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Evaluation of the effectiveness of the interval computation method
to simulate the dynamic behavior of subdefinite system:
application on an active suspension system

Hassen Trabelsi · Pierre-Alain Yvars · Jamel Louati ·
Mohamed Haddar

Abstract A new design approach based on methods by
intervals adapted to the integration of the simulation step
at the earliest stage of preliminary design for dynamic sys-
tems is proposed in this study. The main idea consists on
using the interval computation method to make a simulation
by intervals in order to minimize the number of simulations
which allow obtaining a set of solutions instead of a single
one. These intervals represent the domains of possible val-
ues for the design parameters of the subdefinite system. So
the parameterized model of the system is solved by interval.
This avoids launching n simulations with n values for each
design parameter. The proposed method is evaluated by sev-
eral tests on a scalable numerical example. It has been applied
to solve parameterized differential equations of a Macpher-
son suspension system and to study its dynamic behavior in
its passive and active form. The dynamic model of the active
suspension is nonlinear but linearisable. It is transformed into
a parameterized state equation by intervals. The solution to
this state equation is given in the form of a matrix exponen-
tial. Three digital implementations of exponential have been
tested to obtain convergent results. Simulations results are
presented and discussed.
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1 Introduction

Conventional design methodologies based on a loop “design-
simulate-back at the initial stage in case of failure” appear to
be increasingly obsolete. During the past years, many studies
have been conducted to optimize design, more precisely at
the pre-sizing step [7–9]. This step is often expensive and
requires higher computation times [8–10] in order to obtain
the optimal [10,11] values of design parameters. In this work
we propose a new design procedure with a rigorous evalua-
tion that allows designing a subdefinite system [12,13] with
a less number of simulations. The new design approach is
based on the Interval computation method [14–21] and tech-
nique of constraint satisfaction problem (CSP) [22–30]. This
study focus just on the evaluation of the effectiveness of the
interval computation method to solve differential equations
(type ODE) by intervals which represents an important step
of the new design approach proposed. This study is limited to
the design of linear or linearisable parametric systems, which
can be reformulated in the form of state equation by inter-
vals. The intervals represent the areas of possible values of
design parameters of the system. In the new design approach,
simulation step is integrated into the preliminary pre-sizing
phase and the stages of ordinary design is rearranged.The
paper is organized as follows: in Sect. 2, the various stages
of the basic design and the new design p rocess were quoted
and compared. Section 3 is dedicated to the presentation of
interval computation method as a guaranteed method that
can encompass all the solutions that satisfy requirements
imposed. The idea is to apply this method to compute the
dynamic simulation of a subdefinite system by solving its
differential equations by intervals. In Sect. 4, the problem
of exponentiation of a matrix interval and method of conver-
gence of results is presented. Section 5 details the dynamic
model of the MacPherson suspension system. A simple scal-
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able model of MacPherson suspension system is presented to
check the validity of the interval computation method. The
Sects. 5.1 and 6 of this paper are devoted to the applica-
tion of the interval computation technique on a MacPherson
suspension system in passive and active case. The interval
computation technique was used to solve differential equa-
tions under uncertainties which have been applied to the val-
ues of the design parameters represented as intervals. Finally,
conclusions are drawn in Sect. 6.1.2.

2 Design approach

Currently, the system design has to take into account most
aspects of several disciplines (aerodynamics, thermal, crash,
vibration ...) [1,2]. It is based on the art of compromise, i.e.
accommodation of a large number of constraints. This aspect
involves several multidisciplinary skills in many engineer-
ing areas. These imply the need for dialogue between all
the different engineering areas during the design process, to
reflect properly their specifications in the constraints of opti-
mization, and to ensure that the generated solutions fulfil all
the imposed constraints. In such cases, the human reason-
ing alone is not enough, because it becomes difficult to find
arrangements between all requirements imposed from differ-
ent disciplines, and to decide how to act to improve the chosen
objectives. The complexity of the problem leads naturally to
the use of robust optimization techniques to determine the
best solutions. Optimization studies generate the production
of a large number of simulations. So it is necessary to com-
pletely automate the launch of these simulations [3].

Stages of a usual system design process are described in
Fig. 1. It is based on a loop “design-simulate-back to the ini-

Fig. 1 General process of product design

tial step in case of failure” [4]. Generally, design process
is split in three main steps: the first step is to provide a
preliminary design of the system components that satisfy
all the requirements from a given specification. During this
step, the various performance specifications that the product
has to satisfy are described by a set of analytical models.
Indeed, the geometry plays an important role in the prelim-
inary design phase of the system. So in this operation the
design variables of the product are defined and the dimen-
sions are fixed. The next step is the “test”. It is devoted for
evaluation and simulation, allowing the designer to reduce
the space of decision where solutions exist, in order to make
the best choice of design variables. This step is related to
the number of simulations made. Many methodologies and
software tools in different engineering areas [5,6,11] have
been developed and applied to simulate the behaviour of a
product. For example in electronics hardware description lan-
guages we find (VHDL, Verilog) which are intended to rep-
resent and simulate the behaviour and the architecture of a
digital electronic system i.e. Modelica [7] for multi-physics
simulation or CATIA [8] for geometry, Cosmos Works [9] to
analyse dynamic behaviour of the system using finite element
method for dynamic simulations. The last step of the conven-
tional design process consists in checking the requirements.
In this step the designer makes a comparison between the
responses of the product obtained by simulation of the sys-
tem with parameters chosen by estimation and/or by exper-
tise and the desired response. So the designer is faced to
two situations. In the first case if the resulting behaviour
of the system design has satisfied the constraints imposed in
the specifications document then, the design parameters used
in the simulation will be taken as a solution. In the second
case if the system response does not satisfy the constraints
imposed, then the designer has to change these parameters
by taking into account the previous simulation and the same
design steps should be repeated until obtaining the optimal
solution.

