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Abstract

This thesis is addressed to the rollowing fundamental
problem: given a homotopy class of'maps between compact
Riemannian manifolds N and M, is there a harmonic representative
of that class? Eells and Sampson have given a general existence
theorem for the case that M has no positive sectional curvatures
[~8 J. Otherwise, very little is known. Certainly no counter-
example has ever been established.

The most important contributiolSof this dissertation are
two: firstly, we have a direct construction technique for
producing some essential harmonic maps between Euclidean spheres.
Topologically, this consists simply of joining two harmonic
polynomial mappings (e.g., the Hopf fibrations). Analytically,
however, t~is method has a novel physical motivation: we study
the equation of motion of an exotic pendulum driven by a gravity
which chances sign. If this system has an exceptional
trajec~ory of the right sort, it defines a harmonic map of
spheres. One consequence or our theorem is that ?tn(Sn) is
represented by harmonic maps for n = 1, •••,7. Finally, the
rudiments of an equivariant theory of harmonic maps having been
set out earlier, we find that our examples can also be put in
this framework.

The seeond significant result which arose from this study
is a strong candidate for a counterexample: suppose Sn is
stretched to a length b in one direction to make an ellipsoid
En(b). Then if n ~ 3 and b is large enough, there is D2
harmonic stretching (of deir-eeone) of Sn onto En(b). However,
if b = 1 the identity is such a harmonic map, so it certainly
appears that the existence of a harmonic representutive in a
homotopy class can depend upon the metric.
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vie al so examine here a large co t I ec t.t on of examples of

harmonic mapt3 of' spheres which are def'ined by harmonic

po.l y nond eLs anti ortlJoE,onu.l mu'lt.f pLf ce t Lone , 'l'he last
chapter takes 1Jp tile study of' the Morse theory of' a harmonic

map: tlDlongst several pleasing results, we have an example
of a simple map whose index and. degeneracy can be made

arbitrarily large by.eg_ually simple changes in the metrics.
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Introduction

A fundamental problem in Id emannian geometry posed by
Eells ana Sampson in (~GJ is the following: given a
homotopy class of maps between compact Riemannian m~nifolds
N andN:, is there a harmonic repr'esentative of that class'?
As the theory of harmoni c mapp tm-e simultaneously gener-eli ses
the classical Dirichlet problem and the theory of geodesics,
the importance of this Cluestjon is self-evident. On the
other hand, this problem is neither linear nor one-dimensional
and is therefore much more poorly understood than its origins.

For example, there is no known case when the answer to
the above question has been proved to be negative (with
emphasis on the condition that lit be compact). On the other
hand, the basic affirmative result in the theory is this: if
M has no positive sectional curvatures, then every homotopy
class can be harmonically represented [Eti]. Unfortunately,
this condition excludes the most topologically interesting
compact manifolds, so our question is still wide open.

The object of this thesis is to enrich the theory ot

harmonic mappings by providing vast quantities of examples,
.together with a strong candidate for a homotopy class with no
harmonic maps. The title refiects the fact that most of our
constructions take place on the Euclidean sphere; certainly
everything in the thesis is at least motivated by the desire
to study harmonic maps of spheres, as shall be indicated.
Before explaining the contents more fully, however', we should
r-emark that two other basic q,uestions are raised and partially
answered by the examples. Firstly, what oan a harmonic map
look l1ke~ For instance, what can one say about the topological
behavior and d1f'feI'entialtopology of a harmonic map? One
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could also try to f'ormulate an equl6.istributlon theory f'or
harmonic maps. oecondly, where should one look for the
answer to the fundamental problem posed earlier? In other
words, a) can there ever be an all powerful analytical technique
(heat equation, variational calculus, or whatever) which will
produce harmonic maps on command, or b) if an obstruction
exists, will it be a homo topy property, or riill 1t more
properly be a f'unction of'the metrics? The example alluded
to above suggests that a homotopy class may be representable
for one choice of metric and not another.

Let us now outline the contents, and in 'so dOing try to
give substance to the foregoing extravagant r-emanks, In the
first chapter, then, are collected some elementary results
about the behavior of tension field which will bear significantly
011 the work to come. Also included is a longer section on
equjvarlant harmonic mappings, modelled after the treatment of'
minimal 8ubmanifolas by Hsiang and Lawson in (HLJ. The
basic new problem solved here is to find reasonable conditions
on an equivariant map such that the question of being harmonic
reduces to a problem on the orbit space (Theorem 1.3.5). It
turns out that some of the maps between spheres constructed
later can be interpreted in just this way.

The second chapter deals with maps between spheres defined
by homogeneous narmoritc polynomials. Having made the basic
observation that such maps are harmonic, we exhibit examples.
Most are inessential, but they are all geometrically interesting
in that they help Eive a picture of what a harmonic map can
look like. Certainly these polynomial mappings form a natural
testing ground for any proposed equidistribution theory.

Although the totality of such examples is too diffuse to
be catalogued here, a f'ew illustrations are in order: the
poly nomial maps of non.ogene Ity two are of particular interest,
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the Hopf' fibrations being examples. Some new examples
of this type are constructed; these factor over various
projective spaces to yield harmonic embeddinge of the latter
in Euclidean spheres. l'heorthogonal multiplications derine
some interesting maps of products of spheres; the complex
tensor product in particular gives some harmonic maps which
are closely tied to the Segre embeddings of projective spaces.
We also find that there is a natural correspondence between
such multiplicutions and certain geodesic spheres in Stiefel
manifolds.

The third chapter is really the core of the thesis. A
method is developed here for producing some essential harmonic
maps between spheres. The basic idea is to join two harmonic
polynomial maps so as to make the result harmonic (Theorem 3.1.1)
This problem is feasible because it can be reduced to stud.Ying
an ordinary differential eguation for the .join parameter. We
are able to study this equation successfully because under the
right trl:lnsformationof variables it becomes the equation of
motion of an exotic pendulum.

This pendulum is driven by a gravity which changes sign,
and the problem before us in physical terms is to make it
stand on end at t = cc and hang straight down at t = - 00. A
physical argument sets out the program for doing this, which is
completed in Section 3.2 under the assumption that the
equation is under-damped. This accomplished, a rather lengthy
effort is required to analyze the asymptotic behavior of the
machine and prove global regularity of the map.

A typical corollary of our main theorem is that ~(Sn) = Z
can be represented by harmonic maps for n = 1, •••, 7. This
was previously known only for n = 1,2 and for special reasons.
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The dimension restriction arises from the under-damping
condition mentioned above, and its significance has not been
determined.

Chapter 4 pursues the above method into the domain of
ellipsoids. The most striking result here falls on·the

nnega tive side: suppose::3 is atretched to a length b in one
direction to make an ellipsoid En(b). The conclusion is that
it n ')3 and b is Lar-geenough, there is m harmonic one-
parameter atr-e tchdng (of degree one) of'sn onto En(b)
(Theorem 4.2.4). Since the identity is such a harmonic map
for b = 1, it certainly appears that the existence of a
harmonic representative in a homotopy class can depend upon
the metric. Note furthermore that if there l& a harmonic
map of degree one in the former case, it cannot be found by
any reasonably general analytic techni~ue. For if such a
technique is fed symmetrical initial data, it will preserve
that symmetry throughout the deform~tion; ergo the result
cannot be harmonic by our theorem.

This chapter also contains an ODE construction of an
interestine harmonic map of the flat torus to 82• This map
has folos, behavior which is prohibited for complex analytic
mappings.

The last chapter t&kes up the EtUCy of the second variation
of the energy. The original motivation was to comput e the
Morse index of our maps of spheres, but this turned out to be
nearly impossible. However, the Morse theory of certain very
simple harmonic maps is definiteLy instructive. For example,
the second variation operator at the identity map happens to
have ,'J, long history in the theor-, of transformation groups;
howeve r, its 1'0.1\; han always I.J( ciJ. J.·';Hnermy~teriou8, and it

is nice to have here a unif'ied interpretution of its
significance. Using st anuar-dme tr.ous , we are also able to
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deduce some interesting relations between the index of the
identity, the Lie algebra S of conformal vector fields, and

"the spectrum of the manifold.
An even more interesting (and perhaps alarming) phenomenon

can be noticed when we study the Norse theory of the projection
in a trivial bundle. 'rhere are examples of such maps whose
index and degeneracy can be made arbi trarily laI'geby
modifying the metric on one factor. In other words, the
Morse theory of such u map can be completely pathological
(Example 5.3.4).

On the other hand, the behavior of holomorphic mappings
between compact Kahler manifolds is correspondingly good in
this regard. Such a map always has index 0, and in certain
cases one can verify that there are no degeneracies.

This thesis has benefitted immensely from the valuable
ideas and invaluable guidance of my official and unofficial
Aupervisora David ~lworthy and James Eells. I am also
indebted to Larry Markus and David Chillingworth for their
insight on differential equations at a crucial juncture in
this research.

Finally, I would like to thank the Marshall Scholarship
Commission arm the National Science Foundation for their
generosity, and my wife for her tolerance.
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Chapter 1
,iUALITATIVE THEORY OF HARi.,ONIC MAPPINGS

Section 1. Energy and Tension
Let us first recaptulate the well-known variational

characterization of harmonic maps. A more sel~-contained
presentation (in local coordinates) is available in the
original reference [ES]. Let N and M be smooth Rien.annian
manifolds without boundary, equipped with their Levi-Civita
connections. Assume that N is compact and oriented and, to
be reasonable, that M is complete. If f: N ~ M is a smooth
map, the ener&y of f is defined

Here df is considered as a section of the bundle of l1near
maps L(TN,f*TM), which inherits a metric from those of Nand M.
Thus at any 7rint X E N, IdfI2(x) = Zldf(ei)12 (x), where e1
is an orthonormal basis for TxN. The form ~l 1s the canonical
volume on N associated to the metric and orientation, and will
make no further explicit appearance.

Suppose now that ft is a smooth one-parameter variation
of f, with fo = f. Then ft defines a map F : N xnt ~M, and

where (-) denotes arguments in TN. An invariant theory ot

pull-back connections, as expounded in, say, Eliasson (Ei],
yields a quick calculation

~ = IN <~dF ( ~, -i. dF(-»

= f N < ~'d]l (-, ~), dF ( - ) >

= f N c '"¥t (-), dF ( -) >



Hence if w _ ort
- at t=o

oE I-at t=o

In general, the adjoint of a connection ~ is a generalized
divergence (see Eliasson (E2]), so that

JN<V w, df'> = IN - <w, Div df'>

This latter quantity
is generally denoted T(f), the tension field ot t. The map
f is said to be harmonic if T(f) = 0; equivalently, if f is
a critical point of E.

In general, the tension field is a vector field along f
which pOints in the direction of decreasing energy. Let us
examtne just two of its elementary properties. Firstly, it is
useful to contra~t the idea of a harmonic map with the more
rigid concept of a totally geodesic map; i.e., a smooth map r

\such that Vdf = o. Such maps are characterized by the
property that they carry geodesics to geodesics, as may be Been
by appeal to normal coordinates. In these coordinates such
maps are linear, whereas harmonic mappings merely satisfy
Laplace's equation 6f = 0 at the origin. One may perhaps think
of harmonic maps as preserving geodesics on average. This
requirement is more flexible, as illustrated by the following
observation due to Eells.

Lemma 1.1.1 Suppose f :X x Y ... )4 is harmonic with respect to
each variable separately; that is, for each x ex, r: Y ... M

is harmonic, and vice versa. Then f is harmonic.
Proof In an obvious sense we have -rCf)= Tl(t) + T2(f). The
assumption of the lemma is that TJf) = 'r2(f) = o.



8

Example 1.1.2 Let G be a compact Lie group with bi-invariant
metric, and let ~: G x G ~ G be multiplication. Then ~
is harmonic. In ract,~ is an isometry in each variable
separately. However, ~ is not geodesic unless G is abelian.

A number or similar examples or harmonic maps or products
of spheres can be found in Chapter II.

Another property of the operator T which will be very
useful later is the following:

Lemma 1.1 •.3 [ES] Let N c Idbe a submanifold with the induced
metric, and let f: X ~ N be a smooth map. Let F : X ~ Idbe
the map induced by inclusion. Then T(f) is the orthogonal
projection onto TN or T(F). In particular, f is harmonic
.. T(F) .L N.

~xample 1.1.4 a) Suppose N = 8n-lcllP = M. Then if f:X ~ 8n-l

and 1<' : X -+ If1is the induced map, we find that f is harmonic
~ llF ceF. Here II j s the Laplacian for f'unctions on X and
cc means "proport ional to". In fact, a short calculation shows
that IlF = IdF 12F must hold if f is harmonic.

b) Suppose f as above is defined by eigenfunctions
of ~; i.e., {).F = A. F. Then f is harmonic. Furthermore, it
therefore follows that Idf 12 :: A ; this does not, however, mean
that f is an immersion. Such examples form the subject of
Chapter II.

Section 2. Harmonic Fibrations
Suppose that E and B are Riemannian manifolds and that

ox: E ~ B is a differentiable fibre bundle. Then there is a
canonical splitting 'rE:: V G>H, where V consists ot the tangents
to the fibres, or vertical vectors, and H is the ortho-complement
of V (horizontal vectors). We w11l say 'X is Riemannian if
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d~IHx is an isometry for all x.
It is a theorem of Hermann [HR] that if ~ 1s Riemannian,

the unique horizontal lift of a geodesic starting at ~(x) is
a geodesic starting at x. Using this fact, Eells and Sampson
characterized the harmonic Riemannian fibrations:

Lemma 1.2.1 (ES] A Riemannian fibration ~ is harmonic ~
all fibres of ~ are minimal submanifolds of E.

Such a map ~ will be called a harmonic tibration. (The
general relat ionship between minimal submanifoJ.~_3 and harmonic
maps is discussed in the next section).

In this section we want to see how harmonic fibrations
behave under composition. In general, given a composite map
g 0 f we find that

T(g 0 f) = dg(T(f» + Trace Qdg (df,df)

Hence [ES], if f is harmonic and g is totally geodesic, then
g 0 f is harmonic. If, furthermore, df has nice properties,
we can do better. For example:

Lemma 1.2.2 If ~: E ~ B is a harmonic fibration and t : B ~ X
is a smooth map, then f is harmonic if and only it f 0 ~ is
harmonic.
Proof From the above, T(f 0 ~) = Trace Qdf(~,dK). Now form
an orthonormal basis for TE from bases for V and H; as dK
annihilates the former and transforms the latter into an

ortho-normal basis for TB, it follows that T(f 0 ~)(x) =f(t)(~(x)l
Hence the lemma.

Example 1.2.3 Suppose that ~: G x M ~ M 1s a smooth action ot

a compact Lie group G by isometries of M. For x EM, let Gx
be the orbit through x. Suppose further that there ls a fixed
metric on G for which ~x: G ~ Gx is Riemannian (up to a scalar
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multiple) for each x. Then ~ is harmonic if and only if
~x is harmonic for each x and each Gx is a minimal submanifold
of M.

The proof is Quite simple. Since G acts by isometries,
it follows as in Lemma 1.1.1. that ~ is harmonic if and only if
the composition G ~ Gx ~ M is harmonic for each x. If 'Xx is
harmonic and ix: Gx ~ M is harmonic, ix 0 'Xx is harmonic by
Lemma 1.2.2. Conversely, if ix 0 'Xx is harmonic, then ~ is
harmonic by Lemma 1.1.3. Hence ix is harmonic.

Application 1.2.4 Let 80(n+l) be given its natural metric.
Then 80(n+l) x Sn ~ Sn is harmonic, whereas SO(p) x Sn ~ sn,
for p ~ n, is not. In the latter case there are non-minimal
orbits.

Composition from the other direction does not work so
nicely. For example, let h: 83 ~ s2 be the Hopf map. Although
h is a harmonic fibration with geodesic fibres, h is not totally
geodesic. To see this, take two orthogonal vectors in
s3 c ~2 as follows: VI = (1,0), v2 -J~ (i,l). Then yet) =
cos(t) v1 + sin(t)v2 1s a geodesic 1n s3; however, using the
formula h(z,w) = (lzl2 - Iw12, 2zi), one can check that hOy
does not describe a geodesic 1n 82•

Therefore Proposition C, p. 132 in [ES] is incorrect;
this proposition states that if the harmonic fibration 'X has
geodesic fibres, then f : X ~ E harmonic implies 'X 0 f harmonic;
in particular, such a map 11: must be totally geodesic. The proof
rested on the assumption that one could choose coordinates on E
which simultaneously were normal coordinates and gave a
triviallzation of the bundle. In general, one can choose bundle
coordinates about a point which are normal in the horizontal
and vertical directions, but not throughout the neighbourhood.
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It appears that "G.ile two corollaries of the proposition
mentioned above, on page 133 of [ES], are false as well.

Suppose now that we are given a diagram
f

Eo E

?to
~ l 1t

Bo B
t

where f is a bundle map and ?to,?tare harmonic fibrations.
Note that by the previous lemma f 1s harmonic .. ?t0 f 1s harmonic

The next lemma may be cons1dered a replacement for
Proposition C above.

Lemma 1.2.5 Suppose that t is horizontal; i.e. dt(Ho) c H.
Then if either a) the fibres ot?t are geodesic

b) for each x e Ba, the map of f1bres
Fa ~ F 1s a Riemannian fibration,

x r(x)
it foll,ows that 11: 0 r 1s harmonic ...-r (f) 1s vertical. In

particular, t: harmonic implies ?to t harmonic.

Proof V\'ehave -r ( ?t 0 f) = d?t (-r (r) + Trace 'Vd?t(dt, dt) •

The object is therefore to show that either (a) or (b) torces
the second term to vanish. As usual, torm an orthonormal
basis for TEo from bases tor V0 and Ho. As df(Ho) c .H, note
first that it v E H, 'Vd?t(v,v)= O. This is because ?t

takes the geodesic determined by v to a geodesic in B; this
can also be verified in local coordinates (ct.(BS, p. l2~).
As f is a bundle map, df'(V 0) C' V• It the tibres ot ?t
are geodesic, then the same reasoning shows that "V d?t(w,w) :: 0

for WE V. This takes care ot case (a).
For case (b), we find that the relevant term becomes
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Qd~ is zero on H x H, this term is just T(~).
the lemma.

This establishes

Remark If f is the pullback of 1, then f is horizontal and
(b) is satisfied. (cf. the end of the next section).

Section 3. Egulvariant Harmgnic Mapa
The development in this section is motivated by a paper of

Hsiang and Lawson on minimal submanitolds ot G-spaces [Ht].

The idea is to examine the general theorems in their first
chapter and see in what sense "minimal submanifold" can be re-
placed by "harmonic map". Given this program, a certain amount
of original work is still required to carry it out successfully;
this centers around studying a certain decomposition ot the
energy of an equivariant map, and finding reasonable conditions
under which this decomposition is usetul. The interest of the
authors in [HL] was ot course directed towards the volume rather
than the energy.

It should be emphasized that only generalities are treated
here; this section is therefore in the nature of an exposition
of an interesting domain for further study rather than such a
study itself. On the other hand, we will see later that some of
the importan~ examples in this thesis tall naturally in the
category of equivariant harmonic maps (cf. Chapter III, Section 6).

so the collection of applications is certainly not vacuous.
Let us briefly recall the relationship between minimal

submanifolds and harmonic maps. If N is an oriented manifold
and M is a Riemannian manifold, an immersion f: N ~M ls said to
be minimal if f is a critical point ot the volume functional,
V· (f) = IN• It. Here *lr is the volume form on N canonically
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associated to the metric f* gM. (If N is non-compact,
we consider only compactly supported variations of f). Note
that any original metric on N is irrelevant, as only induced
metrics are considered. .However, suppose that N is given
the induced metric f*gM (so that f is now an isometric immersior~
Then it can be shown that f is minimal if and only if f is
harmonic as a map of Riemannian manifolds [ES]. Therefore
the notion of harmonic map is more general than that of minimal
immersion, in t·hatevery minimal immersion is harmonic in the
appropriate metric.

To proceed with the equivariant theory, then, let N and M
be Riemannian manifolds and let GI, G2 be Lie groups which act
smoothly by isometries on N and M respectively. A map
f : N~ M is said to be equivariant with respect to a
homomorphism cp: Gl ~ G2 if f(glx) = cP (gl)f(x) for all
gl e Gl, x eN. The following is obvious:

Lemma 1.3.1 If f is an equivariant map, so is the tension

A straightforward generalization of Theorem 1 in (HL]
now yields

Theorem 1.3.2 Let f: N ~ M be an equivariant map. Thenf
is harmonic if and only if ~(f)is stationary with respect
to all (compactly supported) equivariant variations.

Our object is to use this theorem to reduce the question
of whether f is harmonic to a problem concerning the orb1t map
f: N/Gl ~ NV~2. One, conclusion will be that this is not always
possible; this contrasts with the case of minimal immersions,
where such a reduction can always be made [HL; Theorem 2].
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From here on we develop the machinery for some sufficient
conditions.

Suppose that the groups Gl and G2 are compact and
connected. Hence the principal orbits ~orm an open dense set
in N, say N*, and the map ~:N* ~ N*/Gl is a smooth fibre bundle.
Assign N*/Gl th~ unique metric under which ~ becomes a
Riemannian fibration. (These pOints are discussed in more
detail in [HLJ). Let V: N*/Gl ~lR be the volume ~unction;
i.e, Vex) is the volume of the orbit i c N. It is well known
that if • is a function on N* which is constant on orbits, then

t V

To get a good decomposition ot the energy of an equivariant
map, we need a turther condition on the group actions; namely,
require that if x and yare orbits in N and M and f: i ~y

is an equivariant map of these transitive G-spaces, then
Idf 12(x) is a coneuant ; independent ot x e i and tJ and
depending only on x and y. Since it turns out that the
homomorphism ~ : Gl ~ G2 plays a key role here, let us say that,
is orbit-ener&7 preserving (with respect to the group actions)
if the above condition is satisfied. Denote by y(i,y) the
orbit-energY function in this case.

