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ABSTRACT
In this paper, a model-predictive control (MPC) method is

detailed for the control of nonlinear systems with stability con-
siderations. It will be assumed that the plant is described by a
local input/output ARX-type model, with the control potentially
included in the premise variables, which enables the control of
systems that are nonlinear in both the state and control input.
Additionally, for the case of set point regulation, a suboptimal
controller is derived which has the dual purpose of ensuring
stability and enabling finite-iteration termination of the iterative
procedure used to solve the nonlinear optimization problem that
is used to determine the control signal.

1 INTRODUCTION
Control design based on Local Dynamic Models (LDMs)

has attracted significant interest in the past two decades. The
copious literature on controller design for Takagi-Sugeno Fuzzy
Models (TSFMs) and Piecewise Affine (PWA) models is a testa-
ment to the the appeal of LDMs for their generality, interpretabil-
ity and potential for relating well-known linear techniques to
nonlinear systems.

One popular controller design technique with stability con-
ditions is Parallel Distributed Compensation (PDC) [1–3]. PDC
utilizes TSFMs with a local linear structure and each region pos-
sesses a local linear controller. A set of Linear Matrix Inequal-
ities (LMIs) is formulated to solve for a set of stabilizing lo-
cal gains and demonstrate the stability of the closed-loop sys-
tem. However, the PDC approach typically requires that the local
models be absent of bias terms, which has been found to lead to

significantly diminished approximation capability [4]. Control
of the more general (PWA) systems have been the subject of a
number of papers [5–8], which also utilize LMIs. However, for
both PWA and PDC, the nonlinear controller design is restricted
to premise variables which are typically independent of the con-
trol, and are thus limited to systems that are linear in the control
input [9].

To relax such restrictions, model-predictive control (MPC)
strategies have proven useful. Recently, a number of strategies
using neuro-fuzzy approaches have been proposed that require
milder assumptions on the underlying model. Roubos et al. [10]
utilized a TSFM and a model-predictive strategy based on lo-
cal linearization of the TSFM, which led to a quadratic program
(QP) subproblem. However, no stability analysis was conducted
and for a prediction horizon, N, the multi-step linearization strat-
egy required the solution of N QPs for each sample time. Other
TSFM strategies were employed in Abonyi et al. [11], where
the authors use an instantaneous linearization, and Li et al. [12]
who use a linear generalized predictive controller (GPC) in each
TSFM region, after which they heuristically blend the outputs
of each regional controller. In a similar approach, Hadjili and
Wertz [13] proposed a TSFM-based GPC controller and consid-
ered a number of approaches for deriving a solution to a MPC
problem. Fischer et al. [14] use a local model structure to de-
scribe a GPC and Dynamic Matrix Control (DMC) approach.
Unfortunately, none of these approaches addressed stability of
the resulting closed-loop system.

Dziekan et al. [15] controlled a discrete-time state-space
TSFM using a MPC strategy augmented with a PDC law. The
LMIs solved for the PDC feedback law were used for a warm



start for the subsequent time step optimization. Zhang et al. [16]
used a TSFM to perform robust output feedback control. Their
methodology utilizes a number of LMIs for the observer and con-
troller design, which are obtained from the Piecewise Quadratic
Lyapunov functions (PWQLFs) used to ensure stability. How-
ever, for TSFMs with a large number of regions, the LMI condi-
tions can become computationally expensive and, due to the con-
servativeness of PWQLFs, potentially infeasible, even for stable
systems.

A number of other neural approaches have been employed
recently. Sørensen et al. [17] implemented a generalized predic-
tive controller using a multi-layer perceptron network as a Non-
linear AutoRegressive eXogenous (NARX) model. The authors
then employed a Newton-type optimization routine to minimize
the cost function over the prediction horizon, but did not discuss
under what conditions their algorithm is stable. Lu and Tsai [18]
utilize a Nonlinear AutoRegressive eXogeneous (NARX) model
structure composed of local AutoRegressive eXogenous (ARX)
models to derive a predictive control law for single-input single-
output systems. The authors consider the stability of the closed-
loop system, but the control horizon is limited to one. Nikravesh
et al. [19] employed a neural network version of DMC which uti-
lizes a neural approximation of the underlying system, which is
similar to the step response model of DMC. The authors then uti-
lize the one step ahead prediction in a MPC scheme and discuss
stability for open-loop stable plants.

