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Abstract

This thesis is addressed to the following fundamental
problem: given a homotopy class of maps between compact
Riemannitan manifolds N and M, is there a harmonic representative
of that class? Eells and Sampson have given a general existence
theorem for the case that M has no positive sectional curvatures
[ES]. Otherwise, very little is known. Certainly no coﬁnter-
example has ever been established.

The most important contributiorsof this dissertation are
two: firstly, we have a direct construction technique for
producing some essential harmonic maps between Euclidean spheres.
Topologically, this consists simply of joining two harmonic
polynomial mappings (e.g., the Hopf fibrations). Analytically,
however, this method has a novel physical motivation: we study
the equation of motion of an exotic pendulum driven by a gravity
which chan:es sign. If this system has an exceptional
trajectory of the right sort, it defines a harmonic map of
spheres. One conseguence of our theorem is that xn(sn) is
represented by harmonic maps for n = l,...,7. - Finally, the
rudiments of an equivariant theory of harmonic maps having been
set out eaflier, we find that our examples can also be put in
this framework.

The second significant result which arose from this study
is a strong cundidate for a counterexample: suppose g is
stretched to a length b in one direction to make an ellipsoid
E%(b). Then if n » 3 and b is large enough, there is no
harmonic stretching (of de;ree one) of S” onto En(b). However,
if b = 1 the identity is such a harmonic map, so it certainly
appears that the existence of a harmonic representutive in a

homotopy class can depend upon the metric,
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We ulso examine here a large collection of examples of
harmonlic maps of spheres which are defined by harmonic
polynomials and orthogonul multiplieations. The last
chapter takes up the study of the Morse theory of a harmonic
map: amongst several pleasing results, we have an example
of a simple map whose index and degeneracy can be made

afbitrarily large by egually simple changes in the metrics.
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;htroduction

A fundamentai problem in kiemannian geometry posed by

Eells ana Sampson in [ES)] is the following: given a
homotopy clasé of maps between compact Riemannian manifolds
N and ¥, is there a harmpnic‘representative of that class?
As the theory of harmonicAmappinys simultaneously generalizes
the classical Lirichlet problem.and the theory of geodesics,
the importance of this question is self-evident. On the
other hand, this problem is neither linear nor one-dimensional
and is therefore much more poorly understood than its origins.
For example, there is no known case when the answer to
the above question has been proved to be negative (with
emphasis on the condition that W be compact). On the other
hand, the basic affirmative result in the theory is this: if
M has no positive sectional curvatures, then every homotopy
class can be harmonically represented [ES]. Unfortunately,
thlis condition excludes the most topologically'interestiné
compact manifolds, so our guestion is still wide open.
The object of this thesis 1s to enrich the theory of
harmonic mappings by providing vast quantities of examples,
- topgether with a strong candidate for a homotopy class with no
_harmonic maps. The title reflects the fact that most of our
constructions take place on the Euclidean sphere; certainly
everything in the thesis is at least motivated by the desgire
to study harmonic maps of spheres, as shall be indicated.
Before explaining the contents more fully, however, we should
remark that two other basic questions are raised and partially
answered by the examples. Firstly, what can a harmonic map
look likev For instance, what can one say about the topological

behavior and differential topology of a harmonic map? One



could also try to formulate an equidaistribution theory for
harmonic maps., Secondly, where should one look for the

answer to the fundamental problem posed earlier? In other
words, a) can there ever be an all powerful analytical technique
(heat eqguation, variational calculus, or whatever) which will
produce harmonic maps on command, or b) if an obstruction
exists, will it be a homotopy property, or vwill it more

properly be a function of the metrices? The example alluded

to above suggests that a homotopy class may be representable

for one choice of metric and not another, |

Let us now outline the contenfs, and in so doing try to
give substance to the foregoing extravagant remarks. In the
first chapter, then, are collected some elementary results
about the behavior of tension field which will bear significantly
on the work to come. Also included is a longer section on
equivariant harmonic mappings, modelled after the treatment of
minimal submanifolas by Hsiang and Lawson in [HL]. The
basic new problem solved here is to find reasonable conditions
on an equivariant map such that the question of being harmonic
reduces to a problem on the orbit space (Theorem 1l.3.5). It
turns out that some of the maps between spheres constructed
later can be interpreted in just this way.

The second chapter deals with maps between spheres defined
by homogenequs harmonic polynomials. Having made the basic
observation that such maps are harmonic, we exhibit examples.
Most are inessential, but they are all geometrically interesting
in that they help give a picture of what a harmonic map can
look like. Certainly these polynomial mappings form & natural
testing ground for any proposed equidistribution theory.

Although the totality of such examples is too diffuse to
be catalogued here, a few illustrations are in order: the

polynomial meps of honogeneity two are of particulsr interest,



the Lopf fibrations being examples. Some new examples

of this type are constructed; these factor over various
projective spaces to yield harmonic embeddings of the latter
in Buclidean spheres. The orthogonal multiplications define
some interesting maps of products of spheres; the complex
tensor product in particular gives some harmonic maps which
are closely tied to the Segré embeddings‘of projective spaces.
We also find that there is a natural correspondence between
such multiplications and certain geodesic spheres in Stiefel
manifolds.

The third chapter is really the core of the thesis. A
method is developed here for producing some essentlial harmonic
maps between spheres. The basic idea is to join two harmonic
polynomial maps so as to make the result harmonic (Theorem 3.1.1)
This problem is feasible because it can be reduced to studying
an ordinary differential eguation for the join parameter. We
are able to study this eguation successfully because under the
right transformation of variables it becomes the eguation of
motion of an exotic pendulum.,

This pendulum is driven by a gravity which changes sign,
and the problem before us in physical terms is to make it
stand on end at t = « and hang straight down at ¢t = = . A
physical argument sets out the program for doing this, which is
completed in Section 3.2 under the assumption that the
equation is under-damped. This accomplished, a rather lengthy
effort is required to analyze the asyﬁptotic behavior of the
machine and prove global regularity of the map.

A typical corollary of our main theorem is that wh(sn) = Z
can be represented by harmonic maps for n = ly,eeey 7o This

was previously known only for n = 1,2 and for special reasons.



The dimension restriction arises from the under-damping
condition mentioned above, and its significance has not been
determined.

Chapter L4 pursues the acove method into the domain of
ellipsoids. The most striking result here falls on the
negative side: suppose s™ 1s stretched to a length b in one
direction to make an ellipsoid En(b). The conclusion is that
it n» 3 and b is large enough, there is pnQ harmonic one-
parameter stretching (of dégree one) of 3" onto E™(b)
(Theorem 4.2.4). Since the identity is such a harmonic map
for b = 1, it certainly appears that the existence of a
harmonic representative in a homotopy class can depend upon
the metric. Note furthermore that if there is a harmonic
map of degree one in the former case, it cannot be found by
any reasonably general analytie technigue. For if such a
technique is fed symmetrical initial data, it will preserve
that symmetry throughout the deformation; ergo the result

cannot be harmonic by our theorem,

This chapter also contains an OLDE construction of an
interesting harmonic map of the flat torus to 82. This map
has folds, behavior which is prohibited for complex analytic
mappings.

The last chapter tukes up the stucy of the second variation
of the energy. The originél motivation was to compute the
Morse index of our maps of spheres, but this turned out to be
nearly impossible. However, the Morse theory of certain very
simple harmonic maps is definitely instructive. For example,
the second variation operator at the identity mep happens to
have a long history in the theory of transformation groups;
nowever, its rolc haa aiways uv.ci: rataer mysterious, and 1t
is nice to have here a unified interpretation of its

significance. Using standard methLods, we are also able to



deduce some interesting-reiations between the index of the
identity, the Lie algebra ¢ of conformal vector fields, and
the spectrum of ﬁhe manifold.

An even more interestihg-(and perhaps alarming) phenomenon
can be noticed when we study the Morse theory of the projection
in a trivial bundle. There are examples of such maps whose
index and degeneracy can be made arbitrarily large by
modifying the metric on one factor. In other words, the
Morse theory of such « map can be completely pathological
(Example 5.3.&)." |

On the other hand, the behavior of holomorphic mappings
between compact Kahler manifolds is correspondingly good in
this regard. Such a map always has index 0, and in certain
cases one can Verify that there are no degeneracies.

This thesis has benefitted immensely from the valuable
ideas and invaluable guidance of my official and unofficial
supervisors David Elworthy and James Eells., I am also
indebted to Larry Markus and David Chillingworth for their
insight on differential equations'at,a cruclial Jun&ture in
this research.

Finally, I would like to thank the Marshall Scholarship
Commission and the National Science Foundation for their

generosity, and my wife for her tolerance.



Chapter 1
QUALITATIVE THRORY OF HARLONIC MAPPINGS

Section 1, Epergy and Tension

Let us first recaptulate the well-known variational

characterization of harmonic maps. A more self-contained
presentation (in local coordinates) is available in the
original reference [ES]. Let N and M be smooth Riemannian
manifolds without,bdundary, equipped with their Levi-Civita
connections. Assume that N is compact and oriented and, to

be reasonable, that M is complete. If £f: N M 1s a smooth
map, the energy of f is defined |

B(r) = &y lag|® 2
Here df 1s considered as a section of the bundle of linear
maps L(TN,f*Tk), which inherits a metric from those of N and M.
Thus at any »Hcint x € N, Idflz(x) = zldf(e1)|2 (x), where e,
ie an orthonormal basis for TxN. The form *1 is the canonical
volume on N associated to the metric and orientation, and will

make no further explicit appearance.

Suppose now that ft is a smooth one-parameter variation

of £, with f,=1f. Then f, defines a map F : N xIR +¥, and

b‘(ft) = %fl\] <d-F(")! dF(")>
where (-) denotes arguments in TN. An invariant theory of

pull-back connections, as expounded in, say, Eliasson [E4],

yields a quick calculation
(e% =fN < YdF ( %ﬁ" “)’ dF("))

) o)
=fN<VdF (= 37)» aF(-)>

=< VR (), @F(-)>



Hence if w = g%'
t=0
OB
— = <Wr,4ar>
5 | J, <

In general, the adjoint of a connection V is a generalized

divergence (see Eliasson [E2]), so that

fN<V w, df> =JN - <w, Div af>

whee Div df = Trace Vif = 2Vif(e,,e,). This latter quantity
is generally denoted 7(f), the tension field of f. The map
T is said to be harmonic if 7(f) = 0; equivalently, if f is

a critical point of E.

In general, the tension field is a vector field along f
which points in the direction of decreasing energy. Let us
examine just two of its elementary properties. Firstly, it is
useful to contraet the idea of a harmonic map with the more
rigid concept of a totall eodesic map; i.e., a smooth map f
such that %ﬁf = 0. Such maps are characterized by the
property that they carry geodesics to geodesics, as may be seen
by appeal to normal coordinates. In these coordinates such
maps are linear, whereas harmonic mappings merely satisfy
Laplace's equation Af = 0 at the origin. One may perhaps think
of harmonic maps as preserving geodesics on average. This
requirement is more flexible, as illustrated by the following

observation due to REells.

Lemma 1,1.1 Suppose £ :X x Y - M is harmonic with respect to
each variable separately; that is, for each x € X, vy -+ u
is harmonic, ahd vice versa. Then f is harmonic.

- Proof In an obvious sense we have T(f) = T(f) + T,(f). The

assumption of the lemma is that F{f) = Tz(f) = 0.



Example 1.1.2 Let G be a compact Lie group with bi-invariant
metric, and let p: G x @ - G be multiplicatipn. Then u
is harmonic. In fact,u is an isometry in each variable
separately. However, p is not geodesic unless G is abelian.

A number of similar examples of harmonic maps of products
of spheres can be found in Chapter II.

Another property of the operator T which will be very

useful later is the following:

Lemma 1.1.3 ([ES] Let Nc M be a submanifold with the induced
metric, and let f: X - N be a smooth map. Let P : X ® M be
the map induced by inclusion. Then 7(f) is the orthogonal

projection onto TN of =(F). In particular, f is harmonic

& 7(F) L N.

kxample 1.1.4 a) Suppose N = S®1cI® = M. Then if £:Xx -s°%
and F : X » R® is the induced map, we find that f 1s harmonic

& AF aoF. Here 4 is the Laplaclan fof functions on X and

« means "proportional to". In fact, a short calculation shows
thatAF = |dF|°F must hold if f is harmonic.

b) Suppose f as above is defined by eigenfunctions
of qk; i.ec, AF =\ F. Then f 1s harmonic. Furthermore, it
therefore follows that |df|2 =\ ; this does not, however, mean
that £ is an immersion. Such examples form the subject of

Chapter II.

Section 2. Harmonic Fibrations

Suppose that E and B are Riemannian manifolds and that

x: E 2B is a differentiable fibre bundle. Then there is a
canonical sblitting Tk = VoH, where V consists of the tangents
to the fibres, or vertical vectors, and H is the ortho-complement

of V (horizontal vectors). We will say * is Riemannian if



dlex is an isometry for all x.

It is a theorem of Hermann [HR] that if x is Riemannian,
the unique horizontal 1ift of a geodesic starting at x(x) is
a geodesic starting at x. Using this fact, Eells and Sampson

characterized the harmonic Riemannian fibrations:

Lemma 1.2,1 [ES] A Riemannian fibration x is harmonic
all fibres of ® are minimal submanifolds of E.

Such a map x will be called a haprmonjc fibration. (The
general relationship between minimal submanifol?s and harmonie
maps is discussed in the next section).

In this section we want to see how harmonic fibrations
behave under composition, In general, given a composite map

g ° £ we find that
(g ®° £) = dg(r(f)) + Trace vag (daf,df)
Hence [ES], if £ 1s harmonic and g 1is totally geodesic, then

g ° f is harmonic. 1f, furthermore, df has nice properties,

we can do better. For example:

Lemma 1.2.2 If x: E =+ B is a harmonic fibration and £ : B - X

is a smooth map, then f 1is harmonic if and only if f ° x is

harmonic.

Proof From the above, 7(f ° x) = Trace Vaf(dx,dx). Now form

an orthonormal basis for TE from bases for V and H; as dx
annihilates the former and transforms the latter into an
ortho-normal basis for TB, it follows that 7(f ° x)(x) =r(f)(x(x))

Hence the lemma.

Example 1.2.3 Suppose that p: G x M= M is a smooth action of
a compact Lie group G by isometries of M. For x € M, let Gy
be the orbit through x. Suppose further that there is a fixed

metric on G for which *_: g G, is Riemannian (up to a scalar
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multiple) for each x. Then u is harmonic if and only if
“x is harmonic for each x and each Gx is a minimal submanifold
of M.

The proof is guite simple. Since G acts by isometries,
it follows as in Lemma 1l.l.1l. that p is harmonic if and only if
the composition G - Gx -+ M is harmonic for esach x. It Ry is
harmonic and ix: Gx - M is harmonic, ix ° Ry is harmonic by
Lemma 1.2.2. Conversely, if ix ° X is harmonic, then Ry is

harmonic by Lemma 1.1.3. Hence ix is harmonic.

Application 1.2,4 Let SO(n+l) be given its natural metric.
Then $0(n+1) x ST » 8™ is harmonic, whereas SO(p) x s® - s®,
for p € n, is not . In the latter case there are non-minimal

orbits.

Composition from the other direction does not work so
nicely. For example, let h: 8> » 2 be the Hopf map. Although :
h is a harmonic fibration with geodesic fibres, h is not totally
geodesic. To see this, take two orthogonal vectors in
s> ¢ ¢ as follows: vy = (1,0), D) §7% (1,1). Then y(t) =
cos(t) vy o+ sin(t)v2 is a geodesic in S3; however, using the
formula h(z,w) = (12]% - |w|2, 22%), one can check that h ° Y
does not describe a geodesic in 82.

Therefore Proposition C, p. 132 in [és] is incorrect;
this proposition states that if the harmonic fibration X has
geodeslic fibres, then £ : X E harmonic implies % ° f harmonic;
in particular, such a map * must be totally geodesic. The proof
rested on the assumption that one could choose coordinates on E
which simultaneously were normal coordinatés and gave a
trivialization of the bundle. In general, one can choose bundle .
coordinates about a point which are normal in the horizontal

and vertical directions, but not throughout the.neighbourhood.
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It appears that ti.e two corollaries of the proposition
mentioned above, on page 133 of [ES], are false as well.,

Suppose now that we are given a diagram

g
'Ko l l x
B B

where f is a bundle map and % _,% are harmonic fibrations.
Note that by the previous lemma T is harmonic « X ° f is harmonic
The next lemma may be considered a replacement for

Proposition C above.

Lemma 1.2.5 Suppose that £ is horizontal; i.e. df(Ho) c H.
Then if either a) the fibres of x are geodesic
b) for each x e B,» the map of fibres

o F_ is a Riemannian fibration,
x £(x)

it follows that %x° f is harmonic s 7(f) is vertical. In

3

particular, f harmonic implies =x° f harmonic.
Proof We have 7(x °f) = dx(v(f)) + Trace vax(dr,df).

The object is therefore to show that either (a) or (b) forces
the second term to vanish. As usual, form an orthonormal
basis for TE  from bases for V_ and H . As df(Ho) c 'H, note
first that if v € H, Vdx(v,v) = 0. This is because x

takes the geodesic determined by v to a geodesic in B; this
can also be verified in local coordinates (cf.[ES, p. 127]).
As f 1s a bundle map, df(vo) c V. If the fibres of =«

are geodesic, then the same reasoning shows that Vdax(w,w) = 0
for we V, This takes care of case (a).

For case (b), we £ind that the relevant term becomes
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zvdm(ei,ei), where (ei) is an ortho-normal basis for V. As
vdx 1is zero on H x H, this term is just 7(x). This establishes

the lemma.

Remark If f is the pullback of f, then f is horizontal and
(b) is satisfied. (cf. the end of the next section).

. Section 3. Equivariant Harmonic Maps
The development in this section is motivated by a paper of

Hsiang and Lawson on minimal submanifolds of G-spaces [HL ].

The idea is to examine the general theorems in their first
chapter and see in what sense "minimal submanifold" can be re-
placed by "harmonic map". Given this program, a certain amount
of original work is still required to carry it out successfully;
this centers around studying a certain decomposition of the
energy of an equivariant map, and finding reasonable conditions
under which this decomposition is useful. The interest of the
authors in [HL] was of course directed towards the volume rather
than the energy.

It should be emphasized that only generalities are treated
here; this section is therefore in the nature of an exposition
of an interesting domain for further study rather than such a
study itself. On the opher hand, we will see later that some of
the important examples in this thesis fall naturally in the
category of equivariant harmonic maps (cf. Chapter III, Section 6)..
so0 the collection of applications is certainly not vacuous.

Let us briefly recall the relationship between minimal
submanifolds and harmonic maps. If N is an oriented manifold
and M is a Riemannian manifold, an immersion f: N - M is said to
be.minimgl if £ 1is a critical point of the volume functional,

V.(f) =.&q* l.. Here *lp, is the volume form on N canonically
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associated to the metric f* 8y (If N is non-compact,

we consider only compactly supported variations of f),. Note

that any original metric on N is irrelevant, as only induced
metrics are considered. However, suppose that N is given

the induced metric f*g, (so that f 1is now an isometric immersior)
Then it cah be shown that £ 1s minimal if and only if f is
harmonic as a map of Riemannian manifolds [ES]. Therefore

the notion of harmonic map is more general than that of minimal
immersion, in that every minimal immersion is harmonic in the
appropriaste metric.

To proceed with the eguivariant theory, then, let N and M
be Riemannian manifolds and let Gl’ 62 be Lie groups which act
smoothly by isometries on N and M respectively. A map
f : N- M is sald to be equivariant with respect to a
homomorphism ¢: G; ~+ G, if f(glx) =(p(gl)f(x) for all
g, € Gl’ x€ N. The following is obvious:

Lemma 1.3.1 If £ is an equivariant map, 80 is the tension
field Af); i.e., 7(£)(gyx) = dgy), v (£)(x).

A straightforward generalization of Theorem 1 in [HL]

now ylelds

Theorem 1.3.2 Let f: N—- M be an equivariant map. Then ¢
is harmonic if and only if k(f) is stationary with respect

to all (compactly supported) equivariant variations.

Our object is to use this theorem to reduce the question
of whether f is harmonic to a problem concerning the orbit map
T: N/Gl —*M/GZ. One. conclusion will be that this is not always
possible; this contrasts with the case of minimal immersions,

where such a reduction can always be made [HL; Theorem 2].
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From here on we develop the machinery for some sufficient
conditions.

Suppose that the groups Gl and 02 are compact and
connected. Hence the principal orbits form an open dense set
in N, say N#, and the map X:N* - N*/Gl is a smooth fibre bundle.
Assign N*/Gl the unique metric under which x becomes a
Riemannian fibration. (These points are discussed in more
detail in [HL]). 1Let V : Nnr/G1 -+IR be the volume function;
i.e, V(X) is the volume of the orbit x ¢ N. It is well known

that if ¢ is a function on N* whieh is constant on orbits, then

f v= vV

N N*/Gl

To get a good decomposition of the energy of an equivariant
mep, we need a further condition on the group actions; namely,
require that if X and y are orbite in N and M and £: X -3
is an equivariant map 6f these transitive G-spaces, then
ldflz(x) is a constant, independent of x € x and f, and
depending only on x and y. Since it turns out that the
homomorphism ¢ : Gl -+ G2 plays a key role hére, let us say that ¢'

is orbit-enersy preservipg (with respect to the group actions)
if the above condition is satisfied. Denote by y(X,¥) the

orbilt-energy function in this case.

Lemma 1,3%3.3 Suppose Gl and 62 can be given bi-invariant metrics
so that (up to scalar factors) the following maps are

Riemannian fibrations:

a) for each x € N, Ky 8 @) = Gy, = the orbit through x

b) for each y € N, X, ¢ 62 - G2y

c) o : @ = G,
the scale factors in (a) and (b) being allowed to vary from orbit
-to orbit. Then ¢ 1s orbit energy preserving.
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Proof Let f: X -y be a ¢-invariant map of orbits. Via
(a) and (b) we may assume (up to scale factors) that f is of

the form

£ Gl/Hl ~'G2/H2

(where these manifolcs have their natural metrics), and
satisfies f(g'g Hl) = o(g') £f(gH). 1In particular, if
f(Hl) = al,, then f(ng) = o(g) ai, for all g. Hence we have
the diagram
I"\
& —— G,
1] | ™
Gy/H] ——p  G/H,
f
where F(g) = ¢(gla. If R, denotes right translation by a, it
follows that '

laz|?(x) = | ax, ° ag, ° ael?(%)
for any X such that xli = X. This 1s because, firstly, %~

is Riemannian, so that

lag|3(x) = 2 |a(x, © F)(v,) 1% (2)
J

where v is an orthonormal basis for the horizontal space at X;
secondly, F is a bundle map, so that d(x2 o F)(w) =0 1if w

is a vertical vector. But now as ¢ 1s Riemannian and Ra

is assaumed to be an isometry of 02, we find

ar]? = |an,|?

whieh is a constant, as 12 is Riemannian.

