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ABSTRACT

This paper analyses the probabilistic linear discriminant anal-
ysis (PLDA) speaker verification approach with limited de-
velopment data. This paper investigates the use of the me-
dian as the central tendency of a speaker’s i-vector rep-
resentation, and the effectiveness of weighted discrimina-
tive techniques on the performance of state-of-the-art length-
normalised Gaussian PLDA (GPLDA) speaker verification
systems. The analysis within shows that the median (us-
ing a median fisher discriminator (MFD)) provides a better
representation of a speaker when the number of representa-
tive i-vectors available during development is reduced, and
that further, usage of the pair-wise weighting approach in
weighted LDA and weighted MFD provides further improve-
ment in limited development conditions. Best performance is
obtained using a weighted MFD approach, which shows over
10% improvement in EER over the baseline GPLDA system
on mismatched and interview-interview conditions.

Index Terms— Speaker verification, PLDA, WLDA,
WMFD

1. INTRODUCTION

Speaker verification has traditionally required a large volume
of speech during development and evaluation, particularly in
the presence of high intersession variability. However, it can
be hard to acquire a sufficient quantity of data in many real-
world environments, limiting the suitability of speaker verifi-
cation for many everyday applications. Recently, a number of
interesting techniques have focussed on reducing the amount
of speech required during evaluation (covering the enrolment
of speaker models, and their verification), but little effort has
been put into reducing the volume of speech required to de-
velop new models for deployment into previously unseen en-
vironments.

Reducing the amount of speech required during enrolment
and verification whilst maintaining satisfactory performance
has been the focus in a number of recent studies focused
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on a variety of speaker verification technologies: joint fac-
tor analysis (JFA) [1], support vector machines (SVM) [2],
i-vectors [3] and probabilistic linear discriminant analysis
(PLDA) [4]. These studies have shown that, across all tech-
nologies, the verification performance degrades considerably
when very-short utterances (< 10s) are used as evaluation
data. A number of attempts to compensate for this reduc-
tion in performance have been undertaken in the literature.
Kenny et al. [5] have investigated how to quantify the uncer-
tainty associated with summarising various length utterances
down to a constant-length i-vector and demonstrated how to
propagated that into the PLDA classifier. An alternative ap-
proach was demonstrated by Hasan et al. [6] where they found
that the duration variability can be modelled as additive noise
in the i-vector space, also using a PLDA classifier.

Speaker verification is a data-driven research field, and
it has clearly been established that state-of-the-art speaker
verification systems require a significant volume of develop-
ment data covering multiple sessions across a large number
of speakers [7]. However, the volume of data required to ad-
equately model the background behaviour of speaker models
is not always available, particularly in new environments. In a
recent study, the i-vector and PLDA speaker verification sys-
tems’ performance were analysed when the long- and short-
length utterance development data was used for speaker de-
velopment, where Kanagasundaram et al. have found that
instead of using the full-length utterance development data,
when short-length utterance development data is used for
PLDA modelling, speaker verification systems shows a sig-
nificant improvement [4]. However, there hasn’t yet been any
detailed investigations on how state-of-the-art PLDA speaker
verification copes with limited session development data.

In this paper, initially a LDA-projected Gaussian PLDA
(GPLDA) speaker verification system’s is analysed with lim-
ited development data to investigate the effect on speaker
verification performance. An alternative approach to LDA
projection, the median Fisher discriminator (MFD) is then
introduced to show better speaker discriminative perfor-
mance from limited channel development data than the mean-
centroid approach of LDA. Finally, weighted approaches,
where weighting the speakers that are closer to each other
to reduce speaker confusion, of LDA (WLDA) and MFD
(WMFD) are introduced to provide a further boost in speaker



discrimination from limited development data.
This paper is structured as follows: Section 2 outlines a

typical state-of-the-art GPLDA speaker verification system,
and Section 3 gives a brief overview of dimensionality reduc-
tion approaches, including the MFD and weighted approaches
introduced in this paper. The experimental protocol and cor-
responding results are given in Section 4 and Section 5. Sec-
tion 6 concludes the paper.

