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Modern Web or database servers are usually designed with a thread pool as a major component for servicing.
Controlling of such servers, as well as defining adequate resource management policies, with the aim of mini-
mizing requests’ sojourn times presuppose the existence of performance models of thread-pooled systems. In this
paper a queuing model of a thread pool is formulated along with a set of underlying assumptions and definitions
used. Requests are abstracted in such a way that they are characterized by service time distribution and CPU con-
sumption parameter. The model is defined as a Quasi-Birth-and-Death (QBD) process. Stability conditions for the
model are derived and an analytic method based on generating functions for calculation of expected sojourn times
is presented. The analytical results thus obtained are evaluated in a developed experimental environment. The
environment contains a synthetic workload generator and an instrumented server application based on a standard
Java 7 ThreadPoolExecutor thread pool. Sojourn time measurements confirm the theoretical results and also give
additional insight into sojourn times related to more realistic workload cases that otherwise would be difficult to
analyze formally.
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Analiza vremena boravka u QBD modelu thread pool-a. Kod suvremenih web poslužitelja ili poslužitelja
baza podataka thread pool najčešće predstavlja glavnu komponentu za posluživanje. Operativno upravljanje kao
i definiranje odgovarajućih politika upravljanja resursima s ciljem minimiziranja vremena boravka zahtjeva u sis-
temu, pretpostavlja postojanje modela performansi sistema koji sadrže thread pool. U ovom radu je formuliran
model thread poola zajedno s definicijama i pretpostavkama na kojima se taj model temelji. Zahtjevi su karak-
terizirani apstraktno preko raspodjele vremena posluživanja i parametra upotrebe CPU. Model je definiran kao
Quasi-Birth-and-Death (QBD) proces. Izvedeni su uvjeti stabilnosti modela i razra�ena je metoda proračuna očeki-
vanog vremena boravka zahtjeva. Dobiveni analitički rezultati su provjereni u eksperimentalnoj okolini. Ta okolina
se sastoji od generatora opterećenja i instrumentalizirane poslužiteljske aplikacije koja sadrži standardni Java 7
ThreadPoolExecutor. Mjerenja vremena boravka potvr�uju teoretske rezultate i daju nam dodatan uvid u trajanje
boravaka koje se odnosi na slučejeve opterećenja koja više odgovaraju praksi, a koje je inače teško ili nemoguće
analitički odrediti.

Ključne riječi: thread pool, vrijeme boravka, CPU zahtjevni poslovi, Quasi-Birth-and-Death proces, poslužiteljska
aplikacija

1 INTRODUCTION
An increasing number of services are available over

the Internet. Servers are expected to process huge num-
bers of requests concurrently without noticeable degrada-
tion of performance (response times and throughput). Pro-
cessing a request submitted by a client typically involves
several steps: performing net (socket) I/O to read the re-
quest, analyzing the request, performing a local file I/O or
looking up one or several external databases to find rele-
vant information, doing some computations on the results
of the queries, dynamically generating a response to the
request, and sending the response back to the client via

socket I/O. Therefore, requests represent processing tasks
that can be further broken down into subtasks character-
ized by the resources they consume. By applying a level
of abstraction to described steps we can say that process-
ing a request involves a mix of computation and waiting,
i.e. CPU-bound and non-CPU-bound subtasks. In mod-
ern server systems much more control over resource man-
agement is being delegated to the application level, and
adequate performance at the application level represents
an important factor in overall quality of service. The ra-
tionale is that modern server applications themselves (like
those for supporting multimedia services, interactive Web
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services for end users, database services, real time com-
puting, etc.) are in a better position to know their pre-
cise requirements and may dynamically and autonomously
adapt their demands to available resources. The research
described in this paper has been directed towards analyz-
ing the efficiency that task-handling threads organized in a
pool manifest in processing requests characterized by dif-
ferent values of the CPU consumption factor. We define
the CPU consumption factor r as a parameter (0 ≤ r ≤ 1)
that expresses which proportion of an overall request ser-
vice time belongs to pure CPU processing. The remainder
of the time is related to various kinds of waiting. A special
situation occurs when processing steps have to be synchro-
nized in a mutually exclusive way. Generally, synchro-
nization introduces additional waiting that can be taken as
an opportunity to increase utilization of threads and de-
crease sojourn times. Understanding of the impact of re-
quest characteristics on server performance, e.g. sojourn
times, is an important basis for thread pool dimensioning
and designing efficient control mechanisms.

The goal of the performance analysis presented in this
paper is to find out and understand the impact of the num-
ber of threads c in a pool, the CPU consumption factor
r, and the synchronization of non-CPU-bound subtasks on
sojourn time Tsoj of requests in a thread pool. We an-
alyze and evaluate the extent to which these application-
level multithreading mechanisms can influence server per-
formance in the context of different types of workloads.
The performance analysis has been done in two ways: by
deriving an analytic performance model for the system and
by load testing and sojourn time measurement on a real, in-
strumented, thread-pooled server application. Such an ap-
proach enables us to compare results obtained by the model
with those obtained by measurement on running software.
We believe that our effort at formal performance model-
ing represents a contribution toward better understanding
thread pool behavior.

