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Inverse approach to chronotaxic systems for single-variable time series
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Following the development of a new class of self-sustained oscillators with a time-varying but stable frequency,
the inverse approach to these systems is now formulated. We show how observed data arranged in a single-variable
time series can be used to recognize such systems. This approach makes use of time-frequency domain information
using the wavelet transform as well as the recently developed method of Bayesian-based inference. In addition, a
set of methods, named phase fluctuation analysis, is introduced to detect the defining properties of the new class
of systems by directly analyzing the statistics of the observed perturbations.We apply these methods to numerical
examples but also elaborate further on the cardiac system.
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I. INTRODUCTION

A new class of oscillatory systems which are characterized
by a time-varying but stable frequency has been recently
developed [1]. These chronotaxic systems provide a way
of modeling stable dynamics that had not previously been
considered. In particular, they offer a novel way of generating
oscillations with time-dependent frequencies that are resistant
to external perturbations. As shown in the previous work [1],
chronotaxic systems contain a deterministic element that is
shielded from noise and other external effects but they can
still appear stochastic to other analytical frameworks. The
theory therefore greatly simplifies the description of complex
dynamics and also reveals stability where there may have
previously been thought to be none.

As we begin to apply the theory of chronotaxic systems to
the real world, in this paper we now ask the important question:
How can we detect a chronotaxic system from observations?
By answering this question we intend to formulate the analysis
of chronotaxic systems in the inverse approach.

The inverse approach to dynamical systems has been an
active field since the introduction of time and frequency
domain techniques [2] as well as phase space methods [3–
5]. The stochastic approach to dynamical systems has also
seen much activity [6]. Such methods reveal properties of
an underlying system from the information contained in its
observable variables, allowing classification of the dynamics.

However, one of the greatest challenges that remains is
the case of inverse problems of nonautonomous systems,
i.e., those that are inherently time dependent, which includes
chronotaxic systems. Such systems are widely prevalent in
nature, from life [7] to climate dynamics [8], where the
situation is inevitably one that is thermodynamically open and
subject to time-dependent effects. They also commonly appear
as a consequence of observing only a single variable in coupled
systems, which effectively turns the other variables into a time-
dependent influence. Being able to analyze single-variable
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data of nonautonomous systems therefore has wide-reaching
implications.

The development of methods that can be applied to time-
varying dynamics has been an extremely active field in recent
years. Of particular note are wavelet-based methods such as
wavelet phase coherence [9], bispectrum [10], and also the syn-
chrosqueezed transform [11]. Methods to fit nonautonomous
models to data have also been investigated [12], including a
novel technique based on Bayesian inference [13,14] which is
able to track time-dependent system parameters [15,16]. More-
over, these methods have been successfully applied to many
areas including blood flow dynamics [17,18], aging [19,20],
neuroscience [21], and climate science [8].

The following will detail the procedure for detecting
chronotaxicity for the nontrivial case where only a single-
variable time series of a system is observed. In Secs. II
and III the background to this work is presented, including
an overview of how chronotaxic systems are defined and
their relation to established techniques used in the inverse
approach to dynamical systems. Sections IV A–IV D detail the
framework of analysis for chronotaxic systems where a single-
variable time series is observed, as well as the restrictions
for when different parts of this framework can be applied. In
Sec. V A the application of the methods is demonstrated for
numerically generated phase oscillators. Lastly, the framework
is applied to a physiological recording of the electrical activity
of the heart in Sec. V B and the summary, conclusions, and
current outlook are presented in Sec. VI.

II. MODEL OF CHRONOTAXIC SYSTEMS

Following Refs. [1,22], chronotaxic systems are defined
as a subclass of nonautonomous dynamical systems, which
means their dynamics is governed by an independent variable
or time-dependent component. This is achieved by the use
of unidirectionally coupled differential equations, known as a
skew-product flow [23–25], master-slave configuration [26],
or as drive and response systems [27],

ṗ = f(p),
(1)

ẋ = g(x,p).

Here x(t) contains the dynamics of the observed nonau-
tonomous system. One of the most important properties of such
a system is that its trajectory depends not only on the current
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time t and initial conditions x0 as in autonomous systems, but
also depends on the initial time t0.

The structure defined in (1) is required in order for an
oscillatory system x to have stable dynamics, which are
typically characterized by an amplitude and phase. In terms
of amplitude, stable dynamics can be obtained through an
autonomous limit cycle, which corresponds to a stationary
stable fixed point in the amplitude. This can be expressed
by the action of a negative Lyapunov exponent, where the
initial displacement from the limit cycle and subsequent
amplitude perturbations exponentially decay. As a result,
unperturbed trajectories converge to the limit cycle over time.
Similarly, higher-dimensional systems which are nonchaotic
can also have stable amplitudes as they are decomposable into
individual limit cycles [28].

Besides the amplitude, the oscillatory dynamics discussed
above is described by the coordinate along the limit cycle
which is known as the phase. In autonomous systems the phase
of a system on a limit cycle is not stable, i.e., its Lyapunov
exponent is zero. The natural frequency of the system describes
the rate at which the unperturbed phase changes, but the phase
can be pushed in either direction by an external force and the
underlying rate of change will not be affected.

This means that while the natural frequency itself does not
change, the actual frequency of the oscillations can be slowed
if perturbations push the system in the opposite direction to the
change in phase, or increased if perturbations push the system
in the same direction.

In order to make the phase dynamics stable and to
consequently have a stable frequency, there has to be a steady
state xA on the limit cycle which trajectories converge to. In
other words, the Lyapunov exponent of the phase dynamics
has to be negative rather than zero. However, once the system
has reached xA it would remain stationary, meaning that the
oscillations would cease. Therefore, to maintain oscillations
the system must also be time dependent (nonautonomous) so
that the steady state moves around the limit cycle. In this case
the frequency of the oscillations is fixed to the rate at which
xA(t) moves. Furthermore, the frequency can change over time
but still remains stable.