Lemma 1.3.3 Suppose Gl and G2 can be given bi-1nvariant metrics
so that (up to scalar factors) the following aaps are
Riemannian f1brations:

a) for each x e N, ~x • Gl ~ Glx = the orbit through x•

b) for each y e K, ~y · G2 ~ G2y•

c) ~ • Gl ~ G2.
the scale factors in (a) and (b) being allowed to vary from orbit
to orbit. Then , 1s orbit energy preserving.
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Proof Let f: x -+ y be a cp-invariant map of o:rbits. Via
(a) and (b) we may assume (up to scale factors) that f is of
the form

(where these manirolcs have their natural metrics), and
satisfie,s f(g's HI) = cp(g') f(gH).
f(Hl) = aH2, then f(gHl) = cp(g) aH2

In particular, it
for all g. Hence we have

the diagram
{i'

Gl G2

?Cl 1 1 ~

Gl/Hl ._ , G2""H2

f

where F(g) = cp(g)a. If Ra denotes right translation by a, it
follows that

for any ~ such that xII = x.
is Riemannian, so that

IdfI2(x) = ~ Id(?t2 0 F)(vj) 12 (I)
J

This is because, firstly, ~

where v j is an orthonol'mal basis for the horizontal space at :f;

secondly, F is a bundle map, so that d(~2 0 F)(w) = 0 it ..
is a vertieal vector. But now as q> is Riemannian and Ra.

is assumed to be an lsometrj' of G2, we find

Idfl2 = Id?t21
2

which is a constant, as x2 is Riemannian.

Remark 1.3.4 The essential non-metric requirement of the lemma
is that the homomorphism cp be surjective. For an easy counter-
example in the ease cp is not onto, let q> : SI -+ SO(3) be the
inclusion of sl as the subgroup of rotations 1n them2 _plane
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Let Sl act on itself and let SO(3) act on S2. Def'ine
equivariant maps f,g : sl ~ 82 as follows: f' is the inclusion
of sl as the great circ~ in the lR2-Plane, and let g be a
parallel non-geodesio cirole. Then f is harmonic whereas g
is not. However, f and g are indistinguish&ble at the orbit
level. Note also tLat the energies of'f and g are not the same.

It is theref'ore quite obvious that in general the orbit
epace to study is not M/G2 but MlfGl).

Now assume that f: N ~ M is a cp-equivar1ant map, and that
cP is orbit energy preserving. At any x eN we can write

Idf(x)12 = Idf(x)GI2 + 1df'(x)~12
where dfG refers to derivatives in the orbit directions and
df~ to normal derivatives. If 1: N/G1 ~ M/G2 is the orbit
map, then by assumption

where Y is the orbit energy :function. For normal derivatives,
assume that x and f(x) lie in prinoipal orbits, 80 that f is
differentiable at x. Let us write

= Idf(x) 12 +

Here ISkew dfl2 measures the extent to which dt takes vectors nor-
mal to the orbit into vectors Which are no longer normal.
Precisely, it ~G is projection onto the tangent apace to the

2

orbit in M, then

Since the normal vectors are precisely the horizontal vectors
with respect to the projections ~l and ~2 (ct. Section 2),
then f' is horizontal if and only if'Skew dt • o. Under the
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assumption th'at f(N.) c M., we get

Suppose now that ft is an equivariant variation at t

which differs from f only in a compact subset of N.. Then
ft(N.) CM. for small t, and the above formula is valid tor
such ft. Finally, assume that y is smooth on If./G1 ~ »./G2,
and that the map f is a critical point of' the tunctional
fN.lskew dt12• This latter assumption removes the last
obstacle to reducing the problem on N. to a problem on
N./G1; it 1s satisfied, clearly, it t is horizontal.

if' w -~~ It=o
Hence

=J (2<~,dt> +< grady(i,f(i», (0,i)>v(i)
N-YG1

=S, <-2~(t)+ grad y(i,t(i»,i> V (x)N*/Gl Y./G2

where T (1) = Trace v_ (vdl'VV. Since t is harmonic~ tiN. is
t

harmonic (as N. is dense in l'i"), and since there is a one to one
correspondence between equivariant variation fields. upstairs
and variation tields W downstairs, an application ot Theorem
1.3.2 yields

Theorem 1.3•.5 Suppose that q>: Gl .....G2 is orbi t~energy preservi~
with respect to the actions of G1 and G2 on Nand K, and that
the orbit energy y is smooth away f'rom the singular sets.
If'f: N .....M is C2, equivariant, and horizontal, with t(N.) C l.i.,

then it follows that :f' is harmonic~ rIN*/G1 satisties
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Q.Q.rollary1.3.7 If the functions y and V are constant, and
f : N"'" M is equivariant and horizontal, then f is narmont c
# f is harmonic.

Equation 1.3.6 will be called the eguivariant tension
equation. Examples will be seen later in which it is solved
and sufficient regularity at the singular set demonstrated to
give harmonic maps upstairs. For the time being, let's just
mention an applicationoe the Corollary.

Example 1.3.8 Suppose G acts on M so that all orbits are
G-+ G Is a Riemannian tibrationx

for each x e lA (with respect to a fixed bi-invariant metric on
isometric and the map ~x

G). Then M* = M and 1(,: M -+ M/G is a harmonic fibration (all
orbits have the same volume and are therefore minimal
( HL, Thm. 2J). If f: X .....~G Is a smooth map, then there is
the diagram

14

1
x M/G

f

Assuming X Is also Riemannian, there is a natural pull-back
metric for f*.ij i.e., that induced by the inclusion

It Is straightforward to
check that f$ 1(, is a Riemannian fibration and that f$ is
horizontal. The G action on lA also pulls back to an action on
r*M which is as nice as the original, and f$ is equivariant
with respect to idG. Furthermore, X = f*~G. It tollows by
the Corollary (and Lemma 1.3.3) that f is harmonic~ t» is
harmonic. Note also that f$ ~ Is harmonic, by the same
reasoning as for ~; however, our conclusion is stronger than
that in Lemma 1.2.5.
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This example is a natural generalization of Theorem 4
in [HL], where the map f is assumed to be an isometric
irflmersion. In other words, X is a minimal submanifold of
MIG if and only if ~-l(X) is minimal in M.

As a conclusion to this section, let us give a simple
exaiup Le to show that unless the equivardant map f is
horizontal, we cannot get any informa tion from the orbit map
f.

EXLiJllple1.3.9 Let SI act on SI x SI by multiplication in
the first factor. A map f: sl x Sl ....Sl x Sl of the form
f(x,y) = (g(y}x, y), where g 81""81, is equivariant with
respect to the identity on SI; furthermore, all such maps f
are the identity on the orbit level, and id 1 is orbit-energy

S

preserving. However, it is clear that some such maps fare
harmonic while others are not.
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Section 1. Spherical Iiaralonics
Recall that a spherical harmonic of degree k is a

homogeneous harmonic polynomial o~ degree k de~ined onlR-.
I n-l .If f is such a po.Lynond a.L, then f S satisfies

= k(k + n - 2) flsn-l

which 1s a standard computation. In other words, tlSn-l is
an eige~unction of 6sn-l. It is a theorem that all eigen-
f'unctions o~ l1Sn-l arise this way (see Berger [B, p. 159 ttj).

Each eigenspace v~ has the usual L2 inner product; it was
observed by do Carmo and Wallach [DW] that i~ fl ••• fp is
an orthonormal basis for V"l\, then F = (fl ••• ~p) defines a
minimal immersion of sn-l in a higher dimensional sphere.

For the pur-po ses of'studying harmonic mappings, the most
useful observation is this one:

Lemma 2.1.1 ouppose P : Sn ~ Sm is defined by harmonic
polynomiills of homogeneity k , Then P is harmonic.
Proo~ As l1 n P = AP, this is just ~xample 1.1.4.

S
Are there examples other than the minimal immersions?

The answer is definitely yes, as will be seen in the ensuing
collection of second oruer polynolLii:llmappings.

Example 2.1.2 Let F : Rn x Rn~ Rm be an orthogonal multipli-
cation; in other words, F is bilinear and IF(x,y)1 = Ixllyl.
Applying the Hopt construction to F yields a polynomial map

H : s2n-l ~ Sm

defined by H(x,y) = (lxl2 - lyl2, 2F(x,y»). Then H ls
homogeneous of degree 2; ~urthermore, as there is the same
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·number of squares in Ixl2 as
H takes values in Srnbecause

2in Iyl , H is harmonic. Finally,
IH(x,y)12 = (lxl2 + IYI2)2.

If F is taken to be multiplication of complex numbers,
quaternions, and Cayley numbers successively, we see that the
Ropf fibrations s3 ~ 82, 87 ~ s4, S15 ~ SO are all harmonic.

Or·thogonal multiplications will be discussed more fully

in the next section. Be ror-e proceeding with mor-e examples,
let us mention an interesting theoretical pr-ob.leni which
already presents itself: given a general eigenspace of
spher·ica.lharmonics, vA., we know from do Carmo and Wallach that 1

fl ••• fp is an orthonormal basis, then in particular
Zf i2(x) = c, a constant. Suppose on the other hand that some
subset fl ••• fq also defines a map of spheres; i.e.,

Hence (tq+l ••• fp) alao must have constant

norm and define a harmonic map of spheres. One can also ask
whether VA breaks up any further in this manner.

Problem: Classify the decompositions of VA into norm-
preserving summands.

On the other hand, such decompositions do not give all
possible examples:

11.xample2.1.3 There a.reeRsentlally two orthogonal multi-
plications of R2 x ~2; namely, complex multiplication t x C ~ ~
and the real tensor product R2 x ~2 ~ ~4. By the Hopf con-
struction we get harmonic polynomial maps·s3 ~ 82 and 83 ~ S4
respectively. In the firat case, the three polJnomials
defining the map have the same L2 length and are mutually
orthogonal. In the second case the components have aifferent
L2 norms; therefore the latter map does not fit into the
classification proposed above.



22

Let h : ;:.;3 _. 82 be the Hopf map, defined by an orthonormal
set of 3 spherical h~rmon1cs. Aecording to the formula in
Berger LB J, the entire Dpace of second oreierharmonics 1s
nine-di.mensional; hence there must be a complementary mapping
hi: ~3 _.~5. Here it is:

~xample 2.1.4 If points in U3 are p~irs (z,w) of complex
numbers, a.efineh4.: 03-+ s5 by

h.l..( ) (2 2 2 2 . /. -)
Z , W = Z 1-z2' 2 ~lZ 2' w1 - w2' 2 \II lW 2' v2 zw

N t h t h h . th 1 i 1 zw to h~o eta we ave c osen to assIgn e po Jnom a
and zw to h; as these roles could easily be reversed, it is
clear that decompositions of eigenspaces will not generally be
uni '-iue.

As h~ is Quadratic there is a natural factorization
83 h.J.~ s5

~ 1 .>.
IRP3 h

-.1-'Meclaim that h is a hamonic eIllbeddin,g. It is clear enough
-.1.that h is harmonic, as h is harmonic and ~ is a Riemannian

covering (a special case of a harmonic fibration). The proof
-.1that h is an embedding can be read off from the next example.

Remark 2.1.5 a) h~ is not isometric, so it would appear that
the image is not a minimal submanifold.

b) h.J.. is a spec Ia L case of the following generality:
if' f: sP_. sq and g: or -+ ;:ls are second order harmonic poiynomlal
maps, and B': mP+l x TUr+l....-ron l'S an..Ln oW. orthogonal multiplication,
then there is a harmonic polynomial map h: sp+r+l _.89.+s+n+1

defined by
h(x,y) = (f(x), g(y),v2 F(x,y»

'l'henorm condition is satisfied since by homogeneity,
2 :

If(x) I = Ixl4 and similarly for g. In the case at hand, f
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and g are given ?y the Hopf construction applied to real
multiplication, and F is complex multiplication. This suggests:

Example 2.1.6 Define a map f: s7 ~ S9 as follows: if pOints
of 87 are pairs (z,w) ot quaternions, and each quaternion z has
complex components (zl,z2) (i.e. z = zl + z23), then let

We claim there is a factorization

S7

~l /_
(tP3 f

f'

in such a way that f is a harmonic embedding. We will show
first of all that r( z,w) = f(x,y) .. (z,w) = ~ (x,y) tor some
~ e Sl. The action of Sl is the usual one and is consistent
with quaternionic multiplication; i.e. ~x = (~x1' ~x2).

60 suppose f(z,w) = f(x,y). As with the Hopt map S3 ~ 82,
1this forces z ::AIX, w = ).2Y tor ~1'~2 E S. Also,

x riA. 2Y = xs , so that as long as x ~ 0, y F 0, 1:"iA.2 = land

In case, say, x = 0, we are done already. As the

converse is trivial, t is well defined aDd one-to-one.
Since tp3 is compact, we now need only that t is an

immersion. It suffices to show that it dt("1) • 0, then "1

is a vertical vector. So suppose "1= (u,v) is tangent toS7

at (z,w), with z # 0, w ~ 0, and that dt(~) = O. Since the
extended Hopf map lR4 ~ m3 is·a nice sub~ersion away from 0,
it follows that u is tangent to the circle through z. Similarly
for v and w. In other words, u is a real multiple at iz and v
1s a real multiple of iw. It remains to show these real
numbers are equal. However, anothe r consequence ot dt("1) • 0
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is that zv + uw = O. From this relation the desired
conclusion rollows easily. In case z = 0, the same
equation rorces u = 0 and we proceed as before.

That f is harmonic follows from the fact that f is
harmonic and Lemma 1.2.2.

The previous examples can be generalized as follows:
if 84n-l is the unit sphere in the space of'n quaternionic
variables, there is a diagram

f

/
f

where f is again a harmonic embedding. The definition of r is

A similar construction is valid in the real-complex case"

2n-lS

" 12n-1IRP

2
---~8n +n-l

fyielding

/_
f

where r ls a harmonic embedding.

Let us give a final instance of the beautiful mappings
which can be found by merely looking around.
Example 2.1.7 One of the standard minimal immersions is the
Veronese mapping 82-+ 84, which defines an embedding of IRP2
as the Veronese surface in 84. Using the same formula, with
complex variables substituted for rea~ ones, we obtain
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where f (you guessed it) is a harmonic embedding. The
formula is in fact

I
f (x ,y , z) = (xy,xi, yi , H [x12 -I z.12), 2v3( Ix 12 + 1y 12 - 21z 12»

The verification that f is an embedding proceeds along the same
lines as before and is omitted.
this example is also valid.

The quaterriionic analogue of

Section 2. Orthogonal Multiplications
The orthogonal multiplications are quite useful in

constructing examples of harmonic maps. One possibility
has already been mentioned as Example 2.1.2. Before plunging
ahead, let us agree to abbreviate the phrase "an orthogonal

nIl' Pmultiplication F:]R le \R .... lR u to "an F(n,m;p)" where
convenient.

Recall that in 2.1.2 we needed n = m in order to make use
of an F(n,IniP). However, they can all be used in the following
way:
Lemma 2.2.IGiven an F(n,m;p), the induced map F:Sn-lxSm-l ....SP-l
is harmonic.
Proof With respect to each variable separately, F i8 a
geodesic embedding; hence F is harmonic by Lemma 1.1.1.

A nice generalization of this lemma is the next observation.
Lemma 2.2.2 Suppose F:Sn x srn .... sP is a homogeneous harmonic
polynolilial in each variable separately. Then F i8 harmonic.

Exanlple 2.2,,3 Think of 83 !lethe unit quaternions and of 82
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as quaternions whose real part is o. Then there is a map
F : ~2 x 03 ~ 82 defined by F(x,y) = ¥-KY. A short
computation shows that if x is fixed, FX: 83 ~ 82 is a torm
of the Hopf map and is a harmonic polynomial. Thus F is
harmonic. It is known [BS] that applying the Hopf construction
to F (in the topologist's sense) yields the generator of
'.It 6 (83) = Z12·

We remark that the ortho£onal multiplications pose an
interesting classification problem: the only thing known at
present seems to be that there exists an F(k,nin) if and only if
nIR can be given the structure

where Ck is the kth Clifford
of an (ungraded) Ck_l module,
algebra. The dimensions k and n

for which this can occur have been completely determined (aee
Husemoller [HU]). In this section the general problem is
merely given a more precise formulation.

To be~,in with, note that if we have an F(n,miP), then there
must also be an F(rn, sm; rap) for all positive integers r,s:
if the first multiplication is written vw, the second can be
written

To check the norms, we have

This operation may be viewed as a sort of tensor product
associated to F (cf. ~xamples 2.2.6 - 8); more generally, we
could operate on each pair (vl'wj) with a different Fij• At
any rate, as far as classification is concerned, we clearly need:
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Definition 2.2.4 A multiplication :B'(n,ll'I;p)is said to be
left reducible if there is an orthogonal splittinglRn = ve w
such that F(V,lIRa; .J... F(W, mID); otherwise, F is left irreducible.

Right reducibility is defined similaI·ly. F is
iI'reducible if it is left and right irreducible.

Problem: For what integers is there an irreducible F(n,miP)?
It is clear that any multiplication can be decomposed into a
matrix of irreducible components in an obvious (but perhaps
non-canonical) way: simply perform right and left reductions
alternately until the process terminates. 'Therefore an
answer to the above restricted question would provide the most
natural solution to the general classification problem; hence
some more manageable characterizations of irreducibility are
needed, and we have nothing to offer here.

As the Clifford Dlultiplications F(k,n;n) furnish a large
supply of orthogonal multiplications, one might also ask if
there are any examples of an irreducible F(n,miP) which does not
arise by restriction from an F'(n,piP) (or F(p ,IDiP» • In other
words, this is an extension problem. Again, we have no
suggestions to make here. We remark, however, that the non-
singular multiplications in exotic dimensions constructed by
Adem, Lam, and others [.A.J are not orthogonal.

Another reasonable sounding project would be to attempt a
finer classification along these lines: given n,m, and p, we
ask how many F(n,m;p) there are, up to orthogonal substitutions
in all three Euclidean spaces. However, this problem does not
seem to be solved even in cases where the answer should be
obvious:

Example 2.2.5 Let us exhibit two non-isomorphic,multiplications
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F(5,8j8). For Fl we take Cayley multiplication restricted in
the first variable to any 5-plane. F2 will be defined by
writing down four anti-commuting complex structures on ]R8 = ru:2,
say el ••• e4; setting eo = I, we get F2(5,8;8) by linear
extension in the first variable (cf. Husemoller (nu]).

Therefore set
el(x,y) = (iy,ix)

e2(x,y) = (jy,jx)

e3(x,y) = (ky,kx)

e4(x,y) = (-y,x)

This construction, due to Vranceanu (V], gives four orthogonal
vector fields on 87; he shows furthermore that another
orthogonal field cannot be added to this system. Hence F2
does not extend, whereas PI obviously does. Therefore Fl and
F2 are not isomorphic (in the sense mentioned above).
Added in Proof' llM.s example is incorrect. The structure of
JR.8 as an ungraded C4 mcuu.le is unique, and isomorphisms between
structures can be assumed isometries (M, p. 143]. Thus
Vranceann's theorem is also incorrect.

Putting theoretical considerations aside, we continue to
hunt for interesting harmonic maps. As it happens, the tensor
produet discussed earlier produces a series ot charming examples.

Example 2.2.q Let us take first the real tensor product, which
is an F(n,mjnm); here (v,w) ~ v 8w. (viWj).
a diagram of harmonic mappings:

There results
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8n-l x Slfl-l f sIUn-l

1
<, -:

K

-: n,m

<,
:ffipn-l x mPm-l lRPnm-l

Here f is an isometric (hence minimal) immersion whose image
lies in no hyperplane; 1.e., f ls f1!.ll in the terminology of (.l)(rJ.

The map f is 8. har-mom c embedding of lRPk-l x lRPm-l as the
minimal algebraic submanifold of n x m matrices each of whaee
2 x 2 sub-determinants vanishes. The manifold Kn,m is the
quotient 8n-l x sJH-l/SO, and all other maps are the evident ones.

We first prove f is isometric; 1.e., that df at any pOint
sends an orthonormal basis to an orthonormal set. Since f is
induced from F, which is an isometry in each variable separately,

. n-lit suffices to show that if Yl and Y2 are tangent to Sand
Sm-l respectively, then <df(Yl)' df(y2» = O. Therefore let
x = (v,w), Yl = (u,o), Y2 = (o,t), with <u,v> = <w,t> = o.
Then dfx(Yl) = dFx(Yl) = (uiwj), and dfx(Y2) = (vitj). Hence

It will be clear from the next example, however, that this
conclusion (l.e. f isometric) is not valid for general
multiplications.

The algebraic statement can be proved this way: it is
clear that it'a matrix A is given by (A1j).= (v1wj), then

= = 0 Vijkl
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Conversely, we need that if A is a matrix satisfying these
conditions, then A = (viwj) for some vectors v and w. The
proof is by induction: as the case n = m = 1 is trivial,
assume it is true for (n-l,m). Then there is a (vI··. vn_l)

'~·'r'e must choose vn to satisfy vnw! = Ani 'Vi. In other words,
we must verify Ani/w i = l~nj/Wj for any i,j such that
wi -! 0, Wj # 0 and simultaneously check that Ani = 0 if wi = o.
There are two cases:

a) vm ~ n-l, vm = o. In this case put vn = land
wi = Ani Vi (throwing away the former w).

b) 3m' n-1 such that vm # O. Suppose that wi ~ 0, wj# O.

Then by assumption Ami Anj - Ani Arnj = vm wi Anj - Ani vm Wj = O.

Now suppose wi = O. If there is
some Wj ~ 0, Ani = 0 by the same formula.
vn = I and wi = Ani \ii•

If w = 0, again put

The induction on m is similar.
Finally, we should check that f is one-to-one. In other

words, if (v1Wj) = ±(XiYj), then v = ± x and w = ± y. As a
similar statement is proved in the next example, the verification
is omitted. Note also that if v ® W = x ® y, then
(v,W) = ±(x,y).
of snm-l.

Hence Kn,m is embedded as a minimal submanifold

~ecial Case: Let n = m = 2. It is easy to see that Ka 2. ,
is a torus and is embedded as a copy of the Clifford t~us in 83•

The Clifford torus may therefore be characterized as those 2 x 2
real matrices which are singular and of norm 1.
E;xample 2.2.7 The complex tensor product (z,w) H Z ® 'Ii gives
a similar diagram of harmonic maps:
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~

S2nm-l

~
(Cpnm-l

Here f. is an isometric holomorphic embedding and is known as a
Segr~ embedding, after its originator. As before, cpn-lx~m-l
is embedded as the minimal ~lgebraic submanifold of n x m complex
matrices each

Cmanifold Kn,m
A(Z,W) = (AZ,rW).

of whose 2 x 2 subdeterminants vanishes. The
is the quotient s2n-l x s2m-l/sl, where sl acts by

K C is harmonically embedded (non-isometri-n,m
cally) as an algebraic minimal submanifold of s2nm-l.