The structure of the paper is as follows. First we give an
introduction to the problem. Next we discuss related work
and some known analytical models. In Section 3 a queu-
ing model of a thread pool is formulated along with a set
of assumptions and definitions used. The model is recog-
nized as a quasi-birth-death (QBD) process. Stability con-
ditions of the system are derived, and a formal approach is
presented to calculate expected sojourn time that requests
spend in the pool, based on generating functions. Results
obtained by analysis of the model are evaluated through
measurements on an instrumented thread-pooled server.
The experimental environment is described in Section 4. It
consists of a synthetic workload generator and a server ap-
plication implemented with a Java 7 ThreadPoolExecutor
thread pool from a standard java.lang.concurrency pack-
age. Finally, we draw a conclusion.

2 RELATED WORK

Behavior inherent to multithreaded applications in-
cludes contention for software resources - threads. On the
other hand, threads further contend for and use resources
at the lower level: CPUs, memory, I/O communication
channels, etc. Therefore, multithreaded applications can
be modeled as a two-layered queuing network, represent-
ing the software and the hardware layer. The method of
layers for analyzing software systems was introduced by
Rolia and Sevcik [1]. A multithreaded processing system
can also be modeled as a standard queue with FCFS or PS
discipline if the number of threads in the pool was c = 1
or when c→∞ respectively. For these queues the sojourn
time distribution is known precisely; see for example [2].
Although the number of requests in the system may be
unbounded (open systems), the number of requests being
served simultaneously may not. Therefore, the egalitarian
Processor Sharing discipline (PS) is not feasible in prac-
tice and is not even desirable because of significant over-
head due to the context switching effect when the number
of threads is large. When the number of threads is lim-
ited (but larger than 1), this situation is modeled as a queue
with the so-called limited processor sharing discipline with
c service positions (LPS-c). In practice this means that,
when there are c threads active at some moment in time,
then each of these c threads receives a fair share 1/c of the
total CPU capacity. Therefore, the more threads that are
active, the smaller is the processor capacity that can be as-
signed to each thread. In this way, the thread is no longer
an autonomous entity operating at a fixed rate; instead, the
processing rate of each thread continuously changes over
time. Despite its wide range of applications, there are not
too many studies on the LPS queue. Avi-Itzhak and Halfin
provide some insights into the LPS system, and give an ap-
proximation for the expected sojourn time assuming Pois-
son arrivals. In [3] a closed form equation is given for end-
to-end response time of a system with a limited number of
service positions c that equally share processor capacity.
Expected total sojourn time is approximated by a convex
combination of the M/G/1 FCFS and the M/G/1 PS queue
with adequate weights. The equation is exact if the number
of service positions equals 1 or tends to infinity. A com-
putational analysis of limited processor sharing based on
matrix geometric methods is performed in Zhang and Lip-
sky [4,5]. In [6] van der Weij considered sojourn times in a
two-layered tandem LPS queue for small values of c. She
extended Avi-Itzhak and Halfin’s approximation to a tan-
dem of two multi-server queues, in which the active servers
share a common resource in a PS fashion. In [7] a proces-
sor sharing queue with a limited number of service posi-
tions and an infinite buffer is studied. The authors indicate
that the expected sojourn time is monotone in c. In PhD
thesis [8], a study of fundamental performance questions
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about queuing models with shared resources such as sta-
bility issues of these models, product-form solutions and
scheduling is presented. Approximation formulas for var-
ious performance quantities for the LPS queue are derived
in [9] and based on diffusion limits.

A number of research efforts have focused on perfor-
mance analysis, modeling and control of Web servers. Van
der Mei et al. [10] present an end-to-end queuing model
(a tandem queuing network) for the performance analysis
of a Web server, encompassing the impact of client work-
load characteristics, server hardware/software configura-
tions, communication protocols and interconnect topolo-
gies. An interesting paper that points in the direction of
a self-adaptable multithreaded server is [11]. Gupta and
Harchol-Balter consider the problem of dynamic admis-
sion control in resource-sharing systems when the job size
distribution has high variability with the aim of minimiz-
ing the mean response time. In [12] Randić et al. have
considered the possibility of applying a swarm recruitment
mechanism as the control mechanism for dynamic assign-
ment of threads to two thread pools connected in tandem.

The modeling and analysis approach described in the
paper by Nawijn [13] had a strong impact on our work. He
analyzed a tandem queue with delayed server release. In
fact, he analyzed a queuing system that represents a queu-
ing phenomenon occurring at a gasoline station where a
customer serves himself when filling the tank, and subse-
quently, pays at the counter in the shop. But during the so-
journ time in the shop the customer’s car blocks one of the
servers (pumps), which becomes free again when the cus-
tomer leaves the station. A similar effect, making a thread
unavailable for servicing in the first station because of its
migration to the second station, occurs in our model of a
thread pool (Section 3).

3 THE MODEL
We define the following model to calculate the mean

sojourn time of requests with a specified CPU consumption
factor in a thread-pooled server under a stationary regime.
A request is a typed message that contains a description
of some task, i.e. job, to be done, along with the data re-
quired to complete that task. A task is the fundamental
unit of work with well-defined boundaries. Most server
applications offer a natural choice of a task boundary - in-
dividual client requests. Therefore, any request that enters
the server represents a task that should be finished. In our
model we adopt a simple formulation of a service offered
by the server. Each task related to a request is processed
through all of its steps by a single service position. In the
real server, a service position is implemented as a software
resource named a task-handling thread, and these threads
are organized in a thread pool. Therefore, in this model the
terms service position and thread are used as synonyms.

