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Abstract Understanding the causes of the observed expansion of tropical ocean’s oxygen minimum
zones (OMZs) is hampered by large biases in the representation of oxygen distribution in climate models,
pointing to incorrectly represented mechanisms. Here we assess the oxygen budget in a global
biogeochemical circulation model, focusing on the Atlantic Ocean. While a coarse (0.5°) configuration
displays the common bias of too large and too intense OMZs, the oxygen concentration in an eddying (0.1°)
configuration is higher and closer to observations. This improvement is traced to a stronger oxygen supply by a
more realistic representation of the equatorial and off-equatorial undercurrents, outweighing the concurrent
increase in oxygen consumption associated with the stronger nutrient supply. The sensitivity of the eastern
tropical Atlantic oxygen budget to the equatorial current intensity suggests that temporal changes in the
eastward oxygen transport from the well-oxygenated western boundary region might partly explain variations
in the OMZs.

1. Introduction

The oxygen distribution in the ocean is the result of complex interactions between biogeochemistry and
circulation. Remineralization of sinking organic material consumes oxygen in the ocean interior, while
physical transport of waters ventilated at the ocean surface tends to resupply oxygen by advective or
diffusive processes. Intense oxygen minimum zones (OMZs) are commonly observed at intermediate
depth along the eastern boundaries of the tropical Atlantic and Pacific Oceans [e.g., Stramma et al.,
2008], which are characterized by both high organic matter export and weak interior ventilation. OMZs
closely coincide with the so-called “shadow zones” [Luyten et al., 1983], characterized by a sluggish
cyclonic circulation.

Understanding the causes of the observed OMZs’ expansion [Stramma et al., 2008] is hampered by large
biases in climate models. Simulated oxygen concentrations in the eastern equatorial and tropical regions are
generally underestimated [Oschlies et al., 2008; Deutsch et al., 2011; Duteil and Oschlies, 2011; Gnanadesikan
et al., 2012; Stramma et al., 2012; Cocco et al., 2013], in particular, in the Atlantic Ocean. An unrealistic repre-
sentation of the circulation, and more specifically of the equatorial current system, might be responsible for
the discrepancy between models and observations [Dietze and Loeptien, 2013]. In the tropical Atlantic Ocean,
the oxygen-rich waters of the North Brazil Current (NBC) are connected with the eastern part of the basin
principally via the eastward flowing Equatorial Undercurrent (EUC) [Stramma and Schott, 1999]. The EUC is
flanked by its eastward flowing southern and northern branches (SEUC and NEUC) around 5°N and 5°S. A
simple conceptual model suggested that a variation in the strength of extraequatorial jets impacts the mean
equatorial oxygen distribution [Brandt et al., 2010].

Another potential source of bias arises from the simplification of biogeochemical processes by the
models. High-productivity regions are located on the eastern side of the Atlantic basin due to the pres-
ence of upwelling systems, which carry nutrients from the ocean interior toward the surface. The interior
oxygen concentration is sensitive to the rate of export, decay, and remineralization of organic matter,
which are often parameterized in a simple way [e.g., Kriest et al., 2010]. Identifying to what extent the
representation of circulation or biogeochemistry is deficient in existing models is not an easy task, as the
biogeochemical parameters are often “tuned” in order to achieve a realistic representation of nutrient
fields and thereby may compensate possible deficiencies in the simulated ocean circulation [Duteil
et al., 2012].
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Here we assess the sensitivity of simulated oxygen concentrations to a refinement of the horizontal grid
resolution of a coupled circulation biogeochemistry model, with the biogeochemical model staying
unchanged. A change in resolution impacts the circulation strength, and in particular the equatorial currents.
Faster (slower) currents, on the one hand, lead to higher (lower) ventilation rates and transport of tracers,
such as oxygen. On the other hand, a change in nutrient transport might trigger changes in biological
productivity, with consequences for oxygen consumption at depth. Our analysis aims at differentiating
between changes in oxygen supply and oxygen consumption.

