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Existence of travelling wave solutions for a model of tumour invasion

K. Harley†, P. van Heijster†, R. Marangell‡, G. J. Pettet†, and M. Wechselberger‡

Abstract. The existence of travelling wave solutions to a haptotaxis dominated model is analysed. A version
of this model has been derived in Perumpanani et al. (1999) to describe tumour invasion, where
diffusion is neglected as it is assumed to play only a small role in the cell migration. By instead
allowing diffusion to be small, we reformulate the model as a singular perturbation problem, which
can then be analysed using geometric singular perturbation theory. We prove the existence of three
types of physically realistic travelling wave solutions in the case of small diffusion. These solutions
reduce to the no diffusion solutions in the singular limit as diffusion as is taken to zero. A fourth
travelling wave solution is also shown to exist, but that is physically unrealistic as it has a component
with negative cell population. The numerical stability, in particular the wavespeed of the travelling
wave solutions is also discussed.

Key words. advection-reaction-diffusion systems, canards, singularly perturbed systems, travelling wave solu-
tions
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1. Introduction.

1.1. Travelling waves in cell migration. Cell migration has been studied by both bi-
ologists and mathematicians for years, see for example [4, 28] and references within. It is
important in a variety of contexts including wound healing, cancer (or other tumour) growth,
and embryonic growth and development. Travelling wave solutions arising from continuum
mathematical models to describe various modes of cell migration (purely diffusive, purely ad-
vective or a combination of both) are of particular interest. As well as the mode of migration,
the speed of the travelling wave solutions is of interest, as this corresponds to the rate of
invasion of cells.

One of the most famous examples of a model exhibiting travelling wave solutions is the
Fisher–KPP equation [8, 16]. This model has been extensively studied and is an example of
travelling wave solutions arising from a purely diffusive flux term. Another class of models
known to exhibit travelling waves are the Keller–Segel type models [14, 15]. These models
describe cell migration resulting from a combined diffusive and advective flux term. Advective
motion (or advection) is the preferential motion of cells in a particular direction. This could
be due to the flow of a fluid they are suspended in, or a response to a chemical gradient, for
example. In all these examples, the observed travelling wave solutions are smooth. However,
if the effect of diffusion on cell migration is reduced so that the balance between diffusive
and advective migration shifts towards purely advective, the fronts of the travelling wave
solutions can steepen and become shock-like. Note that true shocks or discontinuities will not
be observed if even a small amount of diffusion is present.

True shocks, or solutions containing actual discontinuities arise from models with a purely
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advective flux term. This type of flux term can be used to model cell migration if, for example,
cells are migrating in response to a gradient in a chemical that is bound to some surface. The
bound chemical reduces the amount of random motion of the cells considerably and hence
diffusive-like motion is minimal or non-existent. In these types of models, travelling wave
solutions are still observed, and furthermore, the shock-like behaviour observed in the low
diffusion case can develop into actual shocks. It is the low diffusion, high advection limit of
cell migration that we are interested in.

1.2. Shock-fronted travelling waves. One approach for analysing shock-fronted travel-
ling waves is based on dynamical systems theory, with the aim to identify travelling wave
solutions of partial differential equation (PDE) systems as heteroclinic orbits of an associ-
ated ordinary differential equation (ODE) system. By applying such an approach to models
of purely chemotactically (advectively) driven growth processes, systems of two-species, cou-
pled, ODEs of the form

du

dz
= R(u,w),

P (u,w)
dw

dz
= Q(u,w)

(1.1)

were uncovered [30, 31]. Systems of first order differential equations such as these can be
studied using methods from dynamical systems theory (see for example [12,27]), where solution
trajectories are analysed in the (u,w)-phase plane. However, due to the term premultiplying
the left-hand side, this type of ODE system leads to singularities in the phase plane for
P (u,w) = 0 and Q(u,w) 6= 0. In general, solution trajectories cannot cross this wall of
singularities except at the point P (u,w) = Q(u,w) = 0, called the hole in the wall, where the
indeterminate form means that the system is no longer singular.

Since the discovery of these walls of singularities, they have been studied in a variety of
biological (and other) applications [1, 18–20, 22–25, 29]. These studies (beginning with [24])
have led to the discovery of the possibility of both smooth and shock-fronted travelling wave
solutions, arising as a result of the singular behaviour in the phase plane. Of particular interest
is the transition from smooth to shock-fronted travelling waves and the role diffusive versus
advective migration plays in determining the type of wavefront [20].

1.3. Geometric singular perturbation theory and canards. In [39], the authors studied
the existence of shock-fronted travelling waves using methods from geometric singular per-
turbation theory (GSPT) with a particular focus on a special class of solutions known as
canards.

The geometric approach to singular perturbation problems was introduced by [7]. As with
other singular perturbation methods, geometric singular perturbation theory is applied to sys-
tems exhibiting two (or more) distinct time or length scales, indicated mathematically by a
perturbation parameter multiplying the highest derivative. For a review of geometric singular
perturbation methods see [11, 13], or as they apply to problems in mathematical biology [9].
These methods have been used to construct smooth travelling wave solutions to a bioreme-
diation model [2], as well as to find pulse solutions to a three-component reaction-diffusion
equation arising from a model for gas discharge dynamics [6]. However, these theorems only
apply under the assumption of normal hyperbolicity, and break down in the neighbourhood
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of points where normal hyperbolicity is lost, such as a wall of singularities. This is where the
theory of canards comes into play.

The theory of canard solutions allows the extension of Fenichel theory to points in the
neighbourhood of non-hyperbolic points [3, 17, 33, 36–38]. In [39], it was revealed that the
holes in the wall investigated in [30,31] using traditional phase plane analysis, are equivalent
to the folded singularities investigated independently in [33,34,36] as part of the development
of the existence of canards. We will use the latter approach.

1.4. The model. In this work, we study a model originally presented in [29]. The model
describes haptotactic cell invasion in the context of malignant tumour growth, in particular
melanoma (a type of skin cancer). In [29], the following simplified, dimensionless model is
derived:

∂c

∂t
= −c2u,

∂u

∂t
= u(1− u)− ∂

∂x

(

∂c

∂x
u

)

,

with boundary conditions,

lim
x→−∞

c(x, t) = 0, lim
x→∞

c(x, t) = ĉ, lim
x→−∞

u(x, t) = 1, lim
x→∞

u(x, t) = 0,

and x ∈ R, t ∈ R
+. Here c(x, t) is the extracellular matrix (ECM) concentration and u(x, t)

is the invasive tumour cell population. Note that the original description of the tumour
invasion process included an expression for the density of protease, but it was neglected as the
density of protease can be assumed to be constant to leading order, within certain parameter
regimes [25,29]. The tumour cells proliferate logistically, independent of the presence of ECM,
all the while consuming it. They also respond haptotactically to a gradient in ECM, and so
migrate preferentially up the ECM gradient.

Haptotaxis is a type of advection similar to chemotaxis. Both describe the directed mo-
tion of cells up (down) the gradient of some chemical or chemoattractant (chemorepellent).
Chemotaxis, as the better known term, arises when the chemoattractant (or chemorepellent)
is suspended in a fluid. On the exterior of each cell are receptors that detect chemoattractant
and allow it to pass into the cell. Based on the locations around the cell of the receptors
admitting chemoattractant, the cells determine the most favourable migration direction. For
example, if more receptors of the right hand side of the cell detect chemoattractant than on
the left, the cell will move to the right. Thus, if a gradient in the chemoattractant is present,
the cells will, on average, migrate up the chemical gradient. The opposite occurs in the case
of a chemorepellent. Haptotaxis follows a similar mechanism but arises when the chemoat-
tractant is bound to a surface. In this case, the concentration of cell adhesion sites could even
act as a chemoattractant, as well as actual substrate-bound chemicals, such as present in the
ECM.

Since the ECM is a substrate, to which the cells essentially bind themselves, it is reasonable
to assume that diffusion plays a very small role in the tumour invasion process and therefore
is ignored in [29]. (We shall not ignore diffusion but rather allow it to be small, see §1.5.)
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In [29] and subsequently [24], the authors show that this model exhibits both smooth and
shock-fronted travelling waves; we shall first provide a summary of the relevant results here,
for more details we refer to the original works. Although the model was originally presented
in [29], we focus on the analysis undertaken in the revised and self-contained version [24].
However, before we begin, we must address the issue of nomenclature. Within the travelling
wave literature, it is convention to use c as the wavespeed of a travelling wave solution, not
as a variable as in [24, 29]. Moreover, the model studied here fits the general framework
of [39], and thus we choose to use the notation therein. Consequently, we let c(x, t) = ũ(x, t),
u(x, t) = w̃(x, t) and will henceforth consider the system

∂ũ

∂t
= −ũ2w̃,

∂w̃

∂t
= w̃(1− w̃)− ∂

∂x

(

∂ũ

∂x
w̃

)

.
(1.2)

In order to investigate travelling wave solutions from a dynamical systems perspective,
the coordinate transformation z = x− ct is applied, where c is now the speed of the travelling
wave. Thus (1.2) can be rearranged to the system of first order ODEs:

du

dz
=

u2w

c
,

(

2u2w

c
− c

)

dw

dz
= w(1− w)− 2u3w3

c2
,

(1.3)

where we have dropped the tildes for convenience. The fixed points are (1, 0) and the line
(u∞, 0), where

u∞(c) := lim
z→∞

u(z), u∞ ∈ R.