Remark 1.3.4 The essential non-metric requirement of the lemma
is that the homomorphism ¢ be surjective. For an easy counter-
example in the case ¢ is not onto, let ¢ : S1 - 80(3) be the

inclusion of S gg the subgroup of rotations in the IR2 _plane
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Let S1 act on itself and let SO(3) act on S2. Define

1 2

equivariant maps f,g ¢ S~ <+ 8% as follows: f is the inclusion

1

of S™ as the great circlk in the mz-plane, and let g bde a

parallel non-~geodesic cirecle. Then f is harmonic whereas g

is not. However, £ and g are indistinguishable at the orbit

level. Note also thLat the energies of f and g are not the same.
It is therefore quite obvious that in general the orbit

space to study is not M/02 but M/¢Gl).

Now assume that f: N - M is a g-equivariant map, and that
? is orbit energy preserving. At any x e N we can write

lag(x) 12 = [ae(x)®|% + |ar(x)*|?

where dfG refers to derivatives in the orbit directions and
af* to normal derivatives. If F: N/G, + M/G, is the orbit

nap, then by assumption
lag(x)#12 =v (F,E(X))
where Y is the orbit energy function. For normal derivatives,

assume that x and f(x) lie in principal orbits, so that T is

differentiable at 5;'. Let us write

lag(x) |2 |6F(X) (2 + |Skew af(x)]?

Here |Skew df|2 measures the extent to which df takes vectors nor-
mal to the orbit into vectors which are no longer normal.

Precisely, if ‘KG is projection onto the tangent space to the
2

orbit in M, then
|skew af(x)|® = |x62(f(x)) ° art(x)|?
Since the normal vectors are precisely the horizontal vectors

with respect to the projections x; and x, (cf. Section 2),

then £ 1s horizontal if and only if Skew af = 0. Under the



17

assumption that f£(N*) < M*, we get

S lagl? =4

N*/G, (16F1% + Wx,F(X))) V(T) +-fN*|Skew ar|?

Suppose now that ft is an equivariant variation of ¢
which differs from f only in a compact subset of N#, Then
ft(N*) C M* for small t, and the above formula is valid for
such f,.  Finally, assuhe that y is smooth on N‘/G1 x M*/Gz,
and that the map £ 1s a critical point of the functional
fﬁ.ISkew af|2. This latter assumption removes the last
obstacle to reducing the problem on N* to a problem on

N*/Gl; it is satisfied, clearly, if f is horizontal. Hence

of
it w =3€‘t=0

|ar (2<WWw,df> +< grady(;,f(;)),(o,;)>V(;)

4 12| =
dt gy ! =0 va’ 0,

=J;*/Gl<-2?(?) + gradnt/gzy(f,f(i)),;>'v (x)

where 7 (f) = Trace V_ (Vaf)V. Since f is harmonicés f£|N*# is
r

harmonic (as N* is dense in i), and since there is a one to one
correspondence between equivariant variation fields w upstairs
and variation fields W Jdownstairs, an application of Theorem

1.3.2 yields

Theore o Sﬁppose that ¢: @, » G, 18 orbit-energy preserving
with respect to the actions of Gl and 02 on N and M, and that

the orbit energy v is smooth away from the singular sets.

If £: N-» M is 02, equivariant, and horizontal, with £(N*) c k=,
then it follows that f 1is harmonice® ?IN*/Gl satisfies

(1.3.6) T (T) - % gradM,/Gé Y(F) =0
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Corollary 1.3.7 If the functions ¥ and V are constant, and
£ ﬁ -+ M is equivariant and horizontal, then £ is harmonic
< T is harmonic.

Equation 1.3.6 will be called the eguivariant tension
equation. Examples will be seen later in which it is solved
and sufficlient regularity at the singular set demonstrated to
give harmonic maps upstairs. For the time being, let's just

‘mention an applicationdcf the Corollary.

Example 1,3.8 Suppose G acts on M so that all orbits are
isometric and the map X, : G- G, is a Riemannian fibration
for each x € M (with respect to a fixed bi-invariant metric on
G). Then M¥ = M and x: M- M/G is a harmonic fibration (all
orbits have the same volume and are therefore minimal

(HL, Thm. 2]). If £f: X M/G is a smooth map, then there is
the diagram o*

s M

£ox i l ﬁ

Assuming X is also Riemannian, there is a natural pull-back
metric for f*k; i.e., that induced by the inclusion

r*M ={(x,m) : £(x) =x(m)} € XxM. It is straightforward to
check that f* ® is a Riemannian fibration and that f#* is
horizontal. The G action on M also pulls back to an action on
f*M which is as nice as the original, and f* is equivariant
with respect to 1d,. Furthermore, X Z f+*N/G. It follows by
the Corollary (énd Lemma 1.3.3) that f is harwonice f* is
harmonic. Note also that f£* x 1is harmonic, by the sanme
reasoning as for X; however, our conclusion is stronger than

that in Lemma l.2.5.
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This example is a natural generalization of Theorem 4
in [HL], where the map f is assumed to be an isometric
immersion. In other words, X is a minimal submanifold of
M/G if and only if x 1(X) is minimal in M.

As a conclusion to this section, let us give a simple
example to show that unless the equivardant map f 1is
horizontal, we cannot get any information from the orbit map

f.

Exunple 1.5.2 Let Sl act on Sl X S1 by multiplication in

1 X S1 ~'81 X Sl

1, Sl, is equivariant with

the first factor. A map f: S of the form

£(x,y) = (g(¥)x, y), where g : S
respect to the identity on Sl; furthermore, all such maps f

are the identity on the orbit level, and id 1 is orbit-energy
: S

preserving. However, it is clear that some such maps f are

harmonic while others are not.
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Lnapter &

HARMONIC POLYNOLIAL LAPPINGS

Section 1. Spherical liarmonics
Recall that a gpherical harmonic of degree k is a

homogeneous harmonic polynomial of degree k defined onIR®.

If £ is such a polynomial, then flsn-l satisfies

2
n-1y _ (_ n-1 9 fi.n-1 gf | on-1
Asn_l(fls ) = (=4pn £)| 8777 4 ar2Is + (n-1)4L]s

k(k + n - 2) ¢|sh?t

which is a standard computation. In other words, f£|s® % is
an eigenfunction of Asn-l. It is a theorem that all eigen-
functions of A¢n-1 arise this way (see Berger [B, p. 159 ff]).
Bach eligenspace Vk has the usual L2 inner product; 1t was
observed by do Carmo and Wallach [DW] that if £l eee fP is
an orthonormal basis for VR, then F = (fl e fp) defines a

minimal immersion of gh-1

in a higher dimensional sphere.
For the purposes of studying harmonic mappings, the most

useful observation is this one:

N, s® is defined by harmonic

Lemma 2.1.1 Buppose P : S
polynomials of homogeneity k. Then P is harmonic.

Proof As A . P = AP, this is just kxample l.1.4.
5

Are there examples other than the minimal immersions?
The answer is definitely yes, as will be seen in the ensuing

collection of second order polynomial mappings.

Example 2.1.2 Let F : R® x R" & R"™ be an orthogonal multipli-

cation; in other words, F is bilinear anda |F(x,y)| = |x|lyl.
Applying the Hopf construction to F ylelds a polynomial map

H e Szn-l.* gl

defined by H(x,y) = (|x|% - |y]3, 2F(x,y)). Then H is

homogeneous Qf degree 2; furthermore, as there is the same
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number of squares in |x|° as in |y|2, H is harmonic. Finally,
H tukes values in S" because IH(x,y)l2 = (I1xl? + |y|2)2.

If F is taken to be multiplication of complex numbers,
quaternions, and Cayvley numbers successively, we see that the

Hopf fibrations 83 - 52, S7 - Su, 815 - S6 are all harmonic.

Orthogonal multiplications will be discussed more fully
in the next section. Before proceeding with more examples,
let us wmention an interesting theoretical problem which
already presents itself: given a general eigenspace of
spherical harmonics, Vl, we know from do Carmo and Wallach that

) S fp is an orthonormal basis, then in particular

1
Bfiz(x) = ¢, a constant. Suppose on the other hand that some
subset fl oo fq also defines a map of spheres; 1i.e.,

$ 2 > ) |
i:l i(x) = c;. Hence ‘fq+l ces fp also must have constant

norm and define a harmonic map of spleres. One can aliso ask

whether Vk breaks up any further in this manner.

Problem: Classify the decompositions of Vh into norm-
. preserving summands.
"On the other hand, such decompositions do not give all

possible examples:

kxample 2.1.3 There are essentially two orthogonal multi-
plications of R2 x RQ; namely, complex multiplication CxC-H-¢
and the real tensor product Rz x m? - Ru. By the Hopf con-
struction we get harmonic polynomial maps S3 - 82 and S3 - Su
respectively. In the first case, the three polynomials
defining the map have the same L2 length and are mutually
orthogonal. In the second case the components have aifferent

L2 norms; therefore the latter map does not fit into the

classification proposed above.

-



22

Let h : 83-’ 82 be the Hopf map, defined by an orthonormal
set of 3 spherical harmonics. Aecording to the formula in
Rerger B }, the entire space of second order harmonics is
nine-dimensional; hence there must be a complementary mapping

hl: 53 - 55. Here it is:

wxumple 2.1l.4 If points in 63 are pairs (z,w) of complex

£5
numbers, define h': 59> g by

5 ~ 2 2 , 2 2 -
h*(z,w) = (zl—zg. 22,25y W] = Wo, Qwiﬁz, V2 zw)

Note that we have chosen to assign the polynomial zw to h*
and zw to h; as these roles could easily be reversed, 1t is
clear that decompositions of eigenspaces will not generally be
unigyue.

As hJL is quadratic there is a natural factorization
A

83 h 85
3
h

IKP-

we claim that h *is a harmonic enbedding. It is clear enough

that h' is harmonic, as h is harmonic and ® is a Riemannian
covering (a special case of a harmonic fibration).' The proof

thuat Hl is an embedding can be read off from the next example.

Remark 2.1.5 u) h' is not isometric, so it would appear that
the image 1is not a minimal submanifold.
b) h* is a special cuse of the following generality:

i f: sP» 89 and g s¥ - 3% are second order harmonic polynomial

i - . N +1 ; . . |
maps, and F: IRP xIRP+l‘*]Rn is an orthogonal multiplication,
then there is a harmonic polynomial map h: Sp+r+1 - SQ+S+n+1

defined by

h(x,y) = (£(x), S(Y)vv/z F(X:Y))

The norm condition is satisfied slnce by homogeneity,

lf(x)lz = IXI4 and similarly for g. In the case at hand, f
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and g are given by the Hopf construction applied to real
multiplication, and F 1s complex multiplication. This suggests:

Example 2.1.6 Define a map f: s/ - 89 as follows: if points
of S7 are pairs (z,w) of quaternions, and each quaternion 2z has

complex components (zl,zg) (i.e. 2 = z, + 223), then let
2 2 - ' 2 2 - -
£(z,w) = (l231% - 12,15, 22925, |w 1% - |wyl|%, 2wmw,, v2 2w)

We claim there is a factorization

: f
S? —2 39

1

TP

in such a way that T is a harmonic embedding. We will show

first of all that f£(z,w) = f(x,y) & (z,w) = A(x,y) Ffor some

L = Sl. The action of S1 is the usual one and is consistent

with quaternionic multiplication; i.e. Ax = (Axy, kxz).
So‘suppose f(z,w) = f(x,y)s As with the Hopf map s2 - 82,

this forces z shlx, w =»k2y for ll,hz € Sl. Also,

x Kilzy = Xy, 80 that as long as x # 0, y £ 0, f&}z = 1 and

kl = 12. In case, say, x = 0, we are done already. As the

converse is trivial, T is well defined and one-to-one,

Since CP3 is compact, we now need only that T is an
immersion. It suffices to show that if af(N) = 0, then 7
is a vertical vector. So suppose M= (u,v) ie tangent to-S7
at (z,w), with z £ 0, w £ 0, and that af(n) = 0. Since the
extended Hopf map IRL‘-"IR3 1s'a nice submersion away from 0,
it follows that u is tangent to the circle through z. Similarly
for v and w. In other words, u is a real multiple of iz and vi
is a real multiple of iw. It remains to show these real

numbers are eqgual. However, another conseqﬁence of ar(n) = 0
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is that zv + Uw = 0. PFrom this rclation the desired
conclusion follows easily. In case z = 0, the same
equation forces u = 0 and we proceed as before.

That f is harmonic follows from the fact that f is

harmonic and Lemma 1.2.2.

The previous examples can be generalized as follows:

if Sb’n"1 is the unit sphere in the space of n quaternionic
variables, there is a diagram
Sln-1 £, 42nSen-l
L
cp2n-1 f

where f is again a harmonic embedding. The definition of f is
TERY: 2 - 2 2 = .
£(xye0ex,) = (|x11| - 1xq,51%, 2x11x12f...,|xnl| -Ixn2| 12X X o

.VQQEJXK.: J <k})

A similar construction is valid in the real-complex case,

yielding b 5
S2n—1 — §Sn +n-1

xi 7

f
IRP

where T is a harmonic embedding.

Let us give a final instance of the beautiful mappings
which can be found by merely looking around.
Example 2.1.7 One of the standard minimal immersions is the
Veronese mapping 52 Sh, which defines an embedding of IRP2
as the Veronese surface in Su. Using the same formula, with

complex variables substituted for real ones, we obtain
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where f (you guessed it) is a harmonic embedding. The

fformula is in fact
1

£(x,7,2) = (x7,x2,52, #(I1x|1% - 2]%), 2B(1x|% + |y]? - 2]|2]3))

The verification that T is an embedding proceeds along the same
lines as before and is omitted. The quaternionic analogue of

this example is also valid.

Section 2. Orthogonal Multiplications

The orthogonal multiplications are quite useful in
constructing examples of harmonic maps. One possibility
has already been mentioned as Example 2.1.2. Before plunging
ahead, let us agree to abbreviate the phrase "an orthogonal
multiplication F: R® x @™+ RP" to "an F(n,m;p)" where
convenient. .

Recall that in 2.1.2 we needed n = m in order to make use

of an F(n,m;p). However, they can all be used in the following

way: :
Lemma 2,2,1 Given an F(n,m;p), the induced map FisP-l,g0-1, g0-1
is harmoniec.

Proof With respect to each variable separately, F 1s a

geodesic embedding; hence F 1s harmonlc by Lemma 1.1.1.

A nice generalization of this lemma 1s the next observation.
Lemma 2.2.2 Suppose F:s® x s® o8P 15 @ homogeneous harmonic

polynomial in each variable separately. Then © is harmonic.

Example 2.2,3 Think of S5 ag the unit quaternions and of g2
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as quaternions whose real part is 0. Then there is a map

Fo: 82 x 80 » 82 defined by F(x,y) = yXY. A short

computation shows that if x is fixed, FX: s3> - g2

is a form
of the Hopf map and is a harmonic polynomial. Thus F is
harmonic. It is known [BS] that applying the Hopf construction
to F (in the topologiet's sense) yields the generator of
K (87) = 2y,
We remark that the orthogonal multiplications pose an
interesting classification problem: the only thing known at
present seems to be that there exists an F(k,n;n) if and only if
IR can be given the structure of an (ungraded) C_y module,
where Ck is the kth Clifford algebra. The dimensions k and n
for which this can occur have been completely determined (see
Husemoller [HUJ). In this section the general problem is
merely given a more precise formulation. |
To besin with, note that if we have an F(n,m;p), then there
must also be an F(rn, sm; rsp) for all positive integers r,s:
if the first multiplication is written vw, the second can be

written

(Yl’-o- ’ Vr)(w1) cee "B) = !Viwdi

To check the norms, we have

2 - 2 2
“Viwjll 13]‘71' 'WJI

2 2
NES
g 1vil® 2wyl

2
Iv]2 |wl|

This operation may be viewed as a sort of tensor product
associated to F (cf, Lxamples 2.2.6 - 8); more generally, we

could operate on each pair (vi,wj) with a different F At

i°
any rate, as far as classification is concerned, we clearly need:
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Definition 2.2. A multiplication F(n,m;p) is said to be
left reducible if there is an orthogonal splitting]Rn = Ve W
such that F(VAR™ 1 F(W, IR"); otherwise, F is left irreducible.

Right reducibility 1is defined similarly. F is
irreducible if it is left and right irreducible.

Problem: For what integers is there an irreducible F(n,m;p)?
It is clear that any multiplication can be decomposed into a
matrix of irreducible components in an obvious (but perhaps
non-canonical) wayi simply perform right and left reductions
alternately until the process terminates. 'Therefore an |
answer to the above restricted question would provide the most
natural solution to the general classification problem; hence
some more manageable characterizations of irreducibility are

needed, and we have nothing to offer here.

As the Clifford multiplications F(k,n;n) furnish a large
supply of orthogonal multiplications, one might also ask if
there are any examples of an irreducible F(n,m;p) which does not ;
arise by restriction from an F(n;p;p) (or F(p,m;p)). In other
words, this is an extension problem. Again, we have no
suggestions to make here. We remark, however, that the non-
singular multiplications in exotic dimensions constructed by

~Adem, Lam, and others‘[A] are not orthogonal.

Another reasonable sounding project would be to attempt a
finer classification along these lines: given n,m, and p, we
ask how many F(n,m;p) there are, up to orthogonal substitutions
in all three Euclidean spaces., However, this problem does not

seem to be solved even in cases where the answer should be

obvious:

Example 2.2.5 Let us exhibit two non-isomorphic multiplications
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F(5,8;8). For F, we take Cayley multiplication restricted in
the first variable to any 5-plane, F2 will be defined by
writing down four anti-commuting complex structures on IR8 =]H2,
say e; ... e ; setting e = I, we get F2(5,8;8) by linear
extension in the first variable (cf. Husemoller o).

Therefore set

e (x,y) = (1y,1x)

ez(er) (v, 3x)

(ky,kx)

e3(X.y)

e, (x5¥) = (-y,x)

This construction, due to Vranceanu [V], gives four orthogonal
vector fields on 87; he shows furthermore that another

orthogonal field cannot be added to this systenm. Hence F2

does not extend, whereas Fl obviously does. Therefore F1 and
Fz‘are not isomorphic (in the sense mentioned above).
Added in Proof This example 1s incorrect. The structure of

r®

as an ungraded Ch moaule is unique, and isomorphisms between
structures can be assumed isometries [M, p. 143]. Thus
Vranceanu's theorem is also incorrect.,

Putting theoretical considerations aside, we continue to
hunt for interesting harmonic maps. As it happens, the tensor

product discussed earlier produces a series of charming examples,

Example 2,2.6 Let us take first the preal tensor product, which
is an F(n,m;nm); here (v,w) » v @w = ("1"3)‘ There results

a diagram of harmonic mappings:
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f
n-1 N Sm-l . —
u////Kn’m
1 \\\‘

> rpPo-l

g Snm—l

w®p* 1« mp™
f
Here f is an isometric (hence minimal) immersion whose image

lies in no hyperplane; i.e., £ is full in the terminology of [DV].

k-1
x

The map T is & harmonic embedding of IRP ®P™ ! as the

minimal algebraic submanifold of n x m matrices each of whase
2 x 2 sub-determinants vanishes. The manifold Kn o is the
H

n-1

quotient S X Sm'l/So, and all other maps are the evident ones,

We first prove f is isometric; i.e., that df at any point
sends an orthonormal basis to an orthonormal set. Since f is
induced from F, which is an isometry in each variable separately,

n-1

it suffices to show that 1f yq and y, are tangeﬁt to S and

gm-1 respectively, then <df(y1), df(y2)> = 0. Therefore let
x = (Vyw), ¥y, = (u,0), Yo = (o,t), with <u,v> = <w,t> = 0.

Then af (y;) = ar (y,) = (uiwj), and ar, (v,) = (vitJ). Hence
=2 .= 2 . =

It will be clear from the next example, however, that this
conclusion (i.e. f isometric) is not valid for general
multiplications.

The algebraié statement can be proved this way: 1t is

clear that if a matrix A is given by (Aij) = (viwj)’ then

A A v

13 ik Y5 vom |

i7j 17k
= =0 VYijkl

Azj Aek
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Conversely, we need that if A i1s a matrix satisfying these
conditions, then 4 = (viwj) for some vectors v and w. The
proof is by induction: as the case n=m = 1 is trivial,
assume it is true for (n-1,m). Then there is a (v1 veo vn-l)
and a (wl ces wm) such that Aij = VW, for i € n-1, j € m.

ie must choose v, to satisfy v, Wy = A ¥i. In other words,

ni
we must verify Ani/wi = A.nJ/wj for any i,Jj such that

LA £ 0, LF # 0 and simultaneously check that Apg = 0 4f w, = 0.

There are two cases:
a) ym € n-1, Vp = 0. In this case put v =1 and

w, o= A, Y1 (throwing away the former w).
b) 3m < n-1 such that v, # 0. Suppose that w, £ 0, wj'£ 0.

Then by assumption Ami AnJ - Ani Amj =V, Wy Anj - Ani Vi 'j = 0.

Hence Ani/wi = Anj/wj‘ Now suppose w, = 0. If there is

some w, £ 0, Ani = 0 by the same formula. If w = 0, again put

v, = lJand w, = Ani.Vi.

The induction on m is similar.

Finally, we should check that T is one-to-one. In other
words, if (viwj) = i'(Jci,yj), then v=%xandw=2%y., Asoa
similar statement is proved in the next example, the verification
is omitted. Note also that if v@ w = X® y, then
(v,w) = ¥(x,y). Hencel(,n’m is embedded as a minimal submanifold

of g1,

Special Case: Let n=m = 2. It is easy to see that Ka 2

. =9
is a torus and 1s embedded as a copy of the Clifford tofus in 83.
The Clifford torus may therefore be characterized as those 2 x 2

real matrices which are singular and of norm 1.

