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Abstract

Swirl effects on velocity, mixture fraction and temperature intermittency have

been analysed for turbulent methane flames using LES. The LES solves the flitered

governing equations on a structured Cartesian grid using a finite volume method,

with turbulence and combustion modelling based on the localised dynamic Smagorin-

sky model and the steady laminar flamelet model respectively. Probability density

function (pdf) distributions demonstrate a Gaussian shape closer to the centreline

region of the flame and a delta function at far radial position. However, non-

Gaussian pdfs are observed for velocity and mixture fraction on the centreline in a

region where centre jet precession occurs. Non-Gaussian behaviour is also observed

for the temperature pdfs close to the centreline region of the flame. Due to the

occurrence of recirculation zones, the variation from turbulent to non turbulent

flow is more rapid for the velocity than the mixture fraction and therefore indi-

cates how rapidly turbulence affects the molecular transport in these regimes of

the flame. The present findings indicate a requirement for improved sub-grid scale

modelling for LES and potentially a separate intermittency scaling allowance for

the scalar and velocity fields.
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1 Introduction

Swirling flames are commonly used in a variety of practical combustion systems, including

diesel and gas turbine engines and industrial furnances [31, 45]. Recirculation zones and

vortex breakdown (VB) regions are usually found in many turbulent swirling flames and

it is well known that swirl stabilised flames are effective in providing a source of well

mixed combustion products and acts as storage of heat and chemically active species

to sustain combustion [16, 19]. Precession motion and precessing vortex core (PVC)

structures also occur with certain conditions in swirling flows [44]. Investigation of

the intermittency in a turbulent swirling flame is particularly interesting due to the

different flow structures and various mixing rates that directly effect to form different

regimes in a turbulent flame. Particularly, unconfined turbulent swirling flames display

an intermittent behaviour in some regions such as inside the recirculation zones and

close to the outer edge where flow alternates between turbulent and irrotational states

(external intermittency) and also due to differences of energy or scalar dissipation rates

(internal intermittency). Mathematically an indicative function can be used to identify

the external intermittency in a way such that it has a value of one in the turbulent region

and zero in the irrotational region. In other words, external intermittency represents the

fraction of time during which a point is inside the turbulent field. The dividing inter-

phase between turbulent and laminar regions in a turbulent flame is sharp and constantly

distorted by different size of turbulent eddies, with turbulent flame propagating into the

irrotational region while laminar fluid is entrained into the turbulent region. Therefore

study of intermittency in swirling flames is important and challenging due to the nature

of multi-scale and multi-physics environment.

Numerous experimental, theoretical and numerical investigations for turbulent intermit-

tency have been carried out for both reacting and non-reacting applications in fairly

simple geometries. Townsend [46] has taken the first intermittency measurements for a

turbulent wake generated by a circular object and a similar technique was also used by
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Corrsin and Kistler [9] to measure the intermittency in a round jet and by Klebanoff [28]

in a boundary layer with zero pressure gradient. Wygnanski and Fielder [48] recorted

the measurements for a jet using velocity gradients with respect to time and similar

technique also applied by Chevray and Tutu [7] to measure the intermittency of a jet.

However, Bilger [3] proposed a method using probability density functions (pdf) to over-

come some of the difficulties encountered for calculation of intermittency by previous

investigators and later Nakamura et al. [35], and Schefer and Dibble [47] adopted Bil-

ger’s method to evaluate intermittency for their experiments. Major theoretical work on

intermittent flows have been initially carried out by Libby [2], Dopazo [15], and Chevray

and Tutu [7]. Later, Sreenivasan [43], Jimenez [21], Gibbson and Doering [17] and Li and

Meneveau [49] also derived various theoretical explanations for turbulent intermittency.

Although the majority of turbulence models currently in use were derived for fully de-

veloped flows, few groups have developed and applied Reynolds Averaged Navier-Stokes

(RANS) based intermittency models especially for non-reacting turbulent jets. For ex-

ample, a k− ε model based intermittency model was developed by Byggstoyl and Kollo-

mann [6] and Kollmann and Janicka [29] who studied intermittency using the transport

pdf. Cho and Chung [8] developed a more economical intermittency model by incor-

porating an intermittency transport equation into an already existing k − ε turbulence

model. Few groups extended the Cho and Chung [8] intermittency model applying it to

different applications such as axisymmetric plume [10], and a plane plume [22]. Pope [40]

also calculated intermittency using velocity-composition transported probability density

function.