2. Model Experiments

The ocean model builds on the NEMO (Nucleus for European Modelling of the Ocean) v3.1 code [Madec, 2008].
Two configurations are used in this study, both of them including 46 vertical levels, with increasing thickness from
6m at the surface to 250m at depth. The configurations differ in their horizontal resolution:

1. ORCA05: the global ocean model has a nominal resolution in latitude and longitude of 0.5° by 0.5° cos φ
(where φ is the latitude). Effects of unresolved mesoscale eddies are parameterized following Gent and
McWilliams [1990].

2. TRATL01: a 0.1° resolution two ways AGRIF (Adaptive Grid Refinement In Fortran) nest [Debreu et al., 2008] nest
has been embedded between 30°N and 30°S in the Atlantic Ocean into a global ORCA05 grid. Since themodel
is eddying in the nested region the Gent and McWilliams’ [1990] parameterization is not used there.

Both configurations are forced by the same interannually varying atmospheric data given by the Coordinated
Ocean-Ice Reference Experiments (CORE) v2 reanalysis products over the period 1948–2007 [Large and
Yeager, 2009], starting from the same initial conditions. The initial fields for the physical variables are given by
the final state of a 60 year integration of TRATL01 (using 1948–2007 interannual forcing and following an
initial 80 year climatological spin-up at coarse resolution). The interpretation of differences in the ventilation
of thermocline waters in the two models is aided by an ideal age tracer, which records the time since the last
contact of a water parcel with the atmosphere during the spin-up of the circulation.

The ocean circulation model is coupled with a simple biogeochemical model, based on six prognostic vari-
ables. The inorganic variables include dissolved oxygen (O2) and phosphate (PO4). They are linked through
exchanges with the biological variables (phytoplankton, zooplankton, particulate, and dissolved organic
matter) by a constant Redfield stoichiometry C:N:P:O2 of 122:16:1:�170. The PO4 and O2 fields are initialized
from the World Ocean Atlas (WOA) [Garcia et al., 2010]. The air-sea flux of oxygen is formulated according to
the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP) protocol [Najjar et al., 2007]. This nutrient-
phytoplankton-zooplankton-detritus (NPZD) biogeochemical model was first used in a global model by
Schmittner et al. [2005] and is employed here with the parameter set obtained by Kriest et al. [2010] by cali-
brating a coarse-resolution global model configuration against the observed global pattern of nutrients and
oxygen. In this experiment, the phytoplankton growth (maximal growth rate of 0.6 d�1 at 0°C) is set by the
most limiting resource, whether nutrients or light. The linear phytoplankton loss term (mortality) is 0.01 d�1.
The quadratic loss term is 0.03125mmol P m�3 d�1 and can be considered as a parameterization of various
loss processes (e.g., aggregation of phytoplankton cells or viral lysis). Particle sinking speed increases linearly
with depth, with values ranging from 5m d�1 below the mixed layer to 280m d�1 in the deepest layer. The
detritus remineralization rate is constant and equal to 0.05 d�1.

The model years analyzed hereafter are 1998–2007 averages, with TRATL01 outputs regridded on the
ORCA05 mesh to facilitate intercomparison of the two configurations.

3. Oxygen Concentrations in WOA, ORCA05, and TRATL01

Observed WOA oxygen concentrations are characterized by a pronounced minimum in the eastern part of
the tropical Atlantic (Figure 1a). The lowest concentrations, of about 30mmol m�3 at about 400m depth
(Figure 1b), are observed in the Atlantic South East Tropical Upwelling System (ASETUS), which comprises
the Angola dome and the Angola and Benguela upwelling (0°E–coast, 5°S–25°S). Minimum concentrations
are somewhat higher (50mmol m�3) in the Atlantic North East Tropical Upwelling System (ANETUS), which
comprises the Guinea Dome and the Mauritanian and Senegal upwelling regions. The equatorial band
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(5°N–5°S) is comparatively better ventilated. Minimum oxygen concentrations of 80mmol.m�3 are
observed at 300m depth in the Gulf of Guinea (GG: 0°E–coast, 5°S–5°N) below the EUC.