Note that the maps ~'~l x ~2'u and ~ are all harmonic
fibrations, with geodesic fibres. The first three are harmonic
fibrations by definition of the metrics on their images;
similarly ~ is Riemannian and ~.0 ~ = ~l x ~2 is harmonic implies
~ is harmonic by Lemma 1.2.2. By Lemma 1.2.2 we also see that
y = f o~ is harmonic, because f is a holomorphic map of Kahler
manifolds and is hence harmonic [ES]. Similarly 0 0 a = f is
harmonic, so 0 is harmonic. Thus all maps are harmonic. In
fact, as O(K t) is minimal, 0 1s also harmonic with respect ton,m
the pull back metric on K Cm.n,

So now assume f(z,w) = r(x,y);
u ~-lThen vi such that Xi F 0, Yj = Xi That is,

y ::A. w for a scalar A of norm 1. Similarly, we find
x = ~, with A = w.y~l for all j such that Yj F o. In

J J
conclusion, f(z,w) = f(x,y) if and only if (x,y) = (~'AW) for
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some scalar 'A. 01:' norm 1. (Note ~u.al" ",nis computation works
as well ~or quaternions.) There~ore 0 is injective. That
6 is an immersion (but not isometric)~ollows in a manner
similar to the calculation below.

Let us check that f is isometric. To do this, we will
show that if Y is horizontal with respect to ?tlx 'Jt2, then
df(Y) is horizontal with respect to ?t and Idf(Y)I = lyl.
Suppose this can be verified at some pOint x = (x1,x2) in

Then given any other point y = (Y1'Y2)' choose
unitary operators Ul,U2 such that Uixi = Yi.

that f ~ (U1 x u2) = U1 C!>' U2 • r, and similarly for the induced

It is clear

maps of projective spaces.
isometries (and induce isometries), the desired condition
must also hold at y.

A typical vertical vector
is (Xiek, ~iet); horizontal vectors are thus of the ~orm (z,w),
with zk = "t = O • Thus for a horizontal vector

.L dfx ( z , w) j i j = w j i = k, j ~4

= zi 1 ~ k, j = t

= 0 otherwise

In particular, the (k,t) component is 0, so df(z,w) is
horizontal with respect to?tj it is also evident that
Idfx(Z,w)12 = IzI2 + Iw12, which concludes the proof that t is
isometric. Tkat f is a holomorphic embedding is easily
verified, and the algebraic characterization is valid as in
the real case.

It is well known that complex Bubmanito1ds of Kahler
manifolds are Kahler and minimal. Hence Cpn-l x epm-l is

minimal in tpnm-l; there~ore O(Kn~m) is minimal in S2nm-l, as
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it is the inverse image of a minimal 8ubmanlfold unner ?t

(see e.g. ~xample 1.3.8).
Example 2.2.8 Repeating this process for the quaternions
gives a d.iagram

4n-l 4m-lS x S
f

We are missing f because it is not well defined. The
Ii is defined the quotient 84n-l x s4m-l/S3manifold Kn as,m

(cf. the previous example) • All maps are still harmonic,
except perhaps y: before we used the fact that y = f 0 ~.

In fact, y is not generally harmonic. To demonstrate
this, we will give an example in which ?to t is not harmonic;
therefore y 0 ~ is not harmonic, so y is not harmonic by
Lemma 1.~.2. The exam~le is the composition

83 x 87 f
-+

1t
-+ = ffPl

which is the po Iy norrf.a L

For fixed q , H is a hai-monf,c polynomial in (x,y). Hence, as
in Lemma 1.1.1, if for some fixed (x,y) the induced map
ti3 -+ 84 is not harmonic, we can conclude that H is not harmonic.

Choose (x,y) = (1/v2, (l-j)/2), and represent q = z + wj
for complex z and w. The second term in H is like

However in general we have
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Lemma 2.2.9 Suppose H : Sn ...Srn is a homogeneous polynomial;
then H is har-morid c if and only if'at each point x E Sn
llH(x) is proportional to H(x) (where II is the },;uclidean
Laplacian) •
Proof' rhis is immediate from Example 1.1.4 (a) and the first
formula in this chapter.

Applying this lemma to the polynomial written above, we
see immediately that B cannot be harmonic. This concludes
Example 2.2.8.

To end this sect ton , let us write dOY'n some maps which
behave a little differently from those considered so far.
Applying the Bopf construction to the real tensor product

P lRP
2

lRP x m ... gives a diagram

S2p-l
L

mP2p-l

h

Operating similarly on the complex tensor product (z,w) ...z ® w
yields harmonic m~ps:

h
S2p2S4p~1 l)

1 -:2p 1GP - h

If the arguments upstairs are (x,y), then in e~ch case h is an
immersion away from the planes x = 0 and y = 0, and. is singular
at these planes 'ifp > 1. In the,cases p = 1, h is z ...z2
on SI and the Hopf' map 83 ... 82, respectively •
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oection 3. Mappings Associated to Orthogonal Multiplications

In this section we study the geometry of maps into Stiefel
and GraSSlJiannmanifol<is which ar-e canonically associated to
any orthofonal multiplication. The main results are:
a) the existence of a one-to-one correspondenne between the
multiplications and nicely embedded spheres in Stiefel manifolds;
and b) the fact that the (harmonic) fibration Vn,p ~ Gn,p

is not totally geodesic. The import of the last statement
for the theory of harmonic maps is ~hat most (but not all) of
the canonical maps between spheres and Grassmanns are not
harmonic.

Let us first consider V p' the Stiefel manifold of p-framesn,
in n-space. Assume that the metric on V p is normalized son,
that the natural embedding

.n-l ~n-lV ~ S x ••• x ~n,p (p times)

is isometric. Our object 1s now to pI'ove:

Proposition 2.'.1 There is a 1-1 correspondence between
multiplications F(k,Pin) and p-isometric eD'lbeddings
f: sk-l ....Vn,p which satisfy f(-xo) = -f(Xo) for some point
Xo in Sk-l.
Proof The correspondence is given trivially in one direction
as follows: given a multiplication F: mk x mP ... mn, let
LUI ••• up] be the standard frame for mP and let

f(x) = [F(x,ul), •••, F(x,Up)J.
the conditions above.

It is clear that f satisfies

Remark 2.3.2 It is clear also that if y is a geodesic in Sk-l,
then each component of'f 0 y is a geodesic in Sn-l. Hence f 0 Y
is a geodesic in Vn,p' The embedding f 1s therefore totallY
geodesic (and hence harmonic).
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To prove the converse we need

Lemma 2.3.3 Sup"pose a map f = (fl ••• fp): Sk-l ....V n,p is

given, satlsf~ing this condition: k-lif eo.l. el in S ,then
for all i,j

Then f defines an F(k,p;n) in a natural way.
kProof Define F::ut x ]RP.... ]Rn to be the bilinear extension

of (ei,uj) ....fj{ei). Suppose u ls any vector in Sp-l.
Then F(ei,u) is a unit vector by construction. To prove the
lemma, it therefore suffices to show that F{ei,u)..L F(ej,u),i F j.

But if u = ~ akuk

+ k~'aleat< }i' ( e1'uk)' F (e j ,u, )>
= ~ a~\ fk(ei) ,f'k(ej)> +Z aka.< f'k(ei),ft (ej) >

k ~l

Each term in the first sum is 0, and those of the second cancel
in pairs. This proves the lemma.

k-lNow suppose we are given f: S ....V as in the statementn,p
of the proposition. We are going to show that it y is any
geodesic in Sk-l, then fi or is a geodesic in Sri-l for each i.
It will fUrthermore become clear that fi preserves are length
(cf. Remark 2.3.2)

There-
fore first let r be a geodesio of unit velocity between Xo and
-xo• Hence for is a path from f(xo) to -f(xo) ot length p~.
This ls clearly the distance between f(xo) and -f(xo) in
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Vu,p' and can only be achieved by a path which is of length
1t on each sn-l (between two antipodal point·s). Hence
fi 0 Y is a geodesic on Sn-l of unit velocity for each i.
If this argument is repeated on following y back to xo' it
follows that f(-p) = -f(p) for all p on Y (since this is true
for each fi).

Now note that since Sk-l can be filled out by such
geodesics y, we get f(-p) = -f(p) for all p e Sk-l. Finally,
this allows us to repeat the above argument with respect to

k-l~ geodesic in S , and thus get the desired conclusion.
The last thing we need for the proposition is a property

of orthogonal geodesics:

Lemma 2.3,~ Let Yl(t), Y2(t) be unit velocity geodesics in Sn
satisfying\Yl (t),y2(t» :: O. Then

<'Yl(t),Y2(t + 11:/2») + <yl(t + 11:/2), Y2(t» 'i! 0

Proof: Without loss of generality we may assume
Y 1(t) = cost el + sint e2
Y 2(t) = cos t v + sin t u

where
v = ae2 + be3
u = -ael +. ce4

The lemma follows by direct calculation.

To prove 2.3.1, now apply ?3.3 as follows: if eo~ el in Sk-l,
let Y. be cne unit velocl ty geodesic in the plane of eo and el•
Given integers i ai«...j, .Let Y1 = 11 0y lindY2 = fj 0y;

Then Yl and Y2 are unit velocity gI;:OUt.:a:i.~s ')l.I. Sn-l iJ~T "the
arguments above. The condition of Lemma 2.3.3 is immediately
satisfied if i = j; if i I j, Yl and Y2 are orthogonal (since
fi Is a coordinate in a Stiefel manifold), so 2.3.4 applies.
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This proves Proposition 2.3.1.

For the second part of our study, we need Wong's
characterization or geodesics in Grassmann manirolds:
'rheorem 2.3.5 ["GJ rt C G r is a geodesic if and only if then,
one-parameter family of r-planes satisfies

a) all pairs of r-planes in r have common angle 2-planes
b) the r angles between two nearby r-planes are

proportional to a fixed set of non-negative constants.

To interpret: the cosine of an angle between two r-planes A and
B is a stationary value of <u'~B~' where u runs through A and
~B is orthogonal projection onto B. If u is such a vector, then
the pair u, 1tBU determines an angle 2-plane (perhaps degenerate).

Therefore in statement (~) above we allow the possibility
that for some pairs of points on a geodesic a full angle 2-plane
may degenerate (e.g. if both points are the same point).

Definition 2,3,6 Let us say that two planes A and Bare semi-
normal if the only angles occurring between them are 0 and 'It/2
(i,e., all angle 2-planes are degenerate),

Note that any F(2,k:n)deternlines a closed geodesic in
V k' and by projection a smooth closed path in G k' denoted Y F'n, n,

Proposition 2.3.1 The path YF is a geodesic in Gn,k iff the
planes F(el~k) and F(e2,JR

k) are semi-normal for any orthoQormal
vectors el' e2,
Proof Let us abbreviate F(x,y) to xy, and denote F(ei,lRk) by
Pi' Finally, let 1t be orthogonal projection of ]Rn onto
Pl = F(el, IRk), With this notation we make the following

Assertion: Suppose e2u and ?t(e2u)define an angle 2-plane
between Pl and P 2' for some u e IRk, Then if e 1s any other
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vector on the circle, eu and ~(eu) define an angle 2-plane
between PI and P = J:c'(e,JRk).

To see this, note first that <e2u, ~(e2u» is stationary
at u iff

\e2u, ~(e2v») + <e2v,~(e2u») = 0

for all v ~ u (it only makes sense to vary in directions
perpendicular to u). Since F is orthogonal, this is
equivalent to saying e2u and 1t(e2u) define an angle 2-p.lane
between PI [·ndP2•
reduces to

Since 'It is self adjoint, this condition

for all v .J. u. The assertion therefore consists of
demonstrating that if this condition holds, then for any t

«cost el + sin t e2)u, 1I:«cos t el + sin t e2)v») = 0

for all v ..L u , By assumption, it suffices to show that

and

As 'It is ~elf adjoint and is the identity on Pl, we simply need

for all v .L u. The first is immediate, as F is orthogonal.
The second equality is 1.:..180 a characteristic of orthogonal
multiplications: just expand the identity
<. (el + e2)u, (el + e2)v / = o. Hence the assertion.

Now to the proposition. Suppose first that Y F is a geodesic,
and that e2u and 1I(e2u)define an angle 2-plane between Pl and P2•
We must show that ?(e2u) = e2u or ?(e2u) = o. By the assertion,
eu and ?( eu) def'ine an angle 2-plane between Pl and Pe for all
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If YF is a geodesic, it follows that Span (eu,1I:(eu))
is constant (except for' degeneracies). However-, eu sweeps out
a 2-plane of its own as e traverses the circle, and therefore
11: (eu) must lie in this plane Q, spanned by elu and e2u, for all
e. In particular, 1t(e2u) E Q.

There are two cases;
i) e2u E PI; t nen x (e2u) = e2u

i i) e2u'1 PI; then?t (e2u) E Q n Pl which is one-dimensional
and spanned by el11. However, <'Jt(e2u),el~ =<e2u,elo/ = 0,

hence 11: (e2u) = o.
Conversely, suppose that Pl and P2 are sem1-normal. We

will show that PI and Pe = F(e, mk) have common angle 2-planes
for all e, from which it wlll be clear that YF 1s a geodesic.

Suppose first that 11: (e2u) = 0; then by the assertion
Q = ~pan (eu, 1I:(eu» is an angle 2-plane for each e, and wee
claim that Qe ls constant (except for degeneracies). In fact,
since 1I:(eu)= 1I:(C06t elu + s~n t e2u) =cos t elu, we see that
Qe = Q = Span (e1u,e2u).

The other possibi11ty ls that 'Jt(e2u)= e2u. The way to
handle this case, however, ls not to fix our attentlonon a
particular u, but instead to consider th~ entlre intersection

The pr-ob Lem with respect to this type of
degeneracy ls to demonstr~te that PI n Pe = V for all e ~ ± el•

80 suppose v E V ls a unit vector, v = elu = e2x, and
we are given e = cos t el + .sin t e2• Then if
w = coe t.u + sint x ,

ew = v + cos t sin t (e1x + e2u)
But as x ~ u (since elu = e2x),

~ el u, e2x) + \ e2u, "ix> = 0

= 1 + < e2u,elX>
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'I'he r-ef'or-e ew = v , Thi::;shows that
PI () Pe:::> V for all e.
follows similarly.

'l'heopposite inclusion (for e " + el)

It 1s theref'ore easy to see that tF ilSa geodesic. This
finishes the proposition.

We exhibit an F(2,2i4) such that YF is not a
Phe first factor :m2 will be the plane

.bxclmple~ ,..2 .13

in the quat er-ntons spanned by. el = 1 and e2 = ai + bj, where
a and b are both non-zero. The second factor is C and F is
quaternionic multiplication. Then in the notation above we
have PI = C and P2 = ~pan (ai + bj, -a +bk). These planes
are not semi-normal, because t here is no non-zero vector in
PI which is orthogonal to P2.
a geodesic.

By the proposition, Y F is not

Corollary 2.3.~ In general
a) The harmonic fibration V k ~ G kis not totally geodesic.n, n,
b) Given an F(p,kin), the induced map Sp-l ~ Gn,k

is not harmonic.
Lest this picture appear too bleak, however, note that if

p k· nF: C x C ~ C is a complex bilinear multiplicution, then we
obtain a diagram of harmonic maps:

S2p-l t C
Vn,k

1t 1 1 Ccpp-l Gn,k
t

As f is ho.Lcmorpnf c (hence harmonic), f 0 1t :S2p-l ~ G~,k

is harmonic.
It can be shown that certain special real multiplications

induce harmonic D1;J.ps as well, by applying 2.3.7 in a suitable
way.
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Remark ~~.3 .10 'l'hehomotopy propel-ties or the canonical
mappings discussed in this section can be quite interesting.
For example, rx-om Proposition 2.3.1 we see that there is
a correspondence between multiplications F(k,nin) and
geodesic (k-l)-spheres in Q(n). It is known that every
element of the stable homotopy of the orthogonal group can be
so represented (ABSJ. There should also be some nice
connections between general F(k,Pin) ana the homotopy of

.the Stief'elvarieties.
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Chapter 3

JOINING POLYNOI"IAL MAPS: -,rH.!!. PENDULUM EQUA'j,'ION

A remark to the reader is in order concerning the
presentation in this chapter anu the succeeding one. This·
chapter contains a ruther detailed analysis of a particular
differential equation ana certain of its solutions. A

variety of'similar but more cOiliplicatedequations appear in
Chapter TV. The treatment there tends to follow the same
pattern, but for the sake of brevity concentrates only on
crucial differences. This seemed preferable to a cumbersome
attempt at a unified present3.tion, but certainly requires the
critical resder of Chapter 4 to be familiar with the details
of Sections 1 - 5 in Chapter 3.

'rhe f'Lr-s t 4 sections of'thi s chapter are concerned with
the proof of the main theorem. h special case and a related
problem are considered separately in Sections 5 and 7. The
applications are in Section b.

Section 1. Main Theorem; Derivation of the Equation
Given 2 maps of spheres f: sp-l ~ Sq-l and g: sr-l ~ sS-I,

recall that the (non-reduced) join f • g of f and g is a map
f * g : oP+r-l ~ sQ+s-1

defined in Euclidean coordinates by

f * g(x,y) := (Ixlf(x/lxl), Iylg(y/lyl»
The principal result of this chapter is

Theorem .3.1.1 Let f: t5p-1 -+ 811-1 and g : Sr-l -+ 88-1 be
homogeneous harmonic polynomials of degree l, k respect 1vely •
If the damping conditions are satisfied, namely,

k > )(r-2)

t. > e(p-2)
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where <3 = ~(V2 - 1), then there 1s a har-monf,c r'epresentative
(in homotopy) of f'...g.

Note that if'1': ::;p-1-+ 8P-1 is the identi ty, then
f * g ~'~ Pg, the p th suspension of'g(cr , 'l'oda[rrJ or by

inspection). Hence
r-l 8-1Corollary 3.1,2 Let g: S -+ S be a harmonic poLynoud aL

map of homogeneity k > 6(r-2). Then the ith suspension of g

can be harmonically realized for i = 1,•••,6.

Further applications of these two results are studied
in detail in Section 6.

The map we construct to represent the join of l' and g has
the form

where

f lIE g (x , y) = ( sin a( t)t (xl ix I ), cos a( t) g (y / Iy I ) )
(x , y ) E IRP x 1Rr \ (0)

t = log (I x 1/ Iy I ) E ( -00 ,cy)

and a is a function to be determined. In all that follows,
we will assume r,p ~ 2. The case r = I corresponds to
constructing the first sgspension of f and is treated separately
in Section 5. We will also assume that f and g are non-constant,
and therefore correspond to non-zero eigenvalues of the
Lap.Lacian on their respective domains.

Our first job is to reduce the I-d,uestionof whether this
map is nar-monf c to an ordinary differential equation for c ,

A - . • p+l·-l. A bLet ut) de no te the Lap Lac i an on S :; S and let U =6m e

the Laplacian on mP+r• By Example 1.1.4 f * giB is
hC:trmoniciff 6S(f • gls) is proportional to f • g at every
l)Oint. Sloce l' ...g by definition is constant in radial
crrect tona we can calculate as in Chapter 2, Se"ction 1

~s(f lie g18) = ~(f lie g) Is

Let us carry out such a computation on the first term in f lie g:
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.6(sina(t) f(x/lxl) = ll(sino)f + 22:

+ sin a. llf

Here as usual arguments are suppressed. Consider the last
term: if ~ : lRP \(0) ~ Sp-l is the harmonic retraction
x ~ xllxl, we have the composition

!3
mP\( 0) ~ sp-l ..t mq

Hence II (f 0 ~) = Trace V' df(~, d(3), and as f3 ls something
akin to a harmonic fibration we find

II (f 0 (:l) = - Ix ,-2 IISp-l t

= -lx,-2 ~If

~I = .tet + p -2)where

Now note that the function t satisfies
ot ~oXi = Ixl2

at -y.

o Y j = -&r
Hence a xiaX

i
sin a (t) = coroo.Ti"f2

(]

(f (xl Ix I)) = err f (x/'] x I) = 0, the second
term in the above expression for .f). (sin a. f) vanishes. After
a straightforward computation on the first terDiwe are led to

..cos (.I, a - slno.
+

Similarly
- ~2cos a.

A (cos a. g) = [ 2
Iy.'

But as f. g = (sino.f, cos a. g), the requirement that II(f • g)
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be proportional to t • g is fulfilled if there is compatibility
between the above expressions, namely

(cot u+ tana) [a+ a«p_2)lyI2 - (r-2)lxI2)l + ~21x12 - ~1IyI2= 0

If we substitute Ixl2 = s1n2 tan-l et = et/(et + e-t)
lyl2 = e-t/(et + e-t)

the equat.Lon for a is

(3.1.3)
~(t) + (et+e-t)-l[«p_2)e-t - (r_2)et)

s1ru(t)cos net)] = 0

wi th ~l = J (1 +p-2)
~ 2 = k(k+r-2)

'fhe damping conditions can now be expressed in the more faDliljal'
form
(3.1.4) 2(p-2) < 4Al

2(r-2)< ~2

In section 2 we will demonstrate the existence of a special
sort of solution to 3.1.3; from this it will be obvious that
the map we have constructed is homotopic to the usual join of f
and g. Sections 3 and 4 are de~oted to the regularity
problem; in other woras, to showing that this map ls smooth
at x = 0 anJ y = o.

Section 2. Existence
The object of this section is

Proposition 3.2.1 Subject to (3.1.4), there is a solution a
of (.3.1.3)which is strictly increasing and which is asymptotic
to 0 and 1t/2 at - 00 and 00 respecti vely.
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Before proceeaing to the details, let us motivate and
outline our methods: thinking of t as a time parameter, we
see that 3.1.3 is the e~llitionof motion of some sort of
pend.ulum. Notice that "p_ravity" is positive for t» 0 and
negative for t« 0, RO that one can look for an exceptional
trajectory in which :1,00 = ~/2end a = o.

-00
(The physical

analogy is actually more accurate if we set a = 20. and replace
sino.eosn by (sin a)/2. However, the equation is more easily
analyzed in its present state). The picture to keep in mind
(for the function a) is that of a pennulum standing on end at
t = 0:' and hanging straight down at t = _00:

1 gravity oc

CL = 0-cc
T gravity

-0'.'

