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Abstract

Rectangular nozzles are increasingly used for modern military aircraft propulsion installations, including the roll nozzles

on the F-35B V/STOL strike fighter. A peculiar phenomenon known as axis-switching is generally observed in such

non-axisymmetric nozzle flows during which the jet spreads faster along the minor axis compared to the major axis.

This might affect the under-wing stores and aircraft structure. A computational fluid dynamics study was performed

to understand the effects of changing the upstream nozzle geometry on a rectangular free jet. A method is proposed,

involving the formulation of an equation based upon a statistical model for a rectangular nozzle with an exit aspect ratio

(ARe) of 4; the variables under consideration (for a constant nozzle pressure ratio (NPR)) being inlet aspect ratio (ARi)

and length of the contraction section. The jet development was characterised using two parameters: location of the

cross-over point (Xc) and the difference in the jet half-velocity-widths along the major and minor axes (∆B30). Based on

the observed results, two statistical models were formulated for the prediction of axis-switching; the first model gives

the location of the cross-over point, while the second model indicates the occurrence of axis-switching for the given

configuration.
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Nomenclature

Ae Area of the nozzle exit (m2); Ae = b × h

ARe Aspect ratio of the nozzle exit; ARe = b/h

ARi Aspect ratio of the nozzle inlet; for rect-

angular inlets, it is the ratio of the width

to the height of the inlet

b Width of the rectangular nozzle exit (m)
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B Jet half-velocity-width, in the direction

indicated by the subscript (m)

Deq Nozzle equivalent diameter (m); Deq =
√

4bh/π

h Height of the rectangular nozzle exit (m)

Mj Jet Mach number

Re Reynolds number; Re = ρVd/µ

Vx Streamwise velocity (m/s)

Vexit Centreline streamwise velocity at nozzle

exit (m/s)

x, y, z Cartesian coordinates, x indicates stream-

wise direction, y and z are along minor

and major axes, respectively
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Xc Cross-over point, streamwise position

downstream of nozzle exit where jet half-

velocity-widths are equal (m)

∆B30 Difference in half-velocity widths along

major and minor axes (m); ∆B30 = Bz − By

ωx Streamwise vorticity (/s)

3-D Three-dimensional

CFD Computational fluid dynamics

CSR Converging section ratio; ratio of length

of converging section to length of nozzle

LDA Laser Doppler anemometry

NPR Nozzle pressure ratio; ratio of nozzle total

pressure to ambient static pressure

V/STOL Vertical/Short take-off and landing

1. Introduction

The development of a free jet issuing from a circu-

lar nozzle has been studied extensively over the past

many years, mainly for aircraft propulsion purposes. The

flow structure and behaviour is generally well understood.

More recently, investigations into the development of non-

axisymmetric free jets have also been undertaken though

this area remains relatively less well understood than its

circular counterpart. Current advances in modern warfare

often require fighter aircraft to be designed to be stealthy

and highly manoeuvrable. A rectangular jet generally

provides better jet mixing, thus reducing the jet infra-red

(IR) signature and thus improving the stealth of the air-

craft. At the same time, it is easier to incorporate thrust

vectoring along a single dimension when using a rectan-

gular nozzle. This improves the manoeuvrability of the

aircraft. Rectangular nozzles are increasingly used in mil-

itary aircraft propulsion installations, including the roll

nozzles on the F-35B V/STOL strike fighter.

In general, it is known that the flow development of a jet

depends upon various factors such as the nozzle pressure

ratio (NPR), exit area (Ae), length of the nozzle contrac-

tion, aspect ratio (AR), etc. It has been shown by various

authors [1, 2, 3] that the incompressible rectangular free

jet consists of three regions: the potential core region with

constant centreline velocity, a two-dimensional region and

a region extending to infinity where the centreline velocity

decay is characteristic of axisymmetric jets. The extent of

these regions is a function of the nozzle exit aspect ratio.

Some of these studies also report a peculiar phenomenon

usually associated with rectangular and non-axisymmetric

nozzles, often called axis-switching. This does not occur

due to a helical turning of the jet but is, in fact, caused by

different spreading rates along the major and minor axes

of the jet. Thus, it appears as if the jet has turned at right

angles some distance downstream of the exit [4, 5].

