.18

(0.03,2.32)

1.12

(−0.02,2.25)

0

(−0.06,0.07)

0.05

(−0.04,0.13)

0.05

(−0.04,0.13)

A06 = −3
−0.88

(−2.96,1.24)

−4.06

(−6.63,−1.76)

−4.02

(−6.5,−1.79)

−1.8

(−2,−1.6)

−3.19

(−3.44,−2.94)

−3.06

(−3.3,−2.83)

−1.71

(−1.77,−1.65)

−3.01

(−3.08,−2.94)

−2.92

(−2.98,−2.85)

A07 = 0
0.58

(−1.87,3.06)

0.44

(−2.27,3.17)

0.53

(−2.05,3.23)

0.05

(−0.49,0.58)

0.43

(−0.37,1.27)

0.39

(−0.42,1.19)

−0.02

(−0.07,0.04)

0.03

(−0.04,0.09)

0.03

(−0.03,0.09)

A08 = 0
−0.83

(−3,1.31)

−2.22

(−4.98,0.62)

−2.12

(−4.84,0.65)

−0.48

(−1.03,0.07)

−1

(−1.86,−0.14)

−0.92

(−1.76,−0.09)

−0.02

(−0.08,0.03)

−0.02

(−0.09,0.05)

−0.02

(−0.09,0.05)

A09 = 0
0.71

(−0.11,1.53)

1.29

(0.06,2.61)

1.33

(0.1,2.6)

0.33

(−0.02,0.67)

0.7

(0.17,1.2)

0.71

(0.19,1.2)

0.08

(0.02,0.13)

0.14

(0.05,0.23)

0.15

(0.06,0.23)

A10 = 0
−0.38

(−5.19,4.24)

−4.63

(−10.46,0.84)

−4.46

(−10.07,0.86)

−0.31

(−1.22,0.61)

0.66

(−0.55,1.87)

0.6

(−0.51,1.75)

0.02

(−0.13,0.17)

−0.02

(−0.2,0.16)

−0.01

(−0.2,0.16)

A11 = 0
−2.93

(−8.11,2.15)

2.18

(−3.8,8.3)

2.24

(−3.53,8.27)

0.88

(0.1,1.64)

0.1

(−0.89,1.09)

0.15

(−0.82,1.14)

−0.06

(−0.2,0.08)

0.08

(−0.09,0.26)

0.11

(−0.06,0.29)

A12 = 5
5.96

(3.22,8.68)

8.28

(4.62,11.9)

7.82

(4.39,11.36)

1.68

(0.72,2.65)

5.8

(4.52,7.07)

5.57

(4.36,6.81)

2.88

(2.74,3.02)

5.05

(4.88,5.22)

4.89

(4.72,5.05)

A13 = 0
2.68

(−1.67,6.93)

4.03

(−0.84,9.1)

4.08

(−0.63,8.96)

−1.05

(−1.72,−0.38)

−0.83

(−1.76,0.11)

−0.81

(−1.72,0.1)

−0.01

(−0.08,0.05)

−0.01

(−0.09,0.08)

−0.01

(−0.09,0.08)

A14 = 0
−1.13

(−5.84,3.6)

0.2

(−5.79,6.51)

0.02

(−5.85,6.12)

1.39

(0.24,2.55)

0.12

(−1.44,1.66)

0.07

(−1.43,1.61)

0.02

(−0.01,0.05)

0.03

(0,0.06)

0.03

(0,0.06)

A15 = 0
0.42

(−2.07,2.94)

1.49

(−1.84,5)

1.59

(−1.64,4.85)

−0.22

(−1.01,0.56)

0.15

(−0.89,1.18)

0.2

(−0.8,1.19)

0

(−0.07,0.06)

0.01

(−0.07,0.08)

0

(−0.07,0.08)

A16 = 0
−0.82

(−2.94,1.29)

−3.07

(−5.88,−0.39)

−3.14

(−5.86,−0.5)

−0.08

(−0.28,0.12)

−0.15

(−0.45,0.15)

−0.15

(−0.45,0.15)

−0.03

(−0.09,0.03)

−0.07

(−0.15,0.02)

−0.08

(−0.17,0)

A17 = 0
−0.46

(−2.95,2.04)

−1.37

(−4.65,1.87)

−1.17

(−4.45,1.91)

−0.71

(−1.25,−0.17)

−0.59

(−1.36,0.19)

−0.57

(−1.31,0.17)

0.01

(−0.05,0.06)

0.05

(−0.02,0.12)

0.05

(−0.03,0.12)

A18 = 0
0.66

(−1.5,2.86)

0.3

(−2.65,3.15)

−0.01

(−2.73,2.67)

0.65

(0.11,1.22)

0.24

(−0.51,0.99)

0.18

(−0.54,0.92)

0.06

(0.01,0.12)

0.02

(−0.04,0.08)

0.02

(−0.04,0.08)

A19 = −3
−2.61

(−3.44,−1.78)

−4.44

(−5.58,−3.38)

−4.1

(−5.16,−3.13)

−1.46

(−1.8,−1.12)

−3.09

(−3.53,−2.66)

−2.94

(−3.36,−2.55)

−1.75

(−1.81,−1.69)

−3.06

(−3.14,−2.99)

−2.97

(−3.04,−2.9)

8.48 11.06 10.32 1.19 0.76 0.68 0.43 0.01 0.01

Table 5.4: Drift parameter estimates for a two dimensional cubic model with dif-
fusion function parameters given by the values in Table 5.2. On the left is the
true value of the parameter. The data used is the same as that of Table 5.3 sam-
pled at the ∆ = 0.1 interval. In this case data is imputed to obtain the intervals
∆ = {0.01, 0.001}. The Modified Bridge sampler was used to impute data (see Table
5.1). The posteriors were estimated using 3×106 samples from three MCMC chains.
The bottom of the table shows the Posterior Expected Loss of Eq. (5.6).

samples for the case T = 1000 and ∆ = 0.001: this is a total of N = 106 data points

in the time series.

We also performed a test with both the Gibbs sampler and data imputation.

Table 5.4 is the same as Table 5.3 except now in all cases the data is observed at

interval ∆ = 0.1. The smaller intervals ∆ = {0.01, 0.001} are obtained by imputing

data with m = {10, 100} respectively. For this study we used the Modified Bridge

sampler (see Table 5.1) to impute missing data. The table shows that imputing

data approximately doubles the Posterior Expected Loss compared to Table 5.3. As

expected the confidence intervals are broader but with more imputed data the algo-
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rithm can recover the true values. This is a reassuring test of the data imputation

strategy.

The aim of this thesis is to infer models that can be used for prediction.

This can be problematic when dealing with non-linear models as some (generally

unknown) regions of the parameter space will give solutions that explode to infinity

with probability 1. This is a particular problem when, as exemplified by Table 5.3,

large amounts of data are needed to regain the true values.

To demonstrate this problem we performed an inference on a two dimensional

cubic model using N = 1, 000 observations at ∆ = 0.1. For each inferred parameter

value we then simulated the solution for T = 100. After this time we recorded

whether the solution retained finite values or had exploded. The marginal posterior

distributions of the cubic parameters are plotted in Figure 5.16. Each plot shows

two histograms: one in blue records the distribution of stable parameter values

and in mauve are those that exploded. The overlapping region is shown in purple.

Notice that, when looking at the marginal distributions, the stable and unstable

regions largely overlap; it is difficult to separate the two regions. In this case 40% of

values were unstable. Tests (not shown) indicate that this is an even bigger problem

in higher dimensions. Therefore, it is worth constructing some constraints on the

parameter space to enforce the solutions to remain finite. In Chapter 7 we propose

a solution to this problem.

5.5 GPU Computing

In this section we describe the implementation of the Algorithms 4.2 and 4.1 for

sampling parameters and missing data on a Graphics Processing Unit (GPU) using

NVIDIA’s CUDA parallel programming environment. Recently statisticians have

realised the potential for reduced computational time that can be achieved using

massively parallel computation using GPUs. The GPU, having developed from in-

creasing computational demand on graphics rendering within the gaming and video

editing industry, is specialised at Single Instruction Multiple Data (SIMD) tasks.

Compared with the conventional CPU it devotes more transistors to arithmetic in-

structions and less to data caching and flow control and so are suitable for algorithms

with high arithmetic intensity, few branching statements or calls to memory.

The GPU consists of a number of Streaming Multiprocesses (SM) each of

which has a limited amount of fast on-chip shared memory. An SM is capable of

performing an operation on 32 threads simultaneously whilst holding the remaining

threads in memory. For the purpose of compatibility with different GPU configura-
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Figure 5.16: Marginal distributions of cubic parameters inferred for a two dimen-
sional model of form Eq. 5.1. A data set with N = 1, 000 observations at interval
∆ = 0.1 was used. The diffusion parameters were fixed and there was no missing
data. The blue histogram shows the parameters that gave stable solutions to the
SDE, while the mauve is for those that gave unstable solutions. The purple shows
the overlap between the two regions of the marginal distributions. The true values
are given by the red lines.
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tions the CUDA programming model groups threads into thread blocks. Currently

up to 1024 threads can be contained in a single thread block. Each block is sent to a

SM and instructions on 32 threads executed simultaneously. The execution of these

groups of threads hides the latency associated with memory request operations.

Thread Blocks are organised into a Grid. Whilst threads within a block

have a limited amount of fast local on-chip memory, blocks within a grid only share

access to global device memory which is relatively slow with latency at the order of

100 clock cycles. Threads within a block can be synchronised and communication

between them is fast. Blocks communicate by transferring through the CPU which

is slow.

Statisticians considering implementing their algorithm on a GPU should take

these hardware factors into account when designing there parallel code. Another

consideration is the use of single or double floating point arithmetic. GPUs were

originally designed to use single precision but with the recent demand for general

purpose GPU computation more recent models have double precision capability.

However, single precision remains at least 3-4 times faster, although this may come

down in the future.

When converting a statistical algorithm for massively parallel computation

one should consider how to decompose the problem into identical operations that

can be performed with little dependence between them. Many data intensive appli-

cations in statistics are amenable to this sort of alteration. For example, Suchard

et al. [2010] demonstrate the gains of using a GPU on a Bayesian mixture problem.

Given a Gaussian mixture density they estimate the mean, variance and weight of

each component. The inference algorithm is simplified by using a data augmentation

strategy which structures the problem to be soluble by Gibbs sampling. Each data

point is assigned a configuration variable. At each stage of the algorithm the poste-

rior configuration probabilities are computed. For a lot of data and many mixture

components the number of configuration probabilities becomes very large. They im-

plement a fine grained parallelisation strategy where each data point-configuration

pair is assigned a dedicated thread. They describe their choice of execution plan to

optimise the use of shared memory and minimise latency associated with transfers

between global and shared memory. Given that the amount of shared memory is

only 16KB they describe the efficient method of memory transfers to global memory

by coalescing transactions into multiples of 16. After considering these hardware

details they report a 120 speed up over the standard algorithm implemented on a

single CPU.

A different approach to dividing an algorithm for parallelisation is described
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by Lee et al. [2010]. They describe various Monte Carlo methods that can be

parallelised instead of parallelising the data as in the previous example. They show

how easy it is to implement an importance sampling algorithm for the GPU by

computing the importance weight of a sample by a single thread. They note that the

standard Metropolis-Hastings algorithm does not gain much by parallelisation as it

is an inherently serial algorithm although population MCMC and particle samplers

work well. They split a population MCMC algorithm so that each thread samples a

different distribution with reversible swaps between chains. They have thousands of

chains simulating from tempered distributions with only a single chain sampling the

target density. Applied to a mixture model they show the improved mixing of the

chain between widely separated modes. They also demonstrate a Sequential Monte

Carlo algorithm where, like the importance sampling example, each thread updates

the weights for each particle. The authors note that there was little reduction in

accuracy by using only single precision. For large numbers of Monte Carlo samples

they report a speed increase of approximately 280 over the CPU implementation.

The inference procedure in this thesis transfers naturally to a GPU imple-

mentation. The Markov nature of SDE data implies that the data set can be divided

into independent blocks. In our implementation each thread is responsible for a sin-

gle observation interval. The imputed data within that interval is sampled using

the independence sampler proposal by a single thread. Each thread has an ID and

uses this to reference its section of data.

The algorithm is split into two steps. Firstly the update of missing data and

secondly the sampling of parameters. For perfect observation of the process, each

thread in the first step can run without communication with threads responsible

for neighbouring data intervals. If there is observation error then the data at the

observation time needs to be passed between threads causing a potential bottleneck

in this step of the algorithm. We only consider the case of perfect observation.

The sampling of parameters is a global operation as it involves all of the data

in the likelihood function. However, again due to the Markov property, each thread

can compute the likelihood for a single data block. When this is done the threads

need to synchronise before all the values can be added to form a single likelihood

value. This is an example of a parallel reduction algorithm and is computed using a

tree structure. Each evenly numbered thread receives a value from its neighbouring

thread and adds it to its own. Then every four threads sum their values and so on

until there is just a single likelihood value. This is then added to the prior which

can be computed by a single thread. The pseudo code for the update of missing

data and parameters using the innovation scheme is shown below.
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Algorithm 5.1 Parallel SDE inference with perfect observations. For each step Y
has m + 1 components and is stored in local memory, unique to each thread. For
the second step σ∗ is stored in shared memory so is accessible to all threads.