Identifying possible travelling waves of the PDE system (1.2) is equivalent to identifying
heteroclinic orbits of the ODE system (1.3) connecting (1,0) to (u∞(c), 0).

Since (1.3) is now in the form (1.1), it exhibits a wall of singularities and a hole in the
wall when analysing the phase plane. The wall of singularities is defined by the zeros of the
term premultiplying the w-derivative,

w =
c2

2u2
=: F (u). (1.4)

The hole in the wall is defined as the point in the first quadrant, on the wall of singularities,
where the right hand side of the w-equation also vanishes, and thus appears at the intersection
of the wall of singularities (1.4) and the non-trivial w-nullcline. This gives

(uH , wH) =

(

c

4

[

c+
√

c2 + 8
]

,
1

uH + 1

)

. (1.5)

By examining the phase plane, a two parameter family of heteroclinic orbits connecting
(0, 1) to (u∞, 0), representing both smooth (Type 1) and shock-fronted (Type 2) travelling
waves were identified [24]. These orbits are constructed numerically, or using a power series
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solution centered at (uH , wH) to approximate the two trajectories that cross through the wall
of singularities, with the shocks defined by the Rankine–Hugoniot and Lax entropy conditions,
see for example [32] and references within. Note that the power series solutions appear to
provide a good approximation sufficiently far away from the (0, 1) steady state.

The two parameters are the wavespeed c and the end state of the u-wave u∞, which
is equivalent to the parameter ĉ in the original notation [24, 29]. The transition from the
smooth to the shock-fronted waves is characterised by u∞ = ucrit = ucrit(c) or, equivalently,
c = ccrit = ccrit(u∞). Maximum and minimum values for u∞ and c, respectively, are identified
for the appearance of physically realistic (non-negative) shock-fronted waves.

An illustration of the different types of waves is given in Figure 1.1, emphasising the dif-
ference between the smooth and non-smooth waves. The solution curves for u are represented
by the dashed lines and those for w by the solid lines. Initial conditions are shown in black,
with the successive solutions plotted at equal time intervals. The different wave types were
generated by varying the steepness of the initial profiles. This is discussed further in §3.1 and
§3.2.

x

u,w

0 40 80 120 160
0

1

u∞ = 1, c = 1.0050

(a)

x

u,w

0 60 120
0

1

u∞ = 1, c = 0.6742

(b)

x

u,w

0 60 120
0

1

u∞ = 1, c = 0.6130

(c)

Figure 1.1: An illustration of the appearance of both smooth solutions and those exhibiting
shock-like behaviour. The solutions are examples of a Type 1 wave, Type 2 wave with infinite
support, and Type 2 wave with semi-compact support, from left to right. The solutions are
generated from the numerical solution of (1.6) with ε = 0.005, however, are qualitatively
the same as those presented in [24] for ε = 0. Dashed lines represent the u-solutions and
solid lines the w-solutions, with initial conditions shown in black. Solutions are plotted at
t = 0, 20, . . . , 80.

In summary, it is concluded in [24] based on numerical evidence that Type 1 solutions exist
for c ≥ ccrit and Type 2 solutions for cmin < c ≤ ccrit, for fixed u∞. Both wave types were
demonstrated to be numerically stable. A third, Type 3 wave was also considered, however, it
did not satisfy the Lax entropy condition and was demonstrated to be numerically unstable.
Waves for which c < cmin were not considered as they would be non-physical. These results
can also be expressed in terms of ranges of the parameter u∞, for fixed c.

The existence of the Type 1 waves is rigorously proven in [10] by considering a desingu-
larised version of (1.3) and constructing an invariant region to which the Type 1 waves are
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restricted.

1.5. Outline and main results. In this work we formalise the results from [24], and extend
the work of [10], to provide a rigorous proof of existence of both smooth and shock-fronted
travelling wave solutions to (1.2). Furthermore, we prove the existence of travelling wave
solutions for the more general model, where both the ECM and cell species are allowed to
diffuse,

ut = −u2w + εuxx,

wt = w(1 −w) − (uxw)x + εwxx,
(1.6)

with x ∈ R, t ∈ R
+ and ε ≪ 1. From a biological or modelling perspective, this formulation is

advantageous as it allows us to investigate the effects of small diffusion, as well as no diffusion.
(Note that for ε = 0, (1.6) is equivalent to (1.2).) We take the diffusion coefficients to be
equal for simplicity. However, if we instead chose diffusion coefficients such that the ratio was
O(1) but not equal to 1, the method used would carry through and the results would not be
significantly altered, as stated in [39, Remark 2.1].

The background states of (1.6) are (u,w) = (0, 1) and (u,w) = (u∞, 0), u∞ ∈ R; that
is, (u∞, 0) represents a line of fixed points. Hence, we are searching for travelling wave
solutions on an unbounded domain that connect (0, 1) (representing a state with no ECM and
a dimensionless concentration of 1 of tumour cells) to (u∞, 0) (representing the tumour free
state with a variable amount of ECM). Thus, we have

lim
z→−∞

u(z) = 0, lim
z→∞

u(z) = u∞, lim
z→−∞

w(z) = 1, lim
z→∞

w(z) = 0. (1.7)

Due to the nature of the background states and the expectation that the tumour cells will
invade the ECM, we expect to see right-moving travelling waves, that is c > 0. The second
condition in (1.7) implies that the right hand boundary condition on u, denoted u∞, is free.
Since u and w represent concentrations, we shall focus on solutions to (1.6) for which u,w ∈
[0,∞) for all x ∈ R, t ∈ R

+. Hence, for this purpose we assume u∞ ≥ 0. We will however,
consider one type of solution for which w < 0.

From a mathematical perspective, the advantage of the formulation (1.6) over (1.2) lies in
the applicability of GSPT to (1.6), as demonstrated in [39]. In [39], travelling wave solutions
of the general model (to which (1.6) conforms),

(

u
w

)

t

+

(

0
g(u,w)ux

)

x

=

(

h(u,w)
f(u,w)

)

+ ε

(

u
w

)

xx

, (1.8)

are investigated, with f(u,w), g(u,w) and h(u,w) adhering to certain assumptions. We
explicitly check these assumptions for (1.6). Upon introducing a new variable v = ux, (1.8) is
transformed into the singularly perturbed system of coupled balance laws:





u
v
w





t

+





0
−h(u,w)
g(u,w)v





x

=





h(u,w)
0

f(u,w)



+ ε





u
v
w





xx

, (1.9)

where we note that the first two equations are equivalent since the second is the derivative
(with respect to x) of the first. Consequently, GSPT, including Fenichel theory [7] and the
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theory of canard solutions [17,33,36–38], is used to provide a general framework for a proof of
the existence of travelling wave solutions of (1.8). These solutions include smooth travelling
waves, as well as those that exhibit shock-like behaviour.

The key steps of the proof are as follows:
• reformulate the model as a singular perturbation problem as in (1.9);
• in the singular limit ε → 0, identify fold(s) in the critical manifold (see Lemma 2.2);
• identify folded saddle canard point(s) (see Lemma 2.4);
• construct heteroclinic orbits (see Lemmas 2.5, 2.6 and 2.7);
• prove the persistence of the singular heteroclinic orbits for sufficiently small ε > 0 (see

§2.5).
Note that the folded nature of the critical manifold is essential for the existence of shock-
fronted travelling wave solutions in the limit ε → 0. Furthermore, the existence of the folded
saddle canard point is an important feature of such models as (1.8) that was previously
unrecognised.