Bx istence vdll be established in the following rrrtur tive
way. Fix .to to be the time when gravity vanishes and mani-.
pu Lat e the initial conditions ao and 0.0•

For a given
'J. E (0 ,?t. /2), throw the pendulum just hard enough
o

(a. = 0. +( Lt» that Cl. (t)- 1i. /2 as t -+00 i000
0,;(0,0) to get a(t)- 0 as t-+-OQ

similarly, choose
Then a. + and a'-areo 0

cont tnuous in a •o
• +Furthermore, a. 0 -+0 as 0, -+~/2 ando

a - -+ 0 as « -+ O.o 0

\~ithr-egardto behavior at the opposite ends of the
interval, our intuition fails us: it would seem obvious that

,~t+ is bounded i::1wa~l t'r-oin 0 for ('I. near 0, and likewise for 0.-o 0

when ,tis near 'J\. /:2 •
o

However, this step requires essential
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use of the fact that our system is underdamped for large Itl;
that is, we require Lne que Ld t Le s 3.1.4.

Having done this, it follows at once by continllity
considerations that there is some 0.0 with Q.~(ao)= '&~(ao)' The
solution with these initial data will satisfy the proposition.

Let UR now make this argument precise. The first thing
to remark is that the solution a.(ao,ao) and its derivatives
are continuous functions of the initial conditions a. a"0' o'
That is, we can make two solutions ~l and 0.2 close in er over
any compact time interval by making their initial data close.
This is 3. standard consequence of the smoothness of the
coefficient.s in 3.1.3 [CLJ, and we use this fact throughout •

• + • -'rie can now define the functions ~o and 0.0 more carefully.

Definition j.2.2
of <t E.ill such that a. (a.0'0.0) rncr-ea sea monotonically to 'JC /2 in
finite time as t increases from t •o

tiimilarly, let A-(CLO) be the set of 0.0 such that a(lIo'uo)
decreases monotonically to 0 in finite time as t decreases from

Lemma 3.2.3 -+ .-The functions 0.0 and 0.0 are well defined.

Proof Since 0,+ and a - are defined symmetrically, we will giveo 0

a proof only for (1+o· It therefore suffices to show that A+
is always non-empty, since this set is clearly bounded below by O.

~)o given 0'0 <:: (0,1(/2) we must find 00 such that U«(JO'~IO)

increases fuonotonically to ~/2 in forward time. By inspection
of E~uatlon 3.1.3, it Is clear that there are positive constants
cl' c2 such that
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as long as a(~) .. o. dence if 0.(8) .. 0 and 0.(8)ct 1C/2 on

some interval [toft], with a.(to) = 0.0' we find by integrating

that

.
'fherefore given any t > to' choose 0.0> 0 such that the above

expression is .,(1CI2 - CL ) 1(t - t ) > o.o 0 Hence

cl. (R) ~ (7t/2 - a )/(t - t ) for all s .. t (as long as 0.000
stays under 'X/2) • Therefore by integrating againit follows

that u increases monotonically to ~2 by time t. This proves,

the lemma.

Lemma3.~.4 a~ and 0.0 are strictly positive on (0, 1C/2).

Proof Given 0'0 e (0 ,?t/2), suppose a. = o.o Then from

Jo';quation 3.1.3, as gravity vanishes at ~o, a(to) = 0 and

t ..'to 2
-<i(to) = sin 0.

0
cos 0.

0
(-2(Al + A2)/(e 0 + e » < 0

Hence o.(t) initially decreases to some o.(tl) < 0.0• Hence any

function near 0.0 will take a value < 0.0 at tl, without first

reaching 1(/2. Therefore there cannot be elements cio in A+(o.o)

arbitrarily close to 0; this forces a.~(o.o) > O. Similarly,

Hence the lemma.

LellJ11J&3.2,5A+%) and A-(ao) are open sets for all 0.0 e (0, 1(/2).

Proof As usual, it arrr rces by sYflllnetry to show A+ (0. 0) is open.

Suppose 0.0 E A+(o.o) and 0. (o.o,a.o) arrives at 1C/2 for the first

time at time t. Then o.(t) > O. Certainly aCt) .. 0, and if

ci. (t) = 0 and 0. (t) = 1C/2, it follows by the uniqueness theorem

for OLE's that 0. :: 7C./2, which is a contradiction.

must increase past 7C./2 with posi ti ve deri vati ve ,

We claim also that a. (s) > 0 for to < 8 < t , For if

o.(s) = 0,0.(8) < 0 follows f'r-om the equation (as gravity is

Hence 0.
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positive for s > to)· This woulQ force 0. to decrease

post 5, which is not allowed. Finally, b,j (the proof of')

Lemma3.2.4, a.(to) > o. Hence a. > 0 on [to,t + E]
f'or some E > 0, and thuB any function Cl close enough to a.

will increase monotonically to ~2 on this interval.

pOints near ao are in A+(o.o)' so A+(o.o) is open.

We are nay in a position to prove the first lemma of

interest in our program.

Lemma3.2.6 For any ao e (0, 11:/2), o.(ao' -:-,» is strictly

increasing for t ~ t and ls asymptotic to 11:/2as t ~ ~.o .
Similarly, o.(a.o,~~(o.o» is strictly increasing for t < to and is

asymptotic to 0 as t ~ -<JO.

Proof 'ne give the proof for a.(a.o'a.~) only. It suffices

to demonstrate two tht nrs ; first, that a. > 0 on [to,oo), and

second, that a. < 1t/2 on [to'~). These together show that a.

increases to some aeymptot ic value a. , with 0 < a. .. 1(./2. Butor: cc

than as t ~ ~ , aCt), aCt) ~ 0, so Equation 3.1.3 tells us that

the only possible choice for a. is 'IC/2.
QC

So assume that oae or the other of the above condi tions

is violated. Then one goes wrong first, for we have noted that

by the uniy_ueness theorem they cannot go wrong simultaneously.

On the other hand, neither goes wrong at t = to' by Lemma3.2.4.
But now it', say, a. (t) = 0 for t > to (for the first time), and

o < a.(t) < 11:/2, then ·a(t) < 0 and 0. decreases past t. But
• • + iby assumption tha ta.o = a.0' there are functions arlJi trar Iy close

to a. on (t , t + E] which are strictly increasing or go past 'IC/2o
on this interval. '1'1118gives a contradiction.

So now assume the t a.( t ) = 11:/2 and 0. > 0 on (to' t] •

This says that a.~(a.o) e A+(o.o)' which is not possible since

A+(o. ) is open (Lemma3.2.5) and a. + = int' A+. 'rhus neithero 0

condition can be violated on ~o'~)' so the lemma follows.
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A key ingredient in succeeding proofs is the following
second order compari son theorem [CL, pp. 208-211]. Although
it is a theorem about linear equations, we will be able to
adapt to our use.
Theorem 3.2.7 [CL] Let pi and gi be continuous on [a,b], i = 1,2,

and let
o < P2 (t) ..:PI (t)

g2(t) ~ gl(t)

Let Li be the operator
Liu = (Piu')' + giu

If fi is a solution of Lif1 = 0, let wi = tan-l(fi/Plfi')
'Ehen if w2(a) -- wl(a), w2(t)~ wl(t) for all t e[a,b].

Remark The significance of the function w is that it essentially
measures angle in the phase portrait of the solution.

'I'he procedure for applying this theorem to our e quat ion iB

to write 3.1.3 as
(3.2.8) La. = (pa.')'+ g a.= 0a.

where
pet) = exp J~ - h(s)ds

o

h(S) _ (es + ~-s)-~,(r_2)eS_ (p_2)e-s)

Sa_(t) = sinQ,(t) cos a.(t) tet + e-t) -1\'k2et-'kte-l.h)\t)
Q,(t)

Of course, ga.depends on the solution Q,we are interested in
comparing, so a slight amount of care will be needed to avoid
circular arguments.

A specific case where the comparison theorem is needed Is
Lemma 3.2.8 For a~ a. E (0,1C/2), a.+(a.) is the uniaue initial000 -
derivative for which we get a solution of the desired form in

• ..+fO~Nard time. More precisely, if 0 < CLo< 0.0' then the associated
solution a.(Q,o'~~)must eventually start to decrease before
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reaching ox/2. • +
a. 0' then in ract a E A+(a. ).o 0

Similarly, ~~(a.o) gives the unique solution of the

desired form in backward time.

Proof Take a < a+(a. ) and let 0.1 = a.(a. a..+(a.»o 0 0 0' 0 0 '

0.2 = 0.(0. ,a. ).o 0 Suppose we are ~,iven a time interval on which

a.l ~ 0.2 and both lie in (O,?t/2): then as the function

sin ecos e/6 is decreasing on fO,?t/2], we have (in the notation

of 3.2.8) that ~ ~ ~ on this interval. Further, at time
·12

to we have 0.1 = a.2 and a.i > a.2 by assumption. Hence

w2(to) > wl(to) (in the notation of 3.2.7), and by the

comparison theorem w2(t) ~ "l(t) on this given interval.

Suppose we add the requirement that a 1 > 0 on this interval.

Then w2 ~ "1 implies a. ~ 2 ~ a. l,A).i which forces a. i--a 2.
Finally, we choose [to,t] to be the maximal interval on which

~ of the above conditions are satisfied (allowing perhaps

But since initially <l > a.2, forcing ~ > <'2

to hold for a while, it is clear that what must happen first is
,
~(t) = 0 (since <1. (t) = 0 cannot occur by Lemma3.2.6, and

other possibilities lead immediately to contradictions).

Hence ~ (t) < 0 and <l:2 decreases past t without first

reaching ox/2. Of course, there is the possibility that the

maximal interval is [to'oo); in this case, a. 2(t)< OIj_(t)<'Jt/2

and at (t) > 0 for all t ~ to. Hence ~ attains an aaymptot ic
2

limit a... •
~, 00 However, we would also have a.i > 0.2' so that a.l-~

is positive and non decreasing on (toP!). This forces

a.2 < «12, which is not possible.
,00 This proves half of the

lemma.
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Suppose on the other hand we take ao > a~(ao). To

show that ao e A+(ao)' we reverse the roles in the previous

argument and set 0.1 =a(ao'o.o)' a2 = a(ao,a~(ao»; i.e., al

is the solution on top. 'Ehen the arb'Ulllent proceeds as beror-e

to the point where we take the maximal interval [to"].

Applying Lemma3.2.b to 0.2' we Bee that what must halJpen first

is a'l(t) = 1t/2, and thus ci. E A+(a ). It is also clear thato 0
t = 0::.' cannot occur, because a. 1 is forced from below by a. 2 and

a 2 -+ 1(/2.

Since the case of a~ is syn~etrical, this finishes the

lemma.

We can now continue with our program as follows:

Lemma3.2.9 a.~ and a.~ are continuous.

This is almost immediate from the preceding.

a -+ a. bu t a +(a ) ~ a. +(a. ) ~ E for some E > 0 •
on 0 0 on 0 0

Suppose

Let
.
0.0•

a.~(a.o) - e/2. i'hen 3.2.8 tells us that:

a) a (a 0n'o.o) increases monotonically to 'K./2 in finite

time for all n.

b) 0.(0.0, 0.0) will eventually decrease before reaching 1C/2.

However, these statements become contradictory ae a. 0 -+ 0.0•n

The casea.+(o. ) -- 0.0+(0.0) +e is similar.o on
Here we use

again the fact that a solution which increases to 1t/2 will

actually go a small way beyond, with positive derivative

throughout. (cf. Lemma3.2.5). Hence the lemma.

Lemma3.2.10 Q.~(a.o) -+ 0 as (10 -+ 1t/2.

a. -«(1 ) -+ 0 as 0.
0

-+ o.
o °

Proof This much is obvious. For example, refer to

estimates in3.2.3.
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For the final step in the proor, we at last make use of
assumptions 3.1.4. The main tool is again the comparison
theorem.
Lemma 3.2.11 0.+(0. ) is bounded away from 0 for a. near 0o 0 0

0.-(0. ) is bounded away from 0 for a. near 1(/2.o 0 0

Proof As usual, we give a proof for ~~(a.o). The proof is by
contradiction, so assume there is a sequence 0.0 ~ 0 such that

n
.Hence there is also a sequence 0.0 ~ 0 such that

n

We will show that for some n, the solution

a. (a. ,a. 0 ) eventually decreases bef'ore reaching 1(/2.on n

As before, we will study solutions a. of the linearized
equation 3.2.8; a. will be compared with solutions ~ of the
linear equation

where ml,m2'are constants near r - 2 and A2, respectively, to
be determined. Observe that th1sequation looks like 3.1.3
for large t. Furthermore, wh~n m~ - 4m2 < 0, a solution ~
will consist of an exponential times an oscillatory term with
frequency w = (4m2 - mi) ~/2 and period l' = 'lIt/w. Under
assumptions 3.1.4 we will choose ml,m2 near enough to r - 2, A2

so that 'I' is no l~Jl'gerthan Borne ,8 priori bound" o' For
example, let ~'o be twice the period associated to the numbers
r - 2, A2 themselves.

The important thing for us is the fact that any solution ~
will then satisfy ~ = 0 at some point of any interval of length 'to'
Using the comparison theorem, we will show that one of the
solutions c(a.o ' a. ) must do likewise.

n on
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Recall that for ~ we will study Equation 3.2.8; however,
WI' ite 1t a8 L2a. = (p 2o.' ) t + g2 c, = 0

where we have set = expSi - h{s)ds
1

= expSi - ffildS
I

and tl > to is to be chosen.

quantities are as in 3.2.8. To choose tl, define a function

I tl+'t"o

~(tl) = exp t (het) - h(tl»dt
1

Then as het) is increasing, ~(tl) > 1 and ~(tl) ~ 1 as tl ~ 00.

'rherefore choose tl so Lar-ge that there is an e > 0 with the
t'ollowing properties:

i) ml = h{tl)
t -t t

m2 =(e 1 + e 1)-l(A2e 1

then T (ml,m2) ~ v-

if

i r) there 1s some e ' > 0 such that (1 ~)~ (tl) < 1 - J

Now choose 0 > 0 such that 0 ~ ~ .;6 wi 6in~COB<l,/~ ;;. 1 - ct.

~'inally, not ing that (10 = 0.
0

= 0 forces a. ii 0, choose
from our original sequence some 0.(0.0 ' a. 0 ) satisfying CL' ()n n
on [to,t2], where t2 = tl + To We take this <.L to be our

solution of L2~ = 0 and for ~ we take the solution at LIP = 0
wi th in1tisl data at tl equal to those of o, at t1•

Let us verify the hypotheses of the comparison theorem for

so clearly P2(t) .;Pl (t).
that

To check that g2(t) ~ gl(t), observe
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tl -tl 1 t1 -t1~ (l~e') (e +e )- (A2e -Ale )

t -t t-t
> (l-e)~(tl)(e l+e 1)-I(A2e I-Ale 1)

rtl +"'0= m2 eXPJt (h(t) - h(tl» dt
1

~ ffi2expJ: (h(t) - ml) dt
1

::ffi2Pl(t)/P2(t)

::gl(t)/P2(t)

Finally, in the notation of 3.2.7, we have wl(tl) = w2(t2) by

construction, so w2(t) ~ wl(t) for all t e [tl,t2].

But ~ has a zero on [tl,t2], BO by taking the first such
(at t3,say), we know that ~ 1s positive on [tl,t3] and
wl(t3) = ~2. Hence w2(t3) ~ ~2, and as w2(tl) < ~/2 by
assumption, w2 takes the v~lue ~2 on [tl,t3J. That is,
~ ::0 somewhere on this interval and hence by the usual
argument must decrease. Of course, a. has not already r-eached

";2 by the assumption that a. was SIliallon [t1,t2J. This gives
the contradiction we were after, and finishes the proof of
Lemma 3.2.11.

These lemmas complete the program for this section, and
together form a proof of Proposition 3.2.1.

Remark 3.2.12 In some cases th~ conclusion of 3.2.1 is valid
even though 3.1.4 is not satisfied. For example, we can
always join two identity maps to get another identity map; in
this case the function a. is determined explicitly.



57

Section 3. Asymptotic Behavior
In this section we estimate the behavior at 00 or the

exceptional solution a which is guaranteed by Proposition 3.2.1.
These estimates will be used in Section 4 to prove dir~erentia-
bili ty or the mapping or spheres which is derined in terDls or a.

Throughout this section we will use the notation

het) = (et + e-t)-1«r_2)et _ (p_2)e-t)

get) = (et + e-t)-1(h2et - Ale-t)

so that Equat·ion3.1.3 has the f'orm
(3.3.1) aCt) = h(t)a(t) - get) sina(t) cosa(t)
Recall also that hl= i(l+p-2)

A2= k(k-r-2)

when} and k are the degrees of'the homogeneous polynomials to
be joined.
Lemma 3.3.2 Eventually a.(t) < (k + o(e-2t» cosa(t)
Remark 3.3.3 Such a statement will mean that there is a tl

suitably large and a function O(e-2t) defined for t > tl such

that the above holds for all t ~ tl• By O(e-2t) we mean
simply that le2t o(e-2t)1 is bounded.
Proof' Choose tl > to such that a(tl) ~ ~/4and such that h(tl)
and g(tl) are close to their asymptotic values of r - 2 and A2

respectively. For t ~ tl let k(t) be thesolutlon near k of
the equation

(k(k+r-2) - k(t)2)/k(t) = het) = (r-2) - O(e-2t)
One can easily check that k(t) ~ k + O(e-2t). We propose
to show that

a. ( t) ~ k (t) cosc ( t)

Given any such t, the idea is to compare a with the
solution ~ of the first order problem
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( *) ~(s) = k (t ) cos 13(a)

B( t) = 0.(t)

It is clear that (3is monotone asymptotic to 7t/2 as s -+~

For s ~ t we can also estimate
~ (s ) = - k2(t) sinl~(s) cos(:;(s)

= (~ - k2(t»sin~(s) cos~(s) -~sin~(s)coS0(s)
2 ..=}..2-k(t) sinf3(s){3(s)- A2sin{3(s) cos{3(s)

k(t) ..
= het) sinf3(s){3(s)-A2 sin{3(s) cos{3(s).
< h(s){3(s) -A2sinf3(s)cos{3(s)

Now suppose that 0.( t) > ~ (t) = k( t)cosa( t) • Then by the above
(i (t) > (.~(t) • Hence let t2> t be the first time past t
for which we have u(t2)=f3(t2),~(t2)=~(t2)' or a(t2)=~(t2).But if
.0. >f3and a.>~on [t,t~), with aCt) = (3(t), then certainly
~(t2» ~ (t2) and a(t2) > {3(t2). Hence the only possibility
is a(t~)= ~(t2)'

However, we assumed a(tl) ;;.7tl4;
forcing s mo.coec < sinf3 cCEI;iat t2•.. .... .estimate on f3shows that (3(t2)= a(t2) is impossible also.
Hence t2 =~, and a - ~ ls non-decreasing on [t,O). But this
is a contradiction, as a.(t)> ~ (t), and both a. and ~ must tend

hence 0.(t2» (3(t2) > '1t/4,
Applying this with our

to 0 as t -+ 00.

Hence we must have a.Ct) ..k(t)cosa.(t) V t ;.tl, which
proves the lemma.
Lemma 3.3.4 Eventually a.Ct) ;;.(k-o(e-2t»sina(t)cosa.(t)
Proof .Choose tl as before and this time let k( t ) be the solution
near k of

(g(t) - k(t)2)/k(t) = r-2
where recall get) = kCk+r-2) - oCe-2t)
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It follows that k(t) ~ k _ O(e-2t)
aCt) ~ k(t)cos~(t)sina(t)Let us show

The method is comparison with the solution ~ of.
(•• ) ~(s) = k(t )' cos~ (s)sinI3 ( s)

~(t) = o.(t)
Note that ~ is monotone asymptotic to ~/2 as t ~ ~. Also

~(s) = k2(t)(cos2~(s) - sin2~(s»co~(s)si~(s)
;il :-k2(t)cosNs)sin ~(s)
=~(s)(g(t) - k2(t»/k(t) - g(t)cos~(s)8inB(s)
= (r-2)~(s) - g(t)c08B(s)8in~(s)
> h(s)~(s) - g(s)cos~(s)sin~(s)

From this point an argument quite parallel to that in Lemma
3.3.2 finishes the proof.,

If we set k-(s) = k - o(e-2S), then we have shown

a. (s) ;il k-(s) sino.(s)cos~(s)

Hence 0. lies above the solution of (•• )
This gives

COSo.(s) ~ C06~(6)
But (*.) has an explicit solution, namely

for s ~ t e

tan~(s) = tano.(t) exp(k-(t)(s-t»
Hence there is a constant bt > 0 such that for all s > t

cos~(s) ~ btexp(-k-(t)s)
This gives (3.3.5) COSo.(s) ~ btexp(-k-(t)s)
for all s ~ t.

Similarly we have from Lemma 3.3.2, with k+(t) = k + O(e-2t)
o.(s) ~ k+(S)C08~(S)~ k+(t)C08a.(S)

f'or all s > t > tIe Helice a. lies under the solution of (*),
for s > t, giving

coso.(s) ;il cos 13( s)
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The explicit solution of (*) is
sec~(s) + tan~ls) = (seca(t) + tana(t» exp(k+(t)(s-t»

hence cosi3(s);;.ct exp (-k+(t)s)

for 8.11s ~ t.

c06a(s)~ et exp (-k+(t)s)
Unfortunately estimates 3.3.5 - 6 are not

and (3.3.6)

quite good enough, so we refine them further:
Lemma 3.3.7 Eventually c e-kt ~ C080.( t) ~ -kt

I c2e
Proof Define ret) = cosa(t). To get the second half of
the inequality, note first that

•f'= -sino. a.
~ -sino.k-sino.cos a
= -(1-f2)k-f

(1 f) - f -f· - ..2~ - - k = -k' + k ~
Then if k-(tl) is reasonably close to k, we can use (3.3.5) to
write

where J.J. > 1. Hence

Therefore by a trivial first order comparison theorem it
suffices to estimate a solution of

f(t) = -k-(t)f(t) + c e-~to
given some initial value at tl.
part will take the form

f'H(t)= c' exp(-S~k-(6)dS)

A solution of the homogeneous

= c' exp(-kt) exp(J~ O(e-28)ds)
/' " .-kt"'"c e

A particular solution of the inhomogeneous equation will' look like'

fl(t) = fH(t)]tt exp(J~ k-(X)dX) exp(-~ks)ds
1

~ f
Il
( tit eks e-Ilksds

tl
~ ·bf.,( t)
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since as ~> 1 the integral is uniformly bounded. Hence
the general solution to such an equation will verify an
inequa Lf ty of the desired type.

For the other half of the inequality, we find similarly
from 3.3.2 that

• + +
f ~ -sina.k f ~ -k f

The desired conclusion is immediate. This finishes the lemma.