Example 2.2.7 The complex tensor product (z,w) » z @ w gives

a similar diagram of harmonic maps:
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SQn—l SZm-l 2nm—1
\ /
n lx"(2 Il,
%

Here f is an isometric holomorphic embedding and 1s known as a

n-1

Segré embedding, after its originator. As before, CP xCPm'l

is embedded as the minimal algebraie submanifold of n x m complex

matrices each of whose 2 x 2 subdeterminants vanishes. The

manifold Kn?m is the quotient gen-1  gom- %/

Az,w) = (Az,Aw). Kncm is harmonically embedded (non-isometri- -
14
2nm-1

S™, where S1 acts by

cally) as an algebraic minimsl submanifold of S
Note that the maps ®,%; X %,s,a &8nd § are all harmonic
fibrations, with geodesic fibres. The first three are harmonic
fibrations by definition of the metrics on their images;
similarly B is Riemannian and B © o = %1 X %o is harmonic implies
8 is harmonic by Lemma 1l.2.2. By Lemma l.2.2 we also see that
v = F °B is harmonic, because T is a holomorphic map of Kahler
manifolds and is hence harmonic [ES]. Similarly § ®q = f isA
harmonic, so & is harmonic, Thus all maps are harmonic. In

fact, as 8(K_ C 1) is minimal, & is also harmonic with respect to
¢

the pull back metric on K

So now assume f(z,w) = f(x,y); that is, ZgWy = XY Ni,j.

1

Then Vi such that Xy A0, y. = x‘i‘ ziwjv.‘j. That is,

J
y = Aw for a scalar A of norm l. Similarly, we find
X = 2\, with A = wJ.y'JT1 for all j such that Y A0, 1In

conclusion, f(z,w) = f(x,y) if and only if (x,y) = (Z,Aw) for
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gome scalar M of norm 1. (hote ey onis comﬁutation works
as well for guaternions.) Therefore & is injective. That
‘5 is an immersion (but not isometric )follows in a manner
similar to the calculation below.

Let us check that f is isometric. To do this, we will
show that if ¥ is horizontal with respect to Ty X Koy then
af(Y) is horizontal with respect to x and |af(y)| = lv].
Suppose this can be verified at some point x =_(xl,x2) in

g2n-1 ; Sszl. Then given any other point y = (yl,yz), choose

unitary operators U1,02 such that Uixi =¥y It is clear

that £ « (U1 x U2) =U, % U, « £, and similarly for the induced

maps of projective spaces. As Ul X Uz‘and Ul @ U2 are
isometries (and induce isometries), the desired condition
must also hold at y.

Therefore choose x = (ek,ez). A typical vertical vector

is (Kiek, uiel); horizontal vectors are thus of the form (z,w),

with 2z, = wi = 0. Thus for a horizontal vector
Laf, (z,w)l g = w, 1=k JAL
= 24 1 £k, j=L

=0 otherwise

4

In particular, the (k,L) component is 0, so Aaf(z,w) is
horizontal with respect to %; it is elso evident that
Idfx(z,w)l2 = Izl2 + |w|2, which concludes the proof that f is
isometric. That f is a holomorphic embedding is easily
verified, and the algebraic characterization is valid as in
the real case.

It is well known that complex submanifolds of Kahler
manifolds are Kahler and minimel. Hence €P™ 1 x ¢p™ 1 15

nm-1 .
minimal in CP"""; therefore &(k ) is minimel in §20m-1 .4



33

it is the inverse image of a minimal submanifold unaer «x

(see e.g. hxample 1.3.8).

lixample 2,2.8 Repeating this process for the gquaternions

gives a diagram
f

~\\“a~\\, ‘_,,—u"”
n-1 m‘l/ \lﬂan'l

We are missing T because it is not well defined. The

H
manifold Kn,m

K., xT
1

HP

is defined as the guotient ghn-1 X Sum'l/Sj
(ef. the previous example). All maps are still harmonic,
except perhaps y: before we used the faet that y = £ ° B.

In fact, vy is not generally harmonic. To demonstrate
this, we will give an example in which =x° f is not harmonic;
therefore ¥ ° a is not harmonic, so vy is not harmonic by
Lemma 1.2.2. The example is the composition

f

YIS
xSl = sl L5 s - wpt

g9

which is the polynoniial
2 2 -
H(, (x,5)) = (Jal® (1% = 19%), 2qxy9)

For fixed g, H is a harmonic polynomial in (x,y). Hence, as
in Lemma 1.1.1, if for some fixed (x,y) the induced map |

33‘4 Su is not harmonic, we can conclude that H is not harmonic.
Choose (x,y) = (1//2, (1-J)/2), and represent g = z + W}

for complex 2 and w. The second term in H is like .
(zyw) + Izl2 + le2 + 2W - WZ - (22 + w2)J

However in general we have
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Lemma 2.2.9 Suppose H : B, 8™ is a homogeneous polynomial;

then H is harmonic if and only if at each point x ¢ st

AH(x) is proportional to H(x) (where A is the Zuclidean
Laplacian).
Proof This is immediate from Example 1.l.4 (a) and the first

formula in this chapter.

Applying this lemma to the polynomial written above, we
see immediately that H cannot be harmonic. This concludes

Example 2.,2.8.

To end this sectlion, let us write down some maps which
behave a little differently from those considered so far.
Applying the Hopf construction to the real tensor product
RP x RP~ IRPZ gives a diagram

h 2
SZP'I S N Sp

L

®mpP-l  §
Operating similarly on the complex tensor product (z,w) = 2 ® w

yields harmonic maps:

h
2
S“P'l e P
p2P-1 /

If the arguments upstairs are (x,y), then in esch case h 1s an
immersion away from the planes x = 0 and y = 0, and is singular

at these planes if p > 1. In the cases p = 1, h is z -» z2

1

on S~ and the Hopf map S3 - Sz, respectively.
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Section 3. Mappings Associated to Orthogonal Multiplications

In this section we study the geometry of maps into Stiefel
and Grassuiann manifolds which ure canonically associated to
any orthogonal multiplication. The main results are:
a) ‘the existence of a one-to-one corréspondence between the
multiplications and nicely embedded spheres in Stiefel manifolds;

and b) the fact that the (harmonic) fibration V. _ -+ @
’

b D

is not totally geodesic. The import of the last statement
for the theory of harmonic maps is that most (but not 2ll) of
the canonical maps between spheres and Crassmanns are not

harmonic.

’

Let us first consider Vn p’ the Stiefel manifold of p-frames

in n~-space. Assume that the metric on Vn D is normalized so
' ’

that the natural embedding

\n-l \n-l
Vn’p - s X eeoe X b (p times)

is isometric. Our object is now to prove:

Proposition 2.3,1 There is a 1-1 correspondence between

multiplications F(k,p;n) and p-isometric embeddings

k=1, v

f: 8 which satisfy f(-xo) = -f(xo) for some point

’

k-1
xo in S .

Proof The correspondence is given trivially in one direction
as follows: given a multiplication F: IRk x IRP - IRn, let

-

[u. ... up] be the standard frame for IRP and let

1
£(x) = [F(x5uy)y ooey F(x,up)]. It 1s clear that f satisfies

the conditions above.

Remark 2.3,2 It is clear also that if vy is a geodesic in gk=1,
then each component of £ ° y is a geodesic in s%1,  Hence £ °¥

is a geodesic in V The embedding f is therefore totally

n,p’
geodesic (and hence harmonic).
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To prove the converse we need

Lemma 2.3.3 Suppose a map f = (fl... fp): gk-

- vn,p is
given, satisfying this condition: if e 4 e, in Sk-l, then

for all i,jJ
Qfyley), fj(e1)> +<fi(e1), fj(eo)) =0
Then f defines an F(k,p;n) in a natural way.
Proof Define F‘:]Rk x IRP 4+ IR™ to be the bilinear extension
of (ei’“;j) - fj(ei)' Suppose u is any vector in sP-1,
Then F(ei,u) is a unit vector by construction. To prove the
lemma, it therefore suffices to show that F(ei,u)..l. F(ej,u),i £ .

But if u= 3 aku.k

< B‘(ei,u) ,F(ej,u)>= l?g aka'< F(ei,uk) ,F(e.j ,u!))

l§=la§< F(ei,uk) ,F(e:j ,uk) )

+ k‘;"gl akal<l«‘(e1,uk): F(ej,u' )>

1:.': aig fk(ei)’fk(ej)> + &‘akaﬁ fk(ei) 7f‘ (ej)>

Each term in the first sum is 0, and those of the second cancel

in pairs. This proves the lemma.

Now suppose we are given f: sk-1 o vn,p as in the statement
of the proposition. We are going to show that if ¥ 1is any

k-1 n-1

geodesic in S » then £, °vy is a geodesic in S for each 1.

It will furthermore become clear that fi preserves arc length

(ef. Remark 2.3.2)

We are given x, € s¥"1 guch that f(-xo) = -f(xo). There-

fore first let Y be a geodesic of unit velocity between X, and

-x,. Hence f ° ¥ is a path from f(xo) to -f(xo) of length p=%.

This is clearly the distance between f(x_ ) and -f(x,) in
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Vn,p’ and can only be achieved by a path which is of length
X on each sP1 (petween two antipodal points). Hence

fi ° ¥ is a geodesic on Sn'l of unit velocity for each i.

If this argument is repeated on following ¥ back to X0 it
follows that f(-p) = -f(p) for all p on v (since this is true
for each fi)‘

k-1

Now note that since S can be filled out by such

geodesics v, we get £(-p) = -f(p) for all p e Sk-l. Finally,
this allows us to repeat the above argﬁment'with respect to
any geodesic in Sk'l, and thus get the desired conclusion.

The last thing we need for the proposition is a property

bf orthogonal geodesics:

Lemma 2.3.4 Let Yl(t), Yz(t) be unit velocity geodesies in s
satisfying(yy (t),¥,(t)) = 0. Then
Qryi(e) o (t +x/2)) + <y (t +x/2), v (t) =0

Proof: Without loss of generality we may assume

Yl(t) = cost ey + sint e,

Yz(t) = cost v + sintu
where
vV = ae2 + b§3
u= -ael +. Ceu

The lemma follows by direct calculation.

To prove 2.3.1l, now apply 2.3.3 as follows: 1if e, L e in Sk'l,
let Y be the anit velocity geodesic in the plane of e, and e
Given integers i auu J, et Yy = fi °y'and'72 = fj °y 3

Then Yi and Yé are unit velocity geouesics ou S:n"1 uy the
arguments above. The condition of Lemma 2.3.3 is immediately
satisfied if 1 = j; if 1 £ J, Y, and y, are orthogonal (since

£, 1s a coordinate in a Stiefel manifold), so 2.3.4 applies.
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This proves Proposition 2.3.1.

For the second part of our study, we need Wong's
characterization of gecodesics in Grassmann manifolds:

Theorem 2.3.5 [7G] I, € G . 1s a geodesic if and only if the
H

one-parameter family of r-planes satisfies
a) all pairs of r-planes in I' have common angle 2-planes
b) the r angles between two nearby r-planes are

proportional to a fixed set of non-negative constants.

To interpret: the cosine of an angle between two r-planes A and
B is a stationary value of <u,ng>, where u runs through A and
xB is orthogonal projection onto B. If u is such & vector, then
the pair u, *zu determines an angle 2-plane (perhaps degenerate).
Therefore in statement (a) above we allow the possibility
that for some pairs of points on a geodesic a full angle 2-plane

may degenerate (e.g. if both points are the same point).

Definition 2,3.0 Let us say that two planes A and B are gemi-
normal if the only angles occurring between them are 0 and x/2
(i.e., all angle 2-planes are degenerate).

Note that any F(2,k:n)determines a closed geodesic in

v » and by projection a smooth closed path in G s denoted y ...
n,k n,k F

Proposition 2,3,7 The path Tp is a geodesic in Gn.k iff the
planes F(elJRk) and F(ez,IRk) are semi-normal for any orthomormal

vectors el, e2.
Proof Let us abbreviate F(x,y) to xy, and denote F(ei,IRk) by
' P,. Finally, let® be orthogonal projection of R"” onto

P

1= F(el, ]Rk). With this notation we make the following

Assertion: Suppose e,u and 7(e2u) define an angle 2-plane

between Pl and P2, for some u € le. Then if e is any other
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vector on the circle, eu and %(eu) define an angle 2-plane
between P, and P = F(e,IRk).

To see this, note first that <e2u, n(eau)> is stationary
atu iff |

<e2u, ﬂ(ezv)) + <ezv,ﬂ(e2u)) =0

for all v4 u (it only makes sense to vary in directions
perpendicular to u). Since F is orthogonal, this is
equivalent to saying e,u and K(ezu) define an angle 2-plane
between P1 and P2. Since ® is self adjoint, this condition
reduces to
(epu(e,v) = 0

for all v . u. The assertion therefore consists of
demonstrating that if this condition holdes, then for any t

<(cos te +sint e2)u, X ((cos t e, + 8in t e2)vl> =0

for all v & u. By assumption, it suffices to show that
<elu4 w(elvl> =0

and <elu, x(egv)) +<e2u,x(elv)> = 0

As & 1is self adjoint and is the identity on Pl’ we simply need

<1=:1u,e1 v,)= 0 =(eju, e, V/ +<e2u, e, v

for all v & u. The first is immediate, as F 1is orthogonal.
The second equality is wlso a characteristie of orthogonal
multiplications: just expand the identity

{(e1 + e2)u, (e1 + e2)v/»= 0. Hence the assertion.

Now to the proposition. Suppose first thaty*F is a geodesic,
and that e,u and ﬂ(ezu) define an angle 2-plane between P1 and P2.
We must show that 'n(ezu) = eyu or 1c(e2u) = 0. By the assertion,

eu and Neu) define an angle 2-plane between P, ana P, for all
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e est, 1r T, is a geodesic, it follows that Span (eu,x(eu))

is constant (except for degeneracies). 'However, eu sweeps out
a 2-plane of its own as e traverses the circle, and therefore
% (eu) must lie in this plane Q, spanned by e;u and e,u, for all
e. In particular, K(ezu) € Q.

There are two cases:

i) e,u€ P, ; then x(ezu) = e,u

2

i1) e2u.¢ Py; thenﬂﬂ(e2u) € Qn P, which is one-dimensional
and spanned by e;u. However, <‘K(e2u),elg> = <e2u,e1u) =0,
hence n(ezu) =0,

Conversely, suppose that Pl and P2 are semi-normal. Ve
will show that P; and P, = F(e, IRk) have common angle 2-planes
for all e, from which it will be clear that Y is a geodesic.,

Suppose first that x(ezu) = 0; then by the assertion
Q. = Span (eu, x(eu)) is an angle 2-plane for each e, and we
claim that Qe is constant (except for degeneracies). In fact,
since x(eu) = x(cos t equ + sin t e2u) = cos t e,u, we see that
Q. =Q = Span (elu,eeu).

The other possibility is that x(egu) = e,u.  The way to
handle this case, however, is not to fix our attention on a
particular u, but instead to consider the entire intersection

= V. The problem with respect to this type of

P, n P

1 2
degeneracy is to demonstrate that P, n P, = V for all e £ 2 e, .
So suppose v € V is a unit vector, v = e,u = e X, and
‘we are given e = cos t e + 8in t ey Then if

w = costu + sint x, |

ew = v+ costsint (elx + e2u)

But as x 4 u (since eju = ezx),

(e €% P+ (€U elg>

0

1+ <32u,e1)9
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hence 62u ='-e1x. -Therefore ew = v, Thlis shows that

Pl {\PeZD V for all e. The opposite inclusion (for e ¥ te

1)
follows similarly.

It is therefore eusy to see that ?F is a geoaesic, This

finishes the proposition.

pxumple 2,3.8 e exhibit an F(2,2;4) such that Yp 18 not a
geodesic in G, ,. The first factor RR® will be the plane

in the gquaternions spanned byvel = 1 and e, = al + bj, where
a and b are both non-zero., The second factor is € and F is
quaternioniec multiplication. Then in the notation above we

have P, = € and P, = Span (al + bj, -a +bk). These planes

are not semi-normal, because t here is no non-zero vector in
P1 which 1is orthogonal to P2. By the proposition,?‘F is not

a geodesic,

Qorollary 2,3,9 In general

a) The harmonie fibration V -+ @_ .1is not totally geodesic.

n,k n,k

b) Given an F(p,k;n), the induced map sP~1 G,
. ]

is not harmonic.

Lest this picture appear too bleak, however, note that if

k

F: ¢ x ¢ K is 4 complex bilinear multiplicution, then we

obtaln a diagram of harmonic maps:

b o
.2p-1 ¢
5 - vn,k
x l [
p-1 -~ €
CP —) Gn,k
f

As f is holomorphic (hence harmonic), T ° = :5%P-1 o Gf K
]

is harmonic.
It can be shown that certain special real multiplications
induce harmonic mups as well, by applying 2.3.7 in a suitable

way ®
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Remark 2.3%.10 The homotopy properties of the canonical

mappings discussed in this section can be quite interesting.
For example, from Proposition 2.3.1 we see that there is

a correspondence between multiplications F(k,n;n) and
geodesic (k-1)~-spheres in 0(n). It is known that every
element of the stable homotopy of the orthogonal group can be
so represented [ABS]. There should also be some nice
connections between general F(K,p;n) anda the homotopy of

.the Stiefel varieties.,
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Chepter 3

JOINING POLYNOwIAL MAPS: THw PENDULUM EQUATION

A remark ﬁo the reader is in‘order concerning the
presentation in this chapter anu the succeeding one. This -
chapter contains a ruther detailed analysis of a particular
differential equation and certain of its solutions. A
variety of simiiar but more complicated egquations appear in
Chapter IV. The treatment there tends to follow the same
pattern, but for the sake of brevity concentrates only on
crucial differences. This seemed preferable to a cumbersome
attempt at a unified presentation, but certainly requires the
critical reader of Chapter 4 to be familiar with the detaills
of Sections 1 - 5 in Chapter 3.

The first 4 sections of this chupter are concerned with
the proof ot the main theoren. A speclal case and a related
problem are considered separately in Sections 5 and 7. The

applications are in Section o.

Section 1. Main Theorem; JDerivation of the lkguation
- Sq-l r-1

Given 2 maps of spheres f: sP-1 and g: S g8-1

recall that the (non-reduced) join f * g of £ and g is a map
£x g gP+r-1 Sq+s-l
defined in Buclidean coordinates by

£ * g(x,y) = (Ixie(x/Ixl), lyle(y/Iyl))
The principal result of this chapter is

Theorem 3.,1,1 Let f: gP-1 ., gu-1 and g : gr=1 - gs-1 be

homogeneous harmonic polynowials of degree L,k respectively.

If the damping conditions are satisfied, numely,

k > 9(r-2)

¢ > 6(p-2)
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where © = 3(v2 - 1), then there is a harmonic representative
(in homotopy) of f * g.

"l 58Pl ¢ the identity, then

Note that if f: sP
f * g =3 Pg, the pth suspension of g{ef. Toda [T] or by
inspection). Hence

Corollary 3.1,2 Let g: Sr"l - Ss-l be a harmonic polynomial

map of homogeneity k > ©(r-2). Then the 10 suspension of g

can be harmonically realized for 1 = 1,...,6.

Further applications of these two results are studied
in detail in Section 6,
The map we construct to represent the join of f and g has
the form
£ * g (x,y) = (sint)f(x/|x|), cosa(t) g(y/Iyl))
(x,y)& B’ x R\ (o)
where t = log (|x|/lyl) € (=o,)

and @ is a function to be determined. In all that follows,
we will assume r,p 2> 2. The case r = 1 corresponds to
constructing the first suspension of f and is treated separately
in Section 5. We will also assume that f and g are non-constant,
and therefore correspond to non-zero eigenvalues of the
Laplucian on their respective domains.

Our first job is to reduce the yuestion of whether this
map is harmonic to an ordinary differential equation for a.

p+1-1

denote the Laplacian on S = 8 and let 4 =4, be

Let 8
the Laplacian on IRF*T, By Example.l.l.u £ * gi8 is
harmonic iff 8,(f * g|S) 1s proportional to f * g at every
point. Since t * g by definition is constant in radial
airectiongs we can calculate as in Chapter 2, Section 1

Lg(f * gls) = Ap(f * g)s

Let us carry out such a computation on the first term in f * g:
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' osin a of
A(sin ot) £(x/|x|)) = A(sina)f + 23 x4 0x 4

+ 8in a AT

Here as usual arguments are suppressed. Consider the last
term: if B : IRP \(0) - sP~Ll is the harmonic retraction
x~ x/|x|, we have the composition
B
RP\(0) - sP-1 X R4
Hence A(f © B) = Trace Vaf(dd, dB), and as B is something

akin to a harmonic fibration we find

= - |x|™2
A(f °B) = - |x| Asp_lf
-2
= —>IX| )\lf
where A= AL+ p-2

Now note that the function t satisfies

ot _ _Xi
5xi IXIZ
ot T__.?g“y'
0 j Ty
x
Hence él— sina (t) = coso jrn
9 ]
0 2
and as 2 x, Exi (£(x/|x])) = dr £(x/|x|) = 0, the second

term in the above expression for A (sina f) vanishes. After

a straightforward computation on the first term we are led to

‘ -AN sina . v - , e ;D= -
b (sino f) = , S0 0 - sino i + CO&J.G,(L?-2- 5‘__2_2 ]t
x| %12 Iyl? =% vl
Similarly
-A cosa . Y
A (cos @ g) =[__g . _ sina aé+ cosuéa + sina a(r-2 _ g;g)] g
M %" )yl f 1=

But as £ % g = (sina f, cosag), the requirement that A(f * g)
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be proportional to £ * g is fulfilled if there is compatibility

between the above expressions, namely

(cot a+ tana) [d+ d((p—z)lyl2 - (r-2)|x|2)]-+ h2|x|2 - 11|y|2= 0

If we substitute |x|2 = sin® tan™t eb = et/(et + e't)
912 = e7t/(e® + %)

the ejuation for o 1is

(3.1.3) .
a(t) + (ePe )T ((p-2)e™" - (r-2)e%)  4(2) + (petnie™)

sim, (t)cos a(t)] = 0

with kl 1(f +p-2)
A k(k+r-2)

2

The damping conditions can now be expressed in the more familiap

form

(3.1.4) (p-2)2 < iy

2
(r=2)" < W,

In section 2 we will demonstrate the existence of a special
sort of solution to 3.1.3; from this it will be obvious that
the map we have constructed is homotopic to the usual join of f
and g. Sections 3 and 4 are devoted to the regularity |
problem; in other words, to showing that this map 1is smooth

at x = 0 andy = 0.