τ=blockDim.x blockIdx.x + threadIdx.x
Y0 = Xτm, Ym = Xτm+m

α = 0
for i = 0 to m− 2 do
Yi+1 ∼ q(Yi+1|Yi, Xτm+m, σ) where q(·|·) is one of the bridge
distributions discussed in Table 5.1, Section 5.2
α = α+ L(Y[0:m]|σ)− L(Xτm:τm+m|σ)

end for
where L(Y[0:m]|σ) is the log likelihood function.
Y[0:m] is accepted with probability exp(α).
if τ = 0 then
σ∗ = σ + ε, where ε ∼ N (0, η) and η is a tuning parameter.

end if
τ=blockDim.x blockIdx.x + threadIdx.x
Y0 = Xτm

B0 = 0, Y0 = Xτm

for i = 0 to m− 2 do
Bi+1 = f−1(Yi+1, σ) where f(·) is one of the transformations for the innovation
scheme discussed in Section 5.3.
Yi+1 = f(Wi+1, σ

∗)
end for
ατ = L(Y0:m|σ∗)−L(Xτm:τm+m|σ) + |J(f(X,σ))| − |J(f(Y, σ))| where J(·) is the
Jacobian for f().
SYNCTHREADS
for i = 1 to BlockDim.x− 1 do

if (τ = 0) mod 2i then
ατ = ατ + ατ+i

end if
SYNCTHREADS

end for
τ = 0
α0 = α0 + π(σ∗) − π(σ), the prior distributions. Set σ = σ∗ and X = Y with
probability exp(α).
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Figure 5.17: Posterior distributions for parameters from the O-U process Eq. (4.9)
output from the GPU implementation of Algorithm 5.1 (solid lines) compared with
the exact posterior distributions (histograms). Parameters were estimated using a
data set with N = 100 observations and interobservation time ∆ = 0.1. A single
long run of 105 MCMC samples were used to compute the posteriors.

At present the algorithm only applies to univariate processes but could easily

be generalised. Each thread of the algorithm proposes new data Y [0:m] for a sequence

of missing data Xτm+[0:m] indexed by a parameter τ . This is calculated as τ =

blockDim.xblockIdx.x+ threadIdx.x, where blockIdx.x indexes the thread block of

the data, blockDim.x is the size of the thread block and threadIdx.x is the thread

identifier. The value τ = 0 is the master thread and performs global operations that

need to be computed only once.

The first part of the algorithm, for imputing missing data, divides into in-

dependent threads so there is almost a linear increase in computational efficiency

with number of threads for any given value of m. However, this is limited by the

number of threads per block. The second stage, updating parameters, is slower as

each thread requires access to some shared memory to read the updated parameters

and there is a reduction step to calculate the global likelihood value.

Initially we tested our implementation of Algorithm 5.1 on a GPU by apply-

ing it to the one dimensional OU-process model of Eq. (4.9). We used a data set

with N = 100 observations and interobservation time ∆ = 0.1. We used the Mod-

ified Bridge proposal of Table 5.1 to impute the missing data. We compared the

parameter estimates with those of the exact posterior distributions. The results,

shown in Figure 5.17, demonstrate that the estimated posteriors converge to the

true distributions for increasing m.

Figure 5.18 compares the real computational time of the GPU with the CPU

implementations. Each plot shows how the running time increases with the amount

of imputed data m. Notice that for small amounts of data, N < 65, the CPU

implementation is faster. This is because the small number of threads does not
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compensate for the increased overheads and reduced clock speed of the GPU im-

plementation. The potential of the parallel algorithm is demonstrated for values

N > 65. Here, although both algorithms are linear in m, the GPU implementation

is much faster. This is particularly true for large m with speed increases of factor

5 or more. On this particular GPU (in a standard laptop) the speed increase are

not realised for N > 257. This is because, as mentioned previously, the algorithm

will have to use multiple thread blocks so the threads would not have access to the

same shared memory. As scientific computing expands its use of GPUs the number

of threads per block should rise and the amount of shared memory increase.

5.6 Summary and Conclusions

In this chapter we have focussed on practical issues related to sampling the pa-

rameters from a model of the form Eq. (5.1). We focussed upon developing one

specific method, namely the Innovation Scheme of Dargatz [2010] and Golightly

and Wilkinson [2008]. The theoretical motivation for this algorithm was discussed

in Chapter 4. In particular it is one approach to overcoming the degeneracy is-

sue of SDE inference algorithms as the amount of missing data increases. However,

many practical issues remain when estimating posterior distributions for parameters

in such a large model as Eq. (5.1). Basic Markov Chain Monte Carlo algorithms

are inefficient at exploring the mass of the posterior distributions due to the high

dimensional space of missing data which has a complicated correlation structure.

The standard method of imputing this missing data would be to use the Modified

Bridge of Durham and Gallant [2002]. We found this insufficient when working with

multivariate problems. Therefore, we developed the Linear Bridge sampler, which

starts from the linearised equation and calculates a bridge distribution using recent

work of Barczy and Kern [2010]. We demonstrated that this was significantly more

efficient than the standard Modified Bridge.

In Section 5.3 we demonstrated that the Innovation scheme is significantly

more efficient at inferring diffusion parameters than a standard random walk. How-

ever, we also showed that this algorithm deteriorates rapidly with increasing dimen-

sion and so this remains a problem if one wanted to infer parameters for a climate

model with greater than 5 dimensions. In Section 5.3.1 we remarked upon an is-

sue for likelihood based inference for models where the Brownian motion has less

components than the observed variables. In this case it is not always possible to

calculate the likelihood function. This arises as a problem for our applications in

Chapter 8.
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Figure 5.18: Real computation times to draw 1000 MCMC samples from the poste-
rior distribution of the OU process for various size data sets. The time in seconds is
plotted versus the amount of missing data for an implementation of the algorithm
on a CPU and GPU.
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The number of parameters in the system increases rapidly with increasing

dimension. We implemented a Gibbs sampling algorithm in Section 5.4.1, which

removes the issue of having to tune parameters in a high dimensional Random Walk

algorithm. We showed that the MCMC algorithm can regain the true parameter

values as the data interval and sampling frequency increase. There remains an

issue relating to the stability of the resulting SDE model. Some parameter vectors,

sampled from the posterior, correspond to SDEs with unstable solutions. This is

obviously a major issue for prediction. In Chapter 7 we suggest a solution to this

stability problem, which leads to some novel MCMC sampling problems. Further

research could be done in this direction.

Significant computing power is needed for the MCMC algorithms discussed in

this chapter. One alternate approach is to use the structure of the data to implement

the algorithm on a Graphics Processing Unit (GPU). In Section 5.5 we implemented

one version of the basic inference algorithm and observed significant reductions in

computation time. It would be useful to profit from new GPU technology that

are now installed in compute clusters, the challenge being that code has to be

rewritten and only some algorithms parallelise as effectively as the basic algorithm

implemented in Section 5.5

In Chapter 3 we discussed the dependence of reduced climate models on time

scale separation between resolved and unresolved variables. One possible method of

removing the need for perfect time scale separation is to use models with red noise.

This amounts to introducing latent, unobserved variables into the system. In the

next chapter we derive an inference method for this type of model.
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Chapter 6

Models with Latent Variables

6.1 Models with Latent Variables

In this chapter we consider models where one of the variables is unobserved. A

general framework for this problem was given in the thesis of Dargatz [2010] and the

papers Golightly and Wilkinson [2008]. Initial experiments on parameter inference

for missing components indicate that the data requirements and computation time

to get meaningful estimates are enormous. However, we find it feasible when the

unobserved process is linear as then this missing data can be sampled directly from

the posterior. We describe an inference algorithm for a model of the form

dXt = f(Xt) dt+ Y t dt

dY t = −γY t dt+ σ dBt , (6.1)

where f(x) is a general non-linear function and only X is observed. This is moti-

vated by the need to include memory effects in models with low time scale separation

as was discussed in Chapter 3. As well as this, the X component will be a smooth

process and will be driven by autocorrelated red noise, which is more realistic for

modelling real physical systems. We demonstrate that this model is useful in Chap-

ter 8, where we apply it to the reduced Lorenz model.

We assume that the matrices γ and σ are diagonal, so there are no interac-

tions between unobserved components and only one unobserved component forces

each observed. The usual Euler approximation is insufficient as the resulting co-

variance matrix is singular (due to the zeroes on the leading diagonal). This type

of process is known as a hypoelliptic diffusion and was studied by Pokern et al.

[2009], Pavliotis and Stuart [2008]. It consists of both smooth, with zero quadratic

variation, and rough components. To write down a likelihood for this process we
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use an approximation of higher order than the usual Euler method. Pokern et al.

[2009] suggest expanding such that a noise term enters directly into the observed

component to give a model with non-singular covariance matrix. This leads to an

order O(∆2) in the observed variable and O(∆3/2) in the unobserved, where we use

a fixed interobservation time ∆. However, the inconsistency could lead to a bias in

the parameter inference so we recommend expanding to O(∆2) in both components.

This is then the Milstein expansion given in Eq. (2.38). Recalling the notation of

earlier chapters for Xij , where i indexes the observation time and j the component,

we have the following statistical model for Eq. (6.1)(
Xi+1,j

Yi+1,j

)
=

(
Xij

Yij

)
+ ∆

(
f(Xi) + Yij

−γjYij

)

+ σj

( ∫ (i+1)∆
i∆ (Bj(s)−Bj(i∆))ds

−γj
∫ (i+1)∆
i∆ (Bj(s)−Bj(i∆))ds+

∫ (i+1)∆
i∆ dBj(s)

)
. (6.2)

Using the rules from Chapter 2, we can calculate the covariance matrix with

E

(∫ (i+1)∆

i∆
(Bj(s)−Bj(i∆))ds

)2


= E

[(∫ ∆

0
ds

∫ ∆

0
dBj(s)−

∫ ∆

0
sdBj(s)

)2
]

= ∆2E

[(∫ ∆

0
dBj(s)

)2
]
− 2∆E

[∫ ∆

0
dBj(s)

∫ ∆

0
sdBj(s)

]
+ E

[(∫ ∆

0
sdBj(s)

)2
]

= ∆2

∫ ∆

0
ds− 2∆

∫ ∆

0
sds+

∫ ∆

0
s2ds

=
∆3

3
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and similarly

E

[∫ (i+1)∆

i∆
(Bj(s)−Bj(i∆))ds

∫ (i+1)∆

i∆
dBj(s)

]

= E
[(∫ ∆

0
ds

∫ ∆

0
dBj(s)−

∫ ∆

0
sdBj(s)

)∫ ∆

0
dBj(s)

]
= ∆E

[(∫ ∆

0
dBj(s)

)2
]
− E

[∫ ∆

0
sdBj(s)

∫ ∆

0
dBj(s)

]
= ∆

∫ ∆

0
ds−

∫ ∆

0
sds

=
∆2

2
.

Using these results we can write down the block diagonal covariance matrix, with

block

Σ = σ2

(
∆3/3 ∆2/2− γ∆3/3

∆2/2− γ∆3/3 ∆ + γ2∆3/3− γ∆2

)
and inverse

Σ−1 =
1

σ2

(
12/∆3 + 4γ2/∆− 12γ/∆2 −6/∆2 + 4γ/∆

−6/∆2 + 4γ/∆ 4/∆

)
.

The posterior is quadratic in Y and so can be sampled directly. Similar

formula to the following were calculated by Pokern [2007]. Consider sampling a

single component Y·,j of Y . To compute E(Yij), Var(Yij) and Cov(Yij , Yi+1,j) the

relevant part of the likelihood function is

L(Yij |X,Y ) ∝ −1

2
(Xi+1,j −Xij −∆Xij −∆f(Xi))

2(12/∆3 + 4γ2
j /∆− 12γj/∆

2)/σ2
j

− 1

2
(Yi+1,j − Yij + ∆γjYij)

2 4

σ2
j∆

+ (Xi+1,j −Xij −∆Xij −∆f(Xi))(Yi+1,j − Yij + ∆γjYij)(6/∆
2 − 4γj/∆)/σ2

j

− 1

2
(Yij − Yi−1,j + ∆γjYi−1,j)

2 4

σ2
j∆

+ (Xij −Xi−1,j −∆Yi−1,j −∆f(Xi−1))(Yi,j − Yi−1,j + ∆γjYi−1,j)

× (6/∆2 − 4γj/∆)/σ2
j .

We update blocks of missing data Yim,j : Y(i+1)m,j . For a block away from
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the boundaries of the data set the precision matrix Λj ∈ Rm+1×m+1 , j = 1 . . . D is

Λj =
1

σ2



8
∆ · · · 0

. . . 2
∆

... 2
∆

8
∆

2
∆

...

2
∆

. . .

0 · · · 8
∆


.

If the block is the first in the data set then replace Λj00 = 4/∆ + τj , where τj is the

prior precision of Y0j . If it is the last block then Λjmm = 4/∆. Inverting Λj gives

the covariance matrix

Cov(Yim,j : Y(i+1)m,j) = Λ−1
j .

To compute the mean first define the vector bk ∈ Rm+1 , k = 1 . . . D as

bkj =

(
6

∆2
− 2γ

∆

)
(Xim+j+1,k −Xim+j,k −∆f(Xim+j))

+

(
6

∆2
− 4γ

∆

)
(Xim+j,k −Xim+j−1,k −∆f(Xim+j−1)) ,

where j = 1 · · ·m− 1. For j = 0

bk0 =

(
6

∆2
− 2γ

∆

)
(Xim+1,k −Xim,k −∆f(Xim,k))

+

(
6

∆2
− 4γ

∆

)
(Xim,k −Xim−1,k −∆f(Xim−1,k))

+ (4γ − 6/∆)Yim−1,k + 4/∆(Yim−1,k −∆γYim−1,k)

and if j = m

bkm =

(
6

∆2
− 2γ

∆

)
(Xim+m+1,k −Xim+m,k −∆f(Xim+m,k))

+

(
6

∆2
− 4γ

∆

)
(Xim+m,k −Xim+m−1,k −∆f(Xim+m−1,k))

+ (4γ − 6/∆)Yim+m+1,k − 4/∆(∆γ − 1)Yim+m+1,k .

The first block of data where i = 0 and j = 0 then

bk0 =

(
6

∆2
− 2γ

∆

)
(X1k −X0k −∆f(X0)) .
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For the last block i = N − 2 and j = m

bkm =

(
6

∆2
− 4γ

∆

)
(X(N−2)m+m,k −X(N−2)m+m−1,k −∆f(X(N−2)m+m−1,k)) .