Many studies have attempted to explain this. Early

studies suggested that the occurrence of axis-switching

is dominated by the dynamics of vortex rings and self-

induced axis-rotations of the vortex rings. Abramovich

[6] suggested that axis-switching is due to pressure differ-

entials on the plane of the rectangular vortex ring, caused

by the difference in the separations of the long and the

short edges of the ring. This leads to self-induced in-

duction, as also observed by Hussain and Husain [7].

The most important amongst these explanations for axis-

switching are based on vorticity and the presence of dis-

crete vortical structures in the jet [8, 5, 9]. Work car-

ried out independently by Zaman [10] and Grinstein [11]
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for non-axisymmetric nozzles with circular inlets indic-

ates that axis-switching might not occur at all. It was thus

suggested that the vortices either form an ‘out-flow’ pair

or an ‘in-flow’ pair at the ends of the major axis. The

pair of vortices which appear to push the fluid away from

the centre, thus resisting axis-switching, was called the

‘out-flow’ pair. Similarly, the pair of vortices that ap-

pears to push the fluid towards the centre (and thus away

from the centre along the minor axis) seems to assist axis-

switching. This was referred to as an ‘in-flow’ pair. The

occurrence of axis-switching thus depends on the pres-

ence of vortical structures in the flow. The secondary

flows inside the nozzle could result in the presence of

streamwise vorticity at the jet exit and could play an im-

portant role in the development of the jet [10].As the flow

develops in the interior of the nozzle, the pressure dif-

ferential along the walls of the nozzle induces secondary

flows in the plane perpendicular to the streamwise flow

[12]. The variation of the cross-over point with ARe >

5 has also been shown previously [1, 13, 14, 15]. These

studies show a linear variation but the different studies re-

veal a range of slopes rather than a specific one, indicating

uncertainty in determining the location of the cross-over

point. Additionally, Krothapalli, et al. [15] discuss the lin-

ear variation of jet-half-velocity on initial geometries but

it is unclear as to exactly which is the dominant parameter.

They also observed that a jet issuing from a slot exhibits

axis-switching sooner compared to one from a long chan-

nel feeding a similar contraction ratio.

It can thus be seen that amongst all the factors that af-

fect the development of the jet, the variation due to spe-

cific changes in the internal geometry of the nozzle has

not been documented systematically. It has been estab-

lished that the internal flow affects the development of

the flow outside the nozzle. There remains, however, a

need to understand the relation between internal geometry

factors such as the inlet aspect ratio (ARi) and the length

of the contraction section with respect to axis-switching.

A good understanding of this can lead to the development

of methods for the prediction of axis-switching for a given

set of conditions.

The enhanced entrainment properties of a non-circular

jet relative to its circular counterpart are mainly attributed

to the axis-switching mechanism. Besides its application

for reducing the IR signature of a heated jet plume, im-

proved mixing of the jet with its surroundings has other

potential uses. This property could be of interest in prac-

tical applications requiring enhanced combustion between

fuel and background oxidiser, reduction in jet noise and

rapid initial mixing and submergence of effluent fluids, to

name a few [16].

This paper attempts to establish the variation of the

cross-over point with the inlet aspect ratio and the length

of converging section. The length of the converging sec-

tion is expressed in a normalised form as converging sec-

tion ratio (CSR), defined as the ratio of the length of the

contraction section to the length of the nozzle.

2. Computational setup

The 3-D CFD simulations were performed using the

commercial CFD package Fluent; the grids were created

using the Gambit pre-processing software. The simula-

tions were carried out for a steady state, subsonic case

with NPR = 1.05, corresponding to Mj = 0.265 and Reyn-

olds number of about 59,700 (based on the nozzle height).

This is within the range of the experimental studies by

3



(a) Domain extents, orientation and boundary types for the

simulations; the lateral pressure outlets (Out-y and Out-z) are not

shown in the figure; dimensions are in mm

(b) Grid distribution and dimensions along the xy symmetry plane

(c) Grid distribution and dimensions along the spanwise direction

at the free inlet boundary

Figure 1: Computational domain and grid setup

Krothapalli [15] (Re = 12,000, laminar boundary layer)

and Sfeir [13] (Re = 122,200, turbulent boundary layer)