In this paper, a MPC controller design procedure will be
developed for the control of a plant described by a local ARX
model structure [20, 21], with stability considerations for an ar-
bitrary MPC horizon. Formulation of the MPC procedure will be
such that the feasibility of the control signal solution will yield
a stable closed-loop system. Furthermore, determination of this
feasibility can be conducted in the neighborhood of a proposed
trajectory. Such stability analysis is often neglected in MPC ap-
proaches, particularly in the neuro-fuzzy field. In addition, the
proposed approach will only use signals that are directly sensed
(inputs and outputs) and the proposed approach is applicable to
local models that have the control included in the premise vari-
ables, thus enabling the control of systems that are nonlinear in
the control input. Finally, for the case of set point regulation, a
suboptimal controller design procedure will be derived that en-
ables finite termination of the iterative procedure used to solve
the stabilizing optimal control problem, while ensuring stability
of the controlled system.

The main contributions of this paper is a complete, stable
MPC algorithm for a highly-general local dynamic model struc-
ture. To achieve this, a number of theoretical and practical issues
are addressed. In Section 2, the generic LDM is re-expressed
in a state-space form, enabling the exploitation of some MPC
stability results and nonlinear optimization methods from litera-
ture, which are used to formulate the control algorithm in Section
3. In Section 4, some important practical issues arising in MPC
are addressed. A suboptimal control algorithm is developed by
combining the concept of dual-mode MPC [22] with the nonlin-

ear optimization procedure, and using the LDM to estimate the
necessary constraint regions. Finally, an example application is
presented and the conclusions are discussed in Sections 5 and 6,
respectively.

1.1 Notation
In the sequel, the following notational conventions will

be adopted. Bold face symbols will denote sequences. For
instance, the symbol u = {u(0),u(1), . . . ,u(N −1)} will de-
note a control sequence for time samples up to N − 1,
where N is the length of the horizon. The symbol u(k) =
{u(k|k),u(k+1|k), . . . ,u(k+N −1|k)} denotes a control se-
quence starting at the current time, k, up to the future time
k +N − 1. Also, x = {x(0),x(1), . . . ,x(N)} will denote a state
sequence of length N + 1 and an asterisk (∗) will be used to de-
note optimal quantities. Finally, for a matrix A ∈ Rnxn, A > 0
denotes definiteness.

2 PRELIMINARIES
2.1 Model Structure and Assumptions

In this paper, the local ARX model structure similar to Liu
et al. [21] will be utilized for the controller design. The model
structure is

y(k+1) =
M

∑
i=1

ν̃i(w(k))F̃i(s(k))

F̃i(s(k)) = Qis(k)+bi (1)

where

s(k) =
[
yT (k),yT (k−1), . . . ,yT (k−na),uT (k),uT (k−1),

. . . ,uT (k−nbu),dT (k),dT (k−1), . . . ,dT (k−nbd)
]T

where u(k − i) ∈ Rm, i = 0,1, . . .nbu are the controlled system
inputs, d(k − j) ∈ Rq, i = 0,1, . . .nbd are the measured distur-
bances, y(k−ℓ) ∈Rp, ℓ= 0,1, . . .na are the past system outputs,
and w(k) is composed of a subset of the elements of s(k), which
can include the current input, u(k). The local validity functions,
ν̃i, satisfy ν̃i ≥ 0, and ∑M

i=1 ν̃i = 1 are assumed to be twice differ-
entiable.

The control goal will be the tracking of a reference signal,
r(k). In the sequel, the following assumptions will be made.

Assumption 2.1. (Adequacy of the LDM). The model orders
na, nbu and nbd are known and Eq.(1) represents the true system
dynamics.
Assumption 2.2. (Knowledge of the uncontrolled inputs). The
future values of the uncontrolled inputs d(i) i ≥ k are known.

Let us discuss these assumptions briefly. Assumptions 2.1 and
2.2 imply that this paper will be focused on deriving a control law



for the nominal case, where the model is taken as the true system
and the uncontrolled inputs are known exactly for the horizon.
Considerations related to uncertainty in the model and/or the un-
controlled input are outside the scope of this paper.

Note that no restriction has been made as to how the model
(1) is obtained. In [21], the local dynamic model was identi-
fied from input-output data, however the controller design can
proceed with local model structures identified in different ways
(such as LOLIMOT models [23]) or from off-equilibrium lin-
earizations of physical models.