Despite the success of various modelling efforts on turbulent combustion, Kerstein [25]

outlined many important modelling challenges of turbulence in the combustion processes.

As explained by Kerstein [25], there are certain areas in turbulent combustion which

require additional focus that are either poorly understood or not sufficiently represented

by present models. Intermittency is one such topic that involves several unresolved

fundamental issues with regard to the representation of turbulence effects in combustion
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models for both turbulent non-premixed and premixed combustion. The combination

of Kerstein’s findings and computational advances now being made in swirl combustion

highlight the need for further studies of intermittency modelling in which little is known

to date.

In recent years considerable advances have been made toward modelling of swirl com-

bustion systems using large eddy simulation (LES) technique for various engineering

configurations. For example, Huang et al. [20] carried out LES on combustion dynamics

for a gas turbine swirl injector and Pierce and Moin [36] also performed LES of swirling

flames. Di Mare et al. [11] and Kim and Syred [26] studied LES for model swirl combus-

tors while Selle et. al. [41] performed LES for industrial gas turbine burner. Grinstein

and Fureby [18] also performed LES for one of the General Electric swirl combustors

while Mahesh et al. [32] carried out LES for a section of Pratt and Whitney combustor.

Moreover, Boudier et al. [4] performed the LES calculations of isothermal and reacting

flows in a simplified ramjet combustor.

Despite having carried out broad LES investigations for complex swirling flames, the

physical interpretation of intermittent characteristics for turbulence and mixing are not

well understood. Therefore the work described in this paper represents an investiga-

tion on the effects of swirl on intermittency characteristics of turbulent unconfined non-

premixed swirling flames. The objective is to examine the effects of swirl on intermittent

behaviour of velocity, mixture fraction and temperature at identified important regimes

in swirling non-premixed flames.

The swirl burner used in this work is the Sydney burner [1, 23, 34], which is frequently

used in modelling of unconfined swirling flames. Our previous LES investigations tar-

geted some of the Sydney flames for LES validation [24] and instability analysis [13]. This

work selected an experimental pure methane swirling flame (SM1) with swirl number 0.5

as a base while creating another two numerical flames with increased swirl numbers 0.75

and 1.0. The discussion focuses on the probability density functions (pdfs) and radial
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profiles of intermittency for velocity, mixture fraction and temperature behaviour re-

spect different swirl numbers. This paper is organised as follows: Section 2 describes the

swirl burner experimental details and then followed by the theoretical formulations and

modelling in section 3. In section 4 we discuss the numerical computation followed by

the results and discussion in section 5. We summarise the conclusions in section 6 and

suggest future work.

2 Swirl Burner and Flame Conditions

A schematic diagram of the experimental burner is given in Figure 1. The burner has

a fuel jet of diameter 3.6mm surrounded by a bluff body of D=50mm diameter. The

burner also has a primary annulus with 5mm wide around the bluff body which provides

both axial and swirling air. Swirl is introduced aerodynamically by using tangential

ports 300mm upstream of the burner exit. The burner is installed in a wind tunnel

which provides a co-flow secondary air stream. In our computations we assumed x mm

as axial distance and r mm as radial distance.

The swirl number S is usually defined as the ratio between axial flux of the angular

momentum to the axial flux of axial momentum such that:

S =

∫ R

0
ρ <U> <W> r2dr

R
∫ R

0
ρ <U>2 rdr

(1)

Where <U> and <W> are the mean axial and tangential velocities at the exit plane, ρ

is the density and R is a characteristic length. However, the present burner considered

the geometric swirl number Sg , which is defined as the ratio between bulk tangential to

bulk axial velocity and found that the geometric swirl number Sgis linearly proportional

to actual swirl number S [1]. The Reynolds numbers for the fuel jet and primary annulus

is defined as Rej = Uj × dj/ν and Res = Us × rs/ν, where dj is the diameter of the fuel
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Table 1: Parameters of the investigated cases
Case Fuel fs Ue Us Ws Ujet Rejet Res Sg

