ON THE SOLVABILITY OF CERTAIN (SSIE) WITH OPERATORS OF THE FORM $B(r, s)$

Bruno de Malafosse and Eberhard Malkowsky

Abstract. Given any sequence $z=\left(z_{n}\right)_{n \geq 1}$ of positive real numbers and any set E of complex sequences, we write E_{z} for the set of all sequences $y=\left(y_{n}\right)_{n \geq 1}$ such that $y / z=\left(y_{n} / z_{n}\right)_{n \geq 1} \in E$; in particular, $\mathbf{s}_{z}^{(c)}$ denotes the set of all sequences y such that y / z converges. In this paper we deal with sequence spaces inclusion equations (SSIE), which are determined by an inclusion each term of which is a sum or a sum of products of sets of sequences of the form $\chi_{a}(T)$ and $\chi_{x}(T)$ where a is a given sequence, the sequence x is the unknown, T is a given triangle, and $\chi_{a}(T)$ and $\chi_{x}(T)$ are the matrix domains of T in the set χ. Here we determine the set of all positive sequences x for which the $(S S I E) \mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right)$ holds, where $r, r^{\prime}, s^{\prime}$ and s are real numbers, and $B(r, s)$ is the generalized operator of the first difference defined by $(B(r, s) y)_{n}=r y_{n}+s y_{n-1}$ for all $n \geq 2$ and $(B(r, s) y)_{1}=r y_{1}$. We also determine the set of all positive sequences x for which

$$
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l(n \rightarrow \infty) \text { for all } y
$$

and for some scalar l. Finally, for a given sequence a, we consider the a-Tauberian problem which consists of determining the set of all x such that $\mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{a}^{(c)}$.

1. Introduction

As usual we denote by ω the set of all complex sequences $x=\left(x_{n}\right)_{n \geq 1}$, and by c_{0}, c and ℓ_{∞} the subsets of all null, convergent and bounded sequences, respectively; we write $c s$ for the set of all convergent complex series. Also let U^{+}denote the set of all sequences $u=\left(u_{n}\right)_{n \geq 1}$ with $u_{n}>0$ for all n. Given a sequence $a \in \omega$ and a subset E of ω, Wilansky [15] introduced the notation $a^{-1} * E=\left\{y \in \omega: a y=\left(a_{n} y_{n}\right)_{n \geq 1} \in E\right\}$. The sets $\mathbf{s}_{a}, \mathbf{s}_{a}^{0}$ and $\mathbf{s}_{a}^{(c)}$ were introduced in [3] by $\left(\left(1 / a_{n}\right)_{n \geq 1}\right)^{-1} * E$ for any sequence $a \in U^{+}$ and $E \in\left\{\ell_{\infty}, c_{0}, c\right\}$. In $[4,5]$ the sum $\chi_{a}+\chi_{b}^{\prime}$ and the product $\chi_{a} * \chi_{b}^{\prime}$ were defined, where χ and χ^{\prime} are any of the symbols $\mathbf{s}, \mathbf{s}^{0}$, or $\mathbf{s}^{(c)}$; also matrix transformations in the sets $\mathbf{s}_{a}+\mathbf{s}_{b}^{0}\left(\Delta^{q}\right)$ and $\mathbf{s}_{a}+\mathbf{s}_{b}^{(c)}\left(\Delta^{q}\right)$ were characterized, where Δ is the operator of the first difference. In [9] de Malafosse and

[^0]Malkowsky gave the properties of the spectrum of the matrix of weighted means \bar{N}_{q} considered as an operator in the set \mathbf{s}_{a}. In [10] characterizations can be found of the classes of matrix transformations from $\mathbf{s}_{a}\left(\Delta^{q}\right)$ into χ_{b}, where χ is any of the symbols $\mathbf{s}, \mathbf{s}^{0}$, or $\mathbf{s}^{(c)}$. Using the spectral properties of the operator of the first difference in the sets \mathbf{s}_{α}^{0} and $\mathbf{s}_{\beta}^{(c)}$, in [5] we were able to simply the set $\mathbf{s}_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+\mathbf{s}_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$, where h and l are complex numbers, and α and β are given sequences; also matrix transformations in this set were characterized in [5]. In [11] de Malafosse and Rakočević gave applications of the measure of noncompactness to operators on the spaces \mathbf{s}_{α}, $\mathbf{s}_{\alpha}^{0}, \mathbf{s}_{\alpha}^{(c)}$ and ℓ_{α}^{p} to determine compact operators between some of these spaces. Sequence spaces inclusion equations (SSIE) and sequence spaces equations (SSE) were introduced and studied in $[2,8,7]$. They are determined by an inclusion or identity each term of which is a sum or a sum of products of sets of the form $\chi_{a}(T)$ and $\chi_{f(x)}(T)$ where χ is any of the symbols $\mathbf{s}, \mathbf{s}^{0}$, or $\mathbf{s}^{(c)}$, a is a given sequence in U^{+}, x is the unknown, f maps U^{+}to itself, and T is a triangle. In this paper we use the operator represented by the triangle $B(r, s)$, called the generalized operator of the first difference and defined by $(B(r, s) y)_{n}=r y_{n}+s y_{n-1}$ for all $n \geq 2$ and $(B(r, s) y)_{1}=r y_{1}$. Then we deal with the $(\mathrm{SSIE}) \mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right)$, which is equivalent to

$$
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l^{\prime} \quad(n \rightarrow \infty) \text { for all } y
$$

We then obtain extensions of results stated in $[3,2,8,7,6]$. The notion of an a-Tauberian theorem was introduced in [6] as follows. For a given sequence a, an a-Tauberian theorem is one in which the convergence of a sequence $y / a=\left(y_{n} / a_{n}\right)_{n \geq 1}$ is deduced from the convergence of some transform of the sequence together with some side conditions, the so-called a-Tauberian conditions. In [6], for given sequences λ and μ, we determined the set of all sequences a such that

$$
\frac{1}{\lambda_{n}} \sum_{k=1}^{n} \mu_{k}\left(\sum_{i=k}^{\infty} y_{i}\right) \rightarrow l \text { implies } \frac{y_{n}}{a_{n}} \rightarrow l^{\prime} \quad(n \rightarrow \infty)
$$

for all $y \in c s$. In [6] a-Tauberian theorem is an extension of Hardy's Tauberian theorem. In Hardy's Tauberian theorem it is shown that under some condition for $y=\left(y_{n}\right)_{n \geq 1}$, we have $n^{-1} \sum_{k=1}^{n} y_{k} \rightarrow l$ implies $y_{n} \rightarrow l$ as n tends to infinity. In a similar way, for a given sequence a, we will determine the set of all positive sequences x for which

$$
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{y_{n}}{a_{n}} \rightarrow l(n \rightarrow \infty) \text { for all } y
$$

If $a_{n}=1$ for all n we obtain the classical Tauberian problems. In [14] we considered the (C, λ, μ) summability that generalizes the $(C, 1)$ summability and established conditions for the equivalence between the convergence of x_{n} / μ_{n} and the convergence of the sequence

$$
\mu_{n}^{\prime}=1 / \lambda_{n} \sum_{m=1}^{n} \widehat{\mu}_{m}(x),
$$

where $\widehat{\mu}_{n}(x)=\left(x_{1}+\ldots .+x_{n}\right) / \mu_{n}$, and also for the equivalence between the convergence of $\widehat{\mu}_{n}(x)$ and the convergence of μ_{n}^{\prime}.