The previous design cannot be retained as a good approach
to ensure the optimization of the system design. The designer
has to go through several simulations to determine an optimal
solution without being sure if the obtained solution is the
global optimum within solutions space. It comes from the
fact that the number of simulations that can be done is limited
by the time and cost constraints which leads to oversize the
system. So in order to have a robust design, we proposed
through this work a new design approach in which simulation
step is integrated into the preliminary design phase as shown
in Fig. 2.

In Fig. 2 we present the different steps of the new design
process. In this method, dynamics requirements are inte-
grated in the preliminary design before simulation step. And
among the dynamics requirements we are interested in this
study to integrate dynamics simulation by intervals.
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Fig. 2 Interval based design process

The new design process is made up of four main stages:
the first stage is to express design variables by intervals. Here
the choice of the design variables values does not require
expertise. We can put a blind choice and use long intervals,
but we cannot deny that expertise may reduce the computing
time. In the next step, the designer identifies the requirements
that must be satisfied and express these requirements as con-
straints on the design variables. Those constraints provide
declarative descriptions of important requirements related
to engineering objectives. Then all types of constraints are
implemented in CSP (constraint satisfaction problem) model
(in this study it is a dynamic model) in the preliminary design
phase.Then the designer propagates those constraints in the
intervals of design variables to frame the areas of parameter
defining the system design. Here the role of CSP approach
comes. In fact the CSP [22,23] eliminates all values of design
variables that do not respect the imposed requirements. The
sets of values that remain represent the entire generated solu-
tion.

The constraint programming [22–25] is a programming
paradigm that emerged in the 1980s to solve combinatorial
problems of large sizes such as problems with planning and
scheduling. It is a technique intended to solve the mathemat-
ical problem that looks for states or objects satisfying a num-
ber of constraints. This technique is extensively used to treat
problems manipulating intervals. Indeed it serves to mini-
mize the areas of design variables. So the idea is to apply
the CSP approach to solve design problems which involve
design variables that must be expressed by intervals. The
CSP calculation is essentially based on the interval compu-

Fig. 3 Classical simulation vs. interval based simulation

tation method, so the goal of this study is to test the capability
of this method to solve differential equations type (ODE).

We notice that the CSP has been extensively used in dif-
ferent areas of engineering including systems control [15,19]
and preliminary design [26–36]. In many excellent scientic
works [26–36] the CSP was applied as an effective modeling
language allowing the integration of requirements in the pre-
liminary design phase. Most of requirements treated in these
studies are static and/or ecological. So we propose in this
work to integrate dynamics requirements such simulation by
intervals of dynamic behavior of a technical system.

For the next step, the designer makes a simulation by inter-
vals obtained by the CSP approach in order to determine the
system response. Then he chooses the optimal solution from
the set of solutions obtained by the interval simulation. As
shown in Fig. 3 the interval based simulation method pro-
vides not only a single evaluation of the system behavior but
also a set of performance bounds within the actual response
system resides.

Theoretically and using what we presented before, with
the new design process we can obtain the system response by
interval and frame the solution space thanks to the interval
computation. However the current problem, is that the eval-
uation of this method to solve a differential equation system
and determine the dynamic response has not yet been tested
on a scalable example. So the main objective of this work is
to evaluate the effectiveness of the interval based simulation
method to simulate the dynamic behavior of a parametric
system (i.e. Macpherson suspension system) by intervals.

3 Interval computation

The interval computation[14–21] has been used to solve
problems of uncertainty, it allows taking into account the
measurement error by replacing x value measured with
imprecision ε by the interval [x − ε, x + ε]. For example,
replace a value not exactly representable, as π , by an interval
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containing [3,14,3,15]. Since the introduction of the interval
computation, many applications have been developed such as
linear optimization, solving ordinary differential equations,
treatment of uncertainties,... The objective of the interval
computation is to provide results that contain certain value or
all searched values; so we talk about guaranteed or validated
results. Indeed, in the interval computation, we do not handle
numbers, but intervals. The result of an operation between
two intervals [18,19]: x � y, of a function f (z) is the smallest
interval (or vector interval) in the sense of inclusion contain-
ing:

{(x � y | x ∈ X, y ∈ Y ) �⇒ ( f (z)| z ∈ Z)}
Example:

[x; x] � [y; y]
=

[
min

(
x � y, x � y, x � y, x � y

)
; max

(
x � y, x � y, x � y, x � y

)]

The smallest interval means the smallest interval contain-
ing all possible results of the operation applied to all elements
x of X and all elements y of Y, all the possible results of ’f’
applied to all elements z of Z. The interval computation con-
tinues to grow, but with different objectives, for example, it
represent an accurate tool to determine the global optimal
or all zeros of a continuous function [16]. In this paper the
objective was the application of an interval computation on
a real system to get its dynamic behavior, through the reso-
lution of its differential equations by interval.

