Simplicial cohomology of band semigroup algebras

Yemon Choi* and Frédéric Gourdeau
Département de Mathématiques et de Statistique, Pavillon Alexandre-Vachon, Université Laval, Québec (QC) G1V 0A6, Canada
(y.choi.97@cantab.net; frederic.gourdeau@mat.ulaval.ca)

Michael C. White
School of Mathematics and Statistics, Herschel Building, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
(michael.white@newcastle.ac.uk)
(MS received 13 April 2010; accepted 6 June 2011)

Abstract

We establish the simplicial triviality of the convolution algebra $\ell^{1}(S)$, where S is a band semigroup. This generalizes some results of Choi (Glasgow Math. J. 48 (2006), 231-245; Houston J. Math. 36 (2010), 237-260). To do so, we show that the cyclic cohomology of this algebra vanishes in all odd degrees, and is isomorphic in even degrees to the space of continuous traces on $\ell^{1}(S)$. Crucial to our approach is the use of the structure semilattice of S, and the associated grading of S, together with an inductive normalization procedure in cyclic cohomology. The latter technique appears to be new, and its underlying strategy may be applicable to other convolution algebras of interest.

1. Introduction

Computing the Hochschild cohomology of Banach algebras has remained a difficult task, even when restricted to the class of ℓ^{1}-convolution algebras of semigroups (see $[1,6]$ for earlier work on various examples, albeit only in low dimensions). Choi [3, 4] has shown that the simplicial cohomology of the semigroup algebra $\ell^{1}(S)$ vanishes when S is a normal band. However, the techniques were unable to handle the case of general band semigroups. (We note that bands comprise a rich and interesting class of semigroups: particular kinds of band have been studied both in abstract semigroup theory, and also in operator-theoretic settings [11, 12].)

Here, we calculate all the cyclic and simplicial cohomology groups of $\ell^{1}(S)$, where S is an arbitrary band semigroup. More precisely, we shall show the following:

- the cyclic cohomology of $\ell^{1}(S)$ is isomorphic in even degrees to the space of continuous traces on $\ell^{1}(S)$, and vanishes in odd degrees (theorem 7.2);
- the simplicial cohomology of $\ell^{1}(S)$ vanishes in all strictly positive degrees (theorem 7.4).
*Present address: Department of Mathematics and Statistics, McLean Hall, University of Saskatchewan, 106 Wiggins Road, Saskatoon (SK) S7N 5E6, Canada.

The techniques used in establishing these results resemble those in the earlier work of Gourdeau et al. [7], in that one performs explicit calculations with cyclic cochains, and then uses the Connes-Tzygan long exact sequence to calculate the simplicial cohomology. As in that paper, the decision to work with cyclic cohomology is forced upon us by the nature of our construction (see corollary 5.17), and is not merely incidental.

Some of our results appear to generalize to the setting of Banach algebras which are ℓ^{1}-graded over a semilattice. In particular, it seems that similar calculations would provide an alternative approach to some of Choi's existing results for Clifford semigroups in [4]. However, we shall focus throughout on the case of band semigroup algebras in order to keep the exposition reasonably self-contained.

One approach which one might be tempted to adopt, in order to prove that band semigroup algebras have trivial cyclic cohomology, is to exhaust the band by finitely generated bands and cobound the cocycle on increasingly large sets.

This is even more tempting when one recalls that finitely generated bands are finite [10, theorem 4.4.9] (or see [2] for a short, direct proof). However, one encounters problems with this approach. It is difficult to obtain uniform control of the norms of the coboundaries as we take increasingly large generating sets for these bands. This is true even in the commutative case, which corresponds to the setting of [3]. Another feature is that finite band algebras are, in general, neither semisimple nor amenable, which makes their trivial simplicial cohomology surprising.

It should nevertheless be noted that, by specializing the present arguments to the case of a semilattice L, one obtains a direct calculation of the cyclic cohomology of $\ell^{1}(L)$. Previously, this was only known by applying the Connes-Tzygan exact sequence and using the main result of [3]. Moreover, in order to apply the ConnesTzygan exact sequence, one first has to show that certain obstruction groups vanish, and the only previous proof that these obstructions vanish relied indirectly on other results from [3]. Thus, the methods of the present paper give a much more accessible proof that $\ell^{1}(L)$ has the same cyclic cohomology as the ground field.

Remark 1.1. A feature which may be of wider interest is that, rather than constructing a splitting homotopy directly on the cyclic cochain complex, we construct maps which split 'modulo terms of lower order' in a particular filtration, and then employ an iterative procedure to move progressively further down the filtration. Some of these arguments could be cast in terms of a more general theory of cohomology of filtered complexes. However, this seems to bring little extra advantage or clarity for the present problem, so we shall carry out our iterative reduction in a hands-on fashion.

2. Notation and preliminaries

2.1. Cohomology

Since this paper is only concerned with simplicial and cyclic cohomology, rather than Hochschild cohomology with more general coefficients, we shall present a fairly minimal set of definitions that is sufficient for our purposes. Our terminology is that of [7], but with some small differences of notation.
Let \mathcal{A} be a Banach algebra and regard \mathcal{A}^{\prime}, the dual space of \mathcal{A}, as a Banach \mathcal{A} bimodule in the usual way. As in $[7, \S 1]$, for $n \geqslant 0, \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ denotes the space of n -
cochains, $\mathcal{Z}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ denotes the subspace of n-cocycles, and $\mathcal{B}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \subseteq \mathcal{Z}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ denotes the subspace of n-coboundaries. Note that, by convention, $\mathcal{C}^{0}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)=\mathcal{A}^{\prime}$ and $\mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)=0$ for negative n. Our notation for the corresponding cohomology groups differs from that of [7]. We shall write $\mathcal{H} \mathcal{H}^{n}(\mathcal{A})$ for the quotient space $\mathcal{Z}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) / \mathcal{B}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. This is the nth simplicial cohomology group of \mathcal{A}.

We need to specify some notation for the Hochschild coboundary operator

$$
\delta^{n}: \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \rightarrow \mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)
$$

Recall (see [7]) that an n-cochain is a bounded n-linear map $T: \mathcal{A}^{n} \rightarrow \mathcal{A}^{\prime}$, and that the $(n+1)$-cochain $\delta^{n} T$ is defined by

$$
\begin{aligned}
\left(\delta^{n} T\right)\left(a_{1}, \ldots, a_{n+1}\right)\left(a_{n+2}\right)= & T\left(a_{2}, a_{3}, \ldots, a_{n+1}\right)\left(a_{n+2} a_{1}\right) \\
& +\sum_{j=1}^{n}(-1)^{j} T\left(a_{1}, a_{2}, \ldots, a_{j} a_{j+1}, \ldots, a_{n+1}\right)\left(a_{n+2}\right) \\
& +(-1)^{n+1} T\left(a_{1}, \ldots, a_{n}\right)\left(a_{n+1} a_{n+2}\right)
\end{aligned}
$$

where $a_{1}, \ldots, a_{n+2} \in \mathcal{A}$. We will usually omit the superscript and write δ for δ^{n}.
For each n, elements of $\mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ may be regarded as bounded linear functionals on the space $\mathcal{C}_{n}(\mathcal{A}):=A^{\widehat{\otimes} n+1}$, the $(n+1)$-fold completed projective tensor product of \mathcal{A}; if we do this, then the coboundary operator $\delta: \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \rightarrow \mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ is clearly the adjoint of the operator $d: \mathcal{C}_{n+1}(\mathcal{A}) \rightarrow \mathcal{C}_{n}(\mathcal{A})$ given by
$d\left(a_{1} \otimes \cdots \otimes a_{n+2}\right)=a_{2} \otimes \cdots \otimes a_{n+1} \otimes a_{n+2} a_{1}+\sum_{j=1}^{n+1}(-1)^{j} a_{1} \otimes \cdots \otimes a_{j} a_{j+1} \otimes \cdots \otimes a_{n+2}$
for $a_{1}, \ldots, a_{n+2} \in \mathcal{A}$. This point of view will be more convenient when $\mathcal{A}=\ell^{1}(S)$ for a semigroup S. This is the case because, since there is a well-known isometric isomorphism of Banach spaces

$$
\ell^{1}(I) \widehat{\otimes} \ell^{1}(J) \cong \ell^{1}(I \times J) \quad \text { for any index sets } I \text { and } J
$$

in what follows we shall identify $\ell^{1}(S)^{\widehat{\otimes} n}$ with $\ell^{1}\left(S^{n}\right)$.
Simplicial cohomology is closely linked to cyclic cohomology, which we now introduce. Denote by \boldsymbol{t} the signed cyclic shift operator on the simplicial chain complex:

$$
\begin{equation*}
\boldsymbol{t}\left(a_{1} \otimes \cdots \otimes a_{n+1}\right)=(-1)^{n}\left(a_{n+1} \otimes a_{1} \otimes \cdots \otimes a_{n}\right) \tag{2.1}
\end{equation*}
$$

By an abuse of notation, we also write \boldsymbol{t} for the adjoint operator on the simplicial cochain complex. The n-cochain T (in $\mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$) is called cyclic if $\boldsymbol{t} T=T$ and the linear space of all cyclic n-cochains is denoted by $\mathcal{C C}{ }^{n}(\mathcal{A})$.

It is well known that the cyclic cochains $\mathcal{C C}^{n}(\mathcal{A})$ form a subcomplex of $\mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$, that is, $\delta\left(\mathcal{C C}^{n}(\mathcal{A})\right) \subseteq \mathcal{C C}^{n+1}(\mathcal{A})$, and this allows us to define cyclic versions of the spaces defined above, denoted here by $\mathcal{Z C}^{n}(\mathcal{A}), \mathcal{B C}^{n}(\mathcal{A})$ and $\mathcal{H C}^{n}(\mathcal{A})$. Under certain conditions on the algebra \mathcal{A} [9], the cyclic and simplicial cohomology groups are connected via the Connes-Tzygan long exact sequence

$$
\begin{equation*}
\cdots \rightarrow \mathcal{H H}^{n}(\mathcal{A}) \xrightarrow{B} \mathcal{H C}^{n-1}(\mathcal{A}) \xrightarrow{S} \mathcal{H C}^{n+1}(\mathcal{A}) \xrightarrow{I} \mathcal{H H}^{n+1}(\mathcal{A}) \rightarrow \cdots \tag{2.2}
\end{equation*}
$$

where the maps B, S and I all behave naturally with respect to algebra homomorphisms. (Although we use S to denote both the shift map in cyclic cohomology and a band semigroup, this should not lead to any confusion.) The reader is referred to [9] for more details.

We now introduce some definitions and notation which will be useful in our work.
Definition 2.1 (cyclic cocycles arising from traces). Let A be a Banach algebra. Given $\psi \in A^{\prime}$ and $n \geqslant 0$, let $\psi^{(n)} \in \mathcal{C}^{n}\left(A, A^{\prime}\right)$ be the cochain defined by

$$
\psi^{(n)}\left(a_{1}, \ldots, a_{n}\right)\left(a_{n+1}\right):=\psi\left(a_{1} \cdots a_{n+1}\right)
$$

Lemma 2.2. If τ is a continuous trace on A, then $\tau^{(2 n)}$ is a cyclic cocycle.
This is easily verified by a direct calculation, and we omit the proof.
Definition 2.3. Two chains $x, y \in \mathcal{C}_{n}(\mathcal{A})$ are cyclically equivalent if

$$
x-y \in(I-\boldsymbol{t}) \mathcal{C}_{n}(\mathcal{A})
$$

Notation 2.4. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1} \in \mathcal{C}_{n}(\mathcal{A})$ be an elementary tensor, and suppose we group terms in the tensor together as $\boldsymbol{x}=w_{1} \otimes \cdots \otimes w_{j}$, where $j \geqslant 2$. We then denote by $d_{c}\left(w_{l}\right)$ the restriction of d to w_{l} when seen as a part of \boldsymbol{x}, meaning that

$$
d_{c}\left(w_{l}\right)=\sum_{i=\beta_{k}}^{\beta_{k}+\alpha_{k}-2}(-1)^{i} x_{\beta_{k}} \otimes \cdots \otimes x_{i} \cdot x_{i+1} \otimes \cdots \otimes x_{\beta_{k}+\alpha_{k}-1}
$$

where α_{l} is the length of the subtensor w_{l}, and β_{l} the rank of its first element. If w_{l} has length 1, i.e. $\alpha_{l}=1$, then we define $d_{c}\left(w_{l}\right)$ to be 0 .

Note that the introduction of d_{c} is a notational device and does not define a map on subtensors as the signs are tributary to the position of this subtensor in the tensor. With this notation, we can write

$$
\begin{align*}
& d\left(w_{1} \otimes \cdots \otimes w_{j}\right)=x_{2} \otimes \cdots \otimes x_{\alpha_{1}} \otimes w_{j} \cdot x_{1} \\
& +\sum_{k=1}^{j-1}(-1)^{\beta_{k+1}-1} w_{k} \cdot w_{k+1} j \\
& +\sum_{k=1}^{j} w_{1} \otimes \cdots \otimes d_{c}\left(w_{k}\right) \otimes \cdots \otimes w_{j} . \tag{2.3}
\end{align*}
$$

Notation 2.5. In later sections, many of the calculations involve elementary tensors in $\mathcal{A}^{\widehat{\otimes} n+1}$, of the form $x_{1} \otimes \cdots \otimes x_{n+1}$, and their images under certain maps, which have the form

$$
\begin{equation*}
x_{1} \otimes \cdots \otimes x_{i-1} \otimes f\left(x_{i}, x_{i+1}\right) \otimes g\left(x_{i}, x_{i+1}\right) \otimes x_{i+2} \otimes \cdots \otimes x_{n+1} \tag{2.4}
\end{equation*}
$$

for certain functions $f, g: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$. As a notational shorthand, we will often denote such an expression in the abbreviated form

$$
\underset{i-1}{\bullet} \otimes f\left(x_{i}, x_{i+1}\right) \otimes g\left(x_{i}, x_{i+1}\right) \otimes \underset{n-i}{\bullet}
$$

2.2. Band semigroups

Definition 2.6. A semigroup S formed only of idempotents is a band semigroup.
Rectangular bands are of particular importance.
Definition 2.7. A rectangular band is a semigroup in which the identity $a=a b a$ always holds.

Note that, in any rectangular band, the identity

$$
a b c=(a c a) b c=a(c a b c)=a c
$$

holds for arbitrary elements a, b and c. This is particularly clear if one takes the following description of rectangular bands [10, theorem 1.1.3].

THEOREM 2.8. Let S be a semigroup. The the following conditions are equivalent:
(i) S is a rectangular band;
(ii) S is isomorphic to a semigroup of the form $A \times B$, where A and B are nonempty sets, and where the multiplication is given by

$$
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1}, b_{2}\right), \quad \text { where } a_{1}, a_{2} \in A \text { and } b_{1}, b_{2} \in B
$$

A commutative band semigroup is called a semilattice, and carries a natural and useful partial order defined by $\alpha \preceq \beta \Longleftrightarrow \alpha \beta=\alpha$. Semilattices are important in the study of general bands because of the following structure theorem.