This paper is organized as follows. In Section 2 we recall some results on AK and BK spaces and on the set $S_{a, b}$. In Section 3 we consider the operator $C(\xi)$ and its inverse $\Delta(\xi)$, and recall the definitions and properties of the sets $\widehat{\Gamma}, \widehat{C}, \Gamma$ and $\widehat{C_{1}}$. In Section 4 we solve the (SSIE) $s_{x}^{(c)}(B(r, s)) \subset$ $\mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right)$ where $B(r, s)$ is the generalized operator of the first difference defined above. In Section 5 we determine the set of all sequences x of positive real numbers such that $\left(r y_{n}+s y_{n-1}\right) / x_{n} \rightarrow l$ implies $\left(r^{\prime} y_{n}+s^{\prime} y_{n-1}\right) / x_{n} \rightarrow l$ as n tends to infinity, for some scalar l and for given reals r, s, r^{\prime} and s^{\prime}. Finally in Section 6 we consider some a-Tauberian theorems; this is achieved by determining the set of all x such that $s_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{a}^{(c)}$.

2. Notations and preliminary Results

Let $A=\left(a_{n k}\right)_{n, k \geq 1}$ be an infinite matrix and $y=\left(y_{k}\right)_{k \geq 1}$ be a sequence. Then we write

$$
\begin{equation*}
A_{n} y=\sum_{k=1}^{\infty} a_{n k} y_{k} \text { for any integer } n \geq 1 \tag{2.1}
\end{equation*}
$$

and $A y=\left(A_{n} y\right)_{n \geq 1}$ provided all the series in (2.1) converge.
Let E and F be any subsets of ω. Then we write (E, F) for the class of all infinite matrices A for which the series in (2.1) converge for all $y \in E$ and all n, and $A y \in F$ for all $y \in E$. So if $A \in(E, F)$ then we are led to the study of the operator $\Lambda=\Lambda_{A}: E \rightarrow F$ defined by $\Lambda y=A y$ and we identify the operator Λ with the matrix A.

A Banach space E of complex sequences is said to be a $B K$ space if each projection $P_{n}: E \rightarrow \mathbb{C}$ defined by $P_{n}(y)=y_{n}$ for all $y=\left(y_{n}\right)_{n \geq 1} \in E$ is continuous. A BK space E is said to have $A K$ if every sequence $y=$ $\left(y_{k}\right)_{k \geq 1} \in E$ has a unique representation $y=\sum_{k=1}^{\infty} y_{k} e^{(k)}$ where $e^{(k)}$ is the sequence with 1 in the k-th position and 0 otherwise.

If u and v are sequences and E and F are two subsets of ω, then we write $u v=\left(u_{n} v_{n}\right)_{n \geq 1}$ and

$$
M(E, F)=\left\{u=\left(u_{n}\right)_{n \geq 1}: u v \in F \text { for all } v \in E\right\}
$$

for the multiplier space of E and F.
To simplify notations, we use the diagonal matrix D_{a} defined by $\left[D_{a}\right]_{n n}=$ a_{n} for all n, write

$$
D_{a} * E=(1 / a)^{-1} * E=\left\{\left(y_{n}\right)_{n \geq 1} \in \omega:\left(y_{n} / a_{n}\right)_{n} \in E\right\}
$$

for any $a \in U^{+}$and any $E \subset \omega$, and define $\mathbf{s}_{a}=D_{a} * \ell_{\infty}, \mathbf{s}_{a}^{0}=D_{a} * c_{0}$ and $\mathbf{s}_{a}^{(c)}=D_{a} * c$, (see, for instance, $[4,3,11]$). Each of the spaces $D_{\alpha} * \chi$, where $\chi \in\left\{\ell_{\infty}, c_{0}, c\right\}$, is a BK space normed by $\|\xi\|_{\mathbf{s}_{a}}=\sup _{n \geq 1}\left(\left|\xi_{n}\right| / a_{n}\right)$ and \mathbf{s}_{a}^{0} has AK (see [15, Theorem 4.3.6]).

Now let $a=\left(a_{n}\right)_{n \geq 1}, b=\left(b_{n}\right)_{n \geq 1} \in U^{+}$. By $S_{a, b}$ we denote the set of all infinite matrices $\Lambda=\left(\lambda_{n k}\right)_{n, k \geq 1}$ such that

$$
\|\Lambda\|_{S_{a, b}}=\sup _{n \geq 1}\left(\frac{1}{b_{n}} \sum_{k=1}^{\infty}\left|\lambda_{n k}\right| a_{k}\right)<\infty
$$

It is well known that $\Lambda \in\left(\mathbf{s}_{a}, \mathbf{s}_{b}\right)$ if and only if $\Lambda \in S_{a, b}$. So we can write $\left(\mathbf{s}_{a}, \mathbf{s}_{b}\right)=S_{a, b}$.

When $\mathbf{s}_{a}=\mathbf{s}_{b}$ we obtain the Banach algebra with identity $S_{a, b}=S_{a}$ (see [3]), normed by $\|\Lambda\|_{S_{a}}=\|\Lambda\|_{S_{a, a}}$. We also have $\Lambda \in\left(\mathbf{s}_{a}, \mathbf{s}_{a}\right)$ if and only if $\Lambda \in S_{a}$.

If $a=\left(r^{n}\right)_{n \geq 1}$, the sets $S_{a}, \mathbf{s}_{a}, \mathbf{s}_{a}^{0}$ and $\mathbf{s}_{a}^{(c)}$ are denoted by $S_{r}, \mathbf{s}_{r}, \mathbf{s}_{r}^{0}$ and $\mathbf{s}_{r}^{(c)}$, respectively (see [4]). When $r=1$, we obtain $\mathbf{s}_{1}=\ell_{\infty}, \mathbf{s}_{1}^{0}=c_{0}$ and $\mathbf{s}_{1}^{(c)}=c$, and witing $e=(1,1, \ldots)$ we have $S_{1}=S_{e}$. It is well known that $\left(\mathbf{s}_{1}, \mathbf{s}_{1}\right)=\left(c_{0}, \mathbf{s}_{1}\right)=\left(c, \mathbf{s}_{1}\right)=S_{1}$ (see, for instance, [15, Example 8.4.5A]).

In the sequel we will frequently use the obvious fact that $\Lambda \in\left(\chi_{a}, \chi_{b}^{\prime}\right)$ if and only if $D_{1 / b} \Lambda D_{a} \in\left(\chi_{e}, \chi_{e}^{\prime}\right)$ where χ, χ^{\prime} are any of the symbols $\mathbf{s}^{0}, \mathbf{s}^{(c)}$, or s .

For any subset E of ω, we put $\Lambda E=\{\eta \in \omega: \eta=\Lambda y$ for some $y \in E\}$. If F is a subset of ω, we write $F(\Lambda)=F_{\Lambda}=\{y \in \omega: \Lambda y \in F\}$ for the matrix domain of Λ in F.
3. The operators $C(\xi), \Delta(\xi)$ and the sets $\widehat{\Gamma}, \widehat{C}, \Gamma$ and $\widehat{C_{1}}$

An infinite matrix $T=\left(t_{n k}\right)_{n, k \geq 1}$ is said to be a triangle if $t_{n k}=0$ for $k>n$ and $t_{n n} \neq 0$ for all n. Now let U be the set of all sequences $\left(u_{n}\right)_{n \geq 1} \in \omega$ with $u_{n} \neq 0$ for all n. If $\xi=\left(\xi_{n}\right)_{n \geq 1} \in U$, we write $C(\xi)$ for the triangle
with

$$
[C(\xi)]_{n k}= \begin{cases}\frac{1}{\xi_{n}} & \text { if } k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

(see, for instance, [12]-[14]). It is easy to see that the triangle $\Delta(\xi)$ defined by

$$
[\Delta(\xi)]_{n k}= \begin{cases}\xi_{n} & \text { if } k=n \\ -\xi_{n-1} & \text { if } k=n-1 \text { and } n \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

is the inverse of $C(\xi)$, that is, $C(\xi)(\Delta(\xi) y)=\Delta(\xi)(C(\xi) y)=y$ for all $y \in \omega$. If $\xi=e$ we get $\Delta(e)=\Delta$, where Δ is the well-known operator of the first difference defined by $\Delta_{n} y=y_{n}-y_{n-1}$ for all $y \in \omega$ and all $n \geq 1$, with the convention $y_{0}=0$. It is usual to write $\Sigma=C(e)$. We note that Δ and Σ are inverse to one another, and $\Delta, \Sigma \in S_{R}$ for any $R>1$.