Section 2., Existence
The object of this section is

Proposition 3.2.1  Subject to (3.1.4), there is a solution ¢

of (3.1.3) which is strietly increasing and which is asymptotic

to 0 and /2 at - wand corespectively.



Before proceeaing to the details, let us motivate and
outline our methods: thinking of t as a time parameter, we
see that 3.1.3 is the equation of motion of some sort of
pendulum. Notice that "gravity" is positive for t>> 0 and
negative for t << 0, so that one can look for an exceptional

trajectory in whieh % _ = /2 end &__ = 0. (The physical

L7

analogy 1s actually more accurate if we set @ = 2a and replace

sin® cos® by (sin @)/2. However, the eguation ies more easily

analyzed in its present state). The picture to keep in mind

(for the function1;) is that of a pendulum standing on end at

t = «» and hanging straight down at t = =oo:

@ §;= x ‘ gravity _
' l

!

i

[

|

' I

s a_ =0 gravity__

Existence will be estsblished in the following intuitive
WAY « Fix to to be the time when gravity vanishes and mani-
pulate the initial conditions ao and.&o. For a given

%€ (0,x/2), throw the pendulum just hard enough

(@ =<i;(C%)) that & (t)~ = /2 as t * «; similarly, choose

& - X - A . o
a (@) to get 2(t)~ 0 as t=* -« Theno  and 0  are

o

continuous in &.. Furthermore, G

o =0 as O/ -+ % /2 and

+
o

(.L - as 1 g
o 0 o 0.

N¥ith regard to behavior at the opposite ends of the
interval, our intuition fails us: it would seem obvious that

.=+ L . L .-
‘Lo is bounded away trom 0 for & near 0, and likewise for Go

when is near */z, However, this step rcqulres essentisal
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)

use of the fact that our system is underdamped for large |t
that is, we require inegualities 3.1.4.

Having done this, it follows at once by continnity
considerations that there is some q withig(qo)= 'i;(ao). The

solution with these initial data will satisfy the proposition.

Let us now make this argument precise. The first thing
to remark is that the solution a(ao,&o) and its derivatives
are continuous functions of the initial conditions “o'&o'
That 1s, we can make two solutions aq and a, close in ct over
any compact time interval by making their initial dats close,
This is a standard consegquence of the smoothness of the
coefficients in 3.1.3 [CL], and we use this fact throughout.

e can now define the functions d+ and § . more carefully.

o) o

vefinition 3.2.2 Ifa_ e (0,x/2), let A¥(a_) be the collection
of % € IR such that a(ao,&o) ‘increuses monotonically tox /2 in

f'inite time us t increases from to.

Similarly, let A_(uo) be the set of &o such that a(uo,a,o)
decreases monotonically to 0 in finlte time as t decreases from

to. Let

- + +
ao(oo) inf A (ao)

a;(ao) inf A"(a )

Lemma 3,2.,3 The functions d; and d; are well defined.

+
o
a proof only for ég. It therefore suffices to show that A*Y

rroof Since o¥ and é; are defined symmetrically, we will give

is always non-empty, since this set is clearly bounded below by 0.
So given o, = (0 /2) we must find.ao such that “(”o’;o)

increases monotonically to /2 in forward time. By inspection

of fyuation 3.1.3, it 1s clear that there are positive constants

cyr Gy such that .
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a(s) » -eq = ¢ a(s)

as lony as a(s) » 0. Hence if a(s) » 0 and a(s)€ =%/2 on

some interval [to,t], with u(to) = a_, we find by integrating

o
that

&(t) 2 0y = cq(t=ty) - ex/2
Therefore given any t > to’ choose &o > 0 such that the above
expression is 2(x/2 - ao)/(t - to) > 0. Hence
a(s) = (x/2 - a )/{t - t,) for all & > t_ (2s long as G
stays under x/2). Therefore by integrating againit follows
that G increuses monotonically to %/2 by time t. This proves
the lemma.

Lemma 3.2, &; and &; are strictly positive on (0, x/2).

Proof Given o & (0,n/2), suppose a, = 0. Then from

kguation 3.1.3, as gravity vanishes at %, , &(to) = 0 and
. . t ~to 2
i(t,) = sina  cos a (-2(ny + 12)/(e OC4+e 7)< o0

Hence a(t) initially decreases to some g(t,) < a Hence any

o.
function near o, will take a value < a, at tl’ without first
reaching /2. Therefore there cannot be elements 4 in A+(°o)
arbitrarily close to 0; this forces &;(ao) > 0. Similarly,

&gﬁxo) > 0. Hence the leuma.

Lenua 5.2,5Af¢b) and A (a,) are open sets for alla_e (0, x/2).
Proof As usual, itsuffices by symmetry to show A+(°o) is open.
Suppose 6‘0 € A*(ao) and a (ao,c'xo) arrives at x/2 for the first
time at time t. Thena(t) > 0. Certainly a(t) » 0, and if
a(t) = 0 anda(t) =x/2, it follows by the uniqueness theorem
for OLE's that a = x/2, which is‘a contradiction. Hence a

must increase past x/2 with positive derivative.
%e claim also that a(s) > 0 for t,< s< t. For if

a(s) = 0, a(s) < 0 follows from the equation (as gravity 1is
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positive for s > to). This would force a to decrease
past 8, which is not allowed. Finally, by (the proof of)
Lemma 3.2.4, &(to) > 0. Hence a > 0 on [to,t + €]
for some € > 0, and thus any function cl close enough to ¢
will increase monotonically to ®/2 on this interval. Therefbre
points near &O are in A+(ao), S0 A+(ao) is open.

We are now in a position to prove the first lemma of
interest in our program.
Lemma 3.2.6 For any a € (0, x/2), a(ao, &;(ao)) is strictly
increasing for t 2 t_ and is asymptotic to x/2 as t - o,
Similarly, o.(ao,&,;(o.o)) is strictly increasing for t < t_ and is
asymptotic to 0 as t = -,
Proof e give the proof for a(ao,&;) only. It suffices
to demonstrate two things: first, that d > 0 on [toﬂ”), and
second, that a < X/2 on [to,m). These together show that a
increases to some asymptotic value a_» with 0 < o < x/2. But
than as t * « , a(t), a(t) - 0, so Equation 3.1.3 tells us that
the only possible choice for'o,.Dc is x/2.

So assume that o#e or the other of the above conditions
is violatéd. Then one goes wrong first, for we have noted that
by the unigueness theorem they cannot go wrong simultaneously.
On the othep hand, neither goes wrong at t = to’ by Lemma 3.2.4.
But now if, say, a(t) = 0 for t > t, (for the first time), and

0 < a(t) < x/2, then a(t) < 0 and a decreases past t. But

+

0! there aré funétions arbitrarily ciose

by assumption that do = q
to a on [to, t + €)]which are strictly increasing or go past x/2
on this interval. This gives a contradiction.

S0 now assume that a(t) =%x/2 anda > 0 on [to.t].
This says that 6.;(0.0) € A+(°‘o)’ which is not possible since

A+(ao) is open (Lemma 3.2.5) and &.; = inf A%, Thus neither

condition can be violated on &O,w), so the lemma follows.
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A key ingredient in succeeding proofs is the following
second order comparison theorem [CL, pp. 208-211). Although
it is a theorem about linear equations, we will be able to
adapt to our use,
Theorem 3.2,7 [CL] Let Pi and g; be continuous on [a,b], 1 = 1,2,

and let ,
0 < py(t) €py(t)

g,y(t) > g (t)
Let Li be the operator _
Lyu = (piu')' + g4u

' -1
If £, is a solution of L,f, = 0, let w, = tan (fi/bifi')

i
Chen if w,(a) > wy(a), w,y(t)> w (t) for all t ela,b].
Remark The significance of the function w is that it eséentially
measures angle in the phase portrait of the solution.

The procedure for applying this theorem to our equation is
to write 3.1.3 as
(3.2.8) La = (pa')' + g0 = 0

where

Lo}
~—
ct
~
it

exp fto - h(s)ds

h(s) = (&% + ¢7%)7H((r-2)e® - (p-2)e™®)

S

sina(t) cos a(t) (&b + 7Y \A2et_kle'5)p(d

a(t)

&£
—
c+
~r

(1]

Of course, &, depends on the solution a we are interested in
comparing, so a slight amount of care will be needed to avoid
circular arguments.

A specific case where the comparison theorem 1ls needed is
Lemma 3.2.8 For any o € (0,%/2), &;(ao) is the unique initial
derivative for which we get a solution of the desired form in
forward time. More precisely, if 0 < 4 < 6;, then the associated

solution a(a ,& ) must eventually start to decrease before
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reaching ®/2. If we take o> & g, then in fact 4 e A+(ao)’
Similarly, &;(ao) gives the unique solution of the
desired form in backward time.

. [ & . +
Proof Take & < ao(ao) and let o) = a(ao. ao(ao)),

o, = a(ao,&o). Suppose we are given a time interval on which

@, # &, and both lie in (0,x/2): then as the function

sin 6cos 6/6 1s decreasing on {0,x/2], we have (in the notation

of 3.2.8) that g&_ < g on this interval. Further, at time
: 1 2

to we have 0‘1 =0, and o,i > o,é by assumption. Hence
wz(to) > wl(to) (in the notation of 3.2.7), and by the
compariéon theorem wz(t) > wl(t) on this given interval.

Suppose we add the requirement that<1i > 0 on this interval.
Then w, > W, implies 0',2/&"'2 > a.l/di which forcesa > a b

Finally, we choose [to,t] to be the maximal interval on which

all of the above conditions are satisfied (allowing perhaps
. ,
- ' ?
ai(t) = 0). But since initially B > Gos forcing o >0

to hold for a while, it is clear that what must happen first is

02(1;) = 0 (since o]'_(t) = 0 cannot occur by Lemma 3.2.6, and
other possibilities lead immediately to ccntradictions);

Hence '0'2(1;) < 0 and o, decreases past t without first
reachingx /2. Of course, there is the posaibility that the
maximal interval is [to,oo ); 1in this case, q 2(‘t:) < 'o,l(t) < x/2

and a'(t)> 0 for all t » t,. Hence a, attains an asymptotic
2

| ] ]
limit °2,oo' However, we would also havec;.l >051 BO that a3~ ay
is positive and non decreasing on [topo). This forces
a, DO<‘1C/2, which is not possible. This proves half of the
?
lemma.
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Suppose on the other hand we take 6.0 > &.;(ao). To
show that c'xo e A"’(ao), we reverse the roles in the previous
argument and set a, =o.(ao,&o), a, = a.(o.o,a;(c'xo)); i.eey aq
is the solution on top. Then the argument proceeds as before
to the point where we take the maximal interval [to,t].
Applying Lemma 3.2.t to a“,, we see that what must happen first
is o (t) = x/2, and thus C'l.o € A+(°’o)' It is also clear that

t = o cannot occur, because a4 is forced from below by a, and

a, = x/2.

Since the case of &; is symmetrical, this finishes the
lemma.

We can now continue with our program as follows:
Lemma 3.2. b.; and 6,; are continuous.

This is almost immediate from the preceding. Suppose

—’ Q+ O+ - »
aon o but ao(aon)< a,o(ao) e for some€e > 0. Let o =

Ex;(ao) - €/2. Then 3.2.8 tells us that:

a) o, ,6,0) increases monotonically tox/2 in finite

n
time for all n.

b) a(o,o, &o) will eventually decrease before reaching x/2.

However, these statements become contradictory as Gy Gy
n

The case at(a_ ) > a'@ ) +& 1is similar. Here we use
o‘%o_ o%o

again the fact that a solution which increases tox/2 will
actually go a small way beyond, with .positive derivative

throughout. (cf. Lemma 3.2.5). Hence the lemma.

) .+
Lemma 3,2,10 ao(o,o)—v 0 asa - x/2.

b.;(ao)—* 0 as ay = 0.

‘Proof This much is obvious. For example, refer to

~estimates in 3.2.3.
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For the final step in the proof, we at last make use of
assumptions 3.1l.4. The main tool is again the comparison
theorem.

Lemma 3.2.11 a;(ao) is bounded away from 0 for a_ near 0

&;(ao) is bounded away from 0 for o  near x/2.

Proof As usual, we givé a proof for &;(ao). The proof is by

contradiction, so assume there is a seqguence a, - 0 such that
n

o

h;(ao )~ 0. Hence there is also a sequence a . - 0 such that
n n

&o € A*(ao Y. We will show that for some n, the solution
n n

a(a , &0 ) eventually decreases before reaching /2.

°n n

As before, we will study solutions a of the linearized
equation 3.2.8; o will be compafed with solutions B of the
linear equation

B-m B +mB=0

where m, ,m, are constants near r - 2 and.}z; respectively, to
be determined. Observe that thiseqguation looks like 3.1.3
for iarge t. Furthermore, when mf - uﬁz < 0, a solution B
will consist of an exponential times an oscillatory term with
frequency w = (b,m2 - mi)#/2 and period 7= 2x/w. Under
.assuhptions 3.1.4 we will choose m,,m, near enough tor - 2, 12
so thut ¥ 1s no l:urger than some 2 priorid bound‘to. For
example, let't..o be twice the period associated to the numbgrs

r - 2, A, themselves.

2

The important thing for us is the fact that any solution §
will then satisfy é= 0 at some point of any interval of length to.
Using the comparison theorem, we will show that one of the

sdlutions-c(ao ’ &o ) must do likewise.
n n :
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Recall that for o we will study Equation 3.2,8; however,

write it as L0 = (p2a')' + g,0= 0

Likewise for B LlB = (plB')' + glﬁ =0

'~ where we have set pz(t) engz - h(s)ds
1

p, ()

t
exp - m,ds
Itl 1
and t, > t  is to be chosen. Here gl(t) = m, pl(t) and other

quantities are as in 3.2.8. To choose tl, define a function
A tl+16
P-(tl) = eXp tl (h(t) = h(tl))dt

Then as h(t) is increasing, “(tl) > 1 and u(tl) » 1885 t] 2 oo

Therefore choose tl 8o lurge that there is an €> 0 with the

tollowing properties:

i) if my, = h(tl)
‘ -t t -t
- 1
m, = (e 1,e l) 1()\?_e 1, Aqe )(1 -€)
then T(ml,mz) <.

1)  there is some ¢' > 0 such that (1 -)u(ty) < 1 - ¢
Now choose 6 » 0 such that 0 € o € & « sinacosu/a > 1l -¢'.

Finally, noting that a = &o = 0 forces a % 0, choose

from our original seqguence some a{a _ , a _ ) satisfying o€ O

(o] o)

_ n n
on [to,t2], wheret, = t; + T, Ve take this u to be our

solution of L2a = 0 and for B we take the solution of le =0

with initial data at tl equal to those of o at tl‘

Let us verify the hypotheses of the comparison theorem for

the interval [t;,t;]. Fort € [t.,t,], h(t)?> n(t;) = m,

so clearly p,(t) <;p1(t). To check that gz(t) > gl(t), observe
that
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£5()/p,(t)

sina(t%cosa(t! (et+e-t)-l(h et e't)
ot 2 1

t -t t -t
> (1-¢') (e 1e l)'1(7\23 l-kle l)

-ty t -t

t
> (l-e)u(tl)(e lie -l(hze
= mzu(tl)
t.+7T
= m, engti © (n(t) - h(tl)) dat

t
? m, exg[tl (h(t) - ml) dt

m, Pl(t)/Pz(t) |

g,(t)/p,(t)

Finally, in the notation of 3.2.7, we have wl(tl) = w2(t2) by
construction, so wz(t) > wl(t) for all t E.[tl’tzl'

But B has a zero on'[tl,t2], g0 by taking the first such
(at tj,say), we know that B is positive on [tl’tB],and
wl(t3) = %/2. Hence '2<t3) > x/2, and as wz(tl) < /2 by
assumption, w, takes the vulue %/2 on [tl'tjl’ That is,
a = 0 somevhere on this interval and hence by the usuel
argument must decrease. Of course, a has not already reached
%x/2 by the assumption that a was small on [tl,tzl. This gives
the contradiction we were after, and finishes the proof of

Lemma 3.2.11.

These lemmas complete the program for this section, and

together form a proof of Proposition 3.2.1.

Remark 3.2,12 In some cases the conclusion of 3.2.1 is valid
even though 3.l.4 is not satisfiled. For example, we can

always join two identity maps to get another identity map; in
this case the function a is determined explicitly. -
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Section 3, Asymptotic Behavior

In this section we estimate the behavior at « of the
exceptional solution a which 1s guaranteed by Proposition 3.2.1.
These estimates ﬁill be used in Section 4 to prove differentia-
bility of the mapping of spheres which is defined in terms of q.

Throughout this section we will use the notation

h(t) = (e + e7®)™ ((r-2)e® - (p-2)e7t)

g(t) = (et + e-t)"l(h2et - Ale't)
so that Equation 3.1.3 has the form
(3.3.1)  4(t) = h(t)a(t) - g(t) sina(t) cosa(t)
Recall also that A= £(0+p-2) ‘

Ay= k(k-r-2)

when,fand k are the degrees of the homogeneous polynomials to
be joined.

Lemma 3.3.2 Eventually a(t) < (k + 0(e'2t)) cosa(t)

Remark 3.3.3 Such a statement will mean that there is a ty

suitably large and a function O(e'Zt) defined for t > t, such

that the above holds for all t > t;. By 0(e'2t) we mean
simply that |e%® 0(e”2%)| is boundea.
Proof Choose t; > t, such that a(t;) » x/4 and such that h(t,)
and g(tl) are close to their asymptotic values of r - 2 and A,
respectively. For t > t, let k(t) be the solution near k of
the equation ' |

(k(k+r-2) - k(t)?)/k(t) = h(t) = (r-2) - 0(e”2%)
One can easily check that k(t) < k + 0(e'2t). We propose
to show that

a(t) € k(t) cosa(t) Vit

Given any such t, the idea is to compare a with the

solution B of the first order problem
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k(t) cos B(s)
o(t)

(*)  B(s)
B(t)

It is clear that B is monotone asymptotic to %/2 as s —o

For s 2t we can also estimate

E(s)

- kz(t) sinp(s) cosfi(s)

(Az - kz(t))sinﬁ(s) cosfB(s) -Azsina(s)cosﬁ(s)

M=k (t) sinf(s) B(s) - A,81inp(s) cosB(s)
T k(t)

h(t) sinB(s)é(s) -\, sinp(s) cosp(s)
h(s)é(s) -lzsinﬁ(s)cosﬁ(s)

A

Now suppose that a(t)> B (t) = k(t)cosa(t). Then by the above

a(t)> F(t). Hence let t,> t be the first time past t

2

for which we have u(t2)=B(t2).&(t2)=é(t2), or 3(t2)=§(t2).But if
S >B and a>f on [t,tz), with a(t) = p(t), then certainly
&(£2)> 8 (t2) and a(tg) > B(tz). Hence the only possibility
18 4(t,) = B(t,).

lHowever, we assumed a(tl) 2 =/4; hence a(t2)> Bgtz) > /by
forcing sinaoosa < sinp casf at t2. Applying this with our
estimate on B shows that B(tz) = H(tz) is impossible also.
Hence t, = o, and & - B is non-decreasing on [t,.:). But this
is a contradiction, as a(t)> B (t), and both & and $ must tend
to 0 as t - oo,

Hence we must have ¢(t) < k(t)cosa(t) VYt » t,, which
proves the lemma. |
Lemma 3.3.4 Eventually a(t) » (k-o(e'Zt))sina(t)cosa(t)
Proof .Choose t, as before and this time let k(t) be the solution
near k of .

(g(t) - k(t)%)/k(t) = r-2

where recall g(t) = k(k+r-2) - o(e'Zt)



It follows that  k(t) > k - 0(e™2%)
Let us show ' a(t) > k(t)cosa(t)sina(t) Vi, ty.

The method 1is comparison with the solution g of
(#*)  B(s) = k(t) cosp(s)sins(s)
B(t) = a(t)
Note that B is monotone asymptotic to x/2 as t -+ . Also
| E(s) kz(t)(coszﬁ(s) - sinzﬁ(s))cosﬁ(s)sinﬁ(s)
2 ek2(t)cosﬁ(s)sin6(s)
=6(s) (8(t) - k%(£))/k(t) - g(t)cosp(s)sing(s)
= (r-2)B(s) - g(t)cosp(s)sinp(s)
> n(s)B(s) - g(s)cosp(s)sinp(s)
From this point an argumeni quite parallel to that in Lemma

3.3.2 finishes the proof..

—28)
14

If we set k (s) = k - 0O(e then we have shown

o (s) 2 k™ (s) sinu(s)cosa(s)

> k (t) sina(s)cosa(s)
for all s > t > t;. Hence o lies above the solution of (**)
for s 2 t. This gives
cosa(s) < cosp(s) Vet
But (**) has an explicit solution, namely
tanp(s) = tana(t) exp(k (t)(s-t))
Hence there is a constant b, > 0 such that for all s > t
cosP(s) < btexp(-k_(t)s)
This gives (3.3.5) cosa(s) € btexp(-kf(t)s)
for all s > t.
Similarly we have from Lemma 3.3.2, with k*(t) = k + 0(e™°%)
o(s) < k¥(s)cosa(s)s k*(t)cosa(s)
for all & > t » t;. Heuce o lies under the solution of (*),
for s # t, giving

cosa(s) 2 cosf(s)
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The explicit solution of (*) is
secB(s) + tunB(s) = (seca(t) + tana(t)) exp(k*(t)(s-t))

hence cosB(s)» exp (—k+(t)s)

Ct

and (3.3.6) cosa(s) > exp (-k*(t)s)

¢
for all s 2 t. Unfortunately estimates 3.3.5 - 6 are not

guite good enough, so we refine them further:

Lemma 3.3,7 Eventually cle_kt € cosa(t) < c e

Proof DbLefine f(t) = cosa(t). To get the second half of

-kt

the inequality, note first that

f = -sina G
€ -sina k sinacosa (3.3.4)
= ~(1-£2)k7F
< —(1-P)k™F = -k°f + k22

Then if k-(tl) is reasonably close to k, we can use (3.3.5) to

write

cosza(t) < pleTHKY Vio> ty

where u> 1. Hence

F(t) < -kT(£)£(t) + c eTHET

Therefore by a trivial first order comparison theorem it
suffices to estimate a solution of

%(t) = -k (t)f(t) + coe-“kt
given some initial value at tl‘ A solution of the homogeneous

part wiil take the form

£,(t) = ' exp(-f k" (s)as)

= o' exp(-kt) exp(fz O(e'zs)ds)

€ ¢ e

A particular solution of the inhomogeneous eguation will look like:

fI(t) fH(t)j;t exp(ji k™ (x)ax) exp(-uks)ds

A

1
N0 A
tl

N

br (t)
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since as u> 1 the integral is uniformly bounded. Hence
the general solution to such an equation will verify an
inegquality of the desired type.