In general, xA(t) is a time-dependent point attractor or
steady state for all trajectories, satisfying the condition of
invariance

x(t,t0,xA(t0)) = xA(t), (2)

the condition that all trajectories converge to it in the pullback
limit [23,24],

lim
t0→−∞|x(t,t0,x0) − xA(t)| = 0, (3)

and in the forward limit,

lim
t→+∞|x(t,t0,x0) − xA(t)| = 0. (4)

The motion of the point attractor xA(t) along the limit cycle
results in a special object—a chronotaxic limit cycle.

The above overview of the theory of chronotaxic systems
sufficiently describes the aspects related to the inverse ap-
proach. However, extensions to this theory are covered in
Ref. [22], including a discussion of its applications.

III. PREVIOUS INVERSE APPROACHES AND
NONAUTONOMOUS SYSTEMS

Following the brief introduction of chronotaxic systems we
now focus on tackling such systems in the inverse approach.
Since chronotaxic systems are dominated by deterministic
dynamics, the conventional approach to their analysis would
involve the reconstruction of the attractor in phase space
and the properties of the system would then be determined
using the ergodic theory [29]. However, these methods fall
down when applied to chronotaxic systems as they are
nonautonomous.

One of the most important issues in analyzing any nonau-
tonomous system in this way is that many of the common time-
independent analytical methods do not give useful information.
In most cases the frequency distribution of the system is
nonstationary, which means the Fourier transform contains
a mixture of the power spectra at different times that becomes
difficult to interpret. In addition, other representations such
as probability distributions and phase space embeddings give
a time-averaged view of the system that makes it appear
high dimensional and stochastic [30]. This also excludes the
possibility of using probabilistic approaches based on Granger
causality which are otherwise very useful when applied to
stationary data [31].

The usual way of dealing with nonstationary data is to
perform the same analyses but only on part of the time series by
using a moving time window. However, this creates a number
of issues. In the case of the Fourier transform the window
size limits the frequency resolution of the Fourier spectrum,
which has a huge impact on the detection of low-frequency
oscillations (an effect known as the Gabor limit [2]). In phase
space, the system may be unable to explore all parts of the
attractor within a given window, resulting in an incomplete
reconstruction.

For the problem of analyzing nonstationary data in the
frequency domain the solution is to use the wavelet transform,
which is defined in the following section. However, in the case
of phase space analysis, the methodology used to reconstruct
a time-dependent attractor can result in “blurring,” where
trajectories either overlap or do not match up correctly. One
way in which this happens is from the fact that the data used
in the embedding is taken from some time interval, where data
at the beginning of the interval corresponds to the attractor at
a different time from the one derived from data at the end of
the interval. Another effect is more subtle as it is related to the
parameters used in the time delay embedding theorem [32,33].
In particular, the time delay used ensures that the phase space
dimensions are independent and the parameter is constant for
the entire embedding. When the attractor is nonautonomous,
and since the parameter is not adaptive, this means that the
dependence of the dimensions may change in time, resulting
in an attractor that appears more blurred and time dependent
than it actually is.

Recent work has improved the embedding procedure
for complex time-dependent systems such as the brain
and cardiovascular system, revealing the direction of cou-
pling between subsystems [34]. However, the application
of the ergodic theory to nonautonomous systems is still
restricted.
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IV. THE INVERSE APPROACH TO
CHRONOTAXIC SYSTEMS

As a subclass of nonautonomous systems, it is not appropri-
ate to analyze chronotaxic systems using many of the typical
inverse approaches to dynamical systems. However, in contrast
to the general case of nonautonomous systems, the charac-
teristics provided in their definition can be taken advantage
of, particularly those corresponding to the phase dynamics.
By taking these defining properties into consideration a new
framework of analysis is now presented.

A. Separation of phase and amplitude

One of the requirements for chronotaxic systems is that
they possess a stationary limit cycle [1]. The existence of a
limit cycle means that the system can be transformed to polar
coordinates where a phase and amplitude of the oscillation can
be defined. These correspond to angular direction and radial
distance from a reference point, respectively.

The amplitude dynamics of a chronotaxic system corre-
sponds to the convergence of the system to the limit cycle,
which is influenced only by a negative Lyapunov exponent
and external perturbations. On the other hand, the phase
dynamics corresponds to convergence to the time-dependent
point attractor, which is characterized by a negative Lyapunov
exponent and external perturbations, but also by the motion of
the point attractor itself. The influence of this point attractor in
the phase dynamics is the focus of investigation of chronotaxic
systems in the inverse approach, which means the separation
of the phase from the amplitude is an important first step.

In the time-frequency domain, the polar coordinates can be
extracted from an oscillation if it has one continuous frequency
in time. “Continuous” is specified here because rapid jumps
in frequency cannot be tracked due to the time-frequency
resolution limit. This restriction also requires that only one
oscillatory component is present in the time series or that
multiple components can be extracted via decomposition, in
which case each oscillation requires a separate transformation
to polar coordinates. The exception to this is when the
oscillations are in fact harmonics caused by nonlinearities
in the system but corresponding to the same limit cycle
oscillation [9].

Consider a time series f (t) of length L which contains
a limit cycle oscillation. In an ideal situation the time series
would only contain the dynamics of a sinusoidal-like oscilla-
tion, in which case the Hilbert transform could be applied
to give an almost perfect extraction of the phase [35,36].
However, when this is not the case it is fairly straightforward
to calculate the frequency and amplitude of the oscillation
for every point in time by using the continuous wavelet
transform [37]

WT (s,t) =
∫ L

0
�(s,u − t)f (u)du, (5)

where �(s,t) is the mother wavelet, which is scaled according
to the parameter s to change its frequency distribution and
time shifted according to t . The oscillation can be traced
in WT (s,t) using either a ridge-extraction method [38,39] or
synchrosqueezed wavelet transform [11]. While the amplitude

dynamics are given by the amplitude of WT (s,t) at the positions
of the oscillation in the s-t plane, extraction of the exact
phase of the oscillation requires more careful consideration.
The extraction methods [11,38,39] are used to estimate the
instantaneous frequencies of the oscillatory components in a
time series, allowing identification of harmonics which can be
used to determine the intracycle dynamics. The phase can then
be found by integrating over the instantaneous frequency in
time. This can be done regardless of the wavelet basis used,
but the phase can also be found another way by using complex
basis such as the Morlet wavelet [40],

�(s,t) = 1
4
√

π

(
e2πif0t/s − e−2πf 2

0 /2
)
e−t2/2s2

, (6)

where f0 is a parameter known as central frequency which
defines the time and frequency resolution [37]. Here, the
corresponding frequency of the wavelet is given by 1/s. The
phase of the observed system is then arg[WT (s,t)], where s

and t denote the positions of the oscillation in the s-t plane.