To simplify notation, for $t>0$ and $\xi \in U^{+}$, we write $\xi_{n}^{\prime}=t^{-n} \xi_{n}$ and

$$
c_{n}(t, \xi)=\left[C\left(\xi^{\prime}\right) \xi^{\prime}\right]_{n}=\frac{t^{n}}{\xi_{n}} \sum_{k=1}^{n} \frac{\xi_{k}}{t^{k}} \text { for all } n
$$

and

$$
c_{n}(\xi)=c_{n}(1, \xi)=\frac{1}{\xi_{n}} \sum_{k=1}^{n} \xi_{k} \text { for all } n
$$

We also consider the sets

$$
\begin{gathered}
\widehat{C}=\left\{\xi \in U^{+}: c_{n}(\xi) \rightarrow l(n \rightarrow \infty) \text { for some scalar } l\right\} \\
\widehat{C_{1}}=\left\{\xi \in U^{+}: \sup _{n} c_{n}(\xi)<\infty\right\} \\
\widehat{\Gamma}=\left\{\xi \in U^{+}: \lim _{n \rightarrow \infty}\left(\frac{\xi_{n-1}}{\xi_{n}}\right)<1\right\} \\
\Gamma=\left\{\xi \in U^{+}: \limsup _{n \rightarrow \infty}\left(\frac{\xi_{n-1}}{\xi_{n}}\right)<1\right\}
\end{gathered}
$$

and
$G_{1}=\left\{\xi \in U^{+}:\right.$there are $C>0$ and $\gamma>1$ such that $\xi_{n} \geq C \gamma^{n}$ for all $\left.n\right\}$.
We obtain the next lemma by [3, Proposition 2.1, p. 1786] and [9, Proposition 2.2, p. 88].

Lemma 3.1. We have $\widehat{C}=\widehat{\Gamma} \subset \Gamma \subset \widehat{C_{1}} \subset G_{1}$.
4. On The $(\mathrm{SSIE}) \mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right)$ FOR REAL NUMBERS r, s, r^{\prime} AND s^{\prime}

In this subsection we determine, for given real numbers r, s, r^{\prime} and s^{\prime}, the set of all $x \in U^{+}$such that

$$
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l^{\prime}(n \rightarrow \infty) \text { for all } y
$$

and for some scalars l and l^{\prime}. We will see that this is equivalent to determining the set of all $x \in U^{+}$that satisfy the (SSIE)

$$
\begin{equation*}
\mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right) \tag{4.1}
\end{equation*}
$$

where $B(r, s)$ and $B\left(r^{\prime}, s^{\prime}\right)$ are the generalized operators of the first difference.

We recall the next result which is a direct consequence of the famous Silverman-Toeplitz theorem.

Lemma 4.1. We have:
i) $\Lambda \in(c, c)$ if and only if

$$
\Lambda \in S_{1}, \lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} \lambda_{n k}=l \text { and } \lim _{k \rightarrow \infty} \lambda_{n k}=l_{k} \text { for all } k \geq 1
$$

for some scalars l and l_{k} (see, for instance, [15, Theorem 1.3.6]).
ii) Let $\Lambda \in(c, c)$ and $y \in c$. If $\lim _{k \rightarrow \infty} \lambda_{n k}=0$ for all $k \geq 1$, then

$$
\lim _{n \rightarrow \infty} y_{n}=L \text { implies } \lim _{n \rightarrow \infty} \Lambda_{n} y=l L
$$

(see, for instance, [15, Theorem 1.3.8]).
To state the next theorem we need the following result.
Proposition 4.2. Let $x \in U^{+}$. Then

$$
c_{n}(x)=\frac{1}{x_{n}} \sum_{k=1}^{n} x_{k} \rightarrow l \text { if and only if } \frac{x_{n-1}}{x_{n}} \rightarrow 1-\frac{1}{l}(n \rightarrow \infty)
$$

for some scalar l.
Proof. We put $L=1-1 / l$ and $\Sigma_{n}=\sum_{k=1}^{n} x_{k}$ and note that $l \geq 1$, since $\Sigma_{n} / x_{n}=1+\Sigma_{n-1} / x_{n} \geq 1$ for all n.
It was shown in [3, Proposition 2.1, p. 1786] that $c_{n}(x) \rightarrow l(n \rightarrow \infty)$ implies $x_{n-1} / x_{n} \rightarrow 1-1 / l(n \rightarrow \infty)$.
To show the converse implication, we assume $x_{n-1} / x_{n} \rightarrow 1-1 / l(n \rightarrow \infty)$.

Since we have $\widehat{C}=\widehat{\Gamma}$ by Lemma 3.1, we can write $\Sigma_{n} / x_{n} \rightarrow l_{1}(n \rightarrow \infty)$ for some scalar l_{1}, and must show $l_{1}=l$. We have for every $n>2$

$$
\frac{x_{n-1}}{x_{n}}=\frac{\Sigma_{n-1}-\Sigma_{n-2}}{x_{n}}=\frac{\Sigma_{n-1}}{x_{n-1}} \frac{x_{n-1}}{x_{n}}-\frac{\Sigma_{n-2}}{x_{n-2}} \frac{x_{n-2}}{x_{n-1}} \frac{x_{n-1}}{x_{n}}
$$

and

$$
\frac{\Sigma_{n-1}-\Sigma_{n-2}}{x_{n}} \rightarrow l_{1} L-l_{1} L^{2}=L(n \rightarrow \infty)
$$

If $L \neq 0$ then we have $l_{1}=1 /(1-L)$ and since $L=1-1 / l$, we conclude

$$
l_{1}=\frac{1}{1-\left(1-\frac{1}{l}\right)}=l
$$

If $L=0$ then we have $l=1$ and

$$
\frac{\Sigma_{n}}{x_{n}}=\frac{\Sigma_{n-1}}{x_{n-1}} \frac{x_{n-1}}{x_{n}}+1 \rightarrow 1(n \rightarrow \infty)
$$

We recall that $B(r, s)$, where r and s are real numbers, is the lower triangular matrix

$$
B(r, s)=\left(\begin{array}{ccccc}
r & & & & \\
s & r & & 0 & \\
& s & r & & \\
0 & & \cdot & \cdot & \\
& & & \cdot & \cdot
\end{array}\right)
$$

For $r, s \neq 0$, the matrix $B(r, s)$ was introduced by Altay and Basar [1] and was called the generalized operator of the first difference.

In the next theorem we confine our studies to the case when $\alpha=-s / r>0$ if $\delta=r s^{\prime}-r^{\prime} s \neq 0$.