In §2, following the steps outlined above we identify singular heteroclinic orbits represent-
ing so called Type I, II, III and IV waves. The classification of the travelling wave solutions
as Type I, II, III or IV is based on distinguishing features of the waves in the singular limit
ε → 0. Figure 1.2 provides an illustration of the four types of waves. We assume the label
for the Type 1 waves from [24], that is, any smooth travelling waves are classified as Type
I. The Type 2 waves identified by [24] are waves that exhibit a shock in w, including both
those with infinite and semi-compact support. We split this category in two; Type II waves,
which are the Type 2 waves from [24] with infinite support, and Type III waves, which have
semi-compact support in w. The reason for the explicit distinction between the Type II and
III waves will become apparent in §3. Note that the Type III waves should not be confused
with the Type 3 waves from [24], which we show do not exist. The Type IV waves are those
that exhibit a shock and have a negative component in w. This type of solution was not
considered in [24] as it is non-physical.

z

u, w

−70
0

1

(a) Type I

z

u, w

−15
0

1

(b) Type II

z

u, w

−13
0

1

(c) Type III

z

u, w

−13
0

1

(d) Type IV

Figure 1.2: Illustration of the four types of travelling wave solutions identified.

Having completed the proof of existence, in §3 we present additional numerical results, in
particular, relating to the wavespeeds of the various travelling wave solutions. We derive an
expression for the wavespeed of Type I and II waves that compares well with the numerically
measured wavespeeds. However, an expression for the wavespeed of the Type III, minimum
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wavespeed wave remains to be found. No Type IV waves were observed numerically. We
conclude in §4.

2. Existence. In this section we prove the existence and uniqueness of travelling wave
solutions to (1.6) for sufficiently small ε, by means of dynamical systems theory and in par-
ticular, GSPT. These solutions include both travelling waves with and without a shock.

Before we begin we wish to make clear what we mean by a shock or a shock-fronted
travelling wave, based on classical PDE theory. For ε = 0, the system is strictly hyperbolic
and so is known to exhibit shocks. These shocks are defined by the Rankine–Hugoniot and
Lax conditions. Thus for ε = 0, when we talk about solutions exhibiting a shock we are
referring to weak solutions of (1.2), which contain discontinuities, with the solution away
from the discontinuity satisfying (1.2) and the discontinuity satisfying the appropriate shock
conditions. As we turn on ε these discontinuities smooth out and thus the entire solution will
satisfy (1.6). However, for 0 < ε ≪ 1 sufficiently small the solutions will still contain regions
with steep gradients where the discontinuity was previously observed.

Thus, when we refer to a shock we are referring to the region in a solution containing
very steep gradients, which in the limit ε → 0 becomes a discontinuity. From a geometric
perspective, the shocks correspond to components of the solutions that arise from a diver-
sion through the fast subsystem. Futhermore, the corresponding Rankine–Hugoniot and Lax
entropy conditions for hyperbolic PDEs have a clear geometric interpretation.

Theorem 2.1. There exists an ε0 such that for ε ∈ [0, ε0] travelling wave solutions exist for
the system (1.6) with boundary conditions (1.7), and are unique in the sense that for a given
c > 0 and u∞ > 0, a single wave exists. Furthermore, for fixed wavespeeds and u∞ > 0 four
wave types can be identified. The Type I wave exists for 0 < u∞ < ucrit, and is smooth. The
Type II wave exists for ucrit < u∞ < u3, and exhibits a shock in w. The Type III wave exists
for u∞ = u3, and exhibits a shock and has semi-compact support in w. The Type IV wave
exists for u3 < u∞ < uupper, and exhibits a shock and has a negative component in w.

We follow [39] and begin by introducing a new variable, v = ux, such that we can write
(1.6) as a system of coupled balance laws,

ut = −u2w + εuxx,

vt = −(u2w)x + εvxx,

wt = w(1 − w)− (vw)x + εwxx.

(2.1)

Since we are looking for travelling wave solutions we introduce the coordinate z = x − ct,
where c > 0. This gives

(εu′ + cu)′ = u2w,

(εv′ − u2w + cv)′ = 0,

(εw′ − vw + cw)′ = −w(1 − w),

(2.2)

where the prime indicates differentiation with respect to z. Defining three new variables

û := εu′ + cu,

v̂ := εv′ − u2w + cv,

ŵ := εw′ − vw + cw,
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allows us to write (2.2) as a system of first order differential equations,

û′ = u2w,

v̂′ = 0,

ŵ′ = −w(1 − w),

εu′ = û− cu,

εv′ = v̂ + u2w − cv,

εw′ = ŵ + vw − cw.

The second equation implies v̂ is a constant. Moreover, it can be seen upon comparison of the
definition of v̂ and the first equation of (2.2) (recalling that v = u′), that v̂ = 0. Therefore,
we now have a five-dimensional, singular perturbation problem:

û′ = u2w,

ŵ′ = −w(1 −w),

εu′ = û− cu,

εv′ = u2w − cv,

εw′ = ŵ + vw − cw,

(2.3)

containing two slow variables (û and ŵ) and our three, original fast variables (u, v and
w). We refer to (2.3) as the five-dimensional slow system, with z the slow travelling wave
coordinate. To investigate the problem on the fast timescale we introduce the fast travelling
wave coordinate y = z/ε, which gives the corresponding five-dimensional fast system:

˙̂u = εu2w,

˙̂w = −εw(1 − w),

u̇ = û− cu,

v̇ = u2w − cv,

ẇ = ŵ + vw − cw,

(2.4)

provided ε 6= 0 and where the dot indicates differentiation with respect to y.

The non-trivial fixed points of the five-dimensional systems, denoted P∓ for the re-
spective end states of the wave, are P−(û, ŵ, u, v, w) = (0, c, 0, 0, 1) and P+(û, ŵ, u, v, w) =
(cu∞, 0, u∞, 0, 0).

As per geometric singular perturbation theory, we now examine the singular limit of
the slow and fast systems, (2.3) and (2.4), respectively. This provides us with two lower-
dimensional problems, which are consequently more amenable to analysis. In the singular
limit ε → 0 the five-dimensional slow system (2.3) reduces to the two-dimensional reduced
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problem with three algebraic constraints:

û′ = u2w,

ŵ′ = −w(1− w),

0 = û− cu,

0 = u2w − cv,

0 = ŵ + vw − cw.

(2.5)

Similarly, as ε → 0 the five-dimensional fast system (2.4) reduces to the three-dimensional
layer problem with two parameters:

˙̂u = 0,

˙̂w = 0,

u̇ = û− cu,

v̇ = u2w − cv,

ẇ = ŵ + vw − cw.

(2.6)

Given the above two subsystems, GSPT allows us to study each independently, and con-
struct singular limit solutions that are concatenations of solution segments of both subsystems.
Then, assuming certain conditions are met, we can prove that the singular limit solutions per-
turb to nearby solutions of the full, five-dimensional problem for 0 < ε ≪ 1.

2.1. Layer problem. We begin our analysis with the layer problem (2.6) and note that
within the layer problem the slow variables are constants of integration and so the layer flow is
independent of the slow variables, or is along so called fast fibres. A diversion of the solution
through the fast subsystem, or equivalently along a fast fibre, corresponds to a shock in the
travelling wave solution. Thus, this condition implies that the slow variables will be constant
along any shocks in the travelling wave solutions.

The steady states of the layer problem (2.6) define a two-dimensional critical surface or
critical manifold, which can be represented as a graph over the fast variables (u,w):

S =

{

(û, ŵ, u, v, w)

∣

∣

∣

∣

û = cu, v =
u2w

c
, ŵ = cw − vw

}

. (2.7)

While this is not the only possible graph representation of the set S, we emphasise that it is
not possible to describe S as a graph over a slow variable base. This follows from the following:

Lemma 2.2. The layer problem (2.6) has a saddle-node bifurcation along the set F (u) de-
fined in (1.4). That is, the critical manifold S, defined in (2.7), is folded around F (u), with
one attracting side, Sa, and one repelling, Sr. Moreover, S is symmetric in w around F (u).

Proof. The Jacobian of the layer problem,

J =





−c 0 0
2uw −c u2

0 w −c+ v



 ,
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evaluated along S, has eigenvalues given by

λ1 = −c,

λ2,3 = −c+
u2w

2c
±

√

(

u2w

2c

)2

+ u2w.

The eigenvalues λ1 and λ3 are negative for u,w ≥ 0, whereas λ2 can change sign. Thus, for
λ2 < 0 (2u2w < c2) S is stable or attracting (denoted Sa) and for λ2 > 0 (2u2w > c2) is
unstable or repelling (denoted Sr).