2. GPLDA SPEAKER VERIFICATION

2.1. I-vectors

I-vectors represent a Gaussian mixture model (GMM) mean
super-vector by a single total-variability subspace. This
single-subspace approach was motivated by the discovery that
the channel space of the earlier, related JFA technique con-
tained valuable speaker-discriminant information [8]. An i-
vector speaker-and-channel-dependent GMM super-vector µ
can be represented by,

µ = m + Tw, (1)

where m is a universal background model (UBM) mean
super-vector trained over a large development set and T
is a low-rank total-variability matrix. The total-variability
factors (w) are the i-vectors, and are normally distributed
with parameters N(0,1). Extracting an i-vector from
the total-variability subspace is essentially a maximum a-
posteriori (MAP) adaptation of w in the subspace defined by
T. An efficient procedure for the optimisation of the total-
variability subspace T and subsequent extraction of i-vectors
is described by Dehak et al. [9, 10]. In this paper, the pooled
total-variability approach is used for i-vector feature extrac-
tion where the total-variability subspace (Rw

telmic = 500)
is trained on telephone and microphone speech utterances to-
gether to provide the best i-vector representation [11].

2.2. GPLDA modelling

When originally introduced by Kenny [12], the Gaussian
(GPLDA) and Heavy-tailed PLDA (HTPLDA) approaches
were introduced to directly model the speaker and channel
variability directly in the i-vector space, with better perfor-
mance obtained using HTPLDA at a cost of higher com-
plexity. However, recently Garcia-Romero et al. have
shown that a simple whitening and length-normalisation ap-
proach can bring the performance of GPLDA up to HT-
PLDA with a much simpler approach, and it is this length-
normalised GPLDA approach that will be used in this pa-
per. The length-normalisation approach is detailed by Garcia-
Romero et al. [13], and this approach is applied on devel-
opment and evaluation i-vectors prior to GPLDA modelling.
A speaker and session-dependent length-normalised i-vector,

w′s,i can be defined as,

w′s,i = w̄′ + U1x1,s + εs,i (2)

where for a given speaker, s, having nS sessions i =
1, . . . , ns, w̄′ is the mean length-normalised i-vector, x1,s is
the speaker factors and εs,i is the residual for each session; Fi-
nally, U1 is the eigenvoice matrix trained in PLDA modelling.
The speaker specific part can be represented as w̄′ + U1x1,s,
which represents the between-speaker variability and the co-
variance matrix of the speaker part is U1U1

T . The session-
specific part is represented as εs,i, which describes the within-
speaker variability, and the covariance matrix of the session
variability is Λ−1. We assume that the precision matrix (Λ)
is full rank.

Prior to length-normalisation and GPLDA modelling, a
number of dimensional reduction techniques can be used, as
outlined in Section 3, to compensate for session variation
prior to GPLDA modelling as well as reducing the compu-
tational time of the modelling itself [14].

2.3. GPLDA scoring

Scoring in GPLDA speaker verification systems is conducted
using the batch-likelihood ratio between a target and test i-
vector [12]. Given two length-normalised i-vectors, w′target
and w′test, the batch-likelihood ratio can be calculated as fol-
lows,

ln
P (w′target,w′test | H1)

P (w′target | H0)P (w′test | H0)
(3)

where H1 denotes the hypothesis that the i-vectors represent
the same speakers and H0 denotes the hypothesis that they do
not.

3. DIMENSIONALITY REDUCTION OF I-VECTOR
FEATURES

3.1. Linear discriminant analysis

Because i-vectors are calculated on a subspace covering both
speaker and session variation, session compensation tech-
niques are typically introduced after i-vector extraction and
before modelling to improve the speaker discriminative abil-
ity of the i-vector subspace. A typical approach is to first
reduce the dimensionality using linear discriminant analy-
sis (LDA) and then scale the resultant space using within-
class covariance normalisation (WCCN) [15]. In this paper,
we will refer to this technique as WCCN of the LDA space
or WCCN[LDA], and in the first stage of this process, an
LDA transformation attempts to find a reduced set of axes A
through the eigenvalue decomposition of Sbv = λSwv, where
the standard within- and between-class scatter estimations Sb



and Sw, are calculated as

Sb =

S∑
s=1

ns(w̄s − w̄)(w̄s − w̄)T , (4)