(vol.) m/s m/s m/s m/s

SM1 CH4 0.05 20 38.2 19.1 32.7 7,200 75,900 0.50
SM1a CH4 0.05 20 38.2 29.3 32.7 7,200 75,900 0.75
SM1b CH4 0.05 20 38.2 39.0 32.7 7,200 75,900 1.0

inlet, Uj is the bulk jet velocity, Us is the annulus bulk axial velocity and rs is the outer

radius of the annulus [1]. The experimental velocity variables were the fuel jet velocity

Uj, the bulk axial and tangential velocities Us and Ws of the primary air stream, and

the mean co-flow velocity Ue of the secondary air stream.

In the present study only pure methane SM1 flame from the experimental data base

[1, 23, 34] is considered which has a fuel jet velocity of 32.7m/s with a swirl number S =

0.5. The flame contains two recirculation zones, the first closer to the bluff body which

stagnates at about 43mm and the second further downstream which stagnates at 70mm

on the centreline. The mean stoichiometric mixture fraction occurs on the centreline at

an axial position that is consistent with the visible length of the flame (0.12m) [34]. In

addition to SM1 flame, two more numerical flames have been considered and defined as

SM1a and SM1b with corresponding swirl numbers 0.75 and 1.0 respectively. The table

shows the considered parameters for the three cases.

3 Governing Equations and Modelling

The LES calculation consists of solving the temporal development of large scale structures

by applying spatial filter to the governing equations. In this work, we consider implicit

box (top-hat) filter, which naturally fit into the finite volume formulation. By applying a

spatial filter, the filtered governing equations for mass, momentum and mixture fraction

can be written as follows:
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∂ρ

∂t
+

∂

∂xj
ρũi = 0 (2)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = −

∂p

∂xi
+

∂

∂xj

(
2ρ(ν + νt)

[
S̃ij −

1

3
δijS̃kk

])

+
1

3

∂

∂xj
[ρδijτkk] + ρgi (3)

with the strain rate S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)

∂

∂t
(ρf̃) +

∂

∂xj
(ρf̃ ũj) =

∂

∂xj

(
ρ

[
ν

σ
+

νt

σt

]
∂f̃

∂xj

)
(4)

Where, ρ is the density, ui is the velocity component in the xi direction, ν and νt are

the laminar and turbulent viscosity, p is the pressure, gi is the gravitational acceleration,

f is the mixture fraction and τkk is the isotropic part of the sub-grid scale tensor. The

laminar and turbulent Schmidt numbers σ and σt were set to 0.7 and 0.4 respectively

[39].

For unclosed terms in the momentum and the mixture fraction equations, the sub-grid

scale contribution is modelled via turbulent eddy viscosity νt by applying a Smagorin-

sky [42] eddy viscosity model.

νt = Cs∆
2 |Sij| = Cs∆

2

∣∣∣∣
1

2
(
∂ũi

∂xj
+

∂ũj

∂xi
)

∣∣∣∣ (5)

Where Cs is the model parameter, ∆ is the filter width and Sij is the strain rate tensor.

The isotropic part of the stress tensor included into the pressure correction equation such

that P = p− 1

3
τkk. The Smagorinsky model parameter Cs is dynamically calculated using

the localised dynamic procedure of Piomelli & Liu [37]. Since the chemical reactions occur
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in sub-grid scale, modelling is required for the combustion. In this work we used the

mixture fraction based approach with an assumed beta pdf. A steady laminar flamelet is

used as a combustion model and thermo-chemical variables such as density, temperature

are evaluated using Favre filtered mixture fraction, mixture fraction variance and scalar

dissipation rate. The gradient transport model is used for the calculation of mixture

fraction variance. The flamelets were generated using Flamemaster code [38] with the

incorporation of detailed chemistry mechanism, GRI 2.11 [5].

4 Numerical Computation

The resultant governing equations and boundary conditions are numerically solved by

means of a pressure based finite volume methodology on Cartesian coordinate system.