The loss of normal hyperbolicity at λ2 = 0 is generically due to either a Hopf or saddle-node
(fold) bifurcation. In this case, since λ2 also has zero imaginary part, we have a saddle-node
bifurcation. This implies that the critical manifold is folded, provided the non-degeneracy
and transversality conditions,

p · (D2
UUG)(U , Û )(q, q) 6= 0 and p · (D

Û
G)(U , Û ) 6= 0

respectively, are met [38]. Here U = (u, v, w), Û = (û, ŵ) and G = (u̇, v̇, ẇ), with u̇, v̇ and
ẇ defined in (2.6), and where U and Û are evaluated along λ2 = 0, which coincides with
w = F (u) as in (1.4). Therefore, U = (u, v, w) = (u, c/2, c2/(2u2)). The vectors p are q and
the left and right null vectors of J respectively, with q · q = p · q = 1:

p =
1

P

(

c4

2u3
,
c3

2u2
, c2
)

, q =
1

Q

(

0, u2, c
)T

,

where

P =
3c3

2Q
, Q =

√

c2 + u4.

The first condition is equivalent to showing that p ·B(q, q) 6= 0, where

Bi(q, q) =
∑

j,k

∂2Gi

∂Uk∂Uj
qjqk

with the derivatives, as well as Uj and Uk evaluated along λ2 = 0. This gives

B(q, q) =

(

0, 0,
2cu2

Q2

)T

,

and

p ·B(q, q) =
2c3u2

PQ2
,

which is non-zero for c 6= 0 and u 6= 0.
The second condition reduces to

p ·





1 0
0 0
0 1



 =

(

c4

2u3P
,
c2

P

)

6= 0.
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Therefore, the critical manifold S is folded with the fold curve corresponding to where λ2 = 0
or 2u2w = c2. This fold curve is equivalent to the wall of singularities (1.4) found in [24].

Furthermore, on S we have

ŵ(u, v(u,w), w)|w=F (u)+A = ŵ(u, v(u,w), w)|w=F (u)−A ,

where A is an arbitrary constant. Consequently, S is symmetric in w around the fold line and
points on S connected by fast fibres will be equidistant from the fold line in the w-variable.
Defining w± ∈ Sr,a to be the values of w at either end of the fast fibre we have

w = F (u) =
w+ + w−

2
. (2.8)

To visualise the two-dimensional manifold S defined in the five-dimensional (phase-)space,
we plot projections in three-dimensional subspaces:

ŵ = cw − u2w2

c
or ŵ =

c2v − cv2

u2
, (2.9)

as seen in the left and right hand panels of Figure 2.1, respectively, with the black line
indicating the fold curve, F . Note that a consequence of the folded nature of S is that it
can not be expressed in a single coordinate chart over the slow variables (û, ŵ), as seen in
Figure 2.1 (where since c = 1, û = u on S). The fast fibres mentioned previously connect
points on S with constant û and ŵ. Due to the stability of S, the direction of the flow along
these fast fibres is from the Sr to Sa, see Figure 2.2.

1
2

30 0.1 0.2
0

0.2

0.4

0.6

0.8
Sr

Sa

u
ŵ

w

0 1 2 3 0 0.5
10

0.2

0.4

0.6

0.8

1

Sr

Sa

u ŵ

v

Figure 2.1: Projections of the critical manifold S (2.7) defined in (2.9) for c = 1. The green,
dotted line represents the fold curve. The left hand figure plots S projected onto (u, ŵ, w)-
space. The right hand figure plots S projected onto (u, ŵ, v)-space, so as to more easily observe
the folded nature of the critical manifold.
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Sr

Sa

F

(u, v+, w+, û, ŵ)

(u, v
−

, w
−

, û, ŵ)

Figure 2.2: A schematic of the critical manifold S. The fold curve F is represented by the
dashed, green line. The upper part of the surface is the repelling side of the manifold Sr

and the lower part the attracting side of the manifold Sa. The flow of the layer problem is
along fast fibres, two examples of which are drawn in. They connect a point on Sr (labelled
(u, v+, w+, û, ŵ)), to a point of Sa (labelled (u, v−, w−, û, ŵ)). Along these fast fibres u, û and
ŵ are constant. The direction of the flow can only be in that shown here; that is, from Sr to
Sa.

Remark 2.3.For ε = 0 and u,w > 0, (2.1) is strictly hyperbolic, and so solutions can
exhibit shocks. These shocks must satisfy the Rankine–Hugoniot and Lax entropy conditions,
which are given in [24]. The Rankine–Hugoniot conditions can be written:

cu+ = cu−,

v+ − v− =
u2

c
(w+ − w−),

cw+ − v+w+ = cw− − v−w−,

where the ± subscript denotes the value of the given variable at the beginning or end state of
the shock respectively. By comparing these conditions with the definition of S in (2.7), we see
that they are satisfied since û and ŵ are constant along any shocks in the system. Furthermore,
the second and third conditions combined, can be rearranged to give (2.8). The Lax entropy
condition reduces simply to w+ > w−, but can also be written as

2u2w− < c2 < 2u2w+.

This implies that the direction of the shock must be from the repelling to the attracting side of
the manifold.

Hence, the combinations of slow variables being constant within the layer problem, and
the shape and stability of the critical manifold encapsulate the restrictions imposed by the
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Rankine–Hugoniot and Lax entropy conditions and discussed in [24]. Note that the Lax entropy
condition is not satisfied for the Type 3 waves in [24], and consequently they do not exist.

2.2. Reduced problem. The reduced problem (2.5) is a differential-algebraic problem,
that is, the reduced flow is constrained to a manifold. This implies that the reduced vector
field must be in the tangent bundle of the critical manifold S. Since S is given as a graph
over (u,w)-space we can study the reduced flow in the single coordinate chart (u,w).

Lemma 2.4. The reduced problem contains a folded saddle canard point.

Proof. We substitute the definitions of û and ŵ in (2.7) into the differential equations of
(2.5), to obtain the reduced vector field on S, written in matrix form:

[

û
ŵ

]′
= M

[

u
w

]′
:=

[

c 0
−2uw2/c c− 2u2w/c

] [

u
w

]′
=

[

u2w
−w(1 −w)

]

,

where the prime indicates differentiation with respect to the slow variable z and M is singular
along 2u2w = c2, the fold curve or wall of singularities. We multiply both sides by the cofactor
matrix of M ,

[

c− 2u2w/c 0
2uw2/c c

]

,

to give
{

c2 − 2u2w
}

[

u
w

]′
=

[

cu2w − 2u4w2/c
−cw(1− w) + 2u3w3/c

]

. (2.10)

The above system is still singular for 2u2w = c2, but the singularity can be removed by
rescaling the independent variable z̄, such that

dz

dz̄
= c2 − 2u2w. (2.11)

This gives the desingularised system,

du

dz̄
= cu2w − 2u4w2

c
,

dw

dz̄
= −cw(1− w) +

2u3w3

c
.

(2.12)

The equilibrium points of (2.12) are (uU , wU ) = (0, 1), (uS , wS) = (u∞, 0), u∞ ∈ R and

(uH , wH) =

(

c

4

[

c+
√

c2 + 8
]

,
1

uH + 1

)

. (2.13)

The former equilibrium points correspond to the background states of (1.6) given in (1.7),
while the latter is a product of the desingularisation. More specifically: (uU , wU ) = (0, 1) has
eigenvalues and eigenvectors

λ1 = c, ψ1 = (0, 1), λ2 = 0, ψ2 = (1, 0),
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and is therefore centre-unstable; (uS , wS) = (u∞, 0) has eigenvalues and eigenvectors

λ1 = −c, ψ1 = (−u2∞, 1), λ2 = 0, ψ2 = (1, 0),

and is therefore centre-stable; and finally, (uH , wH) has eigenvalues and eigenvectors

λ± =

(

c−
√
c2 + 8

2

)4


1± c

√

(

4

c−
√
c2 + 8

)4

− 3



 , ψ± = (f±(c),−1),

and is therefore a saddle (we consider f±(c) in more detail in §2.4). The phase portrait of
(2.12) is shown in Figure 2.3a, with u and w parameterised by z̄.

To obtain the (u,w)-phase portrait parameterised by z, we observe that
dz

dz̄
> 0 on Sa

(that is, below the fold curve F ), while
dz

dz̄
< 0 on Sr. Therefore, the direction of the

trajectories in the (u(z), w(z))-phase portrait will be in the opposite direction to those in the
(u(z̄), w(z̄))-phase portrait for trajectories on Sr, but in the same direction for trajectories
on Sa. This does not affect the stability or type of the fixed points (uU , wU ) and (uS , wS).
However, (uH , wH) is not a fixed point of (2.10).

Rather, as the direction of the trajectories on Sr are reversed, the saddle equilibrium of
(2.12) becomes a folded saddle canard point of (2.10) [39], equivalent to the hole in the wall
(1.5). In particular, on Sr the stable (unstable) eigenvector of the saddle equilibrium of (2.12)
becomes the unstable (stable) eigenvector of the folded saddle canard point. This allows two
trajectories to pass through (uH , wH): one from Sa to Sr and one from Sr to Sa. We refer to
the former as the canard solution and the latter the faux canard solution. In Figure 2.4, the
canard solution is the union of WS

∗ and Toff , and the faux canard solution on Sr is depicted
as WU

crit. The (u,w)-phase portrait parameterized by z is shown in Figure 2.3b.

