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GROWTH OF SOLUTIONS OF HIGHER ORDER LINEAR

DIFFERENTIAL EQUATIONS

Abdallah El Farissi and Benharrat Beläıdi

Abstract. This paper is devoted to studying the growth of solutions
of the higher order nonhomogeneous linear differential equation

f
(k) + Ak−1f

(k−1) + ...+ A2f
′′

+
“

D1 (z) + A1 (z) e
P (z)

”

f
′

+
“

D0 (z) + A0 (z) e
Q(z)

”

f = F (k > 2) ,

where P (z) , Q (z) are nonconstant polynomials such that degP =
degQ = n and Aj (z) (j = 0, 1, ..., k − 1) , F (z) are entire functions
with max{ρ (Aj) (j = 0, 1, ..., k − 1) , ρ (Dj) (j = 0, 1)} < n. We also
investigate the relationship between small functions and the solutions of
the above equation.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fun-
damental results and the standard notations of the Nevanlinna value dis-
tribution theory and the basic notions of the Wiman-Valiron as well (see
[12, 13, 15]). In addition, we will use λ (f) (λ2 (f)) and λ (f)

(

λ2 (f)
)

to
denote respectively the exponents (hyper-exponents) of convergence of the
zero-sequence and the sequence of distinct zeros of f , ρ (f) to denote the
order of growth of a meromorphic function f and ρ2 (f) to denote the hyper-
order of f. A meromorphic function ϕ (z) is called a small function with
respect to f (z) if T (r, ϕ) = o (T (r, f)) as r → +∞ except possibly a set
of r of finite linear measure, where T (r, f) is the Nevanlinna characteristic
function of f. If f is of infinite order and ϕ is of finite order, then clearly
that ϕ (z) is a small function with respect to f (z) . We also define

λ (f − ϕ) = lim sup
r→+∞

logN
(

r, 1
f−ϕ

)

log r

and

λ2 (f − ϕ) = lim sup
r→+∞

log logN
(

r, 1
f−ϕ

)

log r

for any meromorphic function ϕ (z) .
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For the second order linear differential equation

(1.1) f
′′

+ e−zf
′

+B (z) f = 0,

where B (z) is an entire function, it is well-known that each solution f
of equation (1.1) is an entire function, and that if f1, f2 are two linearly
independent solutions of (1.1), then by [8], there is at least one of f1, f2 of
infinite order. Hence, ”most” solutions of (1.1) will have infinite order. But
equation (1.1) with B(z) = −(1 + e−z) possesses a solution f (z) = ez of
finite order.

A natural question arises: What conditions on B(z) will guarantee
that every solution f 6≡ 0 of (1.1) has infinite order? Many authors, Frei
[9], Ozawa [16], Amemiya-Ozawa [1] and Gundersen [10], Langley [14] have
studied this problem. They proved that when B(z) is a nonconstant polyno-
mial or B(z) is a transcendental entire function with order ρ(B) 6= 1, then
every solution f 6≡ 0 of (1.1) has infinite order.
In 2002, Z. X. Chen [6] considered the question: What conditions on B(z)
when ρ(B) = 1 will guarantee that every nontrivial solution of (1.1) has
infinite order? He proved the following results, which improved results of
Frei, Amemiya-Ozawa, Ozawa, Langley and Gundersen.

Theorem 1.1. ([6]) Let Aj (z) (6≡ 0) (j = 0, 1) and Dj (z) (j = 0, 1) be en-
tire functions with max {ρ (Aj) (j = 0, 1) , ρ (Dj) (j = 0, 1)} < 1, and let
a, b be complex constants that satisfy ab 6= 0 and arg a 6= arg b or a = cb
(0 < c < 1). Then every solution f 6≡ 0 of the equation

(1.2) f
′′

+ (D1 (z) +A1 (z) e
az) f

′

+
(

D0 (z) +A0 (z) e
bz
)

f = 0

is of infinite order.

Setting Dj ≡ 0 (j = 0, 1) in Theorem 1.1, we obtain the following result.

Theorem 1.2. Let Aj (z) (6≡ 0) (j = 0, 1) be entire functions with max{ρ (Aj) :
j = 0, 1} < 1, and let a, b be complex constants that satisfy ab 6= 0 and
arg a 6= arg b or a = cb (0 < c < 1). Then every solution f 6≡ 0 of the
equation

(1.3) f
′′

+A1 (z) e
azf

′

+A0 (z) e
bzf = 0

is of infinite order.