For the other half of the inequality, we find similarly
from 3.3.2 that

f > -sina k'f 2 -K'f

The desired conclusion is immediate. This finishes the lemma,

By a similar procedure we can analyze the behavior of g
near t = =oc The results are
Lenma 3.3,8 a) Eventually a(t) < (f+ O(ezt))sina(t)
b) hventually a(t) 2 (f- 0(e2t))sina(t)cqsa(t)

c) Eventually blém < sina(t) < bzett

Section 4. Lerivative hstimates
Having obtained our function o, we want to use it to
define a harmonic mapping of spheres. The formula was
(f * &)(x,0) = (sin «t) £(x/|x|), cosa(t) e(yv/Ivl]))

with t = log (Ix|/1yl)

i

Sinece o.(t) traverses (0,8/2) nmonotonically with the correct

limits at t = ¥ «, we can conclude that £ * g : IRPH\(O)”SQ*B']"
is continuous and that the restriction to Sp+r-l represents
the join of the original maps f and g. Moreover, £ * g is
smooth away from the planes x = 0 and y = 0. *hat we show

ih this section is

Proposition 3.ii.1 The first and second partial derivatives

of £ * g extend to continuous functions on IRP*T \ (0).
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Coroilary 3.4.2 f * p is of class C2 on IRP*Y _ (0).

b.p+r-1 - b.q+s—l

Corolla LI £ * g|5p+r-1 : is analytie

and harmonic.

The deduction of 3.4.2 from 3.4.1 is elementary and
standard. Corollary 3.4.2 then tells us that f * g|sP*F-1
is C2. But by construction this map is harmonic on the dense
set (x Z 0, y £ 0). As the tension field is continuous
everywhere, 1t must therefore be zero everywhere, Thus

£ * g lis a Ca harmonic map of analytic Riemannian manifolas

and hence 1is analytic [ES].

Let us verify the proposition for the function H defined

by :
H(x,y) = sino(t) £(x/|x|)

vhen studying derivatives of H near possible problem points,

we treat two cases:

Case 1 X near 0, y bounded away from 0
Case II y near 0, x bounded away from 0

Case I1: Break cown -H as follows

H(x,5) = RZ(x,y) £(x)
K(x,y) = sinZa(t)/|x|4

Here we use the homogeneity of f to write f(x/|x|) = £f(x)/l|x

il

QO

Furthermore put

R=pr°p
where P(x,/) = (|X|29IYI2) z (u,v)
and : r(u,v) = sin® &} log(w/v))/ul

Ve now estimate successively the derivatives of r,R, and H.
Lemma .. L For u near 0 and v bounded away from 0, all first
and second derivatives of r are uniformly bounded except

#v/ a2, which is at worst 0(1/u).

Proof e will assume throughout that the ratio u/v is small
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enough that Lemma 3.3.8 applies. To convert the latter
estimates (in terms of t, the argument of a) to estimates

in terms of u/v, we will use the relation

ezt = w/v
Now compute %ﬁ = Sina(cosa a -‘[Sina)/u!+l
“'e 01aim ‘COSCL C.L— lsin QI = O(e(!+2)t)

Certainly from 3.3.6 it is immediate that

sin a = O(ept)
a = o(ef®)
Hence lecost = 1 = (1 = sinal)t

< sina= g(eH?)

Therefore cos & in the above expression may be replaced by
G with error (l-cosd)® = O(ejﬂt). As f 21, this is permissible.

Now apply 3.3.8 (a) - (b) together to find

&—,Isin al € sinalf + 0(e2t) - cos a(f - 0(e2t))l

= fsinall - cosa| + Ol(e(ﬂ+2)t)

‘0<eW+ﬂt)

Hence

oo
D‘I"ﬁ

- 0(62(f+l)t)/u(+l = 0(1)

Now consider

>3 = [sina(-sina a2 4 cosa'cl-jcos 4 a)

+ (cos 0.0~ 2(f+ 1)sim )(cosa a- ,(fsino,)]/Zup+2

Fr

Our object is 55 = 0(1/u). The above estimates apply to the
u .

second term to give such a bound. In the first term we have

. L2 22
the expression sin™a «

= 0(u 2‘l), so its contribution is again
satisfactory. For the reinainder, substitute for o from the

differential equation 3.3,1:

d = ~(p-2)2 + llsin o+ O(e(ﬂ+2)t)
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The error is negligible for our purposes, so we have left to
study
15 -gsl > |e(e+p - 2) sino - (L +p ~ 2) |
But as above, |a -gsinu| = O(e(”+2)t), s0 we are done.
A few more similar calculations suffice to finish the
lemma.
We now estimate derivatives of K for x near 0 and y

vounded away from Q.

2
Lemma 3.4.5 a) As x = 0, g%— and E%ﬁgy— -+ 0, while other
: i 177

first and second derivatives remain bounded.

b) Similarly for R%.

c) R? and its first y-derivatives extend to
continuous functions for x = 0, y £ 0.

Proof a) R(x,v) = r °p(x,y), where p(x,y) = (|x]|%, Iy|?).

Hence OR _ or ox
5xi = ou ° i
2 2
O°R __  _ 9
Bxiayj = dudv ¢ uiji
2 2
0°R or or

The desired conclusions are immediate from Lemma 3.4.2.
b) It suffices to show that R? is bounded away from 0

as x ~* 0, with y bounded away from 0. But by Lemma 3.3.8 (c),

R% = sina(t)/lxlg
1 eft /‘XIP = bl/'ylf

c) By Lemma 3.4.2 we see that the differentials of r and

2 Db

0 A
_3$ are uniformly bounded for u near (0 and v bounded away from 0.

Hence both these functions extend to functions which are

locally Lipschitz on the set (u® 0, v> 0). Therefore the



conclusion of (c¢) holds for R, and hence for R-,

It is now easy enough to finish Case I:

Y )
Lemnma j.q.h H exteads to a C” function for y £ 0.

Proof H(x,y) = R¥(x,y) £(x)
By homogeneity, £(0) = 0. Hence

OH _ 9R- F 2f
dxi - dxi r+K axi

is continuous at x = 0 by Leimma 3.4.3. Also,

2 2 2 B é ‘e % e ¢ 2
gxnax = gxhax r+ Si éi + gi ;; + R® axfax
1775 i°7; i J J i b R

which is again continuous at x = 0 by 3.4.3, since the first

three terms are 0. Other derivatives are treated similarly.

Cuse II For x bounded away from 0 we can clearly forget about
f and concentrate on

R(x,y) = sina(log(lx|/lyl)
As usuul let R = r ° p (where p 1s as before) and
r(u,v) = sina(slog(w/v)). Ve now rely on Lemmas3.3.2, 3.3.4,
and 3.3.7. Note first that ar/du = cosu &/2u tends to 0

as v = 0. Similarly for adr/auz. Furthermore,

2
o r v i)
sy = ~(cos a a- sing a“)/buv
= 0(e™ Y /v = o(2)
f) .
. OR SR &R
Hence immediately 5}; ’ oxiaxj ’ Oxf3yj .all tend to zero

as y - 0. Suppose we could also show that gr/ov and ozr/av2

were bounded. Then or/dv would extend to a continuous function,

showing that

and Ok =0 r . uyiy, + or o5
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is continuous at y = 0. In other words, this would finish
Cuse 1I,

But or/dv = -cosu &/zv is clearly bounded, and

321'/¢3v2 = (cosa & - sina az)/hvz
' O(C—th)/VQ

]

= 0(vE2)
is bounded if k # 2. However, if k = 1 we can write
d = (r-2)a - (r-1) cosa + 0(e™>%)

which is a bounded error when multiplied by cos a. Hence

we consider

2 2

costt g - sina a4 ® cos a((r-2)a -(r-l)cosa)-sin o aQ
¥ cosad - sina a2
by Lemmas 3.3.2 and 3.3.4. Here ® means an error O(e"ut) has
been dropped. Finally, since 1 - sing = 0(e'2t), the entire
remainder is O(e'ut). Therefore 3°1/dv°> is bounded if k = 1.
Thas fainishes Case II. The differentiability of the
second coordinate of f * g is handled‘similarly. This
concludes the proof of Proposition 3.4.1, and therefore

establishes Theorem 3.1.1.

Remark 3.4. Having worked this hard to prove regularity, one
might well ask if there is not a more general regularity
principle. I do not know ény smoothness theorem which
applies, but perhaps it might be possible in the setting of

equivariant maps to prove a companion piece to Theorem 1.3.5.
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Section 5. The First Suspension

Although the first suspension of a harmonic polynomial
map is the same thing as joining to the identity on S°, the
parametization one achieves in this way is not the natural
symmetric one. Therefore we present this case separately.
The benefits to be gained are not merely aesthetic, however;
symmetry greatly simplifies the existence proof and will
allow it to be extended to cover some mappings of ellipsoide
in Chapter 4.

Therefore sﬁppose I: Sp-l - Sq"1 is a harmonic polynomial
map of homogeneity £, We will look for a harmonic representa-
tive of the suspension of f in the form

5f ¢ 8P o st
(3.5.1) (x,5) - (sina(t)£(x/|x]), cosa(t))

(k,y) ek x IR

t =1log (|x|/r + y¥) & (~aueo)

r= (|x|2 + g2t
It is readily verified that t(x,y) = =-t(x,-y). A moment's
computation also ylelds

at/a'xi yxi/f*lxl2

ot/oy -1/r

As 3f is invariant under radial dilation, the spherical and

il

Euclidean Laplacians coincide on f; the calculation of the

latter proceeds as in Section 1, with the result

(3.5.2)a(sinaf) = (cosq f- sing 4° - (p-2’)t'.z,a,‘:mrx(t)c«::tﬁlo.én--ks:lncn)f/|’d2
A(cosa) = (-sina¥¥-cosa;a?+-(p-2)tanh(t)sina d)/|x|2
with A = p(@+p-2)

The condition that 3f be harmonic is determined as in Section 1;
it is

(3.5.3) _ a(t) - (p-2) tanh(t)a(t) - xaim(t) cosa(t) = 0
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Our object is clearly to find a monotone solution g such that
o,m=7:and @ = 0. By symmetry, it sﬁffices to set |
a{0) = x/2 and @(0) = inf A*(0), where A*(0) is the collection
~of initial derivatives which are "too large". If the damping
condition is satisfied, it follows as in Lemma 3.2.11 that
a(o) > 0. Then the same reasoning as in Lemma 3.2.6 shows -
-that the associaied solution o satisfies e, = % wé can then
use the symmetry of the equation to deduce a_ = 0.
) The only possible problem arises in proving the regularity
of 2f. The procedure is entirely analogous to that in |
Sections % and L4, however. By symmetry; it furthermore
suffices to prove smoothness at x = O, y = 1. This avolds
puzzling over'What happens at y = -1, where the function t
looks peculisar. The required calculations are naturally

guite lengthy, and are omitted.

Section 6. Applications

In this sectioh we list the examples of essential harmonic
maps between spheres which can be obtained from Theorem }.1.1.
That these maps are naturally equivariantlis also illﬁstrated
in a particular cése, for which the'equivariant tension'équation
is computed and shown to be equivalent to the original
Equation 3.1.3. 'Some further applications to homotopy groups

of Lie groups are indicated.
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It is first helpful to have
List 3.6.1 The presently known essential homogeneous harmonic
polynomial mappings of spheres are

a) the isometries, of degree 1.

b) dk : Sl - Sl, the complex polynomial z - zk of degree
| | Ik].
¢) the Hopf fibrations h : S° - 82
n: S7 - Su
o Sls—r S8

which are all of homogeneity 2.

The Hopf maps were shown to be harmonic in Example 2.l1.2. We
will also need.,

Lemma 3.6,2, The Hopf maps are harmoniec fibrations.

Proof As the fibres are all geodesic spheres, it suffices

to check the Riemannian condition. This can be verified
from the formulae, but in the case of the Cayley numbers the
calculations required are long and tricky.

Eells has pointed out to me, however, that the bundle o
méy be characterized alternatively as

Spin(8)/spin(7) - spin(9)/Spin(7) -+ Spin(9)/8pin(8) .
87 - 815 - 88
-which is homogeneous and evidently Riemannian. Similar
descriptions of h and n can easily be given (cf. Example B.CJH).
These remarks for us will constitute a probf of the Lemma.,

It should be noted, however, that with the usual Euclidean
metrics on the spheres these maps are "twice'" Riemannian; i.e.,
horizontal vectors get their lengths multiplied by 2.

In this context we also mention some nice polynomial
maps which are not harmonic
Example 3.6, Let £: 87 - 5 be defined in terms of

‘quaternions by f£(q) = q2. Then f is pot harmonic, for in
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coordinates

£(x) = (x5 - xg - x§ - xﬁ, F(x))

where F 1s a second order homogeneous harmonic bolynomial.
Hence Af = (=4,0) and we can apply Lemma 2.2.9.

This 1s also an example of a more general fact: 1if G
is a non-abelian Lie group and fl’fz ¢t M- @& are harmonic
maps, we cannot expect that thevproduct flf2 ¢t M- QG is
hafmonic. Of course, if G is abelian, then multiplication
TR ¢ x G - @G will be totally geodesic, and thus flf2 will be
harmonic. | '

This example furthermore indicates that the polynomial

. SZn—l 2n-1

maps of degree k : -+ 8 constructed by R.Wood [wb]

are unlikely to be harmonic: the function above is his

starting point.

Now for some harmonic maps.

Example 3.6,4 It is well known that x (8") = Z and that

the classes correspond to suspensions of dk: S1 - Sl. Hence

by Corollary 3.1.2 we f£ind that ﬂn(Sn) is representable for
n = 1,.-.97.

We remark that for n = 2 our construction gives the

k

map 2z v zX on the Riemann sphere; this example also appears in

(Es].
Example 3,6.5. Recall that 13(82) = Z, generated by the Hopf

map h. Maps 53 - sz are thus classified by their Hopf invariant.

Let fk: 82 - 82

known that f

be our harmonic map of degree k; then it 1s
k ° h has Hopf invariant x° (see Husemoller([HU,p.193])}
This map 1s harmonic by Lemma 1.2.2, By similar compositions

with -h we obtain representatives for all elements of Hopf

invariant ¥x2,
Composition from the other direction in an attempt to get a

harmonic map of Hopf invarliant k does not work; 1i.e. given one
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of our harmonic fk: S3 - 83, the composition h ® fk is not
harmonic. In fact, our direct construction methods (applied
now to the Hopf construction rather than the join) will always
fail to give the general element of KB(S )¢ The reason

for this is found in Section 7.

Exampl Ceb ﬂn+l(sn) = Z, fof n » 3, generated by the
iterated suspension of h, By Corollary 3.1.2 we obtain

a harmonic generator for this group for n = 3, ...,8. (For
the homotopy theory, the genersal reference is Toda {T].)

Note that by a theorem of R. Wood, all polynomial maps
of s* to S° are constant [(WL]. Hence it is certainly
necessary to move to the transcendental domain to find a
harmonic representation of xu(sj).

Example 3.6.7 x7(85) = Z,, generated by 33 o zuh [T].
However,'the latter map is homotopic to h * h [T, p.25].
Hence this generator is harmonically represented by Theorem
3.1.1.

Example 5.6;8 N(bu) = 2@ le, with 2 generated by n.

We have harmonic maps of every degree fk : Su-* sh hence

L has Hopf invariant k2

fk-° n: s/~ s and is harmonic.
Example 3.6.9 % . 3(b ) = Zy, for n> 5, generated by
suspensions of 7. We have a harmonic representative of that
generator far n = 5,...,10, In fact, by taking

no* 4, 3% o ZBdk one obtains all elements ofx9(86).

Since xll(87) = 0,n* h = 0, However, n * n generates

s%) = 3,.

Example 3,6.,10 Let Zh: st s ve the essential harmonic
map of Example 3.6.6., Then 2h °mn=1 in 1\:7(83) = 22,. and is
harmonic by Lemma 1.2.2. We remark that this group is not
gable, and is the only such group we can represent completely.

Another essential harmonic composition is 3n °0: sd. 85
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Unfortunately we cannot make harmonic suspensions of o
by the method of this chapter on account of the dimension
restrictions in Theorem 3.1l.l. However, we will see in
the next chapter that such a suspensioh can be done if the
receiving sphere is given an ellipsoidal metric.

‘e promised in Chapter 1, Section 3 to show how the
above constructions can be given a natural equivariant
iuterpretation. Let ue illustrate this in a particular case.

kxampie 3.6,11 The join mn = 4y ¢ sJ o 86

this way: let 5° = sl # Sl and SO = Su * Sl. Then

‘may be thought of in

sp(2) x st scte by isometries on both spaces with a one-
parameter orbit space [0,r/2] in each case. In fact, since
n sl st 1s just '

n : 8p(2)/5p(1) -+ 8p(2)/sp(1) x Sp(1)
the map n * dk'is clearly equivarient with respect to the

homomorphism

P = idSp(z) b dK
of $p(2) x S' onto itself. Applying Lemma 1.3.3. we see that
the conditio.s of Theorem 1,3.5 are satisfied. - Therefore
our map is harmonic iff the orbit map f : [0, x/2 ]= [ 0,%/2 ]
satisfies the eguivariant tension eguation (1.3.0).

To calculate (1.3.6) we need to know the volume function V
and the orbit-energy function 7. Firstly, note that the orbit
corresponding to 6 in g7 is just 87(sin6) x Sl(cose), 80 that

Ve) = ¢ sin7(6)cose .
It 1s clear thaty breaks up as 1(dk) + ¥(7m) in a natural way.
Furthermore, it is obvious that

¥ (4,)(8,F(9)) = k2

cosz'i"(e )/c:os2 )

As for y(n), note that as 7: sl Sh is twice a Riemannian

fibration, Idfiza lo. Hence
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v(n) (e,E(8)) = 16 sinzf(e)/sinze

Taking the gradient with respect to the second argument in ¥y
then gives

: graqF v(8:£(8)) = sin T(0) cos T(9) (16 csczb—kzsecéﬁ)

Equation (l.3.6) now looks like

2

(9 + F'(0)(7 cotd -tanb)+ sin £(8) cos F(0) (k%sec?9 -16¢sc? ) =0

If one now puts t = log tan® and oft) = F(9) we get
wt) + (e + e B (e td(t) + sina(t)cosa(t)(k%e® - 16 e7¥))=0

which is exactly (3.1.3) in this case.

Another nice set of applications comes when we look at
homotopy groups of certain Lie groups. Although we cannot
expect to ekponentiate or multiply harmonic maps, as noted in
Exanple 3.6.3, another approach is availlable. Ir £:8"- @
is a totally peodesic generator for Km(G) anu we have hurmonic
representatives hk of ﬂm(Sm), then conpositions f ° hk are

harmonic representutives of the subgroup generated b, f.

Example 3.t:,12 The geodesic inclusion of sJ in sp(m) or in
sU(n), n > 2, generates ﬁz of these groups, which is Z in eaéh
case [HU, p.9Y3 J. Hence there are harmonic representatives of
wB(Sp(m)) and wB(SU(m)) vm.

The Riemannian covering« : s - S0(3) generates js(sO(})):Z,
hence this group is represented. By including S0(3) in S0(4)
we also get one Z component of wj(so(u)) =24 Z., The other
factor is ziven by the inclusion of 83, which acts on IRh by
quaternionic multiplication. Hence the subgroups &k,u)i and
(0,3)} are represented harmonically. Although we can add
such elements b, nultiplying representatives in the group, the

result is not harmonic.
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mxample 3.,6.13 ﬂ5(80(u)) = Z 1s generated by the charucteristic
map of the principal S0(6) bundle w: s50(7) - g [s]. It is
not hard to see fron Steenrod's description of the map (and
comp.rison with some calculations in Husemoller [HU,p. 86 £f})
that the characteristic map &: 55 -+ 80(0) is in fact dmost the
pgeodesic symmetry mapping. That is, up to multiplication by

a constant transformation, £(x) is the unique isometry which
reverses the geodesics through x. It is a general property
of symmetric spaces that the an.logous map £:3/K » G is totally
geodesic. (For'example, this can be eagily seen from the
explicit description of £ avuilable in Helgsson [HE]). e

conclude that x5(80(6)) is represented by harmonic maps.

Remark 3.6.14 The general problem of realizing homotopy

groups of symmetric spaces by geodesic spheres has been
studied by A.FomenkoiF]. By combining his work with ours
a number of additionzl examples can be added to this

collection.,

S0 far we huve devoted our efforts to stuaying the join

of two harmonic polynowial maps. It 1s reusonable to ask what
other topological constructions can be treated in a similar
manner, and the answer seéms to be "very few". TFor example,

the reduced join and Whitehead product offer little hope of
smooth, harmonic, one-parameter’representjtion. lHiowever, the
Hopf construction uoes offer some hope, as well as an interesting
obstacle: this barrier may be interpreted physically as non-
conservation of energy in a vuriable gravity system.(Proposition

3.7.6).
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Recall that if we are given a map F : P s - 84,

the liopf construction applied to F vields a uap

. b,p+r—l u+l

H( ) -+ S which may be defined by

(oy) = (xlZ-1312, 2lxlly| #(15r o 741)
for (x,y) e RP x RY.  Now suppose that in each variable
separately F is a homogeneous harmoniec polynomial, of
homogeneity k in y and ¢ in x. Then we look for a harmonic

representative of H(F) in the form
(x,5) » (cosa(t), sina(t) F(x/|x|, ¥/lyl]))

where t = log(|x|/|yl) @s usual. The function g should now
run from 0 to =®. By performing a calculation like that in

Section 1, one sees that the equation g must satisfy is

1 -t

tfe-t

+x2et)sina cosq,

(3.7.1) G= (((p-2)e® - (r-2)e™")is+ (ape

€

Ay o= L(f+p-2)

A k(k+r=-2)

2

i

Note that the difference between this equation and (3.1.3) is
thaf the gravity slways has the same sign. As we shall see,
this makes 1ife more difficult. The most general theorem we

can state is: ‘

Theorem 3.7.2 Suppose F : s¥1 « 1, % 1 a harmonic
polynomizl of homogeneity k in each variable sepurately, with

k > r-2) satisfied. Then there is a harmonic representative
of H(F).