An overall task is divided into two sequenced subtasks
characterized as CPU-bound or non-CPU-bound. Process-
ing the non-CPU-bound subtask results in a thread being
blocked or waiting for some event that can be, for exam-
ple, waiting for data requested from an external database
or some other kind of request via network, waiting due to
synchronization, etc. Non-CPU-bound subtasks can be in-
dependent or dependent in the way that they are synchro-
nized with a mutual exclusion type of synchronization.

Requests arrive at the thread pool according to a Pois-
son process at the rate λ > 0. Tasks are characterized by
two parameters: the overall mean service time Ts and a
parameter r (the CPU consumption part of tasks) specify-
ing the proportion of the overall service time that repre-
sents the exclusive CPU processing subtask. Therefore,
CPU-bound subtasks have exponentially distributed ser-
vice times with mean TCPU = rTs while non-CPU-bound
subtasks have exponentially distributed service times with
mean T−CPU = (1 − r)Ts. The µ1 = 1/TCPU and
µ2 = 1/T−CPU represents corresponding service rates.

The thread-pool model has the form of a tandem queue
with two stations (Fig. 1) numbered 1 and 2. Each re-
quest demands service at both stations before leaving the
system. Stations have buffers with unlimited numbers of
waiting positions, i.e. no rejection is possible. The number
of service positions occupied or available for processing
subtasks in the system is c. The first station is a queue
with a limited and variable number of service positions n1
(0 ≤ n1 ≤ c) and LPS discipline. If not all threads are
occupied, then the buffer is empty and newly arriving re-
quests immediately occupy a thread. Once a request moves
into service it is never preempted. Whenever all threads in
the first station are occupied, a new arrival joins the end of
the thread pool buffer. Once a thread becomes available the
first request waiting in the buffer will be served in FCFS or-
der. In the first station, threads are processing CPU-bound
subtasks with mean service time TCPU . The processor
capacity is always shared equally among all requests oc-
cupying service positions in the first station (LPS). After
finishing service in the first station, a thread moves to the
second station and becomes unavailable for service in the
first station. At that moment, the number of service posi-
tions in the first station n1 decrements by one. In the sec-
ond station, threads are processing non-CPU-bound sub-
tasks with mean service time T−CPU . If the processing of
these subtasks is synchronized with mutual exclusion, an
arriving thread can either join the synchronization buffer
and wait its turn, i.e. wait for other threads to finish their
subtasks, or immediately start processing if the second sta-
tion is empty. The buffer in the second station is filled
with threads waiting for the synchronization mechanism,
and this is why the maximal number of entities that can
be placed in the synchronization buffer is limited to c− 1,
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i.e. n2 ≤ c. If non-CPU-bound subtasks are not synchro-
nized, and if underlying hardware resources responsible
for I/O allow true parallelism, then the second station rep-
resents an M/M/n2 queue with an empty buffer. After a
thread has finished its processing at the second station, it
immediately joins threads available for processing in the
first station. This is the moment when the number of ser-
vice positions in the first station n1 increments and a re-
quest’s sojourn in the server is completed.

requests  



CPU I/O

software layer

hardware layer

Local data 

sources

Servers in 

other tiers

thread 

movement

thread pool 

buffer

synchronization 

buffer

sojourn started sojourn ended(2)(1)

Fig. 1. Thread pool model

The model is completely described by two random
variables Xt and Yt. Xt represents the number of sub-
tasks that are waiting for processing or are being pro-
cessed in the first station, while Yt represents the num-
ber of subtasks in the second station. By the assump-
tions mentioned before, the process {Xt, Yt, t ≥ 0} is a
continuous-time Markov chain with two-dimensional state
space {0, 1, · · · } × {0, 1, · · · , c}. A state is represented
by a pair (i, j) where the first entry i represents the num-
ber of subtasks in the first station at time t. There ip =
min{i, c − j} threads are running CPU-bound subtasks,
and the other i− ip requests for subtasks are waiting in the
buffer. The second entry j (j ≤ c) represents the number of
threads in the second station. One thread is running while
the other j−1 are waiting in the case of synchronized non-
CPU bound subtasks or all j threads are running in parallel
in the case of unsynchronized subtasks.

Let us assume that the system is in state (i, j). The pro-
cess evolution is driven by the following transitions (Fig.
2):

a) Arrival of a new request at the first station triggers a
transition to state (i+1, j). Arrivals move the process
from state (i, j) to state (i+ 1, j) at rate λ.

b) A thread that finishes processing at the first station
and starts processing at the second station or joins the
synchronized queue at the second station, triggers a
transition to the state (i−1, j+1). The process jumps
from state (i, j) to state (i − 1, j + 1) at service rate
µ1.

c) A thread that finishes processing at the second sta-
tion joins the first station and triggers a transition to
(i, j − 1). The process jumps from state (i, j) to state
(i, j − 1) at service rate mjµ2, for j = {1, · · · , c}.
In the synchronized case mj = 1 ∀j, while in the
unsynchronized case mj = j.