Theorem 2.9 (see [10, theorem 4.4.5]). Any band semigroup S can be represented as a disjoint union $\coprod_{\alpha \in L} R_{\alpha}$, where L is a semilattice, each R_{α} is a rectangular band given by $A_{\alpha} \times B_{\alpha}$, the left and right index sets, and the following properties are satisfied:
(i) $R_{\alpha} R_{\beta} \subseteq R_{\alpha \beta}$ for all $\alpha, \beta \in L$;
(ii) for $x=\left(a_{1}, b_{1}\right) \in R_{\alpha}$ and $y=\left(a_{2}, b_{2}\right) \in R_{\beta}$ with $\alpha \preceq \beta$, $x y$ and y have the same right index (i.e. $x y=\left(\cdot, b_{2}\right)$), while $y x$ and y have the same left index (i.e. $y x=\left(a_{2}, \cdot\right)$);
(iii) the product is associative.

Note that condition (iii) is needed to ensure that such a construction gives a band semigroup.

Example 2.10 (normal bands). A band S is said to be a normal band if $x a b y=$ xbay for all $a, b, x, y \in S$. In this case, the structure theorem can be sharpened significantly; not only do we get a decomposition $S=\coprod_{\alpha \in L} R_{\alpha}$ into rectangular bands, but this decomposition turns out to exhibit S as a 'strong semilattice of rectangular bands' (see [10, proposition 4.6.14] for a proof and relevant definitions). In [4] this stronger decomposition theorem was used to calculate the simplicial cohomology of $\ell^{1}(S)$; in the present, more general case, new techniques are needed.

Although bands do not in general have units, we will define left coherent units for each element as follows. Given S, for each rectangular band R_{α}, fix an element $y_{\alpha} \in R_{\alpha}$ and define $\langle x]=x y_{\alpha}$ for each $x \in R_{\alpha}$. Then the function $\langle\cdot]: S \rightarrow S$ has the following properties:

- for each $\alpha \in L,\left\langle R_{\alpha}\right] \subseteq R_{\alpha} ;$
- for each $\alpha \in L$ and each $x \in R_{\alpha},\langle x] x=x$;
- for each $\alpha, \beta \in L$ such that $\alpha \preceq \beta$, and each $x \in R_{\alpha}$ and $y \in R_{\beta},\langle x y]=\langle x]$.

Notation 2.11. As is often done, if $x \in S$, we denote the point mass at x, as an element of $\ell^{1}(S)$, by x itself. This should not cause confusion and follows the notation used more generally. Throughout, we write $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ for an elementary tensor in which each x_{i} is a point mass at $x_{i} \in S$. Henceforth, when we speak of an elementary tensor $\boldsymbol{x} \in \mathcal{C}_{n}(\mathcal{A})$, we shall always mean one of this restricted form.

To show that one can cobound any $\phi \in \mathcal{Z C}{ }^{n}(\mathcal{A})$, it suffices to show that one can do it on these elementary tensors (with a uniform bound). Our strategy will be to proceed by steps, expanding the set of elementary tensors on which one can cobound at each step.

To do so, at each step we define $s: \mathcal{C C}_{n-1}(\mathcal{A}) \rightarrow \mathcal{C C}_{n}(\mathcal{A})$ in such a way that, denoting by E_{0} the set of elementary tensors on which one has cobounded ϕ at the previous step, and by E_{1} the set on which one wishes to cobound, $(d s+s d)\left(E_{0}\right) \subset E_{0}$ and $\boldsymbol{x}-(d s+s d)(\boldsymbol{x}) \in E_{0}$ for $\boldsymbol{x} \in E_{1}$. Then, given $\phi \in \mathcal{Z C}^{n}(\mathcal{A})$ such that $\phi_{0}=$ $\phi-\delta(\psi)$ vanishes on E_{0}, defining ψ_{1} on E_{1} by $\psi_{1}(\boldsymbol{x})=\phi_{0}\left(s(\boldsymbol{x})\right.$) (for $\boldsymbol{x} \in \mathcal{C C}_{n-1}(\mathcal{A})$) gives

$$
\begin{aligned}
\left(\phi_{0}-\delta \psi_{1}\right)(\boldsymbol{x}) & =\phi_{0}(\boldsymbol{x})-\psi_{1}(d \boldsymbol{x}) \\
& =\phi_{0}(\boldsymbol{x})-\phi_{0}(s d \boldsymbol{x}) \\
& =\phi_{0}(\boldsymbol{x}-(d s+s d) \boldsymbol{x})
\end{aligned}
$$

which still vanishes on E_{0} and now vanishes on E_{1}. Note that if $E_{0} \subset E_{1}$, then it is sufficient to verify that $\boldsymbol{x}-(d s+s d)(\boldsymbol{x}) \in E_{0}$ for $\boldsymbol{x} \in E_{1}$.

3. A first normalization step

3.1. Cobounding cyclically with norm control

Our first observation is that, if R is a rectangular band, then $\ell^{1}(R)$ is a 1-biprojective Banach algebra. That is, there exists ${ }^{1}$ an $\ell^{1}(R)$-bimodule map

$$
\sigma: \ell^{1}(R) \rightarrow \ell^{1}(R) \widehat{\otimes} \ell^{1}(R)
$$

which has norm 1 and which is right inverse to the product map $\ell^{1}(R) \widehat{\otimes} \ell^{1}(R) \rightarrow$ $\ell^{1}(R)$. (To see how this definition relates to the original homological one, see $[8$, ch. IV, §5].)

[^0]As observed in [4, lemma 7.5], one can use σ to construct a splitting homotopy for the simplicial chain complex, and thus show directly that $\mathcal{H} \mathcal{H}^{n}\left(\ell^{1}(R)\right)=0$ for all $n \geqslant 1$. The corresponding result for cyclic cohomology is more complicated, but can nevertheless be deduced using the Connes-Tzygan long exact sequence for Banach algebras [9].

Now consider a general band S which decomposes into rectangular band components as $S=\coprod_{\alpha} R_{\alpha}$. We wish to use this decomposition to reduce our cohomology problem to the case of rectangular bands. Although we are ultimately interested in simplicial cohomology, it seems necessary at certain points in our reduction technique to be working with cyclic cochains. Thus, we shall need to consider the cyclic cohomology of $\ell^{1}\left(R_{\alpha}\right)$, for each $\alpha \in L$. Since we need to deal with all the R_{α} simultaneously, it no longer suffices to appeal to [9, theorem 25]. A more precise version of that result is needed, as follows.

Theorem 3.1. Let A be a biflat Banach algebra, with biflatness constant $K \geqslant 1$. Let $m \geqslant 0$.
(i) For every $\psi \in \mathcal{Z C}^{2 m+1}(A)$ there exists $\chi \in \mathcal{C C}^{2 m}(A)$ such that $\psi=\delta \chi$; moreover, χ may be chosen to satisfy the bound

$$
\|\chi\| \leqslant 2(m+1)^{3} K^{4 m}\|\psi\| .
$$

(ii) For every $\psi \in \mathcal{Z C}^{2 m+2}(A)$ there exists $\chi \in \mathcal{C C}^{2 m+1}(A)$ and $\tau \in \mathcal{C C}^{0}(A)$ such that $\psi=\tau^{(2 m+2)}+\delta \chi$; moreover, τ and χ may be chosen to satisfy the bounds

$$
\|\tau\| \leqslant K^{2(m+1)}\|\psi\|, \quad\|\chi\| \leqslant 2(m+1)^{3} K^{2(2 m+1)}\|\psi\|
$$

Theorem 3.1 may well be implicitly known to specialists; a fairly direct and selfcontained proof can be found in [5]. The important aspect, for our purposes, is that the constants which control the cobounding depend only on the degree of the cocycle and on the biflatness constant K.

3.2. Initializing a cyclic cocycle on $\ell^{1}(S)$

Given a cyclic cocycle ψ, we are trying to find a cyclic cochain χ such that $\psi-\delta \chi$ vanishes on a conveniently large set. This will be done in stages: the precise definition for our first step is as follows.

Definition 3.2. Let $\phi \in \mathcal{Z C}^{n}\left(\ell^{1}(S)\right)$. We say that ϕ is rectangular-band-normalized, or R-normalized for short, if it vanishes on $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ whenever all x_{i} are in the same rectangular band component of S.

Lemma 3.3.

(i) If R is a rectangular band, every continuous trace on $\ell^{1}(R)$ is a scalar multiple of the augmentation character

$$
\epsilon: \ell^{1}(R) \rightarrow \mathbb{C}, \quad \text { where } \epsilon\left(\sum_{s \in R} \lambda_{s} s\right)=\sum \lambda_{s}
$$

(ii) If S is an arbitrary band, decomposed canonically as $\coprod_{\alpha \in L} R_{\alpha}$, where each R_{α} is rectangular, then $\mathcal{Z}^{0}\left(\ell^{1}(S), \ell^{1}(S)^{\prime}\right)$ is isomorphic to $\ell^{\infty}(L)$.

A sketch of the proof. Part (i) is proved by fixing $e \in R$ and noting that any trace τ on $\ell^{1}(R)$ must satisfy $\tau(x)=\tau($ xeex $)=\tau(e x x e)=\tau(e)$ for all $x \in R$. Part (ii) follows by considering the restriction of a trace $\tau \in \mathcal{Z}^{0}\left(\ell^{1}(S), \ell^{1}(S)^{\prime}\right)$ to each subalgebra $\ell^{1}\left(R_{\alpha}\right)$.

Proposition 3.4 (normalization on each rectangular component). Let $n \geqslant 1$.
(i) For every $\psi \in \mathcal{Z C}^{2 n-1}\left(\ell^{1}(S)\right)$, there exists $\chi \in \mathcal{C C}^{2 n-2}\left(\ell^{1}(S)\right)$ such that $\psi-\delta \chi$ is R-normalized.
(ii) For every $\psi \in \mathcal{Z C}^{2 n}\left(\ell^{1}(S)\right)$, there exist

$$
\tau \in \mathcal{Z}^{0}\left(\ell^{1}(S), \ell^{1}(S)^{\prime}\right) \quad \text { and } \quad \chi \in \mathcal{C C}^{2 n-1}\left(\ell^{1}(S)\right)
$$

such that $\psi-\tau^{(2 n)}-\delta \chi$ is R-normalized.
Proof. We recall that, for each α, the algebra $\ell^{1}\left(R_{\alpha}\right)$ is biprojective with constant 1 .
The case of odd degree is straightforward. Given $\psi \in \mathcal{Z C}^{2 n-1}\left(\ell^{1}(S)\right)$, let ψ_{α} denote the restriction of ψ to the subalgebra $\ell^{1}\left(R_{\alpha}\right)$. Then, by theorem 3.1, for each α there exists $\chi_{\alpha} \in \mathcal{C C}^{2 n-2}\left(\ell^{1}\left(R_{\alpha}\right)\right)$ such that $\delta \chi_{\alpha}=\psi_{\alpha}$ and

$$
\left\|\chi_{\alpha}\right\| \leqslant 2 n^{3}\left\|\psi_{\alpha}\right\| \leqslant K_{n}^{\prime}\|\psi\|
$$

where the constant K_{n}^{\prime} does not depend on α. Given $\left(x_{1}, \ldots, x_{2 n-1}\right) \in S^{2 n-1}$, we define

$$
\chi\left(x_{1}, \ldots, x_{2 n-2}\right)\left(x_{2 n-1}\right):= \begin{cases}\chi_{\alpha}\left(x_{1}, \ldots, x_{2 n-2}\right)\left(x_{2 n-1}\right) & \text { if } x_{1}, \ldots, x_{2 n-1} \in R_{\alpha} \\ & \text { for some } \alpha \in L \\ 0 & \text { otherwise }\end{cases}
$$

Then χ extends to a bounded $(2 n-1)$-multilinear functional on $\ell^{1}(S)$, which is clearly a cyclic cochain since each χ_{α} is. By construction, if $x_{1}, \ldots, x_{2 n} \in R_{\alpha}$ for some α, then

$$
(\psi-\delta \chi)\left(x_{1}, \ldots, x_{2 n-1}\right)\left(x_{0}\right)=\left(\psi_{\alpha}-\delta \chi_{\alpha}\right)\left(x_{1}, \ldots, x_{2 n-1}\right)\left(x_{2 n}\right)=0
$$

and thus $\psi-\delta \chi$ is R-normalized.
The case of even degree is similar, except that we have to deal with cocycles arising from traces. As before, let $\psi \in \mathcal{Z C}^{2 n}\left(\ell^{1}(S)\right)$ and, for each α, let $\psi_{\alpha} \in$ $\mathcal{Z C}^{2 n}\left(\ell^{1}\left(R_{\alpha}\right)\right)$ be the restriction of ψ to $\ell^{1}\left(R_{\alpha}\right)$ in each variable. By theorem 3.1, for each α there exist $\chi_{\alpha} \in \mathcal{C C}^{2 n-1}\left(\ell^{1}\left(R_{\alpha}\right)\right)$ and $\tau_{\alpha} \in \mathcal{Z} \mathcal{C}^{0}\left(\ell^{1}\left(R_{\alpha}\right)\right)$ such that

$$
\delta \chi_{\alpha}+\tau_{\alpha}^{(2 n)}=\psi_{\alpha} \quad \text { with }\left\|\tau_{\alpha}\right\| \leqslant K_{n}^{\prime \prime}\|\psi\|, \quad\left\|\chi_{\alpha}\right\| \leqslant K_{n}^{\prime \prime}\|\psi\|
$$

where the constant $K_{n}^{\prime \prime}$ does not depend on α.
By lemma 3.3, each τ_{α} is constant, with value c_{α}, say. Let $\tau: S \rightarrow \mathbb{C}$ be defined by $\tau: R_{\alpha} \rightarrow\left\{c_{\alpha}\right\}$. Then τ is a bounded trace on $\ell^{1}(S)$, and the restriction of $\tau^{(2 n)}$ to $\ell^{1}\left(R_{\alpha}\right)$ is clearly just $\tau_{\alpha}^{(2 n)}$.

Also, given $\left(x_{1}, \ldots, x_{2 n}\right) \in S^{2 n}$, we define

$$
\chi\left(x_{1}, \ldots, x_{2 n-1}\right)\left(x_{2 n}\right):=\left\{\begin{array}{lc}
\chi_{\alpha}\left(x_{1}, \ldots, x_{2 n-1}\right)\left(x_{2 n}\right) & \text { if } x_{1}, \ldots, x_{2 n} \in R_{\alpha} \\
0 & \text { for some } \alpha \in L \\
0 & \text { otherwise }
\end{array}\right.
$$

Then χ extends to a well-defined cyclic $(2 n-1)$-cochain on $\ell^{1}(S)$ and, by construction, we find that, for each α and every $x_{1}, \ldots, x_{2 n+1} \in R_{\alpha}$,

$$
\left(\psi-\tau^{(2 n)}-\delta \chi\right)\left(x_{1}, \ldots, x_{2 n}\right)\left(x_{2 n+1}\right)=\left(\psi_{\alpha}-\tau_{\alpha}^{(2 n)}-\delta \chi_{\alpha}\right)\left(x_{1}, \ldots, x_{2 n}\right)\left(x_{2 n+1}\right)
$$

as required.