Theorem 4.3. Let r, s, r^{\prime} and s^{\prime} be real numbers with $r, s \neq 0$, and $\delta=$ $r s^{\prime}-r^{\prime} s$.
i) If $\delta=0$, then (SSIE) (4.1) holds for all x.
ii) If $\delta \neq 0$ and $\alpha=-s / r>0$, then (4.1) holds if and only if

$$
\lim _{n \rightarrow \infty} \frac{x_{n-1}}{x_{n}}<\frac{1}{\alpha}
$$

Proof. Inclusion (4.1) is equivalent to $I \in\left(\mathbf{s}_{x}^{(c)}(B(r, s)), \mathbf{s}_{x}^{(c)}\left(B\left(r^{\prime}, s^{\prime}\right)\right)\right)$, that is, to

$$
\widetilde{B}=B\left(r^{\prime}, s^{\prime}\right) B^{-1}(r, s) \in\left(\mathbf{s}_{x}^{(c)}, \mathbf{s}_{x}^{(c)}\right)
$$

This means

$$
\begin{equation*}
D_{1 / x} \widetilde{B} D_{x} \in(c, c) \tag{4.2}
\end{equation*}
$$

Since $r \neq 0$, the matrix $B(r, s)$ is invertible, its inverse is a triangle and elementary calculations give

$$
\left[B^{-1}(r, s)\right]_{n k}=\frac{1}{r} \alpha^{n-k} \text { for } 1 \leq k \leq n
$$

Then we obtain $\widetilde{B}_{n n}=r^{\prime} / r$, and have for $k \leq n-1$

$$
\begin{aligned}
\widetilde{B}_{n k} & =s^{\prime}\left[B^{-1}(r, s)\right]_{n-1, k}+r^{\prime}\left[B^{-1}(r, s)\right]_{n k} \\
& =s^{\prime} \frac{1}{r} \alpha^{n-k-1}+\frac{r^{\prime}}{r} \alpha^{n-k} \\
& =\alpha^{n-k-1}\left(\frac{s^{\prime}}{r}+\frac{r^{\prime}}{r} \alpha\right)=\alpha^{n-k-1} \frac{\delta}{r^{2}}
\end{aligned}
$$

It follows that

$$
\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k}= \begin{cases}\frac{1}{x_{n}} \alpha^{n-k-1} \frac{\delta}{r^{2}} x_{k} & \text { for } k \leq n-1 \\ \frac{r^{\prime}}{r} & \text { for } k=n\end{cases}
$$

We deduce from the characterization of (c, c) in Lemma 4.1 (i) that (4.2) holds if and only if

$$
\begin{equation*}
\sum_{k=1}^{n}\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k}=\frac{r^{\prime}}{r}-\frac{\delta}{r s} \widetilde{c}_{n}(\alpha, x) \rightarrow l(n \rightarrow \infty) \tag{4.3}
\end{equation*}
$$

for some scalar l, where

$$
\widetilde{c}_{n}(\alpha, x)=c_{n}(\alpha, x)-1=\frac{1}{\frac{x_{n}}{\alpha^{n}}} \sum_{k=1}^{n-1} \frac{x_{k}}{\alpha^{k}} .
$$

Indeed this condition implies $D_{1 / x} \widetilde{B} D_{x} \in S_{1}$ and $\left(x_{n} / \alpha^{n}\right)_{n} \in \widehat{C}$. Since we have $\widehat{C} \subset G_{1}$ by Lemma 3.1, we deduce $x_{n} / \alpha^{n} \rightarrow \infty(n \rightarrow \infty)$ and have for each k and for $n>k$

$$
\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k}=\frac{1}{x_{n}} \alpha^{n-k-1} \frac{\delta}{r^{2}} x_{k}=\frac{\alpha^{n}}{x_{n}}\left(\alpha^{-k-1} \frac{\delta}{r^{2}} x_{k}\right)=o(1)(n \rightarrow \infty)
$$

i) If $\delta=0$ then the sum in (4.3) reduces to r^{\prime} / r and inclusion (4.1) holds for all x.
ii) If $\delta \neq 0$ then inclusion (4.1) means that (4.3) is convergent and

$$
\widetilde{c}_{n}(\alpha, x) \rightarrow-\frac{l-\frac{r^{\prime}}{r}}{\frac{1}{r s} \delta}(n \rightarrow \infty)
$$

so we have $\left(x_{n} / \alpha^{n}\right)_{n} \in \widehat{C}$. By Lemma 3.1 we have $\widehat{C}=\widehat{\Gamma}$, and so (4.2) is equivalent to

$$
\lim _{n \rightarrow \infty} \frac{x_{n-1}}{\alpha^{n-1}} \frac{\alpha^{n}}{x_{n}}=\alpha \lim _{n \rightarrow \infty} \frac{x_{n-1}}{x_{n}}<1
$$

This shows ii).

The following result can easily be shown when $r=0$ or $s=0$.
Theorem 4.4. Let r, s, r^{\prime} and s^{\prime} be real numbers.
i) Let $r \neq 0$ and $s=0$.
a) If $s^{\prime} \neq 0$, then (4.1) holds if and only if

$$
\frac{x_{n-1}}{x_{n}} \rightarrow l(n \rightarrow \infty) \text { for some scalar } l .
$$

b) If $s^{\prime}=0$, then (4.1) holds for all x.
ii) Let $r=0$ and $s \neq 0$.
a) If $r^{\prime} \neq 0$, then (4.1) holds if and only if

$$
\frac{x_{n}}{x_{n-1}} \rightarrow l^{\prime}(n \rightarrow \infty) \text { for some scalar } l^{\prime}
$$

b) If $r^{\prime}=0$, then (4.1) holds for all x.
iii) Let $r=s=0$.
a) If $r^{\prime} \neq 0$, or $s^{\prime} \neq 0$, then (4.1) has no solution.
b) If $r^{\prime}=s^{\prime}=0$, then (4.1) holds for all x.

Proof. We only prove Part i), the proofs of the other parts are left to the reader.
i) Let $r \neq 0$ and $s=0$.

Since $B(r, s)=r I$ we have $\mathbf{s}_{x}^{(c)}(B(r, s))=\mathbf{s}_{x}^{(c)}$. So inclusion (4.1) is equivalent to $D_{1 / x} B\left(r^{\prime}, s^{\prime}\right) D_{x} \in(c, c)$. This means that there are $K \geq 0$ and L such that

$$
\left\{\begin{array}{c}
\left|r^{\prime}\right|+\left|s^{\prime}\right| \frac{x_{n-1}}{x_{n}} \leq K \text { for all } n \tag{*}\\
r^{\prime}+s^{\prime} \frac{x_{n-1}}{x_{n}} \rightarrow L(n \rightarrow \infty)
\end{array}\right.
$$

a) If $s^{\prime} \neq 0$ then we have

$$
\frac{x_{n-1}}{x_{n}} \rightarrow \frac{L-r^{\prime}}{s^{\prime}}(n \rightarrow \infty)
$$

b) If $s^{\prime}=0$ then the system $\left(^{*}\right)$ is satisfied for all x.

In the general case when $r, s, \delta, \alpha \neq 0$ we can state the following remark.

Remark. Condition (4.1) holds if and only if
(i) $\frac{\alpha^{n}}{x_{n}} \sum_{k=1}^{n-1} \frac{x_{k}}{\alpha^{k}} \rightarrow l(n \rightarrow \infty)$,
(ii) $\frac{|\alpha|^{n}}{x_{n}} \sum_{k=1}^{n-1} \frac{x_{k}}{|\alpha|^{k}} \leq K$ for all n
and

$$
\text { (iii) } \frac{\alpha^{n}}{x_{n}} \rightarrow l^{\prime}(n \rightarrow \infty)
$$

for some scalars l and l^{\prime}, and a constant $K>0$. This result is a direct consequence of condition (4.2) in the proof of Theorem 4.3.

5. The case of Regularity

5.1. The set of all $x \in U^{+}$such that $x_{n}^{-1} B(r, s) y_{n} \rightarrow l$ implies $x_{n}^{-1} B\left(r^{\prime}, s^{\prime}\right) y_{n} \rightarrow l(n \rightarrow \infty)$ for all y and for some l. A matrix $A \in(c, c)$ and the corresponding operator Λ are said to be regular if $y_{n} \rightarrow l$ implies $A_{n} y \rightarrow l(n \rightarrow \infty)$ for all $y \in \omega$ and for some scalar l. We then write $A \in(c, c)_{\text {reg }}$. As a direct consequence of Lemma 4.1, we have the known result (see, for instance, [15, Theorem 1.3.9])

Lemma 5.1. We have $\Lambda \in(c, c)_{\text {reg }}$ if and only if the next statements hold, a) $\Lambda \in S_{1}$,
b) $\sum_{k=1}^{\infty} \lambda_{n k} \rightarrow 1(n \rightarrow \infty)$,
c) $\lambda_{n k} \rightarrow 0(n \rightarrow \infty)$ for $k=1,2, \ldots$.

