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PACS 73.22.Pr – Electronic structure of graphene
PACS 73.20.Fz – Weak or Anderson localisation

Abstract – We show that electron states in disordered graphene, with an onsite potential that
induces inter-valley scattering, are localised for all energies at disorder as small as 1/6 of the
band width of clean graphene. We clarify that, in order for this Anderson-type localisation to be
manifested, graphene flakes of size ≈ 200×200 nm2 or larger are needed. For smaller samples, due
to the surprisingly large extent of the electronic wave functions, a regime of apparently extended
(or even critical) states is identified. Our results complement earlier studies of macroscopically
large samples and can explain the divergence of results for finite-size graphene flakes.

open  access Copyright c© EPLA, 2013
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title, journal citation, and DOI.

Introduction. – In two-dimensional (2D) quantum
systems, uncorrelated potential disorder has been shown
to lead to complete (Anderson) localisation of single-
particle states [1–4]. This statement has been supported
by a wealth of experimental, numerical and theoretical
results, including the celebrated scaling hypothesis [5]
and seminal works based on the non-linear σ model [4,6].
States in a 2D system are marginally localised even for
small disorder and d = 2 is the lower critical dimension
of the Anderson transition in time-reversal–invariant sys-
tems. However, while this statement is true in general,
it has also been shown that the situation is more complex
when correlations in the disorder [7,8] or many-body inter-
actions [6,9] have to be taken into account. Even without
these additional factors, the 2D situation remains chal-
lenging since the extent of the localised states for weak
disorder can become much larger than the available sys-
tem sizes, which might lead to results of a feigned extended
behaviour.

In graphene, as prototypical 2D material [10,11], one
naturally expects disorder to lead to localisation as well.
However, due to its linear dispersion relation around the
Dirac point at energy E = 0 and non-zero momen-
tum, the resulting absence of backscattering in clean sam-
ples [12], might lead to a somewhat unusual behaviour.

(a)E-mail: cglezsantander@fis.ucm.es

The localisation properties of graphene in the vicinity
of the Dirac point have been studied intensively. It
was found that strong disorder leads to localisation at
E = 0 [13,14], while disorder that does not lead to inter-
valley mixing does not [15,16]. The direction of transport
along graphene [17] and graphene nanoribbons [18,19] was
shown to modify the quantitative strengths of the localisa-
tion effects. On the other hand, many, mainly numerical,
results have indicated the existence of localisation that is
unusually weak at E = 0 [20–24] or close to E = 0 [25].
Some results supporting mobility edges [20,22], critical
states [21,23,24] and a metallic-like to insulating tran-
sition [25] have been put forward. Recent discussions
of results at E = 0 [26,27] or for strong disorder at
E � 0 [28] indicate complete localisation for disorder with
inter-valley mixing, in agreement with the earlier stud-
ies [14–16] and a true metal-insulator transition has only
been observed in hydrogenated graphene [29,30].

Nevertheless, these studies still leave the regime of small
energies that are close to but away from E = 0, for weak
but inter-valley mixing onsite disorder unresolved, where
ref. [25] (see fig. 2 of this reference) found evidence for a
transition-like behaviour. In fig. 1 we show this behaviour
for 2D graphene flakes with 7002 lattice sites. Clearly, in-
creasing the size M2 of the graphene samples leads to in-
creasing localisation lengths around E ≈ 0.25, with energy
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Fig. 1: (Color online) Reduced localisation length ΛM =
λM/M as a function of energy for the ZZ graphene lattice at
disorder W = 1.5 and sizes ranging from M × L = 50 × 50
to M × L = 700 × 700. The error bars indicate the er-
ror of the mean from averaging over 500 samples, except for
M × L = 700 × 700 where the average is over 100 samples.
The lines are guides to the eye only. Inset: schematic of the
AC and ZZ edge transport directions (arrows) while the dashed
(dotted) lines indicate AC (ZZ) transverse layers, respectively
(here M × L = 4 × 7 in ZZ).

in units of the hopping energy between carbon atoms,
while around E = 0.9 the trend seems to have reversed. In
this paper, we will show that fig. 1 does not indicate the
existence of a transition to delocalised states. Rather, we
find that the finite-size trend reverses towards localised be-
haviour upon further increasing the system size. However,
we will need to go to very large system sizes of the order
of 2.25× 106 lattice sites to show this. For smaller system
sizes from about 360, 000 to about 106 [20–24], scaling re-
sults indicate roughly a system size independence of ΛM .
Hence our results explain why there is such a diversity of
results for the localisation properties of graphene at and
close to E = 0, i.e. we find that one needs very large
system sizes, larger than 2× 106 lattice sites, to reach the
asymptotic regime.