4. A sufficient condition for using the Connes-Tzygan sequence

Definition 4.1. First, given a Banach algebra B, the reduced Hochshild complex $\mathrm{CR}_{*}(B)$ is the following chain complex of Banach spaces:

$$
0 \longleftarrow B \stackrel{d}{\longleftarrow} B^{\widehat{\otimes} 2} \stackrel{d}{\longleftarrow} \cdots \stackrel{d}{\longleftarrow} B^{\widehat{\otimes} n} \stackrel{d}{\longleftarrow} \cdots,
$$

where the boundary map d is defined by

$$
d\left(b_{1} \otimes \cdots \otimes b_{n+1}\right)=\sum_{j=1}^{n}(-1)^{j} \underset{j-1}{\bullet} \otimes b_{j} b_{j+1} \otimes \underset{n-j}{\bullet}, \quad b_{1}, \ldots, b_{n+1} \in B
$$

Then, for each $n \geqslant 0$, we write $\operatorname{ZR}_{n}(B)$ for the kernel of $d: B^{\widehat{\otimes} n+1} \rightarrow B^{\widehat{\otimes} n}$ and $\mathrm{BR}_{n}(B)$ for the image of $d: B^{\otimes n+2} \rightarrow B^{\widehat{\otimes} n+1}$.

Consider the case where $B=\ell^{1}(S)$. In order to construct the Connes-Tzygan long exact sequence for $\ell^{1}(S)$, we need to know that the complex $\mathrm{CR}_{*}\left(\ell^{1}(S)\right)$ is exact, i.e. that $\mathrm{BR}_{n}\left(\ell^{1}(S)\right)=\mathrm{ZR}_{n}\left(\ell^{1}(S)\right)$ for all $n \geqslant 0$ (see [9, theorem 11]). This is the aim of the current section.

REmARK 4.2. Even in the case where $B=L$, i.e. when our band is a semilattice, the result is not immediately obvious; hitherto, the only known proof used a special case of the main results in [3].

The case where $n=0$ is trivial, since $\mathrm{ZR}_{0}\left(\ell^{1}(S)\right)=\ell^{1}(S)$, and for

$$
a=\sum_{s \in S} \lambda_{s} s \in \ell^{1}(S)
$$

we have

$$
d\left(\sum_{s \in S} \lambda_{s}\langle s] \otimes s\right)=a
$$

We therefore restrict attention in what follows to the case where $n \geqslant 1$.
Left-coherent units will play a key role in our proof. In particular, we need the following lemma in several places.

Lemma 4.3. Let $y, z \in S$. Then $\langle\langle y \rrbracket=\langle y]$ and $\langle y]\langle y z]=\langle y z]$.
Proof. Both identities follow from our explicit construction of the function $\langle\cdot]$. They can also be deduced from the coherence properties that were observed earlier.

The first identity follows since $\langle x]=\langle x y]$ for all $x \in R_{\alpha}$ and $y \in R_{\beta}$ with $\alpha \preceq \beta$, so that taking $x=\langle y]$ does the job. For the second identity, note that $x\langle x]=(\langle x] x)\langle x]=\langle x]$, the last equality following because x and $\langle x]$ lie in the same rectangular band. In particular, taking $x=y z$ yields

$$
\langle y]\langle y z]=\langle y](y z\langle y z])=y z\langle y z]=\langle y z]
$$

as required.
For $1 \leqslant k \leqslant n+1$, let $s_{k}: \ell^{1}\left(S^{n+1}\right) \rightarrow \ell^{1}\left(S^{n+2}\right)$ be defined by

$$
\begin{equation*}
s_{k}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)=(-1)^{k} x_{1} \otimes \cdot \otimes x_{k-1} \otimes\left\langle x_{k}\right] \otimes x_{k} \otimes \cdot \otimes x_{n+1} \tag{4.1}
\end{equation*}
$$

Then set

$$
Q_{k}:=d s_{k}+s_{k} d-I: \ell^{1}\left(S^{n+1}\right) \rightarrow \ell^{1}\left(S^{n+1}\right)
$$

If $z \in \mathrm{ZR}_{n}\left(\ell^{1}(S)\right)$, then a straightforward calculation shows that $Q_{k} \cdots Q_{1}(z)$ is homologous to $(-1)^{k} z$ (that is, the two tensors differ by an element of BR_{n}). The work lies in obtaining a formula for $Q_{n} \cdots Q_{1}$, which will allow us to see that $Q_{n} \cdots Q_{1}(z)$ is homologous to zero.

REmARK 4.4. We give some motivation for the introduction of the maps s_{k} and Q_{k}, and the attention paid to $Q_{n} \cdots Q_{1}$. When B is a Banach algebra with identity 1 , it is well known that the chain complex $\mathrm{CR}_{*}(B)$ is exact, and that one can construct an explicit contracting homotopy σ. The maps $\sigma_{n+1}: B^{\widehat{\otimes} n+1} \rightarrow B^{\widehat{\otimes} n+2}$ are given by $\sigma\left(b_{1} \otimes \cdots \otimes b_{n+1}\right)=-\mathbf{1} \otimes b_{1} \otimes \cdots \otimes b_{n+1}$, and one can check directly that $d \sigma+$ $\sigma d=I$.

In the present case, $\ell^{1}(S)$ might not even have a bounded approximate identity. Nevertheless, since we do have local left-coherent units $\langle x]$, it is natural to see how far $d s_{1}+s_{1} d$ is from being the identity map, i.e. how far Q_{1} is from being zero.

Although $Q_{1}(\boldsymbol{x})$ is in general non-zero (see (4.2) below), it is a tensor with more 'structure' than \boldsymbol{x} in some sense. When we successively apply the maps Q_{2}, \ldots, Q_{n}, at each stage we increase the amount of structure present. Thus, given $z \in \mathrm{ZR}_{n}\left(\ell^{1}(S)\right)$, the tensor $Q_{n} \cdots Q_{1}(z)$, which, as previously noted, is homologous to $(-1)^{n} z$, will be so highly structured that it falls into $\mathrm{BR}_{n}\left(\ell^{1}(S)\right)$.

Let us start our argument by calculating $Q_{1}(\boldsymbol{x})$, where $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$. Since

$$
d s_{1}(\boldsymbol{x})=x_{1} \otimes \cdots \otimes x_{n+1}+\sum_{j=1}^{n}(-1)^{j}\left\langle x_{1}\right] \otimes x_{1} \otimes \cdots \otimes x_{j} x_{j+1} \otimes_{n-j}^{\bullet}
$$

and

$$
s_{1} d(\boldsymbol{x})=\left\langle x_{1} x_{2}\right] \otimes x_{1} x_{2} \otimes \underset{n-1}{\bullet}+\sum_{j=2}^{n}(-1)^{j-1}\left\langle x_{1}\right] \otimes x_{1} \otimes \cdots \otimes x_{j} x_{j+1} \otimes_{n-j}^{\bullet}
$$

we have

$$
\begin{equation*}
Q_{1}(\boldsymbol{x})=-\left\langle x_{1}\right] \otimes x_{1} x_{2} \otimes_{n-1}^{\bullet}+\left\langle x_{1} x_{2}\right] \otimes x_{1} x_{2} \otimes_{n-1}^{\bullet} \tag{4.2}
\end{equation*}
$$

Note that $\operatorname{ran}\left(Q_{1}\right)$ is contained in the kernel of the map

$$
\rho_{1}: y_{1} \otimes \cdots \otimes y_{n+1} \mapsto y_{1}\left\langle y_{2}\right] \otimes y_{2} \otimes_{n-1}^{\bullet}
$$

Now let $\boldsymbol{y}=y_{1} \otimes \cdots \otimes y_{n+1}$, where $y_{1}, \ldots, y_{n+1} \in S$. A similar calculation to that for Q_{1} shows that

$$
\begin{aligned}
Q_{2}(\boldsymbol{y})=-\rho_{1}(\boldsymbol{y})-y_{1} & \otimes\left\langle y_{2}\right] \otimes y_{2} y_{3} \otimes_{n-2}^{\bullet} \\
& -y_{1} y_{2} \otimes\left\langle y_{3}\right] \otimes y_{3} \otimes_{n-2}^{\bullet}+y_{1} \otimes\left\langle y_{2} y_{3}\right] \otimes y_{2} y_{3} \otimes_{n-2}^{\bullet}
\end{aligned}
$$

Then, since $\rho_{1} Q_{1}(\boldsymbol{x})=0$, we find after some calculation that

$$
\begin{align*}
Q_{2} Q_{1}(\boldsymbol{x})=\langle & \left.x_{1}\right] \otimes\left\langle x_{1} x_{2}\right] \otimes x_{1} x_{2} x_{3} \otimes_{n-2}^{\bullet} \\
& -\left\langle x_{1}\right] \otimes\left\langle x_{1} x_{2} x_{3}\right] \otimes x_{1} x_{2} x_{3} \otimes_{n-2}^{\bullet} \\
& -\left\langle x_{1} x_{2}\right] \otimes\left\langle x_{1} x_{2}\right] \otimes x_{2} x_{2} x_{3} \otimes_{n-2}^{\bullet} \\
& +\left\langle x_{1} x_{2}\right] \otimes\left\langle x_{1} x_{2} x_{3}\right] \otimes x_{1} x_{2} x_{3} \otimes_{n-2}^{\bullet} \tag{4.3}
\end{align*}
$$

By lemma 4.3, $\left\langle x_{1} x_{2}\right]\left\langle x_{1} x_{2} x_{3}\right]=\left\langle x_{1} x_{2} x_{3}\right]\left\langle x_{1} x_{2} x_{3}\right]$. Hence, $Q_{2} Q_{1}(\boldsymbol{x})$ lies in the kernel of the map

$$
\rho_{2}: x_{1} \otimes \cdots \otimes x_{n+1} \mapsto x_{1} \otimes x_{2}\left\langle x_{3}\right] \otimes x_{3} \otimes \underset{n-3}{\bullet}
$$

It also lies in $\operatorname{ker}\left(\rho_{1}\right)$, as can be shown using lemma 4.3 again.
By continuing in this way, one could calculate $Q_{n} \cdots Q_{1}(\boldsymbol{x})$ directly, but it would become harder to keep track of the terms involved and how they cancel. To do the necessary bookkeeping, we write the boundary operator as an alternating sum of face maps. That is, for $n \geqslant 1$ and $1 \leqslant i \leqslant n$, let $\partial_{i}: \ell^{1}\left(S^{n+1}\right) \rightarrow \ell^{1}\left(S^{n}\right)$ denote the map defined by

$$
\partial_{i}: x_{1} \otimes \cdots \otimes x_{n+1} \mapsto \underset{i-1}{\bullet} \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}
$$

so that

$$
d=\sum_{i=1}^{n}(-1)^{i} \partial_{i}: \ell^{1}\left(S^{n+1}\right) \rightarrow \ell^{1}\left(S^{n}\right)
$$

The following identities are easily verified by checking on elementary tensors:

$$
\begin{align*}
\partial_{i} s_{k} & =-s_{k-1} \partial_{i} \quad \text { if } i+2 \leqslant k \leqslant n+1 \tag{4.4a}\\
\partial_{i} s_{i} & =(-1)^{i} I, \tag{4.4b}\\
\partial_{i} s_{k} & =s_{k} \partial_{i-1} \tag{4.4c}
\end{align*} \quad \text { if } k+2 \leqslant i \leqslant n+1
$$

Using these identities, for $1 \leqslant k \leqslant n$ we may rewrite Q_{k} as

$$
\begin{array}{rlr}
Q_{k} & =\sum_{i=1}^{n+1}(-1)^{i} \partial_{i} s_{k}+\sum_{i=1}^{n}(-1)^{i} s_{k} \partial_{i}-I \\
& =\sum_{i=1}^{k+1}(-1)^{i} \partial_{i} s_{k}+\sum_{i=1}^{k}(-1)^{i} s_{k} \partial_{i}-I & \quad(\text { by }(4.4 c)) \\
= & \sum_{i=1}^{k-1}(-1)^{i} \partial_{i} s_{k}+(-1)^{k+1} \partial_{k+1} s_{k}+\sum_{i=1}^{k}(-1)^{i} s_{k} \partial_{i} & (\text { by }(4.4 b)) \tag{4.5}\\
= & \sum_{i=1}^{k-2}(-1)^{i+1} s_{k-1} \partial_{i}-\rho_{k-1} \\
& \quad+(-1)^{k+1} \partial_{k+1} s_{k}+\sum_{i=1}^{k}(-1)^{i} s_{k} \partial_{i} & \quad(\text { by }(4.4 a)),
\end{array}
$$

where $\rho_{i}=(-1)^{i+1} \partial_{i} s_{i+1}$, i.e.

$$
\begin{equation*}
\rho_{i}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)=\underset{i-1}{\bullet} \otimes x_{i}\left\langle x_{i+1}\right] \otimes x_{i+1} \otimes \underset{n-i}{\bullet} . \tag{4.6}
\end{equation*}
$$

Note that $\partial_{i} \rho_{i}=\partial_{i}$, which implies that $\operatorname{ker} \rho_{i} \subseteq \operatorname{ker} \partial_{i}$.
Next, for $1 \leqslant k \leqslant n$, let $\tilde{Q}_{k}:=(-1)^{k+1} \partial_{k+1} s_{k}+(-1)^{k} s_{k} \partial_{k}$, so that

$$
\begin{equation*}
\tilde{Q}_{k}(\boldsymbol{x})=-\underset{k-1}{\bullet} \otimes\left\langle x_{k}\right] \otimes x_{k} x_{k+1} \otimes \underset{n-k}{\bullet}+\underset{k-1}{\bullet} \otimes\left\langle x_{k} x_{k+1}\right] \otimes x_{k} x_{k+1} \otimes \underset{n-k}{\bullet} \tag{4.7}
\end{equation*}
$$

We then have the following result.
Proposition 4.5. Let $1 \leqslant r \leqslant n$. Then
(i) $Q_{r} \cdots Q_{1}=\tilde{Q}_{r} \cdots \tilde{Q}_{1}$,
(ii) $\operatorname{ran}\left(Q_{r} \cdots Q_{1}\right) \subseteq\left(\operatorname{ker} \rho_{1}\right) \cap \cdots \cap\left(\operatorname{ker} \rho_{r}\right)$.

Proof. The proof is by induction. When $r=1$, part (i) is trivial and part (ii) was proved above (see (4.2)). Suppose both parts hold true for $r=k-1$, where $2 \leqslant k \leqslant n$. Then, since $\operatorname{ker} \rho_{i} \subseteq \operatorname{ker} \partial_{i}$ for all i, and since (ii) holds for $r=k-1$,

$$
\partial_{i}\left(Q_{k-1} \cdots Q_{1}\right)=0 \text { for } 1 \leqslant i \leqslant k-2 \text { and } \quad \rho_{k-1}\left(Q_{k-1} \cdots Q_{1}\right)=0 .
$$

Comparing this with (4.5), we see that $Q_{k} Q_{k-1} \cdots Q_{1}=\tilde{Q}_{k} Q_{k-1} \cdots Q_{1}$. Since (i) holds for $r=k-1$, we have $Q_{k} \cdots Q_{1}=\hat{Q}_{k} \cdots \tilde{Q}_{1}$. Thus, part (i) holds for $r=k$.

To complete the inductive step, we must show that (ii) holds for $r=k$, i.e. that $\tilde{Q}_{k}\left(\operatorname{ker} \rho_{i}\right) \subseteq \operatorname{ker} \rho_{i}$ for all $1 \leqslant i \leqslant k$.

