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Abstract8

This study was undertaken to evaluate the effects of moisture content (MC) and texture on9

the prediction of soil organic carbon (OC) and total nitrogen (TN) with visible and near10

infrared (vis-NIR) spectroscopy under laboratory and on-line measurement conditions. An11

AgroSpec spectrophotometer was used to develop calibration models of OC and TN using12

laboratory scanned spectra of fresh and processed soil samples collected from five fields on13

Silsoe Farm, UK. A previously developed on-line vis-NIR sensor was used to scan these14

fields. Based on residual prediction deviation (RPD), which is the standard deviation of the15

prediction set (S.D.) divided by the root mean square error of prediction (RMSEP), the16

validation of partial least squares (PLS) models of OC and TN prediction using on-line17

spectra was evaluated as very good (RPD = 2.01 - 2.24) and good to excellent (RPD = 1.86 -18

2.58), respectively. A better accuracy was obtained with fresh soil samples for OC (RPD =19

2.11 - 2.34) and TN (RPD = 1.91 - 2.64), whereas the best accuracy for OC (RPD = 2.66 -20

3.39) and TN (RPD = 2.85 - 3.45) was obtained for processed soil samples. Results also21

showed that MC is the main factor that decreases measurement accuracy of both on-line and22

fresh samples, whilst the accuracy was greatest for soils of high clay content. It is23
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recommended that measurements of TN and OC under on-line and laboratory fresh soil24

conditions are made when soils are dry, particularly in fields with high clay content.25
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1. Introduction31

Soil organic carbon (OC) is a key property for soil function, soil quality maintenance, plant32

nutrition supply and soil water holding capacity (Flessa et al., 2000). It is the major33

component of soil organic matter, which is important in all soil processes. Shortages of OC34

result in decline of soil quality and crop production over the field. There is a continuous35

cycling of OC in soils that is not uniform and depends mostly on land use and land36

management systems. Even small changes in OC stocks are associated with important CO237

fluxes between terrestrial ecosystems and the atmosphere (Stevens et al., 2006). Soil OC is38

also an important component when considering soil resistance to wind and water erosion39

(Morgan, 2005). Nitrogen is an important nutrient for plants and sufficient N fertiliser40

application is critical for optimal plant growth and development. Nitrogen is a major41

component in chlorophyll and therefore essential for photosynthesis and crop protein.42

However, over-application of N fertilisers results not only in economic losses but also43

potential ground water contamination. Nitrate leaching from land to ground water and stream44

water causes depletion of soil minerals, acidifies soils and affects downstream freshwater and45

coastal marine ecosystems (Vitousek et al., 1997). Determination of within field variation in46

soil OC and TN at high resolution sampling might assist management of these properties in47

agronomic and environmental systems.48



3

During the last two decades, visible and near infrared (vis-NIR) spectroscopy has proved to49

be a fast, cost-effective, non-destructive and relatively accurate alternative to the traditional50

laboratory analytical methods for measuring soil physical, chemical and biological properties51

(Shepherd and Walsh, 2002; Brown et al., 2006; Wetterlind et al., 2008; Mouazen et al.,52

2010). Although the application of vis-NIR spectroscopy has considerably reduced the labour53

and time requirements for the analysis, sample preparation for laboratory analysis including54

grinding and sieving is still tedious. Calibration models developed from processed (dried,55

ground and sieved) samples cannot be utilised for fresh soil samples and on-line56

measurements with vis-NIR spectroscopy, since these measurements are performed with57

unprocessed soils (Mouazen et al., 2005). Although MC can be successfully measured with58

vis-NIR spectroscopy, it is considered as one of the most critical factors that decreases the59

accuracy of measurement of other soil properties (Bogrekci and Lee, 2006; Minasny et al.60

2011; Mouazen et al. 2006a; Sudduth and Hummel, 1993). Modifications for removing the61

influence of MC on the accuracy of vis-NIR measurement of other soil properties have been62

considered by the classification of samples into different MC groups (Mouazen et al. 2006a),63

adoption of an external parameter orthogonalisation (EPO) algorithm (Minasny et al. 2011),64

construction of processed soil spectra from raw spectra (Bogrekci and Lee, 2005) and drying65

of soil samples to remove MC (Ben-Dor and Banin, 1995; Chang et al., 2001). Most reports66

showed that the highest accuracy is to be expected when dried soil samples are used67