Now we consider the next question, where r, s, r^{\prime} and s^{\prime} are real numbers. What is the set of all $x \in U^{+}$such that

$$
\begin{equation*}
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l(n \rightarrow \infty) \text { for all } y \tag{5.1}
\end{equation*}
$$

and for some scalar l ? The answer to this question is given by the following theorem where we confine our studies to the case $-s / r>0$ when $\delta \neq 0$.
Theorem 5.2. Let r, s, r^{\prime} and s^{\prime} be real numbers.
i) Let $\delta \neq 0$ and $\alpha=-s / r>0$.
a) If $\tau=\left(r-r^{\prime}\right) /\left(s-s^{\prime}\right) \leq 0$, then (5.1) holds if and only if

$$
\lim _{n \rightarrow \infty} \frac{x_{n-1}}{x_{n}}=-\tau
$$

b) If $\tau>0$, then (5.1) has no solutions.
ii) Let $\delta=0$ and $r \neq 0$.
a) If $r=r^{\prime}$, then (5.1) holds for all x.
b) If $r \neq r^{\prime}$, then (5.1) has no solution.

Proof. First we note that statement (5.1) obviously means that

$$
\begin{equation*}
z_{n}=\left[D_{1 / x} B(r, s) y\right]_{n} \rightarrow l \text { implies } t_{n}=\left[D_{1 / x} B\left(r^{\prime}, s^{\prime}\right) y\right]_{n} \rightarrow l(n \rightarrow \infty) \tag{5.2}
\end{equation*}
$$

for all y and for some scalar l. Since $y=B^{-1}(r, s) D_{x} z$, for $r \neq 0$ statement (5.2) is equivalent to

$$
z_{n} \rightarrow l \text { implies }\left[D_{1 / x} \widetilde{B} D_{x} z\right]_{n} \rightarrow l(n \rightarrow \infty)
$$

where $\widetilde{B}=B\left(r^{\prime}, s^{\prime}\right) B^{-1}(r, s)$. Then (5.1) is equivalent to

$$
\begin{equation*}
D_{1 / x} \widetilde{B} D_{x} \in(c, c)_{r e g} \tag{5.3}
\end{equation*}
$$

which, by Lemma 5.1, is equivalent to

$$
\begin{aligned}
D_{1 / x} \widetilde{B} D_{x} & \in S_{1} \\
\sum_{k=1}^{n}\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k} & \rightarrow 1(n \rightarrow \infty)
\end{aligned}
$$

and

$$
\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k} \rightarrow 0(n \rightarrow \infty) \text { for all } k
$$

Using this characterization of $(c, c)_{\text {reg }}$ and reasoning as in Theorem 4.3, we deduce that (5.3) holds if and only if

$$
\begin{equation*}
\sum_{k=1}^{n}\left[D_{1 / x} \widetilde{B} D_{x}\right]_{n k}=\frac{r^{\prime}}{r}-\frac{\delta}{r s} \widetilde{c}_{n}(\alpha, x) \rightarrow 1(n \rightarrow \infty) \tag{5.4}
\end{equation*}
$$

i) Now we can show a) and b).

Putting $z_{n}=x_{n} \alpha^{-n}$, we have

$$
\widetilde{c}_{n}(z)=\frac{1}{z_{n}} \sum_{k=1}^{n-1} z_{k} \rightarrow L(n \rightarrow \infty)
$$

where

$$
\begin{equation*}
L=\frac{1-\frac{r^{\prime}}{r}}{-\frac{\delta}{r s}}=-\frac{r-r^{\prime}}{\delta} s \geq 0 \tag{5.5}
\end{equation*}
$$

Then we obtain $c_{n}(z)=\widetilde{c}_{n}(z)+1 \rightarrow L+1(n \rightarrow \infty)$, and deduce by Proposition 4.2 that (5.1) is equivalent to

$$
\frac{z_{n-1}}{z_{n}} \rightarrow 1-\frac{1}{L+1}=\frac{L}{L+1}(n \rightarrow \infty)
$$

Using (5.5) we immediately obtain $L /(L+1)=-\alpha \tau$. We conclude

$$
\frac{x_{n-1}}{x_{n}}=\frac{z_{n-1}}{z_{n}} \frac{1}{\alpha} \rightarrow-\tau \geq 0(n \rightarrow \infty)
$$

ii) If $\delta=0$ the sum defined in (5.4) reduces to $r^{\prime} / r=1$, that is, $r=r^{\prime}$. We then have $s=s^{\prime}$ and (5.1) holds for all x.

Now give a remark in which we consider a Tauberian problem using the operator of the generalized difference sequence.

Remark. If $r>1$ or $r<0$, then $r y_{n}+(1-r) y_{n-1} \rightarrow l$ implies $y_{n} \rightarrow l$ $(n \rightarrow \infty)$ for all y and for some scalar l. Indeed, it is enough to take $r^{\prime}=1$, $s^{\prime}=0$ and $x=e$ in Theorem 4.3. Then we have $1=-(r-1) / s$ with $-s / r>0$.

Now we consider the equivalence

$$
\begin{equation*}
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { if and only if } \frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l(n \rightarrow \infty) \text { for all } y \tag{5.6}
\end{equation*}
$$

and for some scalar l. Note that in [3] we determined the set of all $x \in U^{+}$ such that $\mathbf{s}_{x}^{(c)}(\Delta)=\mathbf{s}_{x}^{(c)}$. In [7] we gave a necessary and sufficient condition under which $a, b \in U^{+}$satisfy $\mathbf{s}_{a}^{(c)}(\Delta)=\mathbf{s}_{b}^{(c)}$. Since we have $B(-1,1)=\Delta$ and $B(1,0)=I$, then $\mathbf{s}_{x}^{(c)}(B(-1,1))=\mathbf{s}_{x}^{(c)}(\Delta)$ and $\mathbf{s}_{x}^{(c)}(B(1,0))=\mathbf{s}_{x}^{(c)}$. Thus we see that condition (5.6) is an extension of [3, 7].

We obtain the next result as a direct consequence of Theorem 5.2.
Theorem 5.3. Let r, s, r^{\prime} and s^{\prime} be real numbers, all different from zero.
i) Let $\delta \neq 0$ and $r / s, r^{\prime} / s^{\prime}<0$.
a) If $\tau=\left(r-r^{\prime}\right) /\left(s-s^{\prime}\right) \leq 0$, then the solutions of (5.6) are defined by

$$
\lim _{n \rightarrow \infty} \frac{x_{n-1}}{x_{n}}=-\tau
$$

b) If $\tau>0$, then (5.6) has no solutions.
ii) Let $\delta=0$.
a) If $r=r^{\prime}$, then (5.6) holds for all x.
b) If $r \neq r^{\prime}$, then (5.6) has no solution.

Now we deal with the case when $r=0$ or $s=0$.
Theorem 5.4. i) We assume $r \neq 0$ and $s=0$.
a) Let $s^{\prime} \neq 0$.

ג) If $\tau_{1}=\left(r-r^{\prime}\right) / s^{\prime} \geq 0$, then (5.1) holds if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{x_{n-1}}{x_{n}}=\tau_{1} \tag{5.7}
\end{equation*}
$$

β) If $\tau_{1}<0$, then (5.1) has no solution.
b) Let $s^{\prime}=0$.

人) If $r=r^{\prime}$, then (5.1) holds for all x.
β) If $r \neq r^{\prime}$, then (5.1) has no solution.
(ii) We assume $r=0$ and $s \neq 0$.
a) Let $r^{\prime} \neq 0$.

ג) If $l=0$, then (5.1) is equivalent to $\left(x_{n} / x_{n-1}\right)_{n} \in \ell_{\infty}$.
β) If $l \neq 0$, then condition (5.1) holds if and only if

$$
\lim _{n \rightarrow \infty} \frac{x_{n}}{x_{n-1}}=\frac{s-s^{\prime}}{r^{\prime}} \geq 0
$$

b) Let $r^{\prime}=0$.
$\alpha)$ If $s^{\prime}=s$, then (5.1) holds for all x.
β) If $s^{\prime} \neq s$, then (5.1) has no solution.
(iii) Let $r=s=0$.
a) If $r^{\prime} \neq 0$, or $s^{\prime} \neq 0$, then (5.1) has no solution.
b) If $r^{\prime}=s^{\prime}=0$, then (5.1) holds for all x.