All simulations were performed using the LES code PUFFIN originally developed by

Kirkpatrick et al. [27] and later extended by Ranga Dinesh [12, 13]. Second order cen-

tral differences (CDS) are used for the spatial discretisation of all terms in both the

momentum equation and the pressure correction equation. This minimises the projec-

tion error and ensures convergence in conjunction with an iterative solver. The diffusion

terms of the mixture fraction transport equation are also discretised using the second

order CDS. However, the convection term in the mixture fraction transport equation

is discretised using a Simple High Accuracy Resolution Program (SHARP) developed

by Leonard [30]. The time derivative of the mixture fraction is approximated using

the Crank-Nicolson scheme. The momentum equations are integrated in time using a

second order hybrid scheme. Advection terms are calculated explicitly using second or-

der Adams-Bashforth while diffusion terms are calculated implicitly using second order

Adams-Moulton to yield an approximate solution for the velocity field and finally the

mass conservation is enforced through a pressure correction step. Several outer iterations

(8-10) are used to achieve the convergence for each time step and time steps are advanced

with variable Courant number in the range of 0.3-0.6. The Bi-Conjugate Gradient Sta-
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bilized (BiCGStab) method with a Modified Strongly Implicit (MSI) preconditioner is

used to solve the system of algebraic equations resulting from the discretisation.

All three simulations for flames SM1, SM1a and SM1b were performed on Cartesian

grids with the dimension of 300 × 300 × 250 mm in x,y and z directions by employing

3.4 million cells. The inlet mean velocity profiles are generated from the power law such

that

<U>= C0Uj

(
1 −

r

1.01 · rj

)1/7

(6)

Where Uj is the bulk velocity, r is the radial distance from the jet centre line and rj is the

fuel jet radius of 1.8mm. The scale 1.01 is introduced to ensure that velocity gradients

are finite at the walls. Similar format is used for the primary annulus with Uj replaced

by bulk axial velocity Us and bulk swirling velocity Wj and r being the radial distance

from the centre of the primary annulus.

The velocity fluctuations for both axial and swirl components are generated from a

Gaussian random number generator and added them to the mean velocity profiles. A

top hat profile is used as the inflow condition for the mixture fraction. A free slip

boundary conditions is applied at the solid walls and at the outflow place, a convective

boundary condition is used for the velocities and a zero normal gradient is used for the

mixture fraction. Simulations were performed for a sufficient time to achieve convergence

before store data for the intermittency calculation.

5 Results and Discussion

This section presents a detailed description of the computed pdf distributions and radial

variation of intermittency fields for the velocity, mixture fraction and temperature for

three different flames. The considered flames were SM1, SM1a and SM1b with swirl
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numbers 0.5, 0.75 and 1.0 respectively. The intention is to study the effects of swirl on

turbulent intermittency and scalar mixing in the presence of precession, recirculation

and vortex breakdown. Our earlier LES investigations on SM1 flame found good quali-

tative comparisons for velocity and scalar fields with experimental measurements [33] by

capturing the bluff body stabilised recirculation zone, the downstream VB bubble and

also investigated the centre jet precession and PVC structures along with power spectra

analysis [14]. Therefore, the present work continues the previous investigations to study

the influence of swirl on turbulent intermittency aiming for further improvement of tack-

ling combustion intermittency such as the characteristics of scalar dissipation rate and

unsteady strain in turbulent non-premixed combustion with complex flow conditions.

Various methods are available to determine the intermittency factor (γ) in a heated flow

for variables such as velocity, passive and active scalars [3, 47]. The following section

provides a brief discussion of the intermittency calculation procedure used in this work.

The most common method is to estimate a pdf by computing a normalised histogram.

This method assumes that the pdf is smooth at the scale of one histogram bin. By

applying this procedure, the pdfs were calculated from no less than 4000 measurements

at each spatial location using 50 bins equally spaced over the 3 − σ limits of the data.

The distributions are normalised hence

∫
1

0

P (f) df = 1 (7)

Therefore the intermittency for velocity, mixture fraction and temperature can be defined

as the fraction of time that the variable value is greater than an arbitrary threshold value.