(Mouazen et al., 2006b; Tekin et al., 2011). Unfortunately, for fresh soil and on-line68

measurements, calibration models should be developed based on vis-NIR scanning of fresh69

soil samples.70

Apart from soil MC, soil texture is the other main factor to affect accuracy of vis-NIR71

spectroscopy. Using processed soil samples in the laboratory, Stenberg (2010) concluded that72

predictions of OC were most inaccurate for soils with a high sand content. Cozzolino and73
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Moron (2006) found mixed results for different textures, with coefficients of determination in74

calibration and standard errors in cross validation of 0.90 and 0.6, 0.92 and 0.4 and 0.96 and75

2.1 for coarse-sand C, fine-sand C and clay + silt C, respectively. All the above literature76

considered the single effect of MC or texture on the prediction of soil organic matter or OC.77

The interaction effect of MC and texture fractions on prediction accuracy of OC and TN at78

farm scale has not been studied so far. Accuracy of measurement under different79

measurement conditions as affected by texture fractions and MC variation has not been80

reported. Furthermore, to our knowledge, no reports studying these effects on models’81

performance using spectra collected on-line can be found in the literature.82

The objective of this paper is to understand and quantify the individual and interaction effects83

of MC and soil texture on the performance of vis-NIR calibration models for the prediction of84

soil OC and TN for laboratory scanned fresh soil and on-line field measurements. This has85

the goal of improving the measurement performance of the vis-NIR sensor at farm scale.86

87

2. Material and methods88

89

2.1. Soil samples90

A total of 174 soil samples were used in this study. They were collected in summer 200991

from five fields on Silsoe Farm, UK (Fig. 1) with variable soil texture and cropping (Table 1).92

The soils in these five fields are from the same mother material and have been subjected to93

similar farm management practices. Soil samples were collected from the surface layer at the94

bottom of a 15 cm deep trench, opened by a tractor-drawn subsoiler during on-line95

measurement. Around 200 g soil was taken from each soil sample and placed into a tightly96

sealed plastic bag to hold field moisture. The soil samples were then transported to the soil97

laboratory in Cranfield University, where they were stored deep frozen (-18 °C) until analysis.98
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After defrosting and thorough mixing, each soil sample was divided into two equal parts. One99

part was used for MC measurement by oven drying at 105 °C for 24 hours. The fresh soil100

(wet and unprocessed) was scanned with a vis-NIR spectrophotometer before drying. This101

scanning was designated as laboratory scanning of fresh soil samples. The other part of the102

soil was dried at 45°C and sieved with a 2 mm sieve, before it was scanned with a vis-NIR103

spectrophotometer. This was designated as laboratory scanning of processed soil samples.104

This part was also used to determine soil OC, TN and texture by standard laboratory analyses.105

106

2.2. Laboratory analyses107

108

Laboratory analysis of OC and TN was carried out with a TrusSpecCNS spectrometer (LECO109

Corporation, St. Joseph, MI, USA) using the Dumas combustion method. Soil texture was110

measured with sieving and sedimentation methods, according to BS 7755 Section 5.4 (BSI,111

1998). The particle size distribution (PSD) analysis of each field was based on a mixed112

sample collected from each field. Soil texture was classified according to the United State113

Department of Agriculture (USDA) classification system.114

115

2.3. On-line measurement116

117

The on-line vis-NIR sensor designed and developed by Mouazen (2006) was used (Fig. 2) to118

carry out the field measurements. It consists of a subsoiler that penetrates the soil to the119

required depth, making a trench, whose bottom is smoothened due to the downwards forces120

acting on the subsoiler (Mouazen et al., 2005). The optical probe, housed in a steel lens121
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holder, was attached to the rear of the subsoiler chisel to acquire soil spectra in reflectance122

mode from the smooth bottom of the trench. The subsoiler, retrofitted with the optical unit,123

was attached to a frame that was mounted onto the three point hitch of the tractor (Mouazen124

et al., 2005). An AgroSpec mobile, fibre type, vis-NIR spectrophotometer (tec5 Technology125

for Spectroscopy, Germany) with a measurement range of 305-2200 nm was used to measure126

soil spectra in diffuse reflectance mode. The spectrophotometer was IP66 (ingress protection)127

protected for harsh working environments. Although this spectrophotometer does not cover128

the entire wavelength range in the NIR region, it was selected in this study as it uses diode129

array detectors, which have been proven to be stable under on-line measurement conditions130