For thread pools with c = 1 there is no difference be-
tween the synchronized and the unsynchronized case be-
cause the state transition diagrams are identical and mj =
1 for both cases. In fact this is the case when the syn-
chronization queue has no effect, and the system behaves
as an M/Hypo(2)/1 queue with hypo-exponential service
time distribution. Only a single request is processed at any
given moment.
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Fig. 2. State transition diagram

Let Pi,j = Prob{Xt = i, Yt = j} when t → ∞,
then the stationary distribution of the process is denoted
by {Pi,j , i ≥ 0, 0 ≤ j ≤ c}. Necessary and sufficient con-
ditions for the existence of the distribution will be stated
later. Assuming that a steady state exists, the global bal-
ance equations can be expressed as follows:

P0,0λ = P0,1m1µ2 (1)
P0,j(λ+mjµ2) = P0,j+1mj+1µ2 + P1,j−1µ1

(1 ≤ j ≤ c− 1)

Pi,0(λ+ µ1) = Pi−1,0λ+ Pi,1m1µ2 (i ≥ 1)

Pi,j(λ+ µ1 +mjµ2) = Pi−1,jλ+ Pi+1,j−1µ1

+ Pi,j+1mj+1µ2

(i ≥ 1,1 ≤ j ≤ c− 1)

Pi,c(λ+mcµ2) = Pi−1,cλ+ Pi+1,j−1µ1 (i ≥ 1)

P0,c(λ+mcµ2) = Pi+1,c−1µ1
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3.1 Stability condition for the process

Informally speaking, in an unstable queuing system the
total number of requests, under proper scaling in time, will
become infinite, whereas a system is stable if the number
of requests remains finite. In this subsection we derive sta-
bility conditions for the previously formulated continuous
time Markov chain {Xt, Yt}. It is evident that the chain is
an instance of a special class of processes that are called
Birth and Death (QBD) processes. The concept of QBD
process was introduced by Evans [14] and Wallace [15].
As we emphasized before, the state space S is given as a
set of pairs S = {(i, j)|0 ≤ i, 0 ≤ j ≤ c}. In QBD pro-
cess theory, the parameter i of the first dimension is called
the level of the state. The parameter j of the second di-
mension refers to one of c+ 1 states within a level, which
are also called inter-level states or phases. By definition,
in a QBD process there may be an infinite number of lev-
els, and transitions are only possible between neighboring
levels. Levels are divided into two parts: (1) the boundary
(or initial) level(s) (0 ≤ i ≤ k); this part must be finite;
in our model only level i = 0 is a boundary level and (2)
the repeating (or repetitive) levels i ≥ k; this part has to
have a regular structure but may be infinite as in our model.
The generator matrix of the QBD process is structured as
a block-tridiagonal form with repetitive elements:

Q =




B A0 · · ·
A2 A1 A0

A2 A1 A0

A2 A1 A0

...
. . .




where submatrix A0 encodes forward transitions from
level i to level i + 1, for i ≥ 0. Submatrix A2 en-
codes backward transitions from level i to level i − 1, for
i > 0. Finally, submatrices B or A1 encode local tran-
sitions within level i. The off-diagonal elements of Q are
given by the steady state transition rates as follows: λ –
transition rate from level i to level i + 1 for all phases, µ1

– transition rate from phase j of an arbitrary level i > 0 to
phase j +1 of level i− 1, and mjµ2 – transition rate from
phase j > 0 of an arbitrary level i to phase j − 1 of the
same level. The diagonal elements of Q are given in such
a way as to ensure that the elements of each row of Q sum
up to 0. We have defined the following matrices, all of size
[c + 1] × [c + 1] for boundary i = 0 and repeating levels
i ≥ 1:

B =




−λ
m1µ2 −(λ+m1µ2)

m2µ2 −(λ+m2µ2)

. . .
. . .

mcµ2 −(λ+mcµ2)




A0 =




λ
λ
λ

. . .
λ




A2 =




0 µ1
0 µ1

0
. . .
. . . µ1

0




A1 =




−(λ+ µ1)

m1µ2
−(λ+ µ1

+m1µ2)

m2µ2
−(λ+ µ1

+m2µ2)

. . .
. . .

mcµ2 −(λ+mcµ2)




For reasons of stability and ergodicity the drift of the
process to higher levels must be smaller than the drift to
the lower levels [16]. Theorem 1.3.2 given in [17] states
that any QBD process is positive recurrent if and only if:

πA2e > πA0e (2)

where e is the unit column vector with all entries equal
to one and π is the steady state probability vector π =
[π0, π1, · · · , πc] of the finite generator matrix A = A2 +
A1 +A0.