Since all the equilibrium points of (2.10) lie on Sa, there are only two possible ways to
create heteroclinic orbits. Firstly, smooth connections can be made (on Sa) to the u∞ steady
states up to a critical value of u∞, which we call ucrit. These heteroclinic orbits correspond
to smooth travelling wave solutions and are the Type 1 waves identified in [24]. In this case,
the connections are made purely on Sa, that is without crossing through the canard point
onto Sr. The second possibility for creating heteroclinic connections arises if the solution does
cross through the canard point onto Sr. This case is considered in §2.3.

Lemma 2.5. For 0 < u∞ ≤ ucrit, ucrit ∈ (uH ,∞], there exist singular heteroclinic orbits
Γ = γs representing Type I waves; that is, singular heteroclinic orbits that live solely on Sa.

Proof. From the phase plane analysis we know that for u < uH , w < 1, trajectories cross
the w-nullcline N from left to right, and travel along the {u = 0}-nullcline in a downward
direction. Furthermore, a calculation comparing the gradient of N with the stable eigenvector
of the canard point (on Sa) reveals that the canard solution enters the canard point under N .
Finally, it can be shown using a monotonicity argument for the derivative

dw

du
= −c2(1− w)− 2u3w2

u2(c2 − 2u2w)
, (2.14)
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u

w

0 2 4 6
0

1

F
N

Sa

SrSr

Sa

z̄ increasing

(a) Vector field of (2.12).

u

w

0 2 4 6
0

1

F
N

Sa

SrSr

Sa

z increasing

(b) Vector field of (2.10).

Figure 2.3: The left and right hand figures show the (u,w)-phase portraits parameterised by
z̄ and z, respectively. The fold curve is labelled F and the non-trivial u-nullcline N with the
saddle equilibrium (filled black circle), and folded saddle canard point (open black square)
visible at the intersection of these curves, in the left and right hand figures respectively. The
other black circles correspond to the background states of (1.6), which are fixed points of both
(2.10) and (2.12), with the thick black line along the u-axis indicating that the whole axis is a
steady state. Trajectories representing travelling wave solutions connect the unstable steady
state (0, 1) to any of the family of stable steady states (u∞, 0) along the u-axis. The region
below F , shaded blue corresponds to the attracting side of the critical manifold Sa, and above
F , shaded red to the repelling side Sr.

that in Figure 2.3b all solutions on Sa (Sr) and below (above) N will be monotonically
decreasing in w and consequently increasing in u [29]. (This is indicated in Figure 2.4 by the
direction of the blue arrows.) Together, these conditions guarantee that the component of
the canard solution on Sa connects (uH , wH) to the unstable steady state (u,w) = (0, 1) (in
backward z). We denote this trajectory WS

∗ ; see Figure 2.4.

Similarly, due to monotonicity, the component of the faux canard solution on Sa connects
(uH , wH) to a stable steady state (u,w) = (ucrit, 0), ucrit ∈ (uH ,∞) in forward z. We denote
this trajectory WU

crit, as in Figure 2.4.

The two trajectories WS
∗ and WU

crit, along with the u- and w-axes act as separatrices that
bound the region in which smooth heteroclinic connections can be made on Sa. Therefore,
any trajectory leaving (0, 1) with a gradient less than WS

∗ , will make a smooth connection on
Sa to (u∞, 0), u∞ ∈ (0, ucrit). Since a singular heteroclinic orbit Γ representing a Type I wave
consists of a single slow segment γs, we have simply Γ = γs.

An example of a Type I wave, with the corresponding phase trajectory is shown in Fig-
ure 2.5a.
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2.3. Travelling waves with shocks. The second way to connect the steady states is by
concatenating solutions from the reduced and layer problems.

Lemma 2.6. For u∞ > ucrit, there exist singular heteroclinic orbits Γ = γc ∪ γf ∪ γs repre-
senting Type II waves.

Proof. Type II waves correspond to solutions that follow WS
∗ and pass through the folded

saddle canard point (uH , wH) onto Sr. Once on Sr the solution can then switch onto a fast
fibre of the layer problem, which connects a point on Sr to the point on Sa with constant û
and ŵ. We refer to this action as a jump or shock. Since u = û/c on S, the value of u at
either end of the shock will also be constant. The values of w at either end (denoted w±) are
the solutions of (2.9) for the given values of ŵ and u. Alternatively, if the value of w at one
end of the shock is known, the value at the other end can be computed from (2.8).

Once the solution has returned to Sa via the fast fibre, monotonicity guarantees that the
solution trajectory continues to a stable steady state (u∞, 0), thus completing the heteroclinic
orbit. For Type II waves, we are assuming that the jump lands at a point on Sa with w > 0.

Thus, a singular heteroclinic orbit Γ representing a Type II wave is a concatenation of
three components: γc, the slow segment of the orbit that follows that canard solution; γf , the
fast segment of the orbit along a fast fibre; and γs, the remaining slow component of the orbit
that connects to the end state (u∞, 0).

We define the take-off curve Toff(u) as the set of points (u,w+ = Toff(u)) from which the
solution leaves Sr and switches onto a fast fibre of the layer problem. Note that Toff coincides
with the canard solution on Sr. Similarly, we define the touch-down curve Tdown(u) as the
set of points (u,w− = Tdown(u)) on Sa to which the fast fibres connect, or equivalently, the
landing points of any jumps in the solution. These curves are illustrated in Figure 2.4. Both
Toff and Tdown are monotonically decreasing functions of u and as a result u ≥ uH and w ≤ wH

along Toff and Tdown.

If Tdown intersects the u-axis at say, u = u3 (with u3 ∈ (uH ,∞) as labelled in Figure 2.4),
then there is the possibility for jumps to land on Sa with w ≤ 0, as opposed to with w > 0 as
is the case for a Type II wave. It is worth noting that in all the cases we tested numerically,
u3 < ∞.

Lemma 2.7. If u3 < ∞, that is, Tdown intersects the u-axis, then there exist singular
heteroclinic orbits Γ representing Type III (Γ = γc∪γf ) and Type IV (Γ = γc∪γf ∪γs) waves.

Proof. The Type III wave corresponds to the special case where the jump or fast fibre
connects the solution trajectory directly to the stable steady state (u3, 0). Due to this direct
connection, Type III waves have semi-compact support, in contrast to Type II waves, which
have infinite support. Furthermore, the direct connection implies a singular heteroclinic orbit
Γ representing a Type III wave is a concatenation of only two components, Γ = γc ∪ γf . For
the Type III wave, we can determine using (2.8), the relationship between the end state of
the wave u∞ = u3, and the point along Toff where the jump occurs: (u,w+) = (u3, c

2/2u3).

For u > 0, w < 0, there is a single w-nullcline, which trajectories cross from right to
left, as well as the {u = 0}-nullcline, along which trajectories travel upwards. Between the
u-axis and this negative w-nullcline, solution trajectories are monotonically decreasing in u
and increasing in w. Below the negative w-nullcline solution trajectories are monotonically
decreasing in both u and w. Consequently, jumps landing on Sa with w < 0 connect to a



18 K. HARLEY, P. VAN HEIJSTER, R. MARANGELL, G. J. PETTET AND M. WECHSELBERGER

u
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WU
crit

Tdown

Toff

FN

ucrit u3

(uH , wH)

WS
∗

Sa

Sr

Figure 2.4: An illustration of the important curves and points in the phase plane of the
reduced problem. The blue shaded region corresponds to Sa and the red shaded region to
Sr. The blue arrows are indicative of the sign of the derivative (2.14), and consequently the
monotonic decrease or increase of solution trajectories in the respective regions.

stable steady state, thus completing the heteroclinic orbit. These connections represent Type
IV waves, and akin to the Type II waves, consist of the three components Γ = γc ∪ γf ∪ γs,
but where w < 0 along γs.

The Type II, III and IV waves correspond to travelling wave solutions with a shock, with
the Type II and III waves together equivalent to the Type 2 waves in [24]. Examples of Type
II, III and IV waves with the corresponding phase trajectories are shown in Figures 2.5b, 2.5c
and 2.5d, respectively.

2.4. Uniqueness of heteroclinic orbits. We are also interested in the uniqueness of the
singular heteroclinic orbits constructed in §2.2 and §2.3. For a travelling wave solution to be
unique we require that for fixed c and u∞, only one heteroclinic orbit exists connecting the
unstable steady state (0, 1) to the stable steady state (u∞, 0).