2.2 Transformation to a Discrete State-Space Form

MPC methods are typically proposed using a variety of mod-
els. Examples include impulse or step response, linear/nonlinear
state space, nonlinear ARX, and fuzzy models [24, 25]. While
input/output models are frequently used for MPC, rigorous sta-
bility analysis is typically conducted with state-space represen-
tations [24, 26]. To this end, we convert Eq. (1) to a nonlinear
state-space representation. Defining the state vector as

z(k),
[

zT
y zT

u zT
d

]T

zy =
[

yT (k) yT (k−1) . . . yT (k−na)
]T

zu =
[

uT (k−1) uT (k−2) . . . uT (k−nbu)
]T

zd =
[

dT (k−1) dT (k−2) . . . dT (k−nbd)
]T

(2)

where z(k) ∈ Rn and n = p(na + 1)+mnbu + qnbd . We can re-
define Eq.(1) as

z(k+1) = fz(z,u,d),
M

∑
i=1

ν̂i(z,u,d)F̂i(z,u,d)

F̂i(z,u,d) = Âiz+ B̂iu+ Ĝid + b̂i (3)

where Âi, B̂i, Ĝi and b̂i are defined in the appendix. Using knowl-
edge of the uncontrolled input, system (3) can now be trans-
formed into a nonlinear, time-varying system.

Proposition 2.1. (Elimination of the uncontrolled in-
put). Given the past uncontrolled inputs zd(k) =[
dT (k),dT (k−1), . . . ,dT (k−nbd)

]T , the definition of the
state in Eq. (2) and Assumption 2.2, Eq. (3) can be written as

x( j+1) = f ( j,x,u) ∀ j ≥ k (4)

where the state vector is defined as x =
[
zT

y zT
u
]T and

f ( j,x,u) =
M

∑
i=1

νi( j,x,u)Fi( j,x,u) (5)

Fi(ℓ,x,u) = Aix+Biu+bi(ℓ) (6)

Ai =

A(i)
11 A(i)

12

0 A(i)
22

 Bi =

B(i)
1

B(i)
2

 (7)

bi(ℓ) =

[
A(i)

13

0

]
zd(ℓ)+

[
G(i)

1

0

]
d(ℓ)+

[
b(i)1

0

]
(8)

νi(ℓ,x,u) = ν̂i

([
x

zd(ℓ)

]
,u,d(ℓ)

)
(9)

zd(ℓ+1) = A(i)
33zd(ℓ)+G(i)

3 d(ℓ). (10)

where the sub-matrices A jk, Bℓ, Gm and bn are defined in the
appendix.

Remark 2.2. If it is assumed that d(k) = d, ∀k or if there are
no uncontrolled inputs, then Eq. (10) results in a constant zd(k+
j) = zd(k) = zd which implies that Eq. (4) is time invariant, i.e.
x( j+1) = f (x,u).

Proposition 2.3. (Linearization about a trajectory). Let the
dynamics of the nonlinear system at sample time k evolve ac-
cording to Eq. (4), let the initial state be x(i) and let the future
input be u0 =

{
u0(i),u0(i+1), . . . ,u0(i+N)

}
. The linearization

of this system from time k = i to k = i+N can be obtained as

x̄(k+1) = A(k)x̄(k)+B(k)ū(k)

where

A(k), ∂ f
∂x

=
M

∑
m=1

Fm(k,x,u)
∂νm

∂x
+νm(k,x,u)Am

B(k), ∂ f
∂u

=
M

∑
m=1

Fm(k,x,u)
∂νm

∂u
+νm(k,x,u)Bm

while x̄(k) = x(k) − x0(k) and ū(k) = u(k) − u0(k) de-
note variations from the nominal trajectory and x0 ={

x0(i),x0(i+1), . . . ,x0(i+N)
}

is calculated by recursively ap-
plying Eq. (4).

3 MODEL-PREDICTIVE CONTROLLER FOR TRAJEC-
TORY TRACKING AND SET-POINT REGULATION
In this section, error dynamics will be derived based on

which a finite-horizon optimal control problem will be formu-



lated. It will be shown that this formulation ensures stability of
the closed-loop error dynamics under the receding-horizon con-
troller.

3.1 Transformation to Stabilization

Considering the definition of the state vector in Proposition
2.1, the desired state can be defined as

xr(k),
[

rT (k) rT (k−1) . . . rT (k−na) uT
r (k−1)

uT
r (k−2) . . . uT

r (k−nbu)
]
. (11)

The reference input, ur(k), satisfies

r(k+1) = f1(k,xr(k),ur(k)) (12)

where f1(k,xr(k),ur(k)) are the first p elements of the vector
function f (k,xr(k),ur(k)). It is assumed that a perfect tracking
solution exists and thus Eq. (12) can be solved (numerically)
for m ≥ p. When this assumption is not satisfied, r(k) is often
replaced with a reachable target that is close to it [24]. Such
trajectory planning considerations are outside the scope of this
paper.