By a similar procedure we can analyze the behavior of a.

near t = -00. The results are
Lemma J·~18 a) Eventually a.(t) ~ (/+ O(e2t))sino.(t)

b) b,ventually a.(t) ~ (f- o(e2t»slno.(t)coSo.(t)
c) Eventually bit < sino.(t) < b e..tt

1 2

Section 4. Derivative Estimates
Having obtained our function a., we want to use it to

define a harmonic mapping of spheres. The formula was

with

(r'" g)(x,:/) =(sin a(t) f(x/lxl), coso.(t) g(y/I.vl)
t = log (Ixl/lyl)

oince o.(t) t r-ave rses (0,11:/2) monotonically with the cor-r-e ct
limits at t = 1: 00, we can conclude that f' • g : IRP+~(O)-+ Sq+s-l
is continuous and that the restriction to f:;p+r-lrepresents
the join of the original maps f and g. Moreover, f • g is
smooth away f'r-oin the planes x = 0 and y = O. \,1lhatwe show
in this section is
Proposition 3.4.1 'l'he 1'1rst and second partial derivatives
of f ...g extend. to continuous functions on mP+r \ (0).



Corollary 3.4.2 f >I: g is of class C2 on mlHr - (0).

f * glclP+r-l : sP+r-l ~ clq+s-l is analyticCorollarY 3.4~

and harmonic.

'I'he deuuct Lon of 3.4.2 from 3.4.1 is elementary and
standard. Corollary 3.4.2 then tells us that f * gISP+r-l
ls C2• But by construction this map is harmonic on the d.ense
set (x ~ 0, y ~ 0). As the tension field is continuous
everywhere, it must therefore be zero everywhere. Thus

2f * g is a C harmonic map of analytic Riemannian manifolas
and hence is analytic [ES] •

Let us verify the proposition for the function H defined
by

H(x,y) = sina(t) f(x/lx I)
'i!henat.udy Ing derivatives of H near possible problem points,
we treat two cases:

Case I x near 0, y bounded away from 0

Case II y near 0, x bounded away from 0
Case I: Break down' H as follows

1

H(x,y) = R2(x,y) f(x)
H(x,y) = s1n20.( t)/ Ix 121

Here we UHe the homogeneity of f to wI'ite f(x/lxl) = f(x)/Ixl~.
Furthermore put

where
R = r 0 P

p(x,J) = (lxI2,IYI2) ~ (u,v)
r(u,v) = sin2 a( i logeu/v) )/uJand

',Venow estimate successively the derivatives of r,R, and H.
Lemma 3.4 .Lt For u nesr 0 and v bounded away from 0, all first
and second derivatives of r are uniformly bounded except
ir/ ~2, which is at worst 0(l/u) •
Proof We will assume throughout that the ratio ~v is small
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enough that Lemma 3.3.8 applies. 'roconvert the latter
estimates (in ter-ins of' t , the argument of'c ) to estimates
in terms of u/v, we will use the relation

Now compute

2te = u/v

%~ = sino.(coso,Q. -lsim)/~+l
Icosa Q, - J sin Cl. I = 0 ( e (I +2) t)We claim

Certainly from 3.3.0 it is immediate that
sin Cl. = o (e ft)

. o(et't)Cl. =
Hence l-cos (I. = 1 - (1 - sin%.) ~

.- 2 O(e2.tt)sin a. =
.'rherefore cos a..J. in the above expression may be replaced by

a. with er-ror- (l-cosO.)(l= O(e3Jt). As,t ~ 1, this is permissible.
Now apply 3.3.8 (a) - (b) together to find

I 0..-) sin 0.1 ~ sin 0.11 + O(e2t) - cos a. (R - O(e2t» I
= JS1n 0.11 - cosc] + 0 (e(t+2)t)

= 0 (eCR+2)t)

Hence

Now consio.er

o2r 2~ - [sin Cl. (-sin a. a. + cos o, a. - J cos :1 a.)°u2 -

Our object is gf~ = O(l/u).
u

second term to give such a bound. In the first term we have
the expression s1n2(1,a2 = O(u 21),so its contribution is again

The above estimates apply to the

satisfactory. ..For the remainder, substitute for a. from the
differential equation 3.3.1:
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The error is negligible for our purposes, so we have left to

study

I··0, - .,t6. I ::J 1(1(.(J + l' - 2) sino, - (~ + p - 2)0 I

But as above, 10.-1s1nu-1 = o(e(t+2)t), so we are done.

A few more similar calculations suffice to finish the

lemma.

'Ne now estimate a.erivatives of R for x near 0 and y

bounded away from o.
Lemma 3.4.5 a) As x -+ 0, ElL and

o2R ... 0, while otheroXi OXioyj

fir'st and second derivatives remain bounded.
I

b) Similarly for R 2" •

c) R-:'! and its first y-derivat1ves extend to

continuous functions for x = 0, y ~ o.
Proof a) R(x,y) = r 0 P (x,y), where p(x,y) = ( [x 12, lyI2).

Hence OR or 2xi~ = au •
~

, ,
o2roLR • 4YjXidxioYj = d"ildV

o2R o2r •4XiXj + 20ij
£!:

<3xiOXj
-- FT auu

'I'he desired conclusions are immediate from Lemma3.4.2.
I

b) It suffices to show that R! is bounded away from 0

as x_'O, with y bounded away from o. But by Lemma3.3.8 (c),

R~ = sina.(t)/lxlf

.. bl eJt Ilxl"'- bl/lylf

c) By Lemma3.4.2 we see that the differentials of rand

~~ are uniformly bounded for u near- 0 and v bounue d away from o.
Hence both these funct ions extend to functions which are

locally Lipschitz on the set (u;;it 0, v > 0). Therefore the
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conclnsion of (c) holds for R, and hence for R =.

It is now easy enough to finish Case I:

Lemma 3 .Li. f" ')

II ex t.enua to a C-- runo t Lon for y ~ o.
Proof

iH(x,y) = R~(x,y) f(x)
By homogeneity, f(O) = O. Hence

is continuous at x = 0 by Lemma 3.4.3. Also,

021I o 2}('} , 1

c?R:': d' OR2 al" ,
= oxiaXj f + - + - + R2ox1ax j aXi oX

J OXj oX1

which is again continuous at x = 0 by 3.4.3, since the first
three terms are o. Other aerivatives are treated similarly.

Cuse II For x bounded away from 0 we can clearly t'o r-get about
f and concentrate on

R(x,y) ~ sin a. (log( Ixl/lyl)
As usual let R = l' 0 P (where p is as before) ano.
r(u,v) = sin CL (~log(u/v» • We now rely on Lemmas 3.3.2, 3.3.4,
and 3.3.7. Note first that or/au = coso. fl/2u tends to 0

2 2Similarly for 0 1'/ou. Furthermore,8.6 v-+ O.

2
...L!: =ouov (

...- coso. u-

= 0(1)
¢~ •, a xiaY j all tend to zeroHence immediately ~R

oXi
,

as y -+ O. Suppose we could also show thet 01'/0v and 021'/av2

were bounded. 'l'henor/a v would extend to a cont tnuous function,
showing that

<L = ~ 2y . -+ 0 as Y-+ 0ay, av J
J

and c)2H 2 or= 0 I' 4y 1.}' j + 261joy .oy . o 2 . Ov
1 J v
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is continuous at y = o.
Gase II.

In other words, this woula finish

But or/ov = -cosu. a/2v is clearly bounded, and

tr/ov 2 ( .. a. 2)/4v2= COSel'CL- sinCL
= o (e-2kt)/v2

= O(vk-2)
is bounded if k ~ 2. However, if k = 1 we can writ~

'.a. = (r-2) ci.- (1'-1) coso. + O(e-3t)
which is a bounded error when multiplied by cos CL.
we consider

Hence

coso.0. - at ne ci.2 rill cos a.«r-2)ci.-(r-l)cosa.)-sin a. 0,2

::I cos a. 0. - sin a. a.2

by Lemmas 3.3.2 and 3.3.4. Here ~ means an error o(e-4t) has
been dropped. Finally, since 1 - sino.= 0(e-2t) J the entire
remainder is o(e-4t). There1>ore o21/dv2 is bounded if k = 1.

ThlS rmt snes Case II. The differentiability of the
second coordinate of f • g is handled similal>ly. 'l'his
concludes the proof of Proposition 3.4.1, and therefore
establishes Theorem 3.1.1.

Remark 3.4.T Having worked this hard to prove regularity, one
might well ask if there is not a more general regularity
principle. I do not know any smoothness theorem which
applies, but perhaps it might be possible in the setting of
equivariant maps to prove a companion piece to Theorem 1.3.5.
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Section 5. The First Suspension
Although the first suspension of a harmonic polynomial

map is the same thing as joining to the identity on So, the
paranletization one aChieves in this way is not the natural
symmetric one. Therefore we present this case separ~tely.
The benefits to be gained are not merely aesthetic, however;
symmetry greatly simplifies the existence proof and will
allow it to be extended to cover some mappi!lSs ot: ellipsoids
in Chapter 4.

Therefore suppose t: sp-l ~ S~-l is a harmonic polynomial
map of homogeneity R. We will look for a harmonic representa-
tive of the suspension of f in the form

(x,y) ~ (sina(t)f(x/lxl), cos~{t»
(x ,Y) E IRP x 1R

t = log (I x 1/r + y) E (- 00,00 )

r = (lxl2 + y2)!

It is r'eadily verified that t(x,y) = -t(x,-y). A moment's
computation also yields

at/axi = yx1ft-lx 12
ot/dy- -l/r

As ~r is invariant under radial dilation, the spherical and
Euclidean Laplacians coincide on f; the calculation of the
latter proceeds as in Section 1, with the result
(3.5. 2)A(sinClf) = (cos~·,a- sinu .0.2 - (p-2)t~nh( t)cosa.a.-hsinl,)r/1.1

A(cosa.) = {-sino.'~-cos~~}l + (p-2)tann(t)s1na. a.)/lxI2

with h = k (e +p-2)
The condition that Zf be harmonic is determined as in Section 1;

it is·
a(t) - (p-2) tanh(t)a(t) - hsina(t) oosa(t) = 0
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Our object is clearly to find a monotone solution a such that
a. ='ltand a. =0. By symmetry, it sufficestoeet
00 -00

0.(0)= 'It/2 and 0.(0) = inf A+(O), where A+(O) is the collection
of initial derivatives which are "too large". If the damping
condition is satisfied, it follows as in Lemma 3.2.11 that
0.( 0) > o. Then the same reasoning as in Lemma 3.2.6 shows

·that the associated solution a. satisfies a. =~; we can then
00

use the symmetry of the e~uation to deduce a. = O.-00

" The only possible problem arises in proving the regular.ity
of se. The procedure is entirely analogous to that in
Sect ions ,I and 4, however. By symmetry; it furthermore
suffices to prove smoothness at x = 0, y = 1. This avoids
puzzltng over what happens at y = -1, where the function t
looks peculiar. The required calculations are naturally
Il.ui.telengthy, and are omitted.

Section 6. Applications
In this section we list the examples of essential harmonic

maps between spheres which can be obtained from Theorem 3.1.1.
That these maps are naturally equivariant is also illustrated
in a particular case, for which the equivaria.nt tension equation
is computed and shown to be equivalent to the original
Equation 3.1.3. Some further applications to homotopy groups
of Lie groups are indicated.
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It is f'irsthelpful to have
List 3.6.1 'I'hepresently known essential homogeneoua harmonic
polynomial mappings of' spheres are

a) the isometries, of'degree 1.
b) dk . SI ~ SI, the complex polynomial z ~ zk of degree.

Ikl.
c) the Hopt' flbrations h · 63 ~ 62·

T] 87 ....84,
0 · 615....88•

which are all of homogeneity 2.
The Hopf maps were shown to be harmonic ,in Example 2.1.2. We
will also need.
Lemma 3.6.2. The Hopf maps are harmonic f'ibrations.
Proof' As the fibres are all geodesic spheres, it suffices
to check the Riemannian condition. This can be verified
from the formulae, but in the case of the Cayley numbers the
calculations required are long and tricky.

Eells has pOinted out to me, however, that the bundle 0

may be characterized alternatively as
Spln(8)/Spin(7) ~ Spin(9)/Spin(7) ~ Spln(9)/Spin(8)

'07 ~ 815 ....Sa
which is homogeneous and evidently Riemannian. Similar
descriptions of h andj; can easily be given (cf. Example 3.6.11).

These remarks for us will const~tute a proof of the Lemma.
It should be noted, however, that with the usual Euclidean

metrics on the spheres these maps are "twice" Riemannian; i.e.,
horizontal vectors get their lengths multiplied by 2.

In this context we also mention some nice polynomial
maps which are not harmonic
Example 3.6.3 Let f: 63 ....63 be defined in terms of
quaternions by f(q) = q2. Then t is DQl harmonic, tor in
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coordinates

() (2 2 2 2f x = xl - x2 - x3 - x4' F(x»
where F is a second order homogeneous harmonic polynomial.
Hence At = (-4,0) and we can apply Lemma 2.2.9.

This is also an example of a more general fact: if G
is a non-abelian Lie group and fl,f2 : M -+ G are harmonic
maps, we cannot expect that the product flf2 : M -+ G is
harmonic. Of course, if G is abelian, then multiplication
~ : G x G -+ G will be totally geodesic, and thus fl£2 will be
harmonic.

This example furthermore indicates that the polynomial
maps of degree k : 82n-l -+ 82n-l constructed by R.Wood fWD]
are unlikely to be harmonic: the function above 1s his
starting point.

Now for some harmonic maps.
Example 3.6.4 It is well known that ~(8n) = Z and that
the classes correspond to suspensions ot ~: 81 -+ 81• Hence
by Corollary 3.1.2 we find that 7Cn(Sn) is representable for
n = 1,•••,7.

We remark that forn =2 our construction gives the
map z ....zk on the Riemann sphere: this example alao appears in
[ES] •

Example 3.6.5. Recall that ~3(S2) = Z, generated by the Hopt
map h. Maps 83 -+ 82 are thus classified by their Hopt: invarlant.
Let :fk: 82 .....S2 be our harmonic map otdegree kj then it is
known that f'k 0 h has Hopf' invari~nt k2 (see Husemoller(HU,p.198])
This map is harmonic by Lemma 1.2.2. By similar compositions
with -h we obtain re~reBentatives for all elements of Hopt
invariant ±k2,

Composition :from the other direction in an attempt to get a
harmonic map o:fHopt invariant k does not work: i.e. given one
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of' our harmonic f'k: S3 -+ 83, the composition h 0 fk is not
harmonic. In fact, our direct construction methods (ap'P11ed
now to the Hopf construction rather than the join) will always
fail to give the general element of ~3(S2). The reason
for this is found in Section 7.
Example 3.0.6 ~n+l(Sn) = Z2 for n ~ 3, generated by the
iterated suspension of h. By Corollary 3.1.2 we obtain
a harmonic generator for this group for n = 3, •••,8. (For
the homotopy theory, the general reference is Toda LT].)

Note that by a theorem 0,1' R. Wood, all polynomial maps
of S4 to 83 are constant fWD]. Hence it is certainly
necessary to move to the transcendental domain to f'ind a
harmonic representation of ?t4(S3).
Example 3.6.7 ?t7(S5) = Z2' generated by 23h 0 ~4h [TJ.
However, the latter map is homotopic to h. h [T, p.25).
Hence this generator is harmonically represented by Theorem
3.1.1.
S...(ample3.6.8 ']I;(s4) = z 67 Zl2' with Z generated by " •

1
We have harmonic maps of every degree fk • 84 -+ s4, hence•

fk o " : S7 -+ 84 has Ropf invariant k2 and is harmonic.
Example 3.6.9 'Jt (Sn) = Z24 for n;;. 5, genera ted byn+3
suspensions of'" • We have a harmonic representative of that
generator far n = 5, ... ,10. In fact, by ,taking
TJ • dk at Z~ 02 8dk one obtains all elements of 7t 9(86).

Since ~ll (87) = 0, TJ. h = O. However, TJ • " generates
~ 15(S9) = Z2'

Example 3.6.10 Let Zh: 84 -+ 83 be the essential harmonic
map of Example 3.6.6. Then}}h 0,,= lin'Jt7(s3) = Z2' and is
harmonic by Lemma 1.2.2. We remark that this group is not
&able, and is the only such group we can represent completely.

Another essential harmonic composition is Z" 0 0: s15.... s5.
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Unfortunately we cannot make harmonic suspensions of 0

by the method of'this chapter on account ot: the dimension
restrictions in Theorem 3.1.1. However, we will see in
the next chapter that such a suspension can be done if the
receiving sphere is given an ellipsoidal metric.

We promised in Chap ter 1, Section 3 to show how the
above constructions can be given a natural equivar1ant
luterpretation. Let us illustrate this in a particular case.

J!;x!;lJ!U?4:_e3.6.11 The join T'I • dk: S9 -+ 86 may be thought or in
this wa;i; let o~· = ::;( * :::;1 and 66 = 84 • SI. 'llhen
Sp(2) x SI ~cts by isometries on both spaces with a one-
parameter orbit space [0 ,1t/2] in each case.
Tl :'07 -+ 64 is just

In fact, since

T'I : 6p(2)/op(1) -+ Sp(2)/Sp(1) x Sp{l)
the map T'I * dk is clearly equivariant with respect to the
homomorphism

of Sp(2) x 61 onto itselr. Applying Lemma 1.3.3. we see that
the conditioLs of Theorem 1.3.5 are satisfied. Therefore
our map is harmonic iff the orbit map 1 : [0, 7t/2 ]-+ [O,7t/'2]
satisfies the equivariant tension equation (1.3.6).

To calculate (1.3.6) we need to know the volume function V
and the orbit-energy function ~ Firstly, note that the orbit
corresponding to e in 69 is just s7(sine) )(sI (cose }, so that

V (El)= c sin7(e ) cos 6
It is clear that y breaks up as -r< dk) + i TJ) in a natural way.
Furthermore, it is obvious that

y (dk)(6,1(d» = k2cos21(e)/cos2e

As for y (11),note that as 1): S7 -+ 64 is twice a 1{~eD1annian
:fibration, Id ~ 2. 10. Hence
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') - 2- 2y(~ (e,f(e» = 16 sin f(e)/sin e
'raking the gradient with respect to the second argument in y

then gives

i grad_ y( e,f( e» = sin r( e) cos f(~) (1(, csc<e -k2sec~:t1)
f

Equation (1.3.6) now looks like

If one now puts t = log tan e and a(t) = r( d) we get

u(t) + (et + e-t_)-1(6e-tci(t) + sina.(t)cosa(t) (k2et - 16 e-t) )::.:0

which is exactly (3.1.3) in this case.

Another nice set of a~p1ications comes when we look at

homotopy groups of' certain Lie groups. Although we cannot

expect to exponentiate or nJult1ply harmonic maps, as noted in

Exau.p Le 3.b.3, another approa ch iR available.

is a totally geodesic genera tor for 7C (G) anu we have h» r-n.o nIcm
l'epresentatives hk of 1C (Sw), then con.poe tt Lons f 0 hk are

lfl

harmonic r-epre aent at ives of the subgroup generated b,j f.

ExalIlP1e 3.1;·,12 The geodesic inclusion of 83 in op(m) or in

SU(n), n ~ 2, generates ~ of these troups, uhlch ls Z in each

case [IIU, p .93 J. Hence there are harmonic representat 1ve s of

?t_3(sp(m» and?t3(SU(m) ~m.

The Ri emannian covering 7C: $3 -+ SO(3) generate e "3 ( so (3) )-z ,
hence this group 18 represented. By including SO(3) in SO(4)

we also get one Z component of 1I:3(SO(4» = z (1) Z. 'fhe other

f'ac tor- is Eiven by the inclusion of 83, which acts on IR4 by

quaternionic multiplication. Hence the subgroups t(k,U)J and

t( 0, j)l are represented harmonically. Although we can add

such elements b, ll.ultiplying r-epr-e eent et Lvea in the group, the

result is not harmonic.



b;xample 3.6.13 1I:5(t30(~,) = Z 1s gene r-a ted by the cnaz-uct er-Let t c

map of the principal tiO(6) bundle 11:: ~O(7) ... tl' [S]. It 1s

not hard to see fron, oteenrod' s descript ion of the map (and

comp.rr-t aon wi th some calculations in }lusemoller L nu, u. 86 1'f'J )
that the characteristic map t;: 05 ... tiO(b) is in t'ac t Wnoot the

geodesic symmetry mapping. 'l'hat is, up to multiplication bJ-'

a constant t.ranerorme t i cn, ~ (x ) is the unf.que isometry which

reverses the geodesics through x. It is a general property

of' symmetric apa ce s that the an.d.ogous map ~: G/K ... G is totally

geodesic. (For example, this can be easily seen from the

explicl t de scr-rp t ion of ~ av,~ilable in Helgsson [tiS]). ',Ye

conclude that 'Jt5(SO(6») Ls z-epr-esent.ed by harmonic maps.

Rerrurk 3.6.14 The general pr-oo Lem of realizing homotopy

groups of symmetric spaces by geodesic spher-e s has been

studied by A.PomenkoIF] • By combining his work with ours

a number of' additional examples can be added to this

collection.

Beepon 7. :,rhe Iiopf Conskructionj Ijon-CQnserv~tion of' b;n~rffd'

00 far we have devoted. our efforts to stu6.y ing t.he join

of two ha rmorrl c polJ nonrl aI maps. It is reasonable to ask whut

other topological constructions can be treated in a similar

manner, and the answer seems to be "ver ..Y' few". For example,

the reduced join and Whitehead product offer little hope of

smooth, harmonic, one-parameter r~pre8ent~tion. However, the

llopf conat ruct ion uoes offez' some hope, as well as an interestlng

obstacle: this baI'rier may be interpreted ph;y'sically as non-

conservation of energy in a vari able gravity system. (Proposi t ton
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Recall that if we are ~iven a map F : Sp-l .r-l~ '-!'l,x.-:) ~ >;;1

the iiopf' construction applied to F y LeLda a map

) ,p+r-l ,~+lHtli' :::i -t S· which may be defined. by

Now suppose that in each variable
aepar-at eLy F is a homogeneous harmonic polynomial, of
homogeneity k in y and t in x. Then we look for a harmonic
representative of H(F) in the form

(x,y) -t (cosa.(t), sina.(t) F(x/lxl, y/lyl»

where t = log( [x II Iy I) as usual. The function a should now
run rrom 0 to ~. By performing a'calculation like that in

Section 1, one sees that the equation a must satisfy is

) .• 1 () t ( ) -t). ( -t t) \(3.7.1 0.= t -t « p-2 e - 1'-2 e 0.+ Ale +h2e SiI.a.coso.,(;+e .