B. Extracting the phase of the point attractor

Once the phase has been found the goal is to investigate
the phase component of the oscillations, αx, to see if it is
attracted to a time-dependent point attractor, αA

x . Considering
the case where the phases are from a chronotaxic system, if
αx is left unperturbed then it would eventually converge to
αA

x . This means that one can determine the dynamics of αA
x

by finding αx when the system is unperturbed. The problem
is that when given only the time series of the perturbed αx
it is not always possible to see what part of dynamics comes
from the perturbations and what is due to αA

x as both are freely
defined functions. In other words, the effect of a change in αA

x
on αx can be alternatively represented as deviations caused by
the (noise) function ξ (t),

dαx

dt
= f

(
αx,α

A
x ,t

) + ξ (t). (7)

Here f (αx,α
A
x ,t) is the coupling function and ξ (t) is the

function or “noise” describing the perturbations. In the case
where ξ (t) = 0, αA

x is the point attractor for the phase αx.
In order to distinguish between the effects of αA

x and ξ (t)
we assume that the dynamics of αA

x is confined to time scales
larger than a single cycle. We also assume that the noise is
either weak or comparable in magnitude to f (αx,α

A
x ,t). These

assumptions are valid in many real-world systems such as
the cardiovascular system, where the low-frequency dynamics
plays an important role [41].

For chronotaxic systems, an estimate of αA
x , denoted

αA∗
x , can therefore be found by filtering out high-frequency

components in the dynamics of αx. At the same time, such
a filter should not smooth over the dynamics of αA

x . The
possibility of phase slips also means that αA∗

x cannot be
obtained by simply performing a moving average over the
phase. Instead, smoothing over the frequency extracted from
the wavelet transform provides the estimated angular velocity
α̇A∗

x , which can in turn be integrated over to give αA∗
x .

The procedure of extracting from a single time series both
the estimate for the phase of the system, α∗

x , and the phase of the
attractor, αA∗

x , is demonstrated in Fig. 1. In cases where phase
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FIG. 1. (Color online) Extraction of αA
x from a time series. (a) An oscillation with a varying frequency and noise-induced phase slips is

shown in the time domain. (b) Morlet wavelet transform of the time series where the colors indicate |WT (s,t)|. (c) The estimated angular
velocity α̇A∗

x found by ridge extraction in the wavelet transform and then smoothing using a 2 s moving average (solid line) and the actual value
of α̇A

x from the analytic solution (dashed line). (d) The phase αA∗
x found by integrating over α̇A∗

x (solid line) and the actual dynamics of αA
x from

the analytic solution (dashed line). The offset of the phases is due to the estimated phase starting at a later time as α̇A
x cannot be defined for the

interval where the wavelets run over the ends of the time series.

slips are uncommon both α∗
x and αA∗

x can be extracted from the
same wavelet transform. In some cases, however, when phase
slips occur with almost every cycle, a high time resolution is
required to track the phase during phase slips while a high-
frequency resolution is needed to follow the driving frequency
of the oscillation. Consequently, the central frequency of the
wavelet transform needs to be small to extract α∗

x and large to
extract αA∗

x .
Considering now that the system is not chronotaxic, while

α∗
x will still give an estimate of the phase of the system,

αA∗
x will simply be a trend in the dynamics of αx and not

correspond to a point attractor. The methods presented in the
next sections show how such a case can be identified and,
hence, determine when the phases are from a chronotaxic
system.

C. Bayesian-based inference

One approach to determine whether or not an observed
system is chronotaxic is to analyze the coupling function
between αx and αA

x , as shown in (7). Subsequent analysis
on the inferred function can reveal the dynamics of the system
in the absence of noise and provide evidence for chronotaxic
behavior.

However, calculating the coupling function is a difficult task
since time dependence plays an important role in chronotaxic
systems. This can arise from changes in the motion of αA

x
but also in changes to the parameters describing the coupling.
One solution to this problem is to use an approach based on
Bayesian inference.

The Bayesian-based approach is optimized in a similar way
to how the wavelet transform is optimized to track changes
in frequency, but instead of frequency it is the dynamical
equations of the system that are tracked in time [13,15,16,42–
44]. This method assumes that the dynamics of two coupled

phases is described by

α̇i = ωi + fi(αi) + gi(αi,αj ) + ξi(t), (8)

where ωi is the natural frequency of the oscillation, fi(αi)
are the self-dynamics of the phase, gi(αi,αj ) are the cross
couplings, and ξ (t) is a two-dimensional white Gaussian noise,
〈ξi(t)ξj (τ )〉 = δ(t − τ )Eij . By assuming that the coupling
terms are periodic functions, fi(αi) and gi(αi,αj ) are modeled
using the Fourier bases

fi(αi) =
∞∑

k=−∞
ãi,2k sin(kαi) + ãi,2k+1 cos(kαi) (9)

and

gi(αi,αj ) =
∞∑

s=−∞

∞∑
r=−∞

b̃i,r,se
2πirαi e2πisαj , (10)

where k,r,s �= 0. In practice, these bases are truncated to a
finite number of functions, denoted Ai,k(αi,αj ). The corre-
sponding parameters from ãi and b̃i then form the parameter
vector c

