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Abstract

We address the problem of wide-baseline registration of
RGB-D data, such as photo-textured laser scans without
any artificial targets or prediction on the relative motion.
Our approach allows to fully automatically register scans
taken in GPS-denied environments such as urban canyon,
industrial facilities or even indoors. We build upon image
features which are plenty, localized well and much more
discriminative than geometry features; however, they suffer
from viewpoint distortions and request for normalization.

We utilize the principle of salient directions present in
the geometry and propose to extract (several) directions
from the distribution of surface normals or other cues such
as observable symmetries. Compared to previous work we
pose no requirements on the scanned scene (like contain-
ing large textured planes) and can handle arbitrary surface
shapes. Rendering the whole scene from these repeatable
directions using an orthographic camera generates textures
which are identical up to 2D similarity transformations.
This ambiguity is naturally handled by 2D features and al-
lows to find stable correspondences among scans. For geo-
metric pose estimation from tentative matches we propose a
fast and robust 2 point sample consensus scheme integrat-
ing an early rejection phase. We evaluate our approach on
different challenging real world scenes.

1. Introduction
When surveying construction sites, historical buildings

or industrial facilities laser scanning is the state-of-the-art

technique to obtain accurate three-dimensional models. To

obtain a full 3D model, several 2.5D scans have to be com-

bined, i.e. registered to each other. Usually a scanner is

positioned at different places, in- or outdoors, in order to

minimize scan shadows and to obtain a model as complete

as possible. Since scanning is a time-consuming and there-

fore expensive task the number of scans is usually kept as

small as possible, leading to a wide baseline setting between

∗This work was done while K. Köser was employed at the Institute for

Visual Computing at ETH Zurich.

Figure 1: Cut through a 3D models obtained by our al-

gorithm from 5 individual scans (CHURCH dataset). We

achieve entirely automatic registration of arbitrary geom-

etry from largely different viewpoints by exploiting depth

and image data jointly.

the scan positions. Not only scanning, but also the registra-

tion of individual scans takes a lot of time - either afterwards

by manually aligning models, or on site by carefully posi-

tioning targets (artificial markers) in the scene, which are

spotted and automatically detected from several scan posi-

tions. If one desires to rescan the facility at another point in

time and align current data with an older model, exploiting

artificial markers for registration is impossible. As a result

there is a quest for automatic registration methods which do

not rely on any artificial landmarks, but can generate accu-

rate registration results by exploiting the scan data itself.

Along this line local alignment methods such as ICP [2]

require a good initialization and are not applicable to wide

baseline scenarios or when the relative rotation is unknown.

GPS and magnetic compass can simplify the registration

problem, but they fail under bridges, inside buildings, urban

canyon or close to metallic or electric installations, respec-

tively. Modern laser scanners come with inbuilt or attach-

able cameras and deliver distance plus color information

and we aim at exploiting this data jointly for fully automatic

registration. For the image data the nuisance of viewpoint

(position and orientation of the camera) needs to be factored
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out. This is an interesting problem in its own right, impor-

tant also for nowadays’ consumer depth cameras (such as

Kinect) or stereo systems, coined RGB-D matching in the

computer vision literature [11, 22, 25].

In this work we propose to become independent of

the original sensor viewpoint by exploiting characteristic

salient directions of the scene, which are repeatable among

different scans. Examples include peaks in the distribution

of the surface normals, vanishing points, symmetry, grav-

ity or other directions that can be reliably obtained from the

sensor or the scene. Each salient direction is then exploited

to render an orthographic view, and by this way remov-

ing the perspective effects that had been introduced by the

particular scanner position. Importantly, for corresponding

salient directions between scans generated images are iden-

tical (for jointly seen Lambertian scene parts) up to a 2D

similarity transformation! Thus, standard feature detection

and description approaches can be employed and features

are computed in a viewpoint normalized image represen-

tation. Compared to earlier approaches proposed for con-

sumer depth cameras [25] or stereo systems [22, 4] our ap-

proach does not pose any requirements on the presence of

particular geometric shapes. Moreover, we do not rely on

features only on particular fitted models (planes, cylinders,

cones), but match the whole visible scene, this way signif-

icantly increasing the surface area where features can be

extracted. This is an important aspect if the visible overlap

between scans is small. Contrary to previous work where

depth discontinuities can not be handled, our rectification

approach generates images that consistently capture objects

and features across different levels of depth. Such features

at geometry boundaries and folds are among the most dis-

criminative, as known e.g. from stereo. Finally, we pro-

pose a novel 2-point solution for the restricted 4 DoF regis-

tration problem, allowing for a greedy rejection of outlier-

contaminated hypotheses in a sample consensus framework.