Theorem 1.3. ([6]) Let Aj (z) (6≡ 0) (j = 0, 1) be entire functions with
ρ (Aj) < 1 (j = 0, 1) , and let a, b be complex constants that satisfy ab 6= 0
and a = cb (c > 1) . Then every solution f 6≡ 0 of equation (1.3) is of infinite
order.
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Very recently in [18], H. Y. Xu and T. B. Cao have investigated the
growth of solutions of some higher order nonhomogeneous linear differential
equations and have obtained the following result.

Theorem 1.4. ([18]) Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be non-

constant polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers,
anbn (an − bn) 6= 0. Suppose that hi (z) (2 6 i 6 k − 1) are polynomials of
degree no more n − 1 in z, Aj (z) 6≡ 0 (j = 0, 1) and H (z) 6≡ 0 are en-
tire functions with max{ρ (Aj) (j = 0, 1) , ρ (H)} < n, and ϕ (z) is an entire
function of finite order. Then every nontrivial solution f of the equation

(1.4) f (k) + hk−1f
(k−1) + ...+ h2f

′′

+A1 (z) e
P (z)f

′

+A0 (z) e
Q(z)f = H

satisfies ρ (f) = λ (f) = λ (f) = λ (f − ϕ) = ∞ and ρ2 (f) = λ2 (f) =
λ2 (f) = λ2 (f − ϕ) 6 n.

Remark 1. In the original statement of Theorem 1.4 (see [18]), the condition
H 6≡ 0 must be added. Indeed, if H ≡ 0, then the conclusions of Theorem
1.4 are false. For example the equation f

′′′

−f
′′

−2ezf
′

−e3zf = 0 possesses
the solution f(z) = ee

z
with ρ (f) = ∞ and λ (f) = 0.

It is natural to ask whether the polynomials hk−1 (z) , ..., h2 (z) in (1.4)
can be replaced by entire functions of orders that are less than n. The main
purpose of this paper is to study the growth and the oscillation of solutions
of the linear differential equation

f (k) +Ak−1f
(k−1) + ...+A2f

′′

+
(

D1 (z) +A1 (z) e
P (z)

)

f
′

(1.5)

+
(

D0 (z) +A0 (z) e
Q(z)

)

f = F (k > 2) .

We obtain the following results.

Theorem 1.5. Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be nonconstant poly-

nomials where ai, bi (i = 0, 1, ..., n) are complex numbers, anbn (an − bn) 6=
0. Suppose that Aj (z) (j = 0, 1, ..., k − 1), Aj (z) 6≡ 0 (j = 0, 1), Dj (z)
(j = 0, 1) and F (z) are entire functions with max{ρ (Aj) (j = 0, 1, ..., k −
1), ρ (Dj) (j = 0, 1), ρ (F )} < n and let ϕ (z) 6≡ 0 be an entire function of
finite order. Then every solution f 6≡ 0 of equation (1.5) satisfies

(1.6) λ (f − ϕ) = ρ (f) = ∞, λ2 (f − ϕ) = ρ2 (f) 6 n.

Furthermore if F 6≡ 0, then every solution f of equation (1.5) satisfies

(1.7) λ (f) = λ (f) = λ (f − ϕ) = ρ (f) = ∞
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and

(1.8) λ2 (f) = λ2 (f) = λ2 (f − ϕ) = ρ2 (f) 6 n.

Remark 2. The proof of Theorem 1.5 in which every solution f of equation
(1.5) has infinite order is quite different from that in the proof of Theorem
1.4 (see [18]). The main ingredient in the proof is Lemma 2.9.

Remark 3. In [18], H. Y. Xu and T. B. Cao studied equation (1.5) and ob-
tained the same result as in Theorem 1.5 but under restriction that the com-
plex constants an, bn satisfy anbn 6= 0, anbn < 0 and Aj (z) (j = 2, ..., k − 1)
are polynomials of degree no more n− 1 in z.

Setting Dj ≡ 0 (j = 0, 1) in Theorem 1.5, we obtain the following corollary.