Proof. i) We assume $r \neq 0$ and $s=0$. Since $B(r, s)=r I$, statement (5.1) is equivalent to $D_{1 / x} B\left(r^{\prime} / r, s^{\prime} / r\right) D_{x} \in(c, c)_{\text {reg }}$, that is,

$$
\begin{gather*}
\left|\frac{r^{\prime}}{r}\right|+\left|\frac{s^{\prime}}{r}\right| \frac{x_{n-1}}{x_{n}} \leq K \text { for all } n \tag{5.8}\\
\frac{r^{\prime}}{r}+\frac{s^{\prime}}{r} \frac{x_{n-1}}{x_{n}} \rightarrow 1(n \rightarrow \infty)
\end{gather*}
$$

a) Let $s^{\prime} \neq 0$. Since condition (5.9) implies (5.8), statement (5.1) is equivalent to (5.7).
b) Let $s^{\prime}=0$.
$\alpha)$ If $r=r^{\prime}$, then the previous system holds for all x.
β) If $r \neq r^{\prime}$, then the system has no solution.
ii) We assume $r=0$ and $s \neq 0$.
a) Let $r^{\prime} \neq 0$. Then statement (5.1) reduces to

$$
\begin{equation*}
s \frac{y_{n-1}}{x_{n}} \rightarrow l \text { implies } t_{n}=\frac{r^{\prime} y_{n}+s^{\prime} y_{n-1}}{x_{n}} \rightarrow l(n \rightarrow \infty) \tag{5.10}
\end{equation*}
$$

$\alpha)$ If $l=0$, then we have

$$
\mathbf{s}_{x}^{0}(B(0, s))=\left\{y \in \omega: \frac{y_{n}}{x_{n+1}}=o(1)(n \rightarrow \infty)\right\}=\mathbf{s}_{x^{+}}
$$

where $x^{+}=\left(x_{n+1}\right)_{n}$. Then statement (5.1) with $l=0$ is equivalent to $\mathbf{s}_{x^{+}}^{0} \subset \mathbf{s}_{x}^{0}\left(B\left(r^{\prime}, s^{\prime}\right)\right), B\left(r^{\prime}, s^{\prime}\right) \in\left(\mathbf{s}_{x^{+}}^{0}, \mathbf{s}_{x}^{0}\right)$,
that is, to

$$
\begin{equation*}
\left|r^{\prime}\right| \frac{x_{n+1}}{x_{n}}+\left|s^{\prime}\right| \leq K \text { for all } n \tag{5.11}
\end{equation*}
$$

Obviously the condition in (5.11) is equivalent to

$$
\left(x_{n} / x_{n-1}\right) \in \ell_{\infty}
$$

β) If $l \neq 0$, we put $z_{n}=s y_{n-1} / x_{n}$. Then (5.1) is equivalent to

$$
z_{n} \rightarrow l \text { implies } t_{n}=\frac{r^{\prime}}{s} z_{n+1} \frac{x_{n+1}}{x_{n}}+\frac{s^{\prime}}{s} z_{n} \rightarrow l(n \rightarrow \infty)
$$

that is, to

$$
\frac{x_{n+1}}{x_{n}}=\frac{t_{n}-\frac{s^{\prime}}{s} z_{n}}{\frac{r^{\prime}}{s} z_{n+1}} \rightarrow \frac{s-s^{\prime}}{r^{\prime}}(n \rightarrow \infty)
$$

b) Let $r^{\prime}=0$. Then $z_{n}=s y_{n-1} / x_{n} \rightarrow l$ implies $s^{\prime} y_{n-1} / x_{n} \rightarrow l=$ $l s^{\prime} / s(n \rightarrow \infty)$.
$\alpha)$ If $s^{\prime}=s$, then statement (5.1) holds for all $x \in U^{+}$.
β) If $s^{\prime} \neq s$, then (5.1) has no solution.
iii) We assume $r=s=0$. Then we must have $B\left(r^{\prime}, s^{\prime}\right) \in\left(\omega, \mathbf{s}_{x}^{0}\right)$ which implies $r^{\prime}=s^{\prime}=0$. Indeed we assume either $r^{\prime} \neq 0$ or $s^{\prime} \neq 0$. Let $r^{\prime} \neq 0$. We consider the cases $s^{\prime} / r^{\prime} \geq 0$ and $s^{\prime} / r^{\prime}<0$. If $s^{\prime} / r^{\prime} \geq 0$, then we take $y=\left(R^{n} x_{n}\right)_{n} \in \omega$ with $R>1$, and obtain

$$
\left|\frac{B\left(r^{\prime}, s^{\prime}\right) y_{n}}{x_{n}}\right|=\frac{\left|r^{\prime}\right|}{x_{n}}\left|y_{n}+\frac{s^{\prime}}{r^{\prime}} y_{n-1}\right| \geq\left|r^{\prime}\right| R^{n} \text { for all } n .
$$

Then we have $\left|B\left(r^{\prime}, s^{\prime}\right) y_{n} / x_{n}\right| \rightarrow \infty(n \rightarrow \infty)$ and $\omega \subset s_{x}\left(B\left(r^{\prime}, s^{\prime}\right)\right)$ is impossible.
If $s^{\prime} / r^{\prime}<0$, then we take $y_{n}=(-R)^{n} x_{n}$ with $R>1$, and obtain

$$
\begin{aligned}
\left|\frac{B\left(r^{\prime}, s^{\prime}\right) y_{n}}{x_{n}}\right| & =\left|\frac{r^{\prime}}{x_{n}}\left(y_{n}+\frac{s^{\prime}}{r^{\prime}} y_{n-1}\right)\right|=\left|r^{\prime}\right| R^{n}\left(1-\frac{s^{\prime}}{r^{\prime}} \frac{x_{n-1}}{R x_{n}}\right) \\
& \geq\left|r^{\prime}\right| R^{n} \text { for all } n,
\end{aligned}
$$

and we conclude as above.
The case $s^{\prime} \neq 0$ can be treated similarly.
5.2. Applications. Let $r<0$ and $s>-1$, and different from 0 and consider the sets

$$
\begin{aligned}
S_{1}(r)=\left\{x \in U^{+}: \frac{r y_{n}+y_{n-1}}{x_{n}} \rightarrow l\right. & l \text { implies } \frac{\Delta y_{n}}{x_{n}} \rightarrow l(n \rightarrow \infty) \\
& \text { for all } y \in \omega \text { and for some scalar } l\}
\end{aligned}
$$

and

$$
S_{2}(s)=\left\{x \in U^{+}: \frac{\Delta y_{n}}{x_{n}} \rightarrow l \text { implies } \frac{s y_{n}}{x_{n}} \rightarrow l(n \rightarrow \infty)\right.
$$

$$
\text { for all } y \in \omega \text { and for some scalar } l\} \text {. }
$$

We can determine the set $S_{1}(r) \cap S_{2}(s)$. Since $\delta=-r+1 \neq 0$, we have by Theorem 5.2

$$
S_{1}(r)=\left\{x \in U^{+}: \frac{x_{n-1}}{x_{n}} \rightarrow \frac{1-r}{2}(n \rightarrow \infty)\right\}
$$

and similarly

$$
S_{2}(s)=\left\{x \in U^{+}: \frac{x_{n-1}}{x_{n}} \rightarrow \frac{1}{1+s}(n \rightarrow \infty)\right\}
$$

We conclude

$$
S_{1}(r) \cap S_{2}(s)= \begin{cases}S_{2}(s) & \text { if } s=(1+r) /(1-r) \\ \emptyset & \text { otherwise }\end{cases}
$$