Lemma 2.8.The singular heteroclinic orbits representing Type I, II, III and IV waves are
unique.

Proof. The uniqueness of the heteroclinic orbits constructed as Type I, II, III and IV
waves follows from the following lemmas. The first concerns the transversality of the vector
field (2.14) and Tdown. If the vector field were tangent to Tdown at any point, we would observe
non-unique solutions.

Lemma 2.9. The vector field (2.14) has a transverse intersection with Tdown.

Proof. We know that along Tdown the vector field satisfies (2.14) with w = w−(u). Fur-
thermore, since we are only considering u > uH and w < wH , we can relate w− to w+ using
(2.8). Therefore, demonstrating the transversality of the intersection between the vector field
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(a) Type I wave, with u∞ = 1, c = 2.
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(b) Type II wave, with u∞ = 1, c = 0.715.
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(c) Type III wave, with u∞ = 1, c = 0.665.
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(d) Type IV wave, with u∞ = 1, c = 0.625.

Figure 2.5: Example solutions for the four types of waves described in §2.2 and §2.3. The
first columns shows the singular heteroclinic orbit in the phase plane of the reduced vector
field, with the vertical lines representing the diversion along a fast fibre. The second column
is the same orbit plotted onto the critical manifold S. In these figures, the diversion along
a fast fibre is more easily seen, as we can explicity see the trajectory leaving S. The third
column shows the corresponding wave shape for each orbit. The darker line is the w solution
and the lighter one the u solution. Note that the singular heteroclinic orbits are constructed
numerically by solving the desingularised system (2.12) using MATLAB’s inbuilt ODE solvers
and then manually inserting the jump at the appropriate location.



20 K. HARLEY, P. VAN HEIJSTER, R. MARANGELL, G. J. PETTET AND M. WECHSELBERGER

(2.14) and Tdown requires showing that

dTdown

du
− dw

du

∣

∣

∣

∣

w=w−=2F (u)−w+

6= 0.

This defines the transversality condition, where the former derivative denotes the slope of
Tdown and the latter the vector field (2.14) along it. Recalling that w−(u) = Tdown (and
w+(u) = Toff), we again use (2.8) to rewrite the slope of Tdown as

dTdown

du
=

dw−(u)

du
= 2

dF (u)

du
− dw+(u)

du
. (2.15)

Along w+(u) = Toff the vector field is tangent to Toff as this is a solution trajectory. Thus,
the final derivative in (2.15) is written simply as the vector field (2.14) evaluated at w = w+,
and we rewrite the transversality condition as

dTdown

du
− dw

du

∣

∣

∣

∣

w=w−

= 2
dF (u)

du
− dw

du

∣

∣

∣

∣

w=w+

− dw

du

∣

∣

∣

∣

w=2F (u)−w+

.

Recalling from (1.4) that F (u) = c2/2u2, we evaluate the derivatives on the right hand side
of the above expression by explicitly differentiating F (u), and substituting w = w+ and
w = 2F (u) − w+ = c2/u2 − w+ into (2.14), respectively to give

dTdown

du
− dw

du

∣

∣

∣

∣

w=w−

= −2c2

u3
+

c2(1 −w+)− 2u3w2
+

u2(c2 − 2u2w+)
+

c2(1− (c2/u2 − w+))− 2u3(c2/u2 − w+)
2

u2(c2 − 2u2(c2/u2 − w+))

=
c2

u4
> 0 for c, u 6= 0.

Thus Tdown does not lie tangent to, but rather will always be less steep than, the vector field
at any point.

The second opportunity for non-unique solutions to arise is if WU
crit ≥ Tdown at any point.

Consider the regime depicted in Figure 2.6b, or in fact any regime whereWU
crit ≥ Tdown. Under

this regime we can identify multiple pairs of solutions (one with and one without a shock)
that connect (0, 1) to the same (u∞, 0) end state. One such example is drawn in Figure 2.6b.
Here, to connect (0, 1) and (ucrit, 0) the solution can either follow WS

∗ then WU
crit, or WS

∗ then
Toff until a jump is made to the intersection point between WU

crit and Tdown, after which the
solutions continues to (ucrit, 0).

Lemma 2.10. For all u > uH , Tdown(u) > WU
crit(u).

Proof. From Lemma 2.9, we know that for u > uH , WU
crit can only intersect Tdown from

top to bottom. That is, if an intersection occurs at (u,w) = (u∗, w∗), WU
crit(u) > Tdown(u) for

u < u∗ and WU
crit(u) < Tdown(u) for u > u∗. If the intersection were to occur in the opposite

direction (as depicted in Figure 2.6b), the vector field at the point of intersection would be less
steep than the instantaneous slope of Tdown, which is in contradiction to Lemma 2.9. (They
also cannot touch without intersecting as this would result in their gradients being equal at
that point.) Therefore, if WU

crit is greater than Tdown at any point, it must be initially, as the
two curves leave the canard point.
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Figure 2.6: An illustration of the possibility of non-unique solutions if WU
crit > Tdown for

any u > uH . The left hand figure displays the actual location of the curves WU
crit and Tdown,

showing no intersection and Tdown > WU
crit for all u > uH . The right hand figure gives example

locations of the curves WU
crit and Tdown, that lead to non-unique solutions. In this case, there

are two possible connections to ucrit. Firstly, by following WS
∗ and then WU

crit; secondly, by
following WS

∗ , then Toff until switching onto a fast fibre as shown in red, and finally following
WU

crit to the steady state (ucrit, 0). Note that the right hand figure violates the transversality
condition of Lemma 2.9.

Consider a linearisation around the canard point, where we are interested in the difference
in slope (at a linear level) of Tdown and WU

crit:

dTdown

du
− dWU

crit

du
.

The eigenvectors of the canard point are

ψ± = (f±(c),−1),

where

f±(c) =
c2(c+B)4

64(c2 + cB + 1)± 2(c+B)2
√
16 + 24cB − 48c2 + 6c3B − 6c4

,

with B =
√
c2 + 8. In this case, ψ+ corresponds to the direction of WU

crit and ψ− to Toff .
Hence, by taking the gradient of the eigenvectors and using (2.15), we approximate the dif-
ference in slopes of Tdown and WU

crit near the canard point by

dTdown

du
− dWU

crit

du
≈ dTdown

du
+

1

f+(c)
= 2

dF (u)

du

∣

∣

∣

∣

u=uH

+
1

f−(c)
+

1

f+(c)
. (2.16)

Consider only the sum

1

f−(c)
+

1

f+(c)
=

f+(c) + f−(c)

f+(c)f−(c)
,
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where

f±(c) =
α

β ± γ
,

with

α = c2(c+B)4, β = 64(c2 + cB + 1), γ = 2(c+B)2
√

16 + 24cB − 48c2 + 6c3B − 6c4.

Then,
f+(c) + f−(c)

f+(c)f−(c)
=

(

2αβ

β2 − γ2

)/(

α2

β2 − γ2

)

=
2β

α
,

and we can simplify (2.16) to

dTdown

du
+

1

f+(c)
= −2c2

u3H
+

2β

α
= − 128

c(c+B)3
+

128(c2 + cB + 1)

c2(c+B)4
=

128

c2(c+B)4
,

which is positive for all c 6= 0. Therefore, we can say that near the canard point Tdown lies
above WU

crit, which together with Lemma 2.9, implies that in fact Tdown > WU
crit for all u > uH .

The vector fields of the layer problem (2.6) and the desingularised system (2.12) are
continuous, and sufficiently smooth to ensure uniqueness within the individual problems. The
existence of the canard point in the reduced problem provides a unique trajectory that connects
(0, 1) to (uH , wH). This, together with the above results, guarantees the uniqueness of the
heteroclinic orbits representing Type I, II, III and IV waves.

An implication of Lemma 2.10 is that u3 > ucrit. This implies that for fixed c, as u∞
is increased (or similarly for fixed u∞ and decreasing c) the singular heteroclinic orbits vary
from representing Type I, to Type II, Type III and Type IV waves, in that order, as depicted
in Figure 2.7b. In particular, for fixed c, Type I waves exist for 0 < u∞ ≤ ucrit, Type II waves
for ucrit < u∞ < u3, Type III waves for u∞ = u3, and Type IV waves for u3 < u∞ < uupper,
with uupper ∈ (u3,∞]. Note that these results can also be expressed in terms of ranges of c,
for fixed u∞. A summary of where in the phase plane the different wave types are observed
is given in Figure 2.7a.