Corollary 1.6. Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers, anbn (an − bn) 6=
0. Suppose that Aj (z) (j = 0, 1, ..., k − 1) , Aj (z) 6≡ 0 (j = 0, 1) and F (z)
are entire functions with max{ρ (Aj) (j = 0, 1, ..., k − 1), ρ (F )} < n and let
ϕ (z) 6≡ 0 be an entire function of finite order. Then every solution f 6≡ 0 of
the equation

(1.9) f (k) +Ak−1f
(k−1) + ...+A2f

′′

+A1 (z) e
P (z)f

′

+A0 (z) e
Q(z)f

= F (k > 2)

satisfies (1.6). Furthermore if F 6≡ 0, then every solution f of equation
(1.9) satisfies (1.7) and (1.8).

Remark 4. If ρ (F ) > n, then equation (1.5) can possesses solution of finite
order. For instance the equation

f
′′′

− f
′′

+
(

e−zn − ez
n−1
)

f
′

+ ez
n

f = ez
n

satisfies ρ (F ) = ρ
(

ez
n)

= n and has a finite order solution f (z) = 1.

Theorem 1.7. Let P (z) , Q (z) , Aj (z) (j = 0, 1, ..., k − 1) , Dj (z) (j = 0, 1)
and ϕ (z) satisfy the additional hypotheses of Theorem 1.5, and let F (z) be
an entire function such that ρ (F ) > n. Then every solution f of equation
(1.5) satisfies (1.7) and (1.8) with at most one finite order solution f0. For
the exceptional solution f0 we have, if ρ (F ) > n, then ρ (f0) = ρ (F ) and if
ρ (F ) = n, then ρ (f0) 6 n.

Corollary 1.8. Let P (z) , Q (z) , Aj (z) (j = 0, 1) , Dj (z) (j = 0, 1) and
ϕ (z) satisfy the additional hypotheses of Theorem 1.5, and let F (z) be an
entire function. Then the following statements hold:
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(i) If ρ (F ) < n, then every solution f 6≡ 0 of the equation

(1.10) f
′′

+
(

D1 (z) +A1 (z) e
P (z)

)

f
′

+
(

D0 (z) +A0 (z) e
Q(z)

)

f = F

has infinite order and satisfies (1.6). Furthermore if F 6≡ 0, then every
solution f of equation (1.10) satisfies (1.7) and (1.8).
(ii) If ρ (F ) = n, then every solution f of equation (1.10) has infinite or-
der and satisfies (1.7) and (1.8), with at most one finite order solution f0
satisfying ρ (f0) 6 n.
(iii) If ρ (F ) > n, then every solution f of equation (1.10) has infinite or-
der and satisfies (1.7) and (1.8), with at most one finite order solution f0
satisfying ρ (f0) = ρ (F ) .

2. Preliminary lemmas

Our proofs depend mainly upon the following lemmas. Before starting
these lemmas, we recall the concept of the logarithmic density of subsets
of (1,+∞). For E ⊂ (1,+∞), we define the logarithmic measure of a set E
by

lm (E) =

∫ +∞

1

χE (t)

t
dt,

where χE is the characteristic function of E. The upper logarithmic density
and the lower logarithmic density of E are defined by

log dens (E) = lim sup
r→+∞

lm (E ∩ [1, r])

log r

and

log dens (E) = lim inf
r→+∞

lm (E ∩ [1, r])

log r
.

Lemma 2.1. ([11]) Let f be a transcendental meromorphic function of finite
order ρ, let Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a finite set of distinct
pairs of integers that satisfy ki > ji > 0 for i = 1, ...,m and let ε > 0 be a
given constant. Then, there exists a set E1 ⊂ [0, 2π) that has linear measure
zero, such that if ψ ∈ [0, 2π)−E1, then there is a constant R1 = R1 (ψ) > 1
such that for all z satisfying arg z = ψ and |z| > R1 and for all (k, j) ∈ Γ,
we have

(2.1)

∣

∣

∣

∣

∣

f (k) (z)

f (j) (z)

∣

∣

∣

∣

∣

6 |z|(k−j)(ρ−1+ε) .