Inequality (2) represents a necessary and sufficient sta-
bility condition under which the QBD process has a unique
stationary distribution {Pi,j , i ≥ 0, 0 ≤ j ≤ c}. The
vector π satisfies: πA = 0 and

∑c
j=0 πj = 1, making a

system of equations that enable us to calculate the proba-
bilities π0, π1, · · · , πc. For different c, stability condition
(2) can be expressed as λ < kc, where kc can be computed
by the following recursion:

b1 = µ1m1µ2

n1 = µ1 +m1µ2

bi+1 = µ1mi+1µ2ni (3)
ni+1 = ni(µ1 +mi+1µ2)− bi i = 1 · · ·

ki =
bi
ni

By replacing µ1 = 1/rTs and µ2 = 1/(1 − r)Ts in
(3) the stability condition becomes λTs < kc(r) i.e. ρ <
kc(r). The function kc(r) represents the boundary load
imposed by requests characterized by the CPU consump-
tion factor r that barely imply that a thread pool with c
threads will become unstable. If the load is less than kc(r),
the pool remains stable. Functions kc(r) for synchronized
non-CPU-bound subtasks (mi = 1 ∀i) are calculated and
presented in Fig. 3. Pools with c = 1 can only accept a
maximum load of less than 1 or else factor r becomes rel-
evant. For c > 1 maximum load can be applied for tasks
with r = 0.5. Moreover, limc→∞ kc(0.5) = 2 expresses
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the maximum load that can be applied to the system with
balanced subtasks (r = 0.5) to preserve the stability condi-
tion. Functions kc(r) for unsynchronized non-CPU-bound
subtasks (mi = i) are presented in Fig. 4. Maximum load
can be applied to the pool when r = 0 (pure non-CPU-
bound tasks). In this case the pool behaves as an M/M/c
system. A more realistic situation is when r > 0.75. In
that situation, the pool has a similar ability to cope with
load, and it is of no consequence whether non-CPU-bound
subtasks are synchronized or not.
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1
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λ

r

Fig. 3. Allowed maximum load: synchronized non-CPU-
bound subtasks
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Fig. 4. Allowed maximum load: unsynchronized non-CPU-
bound subtasks

3.2 Model analysis: generating function approach

For calculating the average number of requests in the
system and their mean sojourn time we used a generating
function approach described in the following subsections.
Let us define the generating function for each phase of the

process:

Gj(z) =

∞∑

i=0

ziPi,j , |z| ≤ 1, 0 ≤ j ≤ c (4)

We use the following analytics to derive generating
functions. All those balance equations from (1) that define
probabilities Pi,j for states related to phase j and all levels
i = 0, · · · ,∞ are divided by µ2. Then we use substitutions
ρ2 = λ/µ2 and p = µ1/µ2. Finally, the equations are mul-
tiplied by zi where i represents corresponding levels. For
example, for phase j = 0 we consider the following subset
of balance equations:

P00λ = P01m1µ2

P10(λ+ µ1) = P00λ+ P11m1µ2

P20(λ+ µ1) = P10λ+ P21m1µ2

...
P00ρ2 = P01m1

P10(ρ2 + p)z = P00ρ2z + P11m1z

P20(ρ2 + p)z2 = P10ρ2z
2 + P21m1z

2

...

Summation over i yields:

ρ2

∞∑

i=0

ziPi,0 + p

∞∑

i=1

ziPi,0 =

ρ2

∞∑

i=0

zi+1Pi,0 +m1

∞∑

i=0

ziPi,1

Multiplying this equation by z and introducing the fol-
lowing notation for compactness:

a0(z) = ρ2(1− z) + p

aj(z) = ρ2(1− z) +mj + p, 1 ≤ j < c

ac(z) = ρ2(1− z) +mc

we obtain the equation for phase 0:

za0(z)G0(z)−m1zG1(z) = pP00z

By repeating the procedure over all phases 0 ≤ j ≤
c we obtain a system of c + 1 linear equations. This is
a common result that is a consequence of the application
of generating functions. An infinite set of global balance
equations (1) has been transformed into a finite set of linear
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equations that can be represented as a matrix equation:



za0(z) −m1z 0 · · · 0

−p za1(z) −m1z 0
...

0 −p za1(z)
. . .

... 0
. . . 0
. . . zac−1(z) −mcz

0 · · · 0 −p zac(z)




·




G0(z)
G1(z)
G2(z)

...
Gc−1(z)
Gc(z)




(5)

=




pP00z
pP01z − pP00

pP02z − pP01

...
pP0,c−1z − pP0,c−2

−pP0,c−1




or in short: A(z)G(z) = P(z). A(z) is a [c+1]× [c+1]
matrix. Unknown generating functions Gj(z) can be cal-
culated from (5) as: Gj(z) = Dj(z)/D(z), j = 0, · · · , c
where Dj(z) = detAj(z) and D(z) = detA(z) are de-
terminants following from Cramer’s rule; i.e. Aj(z) is ob-
tained from A(z) by replacing the j-th column by P(z).
However, the c “boundary level” probabilities P0,j for
0 ≤ j ≤ c − 1 have to be determined first. Knowledge
of these probabilities fully determines the generating func-
tions.