which are used for comparative purposes. Additionally,

since the CFD simulation assumed turbulent boundary

layer on the nozzle walls, changing the scale of the nozzle

was unlikely to produce any Reynolds number depend-

ency on the CFD results. Running the simulation in steady

state allowed the use of symmetry conditions along the

major and minor axis planes of the nozzle. The nozzle exit

was 400 mm2 with ARe = 4. The nozzle length was 110

mm with an area contraction of approximately 2.4; rep-

resentative of an existing nozzle with a circular inlet and

contraction length of 65 mm, which was used in exper-

iments for validation purposes. The exterior dimensions

of the nozzle configurations were also based upon the di-

mensions of this nozzle. The external domain of the simu-

lation was 2 m downstream (approximately 90 Deq) of the

exit and 0.5 m in the lateral direction from both the outer

edges of the nozzle exit. In the upstream direction outside

the nozzle, the domain extended as much as the exterior

of the nozzle. A grid independence study was done to de-

termine the optimum meshing for the domain. This was

done using three different grids of approximately 460,000

cells (coarse), 650,000 cells (medium) and 820,000 cells

(fine). The primary variation in the grid was the mesh

distribution along the downstream and span-wise direc-

tions. Amongst these, the coarse grid indicated a shorter

potential core length, while the medium grid was able to

resolve the jet structures as well as the fine grid. The do-

main setup, orientation and the grid distribution along the

xy-plane is shown in Figure 1. For all the simulations, care

was taken to ensure that the boundary layer was resolved

as correctly as possible. This was achieved by keeping the
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wall y+ values at the inner wall of the nozzle to between

1 and 10. The range of parameters used for the different

nozzle configurations is given in Table 1.

The simulation was set up as a compressible flow prob-

lem using a pressure based solver. SST-kω was chosen as

the turbulence model since it can predict both wall flows

and free flows with sufficient accuracy [17]. The turbu-

lence was specified using intensity and length scale val-

ues. The turbulence intensity at the inlet was determined

using the exit turbulence intensity from the experiments

and then adjusted accordingly so that the simulation pre-

dicts the same exit turbulence intensity. The length scale

was taken as 7.5% of the equivalent radius of the nozzle

[18]. The inlet was specified as a pressure inlet at NPR =

1.05. The upstream boundary outside the nozzle was spe-

cified as a pressure inlet at NPR = 1.00 to allow free inflow

as required by the simulation without imposing any limit-

ing factor. The xy- and xz-planes were specified as sym-

metry boundaries. The other outer boundaries were set as

pressure outlets with free-stream pressure conditions.

Table 1: Range of variation for ARi and CSR; the name for the config-
uration is given in each cell

CSR \ARi 1 2 3 4
0.40 RA1C1 RA2C1 RA3C1 RA4C1
0.59 RA1C2 RA2C2 RA3C2 RA4C2
0.80 RA1C3 RA2C3 RA3C3 RA4C3
1.00 RA1C4 RA2C4 RA3C4 RA4C4

To check the convergence of the simulation, four mon-

itors were initiated. One of these monitors checked the

mass flux for the entire domain (including the nozzle) and

compared that with the net mass flow rate of the nozzle

[19]. If the total mass flux was consistently less than

0.5% of the mass flow rate of the nozzle over a period of

3,000 iterations, convergence was assumed to have been

achieved in terms of mass flux. The other three monit-

Figure 2: Comparison of normalised streamwise velocity contours
(Vx/Vexit) at planes downstream of the exit; from top to bottom, at 1,
2, 4, 8 and 16 Deq; CFD simulation results (left); LDA experiment res-
ults (right); results shown only for one quadrant of the nozzle each, the
dotted outline indicates the dimensions of the nozzle exit

ors checked the velocity at three points downstream of the

nozzle exit at x/Deq = 2, 25 and 50, each. If the variation

of velocity at these points was less than 0.5%, averaged

over 3000 iterations, velocity convergence was assumed

to have been achieved.

The validation of the CFD results was done using data

from an LDA experiment for the same nozzle at the given

flow parameters and conditions [19]. The axial velocities
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at five different downstream locations was compared, as

shown in Figure 2. It can be seen that the velocity de-

velopment downstream of the exit shows generally good

agreement, particularly in terms of the jet vertical and lat-

eral spreading. Following this, the simulations were mod-

elled to study the other inlet aspect ratios.