The remainder of the paper is structured as follows: Af-

ter a discussion of existing registration techniques in the

next section, we show how to obtain viewpoint invariance

from salient directions in Sec. 3. Then Sec. 4 and Sec. 5

cover details of our approach for salient direction detection

and pose estimation. Finally, we present results on real data

and evaluate the new technique in Sec. 6.

2. Related Work

In this work we assume that the calibration of the cap-

ture system (camera and scanner) is given and for each scan

range and image data share the same center of projection.

This registration can be performed by targets or calibration

patterns [21] or by maximizing mutual information between

reflectance and color [17]. For registering the system’s pose

at two largely different positions with different orientations,

related work can be classified into three categories:

Approaches utilizing image information only First,

purely image based approaches build upon features which

are approximately invariant against perspective distortion,

such as affine features [16], or - to a lesser degree - SIFT

[15] and variants thereof. Given established feature corre-

spondences an initial 3D rigid transformation can be esti-

mated, which can be used to bootstrap ICP [2] to obtain a

refined registration. As has been argued e.g. in [11], when

using affine normalization discriminative power is lost, i.e.

one can no longer distinguish real world circles and ellipses.

Finally, because of the strong requirements for the local re-

gion, considerably less features can be found reliably as

compared to simpler detectors. In addition the affine de-

tector is taking substantially more time.

Approaches using geometry information Second, ap-

proaches using geometry descriptors have been shown to

work on 3D scenes [9, 19, 24]. A key difficulty is the

estimation of the position, scale and orientation in 3D

space where to compute the descriptor, i.e. a good 3D fea-

ture detector. Several detectors have been proposed, e.g.

[23, 10, 8], however a major dilemma in 2.5D (as opposed

to real 3D) is as follows: A useful point for matching re-

quires a repeatable detection. Consequently surface parts

need to be seen also from another - widely different - view-

point. However, this repeatability is likely to decrease with

increasing surface complexity because of self-occlusions.

On the other hand for low complexity surfaces the exact lo-

calization is sensitive to noise and the local geometry is not

discriminative for matching. An alternative to 3D feature

detectors is to densely sample the surface, leading to a very

high number of descriptors (e.g.[9]) that need to be handled

in matching and verification.

Approaches building upon both modalities Finally, and

in the direction of our work, there are approaches that nor-

malize images with respect to the geometry before im-

age feature detection and matching. For planar scenes

like facades with clearly visible straight lines, vanishing

points can be used, even if no depth information is avail-

able [18, 3, 1]. For more general scenes, it was shown that

the sole usage of affine features can be improved, if they are

normalized with respect to the local surface normal rather

than to the affine shape [11]. Still this approach relies on

the affine detector and shares its drawbacks. For large pla-

nar structures in a scene, viewpoint invariant patches [22, 4]

can be detected and rotated to a frontal view. Recently, this

local approach has been generalized from planes to para-

metric developable surfaces, allowing also to use cylinders

and cones [25]. For complex scenes the detection of these

parametric objects becomes the bottleneck of the approach.

Further, the main problem still remains and matches can

only be obtained on isolated objects and interesting texture

has to lie on the detected geometry.
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Figure 2: (left:) Images taken from two different positions, which naturally exhibit a wide baseline. The red altar visualizes

correspondence. Feature matching and thus registration from these images fails in most cases. (middle, right:) Generated

salient direction rectified (SDR) renderings along corresponding salient directions. Images of the roof are equivalent up to a

2D euclidean transformation (cf. Claim 2), while the right most images correspond up to a translation (cf. Claim 3).