Lemma 2.2. ([6]) Let P (z) = anz
n+...+a0, (an = α+ iβ 6= 0) be a polyno-

mial with degree n > 1 and A (z) (6≡ 0) be an entire function with ρ (A) < n.
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Set f (z) = A (z) eP (z), z = reiθ, δ (P, θ) = α cosnθ− β sinnθ. Then for any
given ε > 0, there exists a set E2 ⊂ [0, 2π) that has linear measure zero,
such that if θ ∈ [0, 2π) \ (E2 ∪E3) , where E3 = {θ ∈ [0, 2π) : δ (P, θ) = 0}
is a finite set, then for sufficiently large |z| = r, we have
(i) If δ (P, θ) > 0, then

(2.2) exp {(1− ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1 + ε) δ (P, θ) rn} .

(ii) If δ (P, θ) < 0, then

(2.3) exp {(1 + ε) δ (P, θ) rn} 6 |f (z)| 6 exp {(1− ε) δ (P, θ) rn} .

Lemma 2.3. ([5]) Let A0, A1, ..., Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ (f) = +∞ of the equation

(2.4) f (k) +Ak−1f
(k−1) + ...+A1f

′

+A0f = F,

then λ (f) = λ (f) = ρ (f) = +∞.

Lemma 2.4. ([2]) Let A0, A1, ..., Ak−1, F 6≡ 0 be finite order meromorphic
functions. If f is a meromorphic solution with ρ (f) = ∞ and ρ2 (f) = ρ
of equation (2.4), then λ (f) = λ (f) = ρ (f) = ∞ and λ2 (f) = λ2 (f) =
ρ2 (f) = ρ.

Lemma 2.5. ([3]) Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers, anbn 6= 0 such
that arg an 6= arg bn or an = cbn (0 < c < 1). We denote index sets by

Λ1 = {0, P} ,

Λ2 = {0, P,Q, 2P,P +Q} .

(i) If Hj (j ∈ Λ1) and HQ 6≡ 0 are all meromorphic functions of orders that

are less than n, setting Ψ1 (z) =
∑

j∈Λ1

Hj (z) e
j , then Ψ1 (z) +HQe

Q 6≡ 0.

(ii) If Hj (j ∈ Λ2) and H2Q 6≡ 0 are all meromorphic functions of orders that

are less than n, setting Ψ2 (z) =
∑

j∈Λ2

Hj (z) e
j , then Ψ2 (z) +H2Qe

2Q 6≡ 0.

Lemma 2.6. ([4]) Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be nonconstant

polynomials where ai, bi (i = 0, 1, ..., n) are complex numbers, anbn 6= 0 such
that an = cbn (c > 1). We denote index set by

Λ3 = {0, Q} .

If Hj (j ∈ Λ3) and HP 6≡ 0 are all meromorphic functions of orders that are
less than n, setting Ψ3 (z) =

∑

j∈Λ3

Hj (z) e
j , then Ψ3 (z) +HP e

P 6≡ 0.



GROWTH OF SOLUTIONS 135

Lemma 2.7. ([7]) Let f (z) be a transcendental entire function. Then there
is a set E4 ⊂ (1,+∞) that has finite logarithmic measure, such that for all
z with |z| = r /∈ [0, 1] ∪ E4 at which |f (z)| =M (r, f) , we have

(2.5)

∣

∣

∣

∣

f (z)

f (s) (z)

∣

∣

∣

∣

6 2rs (s ∈ N) .

Lemma 2.8. ([17]) Let f (z) and g (z) be two nonconstant entire functions
with ρ (g) < ρ (f) < +∞. Given 0 < 4ε < ρ (f)− ρ (g) and 0 < δ < 1

8 , there

exists a set E5 with log dens (E5) > 0 such that

(2.6)

∣

∣

∣

∣

g (z)

f (z)

∣

∣

∣

∣

6 exp
{

−rρ(f)−2ε
}

for all z such that |z| = r ∈ E5 is sufficiently large and that |f (z)| >

M (r, f) υf (r)
δ− 1

8 .

Lemma 2.9. Let P (z) =
n
∑

i=0
aiz

i and Q (z) =
n
∑

i=0
biz

i be nonconstant poly-

nomials where ai, bi (i = 0, 1, ..., n) are complex numbers, anbn (an − bn) 6=
0. Suppose that Aj (z) (j = 0, 1, ..., k − 1), Aj (z) 6≡ 0 (j = 0, 1) and Dj (z)
(j = 0, 1) are entire functions with max{ρ (Aj) (j = 0, 1, ..., k−1), ρ (Dj) (j =
0, 1)} < n. We denote

Lf = f (k) +Ak−1f
(k−1) + ...+A2f

′′

+
(

D1 (z) +A1 (z) e
P (z)

)

f
′

(2.7) +
(

D0 (z) +A0 (z) e
Q(z)

)

f.