The ORCA05 experiment (Figure 1c) results in large and unrealistic suboxic regions (oxygen lower than
5mmol m�3), extending from the GG to the ASETUS region, between 200m to 400m depth (Figure 1d). The
oxygen minimum is located around 300m depth, somewhat shallower than in the observations. This dis-
crepancy in the vertical profile might reflect errors in the remineralization profile of the exported organic
matter. Simulated oxygen concentrations are higher and closer to the observations in the ANETUS region.
Compared to ORCA05, the oxygen concentration in the eastern part of the basin is significantly higher and
more realistic in TRATL01 (Figures 1e and 1f). In agreement with the observations, low oxygen (<40mmol
m�3) values are restricted to the ASETUS region. In the GG region the differences between the two model
configurations are most striking: minimum oxygen concentrations in TRATL01 are of the order of 60mmol
m�3, closer to the 80mmol m�3 observed in WOA, whereas this region is completely depleted in oxygen in
ORCA05. Simulated oxygen concentrations in the ANETUS region are only slightly higher by about 10mmol
m�3 in TRATL01, but again more realistic than in ORCA05. The western part of the Atlantic and the subtropical
gyres exhibit comparable oxygen values in both experiments.

4. Mechanisms Controlling the Oxygen Concentration
4.1. Circulation

In the OMZ depth layer, between 200m and 400m, the mean current speed in the tropical region reflects
both the extension and strength of the upper and the deeper thermocline currents. In ORCA05 (Figure 2a),

Figure 1. (a) Oxygen concentration (mmol m
�3
) in WOA in the 200m–400m depth layer and (b) along the section marked with red dashes on

Figure 1a. The main currents are schematically represented. Oxygen concentration for the same depth layer and section (c and d) in ORCA05
and (e and f) in TRATL01. The model fields are 1998–2007 averages. WOA data are represented as contours. The ANETUS (Atlantic North East
Tropical Upwelling System), ASETUS (Atlantic South East Tropical Upwelling System), and GG (Guinea Gulf) regions are depicted by red boxes.
The evolution of the interior oxygen concentration in the ANETUS, GG, and ASETUS regions from 1948 to 2007 is presented in Figure S1.
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the equatorial current system is poorly developed. The mean currents in the 200m–400m depth range are
sluggish east of 10°W. In TRATL01 (Figure 2b), the lower edge of the EUC, flowing along the equator, and the
SEUC, flowing between 5°S and 10°S can be identified. These jets cross the entire Atlantic and flow eastward
from the oxygen-rich NBC to the eastern part of the Guinea Gulf. The NECC/NEUC flow eastward around 5°N.
The velocity of the westward flowing North and South Equatorial Currents, forming the equatorward margin
of the subtropical gyres, is comparable in both experiments.

Figure 2. Absolute value of the mean current velocity (m s
�1
) in the 200m–400m depth layer (a) in ORCA05 and (b) in TRATL01. Ideal age in

the 200m–400m depth layer (years) (c) in ORCA05 and (d) in TRATL01. Contours denote oxygen concentrations (mmol m
�3
) at 200m–400m

depth in all panels. Meridional section of the mean zonal velocity (m s
�1
) at 0°E (e) in ORCA05 and (f) in TRATL01. Mean oxygen concen-

trations (mmol m
�3
) are traced in black, the 27.0 density isoline in red. (g) Mean zonal velocity (m s

�1
) at 0°N/0°E for ORCA05 (red), TRATL01

(black), and in observations (PIRATA mooring) [Johns et al., 2012] (blue). (h) TRATL01 net primary production (NPP)
(mgC m