For calculating boundary level probabilities P0,j for
0 ≤ j ≤ c − 1 we need c equations in P0,j . It is triv-
ial to determine these probabilities if c ≤ 2 (a single-
threaded or double-threaded pool). It can be done from
a system of equations consisting of the normalization con-
dition and a global balance equation. If c is greater, we
need additional analytics and a more elaborate approach.
The approach is based on determining and resolving a sys-
tem of linear equations composed of: a) the normalization
condition, b) an appropriate subset of balance equations,
and c) equations in P0,j obtained from zeros of determi-
nant detA(z) = 0 inside or on the unit circle, i.e. where
|z| ≤ 1.

a) The normalization condition is a global equation con-
taining P0,j derived from c− 1 equations that follow
from horizontal cuts on a state transition diagram (see
Fig. 2):

Pjmjµ2 = Pj−1µ1 − P0,j−1µ1 1 ≤ j ≤ c

and divided by µ2,

Pjmj = pPj−1 − pP0,j−1 1 ≤ j ≤ c (6)

and one equation that is obtained by summation over

all diagonal cuts on a state transition diagram:

λ

c∑

j=0

Pj = µ2

c∑

j=1

mjPj ,

divided by µ2 it yields:

ρ2 =

c∑

j=1

mjPj (7)

The set of equations (6) enables us to express all Pj’s
solely by boundary level probabilities P0,j and P0

solely. Inserting these Pj’s in (7) and respecting that∑c
j=0 Pj = 1, we obtain the normalization condition:

p





c−1∑

j=0

P0j

(
c−1∑

k=0

pk

(
c∏

l=k+1

ml

))

−
c−1∑

j=1

P0j




c−1∑

k=c−j
pk




j∏

l=k−(c−j−1)
ml









=

c∑

k=1

pk

(
c∏

l=k

ml

)
− ρ2

c∑

k=0

pk

(
c∏

l=k+1

ml

)

For the synchronized case where the ml = 1 ∀l, the
normalization condition becomes:

p

c−1∑

j=0

P0,j

c−j−1∑

k=0

pk =

c∑

k=1

pk − ρ2
c∑

k=0

pk

b) Additional equations in P0,j can be obtained from ze-
ros of detA(z). The number of equations depends on
the number of roots that the polynomial detA(z) has
in the open interval (0, 1). The problem of determin-
ing roots is considered in certain papers (see for ex-
ample Theorem 5.3.1 in [18]). Polynomial detA(z)
(see the form of the matrix A(z) in equation (5)) has
c/2 − 0.5 roots for an odd number of threads c, and
c/2 − 1 roots for an even number of c in the interval
z ∈ (0, 1). Also, it has a root of multiplicity c/2+0.5
at z = 0 for odd c and a root of multiplicity c/2+1 at
z = 0 for even c. Finally, the polynomial has a single
root at z = 1. If there exists z0 ∈ (0, 1) such that
detA(z0) = 0, then detAj(z0) for all j = 0, · · · , c
must equal 0 as well because generating functions
Gj(z0) = detAj(z0)/detA(z0), by definition, con-
verge in the interval [0, 1]. Since Gj(z) are analytic
in |z| ≤ 1, detAj(z) have to vanish at all those roots
where detA(z) vanishes. Hence, for every z0 ∈
(0, 1) we obtain an additional equation for the un-
known probabilities of the form detAj(z0) = 0. Note
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that the equations detAj(z0) = 0 for j = 0, · · · , c
are linearly dependent [19] and therefore yield only
one equation for one root.

c) For c ≥ 2, to calculate c boundary probabilities P0,j

we need to include c2/4 balance equations if c is even,
or (c − 1)2/4 equations if c is odd. See Table 1 with
examples for some c. If c = 1, the only boundary
probability P0,0 can be simply derived from the nor-
malization condition: m1pP0,0 = m1p−(p+m1)ρ2.

For both the synchronized and unsynchronized case:

P0,0 = 1− ρ1 − ρ2

If c = 2, P0,0, P0,1 can be derived from the normal-
ization condition and one balance equation for P0,0:

(m1m2p
2 +m2

1m2p)P0,0

+ ((m1m2 −m2
1)p

2 +m2
1m2p)P0,1

= m2
1m2p+m1m2p

2

− (m1p
2 +m1m2p+m2

1m2)ρ2

P0,0λ = P0,1m1µ2

Table 1 shows balance equations for Pij that must be
included in the system for calculating boundary prob-
abilities for c = 2, 3, 4, 5, 10, 11.

Table 1. Necessary balance equations

c = 10, 11

P0,8

P0,7

P0,6 P1,6

P0,5 P1,5

P0,4 P1,4 P2,4

P0,3 P1,3 P2,3

c = 4, 5
P0,2 P1,2 P2,2 P3,2

P0,1 P1,1 P2,1 P3,1

c = 2, 3 P0,0 P1,0 P2,0 P3,0 P4,0

3.3 Calculating sojourn times

We have already stressed the following characteristic
of generating functions: for all |z| ≤ 1, |Gj(z)| ≤ 1,
i.e. it is convergent. Furthermore, Gj(z = 1) = Pj ,
where Pj are boundary probabilities: Pj =

∑∞
i=0 Pi,j ,

for 0 ≤ j ≤ c. The long run, i.e. the expected number
of requests E[N ] =

∑∞
i=0

∑c
j=0(i+ j)Pi,j in the system,

can be determined from generating functions G(z). First
we calculate the average number of requests Nj related to

each phase j of the process.