Numerical approach. – Our calculation is based on
the standard 2D single-particle Hamiltonian

H =
L∑

l=1

c†l εlcl −
L−1∑
l=1

(c†l tlcl+1 + c†l+1tlcl), (1)

on a lattice with L×M sites. Here, εl denotes the M ×M
Hamiltonian matrix acting in the (transverse) m direction
for each vertical arm at (longitudinal) position l [31] and
c†l ≡

(
c†l,1, c

†
l,2, . . . , c

†
l,M

)
, with cl,m (c†l,m) the usual an-

nihilation (creation) operators of a tight-binding orbital
at the site {l,m}. The diagonal elements for each εl cor-
respond to random onsite potentials εl,m ∈ [−W/2,W/2],
m = 1, . . . ,M , which are uniformly distributed and W de-
termines the disorder strength. The off-diagonal elements
model the hopping in transverse direction while tl ≡ t Cl

is the hopping along the l direction, with Cl denoting the
connectivity matrix between layers l and l + 1 [13,28,32].
All energies are measured in units of the hopping energy, t.

The electronic problem defined by the Schrödinger equa-
tion Hψ = Eψ for the Hamiltonian (1) can be studied con-
veniently by the transfer-matrix method (TMM) [3,28].
However, since we are not interested in the quasi-1D
problem of graphene nanoribbons with L � M [18,19],
we need to modify the TMM to allow the treatment of
2D M × M graphene samples1. This has implications
for the convergence of standard TMM calculations since
we can no longer use the self-averaging property nor-
mally used for L → ∞. Our modification involves the
definition of forward and backward transfer-matrix multi-
plications [33,34]. The method also yields the inverse lo-
calisation length 1/λM (E,W ), but only for a single M×M
graphene sample. Afterwards, the 1/λ values need to be
averaged for many M × M disorder configurations with
the same parameters M , E and W .

The TMM must be adapted to handle the hexagonal
structure of the graphene lattice [13,32] by suitably chosen
εl and Cl matrices. We distinguish between transport di-
rections parallel to armchair (AC) and zig-zag (ZZ) edges.
Our approach is similar to ref. [28] and for more details
see ref. [35]. A pictorial representation is shown in the
inset of fig. 1 for AC and ZZ graphene2. We chose hard
wall boundary conditions for all results presented here. In
order to have the same number of atoms for both ZZ and
AC edges, the width of the AC sample should be chosen
as MAC = LZZ/2 and the length as LAC = 2MZZ. In this
way we ensure that we are studying the same sample but
in both directions of transport.

The scaling hypothesis for finite-sized systems implies
ΛM (E,W ) ≡ λM (E,W )/M = f(ξ(E,W )/M) for a suit-
ably chosen scaling parameter ξ(E,W ) [2]. For strong
disorder, λM ∝ ξ [3]. The λM data can be rescaled nu-
merically by a least-squares fitting procedure to obtain
the scaling function f [3,36]. In the case of the 2D An-
derson model on a square lattice, this function has a sin-
gle finite-size scaling (FSS) branch with decreasing ΛM

for increasing M —indicating the localised regime. For
the 3D Anderson model, the same procedure leads to two
branches, the first one denoting the localised regime and
the second one indicating the extended regime with in-
creasing ΛM values as M increases. This two-branch be-
haviour is the signature of the transition from localised to
extended states [3]. Alternatively, we can try to assume
an analytical form for f and test whether this form fits the
data with the required accuracy [37,38]. Assuming, e.g.,

1A “square” M × M sample for, e.g. ZZ graphene physically
corresponds to a rectangle with length to width ratio of

√
3M/(3M−

2) ∼ 0.58. For AC graphene, the ratio is (3M − 2)/
√

3M .
2The choice of layers in fig. 1 leads to equal spacing for ZZ

graphene with inter-layer distance 0.142 nm × cos π/6 = 0.123 nm.
For AC graphene the inter-layer spacing alternates between 0.142 nm
and 0.142 nm × sin π/6 = 0.071 nm. Similar considerations apply in
the transverse direction. We will not attempt to rescale these length
scales here.
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Fig. 2: (Color online) Average localisation length as a function of energy for a square lattice (left panel), AC (central panel)
and ZZ (right panel) graphene lattices for systems with 104 lattices sites and different values of disorder W = 1, 2, . . . , 10. Lines
connecting the data values are guides to the eyes only. For clarity, we only indicate the labels for W = 1 and W = 10. The error
bars are within the symbol sizes. The M and L values are indicated by horizontal dashed lines. The vertical lines at E = ±1
for AC and ZZ graphene mark the position of the van Hove singularities in the density of states of clean graphene.

the power-law behaviour f ∝ |1 − E/Ec|L1/v of the 3D
Anderson transition, then this approach allows not only
to construct f , but also determines the critical exponent ν
and the energy Ec (or disorder Wc) at which the transition
occurs [37,39]. We will use both FSS approaches below.