�2.
yr

�1
). ORCA05 NPP is traced in black contours; observed NPP is traced in red. All the model fields, except the ideal age, are

1998–2007 averages.
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The circulation pattern maps onto the simulated ideal age distribution. In TRATL01 (Figure 2d), the average
age in the 200m–400m layer along the eastern side of the equatorial region is lower (70 to 100 years) than in
ORCA05 (Figure 2c) (greater than 100 years). The northern and southern shadow zones, associated with the
ANETUS and ASETUS, are characterized by waters older than 90 years in both experiments. The ventilation by
the EUC, NEUC, and SEUC leads to the formation of tongues of younger water, a few degrees north of the
equator and around 5°S, especially in TRATL01. The water is significantly younger in TRATL01 than in ORCA05
in the GG region. In the thermocline of the subtropical gyres, waters are relatively young and of similar age in
both experiments.

To better assess the role of oxygen transport, the equatorial and tropical zonal current structure is inspected.
The most prominent current in the upper thermocline is the eastward EUC, flanked by the westward central
and northern South Equatorial Currents. TRATL01 differs from ORCA05 primarily by a more pronounced
eastward penetration of the EUC, as at 0°E the maximum zonal velocity is 0.55m s�1 in TRATL01 (Figure 2f)
compared to only 0.1m s�1 in ORCA05 (Figure 2e). The mean zonal velocity profile at this location agrees well
with the observed profile (Figure 2g) obtained from moored current meter measurements [Johns et al.,
2012]. South of the EUC the SEUC flows eastward between 5°S and 10°S. At 0°E, the SEUC is very sluggish
and not clearly isolated from the mean flow field in ORCA05 (Figure 2a), whereas the two observed SEUC
branches are clearly identified in TRATL01 (Figure 2b). South of these branches (12°S to 15°S), two eastward
flowing jets ventilate the interior ocean at 200m to 300m depth. The strong difference in the represen-
tation of the equatorial current system between the two models is reflected in the simulated oxygen
concentration (Figure 1).

4.2. Biological Production

Oxygen is consumed in the deep ocean by the remineralization of organic matter, which mainly originates
from biological production in the euphotic layer. Net primary production (NPP) consequently constraints
oxygen consumption. Synoptic observational estimates of NPP can be obtained from remote sensing data by
algorithms such as the vertically generalized production model (VGPM) [Behrenfeld and Falkowski, 1997]. The
modeled NPP pattern is similar in ORCA05 and TRATL01 and in broad agreement with the satellite-derived
NPP pattern computed by the VGPM (Figures 2h and S2a–S2d in the supporting information) despite the
simplicity of the NPZD model (constant C:N:P stoichiometry, constant remineralization rates, neglect of
denitrification/anammox, and interactions with the sediment). The modeled NPP values, however, tend to be
lower (production in the gyres below 50 gCm�2 yr�1 and between 400 and 450 gCm�2 yr�1 in the upwelling
regions) except for the equatorial region where the models exhibit a too high productivity. The integrated
NPP over the basin is lower in ORCA05 (4.36 GtC yr�1) and TRATL01 (4.43 GtC yr�1) compared to the obser-
vations (6.98 GtC yr�1). Simulated NPP values in ORCA05 and TRATL01 are similar because phosphate is not
the immediate factor limiting phytoplankton growth in the eastern high-productivity regions, consistent with
observational and experimental evidence [Moore et al., 2013]. The phytoplankton growth is primarily limited
by light (see Figures S2e and S2f) in both model configurations, making the NPP relatively insensitive to an
extra input of nutrients due to a change in circulation.

4.3. Integrated Budget

The changes in oxygen concentration between the twomodel solutions are a consequence of either changes
in the supply of oxygen by the flow field or the consumption of oxygen by biological processes. Consider the
balance between supply processes (S) and biological oxygen consumption (C) in the OMZ layers (200m–

400m): any difference between the two processes is reflected in a temporal trend of the oxygen content,
i.e., dO2/dt = S�C.