Then the mean of the block is

µk = E(Yim,k : Y(i+1)m,k) = Λ−1
k bk .

The m+ 1 block of missing data are then sampled from N (µk,Λ
−1
k ) , k = 1 . . . D as

an extra step in the Algorithms 4.1 and 4.2.

We also impute data between observations for the observed component X.

This is not as easy as when noise acts directly on X as now the imputed paths

need to be smooth. The acceptance rate of proposed bridges becomes very low. To

update Xj+1 conditioned on Xj and Xm we first consider the covariance

Cov(Xj+1,k, Xmk) = σ2
kE

[∫ (j+1)∆

j∆
(Bk(s)−Bk(j∆))ds

∫ m∆

j∆
(Bk(s)−Bk(j∆))ds

]

= σ2
kE

[∫ ∆

0
Bk(s)ds

∫ (m−j)∆

0
Bk(s)ds

]

= σ2
kE
[(

∆

∫ ∆

0
dBk(s)−

∫ ∆

0
sdBk(s)

)
×

(
(m− j)∆

∫ (m−j)∆

0
dBk(s)−

∫ (m−j)∆

0
sdBk(s)

)]
= σ2

k∆
3(
m− j

2
− 1

6
) .

Then the covariance matrix for Xj+1,k and Xmk conditioned on Xjk is

Mk = σ2
k∆

3

(
1/3 (m− j)/2− 1/6

(m− j)/2− 1/6 (m− j)3

)
k = 1 . . . D .

We make the approximation

Xj+1,k = Xjk + ∆f(Xj) + ∆Yjk + ξ1k

Xmk = Xjk + (m− j)∆f(Xj) + (m− j)∆Yjk + ξ2k ,

where ξ·,k ∼ N (0,Mk), then condition on the observed value of Xmk using the

multivariate Normal theory.

We test this algorithm by inferring parameters γ and σ for the following
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Figure 6.1: Data set from model Eq. (6.3) with N = 1000 points with observation
interval ∆ = 0.1.
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Figure 6.2: Estimated posterior distributions for parameters from the latent process
model Eq. (6.3) for various amounts of imputed data m.

model

dXt = (Xt −X3
t )dt+ Ytdt

dYt = −γYtdt+ σdBt (6.3)

given only observations of Xt. The data set we use is shown in Figure 6.1. The

true values are γ = 0.5 and σ = 1. We used Gamma priors for both parameters

γ, σ2 ∼ Γ(1, 1). We estimated posterior distributions using 20, 000 samples from the

algorithm after discarding 5000 as burn in. The results are shown in Figure 6.2 for

various amounts of imputed data m. The true values are within the posterior mass

and as m increases the posterior mean converges to the true values. The mixing of
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the algorithm becomes poor with more imputed data. It is likely that this algorithm

would be insufficient in higher dimensions and it may be more practical (though not

as rigorous) to use a simulation based approach to inference as discussed in Chapter

4.
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Chapter 7

Prediction for Models with

Cubic Drift and Linear Diffusion

In this chapter we move from inference to prediction for models of the form in

Eq. (5.1). The posterior estimates for parameters, obtained using the inference

methods discussed in the previous chapter, are input to the model, which can be

used as an approximating stochastic climate model as discussed in Chapter 3. The

model can be forward simulated using different random number seeds to obtain a

probabilistic prediction of the evolution of the system. The statistical properties of

the stochastic model can be compared to the full model to validate that it is a useful

approximation. This is done in Chapter 8 for the models introduced in Chapter 3.

In the current chapter we address some practical issues that arise when build-

ing predictive models that include parameter estimates. As discussed in Section

5.4.1, the inferred model may not be stable and thus solutions may explode to in-

finity in finite time. The posterior distribution of parameters may include regions

of stability but in general this is not known and there can be significant overlap

between stable and unstable regions of marginal distributions as demonstrated in

Figure 5.16. If a subset of predictions explode to infinity they need to be removed

before any estimates are calculated. This is equivalent to restricting the parame-

ter space by using a prior and is an advantage of the Bayesian approach. However,

practical experience indicates that for higher dimensional models the unstable region

of the parameter space becomes larger so this rejection method becomes inefficient

and unpractical. We propose an alternative method of including prior information

to restrict the parameter space. The idea is to ensure that the energy associated

with the cubic terms in the model is non-increasing. This places constraints on the

parameters entering the cubic terms. This approach was applied to a simple cubic
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model by Majda et al. [2009]. Here we develop this for general cubic models. The

condition of non increasing energy can be translated to a restriction on the cubic

parameters by ensuring a certain matrix is negative definite. We refer to this as the

stability matrix. It is likely that there are other methods that restrict the space less

severely but at least this approach is guaranteed to give stable solutions. In Section

7.1.1, through an example, we study how the parameter space is restricted by the

stability matrix in comparison to the rejection method mentioned above.

The derivation of the stability matrix in the general case is given in Section

7.1.2. The constraint has consequence for the inference method used such that the

Gibbs sampler of Section 5.4.1 can now only be applied directly to sample the non-

cubic parameters after conditioning on the remainder. There are several options to

sample the cubic parameters in the stability matrix which we introduce in Section

7.2. This leads to an interesting MCMC problem of sampling negative/positive

definite matrices, details of which we give in Section 7.2. We propose novel solutions

to this problem which use the Wishart and non-central Wishart distributions as

proposals for the transition density. In Section 7.2 we validate these algorithms and

assess their efficiency in comparison to component-wise sampling of the stability

matrix. Firstly we give an intuitive derivation of a stability matrix for a simple two

dimensional model.

7.1 Derivation of the Stability Matrix

7.1.1 Simple Models

Here we give an explicit derivation of the stability matrix for a one then two dimen-

sional model. The approach is motivated by the work of Majda et al. [2009] but

can be cast in terms of the theory of Lyapunov stability discussed in Section 2.6.

Recalling Theorem 1, we seek a proper, twice differentiable function V and numbers

K > 0, c > 0 and ε ≥ 0 such that for |x| > K we have LV ≤ cV + ε, where L is the

infinitesimal generator. We find that it is easiest to use the squared Euclidean norm

for the Lyapunov function V (x) = |x|2. Consider first the 1 dimensional example

dXt = (a1 + a2Xt + a3X
2
t + a4X

3
t )dt+ (σ1 + σ2Xt)dBt ,

with V (x) = x2. Stability requires

LV (x) = 2x(a1 + a2x+ a3x
2 + a4x

3) + (σ1 + σ2x)2 ≤ cx2 + ε . (7.1)
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Outside of a ball of radius K the quartic term will dominate. The above condition

will be satisfied for any ε if a4 < 0. In multiple dimensions the restrictions on the

parameter space become more complicated. Consider the two dimensional system

dXt = (a1X
3
t + a2XtY

2
t + a3X

2
t Yt)dt+ σ1dB

1
t

dYt = (a4Y
3
t + a5XtY

2
t )dt+ σ2dB

2
t .

Arguing as before the system will be stable if

x(a1x
3 + a2xy

2 + a3x
2y) + y(a4y

3 + a5xy
2) ≤ 0 . (7.2)

This can be written in matrix form

(
x2 xy y2

) a1 a3/2 0

a3/2 a2 a5/2

0 a5/2 a4


x

2

xy

y2

 ≤ 0 . (7.3)

This will hold if the matrix is negative definite. We can ensure that a matrix is

negative definite using the following property.

Theorem 2. A n× n matrix M is negative definite if and only if all k ≤ n leading

principal minors obey |M (k)|(−1)k > 0. The kth principal minor is the determinant

of the upper left k × k sub-matrix.

In the case of Eq. (7.3) this gives the conditions

a1(a2a4 −
a2

5

4
)− a2

3

4
a4 < 0, a1a2 −

a2
3

4
> 0, a1 < 0 .

We know that the parameters along the diagonal must be negative. This leads to

the following bounds on a3 and a5

−

√
4a1a2 −

a1a2
5

a4
< a3 <

√
4a1a2 −

a1a2
5

a4
.

−

√
4a2a4 −

a4a2
3

a1
< a5 <

√
4a2a4 −

a4a2
3

a1
.

Or we can write this as the stability boundary

a1

4
a2

5 +
a4

4
a2

3 = a1a2a4 .

Values of a3 and a5 inside this ellipse give an SDE with stable solutions. Outside
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the solutions may be stable but this can not be guaranteed.

7.1.2 General Case

We generalise the above to the model in Eq. (5.1) and look for a matrix M to

use as a stability criteria. The Lyapunov function constraint implies that the en-

ergy associated with the cubic terms should induce damping which means that the

associated energy should have negative time derivative. This energy equation is

1

2

dE

dt
=

D∑
i=1

Xi
dXi

dt
=

D∑
i=1

D∑
j=1

j∑
k=1

k∑
l=1

Ai,f(j,k,l)XiXjXkXl , (7.4)

where f(j, k, l) is given by Eq.(5.31). From this we determine a quadratic form

that is negative definite, similar to Majda et al. [2009]. Consider the vector v with

(D + 1)D/2 components of the form V(i−1)i/2+j = XiXj with 1 ≤ j ≤ i ≤ D. For

example, for a two dimensional system v = (X1X1, X1X2, X2X2). Now if we can

find a negative definite matrix M such that

vTMv =
1

2

dE

dt
(7.5)

then the time derivative will be negative.

One possible solution is as follows. Let matrix M ∈ R(D+1)D/2×(D+1)D/2

then assign its components as

M(i−1)i/2+j,(k−1)k/2+l =



Ak,f(i,j,l), if k > j and l ≤ j

0, if k > j and l > j

Ak,f(i,j,l) +Al,f(i,j,k), if k ≤ j and l < k

Ak,f(i,j,l), if k ≤ j and l = k

, (7.6)

where 1 ≤ j ≤ i ≤ D and 1 ≤ l ≤ k ≤ D. For example, for D = 2 we have

M =

A1,f(1,1,1) A2,f(1,1,1) 0

A1,f(2,1,1) A2,f(2,1,1) 0

A1,f(2,2,1) A2,f(2,2,1) +A1,f(2,2,2) A2,f(2,2,2)



=

A1,7 A2,7 0

A1,8 A2,8 0

A1,9 A2,9 +A1,10 A2,10

 (7.7)
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and for D = 3

M =



A1,11 A2,11 0 A3,11 0 0

A1,12 A2,12 0 A3,12 0 0

A1,13 A2,13 +A1,14 A2,14 A3,13 A3,14 0

A1,15 A2,15 0 A3,15 0 0

A1,16 A2,16 +A1,17 A2,17 A3,16 A3,17 0

A1,18 A2,18 +A1,19 A2,19 A3,18 +A1,20 A3,19 +A2,20 A3,20


.

Then when updating the drift parameters one ensures that M is negative definite.

It suffices to check that the symmetric part (M +MT )/2 is negative definite.

We now give a careful derivation of M . We write the quadratic form

component-wise and equate it to the energy equation Eq. (7.4):

D∑
i=1

i∑
j=1

D∑
k=1

k∑
l=1

M(i−1)i/2+j,(k−1)k/2+lXiXjXkXl =

D∑
i=1

D∑
j=1

j∑
k=1

k∑
l=1

Ai,f(j,k,l)XiXjXkXl

=

D∑
j=1

D∑
i=1

i∑
k=1

k∑
l=1

Aj,f(i,k,l)XiXjXkXl

=
D∑
k=1

D∑
i=1

i∑
j=1

j∑
l=1

Ak,f(i,j,l)XiXjXkXl ,

where in the second line we have just renamed i↔ j and in the third j ↔ k. This

implies that we can write

D∑
k=1

k∑
l=1

M(i−1)i/2+j,(k−1)k/2+lXkXl =
D∑
k=1

j∑
l=1

Ak,f(i,j,l)XkXl

=
D∑

k=j+1

j∑
l=1

Ak,f(i,j,l)XkXl +

j∑
k=1

k∑
l=1

Ak,f(i,j,l)XkXl

+

j∑
k=1

j∑
l=k+1

Ak,f(i,j,l)XkXl .

Elements of the first two terms can be easily assigned to components of M , however
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we must first rearrange the last term as

j∑
k=1

j∑
l=k+1

Ak,f(i,j,l)XkXl =

j∑
l=1

l−1∑
k=1

Ak,f(i,j,l)XkXl

=

j∑
k=1

k−1∑
l=1

Al,f(i,j,k)XkXl

The result in Eq. (7.6) now follows.

7.2 Sampling the Stability Matrix

7.2.1 Basic Algorithms

The parameters in all terms but the cubic can be sampled using the Gibbs sam-

pler. However, the cubic parameters must obey the negative definite requirement of

matrix M . They will therefore have a normal distribution subject to the negative

definite constraint. This results in a Truncated Normal distribution with a compli-

cated truncation boundary. In this section we compare five methods for sampling

the density of a n×n matrix M , with normally distributed components, subject to

the constraint that it is negative (or equivalently positive) definite. The algorithms

are summarised in Table 7.1. The first two are simple and described here. The other

three are in the following subsections.

The first algorithm simply proposes a sample from the conditional posterior,

just the normal distribution, constructs the matrix M as in Eq. (7.6) then accepts

or rejects according to whether the negative definite property holds. This can be

checked by simply computing a Cholesky decomposition of the negated matrix. We

will refer to this approach as the Rejection algorithm.

For the second algorithm we use a random walk with Gaussian innovations

to update the cubic parameters, where the proposal covariance will be chosen such

that it is proportional to the posterior covariance computed using a preliminary run.

Again M is constructed as in Eq. (7.6). At each step M needs to be checked for

negative definiteness. We refer to this as the Random Walk algorithm.