If f 6≡ 0 is a finite order entire function, then we have

ρ (Lf ) = max {ρ (f) , n} .

Proof. Let f 6≡ 0 be a finite order entire function. First, if f (z) ≡ C 6= 0,
then

Lf =
(

D0 (z) +A0 (z) e
Q(z)

)

C.

Hence ρ (Lf ) = n and Lemma 2.9 holds.
We suppose f 6≡ C. Then, by (2.7), we have ρ (Lf ) 6 max {n, ρ (f)} .
(i) If ρ (f) = ρ < n, then ρ (Lf ) 6 n. Suppose that ρ (Lf ) < n. By (2.7), we
have

f (k) +Ak−1f
(k−1) + ...+A2f

′′

+
(

D1 (z) +A1 (z) e
P (z)

)

f
′

+
(

D0 (z) +A0 (z) e
Q(z)

)

f − Lf = 0
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has the form of

(2.8) Ψ1 (z) +HQe
Q(z) = f (k) +Ak−1f

(k−1) + ...+A2f
′′

+D1 (z) f
′

+D0 (z) f − Lf +A1 (z) f
′

eP (z) +A0 (z) fe
Q(z) = 0

or

(2.9) Ψ3 (z)+HP e
P (z) = f (k)+Ak−1f

(k−1)+...+A2f
′′

+D1 (z) f
′

+D0 (z) f

−Lf +A0 (z) fe
Q(z) +A1 (z) f

′

eP (z) = 0

and from (2.8) and (2.9) we obtain a contradiction by Lemma 2.5 (i) or
Lemma 2.6. Then ρ (Lf ) = n.
(ii) If ρ (f) = ρ > n, then ρ (Lf ) 6 ρ (f) . Suppose that ρ (Lf ) < ρ (f) . We
can rewrite (2.7) as

(2.10)
Lf

f
=
f (k)

f
+Ak−1

f (k−1)

f
+ ...+A2

f
′′

f
+
(

D1 (z) +A1 (z) e
P (z)

) f
′

f

+D0 (z) +A0 (z) e
Q(z).

We divide the proof on three cases.

Case 1. Suppose first that arg an 6= arg bn. Set

max {ρ (Aj) (j = 0, 1, ..., k − 1) , ρ (Dj) (j = 0, 1)} = β < n.

Then, for any given ε

(

0 < ε < min

(

n− β,
ρ(f)−ρ(Lf)

4

))

, we have for suf-

ficiently large r

(2.11)
|Dj (z)| 6 exp

{

rβ+ε
}

(j = 0, 1) ,
|Aj (z)| 6 exp

{

rβ+ε
}

(j = 0, 1, ..., k − 1) .

By Lemma 2.8, we know that there exists a set E5 with log dens (E5) > 0
such that

(2.12)

∣

∣

∣

∣

Lf

f

∣

∣

∣

∣

6 exp
{

−rρ(f)−2ε
}

6 1

for all z such that |z| = r ∈ E5 is sufficiently large and that |f (z)| >

M (r, f) υf (r)
δ− 1

8 . Also, by Lemma 2.1, for the above ε, there exists a set
E1 ⊂ [0, 2π) that has linear measure zero, such that if θ ∈ [0, 2π)−E1, then
there is a constant R1 = R1 (θ) > 1 such that for all z satisfying arg z = θ
and |z| > R1, we have

(2.13)

∣

∣

∣

∣

∣

f (i) (z)

f (z)

∣

∣

∣

∣

∣

6 |z|i(ρ−1+ε) (i = 1, ..., k) .
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By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E3, E3 =
{θ ∈ [0, 2π) : δ (P (z), θ) = 0 or δ (Q(z), θ) = 0} ⊂ [0, 2π), E1 ∪ E2 having
linear measure zero, E3 being a finite set, such that

δ (P (z), θ) < 0, δ (Q(z), θ) > 0

and for any given ε

(

0 < ε < min

(

n− β,
ρ(f)−ρ(Lf)

4

))

, by (2.11), (2.13),

we have for sufficiently large |z| = r

(2.14)
∣

∣

∣
A0e

Q(z)
∣

∣

∣
> exp {(1− ε) δ (Q(z), θ) rn} ,

∣

∣

∣

∣

∣

f (k)

f
+Ak−1

f (k−1)

f
+ ...+A2

f
′′

f
+D0 (z)