For $1 \leqslant i \leqslant k-2$ this is straightforward, since a direct check on elementary tensors shows that ρ_{i} commutes with \tilde{Q}_{k}. For $i=k-1$, by using lemma 4.3 we
obtain

$$
\left.\begin{array}{rl}
\rho_{k-1} \tilde{Q}_{k}(\boldsymbol{x})= & \rho_{k-1}\left(-\underset{k-2}{\bullet} \otimes x_{k-1} \otimes\left\langle x_{k}\right] \otimes x_{k} x_{k+1} \otimes_{n-k}^{\bullet}\right. \\
& \quad+\underset{k-2}{\bullet} \otimes x_{k-1} \otimes\left\langle x_{k} x_{k+1}\right] \otimes x_{k} x_{k+1} \otimes_{n-k}^{\bullet \bullet}
\end{array}\right)
$$

Finally, another direct calculation on elementary tensors, using lemma 4.3, shows that $\rho_{k} \tilde{Q}_{k}=0$. This completes the inductive step.

Lemma 4.6. We have $\left(s_{n} d+d s_{n+1}-I\right) \tilde{Q}_{n}=0$.
Proof. Using the identities (4.4a) and (4.4b), we have

$$
\begin{aligned}
\left(s_{n} d+d s_{n+1}-I\right)(\boldsymbol{y}) & =\sum_{j=1}^{n}(-1)^{j} s_{n} \partial_{j}(\boldsymbol{y})+\sum_{k=1}^{n+1}(-1)^{k} \partial_{k} s_{n+1}(\boldsymbol{y})-\boldsymbol{y} \\
& =(-1)^{n} s_{n} \partial_{n}(\boldsymbol{y})+(-1)^{n} \partial_{n} s_{n+1}(\boldsymbol{y}) \\
& ={ }_{n-1}^{\bullet} \otimes\left\langle y_{n} y_{n+1}\right] \otimes y_{n} y_{n+1}-\underset{n-1}{\bullet} \otimes y_{n}\left\langle y_{n+1}\right] \otimes y_{n+1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(s_{n} d+\right. & \left.d s_{n+1}-I\right) \tilde{Q}_{n}(\boldsymbol{x}) \\
=- & \left(s_{n} d+d s_{n+1}-I\right)\left(\underset{n-1}{\bullet} \otimes\left\langle x_{n}\right] \otimes x_{n} x_{n+1}\right) \\
& +\left(s_{n} d+d s_{n+1}-I\right)\left(\underset{n-1}{\bullet} \otimes\left\langle x_{n} x_{n+1}\right] \otimes x_{n} x_{n+1}\right) \\
=- & \underset{n-1}{\bullet} \otimes\left\langle x_{n} x_{n+1}\right] \otimes x_{n} x_{n+1}+\underset{n-1}{\bullet} \otimes\left\langle x_{n}\right]\left\langle x_{n} x_{n+1}\right] \otimes x_{n} x_{n+1} \\
& \quad+\underset{n-1}{\bullet} \otimes\left\langle x_{n} x_{n+1}\right] \otimes x_{n} x_{n+1}-\underset{n-1}{\bullet} \otimes\left\langle x_{n} x_{n+1}\right]\left\langle x_{n} x_{n+1}\right] \otimes x_{n} x_{n+1} .
\end{aligned}
$$

Since $\left\langle x_{n}\right]\left\langle x_{n} x_{n+1}\right]=\left\langle x_{n} x_{n+1}\right]=\left\langle x_{n} x_{n+1}\right]\left\langle x_{n} x_{n+1}\right]$, from lemma 4.3, these four terms cancel pairwise to give 0 .

Theorem 4.7. The complex $\mathrm{CR}_{*}\left(\ell^{1}(S)\right)$ is exact.
Proof. Let $n \geqslant 1$. As already mentioned, it suffices to prove that $\mathrm{ZR}_{n}\left(\ell^{1}(S)\right)=$ $\operatorname{BR}_{n}\left(\ell^{1}(S)\right)$. Thus, let $z \in \mathrm{ZR}_{n}\left(\ell^{1}(S)\right)$. A simple induction using the definition of the Q_{i} shows that, for $1 \leqslant k \leqslant n$,

$$
Q_{k} \cdots Q_{1}(z)=\left(d s_{k}-I\right) \cdots\left(d s_{1}-I\right)(z) \in \mathrm{ZR}_{n}\left(\ell^{1}(S)\right)
$$

Hence,

$$
\left(s_{n} d+d s_{n+1}-I\right) Q_{n} \cdots Q_{1}(z)=\left(d s_{n+1}-I\right)\left(d s_{n}-I\right) \cdots\left(d s_{1}-I\right)(z) .
$$

Now, combining proposition 4.5 and lemma 4.6 yields

$$
\left(s_{n} d+d s_{n+1}-I\right) Q_{n} \cdots Q_{1}=\left(s_{n} d+d s_{n+1}-I\right) \tilde{Q}_{n} \cdots \tilde{Q}_{1}=0
$$

Thus, $\left(d s_{n+1}-I\right)\left(d s_{n}-I\right) \cdots\left(d s_{1}-I\right)(z)=0$. Expanding out, we deduce that $z \in \operatorname{BR}_{n}\left(\ell^{1}(S)\right)$, as required.

Remark 4.8. Although the present work is focused on band semigroups, it should nevertheless be noted that the calculations of this section apply equally well to a Clifford semigroup.

For our present purposes (see [10, theorem IV.2.1]), we say that a semigroup \mathbb{G} is a Clifford semigroup if it decomposes as a disjoint union $\mathbb{G}=\coprod_{\alpha \in L} G_{\alpha}$ of sub-semigroups, where the indexing set L is a semilattice, each G_{α} is a group with identity element e_{α}, and $G_{\alpha} \cdot G_{\beta} \subseteq G_{\alpha \beta}$ for all α and β. We can define an analogous local left unit function $\langle\cdot \cdot]: \mathbb{G} \rightarrow \mathbb{G}$, which sends $x \in G_{\alpha}$ to e_{α}.

If we were then to repeat the calculations of this section, we would find that everything goes through (with slight simplifications, in fact), and we would thus obtain a direct proof that the complex $\mathrm{CR}_{*}\left(\ell^{1}(\mathbb{G})\right)$ is exact. This implies, for instance, that we have a Connes-Tzygan long exact sequence for $\ell^{1}(\mathbb{G})$, so that the results of [4] for the simplicial cohomology of $\ell^{1}(\mathbb{G})$ could be applied to obtain results for its cyclic cohomology.

5. Inductively reducing down to the R-normalized case

5.1. Minimal elements

Definition 5.1 (degree of elements and tensors). For $a \in S$, let $[a]$ denote its degree in S, that is, if $a \in R_{\alpha}$, then $[a]:=\alpha$. Then, given an elementary (sub)tensor of point masses $w=x_{k} \otimes \cdots \otimes x_{l}$, define the degree of w, denoted by $[w]$, to be $\left[x_{k} x_{k+1} \cdots x_{l}\right]$.

In this section, we shall prove that one can cobound any R-normalized $\phi \in$ $\mathcal{Z C}_{n}(\mathcal{A})$ on those elementary tensors $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ such that $\left[x_{i}\right]=[\boldsymbol{x}]$ for some i.

We work cyclically with indices when dealing with cyclic cohomology: for example, the interval $[n-1,2]$ is the set $\{n-1, n, n+1,1,2\}$ and we call $x_{n-1} \otimes \cdots \otimes$ $x_{n+1} \otimes x_{1} \otimes x_{2}$ a subtensor. We will sometimes emphasize this by describing these as cyclic intervals or cyclic subtensors.

Definition 5.2. An elementary tensor $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ has a minimal element x_{i}, for some i, if $\left[x_{i}\right]=[\boldsymbol{x}]$. (The degree of such an element is a minimum.) A minimal block is a (cyclic) subtensor $x_{k} \otimes \cdots \otimes x_{l}$ such that $\left[x_{i}\right]=[\boldsymbol{x}]$ for all i in the cyclic interval $[k, l]$, and $x_{k-1} \neq[\boldsymbol{x}] \neq x_{l+1}$.

Note that if \boldsymbol{x} is a minimal block itself, then all x_{i} are in the same rectangular band; the assumption that ϕ is R-normalized therefore implies that it vanishes on such an \boldsymbol{x}.

For elementary tensors with at least one minimal element, let
$J_{\boldsymbol{x}}=\left\{i \in\{1,2, \ldots, n+1\}: x_{i}\right.$ is the first component of a minimal block $\}$.
$J_{\boldsymbol{x}}$ is the set of the indices of all initial points of minimal blocks. Given $i \in J_{\boldsymbol{x}}$, define $s_{i}: \mathcal{C}_{n}(\mathcal{A}) \rightarrow \mathcal{C}_{n+1}(\mathcal{A})$ by

$$
s_{i}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)=(-1)^{i}\left(x_{1} \otimes \cdots \otimes x_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} \otimes \cdots \otimes x_{n+1}\right)
$$

and then define $s: \mathcal{C}_{n}(\mathcal{A}) \rightarrow \mathcal{C}_{n+1}(\mathcal{A})$ on \boldsymbol{x} with j minimal blocks by

$$
\begin{equation*}
s(\boldsymbol{x})=\frac{1}{j} \sum_{i \in J_{\boldsymbol{x}}} s_{i}(\boldsymbol{x}) \tag{5.1}
\end{equation*}
$$

If there are no minimal blocks ($J_{\boldsymbol{x}}$ is empty), set $s(\boldsymbol{x})=0$.
Dualizing this operator then yields $\sigma: \mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \rightarrow \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$, defined on $\phi \in$ $\mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ by

$$
\begin{equation*}
\sigma \phi(\boldsymbol{x})=\phi(s(\boldsymbol{x})) \tag{5.2}
\end{equation*}
$$

We now wish to show that σ takes cyclic cochains to cyclic cochains.
Lemma 5.3. If ϕ is cyclic, then so is $\sigma \phi$.
Proof. The key point is that the definition of minimal blocks is equivariant with respect to cyclic shifts, that is,

$$
i \in I_{\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)} \Longleftrightarrow i+1 \in I_{\left(x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)}
$$

where this is understood cyclically in the case $i=n+1$.
If $i \in I_{\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)}$ and $1 \leqslant i \leqslant n$, then

$$
\begin{aligned}
\boldsymbol{t} s_{i}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right) & =(-1)^{i} \boldsymbol{t}\left(x_{1} \otimes \cdots \otimes x_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} \otimes \cdots \otimes x_{n+1}\right) \\
& =(-1)^{n+1+i}\left(x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} \otimes \cdots \otimes x_{n}\right) \\
& =(-1)^{n} s_{i+1}\left(x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)
\end{aligned}
$$

On the other hand, if $n+1 \in I_{x_{1} \otimes \cdots \otimes x_{n+1}}$, then

$$
\begin{aligned}
\boldsymbol{t}^{2} s_{n+1}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right) & =(-1)^{n+1} \boldsymbol{t}^{2}\left(x_{1} \otimes \cdots \otimes\left\langle x_{n+1}\right] \otimes x_{n+1}\right) \\
& =(-1)^{n+1}\left(\left\langle x_{n+1}\right] \otimes x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{n}\right) \\
& =(-1)^{n} s_{1}\left(x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{n}\right) .
\end{aligned}
$$

Thus, if $\psi \in \mathcal{C C}^{n+1}(\mathcal{A})$, so that $\psi \circ \boldsymbol{t}=\psi$, we find that

$$
\begin{aligned}
\boldsymbol{t} \sigma \psi\left(x_{1} \otimes \cdots \otimes x_{n+1}\right) & =(-1)^{n} \psi\left(s\left(x_{n+1} \otimes x_{1} \otimes \cdots \otimes x_{n}\right)\right) \\
& =\psi\left(s\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)\right) \\
& =\sigma \psi\left(x_{1} \otimes \cdots \otimes x_{n+1}\right)
\end{aligned}
$$

as required.
Proposition 5.4. For any R-normalized $\phi \in \mathcal{Z C}^{n}(\mathcal{A})$, there exists $\psi \in \mathcal{C C}^{n-1}(\mathcal{A})$, such that $(\phi-\delta \psi)(\boldsymbol{x})=0$ for all elementary tensors \boldsymbol{x} with some minimal element.

Proof. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ be a tensor with some minimal element and let $m_{\boldsymbol{x}}$ be the sum of the length of its minimal blocks. Since we are working in cyclic cohomology, by cycling our tensor we can assume without loss of generality that $1 \in J_{\boldsymbol{x}}$. It will be convenient to write $\boldsymbol{x}=u_{1} \otimes v_{1} \otimes \cdots \otimes u_{l} \otimes v_{l}$, where $u_{l}, l=1, \ldots, j$ are the j minimal blocks.

If all elements are minimal, we say that $m_{\boldsymbol{x}}=n+1$. Then, since ϕ is R-normalized, it will be assumed to vanish on \boldsymbol{x}.

Suppose we can cobound on \boldsymbol{x} such that $m_{\boldsymbol{x}} \geqslant K$. Let \boldsymbol{x} be such that $m_{\boldsymbol{x}}=K-1$ and consider $(d s+s d) \boldsymbol{x}$. In the notation of (2.3), in $d(\boldsymbol{x})$ there are terms with $d_{c}\left(v_{l}\right)$, $u_{l} \cdot v_{l}$ and $v_{l} \cdot u_{l+1}$ that all have $K-1$ minimal elements, and those with $d_{c}\left(u_{l}\right)$ that have $K-2$ minimal elements. Applying s increases the number of minimal elements by one in all terms, and, therefore, by induction it suffices to consider only those terms in $s d(\boldsymbol{x})$ of the form

$$
(-1)^{i} u_{1} \otimes v_{1} \otimes \cdots \otimes\left\langle x_{i}\right] \otimes d_{c}\left(u_{l}\right) \otimes v_{l} \otimes \cdots \otimes u_{j} \otimes v_{j}
$$

where x_{i} is the first element of u_{l} (and where we have used that if $[x] \preceq[y]$, then $\langle x y]=\langle x]$). Note that d_{c} is applied to u_{l} as a subtensor of \boldsymbol{x}.

Similarly, in $d s(\boldsymbol{x})$, we only need to consider terms of the form

$$
(-1)^{i} u_{1} \otimes v_{1} \otimes \cdots \otimes d_{c}^{\prime}\left(\left\langle x_{i}\right] \otimes u_{l}\right) \otimes v_{l} \otimes \cdots \otimes u_{j} \otimes v_{j}
$$

where d_{c}^{\prime} is applied to $\left\langle x_{i}\right] \otimes u_{l}$ as a subtensor of $s_{i}(\boldsymbol{x})$. This effectively changes the signs when comparing to terms in $s d(\boldsymbol{x})$. When summing, all terms cancel except

$$
u_{1} \otimes v_{1} \otimes \cdots \otimes\left\langle x_{i}\right] \cdot u_{l} \otimes v_{l} \otimes \cdots \otimes u_{j} \otimes v_{j}
$$

which is \boldsymbol{x}.

5.2. Without minimal elements

The procedure for handling tensors without minimal elements is much more involved. Crucial to our construction is the following definition.

Definition 5.5. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1} \in S^{n+1}$ be without minimal element. We say that a subtensor $x_{k} \otimes \cdots \otimes x_{l}$ has a minimal left element if $\left[x_{k}\right] \preceq\left[x_{i}\right]$ for all i in the cyclic interval $[k, l]$. A subtensor is a left-block if it has a minimal left element and is not strictly included in another subtensor which has a minimal left element.