(Mouazen et al., 2009). A 20 W halogen lamp was used as a light source. A 100 % white131

reference was used before scanning, and this was repeated every 30 min. A differential global132

positioning system (DGPS) (EZ-Guide 250, Trimble, USA) was used to record the position133

of the on-line measured spectra with sub-metre accuracy. A Panasonic semi-rugged laptop134

was used for data logging and communication. The spectrometer system, laptop and DGPS135

were powered by the tractor battery. A New Holland T5000 tractor with 100 Ah battery was136

used. The total power consumption for all electrical parts of the on-line vis-NIR sensor was137

around 60 W.138

The on-line sensor was used to measure five fields on Silsoe Farm in the UK (Fig. 1) in139

summer 2009, namely Avenue, Orchard, Ivy Ground, Shoeground and Copse fields. In each140

field, blocks of 150 m by 200 m, covering 3 ha of land were measured. Each measured line141

was 200 m long with 10 m intervals between adjacent transects. The forward speed of the142

tractor was around 2 km h-1 and the measurement depth was set at 150 mm. During each line143

measurement, two or three soil samples were collected from the bottom of the trench and the144

sampling positions were carefully recorded.145

146
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2.4. Optical measurement147

148

Scanning of soil samples took place under fresh (unprocessed) and processed (dried and149

sieved) conditions. Samples were placed in glass containers and mixed well, with big stones150

and plant residues excluded. Then each soil sample was placed into three Petri dishes which151

were 2 cm deep and 2 cm in radius. The soil in the Petri cup was shaken and pressed gently152

before levelling with a spatula. A smooth soil surface ensures maximum light reflection and153

high signal to noise ratio (Mouazen et al., 2005). The soil samples were scanned in diffuse154

reflectance mode by the same vis-NIR spectrophotometer (AgroSpec from tec5 Technology155

for Spectroscopy, Germany). A total of 10 scans were collected from each triplicate, and156

these were averaged in one spectrum.157

158

2.5. Data pre-treatment and establishment of calibration models159

160

The data set contained averaged spectra for each sample and was subjected to noise cut to161

remove the noisy part of spectra on both sides, reducing the wavelength range to 371 - 1900162

nm. A 3-point (wavelength) average was applied in the visible wavelength range and 10-point163

average was applied in the infrared wavelength range to reduce the number of wavelengths164

and smooth the spectra. This was followed successively by Savitzky-Golay (S-G) smoothing,165

maximum normalisation and first derivative with S-G method. A 2:2 smoothing was first166

carried out to remove noise from the measured spectra. Normalisation is typically used to get167

all data to approximately the same scale, or to get a more even distribution of the variances168

and the average values. The maximum normalisation method adopted in this study is a169
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normalisation that “polarises” the spectra. The peaks of all spectra with positive values scale170

to +1, while spectra with negative values scale to -1. Since all the soil spectra in this study171

had positive values, the peaks of these spectra scaled to +1 (Mouazen, et al., 2006a). The172

maximum normalisation led to better results for the measurement of OC and TN, as173

compared to the other pre-treatment options tested including mean and peak normalisation.174

Spectra were then subjected to Savitzky-Golay first derivative (Martens and Naes, 1989).175

This method enables the first or higher-order derivatives, including a smoothing factor, to be176

computed which determines how many adjacent variables will be used to estimate the177

polynomial approximation used for derivatives. A second order polynomial approximation178

was selected. The same pre-treatment was used for both OC and TN models, and was carried179

out using Unscrambler 7.8 software (Camo Inc.; Oslo, Norway).180

The pre-treated soil spectra of processed and fresh samples and the laboratory chemical181

measurement of OC and TN were used to develop calibration models of OC and TN. Out of182

the total 174 samples, 60 % of samples collected from each field were used for the183

development of calibration models (104 samples), whereas the remaining 40 % of samples184

from each field were used as prediction set (70 samples) (Table 2). The calibration spectra185

were modelled using a partial least squares regression (PLSR) with leave-one-out cross186

validation using Unscrambler 7.8 software (Camo Inc.; Oslo, Norway). The resulting187

accuracy is reported in Table 3 for the laboratory processed and fresh sample and on-line188

measurements. A flow diagram explaining different steps performed from on-line field189

measurement to model validation with three prediction sets is shown in Fig. (3).190