(i)
k . In the method the inference of these parameters

makes use of Bayes’ theorem,

pX (M|X ) = 	(X |M)pprior(M)∫
	(X |M)pprior(M)dM , (11)

where pX (M|X ) is the posterior probability distribution and
	(X |M) is the likelihood function for the values of the model
parameters M given the data X , and pprior(M) is a prior
distribution. The method assumes that probability functions
of the inferred parameters take the form of a multivariate
Gaussian distribution and that the noise, given by the matrix
Eij , is white and Gaussian. An estimate can be found from the
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stationary point in the minus log-likelihood function

S = N

2
ln|E| + h

2

N−1∑
n=0

(
c

(l)
k

∂Al,k(α·,n)

∂αl

+ [
α̇i,n − c

(i)
k Ai,k(α∗

·,n)
]
(E−1)ij

[
α̇j,n − c

(j )
k Aj,k(α∗

·,n)
])

,

(12)

where h is the time between samples in the time series and
is assumed small enough to integrate the model given in (8)
and summation over the repeated indices k,l,i,j is implicit.
In the case of the Euler midpoint scheme the time derivative
of the phases is defined as α̇ = (αn+1 − αn)/h, while α∗ =
(αn+1 + αn)/2. Furthermore, the matrix A contains the base
functions as shown in (9) and (10), while E accounts for the
noise. The corresponding prior probability for the parameters
is given by the multivariate Gaussian distribution

pprior
(
c

(l)
k

) = e−(1/2)(c(l)
k −cprior

(l)
k )T �prior(c

(l)
k −cprior

(l)
k )√

(2π )Mdet
(
�−1

prior
) , (13)

where M is the number of parameters arranged in c
(l)
k and �−1

is the covariance matrix of the parameters. The linearity of
S means that if the prior probability distribution is assumed
to be Gaussian, then the posterior distribution must also be
Gaussian. Consequently, the form of the algorithm does not
change when the posterior from a previous iteration is used to
construct the prior for the next. To explicitly show the inference
of the stationary point in S and the posterior distribution
using Bayes’ theorem, Eqs. (11)–(13) are decomposed into
the following:

Eij = h

N

[
α̇i,n − c

(i)
k Ai,k(α∗

·,n)
][

α̇j,n − c
(j )
k Aj,k(α∗

·,n)
]
,

c
(i)
k = (�−1)i,lkwr (l)

w ,

r (l)
w = (�prior)

(i,l)
kw c(l)

w + hAi,k(α∗
·,n)(E−1)ij α̇j,n

− h

2

∂Al,k(α·,n)

∂αl

,

�
(i,j )
kw = �prior

(i,j )
kw + hAi,k(α∗

·,n)(E−1)ijAj,w(α∗
·,n). (14)

Here, �(i,j )
prior exploits the information from the posterior matrix

�(i,j ) which is inferred from the previous time window (only
for the initial window evaluation a flat prior �

(i,j )
prior = 0 and

cprior = 0 is used). In this way, information is allowed to propa-
gate between windows, facilitating the inference of parameters
so that they become more accurate with time. However, to
account for time variations in the values of the parameters the
prior takes the form of a convolution between the posterior
of the previous window and a user-defined diffusion matrix
describing the change in c

(i)
k or �

(i,j )
prior [15]. The standard

deviation corresponding to the diffusion of the parameters
from �

(i,j )
prior is assumed to be a known fraction of the parameters

themselves, σ (i)
k = pc

(i)
k , where p is a free parameter known as

the propagation constant. This modification allows the method
to track the change in the couplings over time.

In chronotaxic systems, αA
x and αx are synchronized when

αx is not influenced by noise. Therefore, determining if this

synchronization occurs in the observed system provides an
indication that it is chronotaxic. In particular, the synchroniza-
tion between αA∗

x and α∗
x can be detected using the mapping

procedure proposed in Refs. [15,16]. In brief, two coordinates,
ζ (α∗

x ,α
A∗
x ) = [α∗

x + αA∗
x ]/2 and ψ(α∗

x ,α
A∗
x ) = α∗

x − αA∗
x , are

defined and bounded within the interval [0,2π ] so that the
coordinates become “wrapped” on a circle. The system is
integrated with the inferred parameters using the standard
fourth-order Runge-Kutta algorithm from the initial condition
ζ = 0, where it is assumed dζ (t)/dt |ζ=0 > 0 so that all
trajectories travel in the same direction. A Poincaré section at
ζ = 0 is then defined to detect the evolution of the trajectories
after a complete cycle in ζ . The position of the trajectories after
are designated by the map M , i.e., ψn+1 = M(ψn), where ψn

are the initial conditions at ζ = 0. The existence of points
where M(ψn) − ψn = 0 indicate periodic orbits. In particular,
the system is found to be chronotaxic in the case where
two such fixed points exist; one stable, the other unstable. A
chronotaxic index Ichrono can then be defined so that Ichrono = 1
when this condition is fulfilled, otherwise Ichrono = 0.

The above method determines whether the inferred pa-
rameters of the coupling functions result in synchronization
and, hence, provide evidence that the system is chronotaxic.
However, rather than originating from the stability in the
coupling function of α∗

x , this could also imply that the
synchronization is a result of stability in the coupling function
of αA∗

x . Therefore, in order to understand which of the
coupling functions is responsible, it is necessary to calculate
the direction of coupling. This is defined in Ref. [45] by

D = ε12 − ε21

ε12 + ε21
, (15)

where

ε12 =
√

c2
2 + c2

4 + . . .,
(16)

ε21 =
√

c2
1 + c2

3 + . . .,

are the Euclidian norms of the parameters. Here, the odd
parameters correspond to the coupling terms inferred for α1 in
the direction 2 → 1, while the even parameters correspond to
the coupling terms inferred for α2 in the direction 1 → 2.