Al = .l(1 +p-2)

A 2 = k(k+r-2)

Note that the dIf'f'e r-ence between this e'iuation and (3.1.3) Is
that the gravity always has the same sign. As we shall see,
this makes life more dif'ficult. The lIiOS t general theorem we
can state is:

Theorem 3.7.2 Suppose F 81'-1 )( 81'-1 -t Sg, is a harmonic
polynomi~l of homogeneity k in each variable sep~rately, with
k > ~ :r>-2) sat1sfied.
of H(F).

Proof Under these assumptions we can find a solution of (3.7.1)

Then there is a harmonic representative

which satisfies 0'0 = 7'i./2,
(3.7.1) becomes
(3.7.3) a. = (r-2)tanh(t) ~ + As1na coso.

(1. = 11:, a = o.
C:J -0;:

For in this case



As we (lid in :::iection 5, note that if CL is a solution with

a( 0) = 1t/2; the n CL ( t ) + CL ( - t ) = ?t. It therefore suffices

to find an initial derivative ao for which

u sua L ar-gumen't s f Lnieh the proof.

11. = ?t.
ex;

l'he

ReliLark 3.7.4 Unf'ortunately this theorem (toes not pr-oduce

any new examples of essential har-monf c maps.
IIIcandidate fOI' F is F :::) x S'" S given by (z,w)

'rhe only good
k k... z w •

'rhen H(F): ::)3 .~ S2 has Hopf tnvar-turrt k2, and we ea.sily check

that we have simply reproduced our previous Examp Le 3.6.,.
l-\ather more interesting is the fact that these methoc.ls can

be proved to fail in the most important case. Namely, let

F : f.J~sl...SL be the mup (z,w) ... z'wk ?lith J I- k , Note that

n(l") : s3 -+ 82 has Jiopf invariant kl .• The relevant equation

is 2 t 2 -ta: = (u __+ g e ) sinet
et + e-t

If k2 1..(2, then there is no solut ion CL

coso.

Prorosition ).7.0
of the above equat ion with CL =?t and u = o.co -co

Proof The physical reasoning is this: suppose k2 < l,2 and

write
a. :: f (t) si n a cos a.

where f( t ) > 0 ana. is at r-Lc t Ly a.ecreasing. 8uppose a. (to) = 1t/2

and G, (t ) is just l8.rge enough that a. =?t. Then 8S gravityo co

is stronger for t < to than it is for t > to' the kinetic

energy at time to will not be sufficient (in backward time) to

enable a. to reach o. A picture of thia ai tuation (with a: = 2 c.)

is given below. 'I'he function a. must rW1 out of steam at some

time t < to' and then continue to make bounded oscillations for

all time less than t.
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Ci = 211:
00

0.( t) > 0

a( t) = 0

Ci( to) = 11:.
a( to) » 0

The energy estimates required to give a precise proof
o~ these statements are well known to physicists and aynamical
systems personnel and will not be reproauced here. 'rherefore

2we have shown that some el~ment6 of 1t3(~ ) definitely cannot
be harlIlonicallyrepresented by our methods. Hence the
existence or non-existence of a harmonic map of Hopf invariant
2 is for us the nioat interesting unsolved question of this
type.
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Chapter 4

kAPPING~ OF ELLIPSOIDS ANp TORI

In geometry, an ellipsoid and a sphere are two entirely
different animale. It is therefore not surprising that even
the simplest ellipsoidal perturbation of the usual
Bpheri~ .etric produce. 1ate~e8ting complications for our
methods. We first study maps of ellipsoids into spheres and
discover that the situation is substantially messier but
essentially unchanged from Chapter III. A map of a sphere
into an ellipsoid, however, poses some new problems altogether.
The only case we can study effectively is that of the first
suspension. It turns out here that it i8 a positive advantage
to map into a short, tat ellipsoid, whereas tor maps into
long, thin ellipsoids we are led to a non-existence theorem
in dimensions;;' 3. Finally, we observe that all ellipsoids
of revolution in lR3 are conformally equivalent to s2.

Some examples of harmonic maps of tori are also included
because a) they succumb to ordinary differential equation
methods, and b) their geometric behav10ris instructive.

Section 1. Maps of Ellip~01d6 lnMo Spheres
Most ellipso1ds we consider will have the torm

E = 1(x,y) e lRP )( lRr = mn : blxl2 + lyl2 =: 1)

where b is some positive constant. The first thing we need
to know is how to compute the Laplacian of a function defined
on E. More specifically, it f is defined on lRn and i: E ...IRn

is the inclusion
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(4.1.1) -~E(fIE) = T(f 0 1)

= Trace ~df(di,di) + df(T(i»
= 1'( r) - d 2f/dT} 2 + d.1'(1' (1) )

where d/dT) denotes normal dif'ferentiation. The term T(f)
is just the Euclidean Laplacian of r, and T(i) Is the mean
normal curvature 01' the embedding i. For a sphere of
dimension n - 1 it is well known that this vector Is always
an inward normal vector of length n-l. For an ellipsoid or
the above type, the normal direction is given by T) = (bx,y).
Furthermore
Lemma 4.1.2 The mean normal curvature or E at (x,y) is an
inward normal vector of length

L = b/(b2IxI2 + IYI2) + (r - 1) + b(p - 1)
All that we actually use is that the obvious ract that the
mean curvature is a smooth normal field on E, BO the proot
of the lemma is omitted.

Now Buppose that we are given two harmonic polynomial
maps r: Sp-1 ~ sq-l and g: sr-l~ ss-I. The procedure will
be to join f and g so that the domain is an ellipsoid ot

the type discussed above and so that the resulting map Is
harmonic. Of course, the pair (x,y) in the detinition ot E
will. correspond to the domains ot t and g.

The derivation of the equation for the join parameter
~(t) proceeds in a fashion entirely analogous to that in Section
1, Chapter 3. There is, however, an additional complication
arising from the fact that the map t • g defined on Rn is ot

course not constant in directions normal to E; hence all
terms in (4.1.1) contribute. At any rate, the net result l'

aCt) - h(t)~(t) + g(t) sin~(t) cos~(t) = 0
where hand g behave more or less as before:
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h = r-2
0.'

h = -lP-2)
-00

goo = k(k+r-2)
g = -.~(q+p-2)
·.co

Furthermore, Ih(t) - h I = o(e-2t) and so forth.
00

Finally,
there is a uni~ue to with g(to) = 0 and dg/dt > 0 at to'
With this infor~ation we can prove

Theorem 4.1,4 Let f: Sp-l ~ sq-l and g : sr-l ~ 8s-l be
harmonic polynomials of homogeneity .f and k, respectively.
For any b > 0 let E be the ellipsoid

If the damping conditions are satisfied (as in Theorem 3.1.1),
there is a harmonic representative of the join of f and g
with domain E

f • g : E -+ sq+s-l
Proof As before, our problem is to study solutions of (4.1.3).
The only obstacle to blanket application of the arguments in
Sections 2,3,4 of Chapter 3 is that the functions hand g may
not be monotonic. Let us outline the tew modifications which
must be made in our former proof at each stage.
A) Existenoe In Lemma 3.2.11 we used the monoton1c1ty of h
to Bay h(tl) ,h(t) tor all t ..tl• However, if we are
considering the behavior of solutions on ~1'(0)for large tl,
we can always define

h-(t) = int (b(a) : s .. t J

It follows th'cltIh-(t) - h I = O{e-2t). Subst1tuting
00

h-(tl) and g-(tl) for h(tl) and g(tl) 1n Lemma 3.2.11, we see
that the proof now goes through.

B) AsYniptot1g behavior For large t also define
s .. t)
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and similarly for g+(t).
be the solutions ot

(g+(t) - k+(t)2)/k+(t) = h-(t)
(g-(t) - k-(t)2)/k-(t) = h+(t)

respectively. Then k+(t) < k + o(e-2t) and is decreasing,
whereas k-(t) ~ k - o(e-2t) and is increasing. The lemmas
we need are now proved essentially as betore.
c) Regularity. Given the usual asymptotic estimates the proof
proceeds as betore.

Section 2. Maps of Ellipsoids into Ellipsoids
As all our examples have to do with suspensions, let us

choose some terminology:
Definition 4.2.1 If f: 8P-l ~ sq-l is a aap, then a
one-parameter suspepsion ot t is a map Jt of the torm

8t : sP ...sq
(cos6 x,·sine) ~ (cosa.(e)r(x), sim(e»

tor continuous ~: [~/2,~/2) ...[~/2,~2] preserving end
points.

The ellipsoids we study will naturally be compatible with
the program ot suspension:
pefinition 4.2.2 For any b > 0, let

En(b) = l(x,y)e lRn xlR : blxl2 + lyl2 • bJ
It should thus be clear what w~ mean by a one-parameter
suspension Jf: sP ~ Eq(b) • Note also that E2(b) is a typical
ellipsoid of revolution inJR3• The tol1owing theorems
illustrate a substantial difference between dimension 2 and
dimensions" 3.
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Theorem 4.2.' Any two ellipsoids of revolution El and E2 in
1R3 are conformally equivalent. In particular the induced
complex structure on either is the same as that of s2. Hence
for each k there is a harmonic map of degree k : El ~E2
which is a one parameter suspension of z ~ zk on Sl.

Theorem 4,2.4 Let I : 8n-l ~ 8n-l be the identity. Then
for large band n ~ 3 there is no harmonic one-parameter
suspension ZI: Sn ~ En(b).

Theorem 4.2.5 For n ~ 6 there is always a harmonic one-
parameter diffeomorphism ZI : En(b) ~ Sn.

Theorem 4.2.4 ls that mentioned in the Introduction,
and is the basis for our conjecture that there is no harmonic
map of degree one in these cases. Putting 4.2.4 and 4.2.5
together we find that we have produced a collection ot

harmonic diffeomorphisms whose inverses are certainly not
harmonic. These are the only harmonic diffeomorphisms I

know which have this property.
Befor~ giving proofs of these results, let us first

derive the basic equation to be studied: it f: Sn-l ~ Sq-l
is a harmonic polynomial map of degree I, a one-Jarameter
suspension Zf : Sn ~Eq(b) can be assumed to have the form

with
(x,y) ~ (cos~(t) t(~lxl), ~ sin~(t»

t = log (Ixl/y + 1)

As in Section 3.5 we tind for the Euclidean Laplacian.
~(coea f) = (-sinn ~ -co~ ~2 - (n~2)y sina - ~cosa)f/lxI2
~(vbsina)= (cosa a -sina a2 + (n-2)y coaa)V5/lxI2

Since the normal to Eq(b) at the image point is spanned by
~ = (vb cosa f, sina), the requirement that ~(zt)be proportioned
to ~ becomes
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(4.2.6) a - (n-2) tanh(t)~- «(b-~t~~ -4 )sina co~ = 0

,(a) = bcos2a + Sin2a
A. = Hi +n-2)

where

Note the appearance ot a term involving a2• The grouping
in the last term of the equation is the natural and convenient
one: the entire quantity in parentheses will otten be thought
ot as a perturbation ot the eigenvalue A..

Proof of 4.2,3 We will demonstrate that any ellipsoid ot

revolution E is conformally equivalent to the Euclidean spher4
82 by a one-parameter stretching

(x,y) -+ (cosa(t) xllxl, Vb sina(t»
Such a map will be a holomorphic equivalence ot 82 and E.
Further, we know that any degree on 82 can be represented by
a holomorph1c or anti-holomorphic map, so by compositions we
obtain holomorphic or anti-holomorphic maps ot degree k between
our ellipsoids. As these manifolds are !\ahlt::r,BU.Cl~ utaps RJ:t;:

harmonf c •

The easiest way to derive the condition for our map to
be conformal is to write it in the form

(cos6eiu, sin6) ..r (coaJ,(t) eiu,v'b sina(t»

.where t (6) = loge cosel1 + aine)

The metric on S2 is
2 2 __2

g = cos e du + d er
and on E ls

g = 2 . 2 (1 2cos u uU + 6 n a 2 2+ b cos a) do.

As df preserves the orthogonality ot tI ~ and d/d6, the
condition for conformality is that unit vectors in these
directions be uniformly dilated. Since



dt'( 0/ au) = 0/ au
df(%e) = -aCt) sec6 %~

this condition is the autonomous equation
(4.2.7)

Note that upon differentiating again we recover the condition
for f to be harmonic, namely

(4.2.8) a: :I (~ b-l)ei2 - 1)
<p(o.)

sino.C080.

Using Equation 4"2.7, we see that if we assign 0.
0

to be aD3'
value in (-~/2,~/2), then integration yields a solution which
is asymptotic to ~/2 at ±=.

To establish the asymptotic behavior of 0., we study the
second order equation (4.2.8). This has the advantage that
the methods will carryover to"other mappings into ellipsoids,
where the equation considered will not have "first integrals".
More generally, again in the interest of la~er reference, let
us assume we are constructing a I-parameter suspension ot

z~ zk on Sl, so that (4.2.8) becomes

)• 2 2•• «b-l 1 - k) i0. = , o.} s no. coso.

For large t we define
k-(t)2 = int k2 -(b~l)g2(s)

s>t cp (o.(s»

k2 -(b-l)a.2(8)
cp (o.(s»

•Note that a. iB decreasing after 0.. passes 0; for then
sino.coso. >" 0 and hence from (4.2.9) if -a.(t) > 0 tor some
such t,



8.5

Therefore it a increases past t, this inequality will continue
to be satisfied, and conversely. This is clearly not
possible tor a monotone solution asymptotic to ~/2. Hence.~ decreases atter u passes 0, and in particular k-(t) 1s well
detined. The procedure in Section 3.3 now shows that
eventually

•net) ~ k-(t) cosa.(t)sina.(t)
aCt) < k+(t) cosa(t)

We would also like to show that eventually
cle-kt < cosa.(t)< c2e-kt

An inspection ot the methods in Section 3.3 ehows that the
only ingredient lacking 1s

S:{k+{t) - k)dt < 00

and similarly for k-. (Previously, of course, we knew
a priori that k+(t) = k + o(e-2t». It suffices, then, that

S:(k+{t)2 - k2)dt < 00

and tor this it is not hard to eee that

and

J a.2( t) dt < 00

III - q>(a{t»ldt ::[I(b-l)cos2a. (t)!dt < 00

are sufficient. However, it is obvious that J!~(t)! < 00'

since CL is monotonic and bounded, and theretore Jo.2(t) < 00.

Furthermore, we know that eventually

cos20. sin2 Cl .. a,2/(k-)2

so that fcos2u.(t) < 00 tollows also.
Having established the exponential deoay ot COB a., we
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still need for our regularity proof that

and likewise for k-. However, we can now say

which gives the required estimate on k+(t)2 by inspection.
From this pOint the regularity proof proceeds as before,

substituting for a from (4.2.9) where necessary. The proof
that the differential of our conformal map has maximal rank
at the poles is contained in the proof of Theorem 4.2.5.
This finishes Theorem 4.2.3.

Proof of Theorem 4.2.4 The equation governing the suspension
parameter in this case is

(4.2.10) CL = (n-2)tanh(t)l + «b-l,,~)-),) sina. C08a.

Cl> (a.) = sin2a. + bcos2a.where

and n is assumed ~ 3. We will show that for b large enough,
any solution which passes through 0 with positive derivative
is unbounded. Note that this immediately gives us the
theorem: certainly if a. is unbounded it cannot define a one-
parameter suspension. Furthermore, there is no 108s ot

generality in assuming there is some to with cito) = 0
(as a. traverses the interval [-fC/2, 'Jt/2), and since ..e require
for a one-parameter suspension that a. = "1t/2, a. = 'Jt/2,

-00 00

there will be at least one such to with ~(to) > O.
(a. (to) = 0 is impossible by uniqueness).

In the proof, we will further assume that to ~ O. For if
to < 0, define {3(t)= -a.(-t). Then (3 also satisfies (4.2.10),

r, (- to) = 0 and ~(-to) > O.

is unbounded.
Of course, {3 is unbounded iff a.
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The proof is now by a series of comparisons, at each
stage giving conditions on the largeness of b. It will be
evident that there is no logical difficulty in not choosing
b a priori.

Comparison O. It suffices to show that at some time t > to'

a.2(t) > )./(b-l) and a.(t) > o. For then 0.2(s) ;a X/(b-1) for
all s ;.e , This is because Equation (4.2.10) shows that if

0.2(S) drops to this value, then a(s) > O.

Let us therefore assume that )./(b-l) is reasonably small.
The object of the ,ensuing comparisons will be to nurture a2
to this value.

Consider the :function ,(~) = sin2~ + bcos2~. Choose b
so that e = 'A/,(,.;/4)is very small. Now malte

Comparison 1. Let a1 = a, the solution in question, and let
a. 2 be the solut ion of'

c; 2 = (n-2) tanh( t) 0.2 - e 0.2

with the same initial data at to as a• Then as long 8S

•o II;; 0.1 II;; ?t/4 and "2 > 0, we have for t ;. to

Proof We show subsequently that the left side is always
finite. In this event, (t) is a direct app1ioation ot the
Comparison Theorem (3.2.7). In the notation of that theorem
we have

P1 = P2 = exp(-Ji (n-2)tanh(s)ds)
o

g2 = eP2
g = Cl -(b-l) Cj2 ) sing. gosg.
1 , {a} ~ Pl



A. sin n. cosg.
q>( u) a, Pl

Hence we can verity that gl <; g2 by noting that sino. COEtlh. .; 1

and that cp(a) decreases on [0,11:/4].

For the functions wi ' we have wl(to) = w2(to) = 0, hence

by the theorem

w2 = tan-l (a,2"'P2U2) ~ Wl = tan -1 (a.l/PlcI.l)

•which gives the desired conclusion as long as ~ # o.
Now choose 0 < tn < 1 such that tn tanh( tn) < l/(n-2).

If to;' tn' proceed to Comparison 3. Otherwise go to

Comparison 2. Let 0.1 and ~ be the solutions ot

and
..a. __ € a.
2· - 1.2

with the same initial data as a at to. Here

81 = e lA

A = exp(-J:n (n-2) tanh( s) da)
o

~ exp(-I~(n-2)tanh(a)ds)

Note in particular that €l is small it e is small, independent

of to,tn•

To apply the comparison theorem, rewrite the second

equat'ion as

Then

.t

~ :r: -B~

Pl(t) • exp (-~ (n-2)tanh(s)ds)
o

P2(t) = A .; P1(t)

S1(t) = BP1(t)

82(t) = e ;. 81(t )



89

where

a.1/ci1 ..; a.~a: 2

= Sin[e(tn-to)]/e cos[e(tn-to)]

~ sin(etn)/ ecos(etn)

e = vie 1

By l'Hospital's rule the last ratio approaches tn aa e -+ o.

Since we have assumed tn tanh(tn) < 1/(n-2), we may now requil'e

that e be small enough that

, a. 1/0:1 < 1/ (n-2)tanh (t n)

holds at t = tn. ,This is Comparison 2.

Comparison 3. In this step we require that £ be small enough

that an over-damping condition hold, namely

T2 - 4 e> 0

T = (n-2)tanh(tn)

Let ~ be the solution of

.~ = (n-2)tanh(t) ~ - e~

(3(to)= 0with

and

as usual. Weclaim there 1s some tl > tn such that

In tact, 1f to> tn' let tl = to' and it to < tn we aet'tl • tn

and use the conclusion of Comparison 2. Nowlet
2 I

W = i (T + (T - 4e) ~) ( T

Wsatisfies W = T - e/W
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Our object is to show
(!!)

.
13(s)/~s) < l/w

So suppose (~!)fails to hold for the rirst time at time t > tl•
Then on (tl,t) we have

•• •
13(s) ,. Ta(s) - el3(s)

> (T - e/W) ~(s)

So that
~(t) > ~(tl) + (T - &/#)(~(t)-a(tl»

> T(3(tl) + (T -& IW)(ri(t) -j3{tl»
= W~(t) + (eIW)i3(tl)
;;. w a( t)

Hence (!0 holds s;. tl • This is Comparison 3.

The proof of the theorem is now finished, via the
following remarks:

a) Having chosen b large, any such solution a must
inerease aonotonlcally to at least ~/4. This is a straight-
rorward consequence of Comparisons 1-3.

b) By perhaps choosing b even larger, we can guarantee
that cl. 2 reaches the value A/(b-l) by the time a reaches ?C/4.
For if this time is t, we will have either

a. (t)/ci(t) < lIT

from COlllparisons1 and.2, or at worst
a.(t) Id ( t) < l/W

from 1 and 3, depending on whether t < tn or t > tn.
Substituting a.(t)= 1V'4, we get an estimate on ci(t)which
may be assumed sufficient. Therefore by Con~arison 0 the
theorem is proved.
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Thi$ is juet an applicd.tion ot:

Theorem 4.1.4. It:f and g are the identities oh Sn-l and SO
respectively, then there is a harmonic one-parameter suspension

f*g III ZI : En(b) ...Sn

for n .; 6. We only have to check that ~I is a diffeomorphism.
We will suppose 1:1 is given in the natural sYDlDletricf'orm

(cf. Section 3.5). That is
(x,y)-+ (cosa.(t)xllxl, sina.(t»

t = 10g(lxl/y+l)
Here a. ranges monotonically (a(t) > 0 'd t) from -71/2 to 'IC/2.
It is thuB more or less clear that ~I is a homeomorphism,
and an ilDll1ersiona\"/ayfrOilx :::o. Let us check that

~X . (1 I) ~ 0
i

at (x,y) :::(0,1). Por the ith coordinate we find
[.2= -sina. a.Y Xi
+ cosa.(Ixl2 - x~)] IIxI3

We know a priori that this expression is continuous at x :::0,
so we evaluate the limit along a particular path with X· xiei•
As

we are led to consider

= lim i a(t)e-t
1r+~

But by Section 3.5 we can replace & by Icoaa.1and also use that

c1et ~ Icosa.(t)I< c2et

for t near -~. Hence the above limit is strictly positive.
This concludes the proof of the theorem.

Having proved non-existence of certain harmonic maps into
long, thin ellipsoids, let us now show how to actually improve



the existence theory o~ Chapter 3 by mapping into a short,
fat ellipsoid.

Theorem 4.2.11 Let f : SP-l ~ sq-l be a harmonic polynomial
map of homogeneity 1. Then if b > 0 is small, there is a
harmonic one-parameter suspension

Remark 4.2.12 The point of the theorem is that if b is small,
we do not need f to satisfy the damping condition. For
example, this theorem would apply to the Hopf map 0: s15 ~ S~.