Proof Under these assumptions we can find a solution of (3.7.1)
which satisfies o =%/2, a = % a__ =0, For in this case

(3.7.1) becomes
(3.7.3) @ = (r-2)tanh(t)ae + Asina cosq



As we «id in section 5, note that if a is a solution with
«0) = %/2; then a(t) + a(-t) = ®. It therefore suffices
to find an initial derivative do for which o = =, The

oo

usual arguments finish the proof,

Reliark 3¢/l Unfortunately this theorem woes not produce

any new examples of essential harmonic maps. The only good

candidate for F is I : sl X Sl* Sl given by (z,mw) - zkwk.

Then H(F): 59 =+ $2 nas Hopt 1nvariant'k2, and we easily check

that we have simply reproduced our previous Example 3.0.5.
rather more interesting is the fact that these methods can

be proved to fail in the most important case. Namely, let

F : skstost be the mop (z,w) - 2w witn ] # k. DNote that

(F) : 52 + 32 has liopf invariant kf. The relevant equation

is

' " 2t 2 =t
(3.7.5) = (et e gim cose
e + €

Proposition 3.7.¢ Ir k2 #J(Q, then there is no solution «a

of the sbove equation with a =% and a__ = 0.
Proof Ihe physical reasoning is this: suppose k2 <,12 and

write

a = £(t) sina cosa

where £(t) > 0 ana is strietly cecreasing. Suppose a(to) = x/2
and d(to) is just large enough that qnz'n. Then as gravity

is stronger for t < to than 1t 1is for t > to’ the kinetic

energy at time t_ will not be sufficient (in backward time) to
enable @ to reach 0. A picture of this situation (with &= 2¢)
is given below. The function d must run out of steam at some
time t < to, and then continue to make bounded osclllations for

all time less than t.



a(t) > o0
3(t) =0

&(tc) = K

é(to) > 0

The energy estimates required to give a precise prbof
of these statements are well known to physicists and dynamical
systems personnel and will not be reproauced here. Therefore
we have shown that some elements of x3(82) definitely cannot
be harmonically représented by our methods. Hence the
existence or non-existence of a harmonic map of Hopf invariant

2 is for us the nost interesting unsolved guestion of this

type.
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Chapter Q

MAPPINGS OF ELLIPSOIDS AND TORI

In geométry, an ellipsoid and a sphere are two entirely
different animals, It is therefore not surprising that even
the simplest ellipsoidal perturbation of the usual
spherical metric preduces intereating complications for our
methods. We first study maps of ellipsoids into spheres and
discover that the situation 1s substantially messier but
essentially unchanged from Chapter III. A map of a sphere
into an ellipéoid, however, poses some new problems altogether.
The only case we can study effectively is that of the first
suspension. It turns out here that it is a positive advantage
to map into a short, fat ellipsoid, whereas for maps into
long, thin ellipsoids we are led to a non-existence theorem
in dimensions » 3. FPinally, we observe that all ellipsolds
of revolution in IR3 are conformally equivalent to Sz.

Some examples of harmonic maps of torl are also included
because a) they succumb to ordinary differential eguation

methods, and b) their geometric behavior is instructive.

Section | a f Ellipsoids into 8
Liost ellipsoids we consider will have the form
E={(xy) eR x R* = R™ : blx]? + |y|% = 1
where b is some positive constant. The first thing we need
to know is how to compute the Laplacian of a function defined
on k. More specifically, if f is defined on IRM and i: E - IR"

is the inclusion
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T(f ° 1)

(4.1.1) -AE(flg)

Trace Vdar(di,di) + afr(%(i))
T(r) = 02g/0m% 4 ar(T(1))

where 9/dm denotes normal differentiation. The term 7(f)
is just the Euclidean Laplacian of f, and 7(1i) is the mean
normal curvature of the embedding i. For a sphere of
dimension n - 1 it i1s well known that this vector is always
an lnward normal vector of length n-1. For an ellipsoid of
the above tyﬁe, the normal direction is given by m = (bx,y).
Furthermore '
Lemma 4.,1,2 The mean normal curvature of E at (x,y) is an
inward normal vector of length
L= b/(0fxl% 4 1y13) ¢ (r - 1) +b(p - 1)

All that we actually use 1s that the obvious fact that the
mean curvature is a smooth normal field on E, so the proof
of the lemma is omitted.

Now suppose that we are given two harmonic polynomial

r-1, 81 Tne procedure will

maps £: SP™L » 5971 gpng g: s
be to join f and g so that the domain is an ellipsoid of
the type discussed above and so that the resulting map is
harmonic. Of course, the pair (x,y) in the definition of E
will correspond to the domains of f and g.

The derivation of the eguation for the join parameter
a(t) proceeds in a fashion entirely analogous to that in Section
1, Chapter 3. There is, however, an additional complication
arising from the fact that the map £ * g defined on R® is of
course not constant in directions nofmal to E; hence all
terms in (4.1.1) contribute. At any rate, the net result it
(4.1.3)  8(t) - h(t)a(t) + g(t) sina(t) cosa(t) = 0

where h and g behave more or less as before:
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Qm = -2

h__ = -(p-2)

g, = k(k+r-2)
g = ~¢+p-2)

Furthermore, |h(t) - le = O(e—Zt) and so forth. Finally,
there is a unigue t_ with g(to) = 0 and 0g/dt > 0 at ty.
With this information we can prove

Theorem 4.1 Let £: sP~1 =+ 8971 gng g ; g1 - g8-1

be
harmonic polynomials of homogeneity ¢ and k, respectively.

For any b » 0 let E be the ellipsoid

E = {(x,y)e RP x W' : blxl2 + |y|2 =1}

If the damping conditions are satisfied (a2s in Theorem 3.1.1),
there is a harmonic representati?e of the join of f and g
with domain E
| f*g:E > ga+s-l
Proof As before, our problem is to study solutions of (L.1.3).
The only obstacle to blanket application of the arguments in
Sections 2,3,4 of Chapter 3 1s that the functions h and g may
not be monotonic. Let us outline the few modifications which
must be made in our formér proof at each stuage.
A) Existence In Lemma 3.2.11 we used the monotonicity of h
to say h(tl) < h(t) for all t » t,. However, if we are
considering the behavior of solutions on [tl,m) for large t;,
we can always define
h™(t) = inf fh(s) : s8> ‘t}‘

-2t),  Substituting

It follows thut |h™(t) - h“J = 0(e
n‘(tl) and g'(tl) for h(tl) and g(t;) in Lemma 3.2.11, we see

that the proof now goes through.

B) Asymptotig¢ behavior For large t also define
h*(t) = sup ! h(s) : 8 » t}
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and similarly for g*(t). For such t we let k*(t) and k™ (t)
be the solutions of

(g"(t) - k*(£)%)/K*(t) = n7(¢)

(87(t) - k7(£)2)/K7(t) = n*(t)
respectively. Then kt(t) <€ k + O(e-Zt) and is decreasing,

whereas k (t) » k - O(e-2t) and is increasing. The lemmas
we need are now proved essentially as before.
C) Regularity. Given the usual asymptotic estimates the proof

proceeds as before,

Section 2, Meps of Ellipsoids into Ellipsolds

As all our examples have to 4o with suspensions, let us

choose some terminology: .

Definition 4.2,1 If £: 8P™1 » 891 i5 a map, then a

one-parameter sugpensiop of f is a map If of the form
sp s P o g4

(cos® x, 8in6) = (coea(8) £(x), sina(6))
for continuous a: [-x/2,x/2] » [-x/2,%x/2] preserving end
points. ‘

The ellipsoids we study will naturally be compatible with

the program of suspension:

Defipition 4,2.2 For ény b > 0, let
E'(b) = {(x,y)€ R® xR : b|x|? + |y]? = b}

It should thus be clear what we mean by a one-parameter
suspension 2f: sP - E9(b). Note also that Ea(b) is a typiecal
ellipsold of revolution 1an3 « The following theorems
illustrate a substantial difference between dimension 2 and

dimensions » 3.



82

Theo 2 Any two ellipsoids of reveolution E1 and E2 in
]R-3 are conformally equivalent. In particular the induced
complex structure on either is the same as that of 82. Hence
for each k there is a harmonic map of degree k : E1 -»E2

which is a one parameter suspension of z - zk on Sl.
Theorem L4,2,4 Let I : 8% 1 , 8P pe the identity. Them
for lurge b and n » 3 there is no harmonic one-parameter

suspension 3I: S® 4 E™(b).

Theorem 2 For n € 6 there is always a harmonic one-

parameter diffeomorphism 3I : E®(b) - s®.

Theorem L4.2.4 is that-mentioned in the Introduction,
and is the basis for our conjecture that there is no harmonic
map of degree one in these cases, Putting 4.2.4 and 4.2.5
together we find that we have produced a collection of
harmonic diffeomorphisms whose inverses are certainly not
harmonic. These are the only harmonic diffeomorphisms I
know which have this property.

Before giving proofs of these results, let us first
derive the basic equation to be studied: if f£: s™1 _ g3-1
is a harmonic polynomial map of degree 1, a one-parameter

n

suspension 2f : 8 -+Eq(b) can be assumed to have the form

(x,¥) » (cosa(t) £(x/|x|), ¥B sing(t))
with t = log (Ix|/y + 1)

As in Section 3.5 we find for the Euclidean Laplacians

A(coea f) = (-sim a -cosa a2 - (n¥2)y sing - xcosa)f/lxl2

A(Vb sim) = (cosa a -sima a2 + (n=2)y cosa.)\/'E/lxI2
Since the normal to Eq(b) at the image point is spanned by
n = (vb cosa f, sina), the requirement that A(3f) be proportioned

to nn becomes
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.2
(L.2.6) o - (n-2) tanh(t)g - (Lb;;%.g.)_:L) sing cosg = 0

where o(a) = beos®q + sin’q

A= {({+n=2)

Note the appearance of a term involving &2. The grouping

in the last term of the equation ls the natural and convenient
one: the entire quantity in parentheses will often be thought

of as a perturbation of the eigenvalue A.

Proof of 2. We will demonstrate that any ellipsoid of
revolution E is conformally equivalent to the Euclidean spherd

82 by a one-parameter stretching

(x,¥) = (cosa(t) x/|x|, vd sina(t))
Such a map will be a holomorphic equivalence of 82 and E.

2 can be represented by

Further, we know that any degree on S
a holomorphic or anti-holomorphic map, so by compositions we
obtain holomorphic or anti-holomorphic maps of degree k between
our ellipsoids. As these manifolds are hahlcr, BuCil naps saue
harmonic.

The easiest way to derive the condition for our map to
be conformel is to write it in the form

(cos eeiu, 8ino) W (cosa (t) eiu,\/b sing(t))

where t(6) = log(coée/l + sing)

The metric on s is
g = cosze du2 + d62
and on E is
g = cos?q au® + (sin2a +b cosza) do?
As df preserves the orthogonality of &' and 0/06, the
condition for conformality is that unit vectors in these

directions be uniformly dilated. Since
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ar(9/ou)
ar(o/06)

o/
-a(t) secod o/da

]

this condition is the autonomous equation
(4.2.7) o = cosg /(sinzq, + b cos® o,)i

Note that upon differentiating again we recover the condition

for £ to be harmonic, namely

.2
(4.2.8) a = ((b'm 'ﬂl) sing cosg
o (a)

Using Equation 4.2.7, we see that if we assign Qo to be any
value in (-x/2,%/2), then integration yields a solution which
is esymptotic to ix/2 at ¥

To establish the asymptotic behavior of a, we study the
second order equation (4.2.8). This has the advantage that
the methods will carry over to other mappings into ellipsoids,
where the equation considered will not have '"first integrals".
More generally, again in the interest of later rérerence, let
us assume we are constructing a l-parameter suspension of

k 1

z2- 2z on S, so that (4.2.8) becomes

. 1) 2 o 2
(4L.2.9) a = ( b > (o ) sing cosg

2 2

¢ (a)= b cosa + 8in“ g

For large t we define

2 ‘ «2
inf E___lh:llﬂ_ﬁﬁl

s>t ¢ (a(s))

2 e 2
k"(’c.)2 sup kZ —(b-1)g"(s) \

s>t ?(a(s))

k(t)2

Note that o is decreasing after o passes 0; for then
sina cosa > 0 and hence from (4e2.9) ir a(t) > 0 for some

such t,
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25

(b-1)52(t) - k2> 0

Therefore if o increases past t, this inequality will continue
to be satisfied, and conversely. This is clearly not

possible for a monotone solution asymptotic to x/2. Hence

G decreases after ¢ passes 0, and in particular k™ (t) is well
'defined. The procedure in Section 3.3 now shows that
eventually

a(t) » k*(t) cosa(t)sina(t)

a(t) < k*(t) cosa(t)

We would also like tq show that eventually

cle'kt € cosa(t) € cze'kt

An inspection of the methods in Section 3.3 shows that the
only ingredient lacking is

S:(k*(t) - k)it <

and similarly for k . (Previously, o.f course, we knew

a_priori that k*(t) = k + 0(e~2%)), It suffices, then, that

f:(k*(t)2 - x%)at < «

and for this it is not hard to see that
y&a(t)dt < e
and fll - 9(a(t))lat = fl(b-l)cosaa(t)ldt ¢ w

are sufficient. However, it is obvious that Jllo:(t)l < o
since o is monotonic and bounded, and therefore j&z(t) < oo
Furthermore, we know that eventually

cos®a sin® o < &.2/(-1<')2

so that Icosza(t) < o« follows also.
Having established the exponential decay of coe ¢, we
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still need for our regularity proof that

2 - k()2 = 0(e~2%)

and likewise for k. However, we can now say

&z(t) <'k"'(t)2 cos%a(t) < ce~ 2kt

which gives the required estimate on k"’(t)2 by inspection.

From this point the regularity proof proceeds as before,
substituting for a from (4Le2.9) where necessary. The proof
that the differential of our conformal map has maximal rank
at the poles is contained in the proof of Theorem L4.2.5.

This finishes Theorem L4.2.3.

Proof of Theorem 4.2 The equation governing the suspension

parameter in this case 1s

(4+2.10) a (n-2)tanh(t) + ((bi’ﬁt:y’l‘) sina cosa

sinza + bcosza

where 9 (a)

and n is assumed » 3. We will show that for b large enough,
any solution which passes through 0 with positive derivative
is unbounded. Note that this immediately gives us the
theorem: certainly if a is unbounded it cannot define a one-
parameter suspension. Furthermore, there is no loss of
generality in assuming there is some t, with c(to) =0
(as o traverses the interval [ -x/2, x/2]), and since we reqguire
for a one-parameter suspension that o _ = =/2, Q= x/2,
there will be at least one such t, with &(to) > 0.
Qi(to) = 0 is impossible by uniqueness).

In the proof, we will further assume that t, 0. For if

t, < 0, define B(t) = -a(-t). Then 3 also satisfies (4.2.10),

B(-t,) = 0 and é(-to) > 0. Of course, § is unbounded iff ¢

is unbounded.
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The proof is now by a series of comparisons, at each
stage giving conditions on the largeness of b. It will be
evident that there 1s no logical difficulty in not choosing

b & priori.

Comparison 0. It suffices to show that at some time t > to’

5—2(1:) > M/(b-1) and a&(t) > 0., For then &z(s) > A/(b-1) for
all 8 » t. This is because Equation (4.2.10) shows that if

&2(5) drops to this value, then a(s) > 0.
Let us therefore assume that A/(b-1) is reasonably small.

The object of the ensuing comparisons will be to nurture &.2

to this wvalue.,

Consider the function ¢(a) = sin?q + beos%a. Choose b
so that e=A/9(x/4) is very small. Now make

Comparison 1. Let Gy = Gy the solution in question, and let
o, be the solution of

652 = (n-2) tanh(t)d, - ea,

with the same initial data at t‘o as a. Then as long as
0< a;< x/4 and a4 > 0, we have for t » to

(1) 0.2/6.2 >a,/dy

Proof We show subsequently that the left side is always
finite. In this event, (!) is a direct application of the
Comparison Theorem (3.2.7). In the notation of that theorem

we have

=, = exp(-f:o (n-2) tanh(s)as)

Lo
=
!

g2 = €Pp

-2
= (a=ib=g sing_cosg
& ( 9 \a ) o P
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sinag cos D
cpza;a 1

Hence we can verify that gl < &5 by noting that sing cosaf < 1
and that ¢(a) decreases on [0z /L ].
For the functions w; , we have wl(to) = '2(to)'= 0, hence

by the theorem
-1 » -]l .
w, = tan (az/pzag) > w, = tan (al/brzl)
which gives the desired conclusion as long as 52 # 0.
Now choose 0 < t, < 1 such that tn tanh(tn) < 1/(n-2).

If t,3 vtn, proceed to Comparison 3. Otherwise go to
Comparison 2. Let a and ay be the solutions of

x, = (n—2)tanh(t)c'11 - eay
and - 2= 1%

"with the same initial data as a at to. Here

= A
el e/

A = exp(-j:n (n-2)tanh(s)ds)
o

v

exp(-jﬁ(n-z)tanh(s)ds)

Note in particular that € is small if ¢ is small, independent
of to’tn'
To apply the comparison theorem, rewrite the second

equation as

(1]

kg = e,
Then pl(t) = exp (-j: (n-2)tanh(s)ds)
o
po(t) = A <p,(t) to< t< bt
Gl(t) = epl(t)

82(15) =€ P gl(t)
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For the functions Wy we again have wl(to) = wz(to) = 0.

Hence at t = tn’ W, < Wy, P = Po and thus

ay/e) S ay/iy
= sin[e(tn-to)]/e cos[e(tn-to)]

< sin(etn)/ ecos(etn)

where 8 ='Vbl

By l'Hospital's rule the last ratio approaches t,as6 ~ 0.
Since we have assumed t tanh(tn) < 1/(n-2), we may now require
that 6 be small enough that

.al/&l < 1/(n-2)tanh(tn)

holds at t = tn. . This is Comparison 2.

Comparison 3. In this step we require that ¢ be small enough
that an over-damping condition hold, namely

7° - Le> 0
T = (n-2)tanh(tn)

Let B be the solution of
8 = (n-2)tanh(t)p - eB
with B(to)s 0
and B(to)= G(to)
as usual. We claim there is some t1 > tn such that

B (t)/B(ty) < 1/T

In fact, if to> tn, let tl = to' and if to< tn we get tl = tn

and use the conclusion of Comparison 2. Now let

W= 4(T+ (12 - Le)T) ¢ T

W satisfies W="T4 /W
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Our object is to show
(L) B(s)/B(s) < 1/w Vex t,
So suppose (i!) fails to hold for the first time at time t > tye

Then on [t,,t) we have
B(s) > TB(s) - eB(s)
> (T - /W) B(s)
So that
B(t) > B(ty) + (T - &/¥)(B(t) -(ty))
8(t,) + (T - /W) (5(t) -p(t;))

WB(t) + (s/M)B(t;)
> WB(t)

v

Hence (!!) holds s » t,. Thie is Comparison 3.

The proof of the theorem is now finished, via the
following remarks:

a) Having chosen b large, any such solution g must
increase monotonically to at least /4. This is a straight-
forward consequence of Comparisons 1l-3.

b) By perhaps choosing b even larger, we can guarantee
that @2 reaches the value A/(b-1) by the time ¢ reaches x/L.
For if this time is t, we will have.either

a(t)/a(t) < 1/T

from Couparisons 1 and 2, or at worst

EAOVAO RSV
from 1 and 3, depending on whether t < tn or t » tn.
Substituting a(t) = ®/4, we get an estimate on g(t) which
may be assumed sufficient. Therefore by Conmparison 0 the

theorem is proved.
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Proof of Theorem L4,2.5: This is just an application of

Theorem 4.1.4. 1If £ and g are the identities on §°°! ang s°
respectively, then there 1s a harmonic one-parameter suspension
feg = 31 : EP(p) » s®

for n < 6. We only have to check that 2I is a diffeomorphism.

We will suppose 21 is given in the natural symmetric form
(cf. Section 3.5). That is

(x5y) = (cosa(t) x/|x|, sina(t))
t = log(|x|/y+1)

Here o ranges monbtdnically (a{t) > 0 Vt) from -%/2 to x/2.
It is thus more or less clear that ZI is a homeomorphism,

and an immersion away fron x =0, Let us check that

9 _ (21
Sxp (1) £ 0

h coordinate we find

%;I (cosa xi/lxl) = [-sina é.y‘xf

+ cosa(|x|? - Xf)] /|3

We know a priori that this expression is continuous at x = 0,

at (x,y) = (0,1). For the it

s0 we evaluate the 1limit along a particular path with x = x;e, .

As

t -t
x| = 2/(e” + ¢ ")
we are led to consider

gi;'(zl)i = 1im #a(t)e”?

-0

But by Section 3.5 we can replace & by |cosa| and also use that

élet < lcosg(t)| < c2et

for t near -«. Hence the above limit is strictly positive.
This concludes the proof of the theorem.

Having proved non-existence of certain harmonic maps into

long, thin ellipsoids, let us now show how to actually improve
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the existence theory of Chapter 3 by mapping into a short,
fat ellipsoid.

Theorem 4.2.11 Let f : Sp"l - Sq-1 be a harmonic polynomial
map of homogeneity f. Then if b > 0 is small, there is a

harmonic one-parameter suspension
3¢ : sP - E%(p)

Remark 2ed The point of the theorem is that if b is small,
we do not need f to satisfy the damping condition. For
example, this theorem would apply to the Hopf map O : 815 - Sa.

Proof Recall that the eguation under consideration 1s

b=1)6.2

515 'l') sinc cosa

(4.2.13) a = (p-2) tanh (£)d + (

2 2

with , ?(a)= sin“a + bcos“a

Our object is to find a solution witha__ = -%2 and ¢_= x/2.