191

2.6. Statistical evaluation of model calibration and prediction192
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Both root mean square error of prediction (RMSEP) and residual prediction deviation (RPD),193

which is the ratio of the standard deviation of prediction set (S.D.) to RMSEP, were used to194

compare the prediction accuracy of OC and TN models for processed soils, fresh soils and for195

on-line measurement. Viscarra Rossel et al. (2006) classified RPD values as follows:196

RPD<1.0 indicates very poor model/predictions and their use is not recommended; RPD197

between 1.0 and 1.4 indicates poor model/predictions where only high and low values are198

distinguishable; RPD between 1.4 and 1.8 indicates fair model/predictions which may be199

used for assessment and correlation; RPD values between 1.8 and 2.0 indicates good200

model/predictions where quantitative predictions are possible; RPD between 2.0 and 2.5201

indicates very good, quantitative model/predictions, and RPD>2.5 indicates excellent202

model/predictions. This classification system was adopted in this study. Furthermore, to203

evaluate how significant are the separate effects of MC and texture fractions on the prediction204

accuracy of OC and TN, one way univariate analysis of variance (ANOVA) of between-205

subjects effects was carried out considering RPD and RMSEP for the prediction set as206

accuracy indicators. The interaction effects between MC and soil texture fractions were207

evaluated with two-way ANOVA. Both ANOVA analyses were performed using Office 2007208

(Microsoft, WD, USA)209

210

3. Results and discussion211

212

3.1. Analysis of soil spectra213

214

To distinguish and group soil spectra from each field, principal component analysis (PCA)215

was carried out using raw soil spectra collected in the laboratory from fresh soil samples. The216
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first two principal components (PCs) accounted for 97 % of total variance with the first PC217

accounting for 92 % of total variance (Fig. 4a). Three groups of soil samples can be observed,218

which are separated along principal component 1 (PC1), namely, sandy (Avenue and219

Shoeground), loam (Orchard) and clay (Ivy Ground and Copse) groups. However, separation220

between two pairs of fields (e.g. Avenue and Shoeground, and Ivy Ground and Copse) from221

the same group can also be observed, with minimal overlapping of samples. These222

separations occur along PC2, and might be explained by the different MC in these fields. This223

is supported by the spectral pattern PC2 (Fig. 4b) obtained from the PCA, where the water224

absorption band (at 950, 1450 and 1950 nm) can be clearly observed as peaks on spectral225

pattern 2. This implies that there is soil moisture and texture information in the vis-NIR soil226

spectra, which will potentially influence the soil vis-NIR measurement of soil properties.227

To analyse the soil MC and soil texture effects on the soil vis-NIR spectra, the average228

spectra of each field under fresh and processed conditions are shown in Fig. 5. This Figure229

explains differences in MC and texture of each field, which is reflected in and in line with the230

PCA plot shown in Fig. 4a. It can be clearly observed that the processed soil absorbs less231

light energy (larger reflectance), when compared to fresh soils from the same field. Also, the232

clay soils of Ivy Ground and Copse fields have smaller reflectance (larger apparent233

absorption) in the NIR spectral range than those of loamy soils (Orchard field) and sandy234

soils (Avenue and Shoeground fields). Due to the interaction effect of MC and texture,235

average reflectance in the vis-NIR range differs between processed and fresh soil samples236

(Fig. 5).237

238

3.2. Prediction accuracy of models with fresh soil samples239

240
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Tables 3 summarises the RMSEP and RPD values of PLS in cross-validation and prediction241

using spectra of fresh soil samples from the prediction set for each field. According to RPD242

limits of accuracy proposed by Viscarra Rossel et al. (2006), the accuracy of the prediction of243

OC in the prediction set is evaluated as very good with RPD values ranging from 2.11-2.34 in244

all five fields. The accuracy for TN prediction is evaluated as good to excellent with larger245

range of RPD of 1.91-2.68.246

Successful vis-NIR calibration models with fresh soil samples have been reported for OC247