Proof Recall that the equation under consideration ls

(4.2.13) .. (p-2) tanh (t)a ('b-llo,2 - A ) slno.Cl = + <P{o.) coso

with <p(Cl)= sin2a. + bcOS20.

Our object is to find a solution with a . = -~2 and a = ~/2.
-00 00

By symmetry, it suffices to set 0.(0) = 0 and find some 0.(0)

such tha t a. = 7C./2. If' we put cl.( 0) = int A+ ( 0) in the usual
00

way, we need only check two points to see that the arguments
of Section 3.2 can be applied:

a) A+(O) ls non-empty. This point is no longer quite
so obvious, but can be derived from a straightforward analysis
of the differential inequality

•• •2
0. .. - ca

b) 0.(0) > O. Thls is where it ls necessar,y to choose
b small. By doing so one can ensure that the term multiplying
aim coso. is lar'ge and negative when Cl is near O. Hence the
equa tion is underdamped for small a. and we can essenti ally
apply the arguments in Lemma 3.2.11.
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This demonstrates existence. That the asymptotic behavior
of'a. is correct f'ollows f'rom an appropriate mixture of the
method.s in Theorem 4.2.3 and the usual techniques of'Section
3.3. hegulul'ity of'the map Zf defined. by a. follows a~ in
St:C't..1.0n 3.4. Hence the theorem.

Remar'k 4.2.13 It is natural to ask whether the above theorem
could be extended to the general case ot harmonic polynomial
maps; thus if one of the polynomials failed to satisfy the
damping conditio~, this difficulty could be removed by
mapping into an appropriate ellipsoid.

However, a new non-tr~vial difficulty presents itself.
Due to the asymmetry of the general case it would be necessary
to reintroduce the functions a~and a~. The problem is to

verity that these functions are still continuous.

Section 3. Mapp1nps of Tori
This section consists of two examples. In the tirst we

construct some essential maps 'of the Euclidean torus to itself
via harmonic equivariant theory. In the second we give some
unusual inessential maps of the flat torus to the 2-sphere.

Let T2 be the torus of revolution in lR3

obtained by rotating a circle of radius 1'2 through a c1rcle
of radius 1'1> 1'2' Then there is a harmonic map of T2 to
itse1f which wraps around j times in the ShOI't direction and
k times in the long.
Proof By definition there is an action of SI on T2 by
isometries. Let e be the angular variable in the direct ion
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o~ this action and let ~ denote an~le in the complementary
direction. ~ is therefore a coordinate on the orbit space,
which 1s a circle. 'fhe volume t'unction, normalized, i8

We look for a harmonic map ot' the ~orm

where a is required to vary between 0 and 2~j on the interval
[O,2~J. Such a map is horizontal, and Theorem 1.3.5
applies. The orbit-energy is

tension equation is

•• r2sin~ a(~) k2(rl+rgcosa)r2
a(~) - r + r C08~· + -.....:=---=---2~--

1 2 (rl+r2cos~)

and the equivariant
sina. = 0

Now make a change ot variables

x(~) =J: 1

rl+r2cos~' d~'

and let
a(cp) = <i'(x(cp»

with the result that a(x) must satisfy the autonomous equation

Let to = x(2?t).

satisfying
-We are therefore looking tor a solution a.

\Ix

The method of finding such a solution is essentially our
•

standard one: we set a(a) = 0 and find ~(a) such that
This is possible: the term rl+r2cosn is

always positive, so the ·equation behaves like that ot: an
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ordinary pendulum. -Hence we can make u reach ~ in any
specified finite time.

The required periodicity is therefore evident, and thus
regularity is automatic. Hence the theorem.

Theorem 4.3.2 Let T2 be the flat torus. There are surjective
harmonic maps T2 ~ s2 of degree 0 which are neither open nor
light. There are also harmonic maps T2 ~ 82 whose images are
proper closed subsets with interior.

Remark 4.3.3 This shows that a harmonic map between compact
surfaces need not behave anything like a complex analytic map.
A non-constant analytic map must be open and light, by a theorem
of StOilo ••

Simpler examples could of course be given if one did not
ask that the image have interior.

Proof Choose angular coordinates (q>,e) on T2.
f : T2 ~ 82 will have the form

Our maps

( tp , e) ~ (s 1n 0.( q> ) e ie, cosa. ( q>»
One easily verifies that 6f is proportional to f, i.e., f is
harmonic, iff

••
0. = sino. coso.

Hence we simply look for solutions which are periodic. Again
it is obvious that we can set a.(0) = 0 and choose a. (u) such

that o.('It/2) = 'It/2. By symmetry we get the periodicity we need.
The map f is surjective and clearly has degree 0: the

first half of the torus (0 ~ q> , 'It) gets mapped onto S2 with
one orientation, while for the second half this orientation is
reversed. Note also that the circles q>= 0 and q> = 'It are
mapped to points, 80 t is not light. Neither is it open.
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.Suppose instead we put Uo = ~/2 and choose Uo small.
Then the system oscillates about ~/2with some period.
This period depends on Uo and gravity ( g = 1 in this case).
By modifying the metric on T2 in one variable, however, the
equation becomes

.. 2
a. = c sim coso,

It is clear that by judi.cious choice of c and 0,0 we can make
the period~. The image of f in this case will be a closed
band about the equator of 82•

This concludes the theorem.
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Chapter 5

THE SECOND VARIATION OF THE ENERGY

This chapter is concerned with the qualitative behaviour
o~ the energy ~unctional in the vicinity of a critical point,
or harmonic map. For example, the second variation can tell
us if a harmonic map is not a local minimum of the energy. It
not, we would like to know in how many ways the energy can be
decreasedjie., to compute the Morse index o~ the map. An

associated qualitative problem is that of non-degeneracy: ir
the second variation is zero in some direction, does this
indicate the presence of more harmonic maps? This question
is also significant in Morse-theory.

It should be pOinted out, however, that although the
language of Morse theory is the natural one, the prospect ot

actually doing any Morse theory is distant •. It is not clear
what relationship, if any, should hold between the critical
sets of the energy and the topology of the mapping space on
which it is defined. The basic problem is of course the lack
of a general existence theory. On the other hand, we have
included an appendix which shows that locally the correct
relation holds, under an appropriately weak non-degeneracy
assumption.

Section 1. Generalities
If f: N'" )I is a harmonic map, then the second variation

(or Hessian) of the energy at t is a symmetric bilinear torm
defined on the vector fields along t; i.e., on the sections ot

f*TM. (If f is thought ot as lying in a manifold ot maps, such
vector fields form the tangent space to the manifold at t). The
Hessian H is defined as follows: given two fields along t,



98

say v and w, choose a 2-parameter variation f t such thats,
2f1 = vos (s,t)=o and £ttl =w.

o (s,t) = 0
Then

2H(v,.) =0 (E(fs,t» I
oS ot (s,t) = 0

Since f is a critical point of E, it follows as in finite
dimensional Morse theory that H is well defined.
also apparent from the computation below:

This is

Proposition 5.1.1 If f: N ~ M is a harmonic map, the Hessian
at f is g1ven by

Remark Here ~f is the induced connection on f*TM and Pr
(wh1ch is like a Ricci tensor) is the trace of a bilinear form on
TN. Explicitly,

Pf(v) = Trace RM (dr,v) dt
= Z R»(df' e1,v) d:f'.e1i .

Here RM is the curvature tensor on M and (e1) is an orthonormal
basis for TN at the point 1n question. The sign convention
for R is that used 1n Milnor (M], namely, that

A good reference for connections and curvatures in pull-back
bundles and in bundles of linear maps 1s Eliasson (El]. (Hie

curvature convention opposite to ours). The ensuing
calculation uses the formulae given there throughout; it also
employs a method found in lecture notes by the same author.

Proof (5.1.1.) Choose a variation fs,t ae above. Then
f defines a map F : lR 2x N ... M, and8,t

E(fs,t) = i SN <dF(-),dF(-»
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where (-) will denote arguments in TN. Then as all
Riemannian manirolds are assumed to carry their Levi-Civita
connections, we have

(}E J' dat· N <VdI (di' -), dF(-»

= fH <VdF( -, ~), dF(-»

d~ J .» ad· a 0dsot = N <V-dF(crs,-,Tt),dF(-» +<VdF(-,lt),VdF(-,c;s»

Note that v2dP(~,-,h) =V2dF(-,~'~)-(Rz,(r.,-)dF) -k
2where Nz, is the curvature for the bundle L(T(tR )( N), F*TM).

From [Ell we get

(~(fa,-)dF) k = RF*TM(/s'-) *-dF(\a2XN(~'-)h)
Note also that

= RM(~' dF(-»~

() 0V4r(Oi'di) is a field along', so that at
8 = t = 0 we have

IN <v2dF(_, Ia,h>, dF(-» • 0

as fo,o is harmonic. Thus we conclude

In general, however, the form <R(X,y)Z,W> is anti-symmetric
in (X,Y) and in (Z,W). (See Milnor [M, p.53J). This proves
the proposition.

An immediate corollary is that it all sectional curvatures
or M are non-positive, then H(v,v) ~ 0 for all variations v;
this indicates that ever~ such harmonic map is a local minimum
of the energy. In tact.,a much stronger statement is true:
it f:N ~ M is a harmonic aap and M has non-positive sectional
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curvature, then r is an absolute minimum of the energy in
its homotopy class. The proof is simply that any smooth
map fo in this class is smoothly homotopic to a harmonic map
foo via the heat equation (using Eells-Sampson [EHJ and Hartman[H]~
As energy decreases along a trajectory of the heat equation

Furthermore, Hartman has shown that f
00

must be homotopic to f through harmonic maps, and consequently
that E(f) = E(f ).

00
Hence E(f) is an absolute minimum.

It is therefore reasonable to expect that in this case
the harmonic maps are a deformation retract of the mapping
space (as in finite dimensional Morse theory). Karen
Uhlenbeck has claimed to have proved a statement to this effect
[U2] • It is easy enough to see this it N and M are tlat;
all the higher order energies have only harmonic critical
points in this case, and infinite dimensional Morse theory can
be applied to a sufriciently high order energy.

By applying the divergence theorem, as in [E2], we see that
the Hessian can also be written as

where Il fV = Trace (V~v). Note that the second Tariation
operator Jr : cf'(f*TIt1)...cr(f*TM) ie sy_etric aDd elliptic.

of
If the nullity/f (null (t» ie defined as the dimension of the
space on which H is zero (i.e., those v for which H(v,w) • 0 tor
all w), and if the index ot t is the dimension ot the largest
space on which H is negative definite, it is clear that

null{f) = dim ker Jr < 00

index{f) = # 1 eigenvalues (Jt) < 0 J < 00



101

Note that if the metrics on N and K are changed by (positive)
scalar multiples, then so 1s J; hence null(f) and 1ndex(f)
are unchanged. However", we will see examples later in which
these quantities can be altered dramatically by making less
trivial changes in the metrics.

In analogy with the theory at geodesics, we will say v is
a Ja20bi field along ~ if v e ker Jf' Note
variation of f through harmonic mapa, then v

that 1t tt 1a a
atl 1a a= dt t.o

Jacobi field along f. For clearly Jtv - 0 1f and only 1f
H(v,w) = 0 for all w.
H(v,w) = d2E(V,w) =

However, we can compute
~ (dE(ft)(w»t_o' and dE(tt) - 0 by

assumption. Hence Jfv = O. The converse 1a not necessar1ly
" 1true, even when f: S ~ M is a geodesic.

Example 5.1.5

The middle circle is a geodesic on the surface M, but no
distinct parallel circle is a geodesic. It K is made qulte
flat along its middle (RM = 0 there), the parallel field
drawn along the geodesic will be a Jacobi field.

I

does not arise from, a variation through geodesles.
It clearly

Regarding the nullity ot a harmonio map, let us define the
kil11ng nullltyas

Nullk(f) = dim span (i(M), dt (1(N)
Here elements of 1(M) (infinitesimal isometriea) and df(1(N»
are considered as variation flelds along t. They are clearly
Jacobi fields, as they arise from the composition of f with
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I-parameter groups of isometries. It will be convenient to
aiscount these trivial harmonic var-Lat rona and define a
reduced nullity

Thus the qua11tatiTe problem of interest to us is this: it
l' is a harmonic map and nu11r(f) ~ 0, do all Jacobi tields
arise from a variation of l' through harmonic maps? Let us
say that l' is generate it this is the case.

Our second problem ls to calculate index (t). Although
this is usually impossible (cf. the last section ot this
chapter), the study of the index ot certain simple maps is
both feasible and rich ln geometry.

Section 2. The Iaentity Map
If M is a closed oriented Ri.emannian manifold, then the

identity map i~ : M ~ M is of course a harmonic map and we can
stu~y its index and nullity. One might expect that iay is
always a local minimum of the energy, and hence has index OJ

that this is not the case was first observed 1n (ES].
and Sampson constructed a one-parameter family of maps

Eells

and lim E(ft) = 0 tor n ~ ,.
t -b'

We
will return to interpret this example later and
calculate index (idsn) exactly.

To begin with, note that a vector field along i4y is just
a vector 'field on M. The second variation operator becomes

(5.2.1) Jv = -6v - p(v)
where

I1v: 'rrace (~v)
p(v): Trace R (-,v)-M
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Hence p is just the Ricci tensor, considered as a linear map.
The operator 6 is not to be confused with the Hodge Laplacian,
denoted ~ in this section. On one-torlls (or vector tields), we
have in fact the well-known tormula (D )

6 HV = -6v + p(v)

The operator J has also made its appearance in ditferential
geometry before, for example in the work of Yano and Bochner on
Curvature and Betti Numbers (BY). The tollowing integral tormula
is given by Yano : [BY p. 57 J and w111 be used later:

SIA <Jv,v> =

Here Lvg is the L1e derivative of the metric w.r.t. v and 0

is the divergence. Thus Lvi = 0 if aDd only it v is a Killing
vector; from the tormula we see that it Jv = 0 and 6(v) • 0,

then v is Killing.
(BY] •

The converse follows by direct computation

J is also studied in Lichnerowicz [L2J with regard to the
Lie alge'braof inf'initesimally confor_l tields, denoted51.
The following observation can easily be derived trom his work,
but a self-contained proof is simpler.

Proposition 5.2.4 If II is closed and oriented ot dimension ~ 3,
index (idM) ~ dim(g,IjJ.

Hence

Recall that a vector field v is in51 it it satisfiee
Lvg = (~) O(v)s

IL gl2 = (~)20(v)2 Igl2 = ~ O(v)2v n n

Proof

so that Yano's formula (5.2.3) gives
rM<Jv,v> = 2;n 114 o(v)2 < 0



if O(v) F o. From the definition, however, it is clear that
if v e £, then vel if and only if O(v) = o. If we let V
be the ortho-complement of !in £ (with respect to the L2 inner
product), then it follows that J is negative definite on V.
This proves the proposition.

Remarks 5.2.5 a) This gives an interpretation of the example
of Eells and Sampson. The n-sphere carries n+l linearly indep-
endent conformal fields which are orthogonal to the Killing
f'ields. The maps ft they constructed are essent1ally just the
flow of one of these vector fields

b) It appears that in general
This will be dis~uesed later (5.2.13).

c) It is easy to produce examples of manitolQ8
for which ~1 ~ 0, as pOinted out in ~. For it M has a one-
parameter group of isometries, say ft' choose a positive
function p which is not invariant under the group. Define
a new metric on M by setting gl = pg. Th. maps tt are now
conformal, but are no longer isometries.

Hence any compact homogeneous ,space ot dimension >3 can be
given a metric for which i<\t is not a local minimWll of' the
energy.

Lichnerowicz also studies J on compact Kahler manifolds and
finds:
Proposition 5.2.6 (Ll] Let M be a compact Kahler manIfold and
v a vector field on M with Jv = O. Then v is an infinitesimal
analytic transformation.

Since holomorphic maps ot Kahler manitolds are harmonic
[ES], this says that idM is a . ,enerate critical polnt
of the energy. Holomorphic maps are studied in more detail
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in a later section.
Although the operator J has appeared in the previously

mentioned varied contexts, no unified interpretation of its
significance was known. Yano and Nagano in fact devoted a
paper to a study of the solutions of Jv = O. [YNJ. They
labelle d them If geodesic vector fields"; the reason for so
doing is that the equation of an infinitesimally geodesic
vector field (i.e. a field whose flow consists of totally
geodesic maps) is just

V2v + R(-,v) - = 0 ,-

Thus J is the trace of the above operator. For maps we have
similarly that f is totally geodesic if Vd! = 0 and harmonic
if Trace Vdf = O. This rather strongly suggests that one should
try to prove that the flow of a Jaoobi field oonsist. ot harmonio
maps. However, the next example shows that this is not the
case.

Example 5.2.7 Define a vector field onlRn, for n ~ 2, by

vex) = (co~ Xl cosh x2,o •••0)
Then v is harmonic and therefore a Jaoobi tield. The flow of
v has the form

The map ft(x) can be defined a. follows on the .et
~/2 < xl < 1C/2 and extended periodioally:

By differentiation one checks that

BO that f does give the flow of v.
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We claim that for t ~ 0, ft(x) is not a harmonic function.
To see this write

ft(x) = P(log (sec xl + tan Xl) + t cosh x2)
where P is a suitable inverse function for log (sec6 + tan 6).
Thus ofc)xl

c)2f
ax2I

_91.
dX2

c)2f
dX~

= cos f sec Xl

= cos f t sinh x2

= - cos f sin f (t sinh x2)2 + cos f t cosh x2

6 t = cos f (i- sin t)

harmonic.
which is certainly non-zero tor t > 2. Hence the flow 1s not

Since our main interest is in closed manifolds, the above
example is really telling us that the problem 1s not local. If
one still hopes to prove that the flow at a Jacobi field on a
closed manifold consists of harmonic maps, Stoke's theorem will
almost certainly be needed at some stage. This is in contrast
to the apparently related case ot infinitesimally geodesic vector
fields and totally geodesic maps, where the proof 1s completely
local. At any rate, no counterexample 1s known.

As an antidote to the example, 8uppose that M 1a a compact
flat manifold (e.g. a torus rather than Eucl1dean space).
A Jacobi field satisfies 6v = O. Therefore
o =S~ <6v,v) = - IMlvvl2, so that ~v • O. Hence v is a
parallel vector field, and thus an 1nrin1 tesimal iSODletry.

A related queat ron 1s whether the naraonrc diffeomorph1sms
of M form a group. On this line, do the Jacobi f1elds form a
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Lie algebra? Yano and Nagano [YN] consider the latter
problem on a general Einstein space of positive curvature
(i.e., , = cg ror some c > 0). Their findings are inconclpsive:
the Lie bracket of two Jacobi fields will at worst lie in the ,
Lie algebra of rields with divergence zero; both problems are open

The assumption that M is Einstein is a natural one to
make when studying infinitesimal transformations. If
P = cg, then J and the Hoage Laplacian on vector fields
(i.e., I-forms) are related by

J = 6H - 2cI

where I is the identity transformation. In particular, J and
6H have the same eigenfunctions. It is now not difficult to
relate the index and nullity of idM to the spectrum ot K, which
is the set of eigenvalues of 6H on functiona. The following
notation will be used to describe the diatribution ot these
eigenvalues:

~(r) = # {eigenvalues ~ o < A < rJ
For multiplicities write (for r > 0)
(5.2.10) m(r)· = multiplicity of r as an eigenvalue

and set m(d) = o.
mer) is usually o.

Hence A(r) increases with r, whereas
The basic conclusion of this section i8

then

Proposition 5.2.11 Let M be a closed oriented Einstein manifold,
with P = cg tor some scalar c. Then

a) index (idM) = 1\.(2c)
b) null (idM) = dimC,!) + m(2c)
c) nUllr (idM) = m(2c)

Remark The proof will hold no surprises for someone familiar
with the references cited earlier.
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Proof' From the relation between J and Aa' we have immediately
that

ao} index (i"-M)= #{ eigenvalues of'~ (on I-torms)< 2c}
bo} null (id}!)= multipliaty of 2c (as above)

So suppose v is an eigenfunction tor ~; AHV • Xv.
Hodge decomposition, we can always write

Usina the

v=df+w
where f is a function and w e ker (0). Then since at and w

lie in orthogonal subspaces which are invariant under' 6H, it
follows that each must be an eigenfunction of ~ with eigenvalue
A • Now suppose.A < 2c. We claim that this forces w = O.
In fact, we simply applY Yano'. tormula (5.2.3) to w; X < 2c
means that the left side is , 0 and O(w). 0 8ayS the right
side is ~ O. Hence w = O. Aa tor the function t, we have
d(6Hf} = 6Hdf = Xdf, so that, up to a constant, ~t • Xt.
Conversely, if t is a non-constant eigentunction, then dt

is a non-zero eigenvector with the same eigenvalue. This
gives (a).

The argument tor (b) is similar: the contribution ot the
gradient fields is selt-explanatory, and •• they are orthogonal
to ker (6), we add the contributions of these aubspaces. We
have also noted earlier that w e ker (0) n ter J it aDd onl7 it
W E 1. Hence (b), and (c) followa.

Example 5.2.12 Let M = sn. an with its Euclidean aetrio
is an Einstein space with p= (n-l)g. Recall that Spec (aD)
is {Ak = k(k+n-l} : k > 01. The first tew are 0,n,2(n+l), ••••
Thus n is the only nOD-O eigenvalue which is< 2(n-L) • The
eigenfunctions with A =D are the harmonic polynoml~18 ot degree 1;
i.e., the linear torms on JRD+l, ot which there are n + 1
linearly independent ones.



~~ ;I

109
Hence index (id ) = n+1 n ;.3Sn

0 n = 1,2
Nul1r(id n> = 0 n,i 28

3 n II: 2

We remark that the gradient of a linear torm on an is an element
of .£ (and not 1~. Hence the conneotion between Prop. 5.2.4 and
Prop. 5.2.11 is exact for spheres. Note also that the reduoed
nullity on a2 comes from variations through contormal (i.e.,
ho10morphic) maps.
point for all n.

Hence 1d n 1s a generate e71t1cal
S

With regard to other Einstein spaces, it happens that
Nagano has computed the spectrum ot the classical compact
irreducible symmetric spaces [N1J. H1s results are presented
without proof, but using his table yields:

Proposi tion 5.2.13 .Index .(idM) • 0 tor the classical compact
irreducible symmetric spaces, with the tollowing except10ns:

i) M = s", n ;II 3

ii) M = 8p(p+Q)/18pep) x Bp(q), the quatern10nic Grassmann.
i i i) M = SU(2m)/Sp(m) III > 1

Remarks a) the spaces in (ii) and (1i1) satiety ~ • 1, by
a theorem of Nagano [N2~
5.2.4. Is not sharp.

b) There 8eem to be one or two errors in Nagano'.