We first diagnose the mean trend dO2/dt of the oxygen inventory in the Atlantic basin during the 60 year
simulation periods in ORCA05 and TRATL01. These temporal trends are negative (see Figures 3a, 3b, and S1),
i.e., both simulations lose oxygen and adjust to concentrations below the values given by the WOA, used for
initialization. As the initial oxygen concentration is not in equilibrium, the mean temporal oxygen trend
during the first decades of the integration reflects primarily the models’ adjustment to the circulation and
biogeochemistry. The impact of interannual variability on the mean trend is comparatively small and is
neglected in this study. We focus on the adjustment process.
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The negative trends are substantially reduced in TRATL01, especially in the GG and ASETUS region,
suggesting that the circulation and biogeochemistry are closer to reality in TRATL01 compared to ORCA05.
ORCA05 loses up to 2mmol m�3 yr�1 in both regions, whereas the trend is diminished in TRATL01 to less than
0.6mmol m�3 yr�1 in the GG and less than 1.2mmol m�3 yr�1 in the ASETUS.

In principle, changes in the structure and/or strength of the current system should affect both the supply of
oxygen to these regions (by the oxygen flux from the western tropical Atlantic) and the consumption (by
changes in the nutrient supply and associated changes in biological productivity) (Figure S3). Inspecting the
changes in the individual consumption and supply rates between ORCA05 and TRATL01 reveals that the in-
tensified equatorial currents in the latter simulation affect the oxygen supply (Figure 3d) more strongly than
the consumption (Figure 3c). For instance, in the GG, supply increases by up to 50% in TRATL01 compared to
ORCA05, while the concomitant increase in consumption is only 20%. As a consequence, the difference in
supply exceeds the difference in consumption (Figure 3e), resulting in a significant increase of oxygen con-
centrations in TRATL01.

5. Summary and Conclusion

The oxygen distribution in the interior ocean was assessed in two hindcast experiments with a global coupled
physical-biogeochemical model, which differed only in their spatial resolution. Both coarse (0.5°) and eddying
(0.1°) model configurations (ORCA05 and TRATL01) were integrated under realistic forcing conditions over
the period 1948–2007 and initialized from climatological (WOA) conditions for oxygen and phosphate. The
analysis focused on the oxygen adjustment over the simulation period and the distributions in the last de-
cade (1998–2007) of both simulations.

Figure 3. Mean oxygen trend dO2/dt (mmol m
�3

yr
�1
) during the integration period 1948–2007 of (a) ORCA05 and (b) TRATL01. The final

(average 1998–2007) oxygen concentration (mmol m
�3
) is traced in contours. (c) Difference ΔC (mmol m

�3
yr

�1
) between the biological

consumption term C in TRATL01 and ORCA05 (average 1948–2007). (d) Difference ΔS (mmol m
�3

yr
�1
) between the circulation supply term S

in TRATL01 and ORCA05 (average 1948–2007). (e) Regions where the difference in supply exceeds the difference in consumption:
ΔT=ΔS�ΔC. The difference in final (average 1998–2007) oxygen concentration (mmol m