3. Viewpoint Invariance via Salient Directions

Our novel approach to register widely separated scans

builds upon image features rather than 3D geometry fea-

tures, because image features are plenty, well localized and

discriminative. We eliminate effects of viewpoint to allow

for wide baseline registration of scans without a predic-

tion on relative pose. In contrast to related work, we do

not require the presence of particular geometric shapes (e.g.

planes). Instead we exploit the entire scene information by

the concept of salient directions.

Let us now define what we mean by a salient direction.

The pose of a laser scanner in the world coordinate system is

specified by the mapping of a point X from world to scanner

coordinates via Xi = siRiX+ti = siRiX−siRiCi. Here,

Ci represents the origin of the scanner in world coordinates,

while Ri represents its orientation and si is the scaling. In

the following we will use the index i to refer to any single

scan and indices i, j to distinguish between any two scans.

Definition 1. A salient direction is a real-world direction
in global coordinates d sal that can be observed locally as
d sal
i , d sal

j in independent scans i and j:

d sal = RT
i d

sal
i = RT

j d
sal
j . (1)

Intuitively, imagine d sal is the north direction, that is repre-

Figure 3: Orthographic renderings along a salient direction.

The scene overlap of planar (red) and free form (blue) sur-

face will be rendered identically along d sal for each scanner.

sented in scans i and j as d sal
i and d sal

j respectively.

As input to our algorithm we consider 2.5D depth and

image data, either from a laser scanner or from a consumer

depth device or stereo system. In case of panoramic data we

assume that both image and depth data are given as faces of

a cube-map. Then, for the depth data, local normals are es-

timated and we will call the set of range data, color data and

normals taken from one position a scan. The goal is now to

render a view which is suitable for matching it against other

scans. Ideally we want to produce a normalized image that

looks the same as a normalized image from another location

(see Fig. 2 for examples and Fig. 3 for an illustration).

Definition 2. A salient direction rectified (SDR) image, is
an image which is obtained by rendering the scene along a
salient direction d sal

i with orthographic projection matrix

Pi =

[
r̃Ti,1
r̃Ti,2

]
with Pi d

sal
i =

(
0
0

)
, (2)

where
{
r̃i,1, r̃i,2, d

sal
i

}
forms an orthonormal basis of R3

and relates to the orthographic camera coordinate system.

Claim 1. Given a salient direction d sal with corresponding
local directions d sal

i , d sal
j in scans i and j, then correspond-

ing points in the two SDR-images relate to each other via a
2D similarity transformation.

As simple proof we want to show that with the given projec-

tion matrices P sal
i , P sal

j image points xi, xj relate to each

other via

xj = s′R′xi + t′, (3)

where s′, R′ and t′ denote 2D scaling, rotation and transla-

tion respectively. Without loss of generality we set the ith

scanner pose [I, 0] and denote [sjRj , tj ] = [sR, t]. Then

according to Eq. (2) for a 3D point X its projections in the

two SDR-images are xi = PiX and xj = Pj(sRX + t).
Also according to Eq. (2) Pi and PjR span the same basis.

Thus comparison with Eq. (3) reveals

t′ = Pjt and R′ = PjRPT
i and s′ = s. (4)

2810



Since Eq. (4) holds for every point X the solution is unique.

Further it is easily verified that R′TR′ = I and thus R′ is

orthogonal. As a result images must be related by a simi-

larity transform, which proves the claim. SIFT features are

well suited for handling this remaining ambiguity.

Claim 2. If absolute scale is known – as for laser scans –
the freedom reduces to a 2D euclidean transformation.

The proof is trivial, since for constant scale across scenes

s = 1. As a result this allows for scale variant feature

description and matching. Observe that there is still one

degree of freedom in choosing Pi, i.e. there is an undeter-

mined in-plane rotation.

Claim 3. Given that a global direction g is known com-
monly among scans in local coordinates as gi and that r̃i,1
is chosen as r̃i,1 = (gi × d sal

i )/|gi × d sal
i |, then generated

images differ only in translation.