7.2.2 Component-wise Sampling

The third algorithm updates M component-wise and is based on the property of

the principal minors given in Theorem 2. As shown in Eq. (7.6) parameters can

enter M as a linear combination. For example, in a two dimensional model as in
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Algorithm Section Summary

Rejection 7.2.1 Sample from the Normal distribution and reject
if not negative definite

Random Walk 7.2.1 Use Normal innovations to propose a value and
reject if not negative definite

Component-wise 7.2.2 Calculate the upper and lower bounds and sam-
ple the Truncated Normal

Central Wishart 7.2.3 Propose values from the Wishart distribution
Non-Central Wishart 7.2.4 Multiply current matrix by a Matrix Normal

and use non-Central Wishart

Table 7.1: Summary of Monte Carlo algorithms, discussed in this section, to sample
negative/positive definite matrices with Normally distributed components.

Eq. (7.7), M3,2 = (A2,9 + A1,10)/2. Therefore after sampling M3,2 one parameter,

A2,9 say, is sampled from its conditional posterior of the Gibbs sampler and the

other calculated as A1,10 = 2A3,2 −A2,9.

We describe the component-wise sampling of a negative definite matrix, sep-

arating the discussion into describing the algorithms for diagonal and off-diagonal

parameters. Consider the parameters on the diagonal. As they only enter M once

each will have an associated upper bound. The Algorithm 7.1 calculates the upper

bound associated with the constraint from each principal minor. It does this to find

the least upper bound and thereby the truncation point of the normal distribution.

Algorithm 7.1 Sample parameters along diagonal of Stability Matrix

for i = 1 to n do
Ui=0
for j = i to n do

x = −

(∑j
k 6= i
k = 1

(−1)i+kMik|M
(j)
{−i},{−k}|

)
/|M (j)

{−i},{−i}|

end for
if x < Ui then
Ui = x

end if
Mii ∼ N−(µi, Ui, σ

2
i )

end for

Here, N−(µ, u, σ2) is the right truncated normal distribution with mean µ,

standard deviation σ and upper bound u.

The off-diagonal parameters enter twice so there will be a quadratic function

determining their upper and lower bounds for each leading principal minor. For

parameter in element M
(k)
ij there will be an associated quadratic a

(k)
ij M

2
ij +b

(k)
ij Mij +
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c
(k)
ij = 0 where the coefficients are functions of the other parameters. These coeffi-

cients are found to be

a
(k)
ij = −|M (k)

/{i,j},/{i,j}|

b
(k)
ij = (−1)i+j

j−1∑
k 6= i

k = 1

Mjk(−1)j−1+k|M (k)
/{i,j},/{j,k}|

+ (−1)i+j
N∑
k 6= i

k = j + 1

Mjk(−1)j+k|M (k)
/{i,j},/{j,k}|

+ (−1)i+j
i−1∑
k 6= j

k = 1

Mik(−1)i−1+k|M (k)
/{i,j},/{i,k}|

+ (−1)i+j
N∑
k 6= j

k = i + 1

Mik(−1)i+k|M (k)
/{i,j},/{i,k}|

c
(k)
ij =

N∑
k 6= j

k = 1

Mik(−1)i+k

 k−1∑
l 6= i

l = 1

Mjl(−1)j−1+l|M (k)
/{i,j},/{l,k}|

+
N∑
l 6= i

l = k + 1

Mjl(−1)j+l|M (k)
/{i,j},/{l,k}|

 , (7.8)

where |M (k)
/{i,j},/{l,k}| represents the kth principal minor with rows i and j and

columns l and k removed. For each component Mij this quadratic can be solved

to give upper and lower bounds on the parameter. The matrix M can be cycled

through updating each parameter in turn. Algorithm 7.2 describes the sampling

of off-diagonal elements using the coefficients in Eq. (7.8). Here, the notation,

N+
− (µ, u−, u+, σ2) refers to the doubly truncated normal distribution with mean µ,

left truncation u−, right truncation u+ and standard deviation σ.

To simulate from truncated normal distributions one has the option of just

proposing from the full distribution and then rejecting the sample if it falls outside

the permitted region. However, this can be extremely inefficient if the truncated

region is in the tail of the distribution. Most proposals will then be rejected. Al-

ternatively one can consider using the inverse Cumulative Density Function (CDF)

method. One simply calculates the corresponding CDF of the lower and upper
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Algorithm 7.2 Sample parameters off diagonal

for i = 1 to n do
for j = i+ 1 to n do
u+ =∞
u− = −∞
for k = j to n do

Calculate a
(k)
ij , b

(k)
ij and c

(k)
ij and solve a

(k)
ij x

2 + b
(k)
ij x+ c

(k)
ij = 0.

Set mn = min(x1, x2) and mx = max(x1, x2)
end for
if mx < u+ then
u+ = mx

end if
if mn > u− then
u− = mn

end if
Mij ∼ N+

− (µij , u
−, u+, σ2

ij)
end for

end for

boundaries and then draws a uniform random variable between these numbers. In-

verting the CDF gives a random variable from the Normal distribution restricted

to this region. This also becomes computationally inefficient in tail regions. The

problem is due to the large number of terms needed in the numerical approximation

of the inverse CDF of the Normal distribution. In these low probability regions the

numerical error can be large compared to the estimated value.

For our problem we use the rejection sampler methods proposed by Robert

[1995].

Definition 2. Rejection sampling from a distribution h(x) is based on a proposal

distribution g(x) such that h(x) ≤ Cg(x) holds for some constant C and all of the

support of h(x).

For a one sided truncated Normal the exponential distribution is a good

proposal. First it is translated to coincide with the truncation point then the rate

parameter is optimised in order to closely match the tail of the Normal distribution.

The proposal is

g(z;α, µ−) = α exp(−α(z − µ−))Iz≥µ− . (7.9)

The optimal value of α is calculated by maximising the expected acceptance prob-

ability and is shown to be
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Figure 7.1: Left truncated normal distribution with µ− = 2 compared with scaled
optimal exponential proposal of Eq. (7.9) used for rejection sampling.

α∗(µ−) =
µ− +

√
(µ−)2 + 4

2

More details are given in Robert [1995].

Figure 7.1 shows a standard Normal distribution with left truncation µ− = 2

with the truncated distribution and the optimal exponential approximation. We did

a numerical study to compare the standard Normal and Exponential proposals. The

efficiency of proposing x from the standard normal then accepting if x > µ− falls to

approximately 0.023 while for the optimised exponential proposal is approximately

0.5.

For the doubly truncated Normal one uses either an exponential or uniform

distribution, as a proposal, depending upon the size of the truncated region. If the

following holds

u+ > u− +
2
√
e

u− +
√

(u−)2 + 4
exp(

(u−)2 − u−
√

(u−)2 + 4

4
)

then it can be shown that the exponential is more efficient, otherwise the uniform is

better [Robert, 1995]. Figure 7.2 shows both the uniform and exponential approxi-

mations for both cases.

We use Algorithms 7.1 and 7.2, along with the methods of sampling truncated

Normal variables, to sample the stability matrix M . We call this the Component-

wise Algorithm. To compare the efficiency of this algorithm to the others we use

two model problems, details of which are given in Table 7.2.

Figure 7.3 shows the autocorrelation functions estimated from the output of
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Figure 7.2: Doubly truncated normal distribution. The top figure has u− = 2 and
u+ = 3 and is better approximated with the exponential distribution. The bottom
figure has u− = 2 and u+ = 2.5 and the uniform is more efficient.

the Component-wise algorithm to sample W from Model Problem 1 with d = 3.

There are 6 independent parameters. The ACFs indicate that the Markov Chain is

mixing reasonably well.

7.2.3 Central Wishart Algorithm

Another approach is to consider algorithms that sample the whole matrix M at

once. A convenient algorithm can be developed based on the Wishart distribution.

This is a probability distribution over the space of positive definite matrices and is

a matrix generalisation of the chi-squared distribution.

Model Problem Mean µ Covariance Γ

1 µi = 0, i = 1, . . . , d Γ = Id
2 µi = 5, i = 1, . . . , d Γij = 5(1− (j − i)/d)

Table 7.2: Model Problems for efficiency tests. Both are normal densities Truncated
Normal densities. The Normal distribution from which they are derived has mean
µ ∈ Rd and covariance Γ ∈ Rd×d. The components of these densities are entered
into the upper triangle of a matrix W in row major order. Then it is required that
W ∈ Rp×p is negative definite. Here we set d = p(p + 1)/2 to be the number of
independent components.
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Figure 7.3: Autocorrelation functions estimated from the output of the
Component-wise algorithm applied to Model Problem 1. They were estimated
using 105 MCMC samples after discarding an initial burn in of 104.
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Definition 3. If Xi ∼ Np(0,Σ) i = 1, . . . , n are independent normally distributed

p−vectors, then the matrix

S =

n∑
i=1

XiX
T
i

is Wishart distributed with positive definite scale matrix Σ, dimension p and degrees

of freedom n. We write S ∼ W(Σ, p, n).

The density of S is

p(S; Σ) =
(detS)(n−p−1)/2

2pn/2Γp(n/2)(detΣ)n/2
exp

(
−1

2
tr
(
Σ−1S

))
. (7.10)

We also use the construction via the matrix normal distribution on X ∈ Rn×p. If

X ∼ Np,n(0, In ⊗Σ) is matrix normal distributed then S = XTX ∼ W(Σ, p, n).

The algorithm we consider generates a proposal from M∗ ∼ W(M , p, n)/n.

In this case E(M∗) = M and Cov(M∗) = 2/nM ⊗M . Therefore, the expectation

has the desired property of equalling the current state. There is one free parameter

n in this algorithm that we can use to control the magnitude of the covariance.

However, we have no freedom in the structure of the covariance. We will refer to

this algorithm as the Central Wishart algorithm.

We investigated the optimal value of n in the Central Wishart Algorithm by

applying it to two artificial problems. We performed the experiment for p = 2, 3, 4, 5.

For each case we discarded a burn in of 103 samples and computed the autocorre-

lation function ρ using 106 samples. As discussed in Section 5.1 we can quantify

the efficiency of an algorithm using the autocorrelation function. We estimate the

efficiency as in Definition 1.

Figure 7.4a shows the log efficiency plotted against varying degrees of freedom

n in the proposal distribution applied to the second model problem. The results

indicate that for low dimensional problems there is a maximum efficiency at n = 6

for p = 2 and n = 10 for p = 3. For higher dimensions the log efficiency appears

to assymptote at 0.5 independently of the dimension of the problem. Figure 7.4b is

a plot of the log efficiency versus acceptance rate. For all dimensions the optimal

acceptance rate is approximately 0.25. This is in qualitative agreement with the

theoretical predictions of Roberts et al. [1997]. In that paper the authors prove

that for a target distribution with independent components, as the dimension of

the problem goes to infinity, the optimal acceptance rate for random walk style

algorithms is 0.234. They show that the scale of random walk proposals should

increase as O(1/d). They argue that the asymptotic result can apply even in low

dimensions: this agrees with our result in Figure 7.4b. However, it is an open
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(b) Efficiency as a function of acceptance rate.

Figure 7.4: Efficiency of the Wishart proposal distribution sampling the standard
normal distribution restricted to positive definite matrices (see text). The dimension
of the matrix M ranges from 2 to 5.

problem to derive optimal asymptotic acceptance rates when the target is not a

product distribution. Our results here indicate that the prediction of 0.234 still holds

approximately even when there is correlation between components. The results (not

shown) for the first model problem are similar.
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7.2.4 Non-Central Wishart Algorithm

As a fifth and final algorithm to sample negative/positive definite matrices we con-

sider the non-central Wishart distribution.

Definition 4. Let X ∼ Nn,k(Π, Ik ⊗ Σ) , k ≥ n be matrix normal distributed.

A random n × n positive definite matrix S = XTX has a non-central Wishart

distribution with parameters Σ, n, k and ∆ = ΠTΠ. In this case we write S ∼
W(Σ, n, k; ∆) and call k the degrees of freedom and ∆ the non centrality matrix.

The density of S is given by

p(S; k,Σ,Γ) =
(detS)(k−n−1)/2

2nk/2Γn(k/2)(detΣ)k/2
exp

(
−1

2
tr
(
Σ−1S + Ω

))
0F1

(
k

2
;
1

4
ΩΣ−1S

)
,

(7.11)

where Ω = Σ−1ΠTΠ and 0F1(·) is a hypergeometric function with a matrix argu-

ment (see Muirhead [1982]).

One possible way of using the non-central Wishart distribution to sample the

space of M is by drawing

A ∼ Nn,n(Π,Φ⊗Σ) (7.12)

from the n×n matrix normal distribution with mean Π ∈ Rn×n, row covariance Φ ∈
Rn×n and column covariance Σ ∈ Rn×n. The proposal is then constructed as M∗ =

ATMA. If M is a positive definite matrix then M∗ will also be positive definite

[Eaton, 2007]. It happens that if we choose the matrices Φ and Σ appropriately

then we can calculate the forward p(M∗|M) and backward p(M |M∗) transition

densities.

Theorem 3 (Eaton [2007]). Consider A ∼ Nn,n(Π,Φ⊗Σ) and let M∗ = ATMA,

where M ≥ 0 is n× n. If Φ = M−1 then

M∗ ∼ W(Σ, n, n; ΠTMΠ) .

Proof 4. Write M = C2 with C ≥ 0. Let Y = CA then Y ∼ Nn,n(CΠ, (CΦC)⊗
Σ), which implies

Y ∼ Nn,n(CΠ, In ⊗Σ)

Clearly M∗ = Y TY and so

M∗ ∼ W(Σ, n, n; ΠTMΠ)

from the definition of the non-Central Wishart.
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The non-Central Wishart algorithm samples a matrix Normal A from

Eq. (7.12) using Φ = M−1 then constructs the proposal as M∗ = ATMA. We

need only then choose appropriate values for Π and Σ. From the properties of the

non-central Wishart (see Muirhead [1982]) we know that the expectation of M∗ is

E[M∗] = nΣ + ΠTMΠ .

This is equal to M if we choose Π =
√
αIn and Σ = (1 − α)/nM . Then we only

have one free parameter α to set.