Clearly, a tensor $\boldsymbol{x} \in S^{n+1}$ can have at most $n+1$ left-blocks. Note that a tensor \boldsymbol{x} with a minimal element informally corresponds to having only one left-block: extending the definition to this case leads to confusion as the initial element of such a left-block may not be well defined. Nevertheless, if \boldsymbol{x} does not have at least two left-blocks, then it has a minimal element.

We stress again that we consider tensors like $x_{n} \otimes x_{n+1} \otimes x_{1} \otimes x_{2}$ as subtensors of \boldsymbol{x} and, therefore, as potential left-blocks.

Notation 5.6. For $2 \leqslant j \leqslant n+1$, denote by \mathcal{F}_{n}^{j} the set of all elementary tensors in S^{n+1} with at most j left-blocks. We write \mathcal{F}_{n}^{1} for the subset of elementary tensors with a minimal element.

These subsets give us a filtration

$$
\mathcal{F}_{n}^{1} \subset \mathcal{F}_{n}^{2} \subset \cdots \subset \mathcal{F}_{n}^{n+1}=S^{n+1}
$$

where \mathcal{F}_{n}^{n+1} has dense linear span in $\mathcal{C}_{n}(\mathcal{A})$. Crucially, each face map

$$
\partial_{i}: \mathcal{C}_{n}(\mathcal{A}) \rightarrow \mathcal{C}_{n-1}(\mathcal{A})
$$

cannot increase the number of left-blocks, and hence maps \mathcal{F}_{n}^{j} to \mathcal{F}_{n-1}^{j}.
We have seen in the previous sections that if ψ is an R-normalized n-cocycle, it is equivalent in cyclic cohomology to one that vanishes on \mathcal{F}_{n}^{1}.

ThEOREM 5.7. Let $2 \leqslant j \leqslant n+1$ and let $\psi \in \mathcal{Z C}^{n}(\mathcal{A})$. Suppose that ψ vanishes on \mathcal{F}_{n}^{j-1}. It is then equivalent in cyclic cohomology to a cocycle that vanishes on \mathcal{F}_{n}^{j}.

Theorem 5.7 will allow us, by an inductive argument, to conclude that if ψ is an R-normalized cocycle, there exists a cyclic cochain ϕ such that $\psi=\delta \phi$. The proof of this theorem will take up the rest of this section and the following one.

Notation 5.8. For elementary tensors without a minimal element, it is easy to see that any tensor \boldsymbol{x} has a unique decomposition into left-blocks. Therefore, we can define

$$
I_{\boldsymbol{x}}=\left\{i \in\{1,2, \ldots, n+1\}: x_{i} \text { is the first component of a left-block }\right\}
$$

$I_{\boldsymbol{x}}$ is the set of the indices of all initial points of left-blocks.
As in $\S 5.1$, we shall now define an insertion operator in terms of this block structure. (This operator will also be denoted by s, but this abuse of notation should not cause any confusion with the insertion operator that was considered in \S 5.1.) Given an elementary tensor $\boldsymbol{x} \in \mathcal{C}_{n}(\mathcal{A})$ and $i \in I_{\boldsymbol{x}}$, define

$$
s_{i}(\boldsymbol{x})=(-1)^{i}\left(\underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} \otimes \underset{n-i}{\bullet}\right) \in \mathcal{C}_{n+1}(\mathcal{A})
$$

and then define $s: \mathcal{C}_{n}(\mathcal{A}) \rightarrow \mathcal{C}_{n+1}(\mathcal{A})$ by

$$
\begin{equation*}
s(\boldsymbol{x})=\sum_{i \in I_{\boldsymbol{x}}} s_{i}(\boldsymbol{x}) \tag{5.3}
\end{equation*}
$$

If there are no left-blocks, ($I_{\boldsymbol{x}}$ is empty), set $s(\boldsymbol{x})=0$.
Dualizing this operator, we define $\sigma: \mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \rightarrow \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ by

$$
\begin{equation*}
\sigma \phi(\boldsymbol{x})=\phi(s(\boldsymbol{x})) \quad \text { for } \phi \in \mathcal{C}^{n+1}\left(\mathcal{A}, \mathcal{A}^{\prime}\right) \tag{5.4}
\end{equation*}
$$

The proof of lemma 5.3 shows that we also have the following.
Lemma 5.9. If ϕ is cyclic, then so is $\sigma \phi$.
Two parameters will be important for our approach in this section and the next: the degree of a left-block, and the height of a elementary tensor. The degree of a (sub)tensor was defined earlier (definition 5.1). Note that the degree of a left-block will be the same as the degree of its initial element.

Definition 5.10. If T is a finite semilattice, and $\alpha \in T$, the height of α in T is the length of the longest descending chain in T which starts at α. That is,
$\mathrm{ht}_{T}(\alpha)=\sup \left\{m\right.$: there exist $t_{0}, \ldots, t_{m} \in T$ with $\left.\alpha=t_{m} \succ t_{m-1} \succ \cdots \succ t_{0}\right\}$.
If $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ is an elementary tensor in $\mathcal{C}_{n}(\mathcal{A})$, let $L(\boldsymbol{x})$ be the subsemilattice of L that is generated by the set $\left\{\left[x_{1}\right], \ldots,\left[x_{n+1}\right]\right\}$, and define the height of \boldsymbol{x} to be

$$
\operatorname{ht}(\boldsymbol{x}):=\sum_{i=1}^{n+1} \mathrm{ht}_{L(\boldsymbol{x})}\left(\left[x_{i}\right]\right)
$$

Denote by $\mathcal{F}_{n}^{j, h}$ the set of elementary tensors with at most j left-blocks and with height at most h. Note for later reference that, if \boldsymbol{x} has no minimum element, then there are crude bounds

$$
n+1 \leqslant \operatorname{ht}(\boldsymbol{x}) \leqslant n(n+1)
$$

We now define linear spaces which will be key to our induction:

$$
\begin{equation*}
G_{n, j, h}=\operatorname{lin} \mathcal{F}_{n}^{j, h}+\operatorname{lin} \mathcal{F}_{n}^{j-1} \quad \text { and } \quad H_{n, j, h}=(I-\boldsymbol{t}) \mathcal{C}_{n}(\mathcal{A})+G_{n, j, h} \tag{5.5}
\end{equation*}
$$

Lemma 5.11. Let T be a finite semilattice and let $F \subseteq T$ be a sub-semilattice.
(i) If $\alpha \in F$ then $\operatorname{ht}_{F}(\alpha) \leqslant \operatorname{ht}_{T}(\alpha)$.
(ii) If $\alpha, \beta \in T$ and $\alpha \prec \beta$ then $\mathrm{ht}_{T}(\alpha)<\mathrm{ht}_{T}(\beta)$.

The proofs of both parts are clear.
Proposition 5.12. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ be an elementary tensor in $\mathcal{F}_{n}^{j, h}$. Then

$$
\begin{align*}
(s d+d s)(\boldsymbol{x}) \equiv \sum_{i \in I_{\boldsymbol{x}}}[\boldsymbol{x}+\underset{i-1}{\bullet} & \otimes\left\langle x_{i} x_{i+1}\right] \otimes x_{i} x_{i+1} \otimes \otimes_{n-i}^{\bullet} \\
& \left.-\underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}\right] \bmod G_{n, j, h-1} \tag{5.6}
\end{align*}
$$

Remark 5.13. When $n+1 \in I_{\boldsymbol{x}}$, the corresponding term in square brackets should be interpreted as

$$
\begin{align*}
\boldsymbol{x}+(-1)^{n} x_{2} \otimes \cdots \otimes x_{n} \otimes\langle & \left.x_{n+1} x_{1}\right] \otimes x_{n+1} x_{1} \\
& +(-1)^{n+1} x_{2} \otimes \cdots \otimes x_{n} \otimes\left\langle x_{n+1}\right] \otimes x_{n+1} x_{1} . \tag{5.7}
\end{align*}
$$

The proof of proposition 5.12 is long, and will therefore be deferred to $\S 6$. Assuming for the moment that the proposition holds, let us continue with the proof of theorem 5.7.

For $k=1, \ldots, j$, let

$$
P_{k}=I-k^{-1}(s d+d s)
$$

By construction, if $\psi \in \mathcal{Z C}{ }^{n}(\mathcal{A})$, then $\psi-P_{k}^{*} \psi=k^{-1} \delta \sigma \psi \in \mathcal{B C}^{n}(\mathcal{A})$, and so applying P_{k}^{*} to a cyclic cocycle does not change its cyclic cohomology class. Proposition 5.12 suggests that, by repeatedly applying P_{k} to an elementary tensor in \mathcal{F}_{n}^{j}, for varying k, one would eventually obtain a linear combination of tensors in \mathcal{F}_{n}^{j-1}.

To prove that this hope can be realized (at least, if we work up to cyclic equivalence, see definition 2.3) we must analyse the surviving terms in (5.6) in more detail. Left-blocks of length 1 will play a special role and we adopt the following definitions.

Definition 5.14. A left-block of length 1 is called a 1-block. A 1-block x_{k} in an elementary tensor \boldsymbol{x} is called a block-unit if $x_{k}=\left\langle x_{k}\right]$ and $x_{k} x_{k+1}=x_{k+1}$.

Remark 5.15. Since block-units are left-blocks of length 1 , there are certainly no more than $j-1$ of them when $j<n+1$. In fact, if $j=n+1$, then this is still true, for if there were only block-units, the degree of each would lie above that of the following block-unit, and hence the tensor would have a minimal element (and therefore no left-blocks).

Given an elementary tensor $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$, let

$$
R_{\boldsymbol{x}}=\left\{i: x_{i} \text { is a 1-block but not a block-unit, and }\left[x_{i}\right] \succ\left[x_{i+1}\right]\right\}
$$

where we allow $n+1 \in R_{x}$. Clearly, $R_{\boldsymbol{x}}$ is a proper subset of the set $I_{\boldsymbol{x}}$ of all initial points of left-blocks; it may even be empty.

LEMMA 5.16. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ be an elementary tensor in \mathcal{F}_{n}^{j}, and let $i \in$ $I_{\boldsymbol{x}}$. Then precisely one of the following four cases can occur:
(i) x_{i} is not a 1-block in \boldsymbol{x}, in which case,

$$
\begin{equation*}
\underset{i-1}{\bullet} \otimes\left\langle x_{i} x_{i+1}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}=\underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes_{n-i}^{\bullet} \tag{5.8}
\end{equation*}
$$

(ii) x_{i} is a 1-block and $\left[x_{i}\right] \nsucceq\left[x_{i+1}\right]$, in which case, the tensor

$$
\begin{equation*}
\underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet} \tag{5.9}
\end{equation*}
$$

either has fewer left-blocks, or lower height (and the same number of leftblocks), than \boldsymbol{x};
(iii) x_{i} is a block-unit, in which case $\bullet_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \bullet_{n-i}=\boldsymbol{x}$;
(iv) $i \in R_{x}$.

In cases (ii)-(iv), the tensor $\bullet_{i-1} \otimes\left\langle x_{i} x_{i+1}\right] \otimes x_{i} x_{i+1} \otimes \bullet_{n-i}$ has fewer left-blocks than \boldsymbol{x}.

Proof. If x_{i} is not a 1-block, then since i is initial we must have $\left[x_{i}\right] \preceq\left[x_{i+1}\right]$. Equation (5.8) then follows from the left-coherent property of the function $\langle\cdot]$, as described in § 2.

If x_{i} is a 1-block, we split into two cases. The first is when $\left[x_{i}\right]$ does not lie above $\left[x_{i+1}\right]$, i.e. case (ii) of the lemma. In this case, $x_{i} x_{i+1}$ has strictly smaller degree than x_{i+1}, and so (5.9) has height at most

$$
\operatorname{ht}(\boldsymbol{x})-\operatorname{ht}_{L(\boldsymbol{x})}\left(\left[x_{i+1}\right]\right)+\operatorname{ht}_{L(\boldsymbol{x})}\left(\left[x_{i} x_{i+1}\right]\right)<\operatorname{ht}(\boldsymbol{x})
$$

as claimed. The second case is when $\left[x_{i}\right] \succeq\left[x_{i+1}\right]$ (note that, since x_{i} is assumed here to be a 1-block, it then has to lie strictly above x_{i+1}). There are now two subcases:
either x_{i} is a block-unit, in which case the claim in (iii) follows immediately from the definition of a block-unit (and the fact that $\langle\langle\cdot \rrbracket=\langle\cdot]$), or it is not, in which case i is by definition a member of $R_{\boldsymbol{x}}$, so that we are in case (iv).

Finally, if we are not in case (i), i.e. if x_{i} is a 1-block, then $\bullet_{i-1} \otimes\left\langle x_{i} x_{i+1}\right] \otimes$ $x_{i} x_{i+1} \otimes \bullet_{n-i}$ clearly has fewer left-blocks than \boldsymbol{x} (more precisely, the left-blocks which started in position i and position $i+1$ have merged).

The previous lemma motivates the following notation. Define a map Err on elementary tensors by

$$
\begin{equation*}
\operatorname{Err}(\boldsymbol{x})=\sum_{i \in R_{\boldsymbol{x}}} \underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}, \tag{5.10}
\end{equation*}
$$

where if $R_{\boldsymbol{x}}=\emptyset$, we define $\operatorname{Err}(\boldsymbol{x}):=0$, and extend Err by linearity and continuity to a bounded linear map on $\mathcal{C}_{n}(\mathcal{A})$. It is easily checked from the definitions in (5.5) that Err maps $G_{n, j, h}$ into itself, and hence maps $H_{n, j, h}$ into itself.
Corollary 5.17. If $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ is an elementary tensor with height h, and with j left-blocks, exactly r of which are block-units, then

$$
\begin{equation*}
P_{k}(\boldsymbol{x}) \equiv\left(1-\frac{j-r}{k}\right) \boldsymbol{x}+\frac{1}{k} \operatorname{Err}(\boldsymbol{x}) \quad \bmod H_{n, j, h-1} \tag{5.11}
\end{equation*}
$$

Proof. Fix $i \in I_{\boldsymbol{x}}$ and consider the corresponding terms enclosed by square brackets on the right-hand side of (5.6) (or, if $i=n+1$, the terms in (5.7)).

If x_{i} is a block-unit and $1 \leqslant i \leqslant n$, then, by lemma 5.16 (iii), the first and third of these terms cancel out, while the middle term is equal to $\bullet_{i-1} \otimes\left\langle x_{i} x_{i+1}\right] \otimes$ $x_{i} x_{i+1} \otimes \bullet_{n-i}$ and so lies in \mathcal{F}_{n}^{j-1}. If $i=n+1$ and x_{n+1} is a block-unit, we have to consider (5.7). There, the first and third terms will now cancel out modulo cyclic equivalence, while the middle term is cyclically equivalent to $x_{n+1} x_{1} \otimes$ $\bullet_{n-1} \otimes\left\langle x_{n+1} x_{1}\right]$ and so lies in \mathcal{F}_{n}^{j-1} as before.

If x_{i} is not a block-unit, then we get \boldsymbol{x}, together with two other terms. These two will cancel if x_{i} is not a 1-block (lemma $5.16(\mathrm{i})$), while if x_{i} is a 1 -block that does not lie above its successor, these terms will have either fewer left-blocks or lower height than \boldsymbol{x} (lemma 5.16 (ii)). That only leaves the case where $i \in R_{\boldsymbol{x}}$, when one of the terms will have fewer left-blocks and the other will form part of $\operatorname{Err}(\boldsymbol{x})$.