Defining r̃i,1 as above and setting r̃i,2 orthogonal to it via

r̃i,2 = (d sal
i × r̃i,1)/|d sal

i × r̃i,1| ensures that g appears

upright in the SDR-images. In this case R′ = I which

leaves only t′ and proves the claim. Only in case g coincides

with d sal, r̃i,1 is undefined (a case which is easily spotted)

and in-plane rotation is still ambiguous. In all other cases

simple upright feature descriptors can be employed, which

have been shown to be more discriminative than features

with locally-adaptive orientation [1].

Our approach is separated into four stages, which we will

explain in more detail in the next Sec. 4 and Sec. 5

1. Detection of salient directions (per scan).

2. Normalization of image data with respect to salient di-

rections (per direction per scan)

3. Extraction of features (per SDR-image) and establish-

ment of tentative correspondences

4. Geometric verification and concurrent pose estimation

(for a scan pair)

4. Salient Direction Detection and Image Nor-
malization

Given a salient world direction that can be identified in

two different scans, we have shown that we can transform

the image content in a way that it becomes virtually invari-

ant with respect to the unknown pose. Depending on the

scene type several possibilities exist how to identify salient

directions, including vanishing points [1] in modern archi-

tecture, directions of repetitions or symmetries [12] in his-

torical buildings or north direction from the sky or the time

and the sun [14] in outdoor scenes. However, in this con-

tribution we demonstrate the idea using salient directions

derived from characteristics of geometric structures, that is

peaks in the distribution of surface normals (cf. Fig. 4). For

Figure 4: Support regions for different detected salient di-

rections (color coded), shown for 3 cube faces.

successful registration only a single peak needs to be con-

sistent, while remaining modes can be different.

Dominant normal directions Potentially disjoint, locally

planar surfaces give rise to dominant surface normals. De-

tection of those is rephrased as finding peaks within the

sampled point-normal distribution in each scan. Mean

shift [5] is a suited approach to achieve this goal. It allows

to model the density without explicitly parameterizing it, by

evaluating a kernel K for normal n via

f̂(n) =
1

|N (n)|
∑

ni∈N (n)

K(n, ni), (5)

with N (n) being the set of neighbors of n. We initialize

mean shift with 50 samples obtained as cluster centers from

K-means. The algorithm now performs gradient descent

on the density estimate f̂(nk) and sample trajectories reach

stable points at peaks of the density function.

As a distance measure between normals we use their ori-

entation agreement. In particular we utilize the cosine dis-

tance 1−nTni which in general relates to density estimation

on a hypersphere. Furthermore, we employ a symmetric

kernel with a smooth Parzen estimate (i.e. decaying weight

on normals at larger distance) with an additional cut off at a

maximum of ϕ = 10◦. Thus

K(n, ni) =

{
ch · exp

(− 1
h (1− nTni)

)
, nTni > cos(ϕ)

0, otherwise

(6)

where h is specifying the strength of the exponential

weighting and ch is a normalization constant 1.

The sampling density of points on a surface highly de-

pends on the distance of the surface from the scanner, as

well as the slant of the surface wrt. the scanning direction.

Thus, if we used raw 3D points x (and their normals n) as

generated from the scanner much higher emphasis would

be given to surfaces close to the scanner and parallel to the

scanning direction. In particular SDR-images would be ren-

1 For two points on the unit sphere squared euclidean and cosine

distance are equivalent: 1
2
‖a − b‖2 = 1

2

(‖a‖2 + ‖b‖2 − 2aTb
)

=

1 − aTb. Thus a also mean-shift with a symmetric Gaussian kernel with

variance σ2I = hI fulfills our conditions exactly.
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dered from salient directions highly supported by structures

near the scanner, and repeatability of salient directions be-

tween scans would be degraded. Thus, before mode find-

ing we re-sample the point data. Conceptually the sampling

likelihood p(x) of a point x is proportional to the area it

describes in the 3D scene, i.e.

p(x) ∝ a(x) · sec(arccos〈−rx, n〉). (7)

Here a(x) denotes the surface area orthogonal to the scan-

ning direction rx. For a depth map it is the projected pixel

footprint at depth [x]z , while for a laser-scan it relates to

the projected 2D scan interval (given by the angular scan

resolution) at distance ‖x‖. As a result we generate a spa-

tially evenly sampled point cloud and are able to determine

salient directions bias-free.