Gj(z) = P0,jz
0 + P1,jz

1 + P2,jz
2 + · · ·

zjGj(z) = P0,jz
j + P1,jz

j+1 + P2,jz
j+2 + · · ·

d

dz

(
zjGj(z)

)
= jP0,jz

j−1 + (1 + j)P1,jz
j

+ (2 + j)P2,jz
j+1 + · · ·

lim
z→1

d

dz

(
zjGj(z)

)
= jP0,j + (1 + j)P1,j + (2 + j)P2,j

+ · · · =
∞∑

i=0

Pi,j(i+ j) = Nj

Therefore,

Nj = lim
z→1

(
d

dz

(
zjGj(z)

))
= lim

z→1

(
d

dz

(
zj
Dj(z)

D(z)

))
=

lim
z→1

(
jzj−1Dj(z)D(z) + zjD′j(z)D(z)− zjDj(z)D

′(z)

D2(z)

)

and applying the L’Hospital rule yields:

Nj = lim
z→1

2jD′jD
′ +D′′jD

′ −D′jD′′
2(D′)2

Finally: E[N ] =
∑c

j=0Nj can be used to calculate
mean sojourn time by Little’s law as: E[Tsoj ] = E[N ]/λ.
The calculated mean sojourn time of requests in a thread
pool both for the synchronized and unsynchronized case
is depicted in diagrams in Fig. 5 and Fig. 6. It is worth
mentioning that in both cases the model gives similar re-
sults when r > 0.75, and this range of values characterizes
requests that arrive in real server applications.
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Fig. 5. Calculated sojourn time (synchr. case)

All determinant calculation, analysis of the roots,
derivations together with limits calculation necessary for
calculation analytics described in this Section, and results
depicted in diagrams have been done with the Maxima
tool [20].
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Fig. 6. Calculated sojourn time (unsynchr. case)

4 EXPERIMENTAL SETUP

To evaluate analytical results, we have established an
experimental environment based on Java technology. The
environment consists of a server and a client program that
are started on separated PCs. The server is materialized as
an Intel Core i7 2.4GHz CPU with 8 cores. Cores can be
disabled as needed. The client program mimics a genera-
tor of user requests. The computers were connected with
HTTP over 100Mb/s of isolated LAN that was free from
additional traffic. Both the thread-pooled server and the
client were written in Java (JDK1.7).

Performance analysis consisted of measurements of so-
journ times. The application’s code on the server was
instrumented for measurement times that the threads are
spending processing requests. All other activities on the
server system, such as background processes and other ap-
plications, affect measurements, so experiments should be
done carefully on an unloaded system, and results averaged
across a number of repeated measurements.

The thread-pooled server application is intentionally
designed to be simple, so that no application-related fac-
tors other than settings of the thread-pool parameters and
request characteristics can significantly influence the per-
formance. To implement the thread pool we have used
the ThreadPoolExecutor component with the ArrayBlock-
ingQueue buffer from a standard java.util.concurrent pack-
age. Places in the thread-pool buffer were always set to be
large to avoid rejections. The design of the server appli-
cation fits a common multithreading scheme. The daemon
(connection) thread waits for requests on a socket and puts
them into the thread-pool buffer. Task-handling threads are
waiting for a new request to be inserted into the buffer. Af-
ter finishing execution of a task, a thread returns to the pool
and tries to get new work to do. If all threads are busy when
a request arrives, the start of the execution is delayed (the
request is waiting in the buffer) until a task-handling thread
becomes free.

Achieving both precise duration of task processing and
measurement precision was not easy. Special care was
taken to achieve precision in duration of processing. Pro-
cessing of subtasks should last as close as possible to the
periods specified by each request. To achieve this, we have
modified standard java.lang.Thread and used it as a task-
handling thread in the pool. We made modifications di-
rectly to the Thread class, not via class inheritance to be as-
sured that we did not introduce any additional burden due
to the inheritance mechanism, method overriding and inter-
actions between thread-pool object and threads that could
affect results of measurement. More precisely, we added
to the Thread class a new method cpuBoundTask and a
few attributes. We modified the standard sleep method too.
Method with prototype:

void cpuBoundTask(
long cpuProcessingTime,
ThreadMXBean tmxBean)

is designed to occupy the CPU for a duration as close as
possible to the period specified by parameter cpuProcess-
ingTime in milliseconds. Of course, the thread will be oc-
cupied longer, i.e. real (wall) time is greater then cpuPro-
cessingTime, if more than one thread in the pool contend
for the CPU. While the cpuBoundTask method is running,
elapsed CPU times are measured by the ThreadMXBean.
These measurements are not affected by other activities.
CPU time is the total time an application or part of it (e.g.
a thread) spent using CPU. A call to the modified sleep
method emulates waiting for a service on another machine
(e.g. a database server) Calls to sleep can be synchronized
or unsynchronized.

The real constraint in the server design was the time
measurement imprecision implied by the OS. For MS Win-
dows, time intervals less than 17 ms cannot be measured
accurately at the application level. Therefore, in both
cpuBoundTask and sleep methods a time correction algo-
rithm was included. Any processing that lasts more or less
then requested, causes an adequate correction to process-
ing time that is transferred and applied to the next request.
With the above-mentioned design improvements to the ex-
perimental setup, accurate measurement can be obtained if
quantities of time have means greater than 50 (ms).