Summing over all $i \in I_{\boldsymbol{x}}$, we obtain from (5.6) that

$$
\begin{aligned}
(d s+s d)(\boldsymbol{x}) \equiv\left(\sum_{i \in I_{\boldsymbol{x}}, x_{i}} \sum_{\text {not a block-unit }} \boldsymbol{x}\right) \\
-\left(\sum_{i \in R_{\boldsymbol{x}}} \underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}\right) \bmod H_{n, j, h-1}
\end{aligned}
$$

The first sum in brackets is equal to $(j-r) \boldsymbol{x}$; the second is equal to $\operatorname{Err}(\boldsymbol{x})$. Rearranging gives us the desired identity.

At this point, note that the degree of a left-block and the height of a tensor, which both play a pivotal role in our analysis, depend only on the degrees of terms in an elementary tensor, i.e. those elements of the structure semilattice L which index these terms. This motivates the following definition.

Definition 5.18. Given an elementary tensor $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$, the shape of \boldsymbol{x} is the tensor $\left[x_{1}\right] \otimes \cdots \otimes\left[x_{n+1}\right] \in \ell^{1}\left(L^{n+1}\right)$.

Clearly, the number of left-blocks, the location of the initial points of left-blocks and the height are each dependent only on the shape of a tensor. It is also clear that if $i \in R_{\boldsymbol{x}}$, then $\bullet_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \bullet_{n-i}$ has the same shape as \boldsymbol{x}. Consequently, each term in $P_{k}(\boldsymbol{x})$ has the same shape as \boldsymbol{x}, has lower height or has fewer leftblocks.

Given an elementary tensor $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ without minimal element, define a descending block in \boldsymbol{x} to be a cyclic subtensor $x_{k} \otimes \cdots \otimes x_{l}$ with the property that $\left[x_{k}\right] \succ\left[x_{k+1}\right] \succ \cdots \succ\left[x_{l}\right]$, while $\left[x_{k-1}\right] \nsucc\left[x_{k}\right]$ and $\left[x_{l}\right] \nsucc\left[x_{l+1}\right]$. Since the entries of \boldsymbol{x} can strictly decrease at most n times, a descending block in $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ can have length at most n, and so has a well-defined first element and last element. In particular, for each i, we can define the descent of x_{i} in \boldsymbol{x} to be $l-i$, where x_{l} is the last element in the unique descending block that contains x_{i}. (This is interpreted cyclically, so that if $x_{n} \otimes x_{n+1} \otimes x_{1}$ is a descending block, then the descent of x_{n+1} is 1.) We denote the descent of x_{i} in \boldsymbol{x} by $\operatorname{desc}_{i}(\boldsymbol{x})$, and now define the descent of \boldsymbol{x} to be

$$
\operatorname{desc}(\boldsymbol{x}):=\sum_{i \in R_{\boldsymbol{x}}} \operatorname{desc}_{i}(\boldsymbol{x})
$$

Since $\operatorname{desc}_{i}(\boldsymbol{x}) \leqslant n-1$ for all i and $\left|R_{\boldsymbol{x}}\right| \leqslant j-1$, there is a crude upper bound $\operatorname{desc}(\boldsymbol{x}) \leqslant(j-1)(n-1)$. Moreover, since $\operatorname{desc} x_{i} \geqslant 1$ for each $i \in R_{\boldsymbol{x}}$ (recall that if $i \in R_{x}$ then x_{i} lies strictly above its successor), there is a lower bound $\operatorname{desc}(\boldsymbol{x}) \geqslant\left|R_{\boldsymbol{x}}\right|$.

The idea behind the next lemma is that, given \boldsymbol{x} with $R_{\boldsymbol{x}}$ non-empty, each term in $\operatorname{Err}(\boldsymbol{x})$ either has one more block-unit, or else has one of the block-units shifted one place to the left. Since each such term has the same shape as \boldsymbol{x}, this process must terminate after a finite number of steps.

Lemma 5.19. Let $\boldsymbol{x}=x_{1} \otimes \cdots \otimes x_{n+1}$ be a tensor without minimal element, such that $R_{\boldsymbol{x}}$ is non-empty, and let $i \in R_{\boldsymbol{x}}$. Then

$$
\operatorname{desc}\left(\underset{i-1}{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet}\right)<\operatorname{desc}(\boldsymbol{x})
$$

Proof. To allay potential concerns with degenerate cases, we start by observing that, since \boldsymbol{x} has no minimal element but $R_{\boldsymbol{x}}$ is non-empty, we must have $n \geqslant 2$. Next, since the definition of descent is cyclically invariant, we may as well cycle our tensor so that $2 \leqslant i \leqslant n$ (this just simplifies some of the notational bookkeeping).

Set $\boldsymbol{y}=\bullet_{i-1} \otimes\left\langle x_{i}\right] \otimes x_{i} x_{i+1} \otimes \bullet_{n-i}$. Note that \boldsymbol{y} coincides with \boldsymbol{x} in the first $i-1$ and last $n-i$ entries, and $\left[y_{k}\right]=\left[x_{k}\right]$ for all $k \in\{1, \ldots, n+1\}$. Given $r \in\{1, \ldots, i-1\} \cup\{i+2, \ldots, n+1\}$, it follows that y_{r} is a 1 -block and non-block-unit lying strictly above its successor in \boldsymbol{y} if and only if x_{r} is a 1-block and non-block-unit lying strictly above its successor in \boldsymbol{x}; moreover, if this is the case, then the descent of y_{r} is equal to that of x_{r}. It follows from the definition of descent that

$$
\operatorname{desc}(\boldsymbol{x})-\sum_{r \in R_{\boldsymbol{x}} \cap\{i, i+1\}} \operatorname{desc}_{r}(\boldsymbol{x})=\operatorname{desc}(\boldsymbol{y})-\sum_{r \in R_{\boldsymbol{y}} \cap\{i, i+1\}} \operatorname{desc}_{r}(\boldsymbol{y})
$$

Now, by hypothesis $i \in R_{\boldsymbol{x}}$, and since y_{i} is a block-unit in \boldsymbol{y}, we have $i \notin R_{\boldsymbol{y}}$. Moreover, since $\left[x_{i}\right] \succeq\left[x_{i+1}\right]$, it is clear that the descent of x_{i} in \boldsymbol{x} is strictly greater than the descent of $y_{i+1}=x_{i} x_{i+1}$ in \boldsymbol{y}. Therefore,

$$
\sum_{r \in R_{\boldsymbol{x}} \cap\{i, i+1\}} \operatorname{desc}_{r}(\boldsymbol{x}) \geqslant \operatorname{desc}_{i}(\boldsymbol{x})>\operatorname{desc}_{i+1}(\boldsymbol{y}) \geqslant \sum_{r \in R_{y} \cap\{i, i+1\}} \operatorname{desc}_{r}(\boldsymbol{y}),
$$

and hence $\operatorname{desc}(\boldsymbol{x})>\operatorname{desc}(\boldsymbol{y})$ as claimed.
Corollary 5.20. Let $\boldsymbol{x} \in \mathcal{F}_{n}^{j, h}$. Then $\left(P_{j} \cdots P_{1}\right)(\boldsymbol{x})$ is congruent $\bmod H_{n, j, h-1}$ to a linear combination of elementary tensors which have smaller descent than \boldsymbol{x}. In particular, if $N \geqslant j(n-1) n^{2}$, then $\left(P_{j} \cdots P_{1}\right)^{N}(\boldsymbol{x})$ is cyclically equivalent to a tensor in $\operatorname{lin} \mathcal{F}_{n}^{j-1}$.

Proof. Let $h:=h t(\boldsymbol{x})$. First, note that the operators P_{1}, \ldots, P_{j} are pairwise commuting (as they are just linear combinations of I and $s d+d s$). Note also that, by corollary 5.17 and the remarks preceding it, each P_{i} maps $H_{n, j, h-1}$ to itself.

Now, if r is the number of block-units in \boldsymbol{x}, let

$$
Q_{j-r}=P_{j} \cdots P_{j-r+1} P_{j-r-1} \cdots P_{1}
$$

We note that Q_{j-r} maps $H_{n, j, h-1}$ to itself. Hence, recalling that $0 \leqslant r \leqslant j-1$, it follows from corollary 5.17 that

$$
\begin{equation*}
P_{j} \cdots P_{1}(\boldsymbol{x})=Q_{j-r} P_{j-r}(\boldsymbol{x}) \equiv Q_{j-r}(\operatorname{Err}(\boldsymbol{x})) \quad \bmod H_{n, j, h-1} \tag{5.12}
\end{equation*}
$$

Let \boldsymbol{y} be an elementary tensor in $G_{n, j, h-1}$. For arbitrary k, the identity (5.11) also implies that the tensor $P_{k}(\boldsymbol{y})$ is cyclically equivalent to a linear combination of a term in $G_{n, j, h-1}$, some scalar multiple of \boldsymbol{y}, and some scalar multiple of $\operatorname{Err}(\boldsymbol{y})$; in particular, $\bmod H_{n, j, h-1}, P_{k}(\boldsymbol{y})$ is a linear combination of terms whose descent does not exceed $\operatorname{desc}(\boldsymbol{y})$. (This uses lemma 5.19 applied to \boldsymbol{y}.)

Since Q_{j-r} is a product of various P_{k}, the same is true of $Q_{j-r}(\boldsymbol{y})$, and so the descent of each term in $Q_{j-r}(\operatorname{Err}(\boldsymbol{x}))$ is bounded above by $\operatorname{desc}(\operatorname{Err}(\boldsymbol{x}))$, which is in turn strictly less than $\operatorname{desc}(\boldsymbol{x})$. Combining this with (5.12), we see that, $\bmod H_{n, j, h-1}$, the tensor $P_{j} \cdots P_{1}(\boldsymbol{x})$ is a linear combination of terms with descent strictly less than $\operatorname{desc}(\boldsymbol{x})$.

Now let $P=\left(P_{j} \cdots P_{1}\right)^{j(n-1)}$. Since $\operatorname{desc}(\boldsymbol{x}) \leqslant(j-1)(n-1) \leqslant j(n-1)-1$, the previous paragraph implies that

$$
P(\boldsymbol{x}) \equiv 0 \quad \bmod H_{n, j, h-1}
$$

That is, $P(\boldsymbol{x})$ is cyclically equivalent to a linear combination of terms that have at most $j-1$ left-blocks, together with terms that have height strictly less than $h t(\boldsymbol{x})$. Finally, we can iterate again, using the fact that $n+1 \leqslant h t(\boldsymbol{x}) \leqslant n(n+1)$, to deduce that if we apply P to \boldsymbol{x} at least $n(n+1)-(n+1)+1=n^{2}$ times, then the resulting tensor will be cyclically equivalent to one in $\operatorname{lin} \mathcal{F}_{n}^{j-1}$. This concludes the proof.

To prove theorem 5.7, we take $N=j(n-1) n^{2}$. If $\psi \in \mathcal{C}^{n}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$ vanishes on all tensors in \mathcal{F}_{n}^{j-1}, the cochain $\psi_{1}:=\left[\left(P_{j} \cdots P_{1}\right)^{N}\right]^{*}(\psi)$ vanishes on all tensors in \mathcal{F}_{n}^{j}, by the previous corollary. By our earlier remarks, ψ_{1} is in the same cyclic
cohomology class as ψ, and we have proved theorem 5.7 , provided we take for granted the proof of proposition 5.12.

6. Proof of proposition 5.12

Throughout, \boldsymbol{x} denotes a fixed elementary tensor $x_{1} \otimes \cdots \otimes x_{n+1}$ which has exactly j left-blocks.

As in earlier sections, it will be useful to regard the boundary operator d as an alternating sum of face maps.

Definition 6.1 (face maps on $\mathcal{C}_{*}(\mathcal{A})$). For $i=0, \ldots, n$, define the face maps from $\mathcal{C}_{n}(\mathcal{A})$ to $\mathcal{C}_{n-1}(\mathcal{A})$ by

$$
\begin{aligned}
\partial_{0}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right) & =x_{2} \otimes \cdots \otimes x_{n} \otimes x_{n+1} x_{1} \\
\partial_{i}\left(x_{1} \otimes \cdots \otimes x_{n+1}\right) & =\underset{i-1}{\bullet} \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet} \quad \text { for } 1 \leqslant i \leqslant n
\end{aligned}
$$

An easy but key observation. If $a, b, c \in S$ and $[a] \preceq[b c]$, then $[a] \preceq[b]$ and $[a] \preceq[c]$. Thus, if $\boldsymbol{x}=w_{1} \otimes \cdots \otimes w_{j}$, where each w_{l} is a left-block, and if x_{r} and x_{r+1} are contained in the same left-block w_{l}, then $\partial_{r}(\boldsymbol{x})$ also has exactly j left-blocks, and has the form

$$
\partial_{r}(\boldsymbol{x})=w_{1} \otimes \cdots \otimes w_{l-1} \otimes w_{l}^{\prime} \otimes w_{l+1} \otimes \cdots \otimes w_{j}
$$

where the only new left-block, w_{l}^{\prime}, is just w_{l} with x_{r} and x_{r+1} multiplied together. The important point is that w_{l}^{\prime} does not become part of a larger left-block.

If, on the other hand, the face map takes the product of the end of one left-block with the start of the next left-block, then the resulting tensor might have j leftblocks, but might have fewer. The following example illustrates some possibilities.

EXAMPLE 6.2 (an illustration of complications). Let S be the free semilattice on four generators, labelled as g_{1}, g_{2}, g_{3} and g_{4}. Consider

$$
\boldsymbol{x}=\overbrace{g_{1} g_{2} \otimes g_{2}} \otimes \overbrace{g_{1} g_{2} g_{3} \otimes g_{1} g_{2}} \otimes \overbrace{g_{3} g_{4}} \otimes \overbrace{g_{1}} \otimes \overbrace{g_{1} g_{3} \otimes g_{3}} \in \mathcal{C}_{7}(\mathcal{A})
$$

which consists of five left-blocks as indicated (so that $I_{\boldsymbol{x}}=\{1,3,5,6,7\}$). Then

$$
\partial_{4}(\boldsymbol{x})=g_{1} g_{2} \otimes g_{2} \otimes g_{1} g_{2} g_{3} \otimes g_{1} g_{2} g_{3} g_{4} \otimes g_{4} \otimes g_{1} g_{2} \otimes g_{1} g_{3} \otimes g_{3} \in \mathcal{C}_{6}(\mathcal{A})
$$

contains a minimal element, so that all entries lie in the same left-block. Note that the set I_{4} of initial points in $\partial_{4}(\boldsymbol{x})$ is just $\{4\}$.