4 Solving linear differential equations by interval

Solutions and methods for solving differential equations have
been discussed in many papers, especially the methods that
use generic intervals [37,39] instead of fixed values in their
calculation algorithm. Unfortunately the evaluation of those
methods in real cases provided disappointing results, that
often diverge. In this paper we considered the linear case hop-
ing to get a better convergence. A linear differential equation
system is defined by:

{y�(t) = A.y(t) and y(0) = y0|y ∈ R
n and A ∈ R

n×n}
where A is a matrix whose coefficients aii that can be the
design parameters of a system are expressed by intervals. The
solution of this differential system is: y(t) = exp(t.A).y0.
So the exponentiation of a real matrix can solve problems
of linear ordinary differential equations (ODE) with an ini-
tial value (IVPs). The numerical calculation of the exponen-
tial of the matrix has been extensively studied [39,40] to get
more accurate and realistic results. Indeed, if an approximate
calculation from the last relationship led to an approximate
solution for a linear ordinary differential system, our interval
analysis provides more rigorous framework. Then, the strict

enclosure of the solution would be obtained by interval com-
putation of the matrix enclosing the exponentiation of the
matrix of interval A. The most obvious way to get an interval
enclosure of exp(A) is to evaluate the truncated Taylor series
using interval computation and to bind the rest. But the prob-
lem is that the results obtained by the exponential of Taylor
and the exponential Horner with intervals computation often
diverge especially the truncated Taylor series. For this reason,
three implementations of exponentials (Exponential of Tay-
lor, Exponential of Horner, and Exponential of Horner with
reduction) given in [40,41] are tested in our study. Its use in
conjunction with interval analysis that allows us to control
rounding errors to properly criticize and evaluate the results
obtained by each exponential in the example of MacPherson
suspension system will discussed in Sect. 6.1.2. The evalua-
tion of those three implementations of exponential was made
by programming in Matlab with the intervals library IntLab
[42].

4.1 Taylor Series

The Taylor series is applicable only when the matrix has fixed
values (like any diagonalizable matrix in C and the exponen-
tial of a complex is known. This method is very easy to imple-
ment). Unfortunately when it comes apart, this definition is
no longer valid (we can not define an interval of eigenvalue
due to its discontinuous nature). The easiest way is to apply
the Taylor series:

exp(A) =
∞∑

k=0

Ak

k! (1)

Let’s give an example to evaluate its accuracy [30] and
show that the truncation of the Taylor series is not well suited
to the interval evaluation, even if no truncation of the series
is made. We compute the formal expression of the exponen-
tial of the matrix A(t) for all t ∈ [-9 ; -7] with the eigen-
value method for its upper and lower limits. We find a mis-
leading result because the lower and upper bounds can’t be
improved. This means [exp(A), exp(A)] is the best enclo-
sure of exp(A).

A =
[

t 0
1 2

]
exp(A) =

[
[0.0001234 ; 0.0009119] 1

2.7183 7.3891

]

Now we make the calculation with the Taylor series trun-
cated to 18 terms with a rest practically negligible that can
be estimated less than:

ρ(‖A‖, n)×[−9,−7] = |A‖n+1

(n + 1)! × (1 − |A‖
n+2 )

×[−9 ; −7]

(2)
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We get disappointing results as we can see below:

exp(A) =
[

[−5103.560 ; 5105.246] 0
[−486.589 ; 487.898] 7.389

]

As shown in the example above, even with a fairly high
order for the expansion of the matrix [A], the influence of the
rest is insignificant. So the evaluation of the Taylor exponen-
tial shows that it enlarges the limits of a matrix in an intervals
calculation. The reason for this bad behavior of Taylor series
in assessment by interval is the loss of dependency between
the different expression occurrences of variables that occur
during each assessment interval. Two well-known techniques
can help to reduce the pessimism in the evaluation of the
Taylor series by interval. First, a matrix whose intervals are
centered forms which can provide results especially for very
small input intervals. Such centered form for the exponential
of a matrix which wass proposed in [43–45]. However, this
centered assessment dedicated to exponentiation of interval
matrix is very complex and difficult to follow or implement.
The second technique is to rewrite the formal expression in
order to obtain a more proportionate approach to the interval
evaluation (usually by reducing the number of occurrences
of variables). For example, the evaluation of a polynomial
in Horner form is known to improve the assessment inter-
val [35]. It can be naturally applied to the Taylor series in
the exponential of a matrix, and was already used [44] to
calculate the exponential of a matrix center as requested in
the centered form. Proof of the best adaptation of the Horner
exponential is provided in the following paragraph. We can
conclude then that Taylor exponential must be used when
there are a certain homogeneity in terms of the matrix and
that its standard is not very important (the number of terms
in the series must be chosen from the relation n + 2 > ‖A‖).
Its bad behavior is attributed to a high number of operations
in intervals evaluation.

4.2 Horner exponential

To reduce the number of operations, Goldsztejn [40,42]
applied the polynomial factorization of Horner [40] in Taylor
series. This method consists in the evaluation of the polyno-
mial image, at a point of the Euclidean space and performing
several divisions. Specifically, instead of having a sum with
power to assess, a product of simple terms that will reduce the
number of occurrences of the terms of the matrix, is obtained.
So the computation time is reduced and the cost of the com-
puting operations is minimized. The exponential scheme of
Horner is the following:

exp(A) = I + A.

(
I + A

2

(
I + A

3

(
...