Note that the definition provided here for the direction of
coupling is not unique. One can also calculate ε12 and ε21 by
integrating over the coupling functions with respect to each
phase [45]. The direct use of ε2

12 and ε2
21 without calculating D

has also been previously adopted [46]. In the same paper the
use of interval estimates, evaluated from both the parameters
and their variances, were used to improve the inference of the
couplings. This can easily be applied to the method shown
here by using all of the elements in the covariance matrix
�−1 so that the inference also includes the variances of the
parameters [47].

In summary, after α∗
x and αA∗

x have been extracted from
the time series, Bayesian-based inference is applied to find the
values of the coupling parameters for each phase in time. These
parameters are then used to numerically map trajectories of the
system to identify fixed points and calculate the index Ichrono

to determine if the system is chronotaxic or not. To check if
the fixed points are really due to a coupling from αA∗

x to α∗
x , the
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directionality index D is calculated from the inferred parame-
ters. If D points in the direction from αA

x to αx and Ichrono = 1,
then this suggests that αx is a stable phase and is, hence,
chronotaxic.

D. Phase fluctuation analysis

When the phases αx and αA
x are almost perfectly syn-

chronized the information flow between the two time series
is significantly reduced, which can cause spurious inference
in the above method but also in general phase dynamics
approaches [36,48]. For example, consider the system

α̇p = ω(t) + f (αp),
(17)

α̇x = α̇p + ξ (t),

where the phase αx is neutrally stable with a zero-valued
Lyapunov exponent. To distinguish between this system and a
genuine chronotaxic system, an alternative method is needed.

The Bayesian approach searches directly for the “causes”
of a point attractor in the dynamical equations of the system.
However, another way to determine the existence of a point
attractor is by using an indirect method that looks only at the
“effects.” By obtaining αA∗

x from the wavelet transform one
aims to have the trajectory of the phase αx in the absence
of perturbations. Calculating the difference �αx = α∗

x − αA∗
x

therefore provides information about the divergence from the
point attractor due to these perturbations.

The restriction here is that �αx only gives the exact
divergence from the point attractor if αx remains within the
same cycle. The discrepancy between �αx and the actual
divergence therefore changes by 2π with each phase slip.
The wavelet transform is also blind to the direction of these
phase slips so the true distance from the original “unperturbed”
trajectory is also unknown.

For a chronotaxic system, assuming the perturbations are
due to an uncorrelated Gaussian process, two important effects
can be observed in �αx:

(i) Plateaus where α∗
x runs more or less parallel to αA∗

x .
These occur when the perturbations are small enough so that
the system remains within the same cycle of the attractor.
The influence of the attractor causes perturbations to decay,
which means the divergence from the attractor is similar to
the original Gaussian process. In contrast, when the phase
is neutrally stable the perturbations are integrated over and
therefore highly correlated in time, resulting in a random walk
(i.e., Brownian noise).

(ii) Phase slips where large perturbations cause the system
to either lag behind the attractor or move forward enough so
that it becomes influenced by the attractor in the adjacent cycle.
For a neutrally stable phase, phase slips do not occur—large
perturbations can still cause �αx to change by 2π but they are
part of a continuous probability distribution.

A test for chronotaxicity can be performed by using a
moving average (or similar time domain smoothing function)
on �αx over a time scale τ to define the trend, denoted
�ατ

x . The distance between points in the delayed and original
versions of this trend d�ατ

x (t) = �ατ
x (t + τ ) − �ατ

x (t) then
provides information about the perturbations to the system
over that time scale. However, because the direction of the
perturbations that cause phase slips is essentially unknown, in

practice it is best to consider only the magnitude |d�ατ
x |. If the

system is nonchronotaxic and �αx is a random walk, then the
distribution of points in |d�ατ

x | should produce a one-sided
Gaussian for all τ . On the other hand, for a chronotaxic system
the time series will appear Gaussian only for time scales below
those corresponding to phase slips. As soon as the averaging is
performed over time scales close to the time taken for the phase
to slip, the distribution will begin to shift and obtain a new peak.

If phase slips are rare then the extra peak observed in
|d�ατ

x | might not be statistically significant. However, this
also means that the system remains close to the attractor, in
which case effect (i) from above dominates. This means that
the perturbations should resemble noise with little correlation
in time, as opposed to integrated noise with long-range correla-
tion. In order to test this, detrended fluctuation analysis (DFA)
can be performed on the time series [19,49]. This technique
explores the fractal self-similarity of fluctuations at different
time scales in �αx. The way in which these fluctuations
scale is determined by the self-similarity parameter α, where
fluctuations at time scales equal to t/a can be made similar to
those at the larger time scale t simply by multiplying with the
factor aα .

In order to estimate the self-similarity parameter α the time
series is integrated in time and divided into nonoverlapping
sections of length n. For each section the local trend is removed
by subtracting a fitted polynomial. While the order of the
polynomial is arbitrary, the convention is to use first-order
fits [19,49]. The root mean square fluctuation for the scale
equal to n is then given by

F (n) =
√√√√ 1

N

N∑
i=1

Yn(ti)2, (18)

where Y (t) is the integrated and detrended time series and
N is its length. The fluctuation F (n) provides a measure of
the amplitude at the corresponding scale, which follows a
scaling law if the time series is fractal. By plotting log F (n)
against log n, the self-similarity parameter is then given
by the gradient of the line. For completely uncorrelated
white Gaussian noise (expected in chronotaxic systems) the
parameter for �αx returns a value of 0.5, while integrated
white Gaussian noise (expected in nonchronotaxic systems)
returns a value of 1.5. Hence, the self-similarity parameter for
the fluctuations in �αx provides a gauge of chronotaxicity.