∣

∣

∣

∣

∣

(2.15)

6

∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

+ |Ak−1|

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ ...+ |A2|

∣

∣

∣

∣

∣

f
′′

f

∣

∣

∣

∣

∣

+ |D0 (z)|

6 rk(ρ−1+ε) + r(k−1)(ρ−1+ε) exp
{

rβ+ε
}

+ · · ·+ r2(ρ−1+ε) exp
{

rβ+ε
}

+ exp
{

rβ+ε
}

6 krk(ρ−1+ε) exp
{

rβ+ε
}

,

∣

∣

∣

∣

∣

(

D1 (z) +A1 (z) e
P (z)

) f
′

f

∣

∣

∣

∣

∣

(2.16)

6 rρ−1+ε
(

exp {(1− ε) δ (P (z), θ) rn}+ exp
{

rβ+ε
})

6 rρ−1+ε
(

1 + exp
{

rβ+ε
})

.

By (2.10), (2.12) and (2.14)-(2.16), we have

exp {(1− ε) δ (Q(z), θ) rn} 6

∣

∣

∣
A0e

Q(z)
∣

∣

∣
6 Krk(ρ−1+ε) exp

{

rβ+ε
}

,

where K > 0 is some real constant. This is a contradiction by β + ε < n.
Hence ρ (Lf ) = ρ (f) .

Case 2. Suppose now an = cbn (0 < c < 1) . Then for any ray arg z = θ, we
have

δ (P (z), θ) = cδ (Q(z), θ) .

Then, by Lemma 2.2, for any given ε (0 < ε < min( 1−c
2(1+c) , n−β,

ρ(f)−ρ(Lf)
4 )),

there exist Ej ⊂ [0, 2π) (j = 1, 2, 3) such that E1, E2 having linear measure
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zero and E3 being a finite set, where E1, E2 and E3 are defined as in the
Case 1 respectively. We take the ray arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E3 such
that δ (Q(z), θ) > 0 and for sufficiently large |z| = r, we have (2.14), (2.15)
and

(2.17)

∣

∣

∣

∣

∣

(

D1 (z) +A1 (z) e
P (z)

) f
′

f

∣

∣

∣

∣

∣

6 rρ−1+ε(exp
{

rβ+ε
}

+ exp {(1 + ε) cδ (Q(z), θ) rn}).

Thus by (2.10), (2.12), (2.14), (2.15) and (2.17) we obtain

exp {(1− ε) δ (Q(z), θ) rn}

6

∣

∣

∣
A0e

Q(z)
∣

∣

∣

6 krk(ρ−1+ε) exp
{

rβ+ε
}

(2.18)

+rρ−1+ε
(

exp
{

rβ+ε
}

+ exp {(1 + ε) cδ (Q(z), θ) rn}
)

+ 1

6 (k + 1) rk(ρ−1+ε) exp
{

rβ+ε
}

+ rρ−1+ε exp {(1 + ε) cδ (Q(z), θ) rn}+ 1.

By ε (0 < ε < min

(

1−c
2(1+c) , n− β,

ρ(f)−ρ(Lf)
4

)

), we have as r → +∞

(2.19)
rk(ρ−1+ε) exp

{

rβ+ε
}

exp {(1− ε) δ (Q(z), θ) rn}
→ 0,

(2.20)
rρ−1+ε exp {(1 + ε) cδ (Q(z), θ) rn}

exp {(1− ε) δ (Q(z), θ) rn}
→ 0,

(2.21)
1

exp {(1− ε) δ (Q(z), θ) rn}
→ 0.

By (2.18)-(2.21), we get 1 6 0. This is a contradiction. Hence ρ (Lf ) = ρ (f) .

Case 3. Finally, we suppose an = cbn (c > 1) . We can rewrite (2.7) as

(2.22)
Lf

f

f

f ′
=
f (k)

f ′
+Ak−1

f (k−1)

f ′
+· · ·+A2

f
′′

f ′
+
(

D0 (z) +A0 (z) e
Q(z)

) f

f ′

+D1 (z) +A1 (z) e
P (z).