(Fystro et al., 2002; Mouazen et al., 2010; Kuang et al., 2011) with variable accuracy (RPD =248

1.3 - 4.95, RMSEP = 2.9 - 14 g kg-1). However, the RMSEP values obtained in this study249

(RMSEP = 1.23 – 1.83 g kg-1) are considerably lower than those reported in the literature,250

suggesting a better prediction accuracy. Other studies have reported successful calibration of251

vis-NIR spectroscopy for TN with fresh soil samples (Chang et al., 2005; Cohen et al., 2005;252

Mouazen et al., 2006b; Awiti et al., 2008) with high accuracy (RPD = 2.1 - 3.88 and RMSEP253

= 0.2 - 0.6 g kg-1), comparable to those obtained in the current study (Table 3). Using fresh254

soil samples, Fystro (2002) has reported less accuracy for the prediction of TN than was255

obtained in the current study, although their RMSE values were based on cross-validation256

procedure.257

258

3.3. On-line prediction accuracy of models with fresh soil samples259

260

As soil organic matter (SOM) or OC is essential for soil management and carbon261

sequestration, these have been the main properties considered for on-line vis-NIR262

measurement (Shonk et al., 1991; Shibusawa et al., 2001; Hummel et al., 2001; Christy et al.,263

2008; Mouazen et al., 2007; Bricklemyer et al., 2010). Although there is significant spectral264
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information for carbon in both vis and NIR spectral ranges, only few moderately successful265

cases for on-line measurement have been reported so far (Hummel et al., 2001; Christy et al.,266

2008). This might be attributed to the affecting factors during on-line measurement, including267

noise associated with tractor vibration, sensor-to-soil distance variation (Mouazen et al.,268

2009), stones and plant roots, and difficulties in matching the position of soil samples269

collected for validation with corresponding spectra collected from the same position270

(Mouazen et al., 2007). Compared to the on-line sensing of SOM or OC, there have been271

even fewer studies of TN that can be found in the literature (Mouazen et al., 2007; Christy et272

al., 2008). Only Christy et al., (2008) achieved high accuracy for TN (coefficient of273

determination (R2) = 0.86) for a field scale calibration. This was not confirmed to be stable274

for different fields, though it is in the current study where on-line validation is classified as275

good to very good in the five measured fields (Table 3). Actually, there is high correlation276

between OC and TN, because N content in soil is almost entirely dependent on the organic277

matter content, and the overall TN:OC ratio is 1:10 (Martin et al., 2002).278

279

3.4. Prediction accuracy with models of processed soil samples280

281

Overall, after MC removal, the accuracy of OC and TN prediction is considerably282

improved compared to that for the fresh soil samples and on-line predictions, not only in the283

cross-validation, but also in prediction sets of the five measured fields. Therefore, with284

processed soil samples, the models of OC and TN are classified as giving excellent accuracy285

(Table 3). This confirms that soil MC decreases the accuracy of prediction of OC and TN286

with vis-NIR spectroscopy. The measurement of soil OC can be classified as excellent for287

both cross-validation (RPD = 3.36) and prediction sets of 5 measured fields (RPD = 2.66 -288
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3.39, RMSEP = 0.76 – 1.60 g kg-1), which is better accuracy than achieved in previous289

studies (Dunn et al., 2002; Fidencio et al., 2002; Shepherd & Walsh. 2002; Chang et al., 2005;290

Brown et al., 2006). The measurement accuracy of TN is even better, which can also be291

classified as excellent for cross-validation (RPD = 3.84) and prediction sets of five measured292

fields (RPD = 2.85 - 3.45, RMSEP = 0.08 - 0.1 g kg-1), comparable to those obtained in293

previous studies (Dalal and Henry, 1986; Vagen et al., 2006; Guerrero et al., 2010).294

295

3.5. Interactions of soil moisture content and texture on prediction accuracy296

297

Figures 5 and 6 illustrate the effect of soil MC and texture (in terms of soil clay content) on298

the measurement accuracy of soil OC and TN, respectively. For fresh soil condition, the299

increase of field clay content and MC result in a decrease of measurement accuracy of OC300

and TN in terms of RPD. Although the influence of MC on prediction accuracy of OC and301