Results. – In fig. 2 we show the variation of the
disorder-averaged localisation length λM (E) for different
values of disorder W . The lattices correspond to square
lattice, AC and ZZ graphene. In each case, the system
sizes were chosen such that M × L = 104 lattice sites,
corresponding to M = 100 and L = 100 for the square
lattice and the ZZ graphene, but M = 50 and L = 200
for the AC graphene lattice. We first note that at weak
disorder (W ∼ 1) the half of the bandwidth reflects the
number of nearest neighbours and hence tends to 4 for the
square lattice and tends to 3 for AC and ZZ graphene [40].
Furthermore, there is the usual approximate symmetry be-
tween positive and negative energies. When the strength
of the disorder increases the λ values decrease for all lat-
tices as the wavefunctions become more localised. For very
strong disorder, the localisation lengths are much smaller
than the system sizes M and L and the states are expo-
nentially localised with λ representing the decay length.
On the other hand, for weaker disorder, the localisation
lengths are comparable or larger than the system sizes,
and we can no longer assume that the exponential decay
implicit in the use of λ is still justified. Then λ is simply a
convenient measure of the spatial extent of the wave func-
tions, but not necessarily linearly related to a localisation
length. Still, a larger such extend will imply larger λ val-
ues. With this in mind, we see in fig. 2 that, for W � 4,
the localisation lengths increase rapidly as we decrease W
for the square lattice. However, for the case of AC and
ZZ graphene lattices, we observe that in the vicinity of
E = 0, the λ values again decrease, leading to values of
λM (E ≈ 0) which seem very similar for W = 1 and 2.
Clearly, the drop in λM in the graphene lattices at E = 0
is a signature of the Dirac point with reduced density of
states [41,42].

In standard quasi-1D TMM, an increasing value of ΛM

for weak disorder as M → ∞ signals the start of the

extended regime. Even with ΛM > 1, λM can still be
interpreted as a localisation length since we have L � M
and the localisation in the l direction is well defined. As
discussed before, the situation might be different for our
modified TMM. Nevertheless, we already see from fig. 2
that for energies |E| � 1, the λ values for the square lat-
tice and AC/ZZ graphene behave similarly. If any new,
graphene-specific, finite-size behaviour can be expected,
it should be around E ≈ 0. Therefore we have studied
in fig. 1 the finite-size behaviour of ΛM in ZZ graphene
for energies 0 ≤ E ≤ 1 at weak disorder W = 1.5 when
ΛM ≥ 1. As one can see from this figure, for energies larger
then E = 0.9, increasing M (and L) leads to a decrease
of ΛM , the traditional signature of localisation. However,
for energies E � 0.6, increasing M gives increasing ΛM

values. Such a behaviour for M → ∞ would indicate ex-
tended states. Quite similar findings have been reported
previously in the same energy range for smaller systems
up to M = 252 [25].

Clearly, the existence of extended states in the vicinity
of the Dirac point in weakly disordered (but with inter-
valley mixing) graphene would be surprising. However, let
us already note several suspicious observations, namely
i) there is no clear crossing point, rather a series of not
well-defined crossing points in the region E ∈ [0.7, 0.9].
Furthermore, ii) increasing the system size does not lead
to a clearer crossing, and we can also not identify a simple,
monotonic in M (irrelevant) shift of such a crossing point.
Let us also emphasize that system widths of M = 700 as
used in fig. 2 are already reasonably large for TMM [37].
If there truly was a metal-insulator transition in the in-
dicated energy range, then we would expect to see good
quality FSS. On the other hand, if the behaviour of fig. 1
was simply due to finite-size effects, then we should see
the increase in ΛM vanish for large enough M . Since the
increase seems largest at energy E = 0.25, we shall study
this energy in detail for a square lattice as well as AC/ZZ
graphene.