(
I + A

n

))))
(3)

However the rest is the same as that of the Taylor expo-
nential (this was expected given that the writing comes from
the expression of Taylor series). If we take the example of the
previous section, we find for n=18 (with a rest below 10−3):

exp(A) =
[

[−474.602 ; 476.288] 0
[−67.172 ; 68.481] 7.389

]

We have now a better framework as we move the com-
ponent 2.1 from [486.589 ; 487.898] to [-67.172 ; 68.481].
This is an improvement in the calculation of the exponential.
In addition, it is shown that the loss of dependency due to
the significant improvement of the evaluation range, offering
more accuracy and less expensive calculations. As explained
previously, the center evaluation (centered matrix) provides
more distinct enclosures but for the resolution of our problem
is not yet clear. Therefore we turn to another digital trick.

4.3 Horner exponentially with reduction

The objective here is to reduce the intervals to get a better
precision in the calculations. The digital trick [40] consists
in writing the exponential as follows:

exp(A) =
(

A

2s

)2s

(4)

When doing so, both the norm of the matrix and the
intervals are reduced to the value we want. The number of
terms to be chosen is determined by the following equation
(n + 2).2s.‖A‖ and can therefore be reduced depending on
the value, without significant degradation of the results. But
we have to be careful, when we choose a too big s because in
the calculation of the power, the computer can interpret this
value as infinite, which irretrievably distorts the result. If we
take the example of the matrix A we obtain for n = 18 and
s = 40 a very satisfying results as we can see below:

exp(A) =
[

[−0.000241 ; 0.000912] 0
[0.656588 ; 0.821840] 7.389

]

We get for the same number of terms and a reduced num-
ber of operations, better results than the two previous expo-
nentials. It therefore seems a priori that the Horner expo-
nential with reduction is a suitable method to solve a lin-
ear differential equation. But to date, this approach, devel-
oped by Goldsztejn in [40], has been tested only on small
matrix(si ze = 2, 2) as previously shown. One of our goals
is to assess it on a real dynamic system. However, to confirm
these results, we will test all the previous types of exponen-
tials to simulate the behavior of a MacPherson suspension
system.
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5 MacPherson suspension system

Suspension systems cover several areas of applications.
This involves different operating environments, ranging from
domestic uses (office chairs ...) to applications with high reli-
ability and requirement (vehicle). Depending on the applica-
tion for which is dedicated to the suspension system, one or
more objectives of pre-sizing are often specified and must be
optimized.

The roles of a suspension system are to support the weight
of the vehicle to isolate the vibrations from the road and to
maintain the traction between the tire and the road.

In today’s automotive industry, the optimization [49,50]
of a vehicle in terms of comfort and security plays an active
role. This involves performing a large number of simula-
tions to find more efficient and innovative solutions, taking
into account the time constraint. Yet, despite the diversity of
existing tools and methods, the simulation step in most com-
plex systems is relatively long. One of the main purposes of
this study was to apply the interval computation method on
a MacPherson suspension system Fig. 4 to determine several
solutions, which offer the possibility to choose the ideal set-
tings from existing solutions which satisfies all the imposed
constraints.

5.1 Dynamic model of the arm of Macpherson suspension
system

This study is based on the dynamic model of Sohn et al.
[40] for MacPherson suspension system shown in Fig. 4. It
is composed of a quarter vehicle body, an axle and a tire, a
coil spring, a damper, an axle, a load disturbance and a con-
trol arm. The quarter vehicle body is assumed to have only
a vertical motion. If the mass of the control arm is ignored
and the joint between the control arm and the car body is

Fig. 5 Dynamic quarter vehicle model of a Macpherson suspension

assumed to be a pin joint, the degrees of freedom is two. As
the mass of the control arm is much smaller than those of
the sprung mass and the unsprung mass, it can be neglected.
Under the above assumption, a model of the Macpherson
type suspension system is introduced in Fig. 5. The vertical
displacement zs of the sprung mass and the rotation angle
θ of the control arm are chosen as the generalized coordi-
nates. The assumptions adopted in this modelling are sum-
marized as follows: The sprung mass has only the vertical
displacement while horizontal movement is ignored zs . The
unsprung mass (spindle and tire) is connected to the vehicle
body through the damper and spring as well as the control
arm in two ways. θ denotes the angular displacement of the

Fig. 4 Macpherson suspension system [47,48]
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control arm. The values of zs and θ will be measured from
their static equilibrium points.The sprung and the unsprung
masses are assumed to be particles. The mass and the stiffness
of the control arm are neglected. The coil spring deflection,
the tire deflection and the damping forces are in the linear
regions of their operating ranges.

Considering (yA, Z A), (yB , Z B) and (yC , ZC ) denote the
coordinates of point A, B and C, respectively, when the sus-
pension system is at an equilibrium point. Considering the
sprung mass be translated upward by zs , and the unsprung
mass be rotated by θ in the counter-clockwise direction.
Then, the following equations hold.

yA = 0 (5)

z A = zs (6)

yB = lB (cos(θ − θ0) − cos(−θ0)) (7)

zB = zs + lB (sin(θ − θ0) − sin(−θ0)) (8)

yC = lC (cos(θ − θ0) − cos(−θ0)) (9)

zC = zs + lC (sin(θ − θ0) − sin(−θ0)) (10)

Where θ0 is the initial angular displacement of the control
arm at an equilibrium point. Considering α′ = α + θ0. Then,
the following relations are obtained from the triangle OAB.