By symmetry, it suffices to set a(0) = 0 and find some a(0)
such that o_= %/2, If we put &(0) = inf A*(0) in the usual
way, we need only check two points to see that the arguments
of Section 3.2 can be applied:

a) | AY(0) is non-empty. This point is no longer quite
so obvious, but can be derived from a straightforward analysis
of the differential inequality

T o - cdl

b) a(0) > 0. This is where it is necessary to choose
b small. By doing so one can ensure that the term multiplying
sino cosa is large and negative when a is near 0. Hence the

equation is underdamped for small g, and we can essentially

apply the argﬁments in Lemma 3.2.11l.



This demonstrates existence. That the asymptotic behavior
of o ia‘correct follows from an appropriate mixfure of the
methods in Theorem 4.2.3 and the usual technigues of Section
3.3, kegularity of the map 3f defined by g follows as in

Seciion 3.4 Hence the theorem.

Repark 4,2 It is natural to ask whether thevabove theorem
could be extended to the general cuse of harmonic polynomial
maps; thus if one of the polynomials failed to satisfy the
damping condition, this difficulty could be removed by
mapping into an appropriate eilipsoid.

However, a new non-trivial difficulty presents itself.
Due to the asymmetry of the general case it would be necessary

* and a~. The problem is to

to reintroduce the functions &o o

verify that these functions are still continuous.

bectio a £8

This section consists of two examples. In the first we
construct some essential mapé'of the Euclidean torus to itself
via harmonic equivariant theory. In the second we give some

unusual inessential maps of the flat torus to the 2-sphere.

e be the torus of revolution in 1R3

Theorem Li.Z.] Let T
obtained by rotating a circle of radius ry through a circle
of radius ry > Ty Then there is a harmonic map of 72 to
itself which iraps around.j times in the short direction and
k times in the long.

Proof By definition there is an action of ST on T2 by

isometries. Let © be the angular variable in the direction
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of this action and let ¢ denote angle in the complementary
direction. ®? is therefore a coordinate on the orbit space,
which 1ls a circle. The volume function, normalized, 1is

v(e) = r, + v, cos @

We look for a harmonic map of the form

(9,6 ) = (a(e), k86) ,
where o is required to vary between 0 and 2%xj on the interval
[0,2*]. Such a map is horizontal, and Theorem 1l.3.5

applies. The orbit-energy is

¥(9,2(9)) = E°[(r; + 7, cosa(9))/(ry + 1, cosg)]?

ahd the eguivariant tension equation is

. 2
r,sin® a(9) . k (rl+rgcosa)rgggina
r, + I, cO8Q '

a(e) - =0

2
(rl+rzcos¢)

Now make a change of variables

P
v
O T+P,CO8¢

x(9) = do'

and let -
a(e) =a(x(e))

with the result that o (x) must satisfy the autonomous equation

a + r2k2 sin.a'(rl+r2 cost) = 0

Let to = x(2x). We are therefore looking for a solution «q
satisfying
C(x + t,) =a(x) + 2} Vx

The method of finding such a solution is essentially our
standard one: we set @ (0) = 0 and find a(0) such that
57(t°/23) = X, This is possible: the term I, +r,c080 is

always positive, 80 the equation behaves like that of an
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ordinary pendulunm. Hence we can make « reach x in any
specified finite time.
The required periodicity is therefore evident, and thus

regularity is automatic. Hence the theorem.

Theorem 4.3,2 Let T2 be the flat torus. There are surjective

harmonic maps T2 - 82 of degree 0 which are neither open nor

2

light. There are also harmonic maps T2 -+ §” whose images are

proper closed subsets with interior.

Remark 4.3.3 This shows that a harmonic map between compact
surfaces need not behave anything like a complex analytic map.
A non-constant analytic map must be open and light, by a theorem
of Stoilow.

Simpler examples could of course be given if one did not

ask that the image have interior.

rroof Choose angular coordinates (9,0) on 7, Our maps

f : T2 - 82 will have the form

(9,8) = (sina(p)el®, cosa(s))

One easily verifies that Af is proportionsl to f, i.e., f is
harmonic, iff

L 2 2
a = sina cosa

Hence we simply look for solutions which are periodic. Again
it is obvious that we can set a(0) = 0 and choose a(0) such.
that o(x/2) = ®/2. By symmetry we get the periodicity we need.
The map £ is surjective and clearly has degree 0: the
first half of the torus (0 € ¢ € ®) gets mapped onto s° with
one orientation, while for the second half this orientation 1is
reversed. Note also that the circles ¢= 0 and ¢ = X are

mapped to points, a0 [ is not light. Neither 1s it open.
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Supbose instead we put 0y = ®/2 and choose do small.
Then the system oscillates about %/2 with some period.

This period depends on a_ and gravity ( g =1 in this case).
By modifying the metric on T2 in one variable, however, the
equation becomes

o = c2 sino. cosu

It is clear that by judicious choice of c and do we can make
the period 2r., The image of f in this case will be a closed
band about the equator of Sz.

This concludes the theorem.
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Chapter 5

. THE SECOND VARIATION OF THE ENERGY

This chapter is concerned with the qualitative behaviour
of the energy functional in the vicinity of a critical point,
or harmonic map. For example, the second variation can tell
us if a harmonic map is not a local minimum of the energy. If
not, we would 1like to know in how many ways the energy can be
decreased;ie., to compute the Morse index of the map. An
associated qualitative problem is that of non-degeneracy: 1if
the second variation is zero in some direction, does this
indicate the presence of more harmonic maps? This question
is also significant in Morse-theory.

It should be pointed out, however, that although the
language of Morse theory is the natural one, the prospect of
actually doing any Morse theory 1s distant. ' It 1s not clear
what relationship, if any, should hold hetween the critical
sets of the energy and the topology of the mapping space on
which it is defined. The basic problem is of course the lack
of a general existence theory. On the other hand, we have
included an appendix which shows that locally the correct
relatibn holds, under an appropriately weak non-degeneracy

assumption.

Section Geperalil

If f: N M is a harmonic map, then the second variation
(or Hessian) of the energy at f is a symmetric bilinear form
defined on the vector fields along f; i.e., on the sections of
£*TM. (If f is thought of as lying in a manifold of maps, such
vector fields form the tangent space to the manifold at f£). The

Hessian H is defined as follows: given two fields along ¢,
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say v and w, choose a 2-parameter variation fs % such that
’

§§| = v and g%l = w. Then
(s,t)=0 (s,t) = o

Since £ is a critical point of E, it follows as in finite
dimensional Morse theory that H is well defined. This is

also apparent from the computation below:

Proposition 5.1.1 If f: N - M is a harmonic map, the Hessian
at £ is given by ,
(5.1.2) H(v,w) = fN<va, Vew> - <pf(v),w>

Remark Here Vf is the induced connection on £#TM and Pp

(which is like a Ricci tensor) is the trace of a bilinear form on

TN. Explicitly,

pf(v) Trace Ry (af,v) ar

[}

? Ru(df-ei,v) af-e,

Here R, is the curvature tensor on M and (°1) is an orthonormal
basis for TN at the point in question. The sign convention

for R 1s that used in Milnor [M], namely, that

A good reference for connections and curvatures in pull-back

bundles and in bundles of linear maps is Eliasson [El]. (His
curvature convention 0ppoéite to ours). The ensuing

calculation uses the formulae given there throughout; it also

employs a method found in lecture notes by the same author.

Proof (5.1.1.) Choose a variation f, . @8 above. Then
’
fs % defines a map F :Isz N- M, and
H
B(fgy) = 4 j& <dF(-),arF(-)>
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where (-) will denote arguments in TN. Then as all
Riemannian manifolds are assumed to carry their Levi-Civita

connections, we have

E-J w0, @)

fN <Vd.F( ht / 36‘{)9 dF(")’

[y <PaP(gei-1g) s dF(-)> + <WP(-, ), VaP(~,55) >

g

Note that VoaR(f,-i3p) =V 2aP(-, 35, 3p)-(Ry (5 ) g
where R ié the curvature for the bundle L(TOR?x N), PeTH).

From [El] we get

(Rp,(35:-) ) §¢ = Rpuqy(so-) 3 - aF(Bg2($50-)50)

Ry (3L, or(-)$E

Note also that VhF(é%,g%) is a field along F, so that at

8 =t = 0 we have

f

N <vzdF(‘: g%:g{)! dF(')’ = 0

as fo o is harmonic. Thus we conclude
’ .
gfg-l = J. <V.w, V,»» - <R (v,df)w,da>
- s
80t s=t=0 N A u

In general, however, the form <R(X.Y)z,'> is anti-symmetric
in (X,Y) end in (2,%). (See Milnor [M, p.53] ). This proves

the proposition.

An immediate corollary is that if all sectional curvatures
of M are non-positive, then H(v,v) » 0 for all variations v;
this indicates that every such harmoniec map is a local minimum
of the energy. In fact, a much stronger statement is true:

Af £:N - M is a harmonic map and M has non-positive sectional
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curvature, then f 1is an gbsolute minimum of the energy in
its homotopy class. The proof is simply that any smooth
map fb in this class 1s amoothly homotopic to a harmonic map
£ via the heat equation (using Eells-Sampson [ES] and Hartman[H])
As energy decreases along a trajectory of the heat eguation
(Es], E(f ) < E(fo). Furthermore, Hartman has shown that r
must be homotopic to f through harmonic maps, and conseguently
that E(f) = E(f_ ). Hence E(f) is an absolute minimum.

It is therefore reasonable to expect that in this case
the harmonic maps are a deformation retract of the mapping
space (as in finite dimensional Morse theory). Karen
Uhlenbeck has claimed to have proved a statement to this effect
[u2]. It is easy enough to see this if N and M are flat;
all the higher order énergies have only harmonic critical
points in this case, and infinite dimensional Morse theory can
be applied to a sufficiently high order energy.

By applying the divergence theorem, as in [E2], we see that

the Hessian can also be written as

<-Afv -prv, w>

(5.1.3) H(v,w) = J;

<JV,W>
SJN f’

where A ¢V = Trace (ng). Note that the second variation
operator J, : q;éf*TM)-* ¢ (f*TH) is symmetric and elliptic.

If the pullity/f (null (f)) is defined as the dimension of the
space on which H is zero (i.e., those v for which H(v,w) = 0 for
all w), and if the index of f is the dimension of the largest

space on which H is negative definite, it is clear that

(5.1.4) null(f)
index(f)

dim ker Jf < o

# | eigenvalues (Jp)< 0} <o
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Note that if the metrice on N and M are changed by (positive)
scalar multiples, then so is J ; hence null(f) and index(f)
are unchanged. Howeve:r, we will see examples later in which
these quantities can be altered dramatically by making less
trivial changes in the metrics.

In analogy with the theory of geodesics, we will say v is
a Jacobi field along f if v € ker J,. Note that if f, is a

variation of f through harmonic maps, then v = g% is a
t=0

Jacobi field along f. For clearly va = 0 if and only if
H(v,w) = 0 for all w. However, we can compute

H(v,w) = a®E(v,w) = S5 (GE(£,)(W)),_,» and GE(f,) = 0 by
assumption, Hence wa = 0, The converse is not necessarily

true, even when f : S1 - M is a geodesic.

Example H.1.95

The middle circle is a geodesic on the surface M, but no
distinct parallel circle is a geodesic. If K is made quite
flat along its middle (RM = 0 there), the parallel fiela
drawn along the geodesic w%ll be a Jacobi field. It clearly

does not arise from a variation through geodesics.

Regarding the nullity of a harmonic map, let us define the

killing nuliity as

Null (£) = dim span (L(M), af (i(N))
Here elements of i(M) (infinitesimal isometries) and 4f(i(N))
are considered as variation fields along f. They are clearly

Jacobi flelds, as they arise fron the composition of f with
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l-parameter groups of isometries. It will be convenient to

aiscount these trivial harmonic variations and define a

reduced nullity
Nullr(f) = Null(f) - Nullk(f)

Thus the qualitative problem of interest to us is this: 1if
f is a harmonic map and nullr(f) £ 0, do all Jacobi fields
arise from a variation of f through harmonic maps? Let us

say that f is generate if this is the case.

Our second problem is to calculate index (f). Although
this is usually impossible (cf. the last section of this
chapter), the study of the index of certain simple maps is

both feasible and rich in geometry.

Section 2, T denti
If M is a closed oriented Riemannian manifold, then the

identity map'idM ¢! Mo M is of course a harmonic map and we can
study its index and nullity. One might expect that idu is
always a local minimum of the energy, and hence has index 0;
that this is not the case was first observed in [ES8]. Eells
and Sampson constructed a one-parameter family of maps
£,:8" » 8" with £_ = 1d;n and 1ip E(f.) = 0 for n > 3, We
will return to interpret this example later and
calculate index (idgn) exactly.

To begin with, note that a vector field along 1du is just

a vector field on M. The second variation operator becomes

(5.2.1) Jv= =0v - p(v)

where
Av = Trace (Vzv)

p(v)= Trace Ry(=sv)-
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Hence p 1is just the Ricecl tensor, considered as a linear map.
The operator A is not to be confused with the Hédge Laplaciean,
denoted AH in this section. On one-forms (or vector fields), we

have in fact the well-known formula [D ]
(5.2.2) 8 yv = -0v + p(v)

The operator J has also made its appearance in differential

geometry before, for example in the work of Yano and Bochner on

Curvature and Bettl Numbers (BY]. The following integral formula

is given by Yano' [BY Pe 97] and will be used later:
(5.2.3) 5; <JV,v> = J; ilnglz - o(v)2

Here ng is the Lie derivative of the metric w.r.t. v and
is the divergence. Thus ng = 0 4f and only if v is a Killing
vector; from the formula we see that if Jv = 0 and 6(v) = 0,
then v is Killing. The converse follows by direct computation
[BY]. | |

J is also studied in Lichnerowicz [L2] with regard to the
Lie algebra of infinitesimally conformel fields, denoted g.

The following observation can easily be derived from hie work,

but a self-contained proof is simpler.

Proposition 5.2, If M is closed and oriented of dimension ; 3,
index (idy) > dim(g/1).
Proof Recall that a vector field v is in g if it satisfies
= (2) &
L.g = (§) s(v)e
Hence IL,,EIZ = (-f;)“t‘»(*r)2 lgl? = % &(v)?

so that Yano's formula (5.2.3) gives
,fu IV, ¥> = -&;3- IM 8(v)2 < 0
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if &(v) # 0. From the definition, however, it is clear that
if v € ¢, then v € 1 i1f and only if 6(v) = 0. If we let V

be the ortho-complement of i in ¢ (with respect to the L2 inner
product), then it follows that J is negative definite on V.

This proves the proposition.

Remarks 5.2, a) This gives an interpretation of the example
of Eells and Sampson. The n-sphere carries n+l linearly indep-
endent.conformal fields which are orthogonal to the Killing
fields. The maps ft they constructed are essentially just the
flow of one of these vector fields
b) It appears that in general
index (idy) > dim (¢/i). This will be discussed later (5.2.13).
c) It is easy to produce examples of manifolas
for which ¢/i £# 0, as pointed out in . For if M has a one-
parameter group of isometries, say ft’ choose a positive
function p which is not invariant under the group. Define
‘a new metric on M by setting gl = Pge. The maps ft are now

conformal, but are no longer isometries.

Hence any compact homogeneous space of dimension 33 can be

given a metric for which idM'is not a locel minimum of the

energy.

Lichnerowicz also studlies J on compact Kahler manifolds and

finds:

Proposition 5,2.6 [L1] Let M be a compact Kahler manifold and
. v a vector field on M with Jv = 0. Then v 18 an infinitesimal

analytic transformation.

Since holomorphic maps of Kahler manifolds are harmonic
[ES], this says that id, is a - gemerate critical point

of the energy. Holomorphic maps are studied in more detaill
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in a later section.

Although the operator J has appeared in the previously
mentioned varied contexts, no unified interpretation of its
- significance was known. Yano and Nagano in fact devoted a
paper to a study of the solutions of Jv = 0. [YN]. They
labelled them "geodesic vector fieldas"; the reason for so
doing is that the equation of an infinitesimally geodesic
vector field (i.e. a field whose flow consists of totally

geodesic maps) is just
V2% 4+ R(=,v) = = 0

Thus J is the trace of the above operator. For maps we have
similarly that £ is totally geodesic if V4f = 0 and harmonic
if Trace Vaf = 0. This rather strongly suggests that one should
try to prove that the flow of a Jacobi field consists of harmonic
maps. However, the next example shows that this is not the

case.

Example 5.2 Define a vector field onIR®, for n » 2, by
v(x) = (cos x, cosh x,,0 eee0)

Then v is harmonic and therefore a Jacobi field. The flow of

v has the form

F(x’t) = (ft(X)’ ngooo,xn)
The map ft(x) can be defined as follows on the set
x/2 < Xy < x /2 and extended periodically:

log (sec ft(x) + tan ft(x)) = log(sec x, + tan xl) + t cosh x,

By differentiation one checks that 0f,(x) = cos rt(x) cosh x,
. . W

so that £ does give the flow of v.
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We claim that for t £ 0, ft(x) is not a harmonic function.
To see this write
ft(x) = p(log (sec X, + tan x;) + t cosh x,)

where p is a suitable inverse function for log (secO® + tan 6).

Thus
, 3%? = cos I sec x1
02f = -« ginf cos T secax + cos f sec x, tan x
3 1 1 1l
oy
of = cos  t sinh x2
2
3°¢ = -cos f sin f (t sinh x2)2 + cos f t cosh x,
d 2
X2
At x; = x, = 0, Af:cosf(%-sinf)

which is certainly non-zero for t > 2. Hence the flow 1is not

harmonic.

Since our main interest is in closed manifolds, the above
example is really telling us that the problem is not local. It
one still hopes to prove that the flow of a Jacobi field on a
closed manifold consists of harmonic maps, Stoke's theorem will
almost certainly be needed at some stage. This is in contrast
to the apparently related case of infinitesimelly geodesic vector
fields and totally geodesic maps, where the proof is completely
local. At any rate, no counterexample is known.

As an antidote to the example, suppose that M is a gompact
flat manifold (e.g. a torus rather than Euclidean space).

A Jacobi field satisfies 8v = 0. Therefore
0 =j;‘ <AV, V> = = KMIVVIZ, so that Vv = 0. Hence v is a
parallel vector field, and thus an infinitesimal isometry.

A related question is whether the harmonic diffeomorphisms

of M form a group. On this line, do the Jacobi fields form a
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Lie algebra? Yano and Nagano [YN] consider the latter

problem on a general Einstein space of positive curvature

(i.e., p = cg for some ¢ > 0). Thelr findings are inconclusive:

the Lie bracket of two Jacobl fields will at worst lie in the

Lie algebra of fields with divergence zero; both problems are open
The assumption that M 1s Einstein is a natural one to

make when studying infinitesimal transformations. If

P = cg, then J and the Hoage Laplacian on vector fields

(i.e., 1-forms) are related by

(502.8) J - AH - ch

where 1 is the identity tranéformation. In particular, J and
AH have the same eigenfunctions. It is now not difficult to
relate the index and nullity of 1dM to the gpectrum of M, which
is the set of eigenvalues of AH on functjons. The following
notation will be used to describe the distribution of these

eigenvalues:

(5.2.9) AMr) = # leigenvalues A : 0 < A < r}
For multiplicities write (for r > 0)

(5.2.10) m(r) = multiplicity of r as an eigenvalue

and set m(0) = 0. Hence A(r) increases with r, whereas
m(r) is usually 0. The basic conclusion of this section is
then

Proposition 5,2,11 Let M be a closed oriented Einstein manifola,

with P = cg for some scalar c. Then

a) index (idM) = M (2¢)
b) null (idM) = dim(i) + m(2¢c)
¢) null, (idy) = m(2c)

Remark The proof will hold no surprises for someone familiar

with the references cited earlier.,
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Proof From the relation between J and AH’ we have immediately
that
ao) index (idm) = #{ eigenvalues of AH (on l-forms)< 2ci
bo) null (idM) = multiplicity of 2¢c (as above)

So suppose v is an eigenfunction for 8y Agqv = Av.  Using the

Hodge decomposition, we can always write
v=d4df + w

where £ is a function and w € ker (8). Then since df and w
lie in orthogonai subspaces which are invariant under AH’ it
follows that each must be an eigenfunction of AH with eigenvalue
[ Now suppose.N < 2¢, We claim that this forces w = 0.
In fact, we simply apply Yano's formula (5.2.3) to w; M < 2¢
means that the left side is € 0 and O(w) = 0 eays the right
side is # 0. Hence w = 0. As for the function f, we have
d(AHf) = Ayaf = Ndf, so that, up to a constant, A,f = Af,
Conversely, if f 1is & non-constant eigenfunction, then d4f
is a non-zero eigenvector with the same eigenvalue. This
gives (a). | .

The argument for (b) is similar: the contribution of the
gradient fields is self-explanatory, and as they are orthogonal
to ker (), we add the contributions of these subspaces. We
have also noted earlier that w € ker (8) N ker J if and only 1if
we€i, Hence (b), and (¢) follows.

Example 5.2.12 Let M = 8%, ° 8™ with its Euclidean metric

is an Einstein space with p= (n—l)g. Recall that Spec (8%)

is A = k(ken-1) : k 2 0}. The first few are 0,n,2(n+l),eee o
Thus n is the only non-0 eigenvalue which ies € 2(n-l1l), The
eigenfunctions with A =n are the harmonic polynomials of degree 1;
i.e., the linear forms on ]Rn*l, of which there are n + 1

linearly independent ones,
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Hence index (id n) = n+l n 33
S
0 ‘ n-= 1’2
Ngllr(idsn) = 0 n#2
3 n= 2

We remark that the gradient of a linear form on S® is an element
of ¢ (and not i}. Hence the connection between Prop. 5.2.4 and
Prop. 5.2.11 is exact for spheres. Note also that the reduced
nullity on g2 comes from variations through conformal (i.e.,
holomorphic) maps. Hence 14 , is a generate critical

8
point for all n.

With regard to other Einstein spaces, 1t happens that
Nagano has computed the spectrum of the classical compact
irreducible symmetric spaces (§1]. His results are presented

without proof, but using his table yields:

Proposition 5,2.13 ~Index (idM),' 0 for the classical compact
irreducible symmetric spaces, with the following exceptions:
1) M=8" ns>3
ii) M = Sp(p+q)/@p(p) x Sp(q), the quaternionic Grassmann.