View Synthesis When rendering 2.5D data from a dif-

ferent viewpoint, missing 3D information introduces holes

in the generated images. Keypoints are not detected in

these visual artifacts, but descriptors might reach into or gap

them. Since a descriptor captures gradient information, our

desire is to avoid strong edges due to artifacts (which would

perturb it) and we perform in-filing via a diffusion process.

This keeps gradients small such that descriptors focus on

the present texture information.

Since we don’t require a fully consistent 3D mesh, we

fill small holes directly in each SDR-image. Two different

kinds of holes must be distinguished and in-painting is han-

dled differently. Within the first category are holes which

are caused by occluders in the original scanner viewpoint

placed in front of the surface to render, e.g. a statue in front

of a facade. In this case we not only fail to capture depth

data (for parts of the facade in the given example) but also

the corresponding texture (the texture of the statue will be

captured, not the facade). As a matter of fact, in-painting is

performed on the rendered SDR-images itself. Second, are

holes which are caused by missing data in the scanning pro-

cess (e.g. at reflective structures). Compared to the former,

here texture information is available and thus we aim for

a smooth inpainting on the orthographic depth-map. Then

detected areas are re-rendered with the updated depth in-

formation to obtain the original texture. Both cases can be

easily distinguished by back-projecting hypothesized sur-

face points into the original views and evaluating whether

or not an occluder is present. Holes themselves are detected

by searching for connected components in the initially ren-

dered images, while for inpainting we utilize FMM [20] as

it is simple and fast.

5. Feature Extraction and Pose Estimation
Given several SDR-images of the scene, in each local im-

age features are extracted. Since 3D models are given with

absolute scale we can make use of Claim 2 and for each

feature its absolute size is known. Thus we could even ap-

ply features of fixed size, e.g. Harris corners [7]. However,

to detect (different) structures at various levels of detail we

perform feature detection in scale space using DoG [15].

Still, as a constraint for matching we restrict the search for

correspondences to those with same spatial extent. Simi-

larly, in case the in-plane rotation of the orthographic cam-

era is fixed (cf. Claim 3) we employ upright descriptors.

For each feature we find tentative correspondences by fast

approximate nearest neighbor search in descriptor space.

For the relative registration of two scans we augment

each feature by its 3D position and normal in the local coor-

dinate system and denote points as ps and pt (in the follow-

ing indices s and t indicate source and target scan, respec-

tively). Then we seek the parameters of the relative transfor-

mation [R, t] from source to target. For a laser scanner the

gravity direction is usually known (assumed to be aligned

with the z-axis in the following), so we need to estimate

only 4 parameters; however, for a hand-held RGB-D sensor

6 DoF need to be estimated. In either way, pose estimation

is performed within a random sample consensus scheme,

i.e. in each round the support for a generated transforma-

tion hypothesis [R, t] is evaluated. Approaches presented in

the following differ in the way they generate a transforma-

tion hypothesis in each iteration.

Relative Bearing and 3D Offset (4 DoF) As pointed out

by Wu et al. [22] each point defines a local coordinate sys-

tem via its normal and feature orientation. For upright fea-

tures the latter is fixed by the gravity direction and the local

coordinate system is defined as [n, n × ez, (n × ez) × n]).
Thus a single feature correspondence suffices to estimate

a transformation hypothesis. The rotation angle θ around

the gravity direction ez is computed between normals ns, nt

projected in the x-y plane

n̄s = ns − 〈ns, ez〉ez and n̄t = nt − 〈nt, ez〉ez
θ = arccos〈n̄s, n̄t〉 · sign〈ez, (n̄s × n̄t)〉, (8)

while the translation is then given by t = pt−Rz(θ) ps. As

an alternative to RANSAC a 1D voting scheme via kernel

density estimation can be employed efficiently [22].