We tested the algorithm on the model problems in Table 7.2. Output from

initial tests of the algorithm (with no optimisation using α = 0.5), applied to model

problem 2 for n = 3, is shown in Figure 7.5. The histograms estimated from the

MCMC output are close to those from samples drawn directly from the distribu-

tion (using the Rejection algorithm). This demonstrates that the Markov Chain

converges to the target distribution. Figure 7.6 shows the autocorrelation functions

for the MCMC output. It shows that the algorithm is well mixing, even with no

tuning.

7.2.5 Efficiency of the Algorithms

We performed a direct comparison of all five algorithms discussed in this section by

running them for 106 iterations on the two model problems in Table 7.2 for dimen-

sions 2-5. For each, we record the time t in seconds for the simulation to complete

and estimate the number of independent samples per second. The Random Walk,

Central Wishart and non-Central Wishart algorithms are Markov Chains and

so successive samples are correlated. Therefore, we first estimate the efficiency η

as in Definition 1 and report the number of independent samples per second as

ν = (η/100)106/t. For the Rejection algorithm we run the simulation until 106

samples have been accepted and report ν = 106/t and for the Component-wise

algorithms ν = 106/t.

Table 7.3 shows the results from the model problem 1, where there was no

correlation between components and Table 7.4 shows the results for model prob-

lem 2 where there is significant correlation. The results demonstrate that using

the Rejection algorithm becomes extremely inefficient as the dimension increases.

Although it is a simple algorithm it takes a very long time to draw 106 samples as

so few proposals are accepted. It is worse for model problem 2 where the density is

correlated (Table 7.4). The Random Walk algorithm is simple and very quick to

run though the efficiency decreases rapidly with dimension and so η reduces to the
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Figure 7.5: Output of non-central Wishart algorithm applied to model problem 2
in Table 7.2. The histograms are estimated from 105 MCMC samples and the density
in red from 105 samples drawn directly from the distribution using the Rejection
algorithm.
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Figure 7.6: Autocorrelation functions of non-Central Wishart algorithm applied
to model problem 2 from Table 7.2.

order of 10-100 independent samples per second. In practical terms this may still
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Rejection Random Walk Component-wise Central Wishart Non-Central Wishart

2 50000 2214 58823 346 418
3 2212 475 16667 120 51
4 59 203 4950 53 10
5 1 75 1558 22 3

Table 7.3: The number of independent samples per second for the Monte Carlo
algorithms of Table 7.1 applied to model problem 1 of Table 7.2. The results for
the Rejection and Component-wise algorithm are calculated from the time taken to
draw 106 samples; the remainder are Markov Chain algorithms and so also include
the efficiency factor as described in the text.

be acceptable. However, with this type of algorithm there is a risk that the chain

is not exploring the full space and so the efficiency would be overestimated. The

Component-wise algorithm draws uncorrelated samples directly from the target

density. Although it can become quite slow it performs well compared to the other

algorithms. Tables 7.3 and 7.4 show that it is slower on model problem 2. Although

it takes the same time to calculate the upper and lower bounds of the Normal den-

sities in this algorithm it seems that a larger number of proposals are needed within

the rejection sampler for model problem 2. T that there is his could be because the

truncation boundaries are more often within the tails of the distribution and there

is a more complex boundary though further work would be needed to quantify this.

The time to draw 106 samples from the Central Wishart is less than for the

Component-wise algorithm as the dimension increases. It is very simple to make

proposals from a Wishart distribution, the algorithm is only impaired by the longer

time needed to compute the transition densities using Eq. (7.10). It is just affected

by poor efficiency in higher dimensions as reflected in Figure 7.4. Table 7.4 show

that the performance is only slightly worse for model problem 2 Note that here we

adjusted the degrees of freedom in the proposal to achieve an acceptance probability

of approximately 0.2−0.3, though as shown in Figure 7.4b this maximum efficiency

remains low.

The non-Central Wishart algorithm takes a lot longer to run due to the

need to compute the hypergeometric function in Eq. (7.11) and so the number of

samples per second becomes very low as shown in both Tables 7.3 and 7.4. To

compute the hypergeometric function we used code made available by Koev and

Edelman [2006]. This was the major bottleneck in the compute time as the number

of terms needed for the series to converge could be large and variable. Further

study of the hypergeometric function could lead to an efficient method by which it

can be approximated, greatly reducing the compute time. Note that further work

could also be undertaken to understand how the free parameters Π and Σ affect
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Rejection Random Walk Component-wise Central Wishart Non-Central Wishart

2 4716 7105 28571 760 396
3 200 382 8620 267 31
4 5 154 3175 79 3
5 1 57 1192 33 1

Table 7.4: The number of independent samples per second for the Monte Carlo
algorithms of Table 7.1 applied to model problem 2 of Table 7.2. The results for
the Rejection and Component-wise algorithm are calculated from the time taken to
draw 106 samples; the remainder are Markov Chain algorithms and so also include
the efficiency factor as described in the text.

the efficiency of this algorithm. Here, we have used an ad hoc method of setting

these parameters without any tuning. In conclusion, it seems that the Central and

non-Central Wishart algorithms are novel and could even be useful for the right

problem, potentially some complex matrix distribution where there is no means of

sampling components individually like the Truncated Normals studied here.

In our applications, when we require the inference to be constrained, we use

the Component-wise algorithm. This is because it does not require any problem

specific tuning and, although it is complicated to implement, it performs reasonably

well.

7.3 Using a Stability Matrix as Prior

The aim of deriving a stability matrix and developing efficient ways to sample it

was so that it can be used as prior information for parameters in the cubic models

studied in Chapter 5. Here we demonstrate its effect on the posterior distribution of

parameters estimated for an example problem of the form Eq. (5.1), with randomly

generated parameters. As in Figure 5.16 we compute the full posterior for parame-

ters but also estimate the density for just those parameters that give stable solutions

to the resultant SDE. This was calculated numerically by simulating the SDE for

each parameter vector and recording whether the solution remained bounded. Using

data from an arbitrary two dimensional model of the form Eq. (5.1) with N = 100

and ∆ = 0.1 we estimated all 20 of the parameters entering the drift term. Those

parameters in the diffusion function were fixed. The Component-wise algorithm

was used to sample the 8 cubic parameters using a stability matrix of the form Eq.

(7.7) while the others were sampled using the standard Gibbs sampler of Section

5.4.1. We estimated the posterior distributions using 3× 106 MCMC samples taken

from 3 chains after checking each had converged to the same distribution.

The results, in Figure 7.7, compare the full posteriors, stable posteriors and
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posteriors which use a stability matrix as prior. In this case the subset of stable

parameters is very similar to the full posterior: the stable parameters account for

80% of the whole distribution. The posterior which includes the stability matrix

prior is close to the full posterior but has some different features, particularly for

those parameters that enter the diagonal components of the stability matrix. The

stability matrix restricts them to be negative, which is evidently much too strong

a constraint in this case. Work would need to be done to remove this constraint.

In general, the prior information, in its current format, is too restrictive but there

are several possibilities for relaxing the constraints while ensuring stable SDEs are

inferred.

The form of matrix given in Eq. (7.6) is not the only possible way of de-

riving a matrix that satisfies Eq. (7.5). One could think of a method of entering

components into M such that they are all off diagonal. Also it would be useful

to make the matrix larger so that no two parameters enter the same component.

Of course with a larger matrix there will be some redundant components that are

equal to 0. This may cause a problem for the sampling strategy, particularly those

algorithms based upon the Wishart distribution. The probability of proposing a

matrix with one component set at a definite value is 0 so these algorithms might

not be applicable. However, it would still be possible to use the Component-wise

algorithm without much alteration.

Further study would lead to a greater understanding of the minimally re-

strictive conditions that can be derived to enforce stochastic stability. This could

either be developed using the same Lyapunov function used here, namely the simple

squared Euclidean norm, or could involve research into other Lyapunov functions.

Still using the same Lyapunov function we could learn how to implement the stabil-

ity bound in Theorem 1 that includes other parameters besides the cubic terms. In

particular this would include the parameters that enter the stochastic terms. This

would be a departure from the approach of Majda et al. [2009] and may lead to a

more general approach of using prior information to infer non-linear SDEs.

7.4 Summary and Conclusions

In this chapter we have addressed the problem of stochastic stability for SDEs of

the form Eq. (5.1) inferred from data. We have proposed a solution, motivated

by the work of Majda et al. [2009], which implements an energy constraint on the

system. In Section 7.1.2 we derived a means of casting this energy constraint into the

requirement that a certain matrix be negative definite. This matrix’s components
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Figure 7.7: Estimate posterior distributions for parameters from a two dimensional
model of the form Eq. (5.1) with N = 100 and ∆ = 0.1. The parameters, which are
randomly generated, are written in the matrix notation introduced in Section 5.4.1.
The histograms are the posterior distributions with uninformative prior, in red are
the posterior distributions for parameters with stable SDEs and in black are the
posterior distributions which include the stability matrix prior information derived
in this chapter. 161



are the parameters entering into the cubic terms of the SDE. Requiring this Stability

Matrix to be negative definite places bounds on the domain of these parameters.

This is included in the Bayesian framework as prior information.

This novel use of prior information has consequences for the MCMC algo-

rithm used for inference; the Gibbs sampler of Section 5.4.1 is no longer applicable.

In Section 7.2 we considered five different algorithms to sample the Stability Ma-

trix. These included basic rejection and random walk sampling, which were found

to be inefficient compared to a component-wise algorithm. This Component-wise

algorithm is complicated to implement as it involves solving a quadratic equation

to compute the upper and lower bounds of each parameter. It then implements

a rejection algorithm to sample truncated Normal distributions. However, it was

found to be more efficient than algorithms based upon the Central and Non-Central

Wishart distributions. As far as we are aware, these distributions have not been

used as proposals in a Metropolis-Hastings algorithm and the work here is new. We

studied how to select the parameters of the Central Wishart distribution in Sec-

tion 7.2.3 and found that the optimal efficiency corresponded to an acceptance rate

close to 0.234, which corresponds to a broad class of Metropolis-Hastings algorithms

[Roberts et al., 1997]. We derived the Non-Central Wishart algorithm in Section

7.2.4. This is a novel use of this distribution. However, it is not clear how to tune

the parameters and the algorithm is very slow computationally due to the need to

calculate matrix Hypergeometric functions for the proposal density. Further work

needs to be done to understand how to optimise this algorithm.

Based on the theory of stochastic stability discussed in Section 2.6 we know

that negative definiteness of the Stability Matrix is a sufficient condition to ensure

the inferred parameters lead to SDEs whose solutions remain bounded. However, as

discussed in Section 7.3, in its present form, it is likely overly restrictive on the space

of parameters. There are many ways in which the constraints could be relaxed while

ensuring stochastic stability. The matrix could be enlarged such that any increase in

dimension adds no further restriction on the parameter space. This limiting matrix,

if it exists, would then be minimally restrictive. The Component-wise algorithm,

derived in Section 7.2.2 would still be able to sample this matrix. Further work,

involving more detailed study of matrix spaces could be pursued in this direction.

The methods in this Chapter could be developed into a very general frame-

work for including stability as prior information for SDE inference. Different Lya-

punov functions could be tested to see if this leads to any practical algorithms that

can be derived. For the inference problems in this thesis we find it useful to im-

plement the Component-wise algorithm to sample the Stability Matrix as we find
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that the advantage of being guaranteed a stable SDE outweigh the fact that the

prior has an unquantifiable influence on the posterior and in some cases may affect

the estimates. In the next Chapter we apply the methods developed here, and the

previous two chapters, to fit SDEs of the form Eq. (5.1) to the dynamical systems

discussed in Chapter 3.
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Chapter 8

Applications to Geophysical

Models

In this chapter we demonstrate the inference methods developed in Chapters 4 and

5 by applying them to the simple toy models discussed in Chapter 3. We investi-

gate the effects of discrete time observation of a system by performing inferences

with various amounts of imputed data. We show that errors due to low frequency

observation can cause significant error in predictive skill of a model by comput-

ing the autocorrelation functions and comparing them to the full system. We also

demonstrate that models with a latent noise process can offer an improvement over

the basic model structures predicted by the standard homogenisation method when

there is no significant time scale separation.

8.1 Chaotic Lorenz System

The first system we consider is the cubic model coupled to the chaotic Lorenz system.

It is fully deterministic and consists of a slow variable representing a climate process

and three fast variables representing weather fluctuations. The slow variable moves

inside a double well potential and is perturbed by the chaotic Lorenz system, which

acts as noise. It has been shown by Mitchell and Gottwald [2012] that, in the limit of

complete time scale separation, the resolved variable in this system can be modelled

by a one dimensional, cubic SDE. In this case no approximations are needed to go

from the deterministic to the reduced stochastic model so it will serve as a good

test case for other aspects of the model reduction. Therefore, we use this example

to explore the effects of lack of time scale separation, which would likely be the case

for real atmospheric variables. We also test the methods developed in Chapter 6 by
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fitting a model with a latent process. We see that this has potential for capturing

memory effects in data with lack of time scale separation.

This section is also a first test of the likelihood based inference for SDE

models. This method of inference is not routinely applied in the atmospheric sciences

and the results here demonstrate that this principled approach is especially useful

in situations where the data is not sampled at a high frequency. We compare the

results from the Bayesian data imputation methods of this thesis with a previous

non-parametric method that relies on high frequency data. The model equations

are as follows

dx

dt
= x− x3 +

4

90ε
y2

dy1

dt
=

10

ε2
(y2 − y1)

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3)

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3) . (8.1)

In Chapter 3 we discussed that the homogenised equation for the slow vari-

able alone is given by

dX = X(1−X2)dt+ σdBt . (8.2)

This equation was used by Mitchell and Gottwald [2012] as a test for data assimi-

lation in reduced systems: estimating the unknown state of a system given partial,

noisy observations. Firstly, however, an estimate for σ is needed. [Mitchell and

Gottwald, 2012] estimate drift and diffusion functions from their definition as con-

ditional averages (see Chapter 2):

A(x) = lim
∆t→0

1

∆t
〈X(t+ ∆t)− x〉

∣∣∣∣
X(t)=x

B(x)2 = lim
∆t→0

1

∆t

〈
(X(t+ ∆t)− x)2

〉∣∣∣∣
X(t)=x

These estimates are obtained by dividing the space into bins [X,X+∆X] and using

a fixed observation interval ∆t. It is not easy to estimate the errors in this method

[Sura and Barsugli, 2002]. One approach is to just repeat the procedure for varying

∆t to check consistency. The method has been applied several times to estimate

models from time series data in atmospheric/ocean sciences: Sura [2003] fit a one

dimensional model with multiplicative noise to sea surface wind data; Stemler et al.
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(d) Posterior distributions for ε = 0.01

Figure 8.1: Inference for the reduced double well model coupled to chaotic Lorenz
system: Eq. (8.1) for two values of ε. The stars show the value σ2 = 0.113 obtained
by Mitchell and Gottwald [2012].