For the purposes of comparison, note that

$$
\begin{aligned}
& \partial_{5}(\boldsymbol{x})=\overbrace{g_{1} g_{2} \otimes g_{2}} \otimes \overbrace{g_{1} g_{2} g_{3} \otimes g_{1} g_{2}} \otimes \overbrace{g_{1} g_{3} g_{4} \otimes g_{1} g_{3} \otimes g_{3}}, \quad I_{5}=\{1,3,5\}, \\
& \partial_{6}(\boldsymbol{x})=\overbrace{g_{1} g_{2} \otimes g_{2}} \otimes \overbrace{g_{1} g_{2} g_{3} \otimes g_{1} g_{2}} \otimes \overbrace{g_{3} g_{4}} \otimes \overbrace{g_{1} g_{3} \otimes g_{3}}, \quad \quad I_{6}=\{1,3,5,6\}, \\
& \partial_{2}(\boldsymbol{x})=\overbrace{g_{1} g_{2}} \otimes \overbrace{g_{1} g_{2} g_{3} \otimes g_{1} g_{2}} \otimes \overbrace{g_{3} g_{4}} \otimes \overbrace{g_{1}} \otimes \overbrace{g_{1} g_{3} \otimes g_{3}}, \quad I_{2}=\{1,2,4,5,6\} .
\end{aligned}
$$

Figure 1. Individual pairs of cancelling terms.
With this warning example in mind, we start on the proof. Define indexing sets $\mathrm{SD} \subseteq\{1, \ldots, n\} \times\{0, \ldots, n\}$ and $\mathrm{DS} \subseteq\{0, \ldots, n+1\} \times\{1, \ldots, n+1\}$ as

$$
\begin{aligned}
& \mathrm{SD}=\left\{(i, p): 0 \leqslant p \leqslant n \text { and } i \in I_{\partial_{p}(\boldsymbol{x})}\right\}=\coprod_{0 \leqslant p \leqslant n} I_{\partial_{p}(\boldsymbol{x})} \times\{p\}, \\
& \mathrm{DS}=\left\{(r, k): 0 \leqslant r \leqslant n+1 \text { and } k \in I_{\boldsymbol{x}}\right\}=\{0, \ldots, n+1\} \times I_{\boldsymbol{x}} .
\end{aligned}
$$

Then

$$
(s d+d s)(\boldsymbol{x})=\sum_{(i, p) \in \mathrm{SD}}(-1)^{p} s_{i} \partial_{p}(\boldsymbol{x})+\sum_{(r, k) \in \mathrm{DS}}(-1)^{r} \partial_{r} s_{k}(\boldsymbol{x}),
$$

and the first task in evaluating this tensor is to show that most terms on the righthand side either cancel pairwise, or have fewer than j left-blocks, or have lower height than \boldsymbol{x}. Much of this takes place in greater generality, without using the properties of the left-coherent units that are inserted.

Lemma 6.3.

(A) Let $1 \leqslant i<p \leqslant n$. Then

$$
\begin{equation*}
s_{i} \partial_{p}(\boldsymbol{x})=(-1)^{i}{ }_{i-1}^{\bullet} \otimes\left\langle x_{i}\right] \otimes x_{i} \otimes \cdots \otimes x_{p-1} \otimes x_{p} x_{p+1} \otimes_{n-p-1}^{\bullet \bullet}=\partial_{p+1} s_{i}(\boldsymbol{x}) . \tag{6.1a}
\end{equation*}
$$

(B) Let $1 \leqslant p<i \leqslant n$. Then

$$
\begin{equation*}
s_{i} \partial_{p}(\boldsymbol{x})=(-1)^{i} \underset{p-1}{\bullet} \otimes x_{p} x_{p+1} \otimes \cdots \otimes x_{i} \otimes\left\langle x_{i+1}\right] \otimes x_{i+1} \otimes \underset{n-i}{\bullet}=-\partial_{p} s_{i+1}(\boldsymbol{x}) . \tag{6.1b}
\end{equation*}
$$

(C) Let $1 \leqslant i \leqslant n-1$. Then

Proof. This is a direct computation. We omit the details (see figure 1 for a diagram that illustrates how this works in cases A and B).

We have to keep track of which terms in a corresponding pair, as in lemma 6.3, actually occur when we expand out $(s d+d s)(\boldsymbol{x})$. More notation will be useful. Let

$$
\begin{array}{ll}
A=\{(i, p): 1 \leqslant i<p \leqslant n\}, & A^{\prime}=\{(r, k): 1 \leqslant k<r-1 \leqslant n\}, \\
B=\{(i, p): 1 \leqslant p<i \leqslant n\}, & B^{\prime}=\{(r, k): 1 \leqslant r<k-1 \leqslant n\}, \\
C=\{(i, 0): 1 \leqslant i \leqslant n-1\}, & C^{\prime}=\{(0, k): 2 \leqslant k \leqslant n\},
\end{array}
$$

so that A, B and C are pairwise disjoint subsets of $\{1, \ldots, n\} \times\{0, \ldots, n\}$ and A^{\prime}, B^{\prime} and C^{\prime} are pairwise disjoint subsets of $\{0, \ldots, n+1\} \times\{1, \ldots, n+1\}$. Now define

$$
\begin{aligned}
& \mathrm{DS}_{j}:=\left\{(r, k) \in \mathrm{DS}: \partial_{r} s_{k}(\boldsymbol{x}) \text { has exactly } j \text { left-blocks }\right\}, \\
& \mathrm{SD}_{j}:=\left\{(i, p) \in \mathrm{SD}: \partial_{p}(\boldsymbol{x}) \text { has exactly } j \text { left-blocks }\right\},
\end{aligned}
$$

and let $\mathrm{DS}_{j}^{*}:=\mathrm{DS}_{j} \cap\left(A^{\prime} \sqcup B^{\prime} \sqcup C^{\prime}\right)$ and $\mathrm{SD}_{j}^{*}:=\mathrm{SD}_{j} \cap(A \sqcup B \sqcup C)$.
It turns out that the obvious maps $A \leftrightarrow A^{\prime}, B \leftrightarrow B^{\prime}$ and $C \leftrightarrow C^{\prime}$ restrict to give a bijection between DS_{j}^{*} and SD_{j}^{*} (which shows that most terms in $\sum_{\mathrm{DS}_{j}}+\sum_{\mathrm{SD}_{j}}$ cancel pairwise). To do this precisely, we have a lemma.

Lemma 6.4. Let $m \geqslant 1$, and let $\boldsymbol{y}=y_{1} \otimes \cdots \otimes y_{m+1}$ be an elementary tensor with j left-blocks. Let $1 \leqslant p \leqslant m$. Then $\partial_{p}(\boldsymbol{y}) \in \mathcal{F}_{n}^{j-1}$ if and only if one (or both) of the following holds: either
(i) y_{p} is a 1-block in \boldsymbol{y}, or
(ii) $\left[y_{p} y_{p+1}\right] \preceq[w]$, where w is the left-block immediately following the one which contains y_{p+1}.

An analogous result holds for $\partial_{0}(\boldsymbol{y})$, provided that condition (i) is interpreted as ' y_{m+1} is a 1 -block in \boldsymbol{y} ', and condition (ii) as ' $\left[y_{m+1} y_{1}\right] \preceq[w] \ldots$ '.

Proof. We first note that the case $p=0$ is not really distinct from the cases $1 \leqslant$ $p \leqslant m$, once we interpret 'position 0 ' in a tensor of length $m+1$ as being position $m+1$. Next, we may assume without loss of generality that $1 \in I_{y}$ (if not, then by applying a suitable power of \boldsymbol{t} we obtain a tensor \boldsymbol{y}^{\prime} in which 1 is an initial point, and work with \boldsymbol{y}^{\prime} instead). Let $\boldsymbol{y}=w_{1} \otimes \cdots \otimes w_{j}$ be the decomposition of \boldsymbol{y} into its constituent left-blocks. Let w_{k} be the left-block which contains y_{p+1}.

If (i) holds, then w_{k-1} just consists of the single element y_{p}, and

$$
\partial_{p}(\boldsymbol{y})=w_{1} \otimes \cdots \otimes w_{k-2} \otimes y_{p} \cdot w_{k} \otimes \cdots \otimes w_{j} .
$$

Thus, two left-blocks have been merged together, and there are now at most $j-1$ of them. If (ii) holds, then every element of w and every element of w_{k} lies above $\left[y_{p} y_{p+1}\right]$, so that in $\partial_{p}(\boldsymbol{y})$ these two left-blocks are merged into a single one; thus, once again, the number of left-blocks has decreased.

Conversely, suppose that $\partial_{p}(\boldsymbol{y})$ has fewer than j left-blocks, and suppose (ii) does not hold. Then the left-blocks w_{1}, \ldots, w_{k-2} and w_{k+1}, \ldots, w_{j} remain left-blocks in $\partial_{p}(\boldsymbol{y})$. Therefore, $w_{k-1} \cdot w_{k}$ must form a single left-block. If y_{r} denotes the initial element of w_{k-1}, and $r<p$, then this implies that $\left[y_{r}\right] \preceq\left[y_{p} y_{p+1}\right] \preceq\left[y_{p+1}\right]$ and this contradicts the fact that w_{k-1} and w_{k} are disjoint left-blocks. The only remaining possibility is that w_{k-1} is a 1-block, with y_{p} as its sole element, and so (i) holds.

In view of condition (ii) in this lemma, we say that the tensor \boldsymbol{y} has a dead spot at $p+1$, for $0 \leqslant p \leqslant m$, if $\left[x_{p} x_{p+1}\right] \preceq[w]$, where w is the left-block immediately following the one which contains x_{p+1}. Once again, this definition should be
interpreted cyclically, so that having a dead spot at 1 means that $\left[x_{m+1} x_{1}\right] \preceq[w]$, etc.

Proposition 6.5. Define $\phi: \mathrm{DS}_{j}^{*} \rightarrow\{1, \ldots, n\} \times\{1, \ldots, n\}$ as

$$
\phi(r, k)= \begin{cases}(k-1, r) & \text { if }(r, k) \in B^{\prime} \cup C^{\prime} \tag{6.2}\\ (k, r-1) & \text { if }(r, k) \in A^{\prime}\end{cases}
$$

Then ϕ maps SD_{j}^{*} bijectively onto DS_{j}^{*}. Consequently,

$$
\begin{equation*}
\sum_{(r, k) \in \mathrm{DS}_{j}^{*}}(-1)^{r} \partial_{r} s_{k}(\boldsymbol{x})+\sum_{(i, p) \in \mathrm{SD}_{j}^{*}}(-1)^{p} s_{i} \partial_{r}(\boldsymbol{x})=0 \tag{6.3}
\end{equation*}
$$

Proof. Start by noting that ϕ is the restriction of obvious bijections from A^{\prime}, B^{\prime} and C^{\prime} to A, B and C, respectively.

Moreover, the identities in lemma 6.3 show that if $(r, k) \in \mathrm{DS}_{j}^{*}$, then $\phi(r, j) \in$ SD_{j}^{*}. (The point is that if, say, $1 \leqslant k \leqslant r-2$ and $\partial_{r} s_{k}(\boldsymbol{x})$ has j left-blocks, then the identity $(6.1 b)$ shows that $s_{k-1} \partial_{r}(\boldsymbol{x})$ has j left-blocks, so $\partial_{r}(\boldsymbol{x})$ must have j left-blocks.) Thus, $\operatorname{ran} \phi \subseteq \mathrm{SD}_{j}^{*}$.

To show the converse inclusion, let $(i, p) \in \mathrm{SD}_{j}^{*}$. Then, by lemma 6.4 (with $m=n$), x_{p} is not a 1 -block in \boldsymbol{x} and $p+1$ is not a dead spot in \boldsymbol{x}. (If $p=0$ this means x_{n+1} is not a 1-block, etc.) Therefore, by the other direction of lemma 6.4 (with $m=n+1$), we have the following.

- If $1 \leqslant i \leqslant p-1$, and we consider $s_{i}(\boldsymbol{x})$, then x_{p} (occurring in position $p+1)$ is not a 1-block in $s_{i}(\boldsymbol{x})$ and $p+2$ is not a dead spot in $s_{i}(\boldsymbol{x})$, so that $(i, p+1) \in \mathrm{DS}_{j}^{*}$.
- If $2 \leqslant p+1 \leqslant i \leqslant n$, and we consider $s_{i+1}(\boldsymbol{x})$, then x_{p} (occurring in position p) is not a 1-block in $s_{i+1}(\boldsymbol{x})$ and $p+1$ is not a dead spot in $s_{i+1}(\boldsymbol{x})$, so that $(i+1, p) \in \mathrm{DS}_{j}^{*}$.
- If $p=0$ and $1 \leqslant i \leqslant n$, and we consider $s_{i+1}(\boldsymbol{x})$, then x_{n+1} (occurring in position $n+2)$ is not a 1-block in $s_{i+1}(\boldsymbol{x})$ and 1 is not a dead spot in $s_{i+1}(\boldsymbol{x})$, so that $(i+1,0) \in \mathrm{DS}_{j}^{*}$.

In each case, $(i, p) \in \operatorname{ran} \phi$ as required.
We now continue with the proof of proposition 5.12. It follows from (6.3) that

$$
\begin{align*}
(s d+d s)(\boldsymbol{x}) \equiv & \sum_{(r, k) \in \mathrm{DS}_{j} \backslash \mathrm{DS}_{j}^{*}}(-1)^{r} \partial_{r} s_{k}(\boldsymbol{x}) \\
& \quad+\sum_{(i, p) \in \mathrm{SD}_{j} \backslash \mathrm{SD}_{j}^{*}}(-1)^{p} s_{i} \partial_{p}(\boldsymbol{x}) \bmod \left(\operatorname{lin} \mathcal{F}_{n}^{j-1}\right) \tag{6.4}
\end{align*}
$$

Expanding out the terms on the right-hand side gives

$$
\begin{align*}
& 1 \leqslant k \leqslant n+1:(k-1, k) \in \mathrm{DS}_{j} \tag{6.5a}\\
&+\sum_{1 \leqslant k \leqslant n+1:(k, k) \in \mathrm{DS}_{j}}(-1)^{k-1} \partial_{k-1} s_{k}(\boldsymbol{x}) \tag{6.5b}\\
&+\sum_{1 \leqslant k \leqslant n:} \sum_{(k+1, k) \in \mathrm{DS}_{j}}(-1)^{k} \partial_{k+1} s_{k}(\boldsymbol{x}) \tag{6.5c}\\
&+\sum_{1 \leqslant i \leqslant n:(i, i) \in \mathrm{SD}_{j}}(-1)^{i} s_{i} \partial_{i}(\boldsymbol{x}) \tag{6.5d}\\
&+R_{\mathrm{DS}}(\boldsymbol{x})+R_{\mathrm{SD}}(\boldsymbol{x}) \tag{6.5e}
\end{align*}
$$

where the terms $R_{\mathrm{DS}}(\boldsymbol{x})$ and $R_{\mathrm{SD}}(\boldsymbol{x})$ are defined as

$$
\begin{aligned}
& R_{\mathrm{DS}}(\boldsymbol{x})= \begin{cases}\partial_{0} s_{n+1}(\boldsymbol{x}) & \text { if }(0, n+1) \in \mathrm{DS}_{j} \\
0 & \text { otherwise }\end{cases} \\
& R_{\mathrm{SD}}(\boldsymbol{x})= \begin{cases}s_{n} \partial_{0}(\boldsymbol{x}) & \text { if }(n, 0) \in \mathrm{SD}_{j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Lemma 6.6.
(i) If $0 \leqslant k \leqslant n$ and $k+1 \in I_{\boldsymbol{x}}$, then $\partial_{k} s_{k+1}(\boldsymbol{x})$ has strictly lower height than \boldsymbol{x}.
(ii) If $1 \leqslant k \leqslant n$ and $k+1 \in I_{\boldsymbol{x}}$, then $s_{k} \partial_{k}(\boldsymbol{x})$ has strictly lower height than \boldsymbol{x}. If $1 \in I_{\boldsymbol{x}}$, then $s_{n} \partial_{0}(\boldsymbol{x})$ has strictly lower height than \boldsymbol{x}.