Defining the tracking error as x̃(k)= x(k)−xr(k), its dynam-
ics can be described as

x̃(k+1) = f̃ (k, x̃(k), ũ(k)) (13)
x̃(k) = x(k)− xr(k)

ũ(k) = u(k)−ur(k)

where f̃ (k, x̃(k), ũ(k)), f (xr(k)+ x̃(k),ur(k)+ ũ(k))−xr(k+1).
The goal is now to drive x̃ to the origin.

3.2 Stabilizing Model-Predictive Controller

An attractive proposition for controlling the system (13) is to
solve an optimal control problem at each time step k, and apply
the first element of the optimized control sequence. Defining

JN(x̃(k), ũ(k)) =
k+N−1

∑
i=k

ℓ(x̃(i), ũ(i))+Vf (x̃(k+N)) (14)

where ℓ(x̃(i), ũ(i)) = x̃T (i)Qx̃(i) + ũT (i)Rũ(i) and Vf (x̃(k +
N)) = x̃T (k + N)Q f x̃(k + N), a finite-horizon control problem

can be postulated as

min
ũ(k)

JN(x̃(k), ũ(k))

subject to: x̃(k+1) = f̃ (k, x̃(k), ũ(k))

x̃(0) = x(0)− xr(0)

x̃(k+N) ∈ X̃ f

(NL-OCP)

where R = RT > 0, Q = QT > 0 and Q f = QT
f > 0 are matrices

of appropriate dimension and X̃ f is a neighborhood of the origin.
Such a procedure is referred to as a receding-horizon control pol-
icy [26] and will be employed to control (13).

It is well-known that a receding-horizon strategy does not
guarantee stability of the closed-loop system [24]. In MPC liter-
ature, a number of stabilizing modifications have been proposed
that, under some additional assumptions on the cost function,
guarantee the stability of the closed loop system. A common
class of stabilizing constraints are where X̃ f is some suitable
neighborhood of the origin [27]. A simple choice for the con-
straint set could be

x̃(k+N) = {0}= X̃ f (15)

which will be used to formulate an optimal control problem in
this paper. The MPC algorithm can now be stated as follows.

Algorithm 3.1. (Receding-horizon trajectory tracking).

1. Initialize. Set k = 0 and initialize xr(0) = x(0). Recur-
sively solve Eq. (12) for ur(i) and construct xr(i+ 1) ∀i =
0,1, . . . ,N −1.

2. Solve (NL-OCP) to yield ũ∗(k)
3. Apply ũ(k) = ũ∗(k|k)
4. k = k+1
5. Solve Eq. (12) for ur(k+N −1)
6. Use ũ0 = {ũ∗(k|k−1), ũ∗(k+1|k−1), . . . ,

ũ∗(k+N −2|k−1),0} as a warm start for the optimization
to yield ũ∗(k). Go to Step 2 �

The key to the stability of x̃ = 0 under Algorithm 3.1 is the ex-
istence of, and ability to solve (NL-OCP), in which case, the
following classical result from MPC literature can be invoked.

Theorem 3.1. (Stability under end point equilibrium con-
straint). Let the receding-horizon controller be defined as in Al-
gorithm 3.1, where the optimal control problem solved at each
time step is (NL-OCP) with X̃ f = {0}. Let the input be defined
as ũ(k) = ũ∗(k|k). The point x̃ = 0 is asymptotically stable for
the closed-loop system.

Proof. See Theorem 5.2 of [28]

Remark 3.2. While the optimization is conducted using the
variable ũ(k), the actual input to the system is u(k) = ũ∗(k|k)+



ur(k). An important step in the trajectory tracking problem is the
existence and solution for the sequence ur(i)∀i = 0,1, . . . ,k +
N − 1 that maintains the system response on the desired trajec-
tory. This sequence can be solved for by using a numerical root
finding procedure or an auxiliary optimization problem.

3.3 Solution of the Optimal Control Problem via Se-
quential Quadratic Programs

To apply Algorithm 3.1, the equality-constrained nonlin-
ear optimal control problem (NL-OCP) must be solved at each
time, k. Recent results for solving nonlinear constrained opti-
mal control problems utilizing Sequential Quadratic Programs
(SQPs) employ sequential approximations to (NL-OCP) that can
be solved efficiently [29, 30] and converge to a local optimum.
In this section, an SQP method based on a second order approxi-
mation of the cost function and linearization of the constraints is
employed to solve (NL-OCP) [29].