Henca the aati.ate in Proposition

calculations for the real oriented Grassmanns. For example,
it M = 80(6)/80(2) x 80(4) (With metr1c norma11zed so that
P = ig), the table says A = 1~l6 can occur. However, M 1e
Hermitian symmetric (hence Kahler) [HE], eo theLsJllalleetpositive
eigenvalue should be 1(1.e., index (1dx) • 0).
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Section 3. Harmonic I"ibrations
Another simple example of a harmonic map Is the projection

in a trivial bundle ~: N x M ~ M. Let N and M be closed
manit'olds, and let J?tbe the second var-La t ton operator for
fields along ?t. We can construct a large set of eigenvectors
for J?t as follows: if J denotes the Jacobi operator for vector
fields on M, let (vj) be a complete orthogonal set of

Further, let (fi) be a
complete set of eigenfuIlctions for the Laplacian of Nj

ProposJtion 5.3.1 The vector fields along 'Jtdefined by
aij(n,D1) = fi(n)vj(m) are eigenfunctions of J'Jt: J'Jt(aij)=
(~i + Aj) aij•

Proof Recall that J~ = -6~ -P'Jt. First compute

V~(flVj) = df i ( ) v j + t{JVj o d'Jt

~ (flV.) = '\ldf 1 ( , ) Vj + 2 dfi( ) ~Vj o d'lt()
.J

+ ti (V2Vj (d'Jt,d'Jt)+ VVj 0 ~d?t)

To evaluate the trace of this thing, choose an orthonormal
basis for T(N )( !'ii) by compounding such bases for TN and TM.
Hence the middle term disappears, and as ~d'Jt • 0 we find

Similarl~ we see that P'It (fiVj) = fi PM(vj).
follows.

The proposition

Corollary 5.3.2 Index ('It) ~ Z -M( Aj) ~(14j I)
Aj <D

null ('It) ~ .t mM ( Aj) m...( IAj I)r A < 0 ~~r.
j

Here mM (Aj) is the mul tipllcl ty of Aj as an eigenvalue ot the
Jacobi operator on M, and AN (I AjI) 1s the number of eigenvalues
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of ~N which are less than IAjl, this time including O.

Corollar;i 5.3 •..2 Let.tilbe a closed Riemannian manifold for
which index (idM) > 0, and let N be any closed Riemannian
manirold of dimension ~ 1. If ~: N x M ~ M is the trivial
bundle:

a) By making a scalar change of metric on N, we can make
the Morse index of ?t arbitrarily large.

b) If further the multiplicities in the spectrum of N
satisfy lim m (An> =~, we can similarly make the reduced

n---lt)o
nullity of ~ arbitrarily large.

Proof If index (ldm) > 0, there is at least one Aj < 0 in
the previous Corollary. Now simply observe that if the metric on
N is ,multiplied by c , the spectrum ot N is multiplied by l/c.
For c large, we can therefore make arbitrarily many eigenvalues
of 6N less than IAjl. This proves (a). For (b), we similarly
make an eigenvalue of large multiplicity coincide with IAjl.
Example 5.3.4 Let M = sn, for n ~ 3, and let N ::Sp. If v
is a cont'ormal gradient field on sn and t is a harmonic polynomial
of homogeneity k on sP, then by a scalar ohange of metric on
sP we can assume that w(x,y) = f(x)v(y) iS,a Jacobi field for ?t.

It seems quite unlikely that these tields arise from a variation
of ?t through harmonic maps. Since the harmonic polynomials
satisfy the condition in (b) of the above eorollary, for p > 2,
it appears that ?t can be given an arbitrarily large degeneracy
as well as a massive index. Hence the innocuous aap ~ is
completely pathological from the standpoint o~ Morse theory.

Regarding more general harmonic t1brations ?t: E ~ B, the
best one can say at this stage is that index (?t) ~ index (ida)'
The same calculation 8S given in the proposition shows that it

v is a field on B with Jv ::AV, then J'Jt(V0 x ) • A(V 0 'Jt)
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(although in this.case ~dx only disappears after Trace is
applied.)

For example, th~ Hopf maps S7 ~ 84 and S15 ~ s8 have
positive index. Since index (ids2) = 0, the index of the Hopf
map 83 ~ 82 should be zero. It is not hard to see that the
index of any trivial bundle projection over 82 is zero.

Section 4. Holomorphlc Mappings of Kahler Manifolds
Let us tirst describe a startling observation due to

Lichnerowicz [L2]. If f: N ~ M is a map ot Kahler manifolds
(N compact), we can write

df = df(l,o) + df(o,l)

a decomposition into complex linear and conjugate linear parts.
Accordingly there is a decomposition of the energy

E(t) = E'(f) + E"(t)
Hence 1: is holomorphie ~ E" (f) = O. Now consider the
diff'erence

K(f) = E'(t) - E"(f)

One can show that K(f) = IN <I N' t·IJl' where IN and t}.1 are

the fundamental 2-forms of the respective metrics. 'rom this
Lichnerowicz deduces that it tu 1s a smooth homotopy, then
K(fu) is constant!

Corollary 5.4.1 A holomorphic (or anti-holomorphic) map ot

Kahler manifolds gives an absolute minimum ot the energy in its
homotopy class.

Proof' It f ls holomorphic and g 1s homotopic to f, then
E(f) = K(t) = K(g) ~ E' (g) .; E(g).

Hence the index of a holomorphic map is 0 in a strong sense.
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Regarding the nullity, we have seen that any vector
in the null space at the identity map is infinitesimally
analytic. (prop. 5.2 •t) • In general, a reasonable
conjecture is that any Jacobi field along a holomorphlc map
arises from a variation through holomorphic maps. A proof
will be given below in the special case that f is 8 conformal
diffeomorphism of 2-manit'olds.

Before proceeding, it is necessary to know something
about conformal maps. Recall that f: N ~ M is said to be
conformal if there is a posi tive function' on N such that

2r* gM = , gN' where g means metric. Equivalently,
<df'(v), M(w» = ,2<v,w> holds for all V," e TN. Now we
need some generalizations or a few ramili •• notions.

Definition 5.4.2 a) Let f: N ~ M be a smooth map and v a
The Lie derivative of f* g. withvector field along f.

respect to v 1s the 2-form on N given by
Lvt'*g» (a,~) = <~rv(a), dt(~» + <~fv(~), dt(~»

b) Define'the dlvergence(along r) of v to be
D1vfv = <~t'v, dt>

c) If dim (N) = nand f is a conformal diffeomorphism,
say that V is infinitesimally cor¢orma, (along f) 1t

Remark 5,4.3 It is not hard to see that these detin1tions
reduce to the usual ones when t' • 1~ and v is an ordinary
vector field. Note also that:

a) if f is an isometry of N, Lvt'*SN = 0 .. v = " 0 f,
where w E .1 (N).

b) As Vivfv is just the first variation ot the energy,
it follows by definition that INDivfv = 0 for all variation. v
if and only if r 18 harmonic. Harmonic mapa may thereror. b.
characterized as those smooth maps which 'Dr.serve the 41'Y.r~n.oe

"', > ".'<
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theorem.
c) If f is a conformal ditfeomorphism, then v is infinitesi-

mally conformal along f if and only if v = W 0 f, where we SCM).
Proof Given v, let w(x) = v(f-l(x». Then ~w = Vfv 0 dr-I,
and it follows that D1Vf{V) =,2~iv{w). The result Is now
obtained by direct computation.

Hence if v is infinitesimally conformal (and N is compact),
then v arises from a variation of t through conformal ditfeo-
morphisms.

Recall now that a conformal map of 2-manitolds is harmonic.
Our basic result is:
Theorem 5.4.4 Let f: N ~ M be a conformal diffeomorphism of
compact oriented 2-manlfolds.
critical point of the energy.

Then t is a p;enerate

Proof It suffices to show that if v is a Jacobi field along t,

then v is a conformal field in the sense of vefinition 5.4.2.
For notational simplicity set

~ -::l.Iivfv
w(a,f3) = <'Vtv(a.),dt(~»

W = Lvt.gM = w + w.
Thus if we are given that

-\lfv -Pr{v):: 0

we must show W = IgN

Observe that Iw - tfNI2 = Iwl2 - 2 t Trace W + 2 t 2

Iwl2 = 2(1_12 + < w,.· »

Traoe W
I-12

= 2 Trace w = 2t
2= ~ <9tv{ei), dt(ej»ij

where the last sum is over an orthonormal basis as usual. Note,
however, that elf( e j) = cP CJ.j' where a.j Is an orthonormal base at
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f'(x)• Thus
,w12 = ~2 ~ Ivfv(ei)12 = ,2lvfvl2i

and hence 'w-~NI2 = 2(~2'·VfvI2 + <w,w.> _~2)
We would like to show

1 12 1w - ~ gN12 = ~ IVfv 12 + L «w, w.> _~2) = 0
N 2, ~.2

From what is given, SN lQ'fvl2- <Pf(v) ,v> = 0

Hence it suffices that IN ~ «w,w.> - ~2) + <pf(v),v> = 0
cp

To finish the theorem we need this fact:
Lemma 5.4.5 Itt: N ~ M is a conformal diffeomorphism of

2compact oriented 2-manifolds, w1th t: .gM = , SN' then for any
field v along f we have

IN ~ «w, ••> - t2) + <Pf(v), v» = 0,
where w,w., ~ are as defined in the proof ot Theorem 5.4.4.
Remark 5.4.6 This formula is a generalization of one of Yano

I[BY, p.SO], which is valid tor f = idN (but with dim (N) arbitrar.a.
In his proof', the integrand is expressed as the difference of
two divergences. The proof here is a suitable modification
of' this technique. The dimension restriction comes of course
tram the requirement that a conformal map be harmonic (and hence
preserve the divergence theorem).

Proof Given v, define fields u,t on M by
u = v 0 f-1

t = Vu(u)
Then t 0 f is a field along f satisfying

Divft = <V(Vu(u» 0 df, df>
= cptcv2u(-,u) + Vu 0 Vu, I>

where I is the identity map on TM. Note that here (and
throughout) reference to composition with f is suppressed when
possible. Continuing,

2 2 ) ()Divf t = cp <\7 u(u,- - Rid -,u U + Vu 0 Vu' I >
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using the identity <R(a,b)c,d> = -<R(a,b)d,c>.
second field along f by

~ = u Div(u) 0 f

Dei'fne a

Hence Divfs = <vf(uDiv(u),df'>
= Div(u) <Vfu,1f> + <u dLiv(u),df'>

dDiv{u) = d«~,I> 0 f) = d<~,I> 0 df
2= <V u( tU' , -) , I>

However

since I is parallel. Hence
<u dDiv{u),df> = ~ ~2<u<~u(ai,-),I>,ai>

i

= ~2 <v2u{~<u,ai>al,-),I>
i

= ~2<v2u(u,_),I>
where (ai) is an orthonormal basis for Tt(x)M. Finally, since

~. = <V'f(u 0 1'), df'>= ~2 Dfv(u), it folloW8 that

2As <Pf(V) ,v> = ~ <pM(u),u>, to prove the lemma it suffices that

-! <w,w.> = ,2< vu 0 ~,I>
cp

But suppose that at a particular point x the linear map VfV
is represented by the matrix V~ with respect to orthonormal
bases et and <p-ldf(ei) at x and rex). .Then

<w,w·> = ~j <vfv(ej), df(ei» <~rv(el)' dt(ej»

= 2 Z vi vj
cP ij j i

1
<Vu 0 vu,I> = ~ ~ <Vfv 0 dr-l 0 Vtv 0 df-l(dt(e

i
»,Also
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This finishes the proof of the lemma, and also Theorem 5.4.4.
Example 5.4.7 The projective group of conformal transformations
of S2 is a critical manifold of index O. The theorem says that
it is a generate critical manifold, in the sense that
every vector in the null space of the Hessian is tangent to the
manifold.

In general, the theory of harmonic maps seems to present
no pathologies in two dimensions.

Section 5. ~aps of Spheres
An earlier chapter contains constructions of essential

harmonic maps between spheres. It would therefore be nice to
be able to compute the index of these maps; in particular,
the maps of degree k from Sn to Sn should be studied. This
is because they are the simplest and since, one might look
for an analogy with geodesics on Snp Our results, however,
are unfortunately inconclusive for two reasons: a) there Is
not sufficient explicit knowledge about the maps themselve.;
b) the computations required are incredibly cumbersome.

Nevertheless, let us at least summarize what can be done.
Recall that a harmonic suspension ot a polynomial map g takes
the form

(x,y) -+ (sin a.(t) g(x/lxl), cos a.(t)(Y/IYI)
t = lO~ x II Iy I)

f

Experience with the identity map on Sn (and geodesics) indioates
a possible choice for an "energy-decreasing vector field".
Namely, let w = grad yp,Where Yp is a coordinate function,
ana let v = w 0 r. In higher dimensions we expect that
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<Jfv,v> <0 for all such fields v. (More generally, it h is
a harmonic polynomial on the domain sphere of homogeneity less
than that of g, there should be a similar relation for fields
of the form hv.) Although v Is not an eigenfunction of Jr,
it can be shown that <Jfv,v> < 0 holds at every pOint, provided
that the dimension of the y variables is ~ 5.

Conclusion If Zkg is the kth harmonic suspension of a
polynomial map, as constructed in Chapter 3, then index
(Zkg) ~ k"for k = 5,6.

We remark that it our knowledge of the behavior of the
function a in the construction was more complete, the same
statement should be verifiable for k ~ 3. Without further
estimates on a, however, there is no hope of improving these
results.

A more pleasant exercise is that ot generalizing some
Morse theory of geodesics on spheres to the case ot harmonic
polynomial maps. Precisely, suppose y: SI ....Sn is a geodesic
which wraps SI around a great circle k-times. Then y may be
thought of as the composition of z ....zk onS1 with an inclusion.
The question for us is then: what can be said about the index
and nullity if z ~ zk is replaced by a general harmonic
po Lvnomf.a L map'l

'l'hereforelet f: Sn ~ Sm be a harmonf c polynomial map ot

homogeneity k. Then by geodesic inclusion we have a map
Sn ....sm+r for all r ~ o. Let w be a gradient field on Sm+r
corresponding to one of the last r coordinate tunctions, and
let g be a harmonic polynomial of homogeneity e on Sn. Then
x ~ g(x) w(f(x) )is a field along f, and 8S V tW = 0 we find

Clf(gw) = (~sn g) " = ~tgw
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However, in a space of constant sectional curvature c, we have
(KN, p , 203]

R(X,Y)Z = c«Z,X>Y - <Z,Y>X)

so that as c = 1 on Sn+r and dt(ei)~ w,
Pr(w) = Idfl2w = ~kw

Here we have used the comments in Example 1.1.4. Hence

so that index (r) ~ r(A(Ak) + 1)
null (f) ~ r m(Ak)

where the latter quantities are as defined in 5.2.9 - 10. For
the case of geodesics f: sl ~ sl+r, it is easy to see we have
equality in both places, and that null.(t) • nullk(t). Here
m(Ak) = 2, and x (Ak) = 2(k-l) for k ~ 1.

In general·, things are not 80 simple.
the identity, ror n ~ 3, then the above bound on the index
(tor r = 0) is not helptul. Furthermore, it is easy to
construct examples where the nullity is not all Killing nullity.
Suppose that (in the above notation) degree g = k, so that SW is
a Jacobi field. As w .J.. df, gw cannot be included in
df'(!(Sn». On the other hand, if there are x,y e sn such that

of
rex) = fey) but g(x) ~ g(y), then gw i'8not/the form v 0 1', where

For example, one oan take the Hopt map 83~ 82 C 8'

and let g be any spherical harmonic or degree 2 on 83 whioh is
not invariant under the action ot SI. This seems to be another
natural instance of a degenerate harmonic map.
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Appenuix
A Morse Lemma for Comp&ct Operators

'I'he gener-eL eet t i ng 1'01' infinite dimensional Morse theory
is Ule following: A Hilbert manifold X and a smooth functlon~l
f: )(-tJRwhich satisfies Condition C and has non-de,!::;enerate
critical points (or manifolds) [pJ. Condition C roughly
means that if you follow a c;radient line of f you eventually
reach a critical paint. 'Yhatwe wish to examine here 15 the
non-degeneracy con6.ition fer critical pOints; in particular
we Ahow that the usual condition can be relaxed when dealing
with energy functionals.

Recall that for each critical point x of f there is a
second variation operator Jx : Tx X -tT X satisfyingx< Jx v, O/X =

2 V u,v e T~X. We sayd f'x(v,u) that a critical
point x is non-degenerate if Jx is an isomorphism. In infinite
dime nsions this condition is of course ,stronger than requiring
that Jx be an injection, and in general is necessary to prove
a Morse Lernma , However, our conclusion 1s that the weaker
cond ition is adequate for enertY integrals.
lJefinition A.I A critical po int .x: e X is geneF,t.

if Jx is an injection.
A.2 A critical manifold G C X is generate it tor each x e G,

.I.
Jx is an injection on (TxG) •

Remark A.3 Suppose f were the usual energy functional. It
G is a generate critical manifold and x e G, then x is generate
in the sense of Chapter 5, Section 1.
vET G; i.e., v arises from a variation ot x through harmonicx
maps. Conversely, suppose we were given a critical manitold
G, each of whose pOints was ,generate in the sense that every
solution v of J v = 0 arose from a variation of x throughx
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elements of G. Then G would be a generate critical manifold.
71e have given examples of such critical manifolds:

80(n+1) for n ~ 3, and the projective group of conformal
transformations of'82•

In our examples, the operator Jx is generally smoothing,
hence compact, so that ordinary non-degeneracy is out of' the
question.

We first need some terminOlogy f'rom the theory at manitolds
of maps: if N and M are smooth tini te dimensional Riemarmian
manifolds, with N compact, then Hk(N,M) consists roughly of
all maps f:N ~ M for which the kth order energy is detined:

It'k > dim N/2, Hk(N,M) is a Hilbert manitold and ita elements
are all continuous functions. Eliasson showed that Ek ls a
smooth function on Hk satisfying Condition C (E2J. Clearly Ej
1s then a smooth function on Hk tor l' j , k. The critical
pOints of'E. are called polyharmonic aaps; note that they are

J
just the harmonic maps it j = 1. For our purposes, an energy
functional will be one of the Ej, but could be considered more
generally (E2]. We remark that it is unlikely that Ej will
satisfy Condition C on Hk, tor j < k.

U'
We recall also thatlg E ~(N,M), then there i8 a natural

chart about g for Hk(N,M) in which the model space is Hk(g*TM).
The latter is the Hilbert space Of sections ot g*TM obtained
by completing the smooth sections with respect to the inn$.
product

Note that we can also consider \ >0 as a dual pairing Hk x H-k-:+ la.



122

The natural chart mentioned above is given by the exponential
map of M. The final fact we need is that in this chart the
energy Ej takes the form

Here Q is a polynomial differential operator in lower derivatives;
for details see [E2J. Our conclusion is the following, quite
analogous to that given in Palais [pJ.

Morse Lemma Let x be a generate critical paint of
t: = Ej : Hk(N,lw.) -+:m. Then about x there is a chart in which t

takes the :form
f(Y) = fo + IBPlyl2 - ICP~12

Here the norm is that of the model space Hk = Hk(X.Tl), Pl,P2
are complementary orthogonal projections o't Hk, and B,C are linear;
injections on the relevant subspaces. B and C are compact it
j < k, and isomorphisms of their domail8 otherwise.

This lemma is sufficient to do local Morse theory; tor
example, one can easily imitate the necessary handlebody
construction in Palais [p]. Alternatively, it is immed"iate
:from the Lemma that a generate critical point is non-degenerate
in the sense of K. Uhlenbeck [UIJ; she haa a general hand.leboczy
construction in this case.

Corollary A.4 Generate critical pOints ot energy tunctionals
are isolated.
Proof Using the lemma, we verity that it dt{y) = 0 then y • o.
For if df(y) Z = 0 V z then

\BP!y, BPIZ> - <,cp~, CP2z) = 0 V z

Putting z = PlY and P2Y in turn, we get PlY = P2Y = 0, as Band
C are injections. Hence y= O.
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Proof of Morse Lemma:
We begin working in the natural chart mentioned earlier.

Note that since
f(Y) = Ivj Y 12 + J Q( Y )o N

we have
d2f(y) = <vju,vjv>o + J d2~(y)(u,v)(u,v)

N

= <A(;V)U,v>o

where A(Y) 1s a self-adjoint linear elliptic operator of order
2j. Note also that we can write

where D is another self-adjoint elliptic operator, of order
2'k;by construction, D:Hr -+ Hr-2k is an isomorphism'lr.
Finally, for the second variation operator itself, we have by
definition

d2f(y)(u,v) = <J(y)u, V>k
= <DJ(y)u,v> 0

Therefore J(y) = D-IA(Y): Hk -+ Hk+2(k-j) is a Fredholm map of
index 0 for all y. On a neighborhood of x we may assume J is
an injection, and hence an isomorphism.

From this point we can parallel the proof in Palaie.
Near x we have by Taylor's theorem

fey) = fo + \T(Y)Y'Y>k
where T is obtained by integrating J. Hence we can also
assume t.ha t T(Y): Hk -+ Hk+2(k-j) is an::. Theret'ore define
R(y) : Hk ~ Hk by R(Y) = T(y)-lTo and let S(y) = R(y)-i,
which is a smooth operation near the identity. Then
T(Y)R(y) = To and taking Hk adjoints yields R*(y)T(Y) = To;

hence S(y).T(y) = T(Y)S(y). Palaie shows that ,(y) • S(y)y ls



a dlffeomorphisnl near x; we also have

f (y) = f0 + (To <p(y), <p(y )>k

Hence with respect to our new chart <p-lwe get
f(v) = fo + \Tov,v)k

Now let Hk = H~ $ H~ be the decomposition of Hk into positive
and negative eigenspaces of To' with projections PI and P2•
(Note that To is a self adjoint operator, whiChis an ~ if
j = k and compact if j < k). If we put B = (ToIH~)i and

k IC = (-ToIH2)~' the eonclusion of the lemma follows.

Remark A5 'l'hereshoul d be a generalizat ion of the lemma
to generate critical manifolds. The principal difficulty
is that we needed a very special chart of Hk(N,M) in order
to apply elliptic operator theory to a local form of the
energy. In general it·might not be possible to find a
chart which both straightened out a Bubmanifo1d and left the
energy in a reasonable form.
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