To summarize, the procedure uses the difference �αx
between the estimated phase of the system and its attractor
which are extracted from the time series. To identify the exis-
tence of phase slips, �αx is averaged over different time
scales τ and the change in the difference over these time
scales |d�ατ

x | is calculated. For nonchronotaxic systems
the Gaussian shape in the distribution of |d�ατ

x | remains
the same for different values of τ . On the other hand, in
chronotaxic systems containing phase slips the shape of the
distribution is the same for small τ but shifts and obtains a
new peak at longer time scales. Alternatively, in the absence
of phase slips DFA can be applied to �αx to obtain its fractal
properties. The self-similarity parameter can then be used to
determine whether or not the system is chronotaxic, where
typically α < 1 for chronotaxic systems.
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V. APPLICATIONS

A. Phase oscillators

The above methodology is now applied to time series data
of a chronotaxic and nonchronotaxic system. In this case the
systems are phase oscillators, where the oscillatory time series
x is generated from the phase αx using x = sin(αx).

Consider the system

α̇p = ω0(t),
(19)

α̇x = εω0(t) sin(αx − αp) + ξ (t),

where ε is the coupling strength. The function ξ (t) is white
Gaussian noise with standard deviation η = √

2E, where
〈ξ (t)〉 = 0, 〈ξ (t)ξ (τ )〉 = δ(t − τ )E. The frequency of αp is
given as

ω0(t) = 2π

[
1 − cos(ω1t)

3
+ cos(ω2t)

3

]
, (20)
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FIG. 2. (Color online) Analysis of the system shown in (19) with
η = 0.8 using Bayesian-based inference. The parameter ε was varied
so that the system switched between chronotaxic and nonchronotaxic
behavior in time. In this particular example, the nonchronotaxic
periods cause the system to continuously phase slip, which meant
that α̇A∗

x was found from the Morlet wavelet transform with f0 = 10
(high-frequency resolution), shown in (a). The frequency was then
smoothed using a 100 s moving average, the result of which is
shown as the dashed line. Conversely, the phase α∗

x was extracted
using f0 = 0.5 (high time resolution) which corresponds to frequency
traced by the dashed line in (b). The coupling functions for the two
phases were inferred, where (c) shows the directionality index from
αA∗

x to α∗
x . In (d) the chronotaxic index based on the inferred coupling

functions (black line) tracks the change between chronotaxic and
nonchronotaxic dynamics due to the variation of the parameter ε

(gray line).

with ω1 = 0.002 rad s−1 ω2 = 0.001π rad s−1. The system is
chronotaxic when |ε| � 1, where for ω0(t) > 0 the attracting
deterministic phase can be found analytically as [1]

αA
x (t) = αp(t) − arcsin(1/|ε|) + 0.5π [1 + sgn(ε)] + 2πk,

(21)

where k is an arbitrary integer number.
Now consider the following system which undergoes

similar dynamics but is not chronotaxic:

α̇x = ω0(t) + ξ (t). (22)

The parameters ω0(t) and ξ (t) are taken to be the same as
before. While the system does not remain at a stable point in the
phase, the oscillations retain a frequency around that defined
by αp in the previous system because the natural frequency is
given by the same function.

Figure 2 shows the analysis of the system given by (19) for
the case where ε varies in time. After the estimated phases α∗

x
and αA∗

x are extracted the Bayesian-based inference method is
applied. The method correctly finds that for ε > 1 (i.e., when
the system is chronotaxic) the inferred parameters result in
synchronization and Ichrono = 1, while for ε < 1 (i.e., when
the system is nonchronotaxic) there is no synchronization
and Ichrono = 0. Meanwhile, the method finds a coupling
in the direction from αA∗

x to α∗
x which implies that the

synchronization is the result of a point attractor in the phase
α∗

x .
It is also worth noting in Fig. 2(c) that D decreases

or goes close to zero during the chronotaxic epochs. This
effect occurs when the phases become strongly coherent,
resulting in not enough available information for inference
of the direction of coupling. In the case of moderate noise
when phase slips exist, the directionality inference will be
correct. If the noise becomes extremely large, introducing
too many phase slips, the precision of the inference will be
reduced.

The method based on DFA is demonstrated in Fig. 3, where
the system in (22) is used for the nonchronotaxic example. This
is a more difficult case for the Bayesian method because αx
and αA

x are close to being synchronized even with the effect of
perturbations. In both the time and the time-frequency domains
the two systems are also more or less indistinguishable. The
difference can only be seen after calculating �αx, which in this
case was detrended below 200 s to remove the influence of the
slow drift that resulted from imperfect phase extraction. The
corresponding self-similarity parameter estimated from DFA
shows the nonchronotaxic system to have a divergence almost
the same as would be expected for integrated white Gaussian
noise. On the other hand, the divergence in the chronotaxic
system is much closer to the exponent for the perturbations.
The value is not the same as for the noise because perturbations
from the attractor do not decay instantaneously, meaning that
some integration of the noise still occurs. It is also worth
noting that even when the system is chronotaxic, if phase
slips are present then the estimated self-similarity parameter
is still close to that expected for a random walk. However, this
is actually expected since the stability in the phase does not
extend beyond a single cycle, which means the fluctuations
from noise-induced phase slips are still integrated over.
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FIG. 3. (Color online) Application of the phase fluctuation anal-
ysis methods to the chronotaxic system (19) with ε = 1.7 and the
non-chronotaxic system (22). The systems were perturbed with white
Gaussian noise with strength η = 0.7 that was small enough to not
cause phase slips in the chronotaxic system. The time series sin(αx),
with the first 20 s shown in (a), were analysed using the Morlet
wavelet transform where |WT (s,t)| is shown in (b). An estimate of
the phase αx was extracted from the wavelet transform with f0 = 1
while an estimate of αA

x was obtained by smoothing the frequency
of the oscillation with a 100 s moving average and integrating over
time. The estimated direction of coupling from αA∗

x to α∗
x calculated

using the Bayesian-based method is shown in (c). The difference
�αx between the two phases was calculated and then detrended with
a 200 s moving average, with the resulting time series shown in
(d). DFA was applied to this time series as shown in (e), where the
solid line gives the scaling of the fluctuations and the dotted line is
a least-squares linear fit. In the case of the chronotaxic system the
gray line corresponds to η = 1.4 where phase slips are present. The
number shown next to the line is the gradient of the fit, which provides
an estimate of the self-similarity parameter and gives a gauge of the
chronotaxicity.