We have found that normal vectors of extracted features

tend to be noisy and are thus of limited value in their use

for pose estimation. This is in particular the case for con-

sumer depth cameras or stereo systems 2 and has two rea-

sons. First, they are computed only in a local neighborhood

and second, detected image features often correspond with

structure boundaries introducing errors in the normal com-

putation. As an alternative to using normals for registration,

we will exploit the fact that corresponding local coordinate

system axes can also be computed from pairs of correspon-

2Normals in [22] are taken from the estimated plane model, i.e. the

approach fits planes rather than individual feature points.

2812



Algorithm 1 2-point geometric pose verification

Require: set m = [m1, . . .mn], mi = {p(i)s , p
(i)
t } of M poten-

tial matches between source and target scene

Require: number of iterations K and inlier threshold ε
for k = 1, . . .K do

uniformly sample 2 matches mi,mj from m

vs ← p
(i)
s − p

(j)
s , vt ← p

(i)
t − p

(j)
t

if |‖vs‖ − ‖vt‖| > ε or |〈vs, ez〉 − 〈vt, ez〉| > ε then
reject sample pair and continue

v̄s ← vs − 〈vs, ez〉ez and v̄t ← vt − 〈vt, ez〉ez
θ ← arccos〈v̄s, v̄t〉 · sign〈ez, (v̄s × v̄t)〉
t← 1

2

(
p
(i)
t −Rz(θ) p

(i)
s + p

(j)
t −Rz(θ) p

(j)
s

)

for all l ∈ [1,M ] do
if ‖p(l)t −Rz(θ) p

(l)
s + t‖ < ε then

insert ml in s

if |s| > |s∗| then
s∗ ← s, [R∗

z , t
∗]← [Rz(θ), t]

return final transformation [R∗
z , t

∗] and best inlier set s∗

dences. The orientation of these vectors is more precisely

compared to normals due to their much larger spatial extent.

This gives rise to our robust 2-point geometric relative

pose verification, which is presented in Alg. 1 (typical val-

ues are K = 1000, ε = 3cm). It incorporates an early

rejection of generated hypotheses, such that only a fraction

(on average 25% in our experiments) of generated transfor-

mation hypotheses need to be evaluated wrt. all data. Re-

lated to our new algorithm is the idea of filtering wrong cor-

respondences in [9]; however there authors use a heuristic

rather than constructing an efficient RANSAC framework.

A transformation hypothesis is formed from 2 potential

matches i, j drawn at random from the correspondence set.

3D points p
(i)
s , p

(j)
s in the source and p

(i)
t , p

(j)
t in the target

scene form vectors vs and vt respectively, connecting the

2 points in the local scans. If the chosen samples are cor-

rect matches, then the length of these two vectors must be

equal. In addition, because we are searching for a rotation

around the z-axis, their height difference has to be equal as

well. This leads to an early rejection criterion allowing to

avoid computing and testing the underlying transformation

hypothesis. Given the previous two conditions hold, we first

compute a relative rotation Rz(θ) from the two vectors sim-

ilar to Eq. (8). Second we evaluate the translation t between

target and rotated source points.

Full 6 DoF transformation To estimate all 6 DoF of a

3D rigid body transformation, at minimum 3 correspond-

ing points are required (if normals and feature orientations

should be avoided). Procrustes analysis [6] returns the opti-

mal rotation and translation by decomposing the 3×3 corre-

lation matrix between points. An early rejection of samples

based on the vector length between point pairs can be em-

ployed in a similar way to our previously mentioned 2-point

pose verification.

6. Experimental Evaluation
For evaluation we recorded 3 different datasets with dif-

ferent scene characteristics which are typical for laser scan-

ning scenarios. CHURCH is an indoor dataset of an old

church consisting of 5 scans and exhibiting many vaults.

Besides peaks in the normal distribution, in this scenario we

also extract symmetry planes. Note that there exists a sign

ambiguity for the symmetry plane normal, thus we use both

possible normal directions as salient direction. For CITY

we captured 3 scans in an urban area showing a high num-

ber of structured facades (e.g. balconies). Finally CASTLE

combines a construction site and a historic building 3.