�3
) between TRATL01 and ORCA05 is shown in

contour in Figures 3c–3e. All the fields are averages for the depth layer 200m–400m.
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While the 0.5° model exhibits a strong negative oxygen trend especially in the GG and ASETUS regions,
leading to too intensive OMZs, the trends are much weaker and the averaged oxygen concentrations much
more realistic in the 0.1° case, both in the equatorial region (GG), and in the northern and southern shadow
zones (ANETUS and ASETUS). The differences in the simulated oxygen concentration in the eastern tropical
Atlantic can be understood as an effect of an enhanced oxygen supply by themore intense equatorial current
system in the 0.1° case. The GG region is ventilated mainly by the EUC, which especially in its eastern portion
is much stronger, more structured and more realistic in the high-resolution case. The ASETUS region is ven-
tilated by the off-equatorial current (SEUC) along its northern flank, and by the sSEC at its southern boundary.
Since the sSEC has similar characteristics in both experiments, the strength of the SEUC appears to be a
critical factor in governing the oxygen concentrations in this region. The resolution-dependent intensification
of the zonal undercurrents is mostly confined to the eastern part of the basin, i.e., to the east of about 10° W.
Accordingly, the impact of resolution is most pronounced in the GG and ASETUS, and comparatively weak in
the ANETUS.

Despite clear improvement in the high-resolution model, a tendency toward too low oxygen concentrations
in the eastern tropical Atlantic compared to the conditions given by the WOA remains, suggesting that some
processes are still not correctly captured even in the high-resolution model. Possible flaws include a too weak
transport by the eastward flowing Southern and Northern Intermediate Counter Currents, which are
suggested to ventilate the eastern tropical regions [Brandt et al., 2012; Getzlaff and Dietze, 2013]. Deficits may
also be related to the representation of biogeochemical processes. Oxygen, for instance, is very sensitive to
changes in the remineralization length scale and in simulated primary production [Kriest et al., 2012]. The
behavior of organisms, such as zooplankton migrating patterns, also influences the oxygen consumption
[Bianchi et al., 2013]. Regional variations in phytoplankton properties, for example, in C:N:P stoichiometry
[Martiny et al., 2013], have not been taken into account here.

A more fundamental aspect of the eastern tropical oxygen budgets highlighted by the present experiments
is the different sensitivity of the oxygen supply and consumption processes to changes in the strength of the
equatorial current system. Since relatively small perturbations of the balance between supply and con-
sumption can lead to significant temporal trends in the oxygen content of the OMZs, the present results
suggests that trends or low-frequency variations in the equatorial currents [e.g., Brandt et al., 2010; Jouanno
et al., 2011; Goes et al., 2013] could represent a prime factor for recently observed tropical oxygen trends
[Stramma et al., 2008, 2012]. This is consistent with the work of Monteiro et al. [2011] who combined obser-
vational data and a simple conceptual model, to show that the regional ocean circulation drives the variability
of hypoxia over the shelf. Our results reported here indicate the potential of high-resolution ocean general
circulation models to unravel the linkages between global transport patterns and local
biogeochemical environments.

References
Behrenfeld, M. J., and P. G. Falkowski (1997), A consumer’s guide to phytoplankton primary productivity models, Limnol. Oceanogr., 42(1),

1–20.
Bianchi, D., E. D. Galbraith, D. Carozza, K. A. S. Mislan, and C. Stock (2013), Intensification of open-ocean oxygen depletion by vertically

migrating animals, Nat. Geosci., 6, 545–548, doi:10.1038/ngeo1837.
Brandt, P., V. Hormann, A. Koertzinger, M. Visbeck, G. Krahmann, L. Stramma, R. Lumpkin, and C. Schmidt (2010), Changes in the ventilation of

the oxygen minimum zone of the tropical North Atlantic, J. Phys. Oceanogr., 40(8), 1784–1801.
Brandt, P., R. J. Greatbatch, M. Claus, S.-H. Didwischus, V. Hormann, A. Funk, J. Hahn, G. Krahmann, J. Fischer, and A. Koertzinger (2012),

Ventilation of the equatorial Atlantic by the equatorial deep jets, J. Geophys. Res., 117, C12015, doi:10.1029/2012JC008118.
Cocco, V. F., et al. (2013), Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10,

1849–1868, doi:10.5194/bg-10-1849-2013.
Debreu, L., C. Vouland, and E. Blayo (2008), AGRIF: Adaptive grid refinement in Fortran, Comp. Geosci., 34(1), 8–13.
Deutsch, C., H. Brix, T. Ito, H. Frenzel, and L. Thompson (2011), Climate-forced variability of ocean hypoxia, Science, 333(6040), 336–339.
Dietze, H., and U. Loeptien (2013), Revisiting “nutrient trapping” in global biogeochemical ocean circulation models, Global Biogeochem.

