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Abstract / Summary: (122 words)

Chronic physical inactivity is a major risk factor for a number of important lifestyle diseases, while
inappropriate exposure to high physical demands is a risk factor for musculoskeletal injury and
fatigue. Proteomic and metabolomic investigations of the physical activity continuum, extreme
sedentariness to extremes in physical performance, offer increasing insight into the biological
impacts of physical activity. Moreover, biomarkers, revealed in such studies, may have utility in the
monitoring of metabolic and musculoskeletal health or recovery following injury. As a diagnostic
matrix, urine is non-invasive to collect and contains many biomolecules which reflect both positive
and negative adaptations to physical activity exposure. This review examines the utility and

landscape of biomarkers of physical activity with particular reference to those found in urine.
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Introduction

Throughout human evolution regular moderate to vigorous physical activity was essential for the
maintenance of relative health through the provision of adequate access to nutritional sources,
avoidance of physical threats and protection of territory. Today, poor health and injury, that occur as a
result of too little, too much or otherwise inappropriate physical activity, represent major obstacles to
the future economic security of most modern societies [1-5]. It is now clear that chronic exposure to
physical inactivity (sedentariness) is a major risk factor for lifestyle diseases (Figure 1) including
cardiovascular disease, type Il diabetes and obesity-related disorders including a number of highly
prevalent cancers [1,6-13]. Indeed, physical inactivity is now responsible for 6% of deaths globally [2].
Conversely, inappropriate prescription of exercise such as exposure to high physical demands is a major
risk factor for musculoskeletal injury [3-5,14]. Importantly, in these contexts, an individual’s response to
physical activity (or lack of) is determined by their genome (predisposition) and its potential disturbance
and adaptation relative to exposure (i.e. frequency, intensity and duration) to the physical activity
continuum (extreme inactivity to extreme activity; Figure 1). The integrated interaction between the
genome and the physical activity continuum results in constant alterations to gene expression; protein
abundance and post-translational modifications; and, metabolite flux in almost every organ system in the
body [15]. The increasing application of proteomic methodologies has been successful in the analysis of
protein changes and providing new insights into cellular mechanisms [16]. Such insights have the
potential for early detection of chronic disease conditions which is critical as a tool for primary prevention
and evaluation of the efficacy of clinical interventions. Thus, understanding and monitoring these
processes in order to manage exposure to the continuum of physical activity may play a potentially

important role in health maintenance, injury prevention and recovery strategies.

Currently, physical activity is typically monitored through self-report or by utilisation of devices for
measuring heart rate, blood pressure, number of steps, or metabolic energy expenditure etc. While these

provide important information regarding the perception of effort and / or actual physiological responses



to given levels of activity, there is growing interest in developing non-invasive biomolecular measures of
activity level. The hypothesis being that such biomarkers could provide clinically valuable information

about the beneficial or detrimental responses to particular types and intensity of physical activity.

The search for physical activity biomarkers, typically in sport, has focussed mainly on blood plasma or
serum as the diagnostic matrix. However, from an end-user perspective it is important to understand
that people interested in monitoring their biological response to physical activity are unlikely to be
willing to provide blood samples on a regular or semi-regular (daily or weekly) basis. Urine, on the
other hand, is non-invasive to collect and pathways to utilisation of urinary diagnostics are already
established for a number of urinary diagnostic modalities such as the pregnancy test and for drug
testing in elite sport or on large industrial worksites. In this regard a key driver for the utilisation of
urine as a diagnostic matrix for monitoring of the biological impact of physical activity is simply one

of end-user-uptake.

Recent trends in biomarker development have moved toward utilisation of multiple markers to
improve diagnostic sensitivity and specificity. This is also the case for the development of diagnostics
of physical activity which extends along the continuum between extreme sedentary behaviour and
extremes of human physical performance (Figure 1). For example, large scale data acquisition and
systems biology approaches have recently been utilised to monitor over all wellness and health generally

[17,18] and will no doubt continue to be developed into the future.