Proof. First suppose that $1 \leqslant k \leqslant n$. Then the corresponding terms in (i) and (ii) expand out to be

$$
\begin{aligned}
& \boldsymbol{a}=(-1)^{k+1} \underset{k-1}{\bullet} \otimes x_{k}\left\langle x_{k+1}\right] \otimes x_{k+1} \otimes \underset{n-k}{\bullet}, \\
& \boldsymbol{b}=(-1)^{k} \underset{k-1}{\bullet} \otimes\left\langle x_{k} x_{k+1}\right] \otimes x_{k} x_{k+1} \otimes \underset{n-k}{\bullet},
\end{aligned}
$$

respectively. Since $k+1$ is initial, $\left[x_{k}\right] \npreceq\left[x_{k+1}\right]$ and so $\mathrm{ht}_{L(\boldsymbol{b})}\left(\left[b_{k}\right]\right)<\mathrm{ht}_{L(\boldsymbol{x})}\left(\left[x_{k}\right]\right)$. It follows that $\operatorname{ht}(\boldsymbol{b})<\operatorname{ht}(\boldsymbol{x})$, since \boldsymbol{b} agrees with \boldsymbol{x} in all other entries. A similar argument shows that $\operatorname{ht}(\boldsymbol{a})<\operatorname{ht}(\boldsymbol{x})$.

In the case where $k=0$ (and $\left.1 \in I_{\boldsymbol{x}}\right)$, set $\boldsymbol{b}=s_{n} \partial_{0}(\boldsymbol{x}), \boldsymbol{b}^{\prime}=\boldsymbol{t}^{-1}(\boldsymbol{b})$ (see (2.1)), and $\boldsymbol{a}=\partial_{0} s_{1}(\boldsymbol{x})$. Then

$$
\boldsymbol{a}=\partial_{0} s_{1}(\boldsymbol{x})=-x_{1} \otimes_{n-1}^{\bullet} \otimes\left\langle x_{n+1}\right] x_{1} \quad \text { and } \quad \boldsymbol{b}^{\prime}=x_{n+1} x_{1} \otimes_{n-1}^{\bullet} \otimes\left\langle x_{n+1} x_{1}\right] .
$$

The same arguments as in the first part of the proof show that ht $\left(\boldsymbol{b}^{\prime}\right)$ and $\operatorname{ht}(\boldsymbol{a})$ are both strictly less than $h t(\boldsymbol{x})$; it remains only to note that since the height of an elementary tensor is unchanged by cyclic shifts, $\operatorname{ht}(\boldsymbol{b})=\operatorname{ht}\left(\boldsymbol{b}^{\prime}\right)$.

Lemma 6.7. Let $1 \leqslant i \leqslant n$ and suppose $(i, i) \in \mathrm{SD}_{j}$. Then either i or $i+1$ lies in $I_{\boldsymbol{x}}$. If $(n, 0) \in \mathrm{SD}_{j}$, then either $n+1$ or 1 lies in $I_{\boldsymbol{x}}$.

Consequently, if \boldsymbol{x} has height h, then

$$
\begin{align*}
& R_{\mathrm{SD}}(\boldsymbol{x})+\sum_{1 \leqslant i \leqslant n:(i, i) \in \mathrm{SD}_{j}} s_{i} \partial_{i}(\boldsymbol{x}) \\
& \equiv \sum_{i \in I_{\boldsymbol{x}}} \underset{i-1}{\bullet} \otimes\left\langle x_{i} x_{i+1}\right] \otimes x_{i} x_{i+1} \otimes \underset{n-i}{\bullet} \bmod G_{n, j, h-1}, \tag{6.6}
\end{align*}
$$

where, if $n+1 \in I_{\boldsymbol{x}}$, the corresponding term on the right-hand side of (6.6) is interpreted as $(-1)^{n} x_{2} \otimes \cdots \otimes x_{n} \otimes\left\langle x_{n+1} x_{1}\right] \otimes x_{n+1} x_{1}$.

Proof. Let $1 \leqslant i \leqslant n$. Write $s_{i} \partial_{i}(\boldsymbol{x})=\boldsymbol{a}$, as defined in the proof of lemma 6.6. By assumption, \boldsymbol{a} has j left-blocks and one of them starts in position i. If neither i nor $i+1$ were initial in \boldsymbol{x}, then x_{i} and x_{i+1} would both lie in the same left-block of \boldsymbol{x}, whose initial point is some $k<i$, and so a_{k} would also mark the start of a left-block in \boldsymbol{a} which contains $a_{i}=\left\langle x_{i} x_{i+1}\right]$. Since we originally assumed that $i \in I_{\boldsymbol{a}}$, this yields a contradiction.

A similar argument, with slight adjustments to the notation, shows that if $n \in$ $I_{\partial_{0}(\boldsymbol{x})}$, then either $n+1$ or 1 must have been initial in \boldsymbol{x}. This completes the proof of the first part of the lemma.

For the second part of the lemma, suppose that $i \in I_{\boldsymbol{x}}$ with $1 \leqslant i \leqslant n$, and note that there are two possibilities. Either $\partial_{i}(\boldsymbol{x})$ has fewer than j left-blocks, in which case $s_{i} \partial_{i}(\boldsymbol{x}) \in \mathcal{F}_{n}^{j-1}$, or $\partial_{i}(\boldsymbol{x})$ has exactly j left-blocks, in which case one of them must start in position i, and so $(i, i) \in \mathrm{SD}_{j}$. By the first part of the lemma, the only other $(k, k) \in \mathrm{SD}_{j}$ with $1 \leqslant k \leqslant n$ must arise from having $k+1 \in I_{\boldsymbol{x}}$, but then, by lemma 6.6(ii), such terms have height at most $h-1$.

It remains to deal with the case where $n+1 \in I_{\boldsymbol{x}}$. If $\partial_{0}(\boldsymbol{x})$ has fewer than j left-blocks, then $R_{\mathrm{SD}}(\boldsymbol{x})=0$; if it has exactly j left-blocks, then $(n, 0) \in \mathrm{SD}_{j}$ and so

$$
R_{\mathrm{SD}}(\boldsymbol{x})=(-1)^{n} x_{2} \otimes \cdots \otimes x_{n-1} \otimes\left\langle x_{n+1} x_{1}\right] \otimes x_{n+1} x_{1}
$$

as required. Equation (6.6) now follows.
In summary, all terms in $(6.5 a)$ have strictly lower height than \boldsymbol{x}; the terms in $(6.5 b)$ each give \boldsymbol{x}, since $\left\langle x_{i}\right] x_{i}=x_{i}$ for all i, and lemma 6.7 tells us the sum of terms in $(6.5 d)$ with $R_{\mathrm{SD}}(\boldsymbol{x})$, provided we work modulo terms of fewer left-blocks or lower height. Therefore, the right-hand side of (6.4) is equal to

$$
\sum_{k \in I_{\boldsymbol{x}}} \boldsymbol{x}+\sum_{k \in I_{\boldsymbol{x}}}(-1)^{k+1} \partial_{k+1} s_{k}(\boldsymbol{x})+\sum_{k \in I_{\boldsymbol{x}}}(-1)^{k} s_{k} \partial_{k}(\boldsymbol{x}) \quad \bmod G_{n, j, h-1}
$$

provided that we interpret the case $n+1 \in I_{\boldsymbol{x}}$ appropriately. Expanding this out gives exactly what is claimed in proposition 5.12 , and so completes the proof.

7. Tying things together

The inductive calculations carried out in the previous sections give us the following result.

THEOREM 7.1. Let $n \geqslant 1$, and let $\psi \in \mathcal{Z C}^{n}\left(\ell^{1}(S)\right)$ be an R-normalized cyclic n cocycle. Then ψ is a cyclic coboundary.

Combining this with proposition 3.4, we finally obtain our main result.
THEOREM 7.2. The cyclic cohomology of $\ell^{1}(S)$ is zero in all odd degrees, whereas, in even degrees, it is the space $\left\{\left[\tau^{(2 n)}\right]: \tau \in \mathcal{Z}^{0}\left(\ell^{1}(S), \ell^{1}(S)^{\prime}\right)\right\}$.

As promised earlier, we can use theorem 7.2 to determine the simplicial cohomology of $\ell^{1}(S)$ via the Connes-Tzygan long exact sequence. This requires one last fact about how the cohomology classes $\left[\tau^{(2 n)}\right]$ transform under the shift map S.

Lemma 7.3. Let $n \geqslant 1$. There exists a non-zero constant λ_{n} such that, for any Banach algebra A and $\tau \in \mathcal{Z}^{0}\left(A, A^{\prime}\right)$, the shift map $S: \mathcal{H C}^{2 n-2}(A) \rightarrow \mathcal{H C}^{2 n}(A)$ satisfies $S\left(\tau^{(2 n-2)}\right)=\lambda_{n} \tau^{(2 n)}$.

This lemma seems to be folklore, to some extent (for a direct proof that does not rely on [9], see [5]). The value of λ_{n} depends on a choice of scalar normalization of S when one constructs the Connes-Tzygan exact sequence. In [5] the formulae are chosen so that $\lambda_{n}=1$ for all n, but if one uses the formulae of [9], then different scaling factors will appear.

THEOREM 7.4. The simplicial cohomology of $\ell^{1}(S)$ is zero in degrees 1 and above.
Proof. By theorem 4.7 and [9, theorem 11], the Connes-Tzygan sequence for $\ell^{1}(S)$ exists. Then, since the cyclic cohomology of $\ell^{1}(S)$ vanishes in all odd degrees, the long exact sequence breaks up to give exact sequences

$$
0 \rightarrow \mathcal{H H}^{2 n-1}\left(\ell^{1}(S)\right) \xrightarrow{B} \mathcal{H C}^{2 n-2}\left(\ell^{1}(S)\right) \xrightarrow{S} \mathcal{H C}^{2 n}\left(\ell^{1}(S)\right) \rightarrow \mathcal{H} \mathcal{H}^{2 n}\left(\ell^{1}(S)\right) \rightarrow 0
$$

for all $n \geqslant 1$. Moreover, the shift map is surjective: by theorem 7.2 , every cyclic $2 n$ cocycle is cohomologous to one of the form $\tau^{(2 n)}$ for some trace τ, and by lemma 7.3 we have $\tau^{(2 n)}=\lambda_{n}^{-1} S \tau^{(2 n-2)}$. Thus, $\mathcal{H H}^{2 n}\left(\ell^{1}(S)\right)=0$ for all $n \geqslant 1$.

To conclude, it suffices to show that the shift map is injective (which will imply that B is the zero map, and hence that $\left.\mathcal{H}^{2 n-1}\left(\ell^{1}(S)\right)=0\right)$. As already observed in this proof, $\mathcal{H C}^{2 n-2}$ is generated by cohomology classes of the form $\left[\tau^{(2 n-2)}\right]$, where $\tau \in \mathcal{Z}^{0}\left(\mathcal{A}, \mathcal{A}^{\prime}\right)$. Consider $S\left(\left[\tau^{(2 n-2)}\right]\right)=\lambda_{n}\left[\tau^{(2 n)}\right]$ and suppose that $\tau^{(2 n)}=\delta \varphi$ for some $\varphi \in \mathcal{C C}^{2 n-1}(A)$. For each idempotent $e \in \mathcal{A}$, direct calculation gives $\tau(e)=$ $\delta \varphi(e, \ldots, e)(e)=\varphi(e, \ldots, e)(e)$. But, since φ is cyclic,

$$
\varphi(e, \ldots, e)(e)=-\varphi(e, \ldots, e)(e)=0
$$

Thus, τ vanishes on each idempotent in \mathcal{A}, and since $\mathcal{A}=\ell^{1}(S)$ where S is a band, continuity forces τ to vanish identically.

8. Conclusion

We have had to work quite hard to establish that the cyclic and simplicial cohomology of a band ℓ^{1}-semigroup algebra behave as one would hope. Our methods would simplify in the case where the band is a semilattice, and in that case they would give an alternative approach to the main result of [3]. Note that, in [3], Choi was unable to obtain explicit formulae for cobounding a given cocycle in high degrees, since the contracting homotopy in that setting was only given recursively. Here, we have an explicit algorithm for cobounding a given cyclic cocycle, but once again we
do not have a reasonable formula for cobounding arbitrary cocycles in high degrees, even for the case of a semilattice, owing to the reliance on the Connes-Tzygan exact sequence.

We feel that the tactics used in establishing the main result may be of wider interest when interpreted in a broader sense. A general picture seems to be emerging: in order to obtain vanishing results for simplicial cohomology of Banach algebras, unless the geometry of the underlying Banach spaces intervenes helpfully, one has to replace the exhaustion arguments that are commonly found in 'purely algebraic' cohomology of algebras with more careful approaches, and these new arguments seem to depend on the local relations between entries of a given elementary tensor in the Hochschild chain complex, rather than on how such entries factorize in terms of global generators for the algebra.

Acknowledgements

Y.C. and F.G. thank the School of Mathematics and Statistics at Newcastle University for its hospitality during several visits while this paper was being written. The work of F.G. was partly supported by a research grant from the Canadian NSERC.

References

1 S. Bowling and J. Duncan. First order cohomology of Banach semigroup algebras. Semigroup Forum 56 (1998), 130-145.
2 T. Brown and E. Lazerson. On finitely generated idempotent semigroups. Semigroup Forum 78 (2009), 183-186.
3 Y. Choi. Simplicial homology and Hochschild cohomology of Banach semilattice algebras. Glasgow Math. J. 48 (2006), 231-245.
4 Y. Choi. Simplicial homology of strong semilattices of Banach algebras. Houston J. Math. 36 (2010), 237-260.
5 Y. Choi. Splitting maps and norm bounds for the cyclic cohomology of biflat Banach algebras. Banach Center Publ. 91 (2010), 105-121.
6 H. G. Dales and J. Duncan. Second-order cohomology groups of some semigroup algebras. In Banach algebras '97, pp. 101-117 (Berlin: de Gruyter, 1998).
7 F. Gourdeau, B. E. Johnson and M. C. White. The cyclic and simplicial cohomology of $\ell^{1}(\mathbb{N})$. Trans. Am. Math. Soc. 357 (2005), 5097-5113.
8 A. Ya. Helemskiĭ. The homology of Banach and topological algebras, Mathematics and Its Applications (Soviet Series), vol. 41 (Dordrecht: Kluwer, 1989).
9 A. Ya. Helemskiĭ. Banach cyclic (co)homology and the Connes-Tzygan exact sequence. J. Lond. Math. Soc. 46 (1992), 449-462.
10 J. M. Howie. Fundamentals of semigroup theory (Oxford: Clarendon Press, 1995).
11 L. Livshits, G. MacDonald, B. Mathes and H. Radjavi. Reducible semigroups of idempotent operators. J. Operat. Theory 40 (1998), 35-69.
12 L. Livshits, G. MacDonald, B. Mathes and H. Radjavi. On band algebras. J. Operat. Theory 46 (2001), 545-560.

[^0]: ${ }^{1}$ In fact, we can take $\sigma(x)=x e \otimes e x$, where e is a fixed element in R, although we do not need to know this for the arguments which follow.