[2007] demonstrate that the method is useful to estimate low dimensional models

when there is no explicit time scale separation in the system; and Berner [2005] fit a

non-linear model to planetary waves. As discussed extensively in Chapter 4, we use

likelihood based parametric estimation. In a Bayesian context, parameters obtained

using MCMC have error estimates readily available. The particular advantage that

we demonstrate here is that they can be used when the observation interval ∆ is

large.

We applied Algorithms 4.1 and 4.2 using the Modified Bridge (see Table 5.1),

to the reduced model Eq. (8.2) with N = 1000 observations and observation interval

∆ = 10 for two different time scale separations: ε = 0.01 and ε = 0.1. The data

used for the inference is shown in Figures 8.1a and 8.1b. In the first instance we

assume that the drift is known and just do the inference for σ with an uninformative

prior (σ ∼ N (0, 10)). The posterior distributions were estimated using 105 MCMC

samples from three chains after discarding 104 samples as burn in. The estimated

posterior distributions, for various amounts of imputed data m, are shown in Figures

8.1c and 8.1d
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Figure 8.2: Predictive statistics for the reduced double well model coupled to chaotic
Lorenz system: Eq. (8.1) for two values of ε. In each plot the lines correspond to
the inferred one dimensional model for different m.

With the large ∆ we use here, the posterior distributions only start to con-

verge to a consistent value for m ≥ 64. The star on the horizontal axis indicates

the value σ2 = 0.113 obtained by Mitchell and Gottwald [2012] using the observa-

tion interval ∆ = 0.0005. It is encouraging that our method, applied to discretely

observed data, can reproduce this value, obtained from effectively continuous time

observation and the non-parametric method discussed above.

Figure 8.2 shows the predictive skill of the one dimensional reduced model

using values for σ estimated for various m. Figures 8.2a and 8.2b show that the

reduced model can reproduce the double well distribution of the full although the

separation and depth of each well is underestimated for m = 2 and m = 4 due to

the larger noise. For m ≥ 8 the model reproduces well the full models marginal dis-

tribution for x. It is not clear whether there is much difference between m = 8 and

m = 64. However, observing Figures 8.2c and 8.2d we see that the autocorrelation

function for the full model is much better approximated when m = 64. Specifi-
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Figure 8.3: Posterior distribution estimates from MCMC output applied to a sparse
data set (∆ = 10). Distributions correspond to different amounts of missing data
m between observations with the key shown at the top. The distribution in brown,
for m = 64, agrees with the theoretical values predicted by the homogenisation
procedure.

cally, one dimensional models can not capture the negative correlation at large lags

exhibited by the full model.

We now fit a one dimensional cubic SDE to the data without any assumptions

from the homogenisation procedure. We just consider the general cubic form argued
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for in Chapter 3

dXt = (a1 + a2Xt + a3X
2
t + a4X

3
t )dt+ σdBt (8.3)

and estimate all of the parameters {a1, a2, a3, a4, σ} from sparse observations of the

system: again using ∆ = 10.0 and N = 1000. To update the drift parameters

we use the Gibbs sampler of Section 5.4.1. The estimated posterior distributions

are shown in Figure 8.3. A lot of imputed data is needed before the estimates

start to converge towards the values predicted by homogenisation but the inference

demonstrates that there is enough information in the sparse data set if the likelihood

is well approximated.

The large amount of data imputation needed can be understood by consider-

ing the quadratic variation of the process. The quadratic variation is directly related

to the diffusion function of the process as seen in Eq. 4.2. For a process Xt observed

over a fixed time interval [0, T ], it can be estimated as a function of the observation

interval ∆ = T/(N − 1) by

QV (∆) =
1

∆

N−1∑
i=0

(Xi+∆ −Xi)
2 , (8.4)

where N is the number of observations. For a diffusion process one would expect the

quadratic variation to be independent of the sampling frequency for a range of time

scales. This is due to the scale invariant property of diffusions. Below an upper

limit one should see the quadratic variation “plateau” at a constant value. This

can be seen in Figure 2.1b, where the quadratic variation is estimated for Brownian

motion. Figure 8.4 shows the quadratic variation of x from Eq. (8.1) calculated

for a range of observation frequencies ∆ for different ε. It shows that there is a

maximum around the values 0.1 − 0.3. This is the time scale best modelled by a

diffusion process and agrees with the m ≥ 64 data imputation when observing at

interval ∆ = 10.

The full model with ε = 0.1, 0.01 is well approximated by the reduced model.

This may not be the case when there is no real time scale separation: if ε = 0.5 or

even ε = 1.0. This means that y2 in Eq. (8.1) is not well approximated by a white

noise process. Instead we consider a red noise: a latent linear process that has a

non-zero autocorrelation time. The approximating equation then has the form

dXt = (a1 + a2Xt + a3X
2
t + a4X

3
t )dt+ Ytdt

dYt = −γYtdt+ σdBt . (8.5)
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model Eq. (8.1). The curves represent different time scale separations ε.
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Figure 8.5: Posterior estimates for parameters from the model Eq. 8.5 using N =
1000 observations of Eq. (8.1) with observation interval ∆ = 0.01. The posteriors
were estimated using 105 samples from 3 chains after discarding a burn in of 104

samples. The different posteriors are for varying time scale separation ε.

The Brownian motion acts on the unobserved process Yt, which then forces the

observed variable Xt. The parameters in this model can be inferred according to

the algorithm in Section 6.1. We used N = 1000 high frequency observations with

∆ = 0.01 for different time scales ε. We did not impute missing data between

observations, just the latent noise process Yt. We used 105 MCMC samples from

three chains after discarding a burn in of 104. We used the fixed theoretical values

for the diffusion function, namely a1 = 0, a2 = 1, a3 = 0 and a4 = −1 and estimated

the diffusion parameters. Figure 8.5 shows the posterior estimates for the unknown

parameters γ and σ for varying ε.

We compared the predictions of the latent noise model to the standard model

in Eq. (8.3) for ε = 0.6 and ε = 0.8. We used the posterior mean values to
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Figure 8.6: Plots comparing the autocorrelation function of the full chaotic Lorenz
model with reduced models. The bars are for the full model; red is the latent noise
process; blue is the standard empirical model and black is the theoretical model
predicted by homogenisation.

produce predictive simulations. The resulting autocorrelation plots are shown in

Figure 8.6 and compared to those from the full model, the theoretical model and

the one dimensional empirical model. In this case the latent noise model does well

in reproducing the short time autocorrelations of the full model much better than

the standard or theoretical models. This is likely due to the smoothness of paths

simulated from the latent noise process.

This is a useful result and encourages further work into models with latent

noise processes to model systems such as Eq. (8.1). This approach is a good

example of an approach motivated jointly by a theoretical result (the derivation of

the drift function) and an empirical approach. This empirical work depended upon

an inference method that made estimating the parameters γ and σ. However, this

is still a challenging inference problem. The Markov Chain does not mix as well as

for the fully observed models and finer observation intervals are needed.

Further work could be focussed upon a systematic model comparison by

calculating Bayes’ factors between models Eq. (8.3) and Eq. (8.5). This is a

challenging problem but has been attempted for a restricted class of SDE models

(see Polson and Roberts [1994]).

8.2 Model Reduction for Triad Systems

In this section we apply the Empirical Mode Reduction Strategy to the Burgers

model, introduced in Section 3.5.3. This is a deterministic system with 52 compo-

nents and the aim here is to reduce it to a two dimensional stochastic system that

accurately represents some of the features of the original. There are two aspects to
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this problem. The first step is to represent the effects of the unresolved modes as

a stochastic process. The second is to follow the homogenisation procedure for the

triad model, detailed in Section 3.5.2.

Strictly the homogenisation procedure relies upon a complete time scale sep-

aration between the resolved and unresolved modes. As in the previous section,

where we studied the three dimensional Lorenz model, we control this time scale

separation explicitly with parameter ε. Complete time scale separation is given by

ε→ 0. in this section we assess the sensitivity of the results to finite values of ε.

As an alternative we fit a general cubic model of the form Eq. (5.1) to assess

if an empirical approach, where there are a lot of parameters to infer, compares to

the homogenisation method. Particularly we are interested in the case where there

is no time scale separation.

In Chapter 3, Section 3.5.3 we calculated the Fourier transform of the Burgers

PDE. Through a single component we coupled this to a triad model of the form

studied in Section 3.5.2. The resulting system is given by

dx1

dt
=
b1
ε
x2y1

dx2

dt
=
b2
ε
x1y1

dyk
dt

=
b3
ε
x1x2δ1,k − Re

ik

2ε2

∑
p+q+k=0

û∗pû
∗
q

dzk
dt

= −Im
ik

2ε2

∑
p+q+k=0

û∗pû
∗
q . (8.6)

This system retains finite values provided that b1 + b2 + b3 = 0 (see Majda et al.

[2002]). We use the values b = {0.9,−0.5− 0.4} and, as in Section 3.5.3, we choose

a spherical cut off Λ = 50.

8.2.1 Stochastic Mode Reduction

We are interested in eliminating y from Eq. (8.6) leaving equations for just x1

and x2. The small parameter ε represents the time scales within the system. The

variables y have fastest time scale of order O(1/ε2) compared to O(1/ε) for x1 and

x2. As ε → 0 we can use the method of homogenisation for SDEs (see Chapter 3,
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Figure 8.7: Example of solution x1 (black) and x2 (red) from the Burgers model in
Eq. (8.6) for two values of ε.

Sections 3.5.2 and 3.5.3) to eliminate the fast variables and give

dx1(t) =
b1
γ

(b3x
2
2(t) +

σ2

2γ
b2)x1(t)dt+

σ

γ
b1x2(t)dBt

dx2(t) =
b2
γ

(b3x
2
1(t) +

σ2

2γ
b1)x2(t)dt+

σ

γ
b2x1(t)dBt , (8.7)

where unknown parameters σ and γ have been introduced. Majda et al. [2002] es-

timate these parameters using the full system. Here we estimate them using the

Algorithms 4.1 and 4.2 from observations of the climate variables alone. Unfortu-

nately, this presents a problem: the reduced model in Eq. (8.7) is a two dimensional

system with a one dimensional Brownian motion. This means that the likelihood,

given by Girsanov’s theorem and discussed in Chapter 4, can not be written down.

An alternative is to consider a transformation of variables as undertaken in Section

5.3.1 that results in a univariate SDE. However, it appears that for this specific case,

no such transformation exists. In this instance we consider the inference problem

where the model Eq. (8.7) is driven by two independent Brownian motions.

We apply the inference to a data set with total time T = 500 and observation

interval ∆ = 0.1. We simulate the system for ε = {0.01, 0.1, 0.25, 0.5, 0.8, 1.0}.
Example data for ε = 1.0 and ε = 0.01 are shown in Figure 8.7.

We retained 105 MCMC samples from three chains after discarding a burn in

of 104 samples. We used Algorithm 4.1 to infer γ and σ and Algorithm 4.2 to impute

missing data using the Modified Bridge proposal (see Table 5.1). The values of

bi, i = 1, 2, 3 are assumed known. Posterior estimates for the case ε = 0.8 are shown

in Figure 8.8. The vertical lines are the mean values of the posterior distributions
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for the case ε = 0.01. Note that, as expected, there is a small discrepancy between

the estimates for ε = 0.8 and ε = 0.1.
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Figure 8.8: Posterior estimates of parameters σ and γ in Eq. 8.7 applied to data
simulated from Eq. (8.6) with ε = 0.8 for varying amounts of missing data m.
These distributions were estimated using 3× 105 samples from Algorithms 4.1 and
4.2 using the Modified Bridge proposal. The vertical black line is the mean of the
posteriors estimated for the case ε = 0.01 with m = 16.

Figure 8.9 shows the stationary probability densities and autocorrelation

functions for Eq. (8.7), estimated for ε = {0.1, 0.25, 0.5, 0.8, 1.0}. In each case the

data is simulated from the full model Eq. (8.6), then the parameters are estimated

using the reduced model Eq. (8.7) and this reduced model is simulated to calculate

the predictive statistics. The posterior mean estimates were used for γ and σ with

m = 16 missing data values (it was verified that the posteriors for m = 16 and

m < 16 gave consistent estimates). Also plotted for comparison are the probability

densities and autocorrelation functions for data simulated from Eq. (8.7) with pa-

rameters σ and γ estimated from data from the full model Eq. (8.6) with ε = 0.01.

This is referred to as the reduced model in Figure 8.9.

The autocorrelation functions have been collapsed onto the reduced model

(ε = 0.01) by rescaling the output interval of the prediction by their value of ε. The

data collapse is very good for all ε. This implies that the parameter estimates for

each case are compensating for the changing time scale separation.

8.2.2 Empirical Approach

An alternative to fitting a model to “climate” variables is a purely empirical ap-

proach where all the parameters of a generic model form are estimated from data.