The corresponding intermittency is calculated from the probability density distribution

of the instantaneous values. For example if select a threshold value of fth for variable

f , the area under the probability density distribution relates to the intermittency such

that:
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γ = P (f > fth) (8)

Figures 2-4 show snapshots of the flame temperature for SM1, SM1a and SM1b respec-

tively. All three flames show high temperature regions on the boundary of the first bluff

body stabilised recirculation zone and further downstream near the centreline region

inside the second downstream recirculation zone. The small neck region is visible for

SM1 flame near x=60mm (downstream from the burner exit plane) which has also been

observed by the experimental data [23]. Moreover, all three flames show stagnation re-

gions in the upstream first recirculation zone where the mean axial velocity is zero just

above 40mm and for the downstream second recirculation zone where the axial velocity

on the centreline is below zero around x=70-130mm depend on the strength of the swirl.

Therefore this work focuses on four important axial positions to produce pdf and radial

variation of intermittency for velocity, mixture fraction and temperature. The first axial

location selected inside the bluff body stabilised recirculation zone (x=30mm), the sec-

ond location situated between upstream and downstream recirculation zones (x=55mm),

the third axial location is inside the downstream recirculation zone (x=100mm) and the

fourth axial location further downstream and on the boundary of the downstream recir-

culation zone (x=155mm). The selected axial locations are marked in each figure. The

pdfs for velocity, mixture fraction and temperature at each axial locations (x=30, 55,

100, 155mm) are generated for equal radial distances (r=0, 12, 24, 32mm).

5.1 Velocity Intermittency

Figures 5-8 show the pdf of axial velocity at x=30, 55, 100 and 155mm respectively.

The pdfs of velocity for all three swirl numbers show similar variation for many radial

locations at both axial locations. As seen in Fig. 5, the pdf at x=30mm show similar

variation for all three cases at r=0, 12mm, but start to deviate at far radial locations

(r=24, 32mm) due to high centrifugal forces at the higher swirl number. The pdfs of
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velocity at x=55mm (Fig. 6) again show similar variation near the centreline and start

to deviate at far radial locations. However as seen in both Figs. 7 and 8, the results show

similar variation even at far radial locations. It is important to note that both LES and

experimental results observed that the centre jet has an irregular random motion and

the large scale wobbling motion of the jet tip for flame SM1 [14]. Since the centre jet

axially extentds closer to x=30mm, the pdfs of velocity on the centreline at x=30mm

show a non-Gaussian behaviour (r=0mm) due to direct impact of wobbling motion of

the centre jet tip. However, all figures at remaining axial locations (x=55, 100, 155mm)

show that the pdfs near the centreline follow the Gaussian shape and then move to a delta

function at far radial locations. Moreover, close to the centre-line (r=0, 12mm) these

distributions are relatively broad and generally Gaussian, whereas with increasing radial

distance they narrow and ultimately form spikes on the co-flow velocity (r=32mm). The

pdfs of velocity also show more rapid decay in the axial velocity with increasing radial

distance (Figs. 5-8). This can be expected as the axial variation of both the upstream

and downstream recirculation zones vary with respect to swirl number. The pdfs of

velocity further indicate that the coupling between turbulence and heat release in the

presence of precession and recirculation could form different intermittent regimes closer

to the centreline contrast to the turbulent jet flame where intermittency can expect near

the outer region.

Figure 9 shows the radial profiles of velocity intermittency at x=30, 55, 100 and 155mm

respectively. Since the burner has a secondary co-flow velocity of 20 m/s, the calculation

used a threshold value of uth = 10 m/s (half of the secondary axial co-flow velocity).

The variation of the intermittency values indicate the effect of swirl on turbulent to non-

turbulent phenomena with respect to a given threshold value. As expected, differences of

the velocity intermittency appears mainly near the centreline region. For example, Fig. 9

shows little effect of swirl on the velocity intermittency near the centreline inside the bluff

body stabilised recirculation zone (x=30mm). However, the effect of swirl on velocity

intermittency is apparent at the other axial locations such as between two recirculation
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regions (x=55mm), inside the second recirculation region (x=100mm) and downstream

boundary of the second recirculation region (x=155mm). The effect of swirl on velocity

intermittency also indicates the phenomena of small scale turbulent fluctuation which

is an important issue for the temperature intermittency. However, the radial profiles of

velocity intermittency follows a similar shape distribution at far radial positions at all

considered axial locations. This can be expected due to co-flow velocity of 20 m/s which

is twice as a considered threshold value (10 m/s) for deriving velocity intermittency.