Note that if $r<0$, then $S_{1}(r) \cap S_{2}(s) \neq \emptyset$ implies $|s|<1$ and $s \neq 0$.
6. The a-TAUBERIAN $(S S I E) \mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{a}^{(c)}$
6.1. a-Tauberian (SSIE) with operators of the form $B(r, s)$. Here we consider the a-Tauberian (SSIE) problem for given $a \in U^{+}$, (see [6]), stated as follows. Let r, s, r^{\prime} and s^{\prime} be real numbers, and let a be a given sequence; what is the set \mathbb{S}_{a} of all $x \in U^{+}$such that

$$
\frac{r y_{n}+s y_{n-1}}{x_{n}} \rightarrow l \text { implies } \frac{y_{n}}{a_{n}} \rightarrow l^{\prime}(n \rightarrow \infty) \text { for all } y
$$

and for some scalars l and l^{\prime} ? This statement is equivalent to the solvability of the (SSIE)

$$
\begin{equation*}
\mathbf{s}_{x}^{(c)}(B(r, s)) \subset \mathbf{s}_{a}^{(c)} \tag{6.1}
\end{equation*}
$$

As we will see in Proposition 6.1, since the condition on the sequence a is less restrictive for (6.1) than for the (SSIE) $\mathbf{s}_{a}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}$ it is natural to begin with the study of the set \mathbb{S}_{a}. To state the next result, we use the
set $c s_{b}$ of all $x \in U^{+}$such that $\sum_{k=1}^{\infty} x_{k} / b_{k}<\infty$, where $b \in U^{+}$. For $b=e$ we obtain $c s_{b}=c s \cap U^{+}$. Throughout this section we assume $\alpha=-s / r>0$.

Proposition 6.1. We assume $\left(\alpha^{n} / a_{n}\right)_{n} \in c$. Then $x \in \mathbb{S}_{a}$ if and only if

$$
\begin{equation*}
\left(\frac{\alpha^{n}}{a_{n}} \sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}}\right)_{n} \in c \tag{6.2}
\end{equation*}
$$

Moreover if $a_{n} \sim \lambda \alpha^{n}(n \rightarrow \infty)$ for $\lambda>0$, that is, $a_{n} / \lambda \alpha^{n} \rightarrow 1(n \rightarrow \infty)$, then we have

$$
S_{a}=c s_{\left(\alpha^{n}\right)_{n}}
$$

Proof. We have $x \in \mathbb{S}_{a}$ if and only if (6.1) holds, which is equivalent to

$$
\begin{equation*}
B^{-1}(r, s) \in\left(\mathbf{s}_{x}^{(c)}, \mathbf{s}_{a}^{(c)}\right) \tag{6.3}
\end{equation*}
$$

that is, to $D_{1 / a} B^{-1}(r, s) D_{x} \in(c, c)$. From the expression of $B^{-1}(r, s)$ in the proof of Theorem 5.2, and the characterization of (c, c), condition (6.3) is equivalent to (6.2) and $\left(\alpha^{n} / a_{n}\right)_{n} \in c$. Now we assume $a_{n} / \alpha^{n} \rightarrow \lambda>0$ $(n \rightarrow \infty)$. Then we have $x \in \mathbb{S}_{a}$ if and only if

$$
u_{n}=\frac{\alpha^{n}}{a_{n}} \sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}} \rightarrow L(n \rightarrow \infty)
$$

for some scalar L, that is,

$$
\sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}}=\frac{u_{n}}{\frac{\alpha^{n}}{a_{n}}} \rightarrow \frac{L}{\lambda}(n \rightarrow \infty)
$$

and $x \in c s_{\left(\alpha^{n}\right)_{n}}$.
When $a=e$, we obtain the next Tauberian result.
Corollary 6.2. i) If $0<\alpha \leq 1$, then $x \in \mathbb{S}_{e}$ if and only if

$$
\left(\alpha^{n} \sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}}\right)_{n} \in c
$$

ii) If $\alpha=1$, then $\mathbb{S}_{e}=c s \cap U^{+}$.

As a direct application we also have the next result,
Corollary 6.3. We assume $0<\alpha<1$. Then $\left(x^{n}\right)_{n} \in \mathbb{S}_{e}$ if and only if $0<x \leq 1$.

Proof. First we assume $x \neq \alpha$. Since $x_{k}=x^{k}$ for all k, we have $\left(x^{n}\right)_{n} \in \mathbb{S}_{e}$ if and only if

$$
\begin{aligned}
\alpha^{n} \sum_{k=1}^{n} \frac{x_{k}}{\alpha^{k}} & =\alpha^{n} \frac{x}{\alpha} \frac{1}{1-\frac{x}{\alpha}}-\alpha^{n}\left(\frac{x}{\alpha}\right)^{n+1} \frac{1}{1-\frac{x}{\alpha}} \\
& =\alpha^{n-1} x \frac{1}{1-\frac{x}{\alpha}}-\frac{x^{n+1}}{\alpha} \frac{1}{1-\frac{x}{\alpha}}
\end{aligned}
$$

is convergent as n tends to infinity, that is, for $0<x \leq 1$ and $x \neq \alpha$. If $x=\alpha<1$, we have $\alpha^{n} \sum_{k=1}^{n}(x / \alpha)^{k}=n \alpha^{n}=o(1)(n \rightarrow \infty)$.

We immediately deduce the next examples.
Example. Let $u, v>0$. Then $x \in U^{+}$satisfies the condition

$$
\frac{u y_{n}-v y_{n-1}}{x_{n}} \rightarrow l \text { implies }\left(\frac{u}{v}\right)^{n} y_{n} \rightarrow l^{\prime}(n \rightarrow \infty)
$$

for all y and for some scalars l and l^{\prime},
if and only if $\sum_{k=1}^{\infty}(u / v)^{k} x_{k}<\infty$. This result can be obtained writing $\alpha=v / u$ and $a_{n}=\alpha^{n}$ in Proposition 6.1. In particular, if $u=v=1$, then the set of all $x \in U^{+}$such that

$$
\frac{\Delta y_{n}}{x_{n}} \rightarrow l \text { implies } y_{n} \rightarrow l^{\prime}(n \rightarrow \infty) \text { for all } y \text { and for some scalars } l \text { and } l^{\prime}
$$ is equal to $c s \cap U^{+}$.

Remark. We obtain a similar result when a and x are interchanged in (SSIE) (6.1). Indeed, let $a \in \operatorname{cs} s_{\left(\alpha^{n}\right)_{n}}$ and let $\overline{\mathbb{S}}_{a}$ be the set of all $x \in U^{+}$such that the (SSIE) $\mathbf{s}_{a}^{(c)}(B(r, s)) \subset \mathbf{s}_{x}^{(c)}$ holds. Then $x \in \overline{\mathbb{S}}_{a}$ if and only if

$$
\begin{equation*}
\left(\frac{\alpha^{n}}{x_{n}}\right)_{n} \in c \tag{6.4}
\end{equation*}
$$

This result follows from the fact that here the condition $D_{1 / x} B^{-1}(r, s) D_{a} \in$ (c, c) is equivalent to (6.4) and

$$
\begin{equation*}
\left(\frac{\alpha^{n}}{x_{n}} \sum_{k=1}^{n} \frac{a_{k}}{\alpha^{k}}\right)_{n} \in c \tag{6.5}
\end{equation*}
$$

and we conclude since (6.4) implies (6.5).
We immediately deduce the following Tauberian result.

Remark. If $a \in c s_{\left(\alpha^{n}\right)_{n}}$, then

$$
\frac{B(r, s) y_{n}}{a_{n}} \rightarrow l \text { implies } y_{n} \rightarrow l^{\prime} \quad(n \rightarrow \infty)
$$

for all y and for some scalars l and l^{\prime}, if and only if

$$
\begin{equation*}
0<-s / r \leq 1 \tag{6.6}
\end{equation*}
$$

This result comes from the fact that $e \in \overline{\mathbb{S}}_{a}$ if and only if (6.6) holds.