This review will outline the findings from recent studies which have used proteomic and / or
metabolomic techniques to investigate biomolecular responses to physical activity and physical inactivity
in human subjects (unless otherwise specified). The potential utilisation of these techniques as a tool in
the analysis of modifications in protein profiles associated with physical activity and its impact on health

and chronic disease will also be discussed.



Biomolecular profiling in MS-based omics

The birth of proteomics corresponded with the proliferation of computational and MS-based
technologies in the post-genomic era. During this period it was clear that the number of genes did
not coincide with the number of gene products observed in nature. As such the combination of gene
and protein sequence databases along with increased computational power brought about the
introduction of peptide sequence database searching, also termed “bottom-up” proteomics.
Bottom-up workflows attempt to identify and measure the amount of a protein based on its
constituent peptides. These peptides are produced through enzymatic digestion in a laboratory. The
discontinuous nature of bottom-up workflows can be disadvantageous. Primarily because they
require complex and computationally intensive analysis methods along with expert interpretation of
results. For example, consideration in the handling of shared peptides between different proteins or
understanding which subsets of proteins carry post translational modifications on a particular
moiety requires an understanding of 1) appropriate analytical workflows, 2) the peptide modelling
process and ultimately protein assignment, two crucial components in bottom-up workflows.
Alternatively, there are proteomic methods that assess intact proteins or poly-peptides. These
workflows remove some of the difficulties associated with the peptide spectrum matching
procedure in bottom-up pipelines, but have caveats of their own. Top-down methods require
specific analytical platforms such as MALDI as well as the applications of specialised fragmentation
methods e.g. electron-capture-dissociation (ECD) or electron transfer dissociation (ETD).
Furthermore, specific biologically relevant proteins can be accurately measured using targeted
proteomic methodological approaches, the caveat being that the biological target of interest needs

to be known prior to assay design.

A lot of these pitfalls have been and continue to be studied and addressed. The current difficulties

facing the “omics” community are in the experimental design and analytical methodology post



acquisition primarily. This has come about due to the incredible amounts of information obtained
from a single LC-MS acquisition. Certainly the field is mature enough that these methods are able to

be accurately applied to a range of scientific questions and biological samples.

Urine as a diagnostic matrix for physical activity

Even though sport and exercise physiology research efforts have been the most active in the
investigation of biomarkers associated with exercise and physical activity, blood remains the
predominant matrix of choice for these studies. However, the invasive nature of blood collection is a
key disadvantage [19] and analyte concentrations (proteins / metabolites) have a large dynamic
range (approx. 14 orders of magnitude) which can hamper the discovery of useful biomolecular
markers [20]. In addition, saliva has been proposed as a non-invasive diagnostic matrix; however,
few of the known constituents of saliva reflect musculoskeletal tissue specific responses to physical

activity [21].

The most common utilisation of urine as a diagnostic matrix is in the assessment of pregnancy
status. Rapid point-of-care technologies are also in routine use for the quantification of leukocytes,
glucose, urobilinogen, pH, haemoglobin, specific gravity, ketone, bilirubin and nitrite. In clinical
research, the use of urine has mainly focussed on the discovery of biomarkers of kidney disease,
allograft rejection following kidney transplantation [22-24] and early detection of cardiovascular
disease and cancer [25-28]. While pregnancy testing seeks to report the simple presence or absence
of specific analytes, these types of clinical investigations and investigations of the biochemical
impact of physical activity are complicated by the need to interpret an increase or decrease of

potentially thousands of molecules.