3. Results and discussion

The two main parameters considered for this study are

the normalised location of the cross-over point (Xc/Deq)

and the normalised difference between the spreading of

the jet along the major and minor axes at x/Deq = 30

(∆B30/Deq). The cross-over point is defined as the location

downstream of the nozzle exit where the half-velocity-

widths along the lateral axes are equal. Where the jet

does not exhibit axis-switching, the transition point, i.e.

the location downstream of the exit where the spreading

rates along the lateral axes are equal and the jet shows a

transition to an elliptic/round jet cross-section, is used in

the formulation of the statistical model.

The simulation results were compared for all the nozzle

configurations under consideration. The location of the

cross-over point and difference between the spreading of

the jet along the major and minor axes at x/Deq = 30,

were noted. These were then used for the formulation

of the statistical models for prediction of axis-switching.

The possible explanations for the occurrence of axis-

switching, or otherwise, have been discussed based on

streamwise vorticity development due to secondary flows

in the nozzle. The plots given here are for the C2 (CSR

= 0.59) and A3 (ARi = 3) configurations to illustrate the

trends based on changing one parameter, either ARi or

CSR, keeping the other constant.

3.1. Jet half-velocity-widths

The basis for determining if the jet issuing from a

nozzle of given configuration switches axes, or not, was

to compare the jet half-velocity-width (B). This is defined

as twice the distance from the centreline of the jet to where

the local streamwise velocity is equal to half of the local

centreline streamwise velocity. Henceforth in this work,

jet half-velocity-width will be used in the normalised form

(i.e. B/Deq). Since the concept of this work was inspired

by the potential issues of the F-35B V/STOL strike fighter,

the extent of the region of interest was considered to be up

to x/Deq = 30. Consequently, the half-velocity-width plots

for the current study are generated up to x/Deq = 30. Ad-

ditionally, the difference between the jet-widths along the

major and minor axes, at a distance of x/Deq = 30 was

also recorded and used as the other parameter to identify

axis-switching (∆B30/Deq).

The streamwise variation of the jet half-velocity-widths

for the C2 and A3 configurations are given in Figures 3

and 4, respectively. It can be seen that the jets issuing from

a nozzle of ARi = 1 do not switch axes. These jets assume

equal spreading rates at a certain distance downstream of

the exit. The data obtained from these plots, i.e. the loc-

ations of the cross-over point (Xc) and the difference in

the jet half-velocity-widths (∆B30/Deq), for all the 16 con-

figurations, are presented in Table 2. In the case of the

ARi = 1 configurations, Xc indicates the location where the

jet achieves approximately equal spreading rates along the

major and minor axes. The negative values in Table 2(b)

indicate occurrence of axis-switching before x/Deq = 30,

while positive values indicate that axis-switching does not

occur.

The data from Table 2(a) were compared to the exper-
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RA1C2

RA2C2

RA3C2

RA4C2

Figure 3: Streamwise variation of jet half-velocity-width, constant
CSR: —�—, By/Deq; − −� − −, Bz/Deq

imental results from Krothapalli, et al.(1981) [15]. If the

region indicating the variation of cross-over point is ex-

trapolated back towards the lower aspect ratios, the values

RA3C1

RA3C2

RA3C3

RA3C4

Figure 4: Streamwise variation of jet half-velocity-width, constant
ARi: —�—, By/Deq; − −� − −, Bz/Deq

obtained from the CFD simulations lie within the exten-

ded region, as seen in Figure 5. It can, therefore, be said

that the locations of the cross-over point given by the sim-
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Table 2: Data obtained from the half-velocity-width plots generated
for the different configurations

CSR \ARi 1 2 3 4
0.40 51.8169 17.5091 4.7780 2.7942
0.59 48.0521 17.7100 6.2531 3.7933
0.80 44.1317 17.9032 7.5502 4.7911
1.00 39.6184 18.0566 8.4929 5.6953

(a) Location of the cross-over point (Xc/Deq)

CSR \ARi 1 2 3 4
0.40 1.3127 -0.1642 -0.7251 -1.5479
0.59 0.7759 -0.1657 -0.5526 -0.9684
0.80 0.4496 -0.1674 -0.4613 -0.7165
1.00 0.3080 -0.1692 -0.3949 -0.5893

(b) Difference between the jet-widths along the major and minor axes

(∆B30/Deq) at x/Deq = 30

Figure 5: Validation of cross-over point locations obtained using CFD
data, the range is extrapolated back towards lower aspect ratios; ori-
ginal data from Krothapalli, et al. [15]; �, Krothapalli, et al. [15]; 4,
Sforza, et al. [1]; �, �, Sfeir [13] (filled square indicates orifice jet);
_, current CFD results

ulations were within the expected range.