TN with vis-NIR spectroscopy is in line with other studies (Chang et al., 2005; Mouazen et302

al., 2006b; Tekin et al., 2011), clay content has been found to contribute to enhance303

measurement accuracy (Stenberg, 2010). However, results shown in Figs (6 & 7) suggest that304

clay fraction has the same negative effect as MC on prediction accuracy. When MC is305

removed by considering processed samples, it becomes clear that clay content plays a306

positive role on the accuracy of vis-NIR spectroscopy (Figs 6 & 7). The illusion that with307

increase in clay content, the prediction accuracy of OC and TN deteriorates when using fresh308

soil samples, can be explained by the fact that clay can hold larger amount of water than sand309

due to the large water holding capacity and plasticity index of clay. When processed soil310

samples are used the highest accuracy for OC and TN prediction, measured as RPD, is311

obtained for field with the highest clay content (Copse field), whereas the lowest RPD values312
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is obtained for field with the lowest clay content (Shoeground field). Moreover, as the soil313

clay content increases, the prediction of soil OC in the field improved. Stenberg (2010)314

reported an increase in prediction error of OC with increase in sand content. The author315

proposed that, due to a small surface area in sand as compared to clay, the organic matter is316

more visible. This can be considered as a clay-free soil with a normal small amount of OC317

being more or less black, while a clay soil with the same amount of OC is much brighter318

(when processed). This would be consistent with a general over-prediction of OC in very319

sandy soils.320

Tables 4 and 5 summarise the output of ANOVA, to evaluate how significant the effects of321

MC and soil texture fractions and the interaction between them are on the prediction of OC322

and TN under both fresh soil conditions (Table 4) and on-line (Table 5) measurement323

conditions. In terms of measurement accuracy evaluated as RPD, R2 and RMSEP, MC, clay324

content, silt content and sand content all have significant effects on the prediction of OC325

(p<0.05), with MC has the most significant influence (p = 0.0001 regarding RPD). Tekin et al.326

(2011) found the effect of MC on the prediction of soil OC to be significant when this was327

tested on a data set with mixed texture samples collected from the UK and Turkey, which328

supports the finding of the current study. Further analysis shows that the interaction effects329

between MC and texture are significant for all accuracy standards for both on-line and fresh330

soil samples conditions.331

332

4. Conclusions333

334

This study was carried out to understand and quantify the individual and interaction effects of335

moisture content (MC) and texture fractions on accuracy of organic carbon (OC) and total336

nitrogen (TN) predictions using laboratory-scanned visible and near infrared (vis-NIR)337
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spectra of processed and fresh soil samples and on-line collected spectra. Results obtained338

lead to the following conclusions:339

1. Soil MC, sand and silt fractions have negative influences on measurement accuracy,340

whereas clay content has a positive effect. Soil MC, silt, clay and sand fractions play341

significant role for the prediction of soil OC and TN with the vis-NIR spectroscopy,342

with MC having the most significant influence on both on-line and fresh soil sample343

measurement conditions.344

2. The interaction effects of MC with soil texture were found to be significant for both345

on-line and fresh soil sample measurements, though this was less significant than346

individual effects.347

3. A better accuracy of vis-NIR spectroscopy of soil OC and TN is expected for348

processed clayey than for fresh sandy samples. The worst accuracy is expected in the349

highest clay content soils under the wettest conditions. When measurement is needed350

under both mobile (on-line) or non-mobile conditions, it is recommended to access351

the field under driest possible conditions, particularly in clay fields. Accessing clay352

fields under wet condition may result in the highest expected error, as water holding353

capacity of clay is high. Larger error is to be expected in this case as compared to that354

in fields with light soils.355

356
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Table 1500

Information about test fields on Silsoe Farm, UK501

Field Area,
ha

Crop Sample
Nr

Sand,
%

Silt,
%

Clay,
%

Texture MC,
%

Avenue 3 wheat 28 61.87 20.06 18.07 Sandy loam 13.66

Orchard 2 wheat 26 40.11 27.38 32.51 Clay loam 17.84

Ivy 3 soybean 40 21.14 27.17 51.69 Clay 25.05

Shoeground 4 wheat 40 64.98 20.93 14.09 Sandy loam 13.43

Copse 3 wheat 40 14.55 27.84 57.61 Clay 26.88
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Table 2522