The quadratic approximation of (NL-OCP) is obtained as
follows. Given a state x̃, and an arbitrary control sequence, ũ0

the corresponding state sequence, x̃0, can be calculated from Eq.
(13). Let us denote x̄ = x̃− x̃0 and ū = ũ− ũ0 as variations from
the nominal trajectory. The cost function is re-expressed as

J̄N(x̄(k), ū) =x̄(k+N)T Q̂ f x̄(k+N)+ x̄(k+N)T x̄0(k+N)+

k+N−1

∑
i=k

x̄(i)T Q̂(i)x̄(i)+ ū(i)T R̂(i)ū(i)

+
k+N−1

∑
i=k

x̄(i)T x̄0(i)+ ū(i)T ū0(i) (16)

where

Q̂ f ,
∂2Vf

∂x̃2 = Q f

Q̂(i), ∂2ℓ

∂x̃2 = Q

R̂(i), ∂2ℓ

∂ũ2 = R

x̄0(i), ∂ℓ
∂x̃

T

= Qx̃0(i)

x̄0(k+N), ∂Vf

∂x̃

T

= Q f x̃0(k+N)

ū0(i), ∂ℓ
∂ũ

T

= Rũ0(i). (17)

The dynamics and constraints are linearized as

x̄(k+1) = A(k)x̄(k)+B(k)ū(k) (18)

x̄(k) = 0 (19)

x̄(k+N)+ x0(k+N)− xr(k+N) = 0. (20)

where Eq. (18) is the linearization of Eq. (13).
Thus, the quadratic re-expression of (NL-OCP) with the sta-

bilizing constraint (15) can be stated.

min
ū

J̄N(x̄(k), ū)

subject to: x̄(k+1) = A(k)x̄(k)+B(k)ū(k)

x̄(0) = 0

x̄(k+N)+ x0(k+N)− xr(k+N) = 0.
(LQ-OCP)

The SQP procedure penalizes deviations from the end constraint
using a non-differentiable penalty function

M(x̃, ũ) = JN(x̃(k), ũ)+ρL(x̃(N))

L(x̃(N)) = max | x̃(N) |

with ρ > 0. The constrained SQP method from [29] is summa-
rized below.

Algorithm 3.2. (Solution of (NL-OCP) via Constrained SQP).

1. Set iteration counter n = 0 and let ũn be an arbitrary in-
put sequence. Initialize penalty term, ρ0 > 0, the maximum
number of iterations nmax and the tolerance on the control
step size, δ.

2. Compute x̃n using ũn and Eq. (13)
3. Formulate linear-quadratic subproblem (LQ-OCP)
4. Solve (LQ-OCP) and let ū∗ be the solution. Set ρn+1 =

max{ρn,∑n
i=1 νi(N)} where νi(N) is the ith element of the

Lagrange multiplier vector for the end constraint for the lin-
earized problem.

5. Let ū∗ be a search direction and compute ũn+1 = ũn +α ū∗

where α = argminM(x̃, ũn +α ū∗) for 0 < α ≤ 1.
6. Check termination condition. If n > nmax or if ∥ū∥< δ exit.

Otherwise, set n = n+1 and return to Step 2. �

This procedure converges to a local optimum of (NL-OCP)
if and only if the system is locally N-step controllable1 [29].
Since the optimality is not global, Theorem 3.1 cannot be in-
voked to ensure stability of the closed-loop system. In addition,
satisfaction of the end point constraint only occurs as n → ∞.
These issues will be addressed in the next section.

4 SUBOPTIMAL REGULATION
In the case of regulation to a set point (with N-step con-

stant disturbances), the difficulties associated with end point con-
straint satisfaction and sub-optimality can be overcome through

1implying that at each n, (LQ-OCP) is feasible



the use of a dual-mode controller [22]. The notion is to design a
locally stabilizing control law for the reference point, x̃ = 0 and
characterize an invariant set under this control law, which can be
used as the terminal constraint set, X̃ f in (15). When the state
is outside this set, a sequence that satisfies the constraints for
(NL-OCP) is pursued via the SQP optimization procedure. Once
the state is inside X̃ f , the locally stabilizing control law can be
employed. In order to design this local controller, the system
dynamics near the reference point are linearized, for which a lo-
cally stabilizing controller of the form ũ = Kx̃ will be pursued
such that X̃ f invariant.

The key is to characterize a terminal constraint set X̃ f =W
that is a convex, compact, and positively invariant under the local
controller. Once W is characterized, the following suboptimal
controller can be employed.

Algorithm 4.1. (Suboptimal receding-horizon control [22]).

1. At time k = 0, if x̃(0) ∈ W set ũ(k) = Kx̃. Otherwise,
utilize the SQP procedure to produce a control sequence,
ũ(0), that satisfies the initial condition, system dynamics
and x̃(k+N) ∈W. Set ũ(0) = ũ(0|0).