For all experiments the input data format and parame-

ters of our algorithm were kept constant. Panoramic images

are and range data is represented as 6 faces of a cube-map,

each of size 2k × 2k and 1k × 1k pixels, respectively. For

salient direction estimation we subsample the depth data as

explained, while the kernel bandwidth and standard devia-

tion (Eq. 6) are set to 10◦ and 5◦, respectively.

Repeatability of Salient Directions It is essential for

successful registration that we extract at least one salient

direction (up to small variation) in both viewpoints. This

task becomes more difficult with less overlap between re-

gions. For evaluation we have taken scans with known rel-

ative pose and rendered the source scene into the viewpoint

of the target scene. There we compare the original depth

values to those of the rendering. Areas with small difference

in depth are considered as visible in both scenes, i.e. they

define the area of overlap between scans. Thus, in these

regions corresponding salient directions (defined as direc-

tions differing by 10◦ at maximum) can and should get sup-

port. We now determine repeatability scores by comparing

the number of corresponding salient directions to the total

number of detected salient directions. The lower left parts

in Table 1 list our evaluation of repeatability scores. One

can observe that re-detection rates are high.

Registration performance To demonstrate the registra-

tion performance of our approach we compare it against

state-of-the-art planar RGB-D rectification [22, 4]. We also

tried to match SIFT features extracted from the original im-

ages (i.e. cube face images), but registration fails in more

than half of the cases. Tab. 1 lists the number of correct

matches vs. tentative correspondences for both our ap-

proach and the baseline. A match is seen as correct if the

corresponding points are within a threshold of 5cm for the

outdoor datasets and 3cm for CHURCH (since it has smaller

3The datasets and additional results are available at http://www.
cvg.ethz.ch/research/saldir-rgbd-registration
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Figure 5: Comparison between viewpoint normalization via

SDR-images (left) and planar rectification [22, 4] (right).

Clearly our approach can handle arbitrary surface shape and

extract features on those.

scale). As can be seen, we generate more tentative and

correct matches, which enables us to register scan-pairs in

cases where the other approach fails. As expected this is the

case for scenes with numerous non-planar surfaces, such as

the roof and apse dome in Fig. 2. Here our approach is

crucial for successful registration, as planar rectification re-

quires textured planes, which are small or non-existent (cf.

Fig. 5). Note that besides exploiting features on free-form

surfaces, we completely separate stable geometries and tex-

tures; e.g. salient directions can be established from a un-

textured white wall, while the features for matching origi-

nate from some other textured free-form surface.

In addition Fig 1 and Fig 6 illustrates the global registra-

tion results for CHURCH and CITY, respectively. Previously

pair-wise estimated relative poses form a graph connecting

the scans with successful registration. An initial solution for

the absolute pose of each scans is obtained by construction

of a minimum spanning tree (MST) in the graph and con-

catenating relative transformations accordingly. To improve

this initial set of poses one can examine e.g. pose-graph op-

timization or bundle-adjustment. We execute the former but

refer for details to [13], since the focus of this work is on the

initial pair-wise registration. However, we want to point out

that estimated relative poses are very precise as the solution

obtained via a MST is very close to the solution obtained

after global optimization.

7. Conclusion
In this work we have presented the novel concept of ob-

taining viewpoint invariance by means of an orthographic

projection along detected salient directions in range data.

We have proven that resulting salient direction rectified

(SDR) images for corresponding salient directions in dif-

ferent scans are identical up to a 2D similarity transforma-

tion in the general case or even more restricted in special,

but common cases. This allows to exploit texture and fea-

tures not only on parametric objects like planes, cones or

cylinders, but on any free-form surface in the scene. We

have proposed to utilize modes in the distribution of sur-

face normals for salient direction detection. Compared to

model fitting approaches for the parametric surfaces, esti-

mating modes via mean-shift is robust, which is reflected by

the high repeatability scores we achieve. We have evaluated

the algorithm on challenging scenes with wide baseline and

little overlap and demonstrated superior registration perfor-

mance. Future work will explore fully automatic registra-

tion of scans taken at different points in time or in different

lighting, seasons or weather conditions.
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