Sw =

S∑
s=1

ns∑
i=1

(ws,i − w̄s)(ws,i − w̄s)
T , (5)

where S is the total number of speakers, ns is number of ut-
terances for speaker s, and ws,i is the ith i-vector for speaker
s. The mean i-vector, w̄s for each speaker, and the mean, w̄,
across all speakers are defined by

w̄s =
1

ns

ns∑
i=1

ws,i, (6)

w̄ =
1

N

S∑
s=1

ns∑
i=1

ws,i. (7)

where N is the total number of sessions.
In the second stage, the WCCN transformation matrix

(B) is trained on LDA-projected development i-vectors. The
WCCN matrix (B) is then calculated using Cholesky decom-
position of BBT = W−1, where the within-class covariance
matrix W is calculated using

W =
1

S

S∑
s=1

ns∑
i=1

(AT (ws,i − w̄s))(AT (ws,i − w̄s))
T .(8)

3.2. Median fisher discriminator

In traditional LDA, the mean i-vector of each speaker plays
a major role in the definition of the between-class and within-
class scatter matrices. Therefore, the accuracy of estimate
the mean has a substantial effect on the resulting projected
directions of the LDA transformation. In this paper, as we
investigate speaker verification with limited session develop-
ment data, averaging these few recording could lead to a loss
of speaker-discriminant information. By taking the median as
the estimator for the central tendency, instead of the mean, the
MFD approach should help to attenuate this loss, as the me-
dian tends to provide a more robust estimate. [16]. MFD esti-
mation is performed by calculating the between- and within-
class scatter estimations using the median as the central ten-
dency rather than the mean, Smedian

w and Smedian
b , calculated

as follows;

Smedian
b =

S∑
s=1

ns(w̃s − w̃)(w̃s − w̃)T , (9)

Smedian
w =

S∑
s=1

ns∑
i=1

(ws,i − w̃s)(ws,i − w̃s)
T (10)

where S is the total number of speakers, and ns is number of
utterances of speaker s. The median i-vectors, w̃s for each

speaker, and w̃ across all speakers are defined by

w̃s = Median({ws,1,ws,2,ws,3, . . . ,ws,ns}), (11)

w̃ =
1

N

S∑
s=1

nsw̃s. (12)

where N is the total number of sessions. The MFD trans-
formation is estimated using the same approach as the LDA
transformation in the previous section.

3.3. Weighted LDA and MFD

Traditional discriminative dimensional reduction techniques
focus on the scatter matrices of the development space as
a whole, but recently more advanced weighted-approaches
have been introduced that can calculate the scatter matrices on
a pair-wise basis, taking advantage of the discriminative infor-
mation contained in the relationship between individual pairs
of speakers [17]. In this paper, we will investigate the effec-
tiveness of the weighted variants of LDA and MFD (WLDA
and WMFD respectively) when trained on limited session
development data. For the WLDA approach, the weighted
between-class scatter matrix, Sw

b , is defined as

Sw
b =

1

N

S−1∑
p=1

S∑
q=p+1

w(dpq)npnq(w̄p − w̄q)(w̄p − w̄q)T ,(13)

where w̄p and w̄q are the mean i-vectors of speaker p and q
respectively, np and nq the number of sessions, and w(dpq)
is a weighting function defined such that the classes that are
closer to each other will have a higher weight in forming the
final scatter matrix. In this paper, we will be investigating the
Euclidean distance weighting function, w(dpq)

Euc,

w(dpq)
Euc = ((w̄p − w̄q)T (w̄p − w̄q))−n. (14)

The standard within-class scatter Sw and the corresponding
WLDA and WCCN transformation matrices can be estimated
as described in Section 3.1. For the WMFD estimation, a
similar approach is taken, but with w̄p and w̄q replaced with
w̃p and w̃q in Equations 13 and 14.

4. EXPERIMENTAL METHODOLOGY

The GPLDA based experiments were evaluated using the
common set of NIST 2008 short2-short3 evaluation cor-
pora. The performance was evaluated using the equal error
rate (EER) and the minimum decision cost function (DCF),
calculated using Cmiss = 10, CFA = 1, and Ptarget =
0.01 [18].

We have used 13 feature-warped MFCC with appended
delta coefficients and two gender-dependent UBMs contain-
ing 512 Gaussian mixtures throughout our experiments. The
UBMs were trained on telephone and microphone from NIST



Table 1. Weighted LDA and MFD performance versus unweighted LDA performance of length-normalised GPLDA as the
number of development sessions is increased.