2. At time k > 0, if x̃(k) ∈W set ũ(k) = Kx̃(k). Otherwise, use

u0 = {ũ(k|k−1), ũ(k+1|k−1), . . . ,
ũ(k+N −2|k−1),Kx̃(k+N −1)}

as a warm start for the SQP procedure. Perform Niter it-
erations of the SQP procedure to yield an improved input
sequence.

3. Apply ũ(k) = ũ(k|k)
4. Set k = k+1
5. Solve Eq. (12) for ur(k+N −1) and go to Step 2. �

In this algorithm, the SQP procedure continues until x̃(k+N) ∈
W which is a compact set containing x̃= 0. Since the SQP proce-
dure yields x̃(k+N)→ 0 as the number of iterations tends to in-
finity, there will be a (finite) number of iterations before x̃(k+N)
enters W . It remains to characterize W for the case of regulation.

Let us pursue a W of the form W =
{

x̃ | x̃T Px̃ ≤ ε
}

where P
and ε will be determined such that W is positively invariant under
the local linear controller. The closed-loop system for x̃ ∈ W is
x̃(k+1) = Acl x̃(k)+e(x̃) where e(x̃), f̃ (x̃,Kx̃)−Acl x̃ and Acl =
A+BK. Since Acl is stable, there exists positive definite P = PT

for any positive definite Q̄ = Q̄T such that AT
clPAcl −P =−Q̄.

In the sequel, the following will be required.

Lemma 4.1. (Cost Reduction and positive invariance of W).

Define W =
{

x̃ | x̃T Px̃ ≤ ε
}

c1 , λmax(P)

c2 , ∥PAcl∥
c3 , λmin(Q̄)

γ <
−c2 +

√
c2

2 +(µ−1)c3c1

c1

where µ > 1 is otherwise arbitrary, λmax(·) and λmin(·) denote
the maximum and minimum eigenvalues and P = PT > 0, Q̄ =
Q̄T > 0 satisfy AT

clPAcl −P =−µQ̄. If, for all x̃ ∈W, ũ = Kx̃ and
the linearization error can be bounded as

∥e(x̃)∥ ≤ γ∥x̃∥ (21)

then x̃ ∈W =⇒ f̃ (x̃,Kx̃) ∈W, which means that W is invariant
under the linear control law. Furthermore,

∆V <−x̃(k)T Q̄x̃(k) ∀x̃ ∈W. (22)

Proof. Consider the Lyapunov-like function V (x̃) = x̃T Px̃ and
define ∆V =V (x̃(k+1))−V (x̃(k)). Then

∆V = (Acl x̃+ e(x̃))T P(Acl x̃+ e(x̃))− x̃(k)T Px̃(k)

= x̃T (AT
clPAcl −P

)
x̃+2x̃T AT

clPe(x̃)+ e(x̃)T Pe(x̃)

To ensure that ∆V <−x̃(k)T Q̄x̃(k) we require that

x̃T (AT
clPAcl −P+ Q̄

)
x̃+2x̃T AT

clPe(x̃)+ e(x̃)T Pe(x̃)< 0

x̃T (1−µ) Q̄x̃+2x̃T AT
clPe(x̃)+ e(x̃)T Pe(x̃)< 0

Employing the error bound ∥e(x̃)∥ ≤ γ∥x̃∥, the above is true if

(
λmax(P)γ2 +2∥PA∥γ− (µ−1)λmin(Q̄)

)
∥x̃∥2 < 0

and defining γ as above ensures that ∆V = V (x̃(k + 1)) −
V (x̃(k)) < −x̃(k)T Q̄x̃(k). Since W = {x̃ |V ≤ ε} we have that
x̃ ∈W =⇒ f̃ (x̃,Kx̃) ∈W.

Lemma 4.2. (Characterization of W). Using the definitions of
P and γ from Lemma 4.1, there exists an ε1 > 0 such that the
linerization error can be bounded as

∥e(x̃)∥ ≤ γ∥x̃∥ ∀∥x̃∥ ≤ ε1.



Furthermore, selecting ε = λmax(P)ε2
1 for W =

{
x̃ | x̃T Px̃ < ε

}
implies that W is positive invariant under ũ = Kx̃.

Proof. see [24] pp. 137.

The stability of the suboptimal controller can now be estab-
lished.

Theorem 4.3. (Stability of the sub-optimal controller). Take
Q̄ =

(
Q+KT RK

)
and let Q f = P and let W be characterized by

Lemmas 4.2 and 4.1. The sub-optimal controller of Algorithm
4.1 renders the point x̃ = 0 asymptotically stable.