5.2 Mixture Fraction Intermittency

In Figs. 10-13 the pdfs of the mixture fraction is displayed at axial locations x=30, 50,

100 and 150mm respectively. These results are qualitatively similar to those derived

from the velocity pdfs. The centreline mixture fraction pdfs at x=30mm (Fig. 10) show

non-Gaussian behaviour due to the centre jet precession and thus indicate important

characteristics of mixing compared to the standard Gaussian behaviour of a turbulent jet

diffusion flame. However, as expected the centreline non-Gaussian is gradually converted

to Gaussian at far downstream axial locations (Figs. 11, 12, Figs. 13). The mixture

fraction pdfs plots indicate that the high swirl (S=1.0) indicates more mixing even at

far radial locations (r=24, 32mm) for all selected axial positions. The Gaussian shapes

of pdfs eventually fall into delta function at far radial axial locations.

Figure 14 shows the radial profiles of intermittency at x=30, 55, 100 and 155mm respec-

tively. The present study used a threshold value of fth = 0.054 with a stoichiometric

mixture fraction for pure methane SM1 swirling flame [23, 34]. The intermittency val-

ues follow Gaussian shape at all axial locations. The effect of swirl on mixture fraction

intermittency is minimum at first three axial locations for the selected threshold value.

However, as seen in Fig. 14 the swirl starts to affect the mixture fraction intermittency

at far downstream axial location (x=155mm) due to lower turbulence for low swirl case

(S=0.5) and the turbulence is gradually improved for increased swirl numbers (S=0.75,
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1.0)

5.3 Temperature Intermittency

The pdfs of temperature at x=30, 55, 100 and 155mm are shown in Figs. 15-18. Al-

though the time averaged mean temperature field for SM1 flame shows good agreement

with the experimental data [33], the instantaneous pdfs of temperature values show in-

teresting variation from the centreline to far radial locations and thus indicate a sign of

temperature intermittency for certain regions of the flame. Again, similar to velocity and

mixture fraction the temperature field follows the non-Gaussian shape on the centreline

at x=30mm (Fig. 15). However, at x=55mm the pdf of temperature follows a Gaussian

shape on the centreline and then changing to a delta function at far radial locations.

The effect of swirl is also apparent at far radial locations as temperature pdf shows an

intermediate shape between Gaussian and delta function at both r=24mm and 32mm

for high swirl number (S=1.0). It is also important to note that the small variation of

mixture fraction could lead to a variation of temperature as a result of using the steady

laminar flamelet model. Therefore the pdf variation of mixture fraction is directly linked

to the pdf of temperature and thus form a non-Gaussian shape. Additionally the increase

in swirl number has an effect on flame temperature in a region close to the centreline

(r=0mm and 12mm) and also at far radial locations (r=24mm). The variation of the

temperature pdfs at intermediate radial locations between two recirculation zones and

inside a vortex breakdown bubble (Figs. 17, 18) may be subjected to high shear effects

and rapid variation of the turbulence intensities, which forms a different shape between

the Gaussian distribution and the delta function.

Figure 19 shows the radial variation of intermittency for temperature at x=30, 55, 100

and 150mm respectively. Here we have used a threshold value of th = 750 k which is

approximately half the value of the maximum mean temperature calculated from the

simulation. As seen in Fig. 19, the centreline intermittency values show less than unity
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and thus indicate a sort of reduced temperature with respect to a threshold value for

all three cases. This has been observed inside the upstream recirculation zone where

turbulence can play a vital role with the presence of counter rotating vortices. The

temperature intermittency at the axial location x=55mm shows non-smoothness for all

three flames at particular radial locations where rapid changes of the velocity fluctuations

occur. This resulted from the mixture fraction variance which linked to rapid velocity

fluctuations in the region between two recirculation zones.

In summary the swirling flames considered for the intermittency investigations having

complex flow structures where there are two recirculation zones (bluff body stabilised

and swirl induced), collar-like flow structure and also centre jet precession behaviour.