In the last example shown in Fig. 4 the noise is stronger,
resulting in phase slips in the chronotaxic system. This strong
noise also leads to large perturbations in the nonchronotaxic
system, which causes the estimated direction of coupling to
be spurious. However, the difference between phase slips
and the large perturbations in the nonchronotaxic systems is
difficult to quantify in the time and time-frequency domains.
This difference is apparent in �αx and becomes obvious
after calculating the distribution of the perturbations for
various time scales. While the shape of the distribution in the
nonchronotaxic system remains the same at all time scales,
the distributions of the chronotaxic system are the same shape
for small values of τ but become shifted at longer time scales
where the effect of the phase slips is included. The method
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FIG. 4. (Color online) Application of the phase fluctuation anal-
ysis methods to the chronotaxic system (19) with ε = 1.7 and the
nonchronotaxic system (22). The systems were perturbed with white
Gaussian noise with strength η = 1.4 that was large enough to cause
phase slips in the chronotaxic system. The time series sin(αx), with
the first 20 s shown in (a), were analyzed using the Morlet wavelet
transform where |WT (s,t)| is shown in (b). An estimate of the phase
αx was extracted from the wavelet transform with f0 = 1, while an
estimate of αA

x was obtained by smoothing the frequency of the oscill-
ation with a 100 s moving average and integrating over time. The
estimated direction of coupling from αA∗

x to α∗
x calculated using the

Bayesian-based method is shown in (c). The difference �αx between
these two phases was calculated, which is shown after detrending
with a 200 s moving average in (d) for comparison. The distributions
of |d�ατ

x | are shown in (e) where the range shown was divided into
100 bins and the numbers in seconds indicate the value of τ .

is therefore able to detect the discontinuity in the effect of
the perturbations which results from the presence of the point
attractor in chronotaxic systems.

B. Cardiac system

Candidates for chronotaxic systems in the real world
include both living and nonliving systems. In biological
systems, the importance of “inner variables” analogous to p
in (1) has been highlighted in Ref. [50]. Similar driven steady
states are also studied in quantum critical systems and solid
state physics [51,52].

To illustrate how the approach presented here can influence
physical models, the above methodology is now applied to
data from one of these real systems. This comes from the
experiment described in Ref. [1], where the breathing rate of a
healthy young subject was paced quasiperiodically while the
cardiac function was monitored using an electrocardiogram
(ECG).
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FIG. 5. (Color online) Analysis of the cardiac dynamics using phase fluctuation analysis. The oscillatory activity was extracted from an
ECG, with a 20 s sample shown in (a). The phase and frequency of the dominant component in the ECG was extracted using the Morlet
wavelet transform (b) with f0 = 1. The frequency was smoothed using a 1 s moving average and integrated in time to find αA∗

x . The direction of
coupling from αA∗

x to α∗
x calculated using the Bayesian-based method is shown in (c). The difference �αx, shown in (d), was detrended using

a 200 s moving average. The DFA of �αx is shown in (e), where the number next to the line is the DFA exponent as estimated using a linear
fit (dashed line). In (f) the estimated probability distributions of the perturbations are shown, where the numbers in seconds correspond to the
time scales τ .

The phase dynamics of the cardiac function is comprised of
deterministic interactions with the other oscillatory systems in-
volved in cardiovascular regulation. The oscillatory processes
that modulate cardiac activity are known or hypothesized to
correspond to the breathing (0.145–0.6 Hz), smooth muscle
(0.052–0.145 Hz), sympathetic nerves (0.021–0.052 Hz) and
the vascular endothelium (0.005–0.021 Hz) [41,53]. Since this
range of oscillations extends close to the oscillating frequency
of the heart itself (0.6–2 Hz), the observed frequency must be
averaged over short time scales in order to obtain αA∗

x . This
essentially means that α∗

x and αA∗
x share very similar dynamics

so that over short time windows the effect of the perturbations
in α∗

x is not statistically significant and the two phases appear
synchronized even when they are not. Consequently, the phase
fluctuation methods are more appropriate than the Bayesian-
based method in this situation.

Figures 5 and 6 show the results from the analysis of the
data. In the case of the phase extracted from the ECG signal,
Fig. 5, both methods indicate that the phase is not stable. The
self-similarity parameter suggests that the divergence from
the attracting phase is very close to a random walk. The
distribution of the perturbations also retains the same shape
for all time scales, implying that phase slips do not occur.

The analysis for the phase of the heart rate variability (HRV)
is shown in Fig. 6. The most noticeable oscillation in the
wavelet transform, but not the only one in the HRV, is known
from physiology as respiratory sinus arrhythmia [54,55]. Other
studies have shown that this results from the heart being driven
by the respiratory oscillation [15,19,56], which in this case
had a frequency that varied in the range 0.06–0.25 Hz as it
was paced. This respiration variability was obtained directly
from the HRV during the extraction of α̇A∗

x . The analysis
of the extracted phases gave a slightly smaller estimate of

the self-similarity parameter but it is still close to the value
expected for either a nonchronotaxic system or a chronotaxic
system with many phase slips. However, the distribution of
perturbations can be seen to flatten and shift away from
0 in a similar fashion to the distributions in Fig. 4. The
nature of the fluctuations which are likely to be responsible
for this shift is shown in the Supplemental Material [57],
where the HRV oscillation is viewed relative to the respiration.
Previously, these effects were accounted for by the fact that
the perturbations to the system are inhomogeneous. However,
chronotaxic systems now provide an alternative hypothesis,
which is that a coupling from the respiration to the HRV
results in an oscillation with a stable phase. The directionality
index in Fig. 6 shows that such a coupling exists from
αA∗

x to αx. This suggests that the respiration takes the form
of p in (1).