l =
(

l2
A + l2

B + 2lAlBcosα′) 1
2

(11)

l ′ =
(

l2
A + l2

B + 2lAlBcos(α′ − θ)
) 1

2
(12)

Where l is the initial distance from A to B at an equilibrium
state, and l’ is the changed distance with the rotation of the
control arm by θ . Therefore, the deflection of the spring, the
relative velocity of the damper and the deflection of the tire
are, respectively

(�l)2 = (l − l ′)2

= 2a1 − b1
(
cosα′ + cos(α′ − θ)

) − 2
[
a2

l − albl .
(

cosα′ + cos(α′ − θ) + b2
l cosα′cos(α′ − θ)

)]

(13)

(�l)
� = (l

� − l ′� ) = blsin(α′ − θ)θ
�

2 (al − blcos(α′ − θ))
1
2

(14)

zC − zr = zs + lC (sin(θ − θ0) − zr (15)

Where, al = l2
A + l2

B, bl = 2lAlB

5.1.1 Equations of motion

Lagrange’s method is used to obtain the equations of motion.
Considering T, V and D denote the kinetic energy, the poten-
tial energy and the damping energy of the system, respec-
tively. Then, these are

T = 1

2
ms Z �

s
2 + 1

2
mu

(
y�

C
2 + Z �

C
2
)

(16)

V = 1

2
ks�l2 + 1

2
kt (zC + zr )

2 (17)

D = 1

2
cp

(
�l�

)2
(18)

Substituting the derivatives of (9), (10) and (13,14,15) into
(16,17,18) yields

T = 1

2
(ms + mu) Z �

s
2 + 1

2
mul2

Cθ �2 + mulC cosθθ �z�
s

(19)

V = 1

2
ks[2al − bl

(
cosα′ + cos(α′ − θ)

) − 2(a2
l − albl .

cosα′ + cos(α′ − θ) + b2
l cos(α′ − θ))

1
2 ].

1

2
kt [zs + lC (sin(θ − θ0) − sin(−θ0)) − zr ]2 (20)

D = cpb2
l sin2(α′ − θ)θ

�

8 (al − blcos(α′ − θ))
(21)

Finally, for the two generalized coordinates q1 = zs and
q2 = θ , the equations of motion are obtained as follows:

(ms + mu)z
�
s + mulC cos(θ − θ0)θ

�

− mulC sin(θ − θ0)θ
�2 + kt [zs − zr

+ lC (sin(θ − θ0) − sin(−θ0))] = − fd (22)

mul2
Cθ

� + mulC cos(θ − θ0)z
�
s + cpb2

l sin2(α′ − θ0)θ
�

4
(
al − bl cos(α′ − θ)

)

− kt lC cos(θ − θ0)(zs + lC (sin(θ − θ0) − sin(−θ0))

− zr ) − 1

2
kscos(α′ − θ)

⎡
⎢⎣bl + dl(

cl − dl cos(α′ − θ)
1
2

)

⎤
⎥⎦

= −lB fa (23)

Where,
cl = a2

l −alblcos(α + θ0) and dl = albl −b2
l cos(α + θ0)

Now, introducing the state variables as [x1 x2 x3 x4]=[zs

z�
s θ θ �]. Then, 22-23 can be written in the state equation as

follows:

x �
1 = x2

x �
2 = f1 (x1, x2, x3, x4, fa, zr , fd)

x �
3 = x4

x �
4 = f2 (x1, x2, x3, x4, fa, zr , fd) (24)

where,

f1 = 1

D1
[mul2

C sin(x3 − θ0)x2
4 + 1

2
kssin(α′ − x3).

cos(x3−θ0)g(x3)+cph(x3)θ
. −kt lC sin2(x3−θ0).

z(.) + lB facos(x3 − θ0) − lC fd ] (25)
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f2 = 1

D2
[m2

ul2
C sin(x3 − θ0)cos(x3 − θ0)x2

4 + (ms + mu).

cph(x3)x4− 1

2
(ms +mu)kssin(α′ − x3)g(x3)+mskt .

lC cos(x3 − θ0)z(.) + (ms + mu)lB fa

−mulC cos(x3 − θ0) fd ] (26)

And

D1 = mslC + mulC sin2(x3 − θ0) (27)

D2 = msmul2
C + m2

ul2
C sin2(x3 − θ0) (28)

g(x3) = bl + dl(
cl − dlcos(α′ − x3)

1
2

) (29)

h(x3) = b2
l sin2(α′ − x3)

4 (al − blcos(α′ − x3))
(30)

z(.) = z(x1, x2, zr ) = x1

+ lc [sin(x3 − θ0) − sin(−θ0)] − zr

(31)

5.1.2 Linearization

In order to simplify of the resolution the equations of the
system, (20) is linearized at the equilibrium state where
xe = (x1e, x2e, x3e, x1e) =(0,0,0,0). Then, the resulting linear
equation is

x � = Ax(t) + B1 fa(t) + B2zr (t) + B3 fd(t), x (0) = x0

(32)

where,

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0
∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

0 0 0 1
∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 1 0 0

a21 0 a23 a24

0 0 0 1

a41 0 a43 a44

⎤
⎥⎥⎥⎦

B1 =

⎡
⎢⎢⎢⎢⎣

0
∂ f1
∂ fa

0
∂ f2
∂ fa

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
lB cos(−θ0)

mslC +mulC sin2(−θ0)