Cycle, 27, 265–284, doi:10.1002/gbc.20029.
Duteil, O., and A. Oschlies (2011), Sensitivity of simulated extent and future evolution of marine suboxia to mixing intensity, Geophys. Res.

Lett., 38, L06607, doi:10.1029/2011GL046877.
Duteil, O., et al. (2012), Preformed and regenerated phosphate in ocean general circulation models: Can right total concentrations be

wrong?, Biogeosciences, 9, 1797–1807, doi:10.5194/bg-9-1797-2012.
Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, O. K. Baranova, M. M. Zweng, and D. R. Johnson (2010),World Ocean Atlas 2009, Dissolved

Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, vol. 3, edited by S. Levitus, 344 pp. NOAA Atlas NESDIS 70, U.S. Government
Printing Office, Washington, D. C.

Gent, P. R., and J. C. McWilliams (1990), Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155.

Acknowledgments
This work is a contribution of the
SFB754 supported by the Deutsche
Forschungsgemeinschaft. The model
system has been developed as part of
the DRAKKAR collaboration. The simu-
lations were performed at the North-
German Supercomputing Alliance
(HLRN) and the computing center at Kiel
University. We thank Iris Kriest for shar-
ing the biogeochemical model code.
We thank Bill Johns for sharing the data
of the mean velocity profile at 0°N/0°E,
obtained from amooringmaintained by
the University of Miami, as part of the
CLIVAR TACE. Comments by Paul Kähler
are appreciated.

The Editor thanks two anonymous re-
viewers for their assistance in evaluat-
ing this paper.

Geophysical Research Letters 10.1002/2013GL058888

DUTEIL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2039

http://dx.doi.org/10.1038/ngeo1837
http://dx.doi.org/10.1029/2012JC008118
http://dx.doi.org/10.5194/bg&hyphen;10&hyphen;1849&hyphen;2013
http://dx.doi.org/10.1002/gbc.20029
http://dx.doi.org/10.1029/2011GL046877
http://dx.doi.org/10.5194/bg&hyphen;9&hyphen;1797&hyphen;2012


Getzlaff, J., and H. Dietze (2013), Effects of increased isopycnal diffusivity mimicking the unresolved equatorial intermediate current system
in an earth system climate model, Geophys. Res. Lett., 40, 2166–2170, doi:10.1002/grl.50419.

Gnanadesikan, A., J. P. Dunne, and J. John (2012), Understanding why the volume of suboxic waters does not increase over centuries of
global warming in an Earth System Model, Biogeosciences, 9, 1159–1172, doi:10.5194/bg-9-1159-2012.

Goes, M., G. J. Goni, V. Hormann, and R. C. Perez (2013), Variability of eastward currents in the equatorial Atlantic during 1993–2010,
J. Geophys. Res. Oceans, 118, 3026–3045, doi:10.1002/jgrc.20186.

Johns, W. E., P. Brandt, B. Bourles, A. Tantet, and T. Papapostolou (2012), Zonal structure and variability of the Equatorial Undercurrent during
TACE. TAV/PIRATA17 meeting, Kiel, Germany, September 2012.

Jouanno, J., F. Marin, Y. du Penhoat, J. M. Molines, and J. Sheinbaum (2011), Seasonal modes of surface cooling in the Gulf of Guinea, J. Phys.
Oceanogr., 41, 1408–1416.

Kriest, I., S. Khatiwala, and A. Oschlies (2010), Towards an assessment of simple global marine biogeochemical models of different com-
plexity, Prog. Oceanogr., 86(3–4), 337–360, doi:10.1016/j.pocean.2010.05.002.