By Lemma 2.7, there is a set E4 ⊂ (1,+∞) that has finite logarithmic
measure such that for all z with |z| = r /∈ [0, 1] ∪ E4 at which |f (z)| =
M (r, f) , we have
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(2.23)

∣

∣

∣

∣

f (z)

f
′

(z)

∣

∣

∣

∣

6 2r.

By Lemma 2.8, for ε

(

0 < ε < min( c−1
2(c+1) , n− β,

ρ(f)−ρ(Lf)
4 )

)

, we know

that there exists a set E5 with log dens (E5) > 0 such that

(2.24)

∣

∣

∣

∣

Lf

f

∣

∣

∣

∣

6 exp
{

−rρ(f)−2ε
}

6 1

for all z such that |z| = r ∈ E5 is sufficiently large and that |f (z)| >

M (r, f) υf (r)
δ− 1

8 . Since E4 ⊂ (1,+∞) has finite logarithmic measure and

E5 satisfies log dens(E5) > 0, we have log dens(E5 − ([0, 1] ∪E4)) > 0. By
(2.23) and (2.24), we have for sufficiently large |z| = r

(2.25)

∣

∣

∣

∣

Lf

f ′

∣

∣

∣

∣

=

∣

∣

∣

∣

Lf

f

f

f ′

∣

∣

∣

∣

6 2r exp
{

−rρ(f)−2ε
}

6 2r.

For any ray arg z = θ, we have

δ (P (z), θ) = cδ (Q(z), θ) .

By Lemma 2.2, there exists a ray arg z = θ ∈ [0, 2π) \E1 ∪ E2 ∪ E3, E3 =
{θ ∈ [0, 2π) : δ (P (z), θ) = 0 or δ (Q(z), θ) = 0} ⊂ [0, 2π), E1 ∪ E2 having
linear measure zero, E3 being a finite set, such that

δ (P (z), θ) = cδ (Q(z), θ) > 0

and by (2.11), (2.13) and (2.23) for sufficiently large |z| = r, we have

(2.26)
∣

∣

∣
A1e

P (z)
∣

∣

∣
> exp {(1− ε) cδ (Q(z), θ) rn} ,

∣

∣

∣

∣

(

D0 (z) +A0 (z) e
Q(z)

) f

f ′

∣

∣

∣

∣

(2.27)

6 2r exp
{

rβ+ε
}

+ 2r exp {(1 + ε) δ (Q(z), θ) rn} ,

∣

∣

∣

∣

∣

f (k)

f
′

+Ak−1
f (k−1)

f
′

+ · · ·+A2
f

′′

f
′
+D1

∣

∣

∣

∣

∣

(2.28)

6

∣

∣

∣

∣

f (z)

f
′

(z)

∣

∣

∣

∣

∣

∣

∣

∣

∣

f (k)

f
+Ak−1

f (k−1)

f
+ · · ·+A2

f
′′

f

∣

∣

∣

∣

∣

+ |D1|

6

∣

∣

∣

∣

f (z)

f
′

(z)

∣

∣

∣

∣

(∣

∣

∣

∣

∣

f (k)

f

∣

∣

∣

∣

∣

+ |Ak−1|

∣

∣

∣

∣

∣

f (k−1)

f

∣

∣

∣

∣

∣

+ · · ·+ |A2|

∣

∣

∣

∣

∣

f
′′

f

∣

∣

∣

∣

∣

)

+ |D1|
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6 2r (k − 1) rk(ρ−1+ε) exp
{

rβ+ε
}

+ exp
{

rβ+ε
}

6 2krk(ρ−1+ε)+1 exp
{

rβ+ε
}

.

By (2.22), (2.25) and (2.26)-(2.28), we have

exp {(1− ε) cδ (Q(z), θ) rn}(2.29)

6

∣

∣

∣
A1e

P (z)
∣

∣

∣

6 2krk(ρ−1+ε)+1 exp
{

rβ+ε
}

+ 2r exp
{

rβ+ε
}

+2r exp {(1 + ε) δ (Q(z), θ) rn}+ 2r

6 2 (k + 1) rk(ρ−1+ε)+1 exp
{

rβ+ε
}

+2r exp {(1 + ε) δ (Q(z), θ) rn}+ 2r.