In describing the chronotaxic properties of the healthy heart
under quasiperiodically paced breathing, these results motivate
the following addition to the model presented in Ref. [20].
In this paper the coupling functions between the heart and
respiration were extracted using Bayesian-based inference to
produce a physical model of the interaction. In the model, the
couplings were divided between the self-interaction sh of the
heart’s phase on its own dynamics, the direct interaction dh

with the phase of the respiration, and the indirect interaction
ih, which includes coupling terms dependent on both phases.
The full model is presented in the paper as

φ̇h = 2πωh(t) + sh(φh,t) + dh(φr,t)

+ ih(φh,φr,t) + ξh(t), (23)

where φh is the phase of the heart, ωh(t) is its natural
frequency, φr is the phase of the respiration, and ξh(t) is
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FIG. 6. (Color online) Analysis of theHRV using phase fluctuation analysis. The HRV was extracted from the Morlet wavelet transform of
the ECG, with a 100 s sample shown in (a). The phase and frequency of the dominant component in the HRV was extracted using the wavelet
transform (b) with f0 = 0.5. The frequency was smoothed using a 6 s moving average and integrated in time to find αA∗

x . The direction of
coupling from αA∗

x to α∗
x calculated using the Bayesian-based method is shown in (c). The difference �αx, shown in (d), was detrended using a

200 s moving average. The DFA of �αx is shown in (e), where the number next to the line is the DFA exponent as estimated using a linear fit,
which suggests that the system is either nonchronotaxic or is chronotaxic with phase slips. In (f) the estimated probability distributions of the
perturbations are shown, where the numbers in seconds correspond to the time scales τ . The change in the shape of the distribution is consistent
with a chronotaxic system with phase slips.

assumed to be white Gaussian noise. The oscillation related
to respiratory sinus arrhythmia originates primarily from the
direct interaction, which is modeled as

dh = �
(1)
h (t) sin

[
φr + ϕ

(1)
h (t)

] + �
(2)
h (t) sin

[
2φr + ϕ

(2)
h (t)

]
,

(24)

where the parameters �
(1)
h (t), �(2)

h (t), ϕ(1)
h (t), and ϕ

(2)
h (t) allow

the model to be time varying. However, in this form the
subsequent oscillation in the HRV cannot be chronotaxic. This
instead requires an intermediate phase to be present in the
coupling, with the updated model taking the form

φ̇x = fx(φx,φr),

dh = �
(1)
h (t) sin

[
φx + ϕ

(1)
h (t)

]
+�

(2)
h (t) sin

[
2φx + ϕ

(2)
h (t)

]
, (25)

where φx is the phase of the oscillation observed in the HRV
and fx(φx,φr) is a coupling function between this phase and
the respiratory phase that results in a point attractor φA

x . The
function fx(φx,φr) is likely to be dependent on time as well,
which would mean the strength of the coupling from φA

x to
φx, and consequently the resistance to perturbations, is able to
vary.

The model shown in (23) is simplified as the other
oscillations present in the HRV are mainly accounted for
by the time-varying parameters. In earlier studies, these
oscillations are included in either the noise perturbations [58]
or explicitly modeled as separate oscillators [59]. Here we
now go further by opening up the possibility that these
are also chronotaxic oscillations with their own attracting

phases. The nature of interaction of these oscillations through
the HRV is in fact analogous to the parametric coupling
model of the cardiovascular system proposed in Ref. [60].
However, it should also be noted that the model presented
here is based on data from a single experiment involving
paced respiration, which means that further experiments are
needed to confirm the applicability of these modifications in
general.

VI. SUMMARY AND CONCLUSION

Chronotaxic systems have opened up a brand new area of
time-dependent dynamical systems. The most important con-
tribution of this subset of nonautonomous dynamical systems
is that they can explain why oscillatory systems, such as the
function of a healthy heart, can have a time-varying frequency
and generate complex dynamics. However, detecting this
stability using the inverse approach is a nontrivial task and
requires analysis beyond time-dependent representations used
in general for nonautonomous systems.

The framework presented here is able to distinguish
chronotaxic and nonchronotaxic systems which appear similar
in the main domains of analysis, including the time-frequency
domain. The emphasis on single-variable time series means
that these methods can be applied to almost any data from
an oscillatory system to test for chronotaxicity. We apply
a recently developed Bayesian-based approach because this
method is able to accurately track nonautonomous dynamics
when the system is perturbed by noise, as is the case
in chronotaxic systems. In particular, transitions between
chronotaxic and non chronotaxic behavior can be detected
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in the same time series. A second set of methods, named phase
fluctuation analysis, uses another approach to measure the
statistics of the observed perturbations to the system and can
detect chronotaxic dynamics even when the analytical phases
are close to synchronization.

The current framework should therefore find applicability
to real data from many different sources. Moreover, the
ability to distinguish between chronotaxic and nonchronotaxic
systems provides a measure of when a system switches
between corresponding physical states. In the case of the
chronotaxic oscillation measured in the HRV, this could be
used in either the diagnosis or prediction of disease. While
the work here establishes this possibility, other methods may

also be developed in the future to track chronotaxic dynamics
and, hence, distinguish between physical states across a wider
range of systems.
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[25] P. E. Kloeden, C. Pötzsche, and M. Rasmussen, J. Differ. Equ.
Appl. 18, 693 (2012).

[26] H. Haken, Synergetics: An Introduction and Advanced Topics
(Springer, Berlin, 2004).

[27] L. Kocarev and U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996).
[28] S. Strogatz, Nonlinear Dynamics and Chaos (Westview Press,

Boulder, 2001).
[29] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
[30] P. T. Clemson and A. Stefanovska, Time Series Analysis of

Turbulent and Non-Autonomous Systems, AIP Conf. Proc. No.
1468 (AIP, Melville, NY, 2012) p. 69 .

[31] M. Vejmelka and M. Paluš, Phys. Rev. E 77, 026214 (2008).
[32] F. Takens, in Lecture Notes in Mathematics, edited by D. A.

Rand and L. S. Young (Springer, New York, 1981), Vol. 898.
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