0
(ms+mu)lB

ms mul2
C +m2

ul2
C sin2(−θ0)

⎤
⎥⎥⎥⎥⎦

B2 =

⎡
⎢⎢⎢⎢⎣

0
∂ f1
∂zr

0
∂ f2
∂zr

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
kt lC sin2(−θ0)

mslC +mulC sin2(−θ0)

0
ms kt lC cos(−θ0)

ms mul2
C +m2

ul2
C sin2(−θ0)

⎤
⎥⎥⎥⎥⎥⎦

B3 =

⎡
⎢⎢⎢⎢⎣

0
∂ f1
∂ fd

0
∂ f2
∂ fd

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0
lC

mslC +mulC sin2(−θ0)

0
mulC cos(−θ0)

ms mul2
C +m2

ul2
C sin2(−θ0)

⎤
⎥⎥⎥⎥⎦

with

a21 = −kt lC sin2(−θ0)

D1

a23 = 1

D2
1

[[
1

2
ks

(
bl + dl

(cl − dl cosα′)
1
2

)
cos(α′ + θ0)

− 1

2

(
kssinα′cos(−θ0)

)
.

(
d2

l sinα′

2 (cl − dl cosα′)
3
2

)

− kt l
2
C sin2(−θ0)cos(−θ0)

]
.[mslC + mulC sin2(−θ0)]

+ mukslC sinα′sin(−θ0)cos2(−θ0)

(
bl + dl

(cl − dl cosα′)
1
2

)]

a24 = 1

D1
.

cpb2
l sin2α′

4 (al − blcosα′)

a41 = −mskt lC cos(−θ0)

D2

a43 = 1

D2
1

[[
1

2
(ms + mu) kscosα′

(
bl + dl

(cl − dl cosα′)
1
2

)

− 1

2
(ms + mu) kssinα′.

(
d2

l sinα′

2 (cl − dl cosα′)
3
2

)

− mskt l
2
C cos(−θ0)

]
.[msmul2

C + m2
ul2

C sin2(−θ0)]

+ 1

2
(ms + mu)m2

uksl2
C sinα′sin(−θ0)

(
bl + dl

(cl − dl cosα′)
1
2

)]

a44 = − 1

D2
.
(ms + mu) cpb2

l sin2α′

4 (al − blcosα′)

6 Dynamic simulation of a passive Macpherson
suspension system

6.1 Transient state

6.1.1 Fixed values

We handle the case where we impose a displacement of 10 cm
on the wheel (the differential equations are with no second
term), so the system is written as following:

x � = A.x(t) With : x � =

⎡
⎢⎢⎣

zs

z�
s
θ

θ �

⎤
⎥⎥⎦ (33)
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Table 1 Design parameters of the MacPherson suspension system

mu Wheel mass 25 kg

ms Vehicle mass 500 kg

kt Tire stiffness 200000 N/m

ks Damper stiffness 20000 N/m

cp Viscous damping coefficient 2000 N.s/m

Fig. 6 MacPherson suspension system response when excited with
snap-displacement. a Vertical displacement of mass ms . b Rotation of
mass ms around X. c Linear velocity of mass ms . d Angular velocity of
mass ms

The system is shaped to apply the exponential matrix.
Thus, without introducing uncertainty in the values of
MacPherson suspension parameters (the system is solved
with the method of exponential eigenvalues).

The numerical values of the design variables of the
MacPherson suspension system used for the simulation of
its dynamic behavior are represented in Table 1.We obtain
the reference curves shown in Fig. 6.

The dynamic behavior of a Macpherson suspension sys-
tem when excited by a displacement of 10 cm on the wheel
is represented in Fig. 6. The displacement zs converge to
zero, which is normal as the role of a suspension is to mit-
igate the vibrations caused by road in a minimum time. We
notice that the chassis takes 8s to stabilize and to attain its
equilibrium position, which is not a long period consider-
ing the magnitude of excitation and the fact that the type of
MacPherson suspension system is a passive suspension in
this case. This is due to the fact that the design parameters
are well chosen specifically on the chassis stiffness ks which
quickly stiffens the structure. Also we notice the variation
of the rotation angle θ is very small, it takes 8 s to attain its
equilibrium position like the vertical displacement zs . The

variation of the linear and angular velocity (z�
s , θ

�
) is very

small compared to its equilibrium position, which implies
that the damping coefficient cp is well chosen. Although the
dynamic behavior of the MacPherson suspension responded
well for the prospects expected but we are not sure if the
design parameters chosen are the best. So in next paragraph
we introduced uncertainty in these parameters.

6.1.2 Uncertainties

In this sub-section the evaluation of the dynamic behav-
ior of the MacPherson suspension system was studied with
uncertainty. The uncertainties have been applied to the val-
ues of design parameters which define the dynamic model
of the MacPherson suspension system. The system of dif-
ferential equations is solved with the interval Based Sim-
ulation method. The same calculation used in Sect. 6.1.1 is
repeated but with uncertainty in reference values to determine
the behavior of the suspension system by interval. Typically,
for a first test, a 0.2 % uncertainty on the stiffness ks and
0.4 % on the stiffness kt , 0.3 % uncertainty on the mass ms

and 0.1 % on the mass mu and 0.5 % on the damping coeffi-
cient cp were imposed. The areas of these design parameters
are as follows:

kt = [199200; 200800]mu = [24.975; 25.025]
cp =[1990; 2010]ks =[19960; 20040]ms =[495.5; 501.5]

The calculation has been done in MATLAB with the inter-
vals library IntLab [38] for a number of terms equal to 14
(with Taylor, Horner or Horner with reduction) [20] and a
reduction factor equal to 45. The results are shown in Fig. 7.