Therefore, these flames exhibit a number of high shear layers and important flow regimes

where the coupling of swirl-turbulent-chemistry plays an important role and here we have

discussed the intermittent nature of turbulent swirling flames using localised dynamic

LES subgrid turbulence model and steady laminar flamelet combustion model. However,

using a steady laminar flamelet model might restrict the combustion physics of intermit-

tent behaviour especially for the temperature field and more advanced flamelet based

models such as, unsteady flamelet model, flamelet progress variable approach may be

promising to identify intermittency of the scalar dissipation rate (unsteady strains) and

thus temperature of complex swirling flames.

6 Conclusions

A large eddy simulation has been applied to study the effect of swirl on intermittency of

turbulent non-premixed flames. Probability density functions and intermittency profiles

have been generated for velocity, mixture fraction and temperature. Derived probability

density functions show changes from Gaussian shape to delta function with increased

radial distance at several selected axial locations. However, non-Gaussian behaviour pdf

is also observed on the centreline in a region where centre jet precession occurs. The vari-

15



ation from turbulent to non-turbulent phenomena for a given threshold value is always

predicted to be more rapid for the velocity due to the formation of recirculation zones.

The differences of the intermittency in velocity and scalars for a complex swirling flame

in the presence of one or more recirculation zones and precession motion demonstrate

the uncertainties in turbulent/non-turbulent phenomena and its direct effect on chemical

reaction and heat release. Therefore more investigations should be carried out to outline

relations between intermittency and the rate of turbulent and molecular mixing rates for

complex and practically relevant turbulent swirling flames.
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Figure 1: Schematic of the swirl burner

22



Radial distance (m)

A
xi

al
di

st
an

ce
(m

)

0 0.10

0.05

0.1

0.15

0.2

0.25

1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400

T(k)

x=30mm

x=55mm

x=100mm

x=155mm

Figure 2: Snapshot of SM1 flame temperature
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Figure 3: Snapshot of SM1a flame temperature
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Figure 4: Snapshot of SM1b flame temperature
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Figure 5: Comparisons of velocity pdfs at x=30mm at equidistant radial locations (a),
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numbers 0.5, 0.75 and 1.0
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Figure 6: Comparisons of velocity pdfs at x=55mm at equidistant radial locations (a),
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Figure 7: Comparisons of velocity pdfs at x=100mm at equidistant radial locations (a),
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Figure 13: Comparisons of mixture fraction pdfs at x=155mm at equidistant radial
locations (a), (b), (c) and (d). Here circles, squares and inverted triangles denote results
for swirl numbers 0.5, 0.75 and 1.0

34



r/D

G
am

m
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1 x=30mm

r/D
0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1 x=55mm

r/D

G
am

m
a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1 x=100mm

r/D
0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1 x=155mm

Figure 14: Radial profiles of mixture fraction intermittency at (a) x=30mm, (b)
x=55mm, (c) x=100mm and (d) x=155mm. Here circles, squares and inverted triangles
denote results for swirl numbers 0.5, 0.75 and 1.0

35



t

p
df

(t
)

500 1000 1500 20000

2

4

6

8

10

r=0mm

t
500 1000 1500 20000

2

4

6

8 r=12mm

t

pd
f(

t)

500 10000

2

4

6

8

10

r=24mm

t
290 295 300 305 3100

2

4

6

8

10

r=32mm

Figure 15: Comparisons of temperature pdfs at x=30mm at equidistant radial locations
(a), (b), (c) and (d). Here circles, squares and inverted triangles denote results for swirl
numbers 0.5, 0.75 and 1.0
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Figure 16: Comparisons of temperature pdfs at x=55mm at equidistant radial locations
(a), (b), (c) and (d). Here circles, squares and inverted triangles denote results for swirl
numbers 0.5, 0.75 and 1.0
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Figure 17: Comparisons of temperature pdfs at x=100mm at equidistant radial locations
(a), (b), (c) and (d). Here circles, squares and inverted triangles denote results for swirl
numbers 0.5, 0.75 and 1.0
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Figure 18: Comparisons of temperature pdfs at x=155mm at equidistant radial locations
(a), (b), (c) and (d). Here circles, squares and inverted triangles denote results for swirl
numbers 0.5, 0.75 and 1.0
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Figure 19: Radial profiles of temperature intermittency at (a) x=30mm, (b) x=55mm,
(c) x=100mm and (d) x=155mm. Here circles, squares and inverted triangles denote
results for swirl numbers 0.5, 0.75 and 1.0
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