The experimental setup allows the evaluation of ana-
lytical results presented in Section 3. Furthermore, the
environment allows extending measurements to requests
that had service times distributed with a squared coeffi-
cient of variation cv greater than one. Also, the environ-
ment allows analyzing the impact that usage of multiple
cores has on sojourn times. The assumption of greater
cv-s better matches the characteristics of real Web re-
quests. Diagrams in this section represent measured so-
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journ times in the thread-pooled server with: a fixed num-
ber c of threads, Poisson arrivals of requests with inten-
sity λ = 1/0.267 (req/sec) and exponential (cv = 1) or
gamma (cv > 1) service times, and distributions of CPU-
and non-CPU-bound subtasks with means: TCPU = rTs
and T−CPU = (1 − r)Ts. The overall service time was
Ts = 0.2 (sec) and the load ρ = λTs = 0.75.

Sojourn times measured on a synchronized server with
c = 3 and different squared coefficients of variations of the
task’s service times are presented in Fig. 7. Sojourn time
grows with cv especially for tasks with lower r.

Only for cv = 1 is the curve symmetric. But, for
cv > 1 the system is more effective if tasks with a greater
CPU consumption factor are processed. We have already
mentioned that for boundary cases r = 0 and r = 1 a
synchronized thread pool behaves as an ordinary M/G/1
FCFS and an M/G/1 LPS-c queue respectively. We recall
that PS discipline is more effective than FCFS in the cases
where service time distributions have greater variations i.e.
when cv > 1. The curve for c = 3 and cv = 1 fits those
obtained analytically (depicted earlier in Fig. 5).

For unsynchronized non-CPU-bound subtasks the sys-
tem is more effective when c > 1; see curves with c = 3
in Fig. 8. For the boundary case where r = 0, the system
behaves as an M/G/c FCFS queue that is much more ef-
fective if compared with LPS-c. Curves with cv = 1 match
very well to those obtained analytically (depicted earlier in
Fig. 6).

Curves in Fig. 9 can be compared with those in Fig. 5
because they represent the same thread-pool configuration
but loaded by requests that impose service times with a
greater coefficient of variation cv = 3. Curves become
asymmetric and the system displays weaker performance
in regard to the sojourn times.
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Fig. 7. Measured Tsoj (synchr. case)

Curves in Fig. 10 represent sojourn times measured on
the thread pool while the processing is done by a variable
number of cores (1, 2, and 4). The number of threads was
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Fig. 8. Measured Tsoj (unsynchronized case)
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Fig. 9. Effect of c on sojourn times when cv = 3

fixed c = 2, and the pool was loaded with requests charac-
terized by cv = 3, variable r and synchronized threads.
Loads have remained unchanged ρ = 0.75 (T = 0.20
sec). The curve with Ncore = 1 is a reference curve, and
speedup for Ncore > 1 can be calculated in regard to it.
It was expected that, for a load less than one, adding more
than two cores will not contribute to the system’s perfor-
mance. Furthermore, speedup is noticeable for requests
characterized by r > 0.5. It was explained earlier that fac-
tor rT represents units of time during which the algorithm
for serving requests uses the CPU. It represents the paral-
lelizable part of the algorithm. On the other hand there are
requests with r < 0.5 representing tasks with only small
parallelizable parts. In this range of values for r, speedup
is negligible. All discussions related to Fig. 10 are in ac-
cordance with Amdahl’s law [21].

5 CONCLUSION

Resource sharing systems such as Web or database
servers are loaded with requests with different CPU con-
sumption demands and service time distributions. These
servers are usually designed and structured with a thread
pool as a major component for servicing. Dimensioning
and controlling of such servers, as well as defining ade-
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Fig. 10. Speedup due to parallelization

quate resource management policies, with the aim of mini-
mizing requests’ sojourn times, all presuppose comprehen-
sive performance analysis of thread-pooled systems. Gen-
erally, design of efficient multithreaded programs suited
to the next-generation processors will be based on knowl-
edge obtained through the performance analysis of such
systems.

We define a model of a thread pool that allows us to cal-
culate the mean sojourn times as a function of system load
(λ, µ1µ2), number of threads in the pool c and the CPU
consumption factor r of requests. The model assumes that
requests’ service times are exponentially distributed with a
squared coefficient of variation equal to one. The sojourn
times related to the requests with exponentially distributed
service times predicted by the model fit the experimental
outcome very well. Furthermore, the experimental envi-
ronment should enable us to measure performance met-
rics on the thread pool with blocking i.e. those pools that
have buffers with a limited number of places. These issues
are not considered in the paper. Analysis of sojourn times
confirms that for both synchronized and unsynchronized
cases these times decrease very quickly when the number
of threads increases and tasks are balanced. But if tasks
are purely CPU- or non-CPU-bound r ≈ 0 or r ≈ 1 and
service times are exponentially distributed, the number of
threads has no effect on sojourn times. Measurement re-
sults related to service time distributions with cv > 1 indi-
cate how sojourn time changes with respect to c and cv .

Most of the results presented in this paper are related
to the situation where only one CPU is available for run-
ning threads. We believe that the performance model of
a thread pool as it is presented and analyzed in this paper
represents a valuable basis that can be further developed to
comprehend multi-core systems.
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