In Fig. 7 the behavior of the Macpherson suspension sys-
tem when excited by an instantaneous displacement is rep-
resented. With the Interval Based Simulation we determine
an envelope which includes a set of performance for dis-
placement zs and rotational movement θ of chassis 1. For the
calculations of the dynamic response of the MacPherson sus-
pension with uncertainty, two types of exponential have been
applied. The calculations that have been made with Taylor
(Fig. 7a, b) and Horner exponential (Fig. 7c, d).

We find that the results shown in the previous figures do
not correspond to reality, since a significant difference (about
1030) identified between the curves calculated with setting
values and curves calculated with uncertainty. So as men-
tioned in the Sect. 4, the calculation by interval with the use
of Taylor exponential or and Horner exponential diverges
which confirms the divergence shape of curves of displace-
ments zs and rotational movement θ . However, we notice
that curves obtained by Taylor deviates in a increasing man-
ner in a single direction while curves calculated by the Horner
exponential deviates also in two directions in a symmetrical
manner which is close to reality since the references curves

9



Fig. 7 The behavior of Macpherson suspension system when excited
by an instantaneous displacement (comparison between the response
calculated with the use of Taylor exponential and Horner exponential).
a Vertical displacement of mass ms calculated by applying Taylor expo-
nential. b Rotation of mass ms around X calculated by applying Taylor
exponential. c Vertical displacement of mass ms calculated by apply-
ing Horner exponential. d Rotation of mass ms around X calculated by
applying Horner exponential

have a sinusoidal pseudo-periodic form, thus confirming the
theory outlined in Sect. 4.

In Fig. 8 the Horner exponential with reduction is tested to
calculate the dynamic behaviour of MacPherson suspension.
We notice that the set of solutions obtained are converging
and have the same appearance like the curve calculated with
fixed values which confirms the theories in Sect. 4 [40]. To
ascertain the validity of the algorithm, the uncertainties were
set to zero to check that the same curves were well received.
However, the results obtained with the use of the mathe-
matical formulation of Horner exponentially with reduction
reflect that when the range of variables is divided into multi-
ple sections, it will significantly reduce the error propagation.
So we can conclude that the expression of Horner exponential
with reduction is the most adaptable to the mathematical for-
mulation to make exponential calculation by intervals. This
asserts that the divergence of results is not due to the Interval
based Simulation method but to the mathematical formula-
tion of the problem.

6.2 Harmonic state

6.2.1 Setting values

Just like what has been achieved previously in Sect. 6.1.1,
the same process and calculations are repeated in the next,

Fig. 8 The behavior of Macpherson suspension system when excited
by an instantaneous displacement (response calculated with the use of
exponential Horner with reduction). a Vertical displacement of mass ms
calculated by applying Horner exponential with reduction. b Rotational
movement of mass ms calculated by applying Horner exponential with
reduction

except for the excitation of the dynamic model which has
been done besides the displacement of 10 cm imposed on
the wheel with a sinusoidal force. Repeating the previous
matrices, the system to solve is:

x
� = Ax(t) + B1 fa(t) + B2

F(t)

kt
+ B3 fd(t) (34)

With:

F(t) = 0.02.kt .sin(10t)Even with zero initial conditions.

And:

fa = fd = 0

The solution of this system is the following form

x(t) = eA.t .x0 +
t∫

0

eA.λ.B2.
F(t − λ).

kt
.dλ (35)

After an integration by parts we find the following solution:

x(t) = eA.t .x0 + B2.K

ω
[
1+( A

ω

)2
]
(

eA.t −cosω.t − A

ω
sinω.t

)

(36)
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Fig. 9 The behavior of Macpherson suspension system when excited
by an instantaneous displacement (response calculated with the use of
exponential Horner with reduction). a Vertical displacement of mass ms
calculated by applying Horner exponential with reduction. b Rotational
movement of mass ms calculated by applying Horner exponential with
reduction

The Behavior of a Macpherson suspension system when
excited by a sinusoidal force is represented in Fig. 9. The stars
point curves ( -***-) represent the calculations which have
been done with fixed values. So according to these results in
Fig. 8 we notice that the curves zs and θ have the expected
behaviours. They are sinusoids curves that follow the road as
they have the same frequency and nearly the same amplitude.
In addition, there is an angle shift between zs and the sinu-
soidal force of excitation F. It caused by the difference time
between the instant when the peak occurred and the instant
when users have felt it. Fortunately this is a part of the role
of the suspension to delay and reduce the abrupt changes of
the road. We can therefore use these new curves as reference
curves.

6.2.2 Uncertainties

Uncertainties defined in Sect. 6.1.2 are now included but with
the same percentages. According to results in Sect. 6.2.1.
We apply just the Horner exponential with reduction since
the results obtained by the others exponential expressions
diverge. Curves in Fig. 9 show that the curves simulated con-

sidering fixed values (reference curves) for displacements zs

and θ is placed between the boundaries curves. So the validity
of the calculation method is verified. We notice that the set of
the system trajectories have similar look shape as references
curves. The displacements zs and θ are sinusoids that follow
the trajectory road.