3.2. Streamwise vorticity development

The different nozzle configurations, as viewed from the

downstream direction, are shown in Figure 6. The stream-

RA1 RA2

RA3 RA4

Figure 6: Front view of the configurations based on different inlet as-
pect ratios; the shaded area indicates nozzle exit

wise vortices, developing from these nozzle are observed

at two downstream locations, x/Deq = 2 and 8. Figure 7

shows the normalised streamwise vorticity (ωxDeq/Vexit)

and the normalised streamwise velocity (Vx/Vexit) contour

plots.

The change in nozzle geometry affects the development

of the free jet, especially the unequal spreading rates that

may or may not result in axis-switching. The unequal

spreading rates may be due to the presence of secondary

flows through the nozzle, which arise due to the change in

the geometry. The change in the cross-section induces a

difference in the acceleration of the flow along the shorter

and the longer sides. The flow along the sides, which have

a higher slope during the transition from the inlet to the

exit geometry, tends to accelerate faster. Along any cross-

section inside the nozzle, the viscous forces exerted nor-

mal to the wall surface due to the fluid are equal at any

point for the given cross-section. Thus, the higher iner-

tial forces generated along the side with a higher slope

imply that the boundary layer thickness is smaller. The

flow, therefore, leads to the production of secondary flows

in the plane such that the fluid is pushed inwards from
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the side which exhibits faster flow towards the centreline

of the nozzle and then outwards to the side exhibiting

slower flow and back along the walls of the nozzle. Such

a secondary motion is thus conducive to the formation of

streamwise vorticities. The presence of a diverging wall,

therefore induces the formation of an ‘out-flow’ pair [20]

while converging wall sections generally induce the form-

ation of an ‘in-flow’ pair [21].

Indeed, for the ARi = 1 configurations, the flow accel-

erates faster along the ends of the minor axis compared to

the major axis. This induces a secondary flow that pushes

the fluid towards the centre of the nozzle from the minor

axis ends and outwards towards the major axis end, i.e. in

a clockwise sense. Such a flow tends to produce stream-

wise vorticity pairs (‘out-flow’ pairs) such that they push

the fluid outwards from the ends of the major axis and in-

wards from the ends of the minor axis. This would resist

the axis-switching process. The difference in the flow ac-

celerations along the major and minor axes is very small

for the ARi = 2 configurations; this can explain the delayed

axis-switching encountered for these configurations. The

ARi = 3 and 4 configurations, however, show a distinctly

higher sloping of the nozzle walls along the major axis

compared to the minor axis. Consequently, the flow ac-

celeration is higher along the walls at the ends of the ma-

jor axis and it induces a secondary flow in the counter-

clockwise sense, i.e. from the ends of the major axis to-

wards the centre, on to the ends of the minor axis and back

along the nozzle wall. This type of flow produces the ‘in-

flow’ pairs which tend to assist axis-switching.

The change in the CSR of the nozzle affects the slope of

the nozzle walls along the transition section from the inlet

to the exit geometry. Although this does not influence the

sense of the streamwise vorticity, it affects the strength of

the vorticities developed. Clearly, for lower CSR values,

the slope of the nozzle walls is higher than that for higher

CSR values. The flow developing along the walls, there-

fore, tends to accelerate faster and thus induces secondary

flows of higher magnitude. This is confirmed by the loca-

tion of the cross-over point; the configurations with lower

CSR switch axes earlier. In case of the A1 set of nozzle

configurations as well, where a lower CSR corresponds to

a delay in transition or axis-switching, the observations

can be explained due to the strength of the vortices gener-

ated; since the vortex pairs for these configurations tend

to resist axis-switching, the stronger vortices generated

for lower CSR configurations delay the transition or axis-

switching. As the strength of the vortex field decreases

with an increase in the CSR value, the location at which

the transition to an elliptic/round jet cross-section with

equal spreading rates occurs moves closer to the nozzle

exit with increasing CSR.