It is now clear that small proteins, along with potential degraded, cleaved or modified protein

products, are capable of entering the blood-stream from the interstitial environment following soft



tissue damage. They are then circulated to the kidney with the ability to pass through the renal
filtration process into the urine [29]. Within each kidney there are around one million nephrons
which carry out the blood processing requirements of the organism. Each nephron consists of a
structure called the glomerular apparatus which selectively filters proteins, peptides and metabolites
from the adjacent blood source [30] in a manner that favours the filtering of low to medium
molecular weight (MW) constituents as detailed in [31]. Once past the glomerular barrier the filtered
components pass through a series of tubules (proximal convoluted tubule, loop of Henle and distal
convoluted tubule) where some proteins and metabolites are resorbed by the tubule cells. The

remainder of the filtered constituents are excreted into collecting ducts and expelled as urine.

The hypothesis that proteins, peptides and metabolites originating from peripheral tissues, such as
muscle, are deposited in the kidneys is supported by the reported incidence of rhabdomyolysis, as a
result of crush injury or extreme eccentric exercise induced muscle tissue remodelling [32]. Similarly,
the cumulative micro-trauma of musculoskeletal structures due to over-exertion leads to protein
degradation and metabolite accumulation which may be excreted via the kidney, into the urine [33].
This excreted low molecular weight (LMW) fraction of urinary protein and metabolite is thought to
contain substantial amounts of valuable diagnostic and potential prognostic information [34]. As
such, these molecules should be detectable using modern analytical profiling strategies. Indeed, due
to several key urinary proteomic studies, the diverse range of proteins and polypeptides which are
filtered into the urine by the kidneys is now becoming clear. These include extracellular, plasma
membrane and lysosomal proteins, along with an abundance of soft tissue-specific polypeptides [35-

39].

These findings support the potential for using urine as a source of protein, peptide and metabolite

biomarkers which will reflect the natural homeostatic flux of soft tissue turnover during tissue



loading scenarios associated with physical activity and impact of activity or inactivity on the

progression of chronic disease states.

Application of urinary physical activity markers

Sport science has the most comprehensive experience in the use of biomarkers for the evaluation of
physical activity (typically in blood) in elite athletes. The monitoring of biomarkers in athletes is an
attempt to optimise training thresholds to achieve a ‘functional over-reached’ state, in order to
promote positive adaptation and increased performance following rest; and to prevent development
of a ‘non-functional over-reached’ state which is a consequence of intense training leading to
decrement in ability even with adequate rest [40]. In particular, the monitoring of recovery from
intensive training is likely to be of particular importance to coaching staff for effective programming
of training regimes and schedules to better emphasise positive adaptation [41]. This is critical as
extreme non-functional over-reaching is associated with overtraining syndrome [42]: the long term
impairment of performance even with adequate rest between training sessions. The syndrome is
characterised by depression, fatigue, sleep disturbances and hormonal alterations and has also been
demonstrated to result in tissue catabolism [43]. However, the most common means of evaluation
of an athlete’s need for adequate recovery is by psychometric instruments in the form of
questionnaires, since this approach provides rapid diagnostic feedback [41]. However, a recent
review by Finsterer (2012) suggests that molecular biomarkers may be indicative of over-reaching
states. Such markers include protein carbonyls, glutathione and thiobarbituric acid-reactive
substances. In addition to these, the review also indicated that markers derived from ATP and purine
metabolism, serum lactate, ammonia, isoprostanes, glutathione peroxidase, catalase, interleukin-6
(IL-6) and tumour necrosis factor-a (TNF-a) had all been associated with various levels of exercise in
both trained and normal or sedentary control subjects [44]. With the exception of the isoprostanes
the rest of these molecules were almost exclusively investigated in serum. While monitoring of

biomarkers of muscle injury or fatigue using serum samples may have utility at the elite sport level it
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is more likely that such markers will be broadly utilised in sub-elite sports and workplace

environments if measurements can be made non-invasively such as in urine, saliva or sweat.

Irrespective of the setting various protein structures are affected during the soft tissue damage
process and throughout the repair and tissue remodelling process [33]. Therefore it may be possible
to detect fluctuations in these proteins, degradation products or metabolites in the early stages of
injury in order to pre-emptively introduce interventions designed to prevent progression of the

injury toward a catastrophic failure in both sport and the workplace.