2.5. Persistence of solutions for 0 < ε ≪ 1. Proof. [Proof of Theorem 2.1] Having
constructed travelling wave solutions in the singular limit ε → 0, we now show that these
singular limit solutions persist as nearby solutions of the full problem (1.6) for sufficiently
small 0 < ε ≪ 1, as in [39]. Firstly, we note that the end states of the waves (0, 1) and (u∞, 0),
which are the background states of (1.6), do not depend on ε and so remain unchanged for
ε > 0.

The existence of Type I waves for ε > 0 follows from Fenichel theory alone [7]. Away
from the fold curve, the normally hyperbolic manifolds Sa and Sr deform smoothly to locally
invariant manifolds Sa,ε and Sr,ε respectively, and the slow flow on these manifolds is a smooth,
O(ε) perturbation of the flow on S. Hence, the singular Type I waves Γ established in
Lemma 2.5 will perturb to nearby Type I waves Γε of the full system (1.6), connecting (1, 0)
to (u∞, 0). Note that since u∞ is a free parameter, we in fact have a family of possible end
states. Consequently, for a given singular heteroclinic orbit Γ connecting to a particular end
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Figure 2.7: An illustration of the different types of waves observed as u∞ is varied, for fixed
c = 1. The left hand figure shows a schematic of the regions of the phase plane of the reduced
problem in which the different wave types are observed. The right hand figure demonstrates
the smooth transition between the wave types. Note that this smooth transition is also
observed if u∞ is fixed and c varied.

state (u∞, 0) with wavespeed c, Γε will connect to this end state with a nearby wavespeed c(ε)
for ε > 0, with c(0) = c. Equivalently, with the wavespeed fixed, the perturbed heteroclinic
orbit Γε connects to a nearby end state (u∞(ε), 0) for ε > 0, with u∞(0) = u∞.

The existence of Type II–IV waves for ε > 0 follows from a combination of Fenichel
theory, canard theory, and the transversality condition in Lemma 2.9. We first focus on the
slow segments γc and γs of Γ defined in Lemmas 2.6 and 2.7. As mentioned above, away from
the fold curve, Sa and Sr deform smoothly to locally invariant manifolds Sa,ε and Sr,ε, and
the slow flow on these manifolds is a smooth, O(ε) perturbation of the flow on S. Hence,
the segment γs perturbs smoothly to γεs on Sa,ε connecting to the end state (u∞, 0). The
persistence of the segment γc relies on canard theory [17, 33, 38] since normal hyperbolicity
is lost near the fold. Canard theory guarantees the existence of a maximal folded saddle
canard γεc in the full system. Geometrically speaking, the stable and unstable slow manifolds
(Sa,ε and Sr,ε) intersect transversally near the folded saddle singularity for ε > 0 within the
three-dimensional centre manifold corresponding to the two slow and the non-hyperbolic fast
direction; see [5] and [39] for details. This transverse intersection defines the so called maximal
canard, and a family of canard solutions nearby, tracing the maximal canard exponentially
close.

Next, we focus on the fast dynamics. The normally hyperbolic branch Sa has an associated
local stable manifold WS(Sa) = ∪p∈Sa

WS(p) (stable layer fibration) and the normally hyper-
bolic branch Sr has an associated local unstable manifold WU (Sr) = ∪p∈Sr

WU (p) (unstable
layer fibration). The points p ∈ Sa/r are called base points of the fast fibres. Fenichel the-
ory [7] implies that these local stable and unstable manifolds (fibrations) perturb smoothly
to O(ε)-close local stable and unstable fibrations WS(Sa,ε) and WU (Sr,ε) with base points
pε ∈ Sa/r,ε. Recall that a fast segment γf connects the base points w+ = Toff(u) ∈ Sr and

w− = Tdown(u) ∈ Sa with u = uf . Since the layer fibre intersection ofWU (Toff) ⊂ WU (Sr) and
WS(Tdown) ⊂ WS(Sa) is transverse, it will persist for 0 < ε ≪ 1. The transversality condition
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in Lemma 2.9 ensures that the two slow solution segments γεc and γεs intersect transversally
(projected along fast fibres onto Sa,ε). This unique intersection point identifies the base point
location uf (ε) for ε > 0 of the fibre intersection γf,ε uniquely. Note that γf,ε is not a solution
of the full system (while γf is a solution of the layer problem).

Finally, recall that the end state (uU , wU ) ∈ Sa,ε is repelling for u ≥ 0. This end state can
only be approached in backward z by solutions that are in Sa,ε (which is only unique up to
exponentially small terms). Note that the attracting manifold Sa,ε extended past the folded
saddle singularity aligns with the unstable fibres of Sr,ε. We just showed that the unstable
fibration of Sr,ε along γεc has a unique fibre intersection. Hence, if we start on this fibre we will
approach the travelling wave end states in forward and backward z, and the singular Type II
and Type IV waves Γ established in Lemmas 2.6 and 2.7 will perturb to nearby Type II and
Type IV waves Γε of the full system (1.6), connecting (1, 0) to (u∞, 0) with nearby c = c(ε).
The above argument also holds for Type III waves, but without tracing backwards on Sr,ε.

3. Numerical analysis of asymptotic wavespeed. In the previous section we used geo-
metric singular perturbation theory to prove the existence and uniqueness of travelling wave
solutions to (1.6), based on the analysis of the corresponding ODE system. When studying the
ODE system, the wavespeed acts as an input parameter. However, in reality, the wavespeed
is an output of the PDE system. The existence and uniqueness of travelling wave solutions
provides no information about the stability of the solutions, in particular which wavespeed
will be observed for a given initial condition. In this section, we investigate the observed
wavespeeds of travelling wave solutions, numerically.

3.1. Estimating the wavespeed. The model (1.6) under consideration is

ut = −u2w + εuxx,

wt = w(1 −w) − (uxw)x + εwxx.

Linearising the desingularised system (2.12) (which arises from (1.6)) around (u∞, 0) provides
us with an approximation of the solution near (u∞, 0):

(

u
w

)

=

(

u∞
0

)

+A

(

−u2∞
1

)

e−cz̄,

where A is an appropriate integration constant. Furthermore, near (u∞, 0), z̄ is approximately
z/c2 so we have

(

u
w

)

=

(

u∞
0

)

+A

(

−u2∞
1

)

e−z/c. (3.1)

Consequently, we make the ansatz that the leading edges of the solutions behave like

u(x, t) = u∞ − u2∞Ae−ξ(x−ct) = u∞(1− u∞w(x, t)),

w(x, t) = Ae−ξ(x−ct),
(3.2)
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for asymptotically large x, with ξ,A > 0, and evolve from initial conditions with equivalent
asymptotic behaviour. Substituting (3.2) into (1.6) gives

−ξcu2∞w(x, t) = −(u∞ − u2∞w(x, t))2w(x, t)− εξ2u2∞w(x, t),

ξcw(x, t) = w(x, t)(1 − w(x, t)) + 2ξ2u2∞w2(x, t) + εξ2w(x, t).

Since w → 0 as x → ∞, we neglect the O(w2)-terms to obtain the dispersion relation for both
equations:

ξc = 1 + εξ2 or c = εξ +
1

ξ
.

This dispersion relation is equivalent to that of the Fisher–KPP equation. Thus, applying the
argument in [21, 26], we infer that solutions evolving from initial conditions with asymptotic
behaviour equivalent to (3.2) will have wavespeeds:

c =

{

1
ξ + εξ, if ξ < 1√

ε
,

2
√
ε, if ξ ≥ 1√

ε
.

(3.3)

For ε = 0, (3.3) suggests a wavespeed of c = 1/ξ for all ξ. This has been numerically
verified for Type I and II waves [24]. However, minimum wavespeed waves with semi-compact
support (Type III waves) were also observed in [24], where the speed of these waves was
much greater than the expected value of zero and evolved from initial conditions with various,
finite values of ξ. This result is in contradiction to (3.3), however is not unexpected since
the analysis is not valid for Type III waves. Initial conditions with semi-compact support
also evolved to the minimum wavespeed, Type III wave [24]. No numerical experiments were
carried out for ε > 0 in [24] as their model did not include diffusion.

3.2. Numerical results for ε > 0. We investigate the validity of (3.3) for ε > 0. To
solve (1.6) we employ a numerical scheme that uses the finite volume method for the spatial
discretisation, with a third order upwinding scheme for the advection term and linearisation
in time of the non-linear source term w(1 − w), and a Crank–Nicolson timestepping scheme.
We choose initial conditions with appropriate asymptotic behaviour for large x:

u(x, 0) = u∞, w(x, 0) =

{

1 if x ≤ x0,

e−ξ(x−x0) if x > x0,
(3.4)

where x0 = L/5 with L the length of the domain.
Figure 3.1 shows a comparison between (3.3) (solid lines) and the numerically measured

wavespeeds (markers), for various values of ε (ε = 0, 0.05, 0.1, . . . , 0.5) with fixed u∞ = 1. We
observe that the markers appear to lie on the solid lines up to a critical value of ξ. Beyond
this, (3.3) suggests the curves should flatten out to 2

√
ε, the expected minimum wavespeed.