System Interview-interview Interview-telephone Telephone-interview Telephone-telephone
EER DCF EER DCF EER DCF EER DCF

3 sessions/speaker
WCCN[LDA]-GPLDA 10.85% 0.0473 11.69% 0.0526 9.51% 0.0423 4.04% 0.0188
WCCN[MFD]-GPLDA 10.52% 0.0465 11.06% 0.0492 8.82% 0.0383 4.29% 0.0172
WCCN[WLDA]-GPLDA 9.95% 0.0455 11.25% 0.0515 8.69% 0.0393 3.71% 0.0193
WCCN[WMFD]-GPLDA 9.69% 0.0435 10.15% 0.0470 8.15% 0.0364 3.95% 0.0186
5 sessions/speaker
WCCN[LDA]-GPLDA 8.69% 0.0395 9.86% 0.0467 7.81% 0.0344 3.21% 0.0148
WCCN[MFD]-GPLDA 8.09% 0.0372 8.94% 0.0440 7.34% 0.0331 2.96% 0.0149
WCCN[WLDA]-GPLDA 7.94% 0.0379 9.29% 0.0451 6.79% 0.0303 2.97% 0.0157
WCCN[WMFD]-GPLDA 7.29% 0.0350 8.11% 0.0402 6.11% 0.0271 2.72% 0.0154
7 sessions/speaker
WCCN[LDA]-GPLDA 8.00% 0.0361 8.29% 0.0430 7.00% 0.0307 2.55% 0.0143
WCCN[MFD]-GPLDA 7.67% 0.0348 8.29% 0.0416 7.00% 0.0303 2.88% 0.0144
WCCN[WLDA]-GPLDA 6.78% 0.0326 7.66% 0.0401 5.98% 0.0265 2.70% 0.0143
WCCN[WMFD]-GPLDA 6.12% 0.0306 7.39% 0.0373 5.36% 0.0268 2.63% 0.0149

2004, 2005, and 2006 SRE corpora, and then used to calcu-
late the Baum-Welch statistics before training a gender de-
pendent total-variability subspace of dimension Rw = 500.
The pooled total-variability representation and the GPLDA
parameters were trained using telephone and microphone
speech data from NIST 2004, 2005 and 2006 SRE corpora
as well as Switchboard II. We empirically selected the num-
ber of eigenvoices (N1) equal to 120 as best value accord-
ing to speaker verification performance over an evaluation set.
150 eigenvectors were selected for LDA, MFD, WLDA and
WMFD estimations. S-normalisation was applied for experi-
ments, and randomly selected telephone and microphone ut-
terances from NIST 2004, 2005 and 2006 were pooled to form
the S-normalisation dataset [19].

5. RESULTS AND DISCUSSIONS

Table 1 presents the results comparing the performance of the
weighted LDA and MFD systems against the baseline un-
weighted LDA approach. It can be observed from Table 1
that, as the number of development sessions made available
to WCCN[LDA]-projected GPLDA system increases from 3
per speaker to 7, the EER drops considerably across all con-
ditions. WCCN[MFD]-projected GPLDA system shows im-
provement over WCCN[LDA]-projected GPLDA system, as
MFD is robust estimate when limited session data is available.
The weighted LDA system shows useful improvement over
the unweighted LDA approach on mismatched and interview-
interview conditions, showing that the weighted approach
effectively extracts more discriminant information from be-
tween pair of speakers. This improvement is further extended
by the choice of the median over the mean as the central ten-

dency, with the WMFD system showing a further improve-
ment of WLDA for a total of over 10% improvement in EER
over the baseline LDA system on mismatched and interview-
interview conditions.

6. CONCLUSION

In this paper, length-normalised PLDA speaker verification
was analysed with limited session data, and it was found that
when number of sessions that is used to train the PLDA sub-
space and dimensionality reduction techniques is increased, it
significantly affects speaker verification performance. It was
found that, by taking advantage of pair-wise differences in
speaker i-vectors, weighted LDA improved speaker verifica-
tion performance in limited development session conditions.
Further improvement was found by using the median as the
measure of central tendency rather than the mean for calculat-
ing the scatter matrices. The final median-based and weighted
WMFD PLDA system provided over a 10% improvement in
EER over the baseline LDA GPLDA system on mismatched
and interview-interview conditions.
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