By ε

(

0 < ε < min( c−1
2(c+1) , n − β,

ρ(f)−ρ(Lf)
4 )

)

, we have as r → +∞

(2.30)
rk(ρ−1+ε)+1 exp

{

rβ+ε
}

exp {(1− ε) cδ (Q(z), θ) rn}
→ 0,

(2.31)
2r exp {(1 + ε) δ (Q(z), θ) rn}

exp {(1− ε) cδ (Q(z), θ) rn}
→ 0,

(2.32)
2r

exp {(1− ε) cδ (Q(z), θ) rn}
→ 0.

By (2.29)-(2.32), we get 1 6 0. This is a contradiction. Hence ρ (Lf ) =
ρ (f) . �

By using Wiman-Valiron theory [13] (see also [18]), we easily obtain the
following result which we omit the proof.

Lemma 2.10. Let A0 (z) , ..., Ak−1 (z) , F (z) be entire functions of finite
order. If f is a solution of the equation

(2.33) f (k) +Ak−1 (z) f
(k−1) + ...+A1 (z) f

′

+A0 (z) f = F,

then ρ2 (f) 6 max {ρ (A0) , ..., ρ (Ak−1) , ρ (F )} .
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3. Proof of Theorem 1.5

Assume that f 6≡ 0 is a solution of equation (1.5). We prove that f is
of infinite order. We suppose the contrary ρ (f) < ∞. By Lemma 2.9, we
have n 6 ρ (Lf ) = ρ (F ) < n and this is a contradiction. Hence, every
solution of equation (1.5) is of infinite order and by Lemma 2.10, we have
ρ2 (f) 6 n. Suppose that ϕ (z) 6≡ 0 is an entire function of finite order. Set
g = f −ϕ, then f = g+ϕ and by ρ (ϕ) <∞ we have ρ (f) = ρ (g) = ∞ and
ρ2 (f) = ρ2 (g) 6 n. Thus, g is a solution of the equation

g(k)+Ak−1g
(k−1)+ ...+A2g

′′

+
(

D1 +A1e
P (z)

)

g
′

+
(

D0 +A0e
Q(z)

)

g = H,

where

H = F−(ϕ(k)+Ak−1ϕ
(k−1)+...+A2ϕ

′′

+
(

D1 +A1e
P
)

ϕ
′

+
(

D0 +A0e
Q
)

ϕ).

By ϕ (z) 6≡ 0 and ρ (ϕ) < ∞ we have H 6≡ 0. Since ρ (H) < ∞, then by
Lemma 2.3 and Lemma 2.4, we get

λ (f − ϕ) = ρ (f − ϕ) = ρ (f) = ∞, λ2 (f − ϕ) = ρ2 (f − ϕ) = ρ2 (f) 6 n.

Furthermore if F 6≡ 0, then by f is an infinite order solution of equation
(1.5), Lemma 2.3 and Lemma 2.4, we have

λ (f) = λ (f) = λ (f − ϕ) = ρ (f) = ∞,

λ2 (f) = λ2 (f) = λ2 (f − ϕ) = ρ2 (f) 6 n.

4. Proof of Theorem 1.7

Assume that f0 is a solution of (1.5) with ρ (f0) = ρ < ∞. If f1 is another
finite order solution of (1.5), then ρ (f1 − f0) <∞, and f1 − f0 is a solution
of the corresponding homogeneous equation of (1.5), but ρ (f1 − f0) = ∞
from Theorem 1.5 , this is a contradiction. Hence (1.5) has at most one
finite order solution f0 and all other solutions f1 of (1.5) are of infinite order
and satisfy (1.7) and (1.8). If ρ (F ) > n, suppose there exists f0 a solution
of (1.5) with ρ (f0) < ∞, then, we have ρ (f0) > n and by Lemma 2.9 we
get ρ (Lf ) = ρ (f0) = ρ (F ) . Suppose that ρ (F ) = n, if there exists f0 a
solution of (1.5) with ρ (f0) < ∞, then ρ (f0) 6 n. Indeed, if we suppose
that ρ (f0) > n, then by Lemma 2.9 we get ρ (Lf ) = ρ (f0) = ρ (F ) > n and
this is a contradiction.

5. Proof of Corollary 1.8

By using Theorem 1.5 and Theorem 1.7, we obtain Corollary 1.8.
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[2] B. Beläıdi, Growth and oscillation theory of solutions of some linear differential equa-

tions, Mat. Vesnik 60 (2008), no. 4, 233–246.
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