In fig. 3 we show FSS results for ΛM in square lattices
and ZZ graphene with M and L values chosen such that
the number of sites M × L ranges from 1002 to 7002. For
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Fig. 3: (Color online) Reduced localisation length as a function of the reduced scaling parameter for square lattices (left plot)
and ZZ graphene lattice (right plot) at E = 0.25. The disorder values used are W ∈ [1, 10] as indicated in the legends. The
dashed line in each plot indicates the expected relation λM (W ) ∝ ξ(W ) for large W . The error bars are only shown when
larger than the symbol sizes and have been generated by resampling the FSS according to the accuracy of each ΛM value [35].
The inset in all cases shows ξ(W ) scaled to coincide with λM values for large W . The solid line in the inset of the left plot
corresponds to ξ(W ) obtained after FSS of standard TMM localisation lengths in quasi-1D square lattices (at E = 0) [43]. The
other lines in the inset are guides to the eye only.

strong disorder, we have ΛM ∝ 1/M as expected since
states are highly localised and λM is constant for M � λM

as indicated. Decreasing the disorder —or, equivalently,
decreasing M— leads to deviations from the simple 1/M
behaviour and indicates that ξ(W ) starts to increase. In
the standard quasi-1D square lattice TMM, this leads to
an evermore flat behaviour for ΛM (W ) as W → 0. We
indeed observe this behavior for E = 0 in square lat-
tices, AC and ZZ graphene (not shown) [35]. For smaller
disorder, W � 2, we find the reconstruction of a well-
defined FSS curve becomes numerically difficult. Never-
theless, the estimated scaling parameter ξ(W ) agrees very
well with a previous high-precision FSS from a quasi-1D
TMM [43]. Furthermore, the ξ(W ) behavior for squares
and ZZ graphene shows a single branch only, consistent
with complete localisation.

The situation is rather different for E = 0.25 as shown
in fig. 3. We see that FSS gives rise to localised branches as
well as the beginnings of what look like extended branches.
Here it is intriguing to see that even for a square lat-
tice, for the range of available system sizes and disor-
der —determined by the longest TMM runs available to
us— we find an apparent transition-like behavior. Ob-
viously, this would be in disagreement with the scaling
theory and of course also to the body of numerical results
based, among others, on quasi-1D TMM [3,4]. Similarly,
we observe transition-like behavior also for ZZ graphene
at E = 0.25. As in the square lattice case, the onset of the
extended branch is around W � 2. We have found similar
results also for AC graphene3.

3Previous studies have demonstrated that the finite width of AC
flakes determines its metallic or insulating behaviour at E = 0 [44].
In the case that 2MAC = 3n − 1 with n ∈ Z, the system is metallic.
At weak disorder, we observe this effect in our calculation through a

We have also tried to apply FSS assuming the expan-
sions of the power-law behaviour [37,39]. However, we
never find an acceptable fit to the data, although we vary
not only the expansion coefficients, but also the initial val-
ues used in the non-linear fits for Wc, ν, etc. Upon closer
inspection, we find that most such attempts to fit the data
lead to Wc ∼ 0 and large values of ν > 5. But even with
these large ν values, the ΛM values rise much faster for
small disorder. This suggests that the true behaviour is
not a power law but rather an exponential as in the well-
known square lattice [45].

The FSS results of fig. 3 for E = 0.25 and W � 2
do not show a very clear formation of extended branches,
particularly for the square case. In order to test the sta-
bility of these branches in FSS, we would need even larger
system sizes for all disorders W � 2. This is, however,
numerically prohibitive4. Thus we have chosen to restrict
ourselves to two disorder strengths, W = 1 and 1.25 for
E = 0.25. Even with this restriction, a considerable num-
ber of runs for M > 900 do not finish within our cho-
sen maximum time limit of about one week. Such λM

values have therefore a relative error εn, with n denot-
ing the sample, larger than the target of ε0 ≡ 5 × 10−5.
Hence we weigh such results less when computing an av-
erage. With i) wn = 1/ε2n or ii) wn = max(1, ε0/εn),
we define the averaged Lyapunov exponents as γM =∑

n wnγn/
∑

n wn with weighted standard-deviations

large increase of λM for such MAC that satisfies the above condition.
At E = 0.25 we do not see these finite width effects. Here we always
choose 2MAC �= 3n − 1 in order to avoid the edge-state metallicity
at these special sizes for W = 0 [44].

4The calculation of a single M × L = 700 × 700 sample for ZZ
graphene can take more than 6 hours at small W � 2 in a single
processor core. The computing time increases to about a week for
some 1500 × 1500 samples.
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√∑
n wn(γn − γM )2/

∑
n wn. In case ii), samples, which

have converged better than the target, are given less
weight in order to test the robustness of our results.