6.2. The case of the operator of the first difference.

6.2.1. The general case. If $r=-s=1$, then we obtain $B(r, s)=\Delta$. We confine our studies to the case when $a_{n} \rightarrow \infty(n \rightarrow \infty)$. We denote by $\widetilde{\mathbb{S}}_{a}$ the set of all $x \in U^{+}$such that

$$
\begin{equation*}
\frac{\Delta y_{n}}{x_{n}} \rightarrow l \text { implies } \frac{y_{n}}{a_{n}} \rightarrow l^{\prime} \quad(n \rightarrow \infty) \tag{6.7}
\end{equation*}
$$

for all y and for some scalars l and l^{\prime}.
We state the next elementary result.
Proposition 6.4. We assume $a_{n} \rightarrow \infty(n \rightarrow \infty)$. Then the set $\widetilde{\mathbb{S}}_{a}$ is equal to the set of all $x \in U^{+}$such that

$$
\begin{equation*}
\frac{1}{a_{n}} \sum_{k=1}^{n} x_{k} \rightarrow L(n \rightarrow \infty) \text { for some scalar } L \tag{6.8}
\end{equation*}
$$

moreover we have $l^{\prime}=l L$ in (6.7).
Proof. It is enough to apply Proposition 6.1 with $\alpha=1$, and $\alpha^{n} / a_{n}=$ $1 / a_{n} \rightarrow 0(n \rightarrow \infty)$. By Lemma 4.1, we have $l^{\prime}=l L$.
6.2.2. Applications to the case when $a_{n}=n^{\beta+1}$ with $\beta>-1$, or $a_{n}=\ln n$. It is well known that if $\xi>-1$, then

$$
\begin{equation*}
\sum_{k=1}^{n} k^{\xi} \sim \frac{n^{\xi+1}}{\xi+1}(n \rightarrow \infty) \tag{6.9}
\end{equation*}
$$

The next result is a direct consequence of Proposition 6.4 and (6.9).
Corollary 6.5. Let β be a real number.
i) If $\beta>-1$, then

$$
\frac{\Delta y_{n}}{n^{\beta}} \rightarrow l \text { implies } \frac{y_{n}}{n^{\beta+1}} \rightarrow \frac{l}{\beta+1}(n \rightarrow \infty)
$$

for all y and for some scalar l.
ii) If $\beta=-1$, then

$$
\frac{\Delta y_{n}}{n^{\beta}}=n \Delta y_{n} \rightarrow l \text { implies } \frac{y_{n}}{\ln n} \rightarrow l(n \rightarrow \infty)
$$

for all y and for some scalar l.
Proof. i) Part i) is a direct consequence of Proposition 6.4 and (6.9), since

$$
v_{n}=\frac{1}{n^{\beta+1}} \sum_{k=1}^{n} k^{\beta} \rightarrow \frac{1}{\beta+1}(n \rightarrow \infty)
$$

ii) Trivially we have

$$
\begin{aligned}
1+\ln \left(\frac{n+1}{2}\right) & =1+\int_{2}^{n+1} \frac{d x}{x} \leq s_{n}=\sum_{k=1}^{n} \frac{1}{k} \leq 1+\int_{1}^{n} \frac{d x}{x} \\
& =1+\ln n \text { for all } n .
\end{aligned}
$$

We immediately deduce that $s_{n} / \ln n \rightarrow 1(n \rightarrow \infty)$ and $n \Delta y_{n} \rightarrow l$ imply

$$
\frac{y_{n}}{\ln n} \rightarrow l \lim _{n \rightarrow \infty} \frac{s_{n}}{\ln n}=l \quad(n \rightarrow \infty)
$$

for all y.

As a direct consequence of the preceding result we obtain,
Corollary 6.6. i) If $\beta>-1$, then

$$
y_{n}-\left(1-\frac{1}{n}\right)^{\beta} y_{n-1} \rightarrow L \text { implies } \frac{y_{n}}{n} \rightarrow \frac{L}{\beta+1}(n \rightarrow \infty)
$$

for all y.
ii) If $\beta=-1$, then

$$
y_{n}-\left(1-\frac{1}{n}\right)^{\beta} y_{n-1}=y_{n}-\frac{n}{n-1} y_{n-1} \rightarrow L
$$

implies

$$
\frac{y_{n}}{n \ln n} \rightarrow L \quad(n \rightarrow \infty)
$$

for all y.

References

[1] Altay, B., Başar, F., On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J. 55 (2003), 1, 136-147
[2] Farés A., de Malafosse, B., Sequence spaces equations and application to matrix transformations Int. Forum 3, (2008) 19 911-927.
[3] de Malafosse, B., On some BK space, Int. J. Math. Math. Sc. 28 (2003) 1783-1801.
[4] de Malafosse, B., Sum of sequence spaces and matrix transformations, Acta Math. Hung. 113 (3) (2006) 289-313.
[5] de Malafosse, B., Sum of sequence spaces and matrix transformations mapping in $\mathbf{s}_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+\mathbf{s}_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$, Acta Math. Hung. 122 (2008) 217-230
[6] de Malafosse, B., α-Tauberian results, Stud. Univ. Babeş-Bolyai Math. 56 (4) (2011) 95-111.
[7] de Malafosse, B., Application of the infinite matrix theory to the solvability of certain sequence spaces equations with operators. Mat. Vesnik 64, 1 (2012) 39-52.
[8] de Malafosse, B., Solvability of certain sequence spaces inclusion equations with operators, Demonstratio Math. 46, 2 (2013).
[9] de Malafosse, B., Malkowsky, E., Matrix transformations in the sets $\chi\left(\bar{N}_{p} \bar{N}_{q}\right)$ where χ is in the form \mathbf{s}_{ξ}, or \mathbf{s}_{ξ}^{0}, or $\mathbf{s}_{\xi}^{(c)}$, Filomat $\mathbf{1 7}$ (2003) 85-106.
[10] de Malafosse, B., Malkowsky, E., Sets of difference sequences of order m, Acta Sci. Math. (Szeged) 70 (2004) 659-682.
[11] de Malafosse, B., Rakočević, V., Applications of measure of noncompactness in operators on the spaces $\mathbf{s}_{\alpha}, \mathbf{s}_{\alpha}^{0}, \mathbf{s}_{\alpha}^{(c)}$ and l_{α}^{p}, J. Math. Anal. Appl. 323 (2006) 131-145.
[12] de Malafosse, B., Rakočević V., A generalization of a Hardy theorem, Linear Algebra Appl. 421 (2007) 306-314.
[13] de Malafosse, B., Rakočević V., Matrix Transformations and Statistical convergence, Linear Algebra Appl. 420 (2007) 377-387.
[14] de Malafosse, B., Rakočević V., Series summable (C, λ, μ) and applications, Linear Algebra Appl. (2011), doi: 10,1016/j.aa.2011.11.006.
[15] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85, 1984.

> Bruno de Malafosse
> LMAH Université du Havre
> 25 RUe Philippe Lebon, BP 540
> 76058 Le Havre cedex, France
> e-mail address: bdemalaf@wanadoo.fr

Eberhard Malkowsky
Fatih University
34500 BüyÜKÇEKMECE
Istanbul Turkey
eberhard.malkowsky@math.uni-giessen.de
(Received March 28, 2012)
(Revised November 13, 2012)

[^0]: Mathematics Subject Classification. 40H05, 46A45.
 Key words and phrases. Matrix transformations; BK space; the spaces $\mathbf{s}_{a}, \mathbf{s}_{a}^{0}$ and $\mathbf{s}_{a}^{(c)}$; (SSIE); (SSE) with operator; band matrix $B(r, s)$; Tauberian result.

 Research of the second author supported by the research project \#174007 of the Serbian Ministry of Science, Technology and Environmental Development.