111) M

SU(2m)/Sp(m) m>1

Remarks é) the spaces in (1i) and (11i1) satisfy ¢ = 1, by
a theorem of Nagano (N2, Hence the eatimate in Proposition
5.2.4. 18 not sharp.

b) There seem to be one or two errors in Nagano's
calculations for the real 6riented Grassmanns. For example,
if M = S0(6)/50(2) x S0(4) (with metric normaligzed so that
p = #g), the table says A = 15/16 can occur. However, M is
Hermitian symmetric (hence Kahler) [HE].Iao the:.smallest positive

eigenvalue should be 1(i.e., index (idl) = 0),
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Section 3. Harmonic Fibrations

Another simple example of a harmonic mep is the projection
in a trivial bundle X: N x M - i, Let N and M be closed
manifolds, and let J, be the second variation operator for
fields along X. We can construct a large set of eigenvectors
for Jx as follows: 1f J denotes the Jacobi operator for vector

fields on M, let (Vj) be a complete orthogonal set of

eigenvectors for J; ij = Kjvj. Further, let (fi) be a
complete set of eigenfunctions for the Laplacian of N;

Proposition 5.3.1 The vector fields along X defined by

aij(n,m) = fi(n)vj(m) are eigenfunctions of J, : Jﬂ(aij) =
(ui + hj) 8y

Proof Recall that Jx = 'Aw ~Pys First compute

V(T

1vj) dfi( ) vy o+ ff?vj ° gx

ve (fin)

x var, ( , ) vy o+ 2 ar,( ) ij ° 4an( )

+ £, (VPv, (a%,6%) + Vv, © Vax)

To evaluate the trace of this thing, choose an orthonormal
basis for T(N x M) by compounding such bases for TN and TM.

Hence the middle term disappears, and as VdX = 0 we find
A'K(fiv‘j) = (-ANfi)vj + fi AVJ

Similarly we see that o, (fivj) = £, pl(vj)' The proposition

follows.
Corollary 5,3.2 index (x)3> )‘;’3«, my(rg) Al
null, (%) 2 h}o mu(kj) HLN(!KJI)

Here mM(xJ) is the multiplicity of lj as an eigenvalue of the

Jacobl operator on M, and Ay (| le) is the number of eigenvalues
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of V which are less than lhjl, this time including 0.

Corollary 5.3.3 Let M be a closed Riemannian manifold for
which index (1dM) > 0, and let N be any closed Riemannian
manifold of dimension 2 1. If ": Nx M- M is the trivial
bundle:

a) By making a scalar change of metric on N, we can make
the Morse index of X arbitrarily large.

b) If further the multiplicities in the spectrum of N

satisfy lim m (kn) =0, Wwe can similarly make the reduced
N0

nullity of X arbitrarily large.

Proof If index (idm) > 0, there is at least one kj < 0 in

the prcvious Corollary. Now simply observe that if the metric on
N is multiplied by ¢, the spectrum of N is multiplied by 1/ec.

For ¢ large, we can therefore make arbitrarily many eigenvalues

of 4

N
make an eigenvalue of large multiplicity coincide with IXJI.

less than ijl. This proves (a). For (b), we similarly

Example 5.3.4 Let M =58", forn» 3, and let N = 8., If v

is a conformal gradient field on S® and £ is a harmonic polynomial
of homogeneity k on SP, then by a scalar change of metric on

8P we can assume that w(x,y) = £(x)v(y) is a Jacobi field for =x.
It seems quiie unlikely that these fields arise from a variation
off X through harmonic maps. Since the harmonic polynomials
satisfy the condition in (b) of the above corollary, for p » 2,

it appears that x can be given an arbitrarily large degeneracy

as well as a massive index, Hence the 1nndcubue mep x is

completely pathological from the standpoint of Morse theory.

Regarding more general harmonic fibrations x: E -+ B, the
best one can say at this stage is that index (x) » index (idB).
The same calculation as given in the proposition shows that if
v is a field on B with Jv = Av, then J (v ° x) = A(V °© x)



112

(although in this case WVdx only disappears after Trace is

applied.)
For example, thz Hopf maps S7 - Su and S15 -+ 88 have

positive index. Since index (idsz) = 0, the index of the Hopf
map 83 - 82 should be zero. It 1s not hard to see that the

index of any trivial bundle projection over 82 is zero.

e o) olomorphic Mapping Kah Mani

Let us first describe a startling observa;ion due to
Lichnerowicz [L2]. If £f: N- ¥ is a map of Kahler manifolds
(N compact), we can write

ar = af() o) + 45 )

a decomposition into complex linear and conjugate linear parts.
Accordingly there is a decomposition of the energy
| E(f) = E'(f) + E"(£)
Hence f is holomorphic < E"(f) = 0. Now consider the
difference _

.K(f) = E'(f) - E"(f)
One can show that K(f) = fN <®y» %2>, Where ¢y and o, are

the fundamental 2-forms of the respective metrics. From this

Lichnerowicz deduces that if fu is a smooth homotopy, then
K(fu) is constant!

Corolla 1 A holomorphic (or anti-holomorphic) map of
Kahler manifolds gives an absolute minimum of the energy in its

homotopy class.
Proof If £ is holomorphic and g is homotopic to f, then
E(f) = K(f) = K(g) < E'(g) € E(g).

Hence the index of a holomorphic map is 0 in a strong sense.
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Regarding the nullity, we have seen that any vector
in the null space at the identity map is infinitesimally
analytic. (Prop. 5.2.5). In general, a reasonable
conjecture is that any Jacobi field‘along a holomorphic map
arises from a variation through holomorphic maps. A proof
will be given below in the special case that £ is & conformal
diffeomorphism of 2-manifolds. |
Befbre proceeding, it is necessary to know something
about conformal maps. Recall that f: N - M is said to be
conformal if there is a positive function ¢ on N such that
= By = ngN, where g means metric. Equivalently,
<daf(v), daf(w)> = ¢%<v,w> holds for all v,w € TN. Now we

need some generalizations of a few familia®» notions.

Definition 2 a) Let f: N- M be a smooth map and v a
vector field along f. The Lie derivative of fs 8y with

respect to v is the 2-form on N given by
LVf*gM (a,B) = <er(°')9 df(ﬁ)> + <va(ﬁ)’ ar(a)>

b) Define the divergence (along f) of v to be
Diva = <va, ar>

e¢) If dim (N) = n and £ is a conformal diffeomorphism,

say that v is infinitesimally conformel (along f) if
L t*g, = (§) Liv,(v) g
v M n f N

Remark 5.4.3 It is not hard to see that these definitions
reduce to the usual ones when f = 1dN and v 1s an ordinary
vector field. Note also that:

a) if £ 1is an isometry of N, Lf*gy =0 e v =w o,
where w € 1 (N).

b) As Livev is just the first variation of the energy,
it follows by definition that J& Divev = 0 for all variations v

if and only if f is harmonic. Harmonic maps may therefore be

characterized as those smooth maps which preserve the ditgr§4f9f;
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theorem.

c) If £ is a conformal diffeomorphism, then v is infinitesi-
mally conformal along f if and only if v = w ° f, where w ¢ ¢(M).
Proof Given v, let w(x) = v(f’l(x)). Then Vw = Vv ° df—l,
and it follows that Divf(v) =¢2Div(w). The result is now
obtained by direct computation.

| Hence if v is infinitesimally conformal (and N is compact),

then v arises from a variation of f through conformal diffeo-

morphisms.

‘Recall now that a conformal map of 2-manifolds is harmonic.
Our basic result 1is:
Theorem 5.4.4 Let f: N -+ M be a conformal diffeomorphism of
compact oriented 2-manifolds. Then £ is a generate
critical point of the energy.
Proo It suffices to show that if v is & Jacobl fileld along f,
then v is a conformal field in the sense of lLefinition 5.4.2.

For notational simplicity set

= biva
w(aB) = <%v(a), af(B)>
W= va*gu =W+ W

Thus if we are given that
""va - pf(v) =0

we must show W= QgN

Observe that |W —Q§N|2 = |W|2 - 28Trace W + 282

IWI2 = 2(|w|2 +<W,WE>)

Trace W = 2 Trace w = 29
'2

|w fj <V}v(ei). df(eJ)>2

where the last sum is over an orthonormal basis as usual. Note,

however, that df(e,) = 9aj, where o, is an orthonormal base at
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£(x). Thus
lw|? = ¢2

ool

2 _ .2 2
|Vev(e ) 1€ = 9 Vpv]

and hence IW-Ggle 2(¢2|va|2 + o< wh> —32)

We would like to show

1 ‘ 2 2 1 2
—tee W = g l = j 'V V' 4 (<W wE> =P ) =0
J; 202 N N Ve v 2 ’

From what is given, J; Ival2 - <pf(v),v> =0

Hence it suffices that j; l§ (Kwywe> -~ ¢2) + <pf(v),v> =0
P

To finish the theorem we need this fact:

Lemma 5.4, If £f: N- M is a conformal diffeomorphism of
compact oriented 2-manifolds, withf'*gM = °28N’ then for any
field v along £ we have

J; 15 (Kwowe> -~ 02) + <pr(v), w =0
¢ .
where w,w*, ? are as defined in the proof of Theorem 5.4.4.

Remark 5.4.6 This formula is a generalization of one of Yano _
[BY, p.50], which is valid for f = idy (but with dim (N) arbitrarﬁt
In his proof, the integrand is expressed as the difference of '
two divergences. The proof here is a sultable modification

of this technique. The dimension restriction comes of course ?

from the requirement that a conformal map be harmonic (and hence

preserve the divergence theorem).

Proof Given v, define fields u,t on M by
u=v?® f_l

t = Vu(u)

Then t © f is a field along f satisfying
<V(Vu(u)) ° ar, af>
og(vzu(-,u) +Vu ° Vu, I>

Divft

where 1 is the identity map on TM. Note that here (and

throughout) reference to composition with f is suppressed when

possible., Continuing,
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= ¢2(<V2u(u,-) + W °vu, I> + <pM(u),u>)
using the identity <R(a,b)c,d> = -<R(a,b)d,c>. Lef'ine a

second field along f by

u Div(u) ° ¢

Hence Dives <v%(uD1v(u)),df>

Div(u)<V}u,df> + <u abiv(u),df>
However dbiv(u) = a(<Vu,I» ° f) = d<W,I> © af
=<V 2u(df,-) 21>

since I 1is parallel. Hence

<u dbiv(u),df> 3 ¢2<u<V2u(ai.-).I>,ai>
i

@2 <V2u(f<u,ai>a1,-).1>

¢2<V2u(u.-),1>

where (a,) 1s an orthonormal basis for Tf(x)u. Finally, since

$ = <Vf(u ° f), 4f> = ¢2 Div(u), it follows that
2 2
Dives - Divt ==%e- - 0“(<Vu °u,I> + <pn(u),u>)

As <pf(v),v> = ¢2<pM(u),u>, to prove the lemma it suffices that

—% W WE> = o2< vu ° Vu,I>
?

But suppose that at a particular point x the linear map va
is represented by the matrix v} with respect to orthonormal

bases e; and ¢'ldf(ei) at x and f£(x). Then

<W,W*> = 3 <va(ej). df(ei)> <VfV(ei). df(eJ)>

ij
= 2 1]
I
1
Also <Vu ° VU,II> = 6.2 2 <va ° df-l ° vrv ° dr-l(df(ei))i
i
1 i df(e1)>
= 23 J
P i3 VJ Vi
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This finishes the proof of the lemma, and also Theorem 5.4.4.

Example 5.4.7 The projective group of conformal transformations

of 82 is a critical manifold of index 0. The theorem says that
it is a generate eritical manifold, in the sense that
every vector in the null space of the Hessian is tangent to the
manifold.

In general, the theory of harmonic maps seems to present

no pathologies in two dimensions.

Se aps Sph

An earlier chapter contains constructions of essential
harmonic maps between spheres. It would therefore be nice to
be able to compute the index of these maps; in particular,
the maps of degree k from S™ to S™ should be studied. This
is because they are the simplest and since one might look
for an analogy with geodesics on sh, Our results, however,
are unfortunately inconclusive for two reasons: a) there is
not sufficient explicit knowledge about the maps themselves;
b) the computations required are incredibly cumbersome.

Nevertheless, let us at least summarize what can be done.
Recall that a hafmonic suspension of a polynomial map g takes
the form

(x5¥) 2 (sin a(t) g(x/|x]), cos a(tX y/|yl)
t = loglxl/Iyl)

Experience with the identity map on S" (and geodesics) indicates
a possible choice for an "energy-decreasing vector field".
Namely, let w = grad yp,‘where yp is a coordinate function,

andg let v=w°Tfr, In higher dimensions we expect that
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<Jv,v> <0 for all such fields V. (More generally, if h is

a harmonic polynomial on the domain sphere of homogeneity less
than that of g, there should be a similar relation for fields

of the form hv.) Although v is not an eigenfunction of Jes

it can be shown that <va,v> < 0 holds at every point, provided
thét the dimension of the y variables is 2 5.

Conclusion If :Xg is the kP

harmonic suspension of a
polynomial map, as constructed in Chapter 3, then index
(2¥g) » k for k = 5,6.

We remark that 1f our knowledge of the behavior of the
function a in the construction was more complete, the same
statement should be verifiable for k » 3. Without further
estimates on a, however, there is no hope of improving these
results. |

A more pleasant exercise is.that of generalizing some
Morse theory of geodesics on spheres to the case of harmonic
Sl

polynomial maps. Precisely, suppose y: +5S® is a geodesic

which wraps S1 around a great circle k-times. Then y may be

k onvS1 with an inclusion.

thought of as the composition of z - 2z
The question for us is then: what can be sald about the index
and nullity if z - zk is replaced by a general harmonic
polvnomial map?

Therefore let f: s? » s™ ve a harmonie polynomial map of
homogeneity k. Then by geodesic inclusion we have a map
s™ o 8™7T £op all r» 0. Let w be a gradient field on S**T
corresponding to one of the last r coordinate functions, and
let g be a harmonic polynomial of homogeneity £ on sh, Then
x ~ g(x) w(f(x)) is a field along f, and as Vfw = 0 we £ind

B(am) = (b, 8) W= HyEw
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Also pf(w) = 3 R (df(ei),w) df(ei)

However, in a space of constant sectional curvature c, we have

[KN’ P. 203]
R(X,Y)2 = c(<Z,X>Y - <Z,Y>X)

so that as ¢ = 1 on S™7¥ and df(ei)L w,

pa(w) = lag|%w = A w

k

Here we have used the comments in Example 1l.l.4. Hence

Te(gw) = (np -hy) &w

o that index (f) » r(h(lk) + 1)
mll (£) > r m(r,)

where the latter gquantities are as defined in 5.2.9 - 10. For

1 - S1+r

the case of geodesics f: S sy it is easy to see we have
equality in both places, and that mull (f) = null, (f). Here
m(kk) = 2, and K(Ak) = 2(k-1) for k> 1.

In general, things'are not so simple. ‘If r: st st is
the identity, for n » 3, then the above bound on the index
(for r = 0) is not helpful. Furthermore, it is easy to
construct examples where the nullity is not all Killing nullity.
Suppose that (in the above notation) degree g = k, 80 that gw is
a Jacobi field. As w .1 d4f, gw cannot be included in
af(1(s™)). On the other hand, if there are x,y ¢ S" such that
£(x) = £(y) but g(x) £ g(y), then gw is not/%ge form v ° £, where
v € 1(s™T), For example, one can take the Hopf map 8° -+ 82¢ S
and let g be any spheriéal harmonic of degree £ on 83 which is

not invariant under the action of Sl. This seems to be another

natural instance of a degenerate harmonic map.
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£ Morse Lemma for Compact Opepsators

‘he general setting for infinite dimensional Morse theory
is tlie following: & Hilbert»manifold X and a smooth functionul
f: X ?IR which satisfies Condition C and has non-degenerate
critical points (or manifolas) [PJ]. Condition C roughly
means that if you follow a gradient line of f you eventually
reach a critiecal point. "hat we wish to examine here is the
non-degeneracy condition fcr critical points; in particular
we show that the usual condition can be relaxed when dealing
with energy functionals,

Recall that for each critical point x of f there is a
second variation operator Jx : Tx X -’Tx X satisfying

Coww, = d2fx(v,u) Vu,v € T:X. We say that a critical
point x is non-degenerate if Jx is an isomorphism. In infinite
dimensions this condition is of course stronger than requiring
that Jx be an injection, and ih general is necessary to prove
a Morse leima, However, our conclusion is that the weaker
coandition is adeguate for ener;y integrals., |
Definition A.1 A critical point x € X is genarate
if J, is an injection.

A.2 A critical manifold G € X is generate if for each x € G,
J, 1s an injection on (TXG)*.

Remark A,3 Suppose f were the usual energy functional. Ir
@ is a generate critical manifold and x € G, then x is generate
in the sense of Chapter 5, Section 1. For it Jxv = 0, then

v € TxG; i.e., v arises from a variation of x through harmonic
m&ps. Conversely, suppose we were given a critical manifold
G, each of whose points was generate in the sense that every

solution v of Jxv = 0 arose from a variation of x through
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elements of G. Then G would be a generate critical manifold.

e have given examples of such critical manifolds:
S0(n+l) for n » 3, and the projective group of conformal
transformations of 82.

In our examples,Athe operator Jx is generally smoothing,
hence compact, so that ordinary non-degeneracy is out of the
question.

We first need some termindlogy from the theory of manifolds
of maps: 1if N and M are smooth finite dimensional Riemannian

manifolds, with N compact, then Hk(N,M) consists roughly of

all maps f:N - N for which the kth order energy is defined:
k-1
B (f) = 2 ]‘Wjdrl2
j=o0 N

If k > dim N/2, HS(N,M) is a Hilbert manifold and its elements
are all continuous functions. Elliasson showed that Ek is a

smooth function on H® satisfying Condition C [E2]. Clearly E,

is then a smooth function on Hk for 1 € jJ € k. The critical
points of Ej are called polyharmonic maps; note that they are
just the harmonic maps if j = 1. For our purposes, an energy
functional will be one of the EJ, but could be considered more
generally (E2]. We remark that it is unlikely that EJ will

K for j < k.

satisfy Condition C on H

We recall also that./lgre ¢”(N,M), then there is a natural
chart about g for HX(N,M) in which the model space is H(g¢Th).
The latter is the Hilbert space of sections of g*Ti obtained
by completing the smooth sections with respect to the innae

proauct 1
<u,v}k = 3 fN <Vj“’ vy )
J=0

Note that we can also consider >° as a dual pairing HE H'kalR.



The natural chart mentioned above is given by the exponential
map of M. The final fact we need is that in this chart the

energy Ej takes the form

g0 = 1982 v f e veer(dtm

Here G is a polynomial differential operator in lower derivatives;
for details see [E2]. Our conclusion is the following, quite
analogous to that given in Palais [P]. ‘
Morse Lemma Let x be a generate critical point of

J
takes the form

2 2
£(y) = £, + [BPyy|® - [CPy|

f=E_,: Hk(N,m)-' IR, Then about x there 1s a chart in which f

Here the norm is that of the model space HE = Hk(x‘TH), P1,P,

are complementary orthogonal projections of Hk, and B,C are lineapr

injections on the relevant subspaces. B and C are compact if
J < k, and isomorphisms of their domaims otherwise.

This lemma 1s sufficient to do local Morse theory; for
example, ohe can easily imitate the necessary handlebody
construction in Palais [P]. Alternatively, it is lmmediate
from the Lemma that a generate critical point 1s non-degenerate

in the sense of K. Uhlenbeck [Ul-]; she has & general handlebody

construction in this case,

Corollary A.L Generate critical points of energy functionals

are lsolated.

Proof Using the lemma, we verify that if af(y) = 0 then y = 0.
For if df(y)z = 0 Vv 2z then

<BPly, BPlz> - (CPv» CPyz ) = 0 Ve
Putting z = ‘Ply and P,y in turn, we get P;y = P,y = 0, as B and

C are in;jections. Hence y = 0.
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Proof of Morse Lemma:
We begin working in the natural chart mentioned earlier.
Note that since
£(y) = |¥y|2 + fNQ(y)

we have a2r(y) (u,v) = <Vju,vjy>o + J;sz(Y)(u:V)

= <A(y)u,v>°

where A(y) ie a self-adjoint linear elliptic operator of order

23. Note also that we can write

@B, = {Da,sB), V a,Be HE(oTH)

where D ig gnother self-adjoint elliptic operator, of order
2k; by construction, D:HY - ™2k 45 an isomorphism Vr.
Finally, for the second variation operator itself, we have by

definition '
a®e(y) (u,v) = <{I(¥)u, ¥y
= <DJ(Y)uov>o
Therefore J(y) = D™ A(y): HX - p+2(k-J) is & Fredholm map of
index 0 for all y. On a neighborhood of x we may assume J 1s
an injection, and hence an isomorphism.
From this point we can parallel the proof in Palais.
Near x we have by Taylor's theorem
£(y) = £, +{T(F)Y¥)y
where T is obtained by integrating J. Hence we can also
assume that T(y): gX - Hk+2(k—;j) is anZ%. Therefore define
R(y) : 55= HE by R(y) = T(y) 71T, ana let S(y) = R(y)"%,
which is a smooth operation near the identity. Then

T(y)R(y) = T, and taking H adjoints yields R*(y)T(y) = Tg;

hence S(y)*T(y) = T(y)S(y). Palais shows that ¢ (y) = S(y)y is
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a diffeomorphism near x; we also have
£(y) = £, + T 9(3)» o(¥) )
Hence with respect to our new chart ¢'1 we get

£(v) = £ + (’Tov,v>k

Now let 5E = Hﬁ &ng be the decomposition of HE into positive
and negative eigenspaces of To’ with projections P1 and P2.
(Note that T, is a self adjoint operator, whichis en = if

= k and compact if j < k). If we put B = (Tolﬁf)% and

J
i
C = (-Tong)f, the conclusion of the lemma follows.

Remark A5 There should be a generalization of the lemma
to generate critical menifolds. The principal difficulty
is that we needed a very special chart of HR(N,M) in order
to apply elliptic operator theory to a local form of the
energy. In general it might not be possible to find a
chart which both straightened out a submanifold and left the

energy in a reasonable form.
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