Previous research indicates that the manifestation of work-related musculoskeletal disorders (WR-
MSDs) involve many factors [14]. With this in mind, the momentum gained through the
identification of single markers is now being re-directed to techniques that enable investigation of
multiple markers. The combination of multiple markers in combination with a systems approach to
analysis in order to assess a given trait affords a far more powerful approach with an increased
ability to discriminate between experimental subgroups (e.g. diseased / injured from control). Thus
urine analysed using biochemical profiling strategies may potentially reveal biochemical markers
that are present due to soft-tissue damage, which will aid in a greater understanding of the patho-
mechanisms of musculoskeletal injury, along with repair, and their relationship to the onset and
incidence of WR-MSDs and over-training syndrome in athletes. These same markers may also have

application in the analysis of inactivity.

It is clear that chronic physical inactivity results in significant pathological maladaptation and
disruption to homeostasis [15]. The physical demands of daily activities contribute substantially to
an individual’s ability to maintain biochemical homeostasis. Biomarkers of this biochemical range
may be considered as informative of basal health — a reflection of the requisite minimal activity for

acceptable wellbeing. Such markers would be influenced by the frequency, duration and intensity of
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activities required for individuals to maintain homeostasis. A combination of these basal and sub-
basal activity markers would be useful in the quantification of an individual’s engagement in
beneficial activity or indeed their individual biological response to inactivity. Given the establishment
of sufficient health data, individuals could be prescribed, or self-prescribed, specific frequency
duration and intensity of physical activity to maintain internal biochemistry within homeostatic, and
importantly, disease-preventing margins. Exercise & Sport Science Australia (ESSA) recently launched
the Exercise is Medicine” (EIM) Australia campaign [45]. This campaign is an international initiative of
the American College of Sports Medicine in which clinicians are encouraged to design exercise into
treatment plans for all patients [46-50]. The aim is to improve the overall health and wellbeing of the
public and thereby in the longer term reduce the cost burden to health care systems [51]. Thus
clinicians might use biomarkers of physical activity to evaluate the physiological impact of prescribed
exercise or activity regimes on their patients in a similar way that they currently monitor the impact

of drugs when treating various diseases.

Biomarkers of Physical Activity

The literature is a rich source of candidate biomarkers associated with a variety of physical activity
types and interventions (Figure 2A; Supplementary Table S1). Cumulatively, this landscape is
dominated by metabolites, chiefly identified in serum, followed by those identified in both serum
and urine, urine alone and those found in other sample types (Figure 2A). The detection overlap
between urine and serum metabolites is difficult to gauge from the overall biomarker catalogue due
to an experimental bias towards serum analyses; however, two studies conducted by the same
investigators demonstrate both the overlap and complementarity of urine and serum metabolite

detection following a short, intense interval training intervention [52,53] (Figure 2D).

In general, many of the physical activity markers are components of diverse metabolic pathways

(Supplementary Figure S1). As such these markers may provide limited insight into the detail of
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physical activity. This is evident in the cumulative metabolite data where each of the 20 common
amino acids has been separately associated with physical activity in at least one study (Figure 2B;
Supplementary Table S1). This suggests that physical activity may generally alter amino acid
abundance. Such a finding, while valuable, has limited utility in isolation. This likely extends to many
of the other markers which are frequently reported in the literature (Figure 2A). However, a portion
of the metabolite biomarkers are not associated with classical metabolic pathways and may
therefore be found to be informative of more specific disorder or disease with the generation of

sufficient data in the future.

Importantly, analysis of the biomarker catalogue demonstrates that a range of proteins have been
identified, in urine and serum, following physical activity intervention (Figure 2A). Ontological
analyses of these proteins provide information that is relevant to tissue structures and the molecular
functions that are consequential to the physical activity (Figure 2C). In this regard protein biomarkers
may provide additional insight beyond the activation or dysregulation of metabolic pathways;

however, this depends on the degree of prior knowledge available for a particular protein.