Proof. The proof largely follows the suboptimal controller idea
in [24]. At time k, assume a feasible input sequence ũ(k) is
found. The cost of this sequence is JN(x̃, ũ(k)). Now, at time
k+1 the following input sequence is feasible

w = {ũ(k+1|k), ũ(k+2|k), . . . , ũ(k+N −1|k),Kx̃(k+N)}

with the associated cost

JN(x̃(k+1),w) =
N

∑
i=1

ℓ(x̃(k+ i), ũ(k+ i))+Vf (x̃(k+N +1))

=JN(x̃(k),u(k))+ ℓ(x̃(k+N), ũ(k+N))

− ℓ(x̃(k), ũ(k))−Vf (x̃(k+N))

+Vf (x̃(k+N +1))

Since x̃(k+N) ∈W, ũ(k+N) = Kx̃(k+N), if we can guarantee
that

Vf (x̃(k+1))−Vf (x̃(k))≤−ℓ(x̃(k),Kx̃(k)) ∀x̃(k) ∈W (23)

it follows that

JN(x̃(k+1),w)≤ JN(x̃(k),u(k))− ℓ(x̃(k), ũ(k))

without any optimization. By taking Vf (x(k + N)) = x̃T (k +
N)Px̃T (k+N), the condition in Eq. (23) is assured. �

Note that the optimal solution is not required here, only that the
SQP procedure produces a control sequence that yields a termi-
nal state that is within W .

The following details a method for characterizing W from
the local models in Eq. (13).

Proposition 4.4. (Characterization of W). For the system de-
fined by Eq. (13), an approximate bound on the linearization

error is

∥e(x̃)∥.
M

∑
m=1

∥∥∥∥(∂νm

∂x
+

∂νm

∂u
K
)∥∥∥∥ ∥∥∥Acl

m

∥∥∥ ∥x̃∥2

= c∥x̃∥2

Acl
m , Am +BmK

for small x̃. This bound can be used to obtain a bound of the form

∥e(x̃)∥. γ∥x̃∥

for ∥x̃∥ < ε̂1. Here γ is obtained as in Lemma 4.1 and ε̂1 = γ
c .

This estimation can be used directly in Lemma 4.2 to character-
ize W.

Proof. Using the definition of e(x̃) we have

e(x̃) = f̃ (x̃,Kx̃)−Acl x̃

= f (xr + x̃,ur +Kx̃)− f (xr,ur)−Acl x̃

since xr = f (xr,ur). Next, using the system model we have

e(x̃) =

[
M

∑
m=1

νm(xr + x̃,ur +Kx̃)Fm(xr + x̃,ur +Kx̃)

−νm(xr,ur)Fm(xr,ur)]−Ax̃−BKx̃

=

[
M

∑
m=1

νm(xr + x̃,ur +Kx̃)
[
Fm(xr,ur)+Acl

m x̃
]

−νm(xr,ur)Fm(xr,ur)]−Ax̃−BKx̃

where the second line uses the definition of Fm in Eq. (6). Defin-
ing ∆νm , νm(xr + x̃,ur +Kx̃)−νm(xr,ur), we have

e(x̃) =

[
M

∑
m=1

νm(xr,ur)Acl
m x̃+∆νmFm(xr,ur)+

∆νmAcl
m x̃
]
−Ax̃−BKx̃.

Using the definitions of A and B above and noting that ∂νm
∂x x̃ and

∂νm
∂u Kx̃ are scalars, we have

e(x̃) =
M

∑
m=1

[
∆νm − ∂νm

∂x
x̃− ∂νm

∂u
Kx̃
]

Fm(xr,ur)+

∆νmAcl
m x̃.



For small x̃

∆νm ≈ ∂νm

∂x
x̃+

∂νm

∂u
Kx̃

which can be used to find an approximate upper bound on ∥e(x̃)∥
as

∥e(x̃)∥ ≈

∥∥∥∥∥ M

∑
m=1

x̃T
[

∂νm

∂x
+

∂νm

∂u
K
]T

Acl
m x̃

∥∥∥∥∥
≤

M

∑
m=1

∥∥∥∥(∂νm

∂x
+

∂νm

∂u
K
)∥∥∥∥ ∥∥∥Acl

m

∥∥∥ ∥x̃∥2 �

Please note that the region estimated by the method in Proposi-
tion 4.4 is not the largest possible. Determination of a locally sta-
bilizing controller that maximizes the size of this region could be
beneficial (fewer SQP iterations). However, such benefits would
come at the cost of an additional procedure to determine the con-
troller that maximizes W and such considerations are outside the
scope of this paper.