However, this is only true for moderate values of ε, in the case where u∞ = 1 approximately
ε ≥ 0.3. For smaller values of ε, the transition to the minimum wavespeed occurs for smaller
values of ξ and larger values of c than suggested by (3.3).

For wavespeeds above the minimum wavespeed, both Type I and Type II waves are ob-
served numerically; Type I waves for smaller values of ξ (corresponding to faster wavespeeds),
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Figure 3.1: A plot of the numerically measured wavespeeds (markers) against (3.3) (solid
lines) for various values of ξ and ε. The colours of the curves and markers are alternated
purely as a visual aid, they do not represent anything mathematically significant.

and Type II waves for larger values of ξ (corresponding to slower wavespeeds). However, as
seen (or rather not seen) in Figure 3.1, there is no distinguishing feature visible in the data
to suggest a transition from Type I to Type II waves. This is because the transition point
is determined by u∞; in particular, the value of u∞ corresponding to u∞ = ucrit(c, ε) for the
chosen values of ξ, ε, and consequently c.

For wavespeeds equal to the minimum wavespeed, only Type III waves are observed. Since
this minimum wavespeed is greater than that suggested by (3.3) from the linear analysis, the
numerical results indicate that the Type III wave is a pushed front, in contrast to the Type
I and II waves which are pulled fronts [35]. We still require an expression for the minimum
wavespeed. No Type IV waves were observed numerically to evolve from initial conditions of
the kind used here. Furthermore, initial conditions similar to the Type IV wave in Figure 2.5d
evolved to a Type III wave.

Figure 3.2 shows the relationship between the minimum wavespeed and u3. The solid, blue
curve is numerical data obtained from the ODE solver for (2.12). The black, dashed curve
represents the power series approximation between c and u3 given in [24], assuming small c.
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(Note that [24] also provides an approximation assuming large c, which compares well against
our numerical results, but is not shown here.) The remaining curves are plots of numerical
data obtained from the PDE solver for various values of ε (ε = 0, 0.02, . . . , 0.1, 0.2, . . . , 0.5),
with c increasing as ε increases.

u3

c

0 1 2 3 4 5
0

1

2

power series approx.

ε = 0, ODE solver

ε = 0, PDE solver

ε = 0.02

ε = 0.04

ε = 0.06
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ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

ε = 0.5

Figure 3.2: The minimum wavespeed as a function of u∞. Since the minimum wavespeed
wave corresponds to a Type III wave, u∞ = u3. The solid, blue curve is data obtained
from the numerical solution of the ODE system (2.12), and so is for ε = 0. The dashed,
black curve is a power series approximation between u3 and c for ε = 0 given in [24]. The
remaining curves show data from the numerical solution of the PDE system (1.6) for ε =
(0, 0.02, . . . , 0.1, 0.2, . . . , 0.5), as labelled. The colours of these curves are alternated purely a
visual aid, and do not represent anything mathematically significant.

A first observation is that the data from the PDE and ODE solvers for ε = 0 compare
well. They also compare well with the power series approximation suggested in [24], which is
only for ε = 0. The results suggest that the minimum wavespeed depends not only on ε as
suggested by (3.3), but also u∞ or u3. The power series solution in [24] suggests a quadratic
relationship for ε = 0, however we do not have an approximation for c = c(u3, ε) for ε 6= 0.

For ε 6= 0, the most notable feature of the plots is the flattening out of the curves for small
u3. This indicates that for sufficiently large ε and sufficiently small u3, the dependence of the
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minimum wavespeed on u3 is removed, that is, it only depends on ε: c = c(ε). However, the
curves suggest that independent of the size of ε, for sufficiently large values of u3, the minimum
wavespeed will still depend on u3, and the power series provides a reasonable approximation.
That is, as u3 → ∞, c(u3, ε) ≈ c(u3, 0) ∼

√
u3.

3.3. Numerical results for ε = 0. An interesting result from the numerical solutions of
the ODE system, is the relationship between the jump length of Type II, III and IV waves and
u∞. The jump length is measured as w+ − w−, with results for various wavespeeds depicted
in Figure 3.3. In particular, Figure 3.3a illustrates the relationship between the jump length
of a particular wave and its end state u∞, and Figure 3.3b, the relationship between the
jump length and the value of u where the jump occurs. As expected, at the onset of Type
II waves the jump length is zero, and then increases as u∞ or u increases. The jump length
corresponding to the Type III wave is marked with an ×. As u∞ or u increases further, the
jump length reaches a maximum and starts to decrease once more. This implies that there
is a turning point in the difference between the take-off curve w = Toff(u) and the fold curve
w = F (u).

Furthermore, these numerical results suggest that for any given c, there is a maximum
value of u∞ for the existence of travelling waves as constructed in this article; that is, uupper is
finite. This is clearly seen in Figure 3.3a. However, although there appears to be a maximum
value of u∞, the u-location of the jump is not bounded. That is, as the jump length goes to
zero, the jump location goes to infinity. This is demonstrated in Figure 3.3b. An example
trajectory for the Type IV wave with a jump length close to zero is shown in Figure 3.3c. This
illustrates the point that as the jump location moves closer to infinity, the jump size decreases,
and that the corresponding end state of the wave u∞, though also increasing, appears to be
bounded.

Finally, as c is increased, Figures 3.3a and 3.3b indicate that the maximum jump length
decreases, and approaches zero as c → ∞. This is to be expected, since (uH , wH) → (∞, 0)
as c → ∞, so all the solutions will be Type I and therefore not contain a jump.

4. Discussion. Thus far, we have proved the existence and uniqueness of travelling wave
solutions to a model of malignant tumour invasion (1.6) for sufficiently small 0 ≤ ε ≪ 1. The
wavespeed of the travelling wave solutions that evolved from initial conditions (3.4) was also
discussed. Other initial conditions for w were also considered that had the required asymptotic
behaviour, but are not shown here. In all cases the resulting wavespeed was equivalent to that
resulting from (3.4).

The proof of existence of travelling wave solutions to (1.6) was constructed using geometric
singular perturbation theory. Accordingly, the solutions were constructed as heteroclinic
orbits in the singular limit ε → 0, and then extended to solutions of the full system (1.6)
using Fenichel theory and the theory of canard solutions, assuming sufficiently small ε. These
travelling wave solutions were classified as Type I, II, III or IV waves.

In [29], diffusion was neglected as it was assumed that it played a small role in the migration
process. We have provided a rigorous proof of the travelling wave solutions for ε = 0 found
numerically in [24], and furthermore, have shown that these solutions persist for small ε.
Therefore, we can confirm that the effect of diffusion is in fact small.
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Figure 3.3: The first two plots show data from the numerical solutions of the ODE system
(2.12) illustrating how the jump length varies with u∞ and u, for various values of c (and
ε = 0). The jump length corresponding to a Type III wave is marked with an ×. The
corresponding value of u∞ or u at this point is u∞ = u3. Before this (for smaller values of u∞
or u) the waves are Type II waves, and after (for larger values of u∞ or u) are Type IV waves.
The third plot shows an example trajectory for a Type IV wave with jump length close to
zero, with c = 0.5.

4.1. Protease. Recall that in §1.4 a third expression was neglected in (1.2) describing the
density of protease ρ:

∂ρ

∂t
=

1

δ
(uw − ρ), (4.1)

where 0 < δ ≪ 1. This expression was neglected as it was assumed in [29] that the protease
reaction occurred on a sufficiently fast time scale that the protease density could be considered
to be at steady state to leading order. Subsequently we ask: which is smaller, the added
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diffusivity ε in (1.6) or the inverse protease density rate parameter δ?

For our analysis we assume that δ = O(εη), where η > 1, such that δ → 0 faster than ε
and the protease reaction can be neglected even when the diffusion is not. In [25], the authors
consider the full system of three partial differential equations, (1.2) and (4.1). They suggest
that travelling wave solutions are not observed for this model unless diffusion is added to the
cell species w, with ε = O(δ). Throughout the analysis, parameter regimes with both ε > δ
and ε < δ are considered. The former regime gives rise to solutions that appear to be an O(ε)
perturbation of the solutions constructed in the singular limit, whereas the latter results in
solutions that exhibit oscillations at the wave front. This suggests that our assumption that
δ → 0 faster than ε is reasonable. Analysis of the full system (1.2) and (4.1) using the method
employed here is the topic of future investigation, to explore the effect of the relative sizes of
δ and ε.
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