In this case one does not rely upon the reduced model Eq. (8.7) being appropriate
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Figure 8.9: Output statistics comparing the reduced model Eq. (8.7), with param-
eter estimates for σ and γ, for various ε with the full model.

when there is no complete time scale separation but a generic, flexible model form

is proposed. For this we use the cubic model in Eq. (5.1) for which we have been

developing inference methodology in Chapters 5-7. For a two dimensional system

there are 28 unknown parameters. We estimated these from data simulated from

the full model Eq. (8.6) with ε = 0.8. Algorithm 4.1 was used to estimate the 8

diffusion parameters and 4.2 with the Modified Bridge proposal (Table 5.1 was used

to impute the missing data. The Gibbs sampling algorithm in Chapter 5, Section

5.4 was used to sample the 20 parameters entering the drift function. To ensure sta-

bility of the resulting SDE we restricted the parameter space using the constraint in

Chapter 7. This was sampled using the component-wise algorithm of Section 7.2.2.

We used three MCMC runs, each retaining 105 samples after discarding a

burn in of 104. The posterior estimates for A, the parameters in the drift function,

are shown in Figure 8.10. Refer to Section 5.4 for details of how parameters in
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Figure 8.10: Posterior estimates of drift parameters for two dimensional cubic model
Eq. (5.1) fitted to N = 5000 observations with interval ∆ = 0.1 of the triad-Burgers
equation with ε = 0.8. 3 × 105 MCMC samples were retained after discarding a
burn in of 104, from Algorithms 4.1 and 4.2 with the Modified Bridge proposal. The
Gibbs sampler of Section 5.4 was used to sample the matrix A shown here.

matrix A enter the SDE Eq. (5.1). To obtain these results took 2 days computing

time on standard CPUs. The estimated posteriors begin to show consistency for

m = 8 - larger values were taking an impractically long time to converge.

We use Eq. (5.1) in two dimensions, with the posterior estimates from m = 8,

to form a predictive model for Eq. (8.6). Figure 8.11 compares the autocorrelation
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Figure 8.11: Autocorrelation plots of the full system in Eq. (8.6) with ε = 0.8
(vertical bars) and the empirical model Eq. 5.1) with parameters estimated as
described in the text (red).

plots of the full model Eq. (8.6) with those computed from the predictive model

Eq. (5.1). These predictions appear good but the predicted stationary probabil-

ity distributions (not shown) are poor. In this case the empirical mode reduction

strategy implemented here struggles to achieve the same predictive skill as the ho-

mogenisation procedure followed by parameter estimation demonstrated in Section

8.2.1. However, in this model recall that the problem has been specifically designed

for homogenisation with clear differences in time scales. In more realistic systems,

such as the one in the next section, it is much harder to identify these time scales

and they have to be introduced as a working assumption. Also, the problem with

the empirical method is that there are so many parameters to infer and perhaps our

means of constraining the parameter space as in Chapter 7 is overly restrictive.

8.3 Model Reduction for the Quasi-Geostrophic Model

with Mean Flow

In this section we study the two approaches to stochastic modelling applied to the

Quasi-Geostrophic Model with Mean Flow that we derived in Chapter 3, Section

3.5.4. We first consider using the homogenisation procedure followed by inference

for the few unknown parameters. Then we infer a general cubic model, estimating

all of the parameters using methods developed in Chapters 5-7.
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8.3.1 Stochastic Mode Reduction

In Section 3.5.4 we derived a one dimensional diffusion model for the mean flow U

of the quasi-geostrophic equation Eq. (3.40) on the β-plane by assuming complete

time scale separation. This resulted in the SDE

dU = (−γ̃(U)U + γ′(U))dt+
√

2γ(U)dBt , (8.8)

where

γ(U) = 2
∑
k

k2
xH

2
kσ

2
k

|γk(U)|2
, γ̃(U) = 2

∑
k

k2
xH

2
kγk

|γk(U)|2
. (8.9)

and γk(U) = γk + iΩk + ikx/
√
αµU . The stochastic approximation introduces un-

known parameters γk and σk. As in Majda et al. [2003], we assume σk ≈ γk. We

estimate γk from observations of U alone. In the case of real observations of the

atmosphere it is more likely that only the large scale variables of interest will be

available so estimating γk from the full system, as in Majda et al. [2003], would not

be possible. We apply Algorithms 4.1 and 4.2, using the Modified Bridge proposal,

to N = 1000 observations of U at interval ∆ = 0.1. We use the case with only

one topographic mode such that Hk 6= 0 for k = (1, 0), Hk = 0 otherwise. This

means one only needs to consider a single term in the sums in Eq. (8.9) and that

there is only one unknown parameter γ(10). We use an uninformative prior for γ(10).

The estimated posteriors were calculated using 105 samples from three chains after

discarding a burn in of 104. The results are shown in Figure 8.12a. The estimates

converge rapidly for increasing imputed data. Figure 8.12b compares the autocor-

relation functions of the one dimensional diffusion model, using the estimated value

of γ(10), with that of the full system. The model works well for short predictions,

although does not capture the negative autocorrelation at longer times. A major

drawback of the homogenisation, followed by parameter estimation, approach is the

need to estimate more parameters as the full system becomes more complex. In this

case if there was more than a single topographic mode then this would introduce

further γk to the point where there is not sufficient information in the data set to in-

fer them all. For this reason the purely empirical approach is useful and the general

form of cubic model with linear noise, as argued for in Chapter 3, is an appropriate

and flexible model to fit to the data.
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(a) Estimates of γ(10) (b) Autocorrelation functions

Figure 8.12: Results for inferring the one free parameter γ(10) in the one dimensional
reduced model in Eq. (8.8) to N = 1000 observations at interval ∆ = 0.1 from
the original system Eq. (3.40). On the left are the posterior estimates, for varying
missing data m, obtained using 3×105 samples from Algorithms 4.1 and 4.2 with the
Modified Bridge proposal. On the right are the estimated autocorrelation functions
of the reduced model using the mean of the posterior estimate for γ(10) with m = 16
compared to the simulation of the original model Eq. (3.40).

8.3.2 Empirical Approach

We estimated the six parameters in the one dimensional cubic model

dU = (a1 + a2U + a3U
2 + a4U

3)dt+ (σ1 + σ2U)dBt (8.10)

using the same observations of U as the previous section. We used Algorithms

4.1 and 4.2 with the Modified Bridge proposal. For this cubic model we are able

to use the Gibbs sampler of Section 5.4 to infer the drift parameters. We ran 3

MCMC chains each discarding 104 samples as burn in before each retaining 105

samples for which to estimate the posterior distributions. Figure 8.13 shows that

the posterior estimates are consistent for m = 16-32 Figure 8.14 shows the stationary

probability densities and autocorrelation functions of the inferred model Eq. (8.10),

using the mean posterior estimates for parameters, for different values of m. The

plot highlights the importance of imputing data to infer a continuous time model

from discrete observations. Figure 8.14a shows that a naive approach, with no

imputed data, results in a model that misses the heavy tailed skew shape of the

stationary distribution. The predicted stationary distribution improves rapidly with
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Figure 8.13: Inference results for varying amounts of missing data m for the cubic
model Eq. (8.10) fitted to N = 1000 observations of the mean flow data with
interval ∆ = 0.1. 3×105 samples were used to estimate these posterior distributions.
Algorithm 4.1 was used to estimate the two diffusion parameters (shown bottom),
Algorithm 4.2 with the Modified Bridge proposal was used to impute the missing
data and the Gibbs sampler of Section 5.4 was used to infer the four drift parameters
ai, i = 1 . . . 4.

increasing m. Figure 8.14b shows that the autocorrelation functions also improve

with increasing m. Also, compared to the diffusion model in Eq. (8.8) the cubic

model Eq. (8.10) better reproduces the autocorrelation function of the full system.

A general, empirical model like Eq. (8.10) would also be more useful when there

are several parameters entering into the functions in Eq. (8.9), due to their being
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Figure 8.14: Predictive statistics for the mean flow using the inferred cubic model
Eq. (8.10) for varying missing data m. Top: stationary distributions for various
amounts of imputed data. The histogram is that of the full system. Bottom: auto-
correlation plots of the inferred model compared to the full system (vertical bars).

several topographic modes. In some cases these parameters may not be identifiable.

In conclusion, for this section, the principled method of homogenisation fol-

lowed by parameter estimation works well when the problem is designed to include

only a few parameters. However, in a real atmospheric system it is likely that there

would be a few parameters per unresolved mode of the system and, therefore, a

lot of unknown parameters to be estimated in the reduced system. This was not a

problem for Majda et al. [2003] and Franzke et al. [2008] as they estimated models
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from observations of the full data. Here we have attempted to infer a reduced model

from observations of the resolved modes only as this is more likely the case when

considering real atmospheric data.
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Chapter 9

Conclusions

The aim of this thesis was to apply an empirical modelling strategy to produce low

dimensional diffusion models as approximations to high dimensional deterministic

systems. We focused on models relating to atmospheric dynamics with the hope that

the methods developed here might be useful to researchers developing stochastic

models of large scale planetary variables such as the North Atlantic Oscillation.

Stochastic modelling of the atmosphere could also be used to model longer time

scale coupled atmosphere-ocean dynamics such as the El-Nino Southern Oscillation.

We compared the empirical approach with an analytical that assumes a sig-

nificant separation of time scales between the variables we are interested in and

those we want to ignore. We assumed that the empirical approach would be less

affected when there was incomplete time scale separation and we see that this was

the case for the chaotic Lorenz system in Section 8.1. In that section we also demon-

strated that the models could be improved by including a latent noise process. This

seems like a good direction for further study. Often in real systems, at short time

scales where the non-linearities are significant, a diffusion model is not a good one:

the paths are too smooth. Approximating the “weather” variables by an integrated

stochastic process is a useful way of producing smooth functions and therefore mod-

els that will work at short time scales. At time scales at which a diffusion model

works well for real climate data, the dynamics often seem linear. To model the

short term non-linearities a smooth process is more suitable than a diffusion model.

However, the statistical inference for such a process is much more difficult if one is

imputing missing data between observations. In Section 8.1 we developed a method

to infer a linear latent noise process which meant that the whole latent process could

be sampled from the conditional posterior distribution. This Gibbs sampler enabled

the inference to complete in a reasonable time. However, imputing non-linear la-
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tent processes does not seem practical due to the enormous data sets needed and

the difficulty in finding a good proposal distribution. Sampling the smooth, finite

variation paths of the observed process is difficult and in fact it seems that the

algorithm used in this thesis would degenerate in the continuous time limit as the

chance of accepting a proposed path goes to zero. There are less rigorous ways

of performing inference for such a model. For example, the Automatic Bayesian

Computation (ABC) method, which is a simulation based approach that uses an

approximation to the likelihood function. It would be useful to do further research

in this area to develop theoretically well motivated algorithms that are based on the

true likelihood.

In Chapter 5 we strove to improve the computational efficiency of inferring

parameters for a general cubic SDE with linear diffusion function. We focussed upon

designing more efficient proposal distributions for missing data. We developed the

linear bridge proposal distribution and demonstrated that it is a useful improve-

ment over the standard Modified Bridge in terms of MCMC efficiency although it is

computationally expensive and difficult to implement. In general the algorithm of

Golightly and Wilkinson [2008], that much of our work was based on, is much too

inefficient in high dimensions. In practice it is not advisable to update all compo-

nents of the missing data simultaneously but rather to sample component-wise. The

method of updating one variable at a time, using an efficient proposal like the linear

bridge, that we demonstrated in Section 5.2 is an improvement, although it also

becomes inefficient as the dimension increases and is computationally demanding.

Most of the computations in this thesis took a long time to run. On the

order of days at least for the cubic models. In many cases the predictive skill of

the resulting model does not justify the amount of effort taken to obtain it. In

some cases a linear model might be just as good and much easier to infer. Although

the Gibbs sampling method of Section 5.4 makes sampling the drift parameters

easier, we still have to use algorithms based on a Random Walk for the diffusion

parameters. This is not very effective, especially considering that all of the missing

data is also updated in this step when using the Golightly and Wilkinson [2008]

algorithm. This means that only a small Random Walk step size is likely to be

accepted and the mixing of the algorithm is poor. It would be worth considering

how this proposal distribution could be improved but it is unlikely to solve the

problem completely. There will remain the problem of having to update a large

number of random variables simultaneously when using this algorithm and so this

does not really solve the problem.

Although we have explored a general framework for inferring cubic SDEs,
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these models are very complex and perhaps too general resulting in an unwieldy

number of parameters to infer. In Section 8.1 we have seen that it can be useful

to use the model predicted by homogenisation theory where there are not many

parameters to infer. This approach, along with including a red noise model for

short time scales, is probably the best method. One negative of this is that the

parameters do not enter into a form that is amenable to Gibbs sampling and in

some cases there can also be far too many parameters. This happens when there is

at least one parameter associated with every “weather” variable as was the case for

the quasi-geostrophic model in Section 8.3. It may be worth studying methods that

make a further approximation to reduce the number of parameters in these models.

As can be seen in the derivation in Section 3.3, in the final diffusion model Eq.

(3.26), there are sums which range over all of the weather variables in the original

system. These sums could be approximated by a single random variable, perhaps

through the existence of a central limit theorem.

In early stages of this research we experienced a lot of problems with produc-

ing stable models that could be used for prediction: when simulating an ensemble

from the estimated posterior distribution some solutions would explode to infinity

leaving only a small number that could be used for producing average autocorre-

lation functions or other measures of predictive skill. One way of overcoming this

would be to simply simulate lots of times with parameters sampled from the pos-

terior and discard those that are unstable. The problem with this is that the size

of the parameter space is very large and, as the dimension of the system increases,

only a small subset of this space corresponds to diffusion models with stationary

probability measures. In Chapter 7 we attempted to restrict the parameter space

using a condition of negative definiteness of a matrix whose components are the

parameters governing the magnitude of the cubic terms. This equates to enforcing a

non-increase of energy associated with these terms. This was successful in producing

SDEs with stable solutions. However, it is likely that this restricts the parameter

space more than is necessary and future work would benefit from a more thorough

study of this problem.