5 APPLICATION TO A CONTINUOUSLY-STIRRED
TANK REACTOR
Let us consider a Continuously-Stirred Tank Reactor with

the coolant flow rate as the control signal. A diagram of this
system can be seen in Fig. 1 [19, 31]. Per [31], the pertinent

Figure 1. A continuously-stirred tank reactor

dynamic equations are

ẋ1 = d1 − x1 +a0x1 exp
(
−104

x2

)

ẋ2 = d2 − x2 +a1x1 exp
(
−104

x2

)
+

a3u
(

1− exp
(
−a2

u

))
(Tcoolant − x2)

and it is obvious that the system is nonlinear in the control. The
nominal system parameters are given in [31]. The output of the
system is considered to be the effluent concentration, x1. A sam-
pling time of 0.1 was used and a local ARX model was built
using an algorithm similar to [32], but with continuously differ-
entiable local activation functions

ν̃i(w(k)) =
hi(w(k))

∑M
m=1 hm(w(k))

hm(w(k)) = exp
[
−∥w(k)−ξ j∥2

2σ2

]

where ξ j denotes the jth local region center. The model orders
used in the training were na = 2, nbu = 2, nbd = [1,1] and the
scheduling vector was w(k) = [x1(k),x1(k−1),u(k),u(k−1)]T .
Both selections were motivated by physical considerations, rec-
ognizing that the nonlinearity only depends on the input and x2.
Note that in this paper no restriction has been made as to where
the local models come from. For example, one could generate lo-
cal affine state-space models from off-equilibrium linearizations
and apply the MPC methodology of this paper.

The algorithm of Section 4 was applied to regulate the con-
centration at a desired level with the control horizon set to to
N = 5. The reference was piecewise constant, alternating be-
tween r = 0.12 and r = 0.10 in 16 minute intervals.The results
can be seen in Fig. 2. If, instead, the reference is generated by
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Figure 2. Suboptimal regulation applied to the CSTR system

the model

r(k+1) = 0.9r(k)+0.1υ(k)

υ(k) = 0.095+0.025sin
(

1
3

k∆t
)
,

the problem becomes a tracking problem. The MPC control al-
gorithm may still be applied, but the termination criterion for the



SQP procedure is now simply set ad hoc. Despite this, the algo-
rithm was found to perform well as long as the system operated
in regions which the local ARX model approximated the actual
system well. The simulation result can be seen in Fig. 3.
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Figure 3. Tracking performance of the MPC controller

6 CONCLUSIONS
In this paper, a model-predictive control scheme for non-

linear systems described by local ARX models was presented.
The model structure is permitted to have nonlinearities in the
state and control input and a control algorithm was formulated
that guarantees stability. For the case of set point regulation,
a stabilizing control algorithm modification was established that
does not require achievement of the optimal solution to the finite-
horizon nonlinear optimal control problem and enables finite ter-
mination of the iterative procedure from which the control signal
is determined. Future work will focus on extension of the subop-
timal policy to tracking problems and robust formulations of the
MPC methods introduced in this paper.
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Appendix A: Matrices for State-Space Formulation

Âi =


A(i)

11 A(i)
12 A(i)

13

0 A(i)
22 0

0 0 A(i)
33



A(i)
11 =



q0 q1 . . . qna−1 qna

Ip 0 . . . 0 0
0 Ip . . . 0 0
...

...
. . .

...
...

0 0 . . . Ip 0



A(i)
12 =


qna+2 . . . qna+nb−1 qna+nbu

0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0



A(i)
13 =


qna+nbu+2 . . . qna+nbu+ndu−1 qna+nbu+ndu

0 . . . 0 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0



A(i)
22 =


0 . . . 0 0
Im . . . 0 0
...

. . .
...

...
0 . . . Im 0

 A(i)
33 =


0 . . . 0 0
Iq . . . 0 0
...

. . .
...

...
0 . . . Iq 0



B̂i =

B(i)
1

B(i)
2

0

=
[

qT
na+1 0 . . . 0 Im 0 . . . 0 0 . . . 0

]T

Ĝi =

G(i)
1

0

G(i)
2

=
[

qT
na+nbu+1 0 . . . 0 0 . . . 0 Iq 0 . . . 0

]T

b̂i =

 b(i)1

0
0

=
[

bT
i 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0

]T

Here Ip,Im and Iq are identity matrices and q j are sub-matrices of
Qi. For j ≤ na, q j ∈ Rpx p for na < j ≤ nbu, q j ∈ Rpxm and for
na +nbu < j ≤ na +nbu +nbd , q j ∈ Rpxq.