Sample statistics of organic carbon (OC) and total nitrogen (TN) for calibration set and523

prediction set of individual field samples and of all 174 samples collected from five fields524

on Silsoe farm, UK525

Calibration set Prediction set

Field OC, g kg-1 TN, g kg-1 OC, g kg-1 TN, g kg-1

No Min Ma
x

Mean SD Mi
n

Ma
x

Mea
n

SD No Mi
n

Max Mea
n

SD Mi
n

Max Mean SD

Avenue 17 9.4 22 17 4.2 0.9 1.9 1.5 0.35 11 13 18 16 3.8 1.2 1.7 1.5 0.31

Orchard 15 16 22 20 3.9 1.6 2.1 1.9 0.27 11 17 25 20 3.6 1.7 2.0 1.9 0.26

Ivy 24 24 35 28 3.2 2.4 3.1 2.7 0.33 16 27 34 30 2.8 2.2 3.1 2.8 0.28

Shoeground 24 12 20 15 4.4 1.1 1.9 1.4 0.25 16 12 20 16 4.3 1.2 1.9 1.5 0.27

Copse 24 22 29 25 2.8 2.2 2.7 2.5 0.34 16 20 30 26 2.6 1.9 2.6 2.4 0.31

Overall 104 9.4 35 21 7.9 0.9 31 2 0.76 70 13 34 22 7.4 1.2 3.1 2.2 0.72
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Table 3550

551

Validation results of partial least squares (PLS) regression in cross validation (CV) and552

in prediction (P) for the prediction of soil organic carbon (OC) and total nitrogen (TN)553

based on spectra of processed and fresh soil sample and on-line field measurements554

555

Measurement Field OC TN

RMSEP,
g kg-1

RPD SD RMSEP,
g kg-1

RPD SD

CV – Fresh All 3.34 2.36 7.9 0.28 2.71 0.76

CV – Processed All 2.04 3.36 7.9 0.19 3.84 0.76

P – Fresh

Avenue 1.69 2.24 3.8 0.11 2.64 0.31

Orchard 1.66 2.16 3.6 0.11 2.45 0.26

Ivy 1.30 2.15 2.8 0.11 2.17 0.28

Shoeground 1.83 2.34 4.3 0.16 2.68 0.27

Copse 1.23 2.11 2.6 0.16 1.91 0.31

P - On-line

Avenue 1.74 2.18 3.8 0.12 2.51 0.31

Orchard 1.75 2.05 3.6 0.11 2.36 0.26

Ivy 1.40 2.03 2.8 0.13 2.08 0.28

Shoeground 1.90 2.24 4.3 0.10 2.58 0.27

Copse 1.29 2.01 2.6 0.16 1.86 0.31

P – Processed

Avenue 1.32 2.86 3.8 0.1 2.96 0.31

Orchard 1.16 3.08 3.6 0.08 3.15 0.26

Ivy 0.88 3.17 2.8 0.08 3.27 0.28

Shoeground 1.60 2.66 4.3 0.09 2.85 0.27

Copse 0.76 3.39 2.6 0.08 3.45 0.31

RMSEP root mean square error of prediction.556

RPD residual prediction deviation (Standard deviation (SD) / RMSEP).557

558

559

560
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Table 4562

563

Results of univariate analyses of variance (ANOVA) performed on the prediction set to564

evaluate individual and interaction effects of moisture content (MC) and texture on565

prediction accuracy of organic carbon (OC) and total nitrogen (TN) evaluated as566

residual prediction deviation (RPD), and root mean square error of prediction (RMSEP)567