The negative definiteness constraint on the cubic parameters creates a novel

state space from which to sample. In particular the Gibbs sampler is no longer ap-

plicable to these terms. Instead, in Section 7.2 we constructed MCMC algorithms to

sample densities constructed on spaces of negative definite matrices. We attempted

a component wise approach which is guaranteed to work but is complicated to imple-

ment. We then attempted to use the central and non-central Wishart distributions

in a novel MCMC algorithm. We studied the efficiency of the central Wishart al-
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gorithm and showed that it has similar properties to standard random walk type

algorithms; the maximum efficiency occurs at the same optimal acceptance rate of

0.234. Further work could investigate the efficiency properties of the non-central

Wishart proposal. It may be possible, through suitable choice of parameters, to

adapt this algorithm to be equivalent to a second order algorithm similar to the

Langevin algorithm, which involves the derivative of the target density.

In Section 8.2 we applied both the theoretical and empirical approach to

model reduction for the Burgers system coupled to a triad model. We found that

in this case the theoretical approach works well, although the set up is slightly ar-

tificial because the different time scales in the system are controlled. The empirical

method reproduces well the autocorrelation functions for the case without signifi-

cant time scale separation, though it did not produce good predictions of stationary

probability distributions. It took a lot of computational time to infer these mod-

els. It seems more efficient to first construct a model with the right form through

assuming different time scales, then estimate parameters. This even worked on the

more difficult problem of the quasi-geostrophic model on the β-plane in Section 8.3,

where time scales were not explicit although the empirical method was more skillful

in this case. Improvements could be made to the theoretical method by including a

red noise process as in Section 8.1. This still leaves the problem of the number of

parameters increasing with the number of topographic modes in the system.

In summary, the conclusions of the thesis is that the homogenisation proce-

dure, although not rigorous, is a good method of producing a model that has the

right structure. The resulting parameters can then be estimated using the inference

algorithm in this thesis, including the improved proposal methods for missing data

of Chapter 5. Stability issues can be investigated on a per model basis and simi-

lar restrictions to the parameter space, such as those studied for cubic models in

Chapter 7, can be implemented. The problem of lack of time scale separation can

sometimes be overcome by introducing a latent red noise process, and this can be

inferred from data using the method in Section 6.1. The problem remains of how to

stop the number of parameters in the reduced system from scaling with the size of

the original system. This is a topic for further research.
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Appendix A

Example code for Empirical

Climate Modelling

Note that the codes here are extracts from the various programs written in the

thesis. As it is, it will not compile. Further code can be obtained by email. All

code relies upon a matrix class and function library, written by myself, along with

the GNU Scientific Library.

A.1 Main Program

This code shows the important parts of the input/output of the program and in-

cludes the main MCMC loop.

/* Program to infer parameters for cubic model for

discretely observed diffusions.

Drift parameters are sampled using

Gibbs sampler, diffusion parameters via the Innovation scheme of

Chib Et. al 04 + Golightly Wilkinson 08 and Missing data is imputed

using the modified bridge sampler of Durham Gallant 02.

Two input arguments: the first is the random number generator seed,

the second is the amount of missing data per observation interval.

*/

int main (int argc, const char* argv[]){

int seed = atoi(*(argv+1));

const gsl_rng_type * R;

gsl_rng * r;
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gsl_rng_env_setup();

R = gsl_rng_mt19937;

r = gsl_rng_alloc(R);

gsl_rng_set (r,seed);

gsl_error_handler_t *err_off = gsl_set_error_handler_off ();

int mi = atoi(argv[2]);

int tin = atoi(argv[2]);

const char *I = argv[2];

const char *J = argv[1];

/* ms is an array of options for missing data.

The second input argument (1-10) indexes this array.

This of course can be expanded/modified.*/

int ms[10] = {1,2,4,8,16,32,64,128,256,512};

// m is the amount of missing data per interval.

// For example, if m=1 then there is no missing data.

int m = ms[mi-1];

double Ts[3] = {1,10,100};

double T = Ts[tin-1];

T = 1000;

// N is the number of observations

// n_samples is the number of MCMC samples

int i,j,k,l,s,n_samples=1e5,n_burnin=1e5,n_trial=1e5,n_iter=10,n_test=1e5;

double accep;

// X is the data and t is the observation times

double **X,*t;

// For more flexibility, M is an array containing a possibly differing amount

of missing data for each interval. This can be read in from a file

int *M;

double post1,post2,alpha,like,v;

double Mu[D],Mn[D];

// Dt is the standard observation interval

double Dt=2e-1;

int Dtint = 5;

int N = (int)T*Dtint;

188



//if a common m is used dt is the interval between (missing) data

double dt = Dt/(double)m;

// vector of parameters

// num is the number of paramters defined in global.h

double params[num];

double **Params;

double accep_rate;

bool b;

// Covs is the covariance matrix for MH algorithm to

update diffusion parameters.

// It is important to base this on a trial run of the posterior

// to improve efficiency

// nums is the number of diffusion parameters

myMatrix Covs(nums,nums);

// Prior mean and precision matrices for the drift parameters.

// There are P drift parameters per component and therefore D*P altogether

myVector prior_mean(D*P);

myMatrix prior_prec(D*P,D*P);

prior_prec.setIdentity();

prior_prec = 1e-2*prior_prec;

myMatrix Sig(D,D);

myMatrix Sig2(D,D);

// set root directory for file in/out

string root_dir = "/home/audrey/Phd/SDEs/triads/simulate/";

// data in

string file_in = root_dir;

file_in += "solution_sparse_0.8.dat";

ifstream data(file_in.c_str());

// covariance matrix for updating diffusion parameters

file_in = root_dir;

file_in += "mcmcvars.dat";

ifstream vars(file_in.c_str());
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// starting parameter values

file_in = root_dir;

file_in += "param_means.dat";

ifstream inits(file_in.c_str());

// used if a variable observation time

file_in = root_dir;

file_in += "observation_times.dat";

ifstream times(file_in.c_str());

// used if different amount of missing data per observation

file_in = root_dir;

file_in += "missing.dat";

ifstream missing(file_in.c_str());

// MCMC samples output

string file_out = root_dir;

file_out += "samples_0.8_";

file_out += I;

file_out += "_";

file_out += J;

file_out += ".dat";

ofstream samples(file_out.c_str());

// optionally include output for missing data

string file_out2 = root_dir;

file_out2 += "process_1e-1_";

file_out2 += I;

file_out2 += "_";

file_out2 += J;

file_out2 += ".dat";

ofstream process(file_out2.c_str());

// allocate memory for arrays

X = new double*[(N-1)*m+1];

t = new double[(N-1)*m+1];
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M = new int[N];

for(i=0;i<(N-1)*m+1;i++){

X[i] = new double[D];

}

// using equal m and dt set from argv[2]

// M[i] is the cumulative amount of data up to observation i

M[0]=0;

for(i=0;i<N-1;i++){

M[i+1] = M[i]+m;

}

for(i=0;i<(N-1)*m+1;i++){

t[i] = dt*i;

}

// using variable M and dt set from input files

/*for(i=0;i<(N-1)*m+1;i++){

times >> t[i];

}

for(i=0;i<N;i++){

missing >> M[i];

}*/

// input data

k = 0;

for(i=0;i<M[N-1]+1;){

for(j=0;j<D;j++){

data >> X[i][j];

}

i += m;

}

// input covariance matrix for diffusion parameter sampling

for(i=0;i<nums;i++){

for(j=0;j<nums;j++){

vars >> v;
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Covs(i,j) = v;

}

}

// or set to the identity

Covs.setIdentity();

Covs = Covs*1e-5/(double)(m*N);

Params = new double*[n_trial];

for(i=0;i<n_trial;i++){

Params[i] = new double[nums];

}

// input initial parameter values

for(i=0;i<num;i++){

inits >> params[i];

}

/*for(i=0;i<D*P;i++){

params[i] = gsl_ran_gaussian(r,1);

}

for(i=0;i<(D*(D+1))/2;i++){

params[i+D*P] = gsl_ran_gamma(r,1,1);

}

for(i=D*P+(D*(D+1))/2;i<(D*D*(D+1))/2;i++){

params[i+D*P+(D*(D+1))/2] = gsl_ran_gaussian(r,1);

}*/

for(k=0;k<num;k++){

samples << params[k] << ’ ’;

}

samples << endl;

// initialise(params,X,t,N,samples,r);

// initialise missing data between observations

for(i=0;i<N-1;i++){

for(j=M[i];j<M[i+1]-1;j++){
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// set drift and diffusion functions

set_coefs(*(X+j),params,Mu,Sig);

// construct Durham Gallant 02 bridge distribution

conditioned_prob_simple(*(X+j),*(X+M[i+1]),

t[j],t[j+1],t[M[i+1]],Mn,Sig,Sig2);

Sig2.choleskyDecomp();

// sample missing data

multivariate_normal(*(X+j+1),D,r,Mn,Sig2.getMat());

}

}

// burn in

accep = 0;

j = 0;

for(i=0;i<n_burnin;i++){

// update diffusion parameters

sample_diffusion_parameters(X,t,params,N-1,M,Covs,&accep,r);

// update all missing data

sample_missing_data(X,t,params,N-1,M,r);

// update drift parameters

sample_drift_parameters(params,X,t,prior_mean,prior_prec,M[N-1]+1,r);

j += 1;

if(i%1000==0){

accep_rate = accep/(double)j;

if(accep_rate>0.3){

Covs = 2*Covs;

}

if(accep_rate<0.1){

Covs = 0.5*Covs;

}

accep = 0;

j = 0;
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cout << accep_rate << endl;

}

for(k=0;k<num;k++){

samples << params[k] << ’ ’;

}

samples << endl;

}

// estimate covariance of diffusion parameters by trial run

for(i=0;i<n_trial;i++){

}

// main loop

for(i=0;i<n_samples;i++){

// update diffusion parameters

sample_diffusion_parameters(X,t,params,N-1,M,Covs,&accep,r);

// update all missing data

sample_missing_data(X,t,params,N-1,M,r);

// update drift parameters

sample_drift_parameters(params,X,t,prior_mean,prior_prec,M[N-1]+1,r);

// output parameters to file

for(j=0;j<num;j++){

samples << params[j] << ’ ’;

}

samples << endl;

}

return 0;

}
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A.2 Sample Missing Data

This section includes some example code for updating missing paths between obser-

vations.

/* Update of missing data. Simplest method, which assumes using

modified bridge of Durham-Gallant and updating one block at a time

*/

void sample_missing_data(double **X, double *t, double *params, int N,

int *m, gsl_rng *r){

int i,j,k;

double Mu[D],Mn[D],post1,post2,prop1,prop2,alpha;

// allocate space for proposal data

double **Y;

Y = new double*[m[N]+1];

for(i=0;i<m[N]+1;i++){

Y[i] = new double[D];

}

myMatrix Sig(D,D),Sig2(D,D);

for(i=0;i<N;i++){

for(j=0;j<D;j++){

Y[m[i]][j] = X[m[i]][j];

Y[m[i+1]][j] = X[m[i+1]][j];

}

prop1 = 0;

prop2 = 0;

for(j=m[i];j<m[i+1]-1;j++){

// set drift and diffusion functions for proposal

set_coefs(*(Y+j),params,Mu,Sig);

// Gaussian density conditioned on the end points

conditioned_prob_simple(*(Y+j),*(Y+m[i+1]),t[j],t[j+1],

t[m[i+1]],Mn,Sig,Sig2);
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Sig2.choleskyDecomp();

// propose new data

multivariate_normal(*(Y+j+1),D,r,Mn,Sig2.getMat());

// calculate forward proposal density

prop2 += multivariate_normal_pdf(*(Y+j+1),D,Mn,Sig2.getMat());

// set drift and diffusion functions for data and bridge density

set_coefs(*(X+j),params,Mu,Sig);

conditioned_prob_simple(*(X+j),*(X+m[i+1]),t[j],t[j+1],

t[m[i+1]],Mn,Sig,Sig2);

Sig2.choleskyDecomp();

// calculate backward proposal density

prop1 += multivariate_normal_pdf(*(X+j+1),D,Mn,Sig2.getMat());

}

// calculate posteriors

post1 = likelihood(X+m[i],params,t+m[i],m[i+1]-m[i]) - prop1;

post2 = likelihood(Y+m[i],params,t+m[i],m[i+1]-m[i]) - prop2;

alpha = post2 - post1;

// metropolis-hastings accept or reject of new data

if(alpha>log(gsl_rng_uniform(r))){

for(j=m[i];j<m[i+1];j++){

for(k=0;k<D;k++){

X[j][k] = Y[j][k];

}

}

}

}

for(i=0;i<m[N];i++){

delete[] Y[i];

}

delete[] Y;

}
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A.3 Sampling Positive Definite Matrices

This section includes code for sampling positive definite matrices. The following

uses the non-central Wishart distribution, which uses code for computing the hy-

pergeometric function with a matrix argument.

double noncentralWishart(myMatrix& S, myMatrix& Mu,

myMatrix& Sigma, myMatrix& Theta){

int d = S.x();

double r,val,*p,q[1],E[d];

myMatrix Omega(d,d),iSigma(d,d),iTheta(d,d),Mut(d,d),A(d,d),B(d,d),Sc(d,d);

iSigma=Sigma;

iSigma.choleskyDecomp();

iSigma.choleskyInvert();

iTheta=Theta;

iTheta.choleskyDecomp();

iTheta.choleskyInvert();

Mut = Mu;

Mut.trans();

Omega = iSigma*Mut*iTheta*Mu;

A = -0.5*iSigma*S-0.5*Omega;

B = 0.25*Omega*iSigma*S;

B.calcEigs();

q[0] = d/2.0;

r = matrixHyper(20,2.0,p,0,q,1,B.getEigs(),d,NULL);

Sc = S;

Sc.choleskyDecomp();

val = A.calcTrace()+log(r)-0.5*log(Sc.calcDet());

return val;

}
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