We show the resulting system size dependence of ΛM

values up to M = 1500 in fig. 4. We see that up to
M = 700, the ΛM values increase with increasing M , as
for extended states. From M = 800 onwards, there is
a regime in which we see little or no dependence on M
within the fluctuations of the data. Such behaviour, if it
were to continue for M → ∞, would be indicative of crit-
ical states. Finally, at M = 1500, we find a drop in ΛM .
The drop is present both in the unweighted mean as well
as, and even stronger, in the weighted means. This in-
dicates that the observed increase in ΛM with increasing
M up to M = 1400 is simply a finite-size effect. Go-
ing to larger system sizes recovers the expected behaviour
for localised states with decreasing ΛM for increasing M .
The hypothetical “extended” FSS curves in fig. 3 should
hence be interpreted as an intermediate regime in which
the localisation lengths become very large. Indeed, with
ΛM ≈ 10, this is beyond what has been observed in most
previous TMM studies.

A qualitative argument can be put forward to motivate
our results. Without disorder the density of states (DOS)
at E = 0 for a square lattice diverges whereas it is zero
for graphene (ZZ or AC). Upon increasing the disorder,
the DOS for the square lattice decreases as does the lo-
calisation length. For graphene, the same happens for
the van Hove singularities at E = ±1 [42]. On the other
hand, at E = 0 the DOS increases [42], which is well
known to correlate with large localisation lengths. The
crossover between these two regimes should be expected

(a) (b) (c) (d)

Fig. 5: (Color online) Disorder-averaged |ψl,m|2 values for 500
ZZ graphene samples with 104 lattice sites at E = 0 and
(a) W = 0.5, (b) W = 1, (c) W = 5 and (d) W = 10. Each
wave function has been normalized prior to averaging. The
large circle in panel (a) shows a zoom of the area in the bot-
tom left corner and the color scale on the bottom right of (a)
indicates the values of |ψ|2 from 0 (blue) to 1 (red) used for all
panels. The transport direction m is along the horizontal in all
panels as indicated by the arrow in panel (a).

around E ≈ 0.5 which is similar to what we observe. For
larger disorder W � 2 or, equivalently, larger system sizes
M � 1400, we recover the expected localised regime.

Once the modified TMM has reached convergence, the
wave functions (ψl, ψl−1) are true eigenfunctions of the
global 2M × 2M forward-backward transfer matrix T †

LTL

for a given sample. Hence ψl,m, l,m = 1, . . . , M , is the
transport eigenfunction of H. In fig. 5 we show the re-
sults for ZZ graphene at four different values of disorder
at E = 0. For weak disorder W = 0.5 and 1, one can
clearly see the enduring presence of edge states previously
predicted for clean ZZ samples [46]. For stronger values
of disorder, the spatial disorder distribution itself becomes
dominant. At E = 0.25 there is no evidence of edge states.
Results for AC graphene are similarly consistent with the
literature, i.e. we find an absence of edge states for the
chosen AC graphene lattice sizes consistent with semicon-
ducting behaviour on finite width samples [46]. As ex-
pected for square lattices, we do not observe those strong
edge states.

Conclusions. – Our results show that up to lengths
scales of 1500 times the C-C distance in graphene, i.e. up
to 213 nm, onsite disordered graphene, even with inter-
valley scattering, exhibits surprisingly delocalised states
in the vicinity of the Dirac point. This corroborates the
trend towards similar such delocalisation-like behaviour
found previously [20–25], while also reaffirming that the
true infinite system limit obeys the localisation predic-
tions [14–19]. In fact, the tendency for large localisa-
tion lengths is so strong that even FSS can mislead to
construct seemingly extended branches, although a very
large system size analysis shows that only the localised
behaviour corresponds to the true thermodynamic be-
haviour [15,16,28]. We emphasise that our results also
explain graphene’s robustness against defects in similarly
sized ribbons [47,48], billiards [49] and quantum dots [50].
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Our approach is based on a modified TMM which al-
lows to study “square” flakes of graphene. This TMM
can convincingly reproduce the infinite-size estimates of
localisation lengths obtained from standard TMM and we
expect the method to be useful in other contexts as well.
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Rev. B, 77 (2008) 245117.
[33] Frahm K., Müller-Groeling A., Pichard J. L. and

Weinmann D., Europhys. Lett., 31 (1995) 169.
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R. A., Phys. Rev. B, 84 (2011) 134209.
[39] Rodriguez A., Vasquez L. J., Slevin K. and Römer
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