for fresh soil samples568

569

OC TN

Source MS F -ratio p-value MS F -ratio p-value

RPD

MC 737.19 37.10 0.0002 722.67 36.28 0.0003

Clay 2655.92 13.98 0.005 2163.83 8.455 0.027

sand 3672.97 13.96 0.005 2628.28 13.83 0.005

silt 1262.92 171.48 0.008 1243.89 167.78 0.009

Interaction MC*Texture 1107.96 4.65 0.01 1098.59 4.6 0.01

R2

MC 768.57 33.87 0.0002 894.36 43.74 0.0001

Clay 2647.24 16.54 0.003 3251.32 16.23 0.006

sand 3823.16 14.44 0.005 4675.2 15.22 0.004

Silt 1325.95 180.93 0.008 1123.26 212.63 0.05

Interaction MC*Texture
1124.77 4.34 0.01 1234.12 5.12 0.009

RMSEP

MC
794.77 39.94 0.0002 925.63 46.60 0.0001

Clay
2764.23 14.54 0.005 3003.98 15.81 0.004

sand
3800.16 14.44 0.005 4080.4 15.51 0.004

Silt
1337.95 180.93 0.03 1506.26 204.63 0.05

Interaction MC*Texture
1144.77 4.80 0.009 1226.69 5.15 0.007

MS: mean square570

R2: coefficient of determination571

572
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Table 5579

580

Results of univariate analyses of variance (ANOVA) performed on the prediction set to581

evaluate individual and interaction effects of moisture content (MC) and texture on582

prediction accuracy of organic carbon (OC) and total nitrogen (TN) evaluated as583

residual prediction deviation (RPD), and root mean square error of prediction (RMSEP)584

for on-line measurement585

586

Effect OC TN

Source MS F -ratio p-value MS F -ratio p-value

RPD MC 745.63 37.53 0.0003 730.51 36.69 0.0003

Clay 2671.91 14.06 0.006 2643.22 13.91 0.005

sand 3691.77 14.03 0.005 3658.03 13.90 0.006

silt 1273.96 172.96 0.02 1254.17 169.34 0.05

Interaction MC*Texture
1113.39 4.67 0.01 1103.65 4.63 0.01

R2

MC 723.12 32.33 0.0001 834.23 43.74 0.0001

Clay 2234.24 12.54 0.004 3654.11 16.21 0.003

sand 3673.16 14.44 0.006 4945.2 15.67 0.006

Silt 1123.95 183.93 0.009 1247.26 212.38 0.04

Interaction MC*Texture
1865.77 4.34 0.01 1234.12 5.67 0.007

RMSEP

MC
788.18 39.61 0.0002 926.21 46.63 0.0001

Clay
2751.94 14.48 0.005 3005.02 15.81 0.004

sand
3785.74 14.39 0.005 4081.61 15.51 0.004

Silt
1329.40 179.80 0.04 1507.00 204.73 0.01

Interaction MC*Texture
1140.594 4.78 0.009 1140.59 4.78 0.009

MS: mean square587

R2: coefficient of determination588

589

590

591

592



27

Figure captions593

594

Figure 1. Location of five fields on Silsoe Farm, UK measured in summer 2009 with the on-595

line visible and near infrared (vis-NIR) sensor596

Figure 2. On-line visible and near infrared (vis-NIR) sensor developed by Mouazen (2006)597

Figure 3. A flow diagram explaining different steps performed during the study598

Figure 4. (a) Principal component analysis (PCA) similarity maps determined by principal599

components 1 (PC1) and 2 (PC2) for fresh soil samples from Avenue (solid fill round),600

Orchard (square ), Ivy Ground (triangle), Shoeground (cross) and Copse (no fill round)601

fields; (b) spectral patterns 1 (-) and 2 (---) obtained from PCA on the raw visible and near602

infrared (vis-NIR) soil spectra of fresh samples collected from the five fields603

Figure 5. The combined effect of moisture content (MC) and texture on soil spectra of604

processed (top) and fresh (bottom) samples of Avenue (Av), Shoeground (Sh), Orchad (Or),605

Ivy (Iv) and Copse (Co) fields606

Figure 6. Mean values of residual prediction deviation (RPD) of three replicates for the607

prediction of soil organic carbon (OC) in five fields based on spectra of prediction sets608

collected in the field with the on-line (white) sensor, and in the laboratory for fresh (grey),609

and processed soil samples (black). The triangles indicate the moisture content of the fresh610

samples from each field611

Figure 7. Mean values of residual prediction deviation (RPD) of three replicates for the612

prediction of soil total nitrogen (TN) in five fields based on spectra of prediction sets613

collected in the field with the on-line (white) sensor, and in the laboratory for fresh (grey),614
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and processed soil samples (black). The triangles indicate the moisture content of the fresh615

samples from each field616