3.3. Statistical model

Based on the results presented in Table 2, two statist-

ical models were created: ‘XOP-model’ for determining

the location of the cross-over point, and ‘DB30-model’

for determining the occurrence of axis-switching. The

creation of the model was a two-step process: a single-

variable model was created for each and depending upon

the best-fit series of variation, a two-variable model was

created to predict the necessary parameters. A rigorous

error analysis implementing normality testing was done

to ensure that the values predicted by the models were as

close to those obtained by the simulation results used to

create these models. The equations defining the two stat-

istical models thus created, are given below:
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(a) CSR constant, x/Deq = 2; from top to bottom, ARi = 1, 2, 3, 4

Figure 7: Contours of normalised streamwise vorticity (ωxDeq/Vexit) (left) and normalised streamwise velocity (Vx/Vexit) (right) at planes x/Deq =
2 and 8; the dashed outline represents the nozzle exit
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(b) ARi constant, x/Deq = 2; from top to bottom, CSR = 0.40, 0.59, 0.80, 1.00

Figure 7: Continued
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(c) CSR constant, x/Deq = 8; from top to bottom, ARi = 1, 2, 3, 4

Figure 7: Continued
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(d) ARi constant, x/Deq = 8; from top to bottom, CSR = 0.40, 0.59, 0.80, 1.00

Figure 7: Continued
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Xc =

 1.5285AR3 − 17.0702AR2

+61.5803AR − 66.1947

 CS R+ −2.4923AR3 + 29.0058AR2

−112.3766AR + 145.8268


(1)

∆B30 = −
(
0.0345 CS R−1.8947

)
AR3

i

+
(
0.3291 CS R−1.7507

)
AR2

i

−
(
1.2192 CS R−1.5463

)
ARi

+
(
1.2414 CS R−1.5084

)
(2)

Both the equations use dimensionless values for input

(ARi and CSR) and give the required output in a normal-

ised form for Xc and ∆B30. The XOP and DB30 models

could now be used for the ARe = 4 nozzles in the cur-

rent work to determine if they switch axes and, if so, the

location of the cross-over point downstream of the exit

(Figure 8). In cases where the model indicates that a par-

ticular configuration does not switch axes, the location of

the cross-over point corresponds to the point where the jet

spreading along the spanwise axes becomes almost equal.

4. Conclusions

CFD simulations for a series of nozzle configurations

based on ARe = 4 were carried out to understand the effect

of changing the upstream nozzle geometry on the devel-

opment of a rectangular free jet. The parameters under

consideration were the inlet aspect ratio and length of the

contraction section.

The nozzle configurations with ARi = 1 do not ex-

hibit axis-switching. For a constant inlet aspect ratio, the

variation of the location of the cross-over point (Xc) is

roughly linear with respect to the converging section ra-

tio. A higher CSR corresponds to a higher Xc for the axis-

switching cases while it is inversely proportional for the

(a) ‘XOP-model’ for location of cross-over point; the observed

values from the CFD simulations are indicated by red circles

for cross-over points and by blue circles for transition points

(b) ‘DB30-model’ for determining the occurrence of axis-switch-

ing; dark squares indicate occurrence of axis-switching before

x/Deq = 30, light squares indicate otherwise; CFD results are

shown in blue circles indicating axis-switching cases, and in

red circles to indicate otherwise

Figure 8: Graphical representation of the predicted values based on the
statistical models created for the rectangular nozzle configurations

non-axis-switching configurations. The converging sec-

tion ratio remaining constant, the Xc varies inversely with

respect to ARi, i.e. lower ARi values correspond to higher

Xc values. The variation of ∆B30, on the other hand, is
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non-linear with respect to both ARi and CSR.

The difference in the flow acceleration along the side

walls of the nozzle induces secondary flows which are re-

sponsible for the generation of streamwise vorticity. De-

pending on the development of these vortices, these may

assist or resist axis-switching, indicated by the presence

of an ‘out-flow’ or ‘in-flow’ pair at the ends of the nozzle

major axis. While the sense of the streamwise vorticity is

mainly dependent on the ARi of the nozzle, the magnitude

of the vorticity in the vortex core is mainly dependent on

the CSR of the nozzle.

While the current study focusses primarily on develop-

ment of a parametric model based on the axis-switching

phenomenon, additional information on the structure of

the flow-field inside the nozzle and vorticity enhancement

may be obtained from Tipnis [19].
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