7 Dynamic simulation of an active Macpherson
suspension system

Comfort and road handling of a passenger car can be
improved by replacing its passive suspension by a controlled
suspension. A large number of studies [52–54] exist on the
effectiveness of the skyhook control policy along with other
optimal control techniques. Most of these studies indicate
that skyhook control is the optimal control policy in terms
of its ability to isolate the suspended mass from the base
excitations. So we implement a skyhook controller in the
Macpherson suspension system. One method of generating
the skyhook damping force is to remove the passive suspen-
sion (i.e., both the damper and the spring) and replace it with
an active force generator. This can be achieved by using a
hydraulic actuator, however, the resulting system is rather
complex and requires a significant amount of power [53].
Another approach to achieving skyhook damping is to use
semiactive dampers. Semiactive dampers allow the damping
coefficient, and so the damping force, to be varied between
high and low levels of damping. Early semiactive dampers
were mechanically adjustable by opening or closing a bypass
valve. The only power required for the damper is the rela-
tively small power to actuate the valve. Since a semiactive
damper is used in this study, we notice that the force applied
by the skyhook damper to the suspended mass has the fol-
lowing form

FSK Y = −CSK Y .z�
s (37)

With CSK Y is the controller damping coefficient.

7.1 Transient state

7.1.1 Fixed values

Considering the previous matrices except the force fa is non-
zero in this case as the suspension system is active. So the
force fa is replaced by the relation of FSK Y and the system
to solve becomes:

x � = Ax(t) + B1(−CSK Y .z�
s) + B2zr (t) + B3 fd(t) (38)

After substitution of Eq. (37), we obtain the following
system:

x � = Ax(t) (39)
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Fig. 10 Comparison between active and passive MacPherson suspen-
sion system response when excited with snap-displacement. a Vertical
displacement of mass ms . b Rotation of mass ms around X. c Linear
velocity of mass ms . d Angular velocity of mass ms

where,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

a21 −CSK Y
lB cos(−θ0)

mslC +mulC sin2(−θ0)
a23 a24

0 0 0 1

a41 −CSK Y
(ms+mu)lB

ms mul2
C +m2

ul2
C sin2(−θ0)

a43 a44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and

fd = 0.

After calculation which was done without uncertainty
and with controller damping coefficient CSK Y =800N.s/m we
obtain results in Fig. 10.

Figure 10a, b, c, d show the comparison of step response
of MacPherson syspension system with skyhook and with-
out skyhook controller for outputs zs ,z�

s , θ and θ �. From Fig.
10 we notice that when we use controller overshot decrease
and system reaches to steady state faster. It is noticeable
from these figures that the magnitude for the body vehicle
decreases even its velocity and the vehicle resumes its equi-
librium state in 3 s instead of 8 s. This is an improvement
of the system response which confirm the efficiency of the
skyhook controller to the reduce of vibrations caused by the
roads. The velocity variation (Fig. 10c, d) of active behav-
iour of MacPherson suspension is too small compared to the
velocity variation of the passive behaviour which reflects that
the acceleration of the body vehicle is reduced.

Fig. 11 MacPherson suspension system response when excited with
snap-displacement. a Vertical displacement of mass ms calculated by
applying Horner exponential with reduction.

Fig. 12 MacPherson suspension system response when excited with
snap-displacement. a Vertical displacement of mass ms calculated by
applying Horner exponential with reduction.

7.1.2 Uncertainties

The selection of the optimal controller damping coefficient
is crucial, since it determines the optimal manner of the
MacPherson suspension behaviour. So according to excita-
tion kind, we need to determine if the controller damping
coefficient is well chosen or not. So 2 % of uncertainties
on the controller damping coefficient(CSK Y =[784 ; 816]) is
introduced and the uncertainties of the values of design para-
meters is setted to zero.

From curve in Fig. 11 we notice that even if we take a
higher percentage of uncertainty on the damping controller
coefficient the results obtained converge. This is due to the
fact that the uncertainty was implemented in one design vari-
able CSK Y .

7.2 Harmonic state

With the uncertainties introduced on the damping controller
coefficient , the designer can make a good idea on the effect
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of the increasing or the reducing of this coefficient on the
behaviour of the MacPherson suspension system. So the sim-
ulation with interval can help to make a good decision about
the choice of design parameters (Fig. 12).

With the interval based simulation method, several
dynamic simulations result from the uncertainty imposed
on the variables of the dynamic model. These performance
bounds and the dynamic behavior of the system under nom-
inal value can provide more complete information for a
designer. So relying on these simulations, the designer can
determine the solution that can fulfill the constraints imposed
in the specifications document, which makes the sizing of the
MacPherson suspension system easier.

8 Conclusion

From the previous study of dynamic behavior of the MacPher-
son suspension system, the validity of interval based simu-
lation to solve differential equations has been proved. With
the use of Horner exponential with reduction, the exponen-
tial divergence problem when the Interval Based Simulation
is applied and solved and the results of simulation are more
realistic. However, this type of calculation is orientated to
solve linear ordinary differential equations to make dynamic
simulations. Indeed, the interval based simulation compared
to a classical simulation allows multiple simulations simulta-
neously and recesses to reduce of the computational burden.
The Interval Based Simulation method provides not only a
single evaluation of the system behavior but also a set of per-
formance bounds. Simulation results demonstrate that these
performance bounds give a better description of the dynamic
behavior of MacPherson suspension system with uncertain
parameters.
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