Kriest, I., A. Oschlies, and S. Khatiwala (2012), Sensitivity analysis of simple global marine biogeochemical models, Global Biogeochem. Cycle,
26, GB2029, doi:10.1029/2011GB004072.

Large, W. G., and S. G. Yeager (2009), The global climatology of an interannually varying air-sea flux data set, Clim. Dyn., 33, 341–364.
Luyten, J. R., J. Pedlosky, and H. Stommel (1983), The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309.
Madec, G. (2008), NEMO ocean engine version 3.1. Note Pole Modelisation. 27, Inst. Pierre-Simon Laplace, Paris.
Martiny, A. C., C. T. A. Pham, F. Primeau, J. A. Vrugt, J. K. Moore, S. A. Levin, and M. W. Lomas (2013), Strong latitudinal patterns in the

elemental ratios of marine plankton and organic matter, Nat. Geosci., 6, 279–283, doi:10.1038/ngeo1757.
Monteiro, P. M. S., B. Dewitte, M. I. Scranton, A. Paulmier, and A. K. Van der Plas (2011), The role of open ocean boundary forcing on seasonal

to decadal-scale variability and long-term change of natural shelf hypoxia, Environ. Res. Lett., 6, 025002.
Moore, C. M., et al. (2013), Processes and patterns of oceanic nutrient limitation, Nat. Geosci., 6, 701–710, doi:10.1038/ngeo1765.
Najjar, R., et al. (2007), Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from

phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2), Global Biogeochem. Cycle, 21, GB3007, doi:10.1029/
2006GB002857.

Oschlies, A., K. G. Schultz, U. Riebesell, and A. Schmittner (2008), Simulated 21st century increase in oceanic suboxia by CO2-enhanced biotic
carbon export, Global Biogeochem. Cycle, 22, GB4008, doi:10.1029/2007GB003147.

Schmittner, A., A. Oschlies, X. Giraud, M. Eby, and H. L. Simmons (2005), A global model of the marine ecosystem for long term simulations:
Sensitivity to oceanmixing, buoyancy forcing, particle sinking and dissolved organic matter cycling, Global Biogeochem. Cycle, 19, GB3004,
doi:10.1029/2004GB002283.

Stramma, L., and F. Schott (1999), The mean flow field of the tropical Atlantic Ocean, Deep Sea Res., Part II, 46, 279–304, doi:10.1016/S0967-
0645(98)00109-X.

Stramma, L., G. C. Johnson, J. Sprintall, and V. Mohrholz (2008), Expanding oxygen-minimum zones in the tropical oceans, Science, 320,
655–658.

Stramma, L., A. Oschlies, and S. Schmidtko (2012), Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over
the last 50 yr, Biogeosciences, 9, 4045–4057, doi:10.5194/bg-9-4045-2012.

Geophysical Research Letters 10.1002/2013GL058888

DUTEIL ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2040

http://dx.doi.org/10.1002/grl.50419
http://dx.doi.org/10.5194/bg&hyphen;9&hyphen;1159&hyphen;2012
http://dx.doi.org/10.1002/jgrc.20186
http://dx.doi.org/10.1016/j.pocean.2010.05.002
http://dx.doi.org/10.1029/2011GB004072
http://dx.doi.org/10.1038/ngeo1757
http://dx.doi.org/10.1038/ngeo1765
http://dx.doi.org/10.1029/2006GB002857
http://dx.doi.org/10.1029/2006GB002857
http://dx.doi.org/10.1029/2007GB003147
http://dx.doi.org/10.1029/2004GB002283
http://dx.doi.org/10.1016/S0967&hyphen;0645(98)00109&hyphen;X
http://dx.doi.org/10.1016/S0967&hyphen;0645(98)00109&hyphen;X
http://dx.doi.org/10.5194/bg&hyphen;9&hyphen;4045&hyphen;2012


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