One of the major factors that may influence the value of any particular marker lies in knowledge of
its origin in the body. In this respect, there are two classes of biomarker relevant to monitor soft
tissue flux, defined as systemic (indirect) and tissue specific (direct) biomarkers. Direct markers
originate from the affected tissue itself and provide information on irregular anabolic or catabolic
events within the tissue under investigation. Indirect markers on the other hand may be
components that are not necessarily derived from the tissue itself, but are involved with its
metabolism or homeostasis. These are generally systemic markers, and as such, are involved in
multiple pathways within the body. These biomarkers will tend to change in abundance as a result of
a range of internal or external factors which may not be directly related to exercise. For example,

inflammation can be present due to over exertion but can also be present as a result of infection.
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The following text explores a cross section of indirect and direct biomarkers and their roles in

metabolism and physical activity.

Indirect biomarkers of physical activity

Acute Markers of energy metabolism during exercise

Multiple energy pathways are coordinated during exercise to provide requisite adenosine-
triphosphate (ATP) supply, including the phosphagen, glycolytic and oxidative pathways. The
activation of any one pathway is dependent upon the system’s need, which is directly related to the
exercise protocol under observation. Consequently, metabolomic studies using both serum and
urine have identified markers associated with these energy production pathways. Some of these
markers include adenosine-diphosphate (ADP) [54], ATP [54], creatinine [53,55-60] and creatine
kinase (CK) [61-65]. Importantly, the initial supply of ATP is generated via the phosphagen /
phosphocreatine pathways which involve utilisation of phosphocreatine (CrP) to convert ADP into
ATP via a CK catalysed phosphorylation event which also results in creatinine production: CrP + ADP
+H" > ATP + Cr. This is important because investigators are inconsistent with respect to the use of
creatinine as a normalisation strategy in urinary ‘omics’ study designs. While some groups have
demonstrated no differences in creatinine levels related to exercise [55], others report large
increases in this biomarker due to short term intensive exercise protocols [66]. Serum creatinine has
also been shown to increase after strenuous aerobic exercise and to correlate with an increase in
urinary creatinine levels [67]. Irrespective of these findings creatinine levels seem to be largely
dependent on the particular physical exercise routine employed, diurnal variations, diet as well as
muscular mass [68-70]. Such findings demonstrate a requirement to unify the approach to sample

normalisation in urinary omics investigations.

When the energy requirements of the system are at a level that is greater than the phosphagen

energy pathway can sustain, the system switches from aerobic to anaerobic metabolism through the
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glycolytic pathway. This involves the utilisation of carbohydrates and the production of both
pyruvate and lactate which both show marked increases in the urine of participants who have
undergone aerobic exercise using an ergocycle at 75% of VO, max [55]. Interestingly lactate is well
known to interfere in metabolomic studies, particularly when using nuclear magnetic resonance
spectroscopy [71]. As such, resonances associated with lactate are often removed as they can

influence the downstream analysis.

Citrate is another energy pathway metabolite that has been identified as a marker of physical
activity [52,53,60]. This metabolite is involved with energy conversion from carbohydrates, fats and
protein via the Krebs cycle as part of the aerobic energy system. It is a commonly cited metabolite in
studies investigating exercise and has been found to differ significantly from baseline measures
under a range of exercise schedules including strength and endurance training [72] and structured
sprint training regimes involving altered rest intervals [52]. Interestingly, fumarate and 2-
oxogluterate were also shown to increase in the urines of the same study, thus highlighting the

involvement of the aerobic pathways during exercise.

Glycerol is a further energy pathway-specific metabolite that has been associated with physical
activity [53,60]. Glycerol is irreversibly liberated through the lipolysis pathways [73] and has been
previously found to reduce in concentration 60 min post exercise in plasma samples when compared
to mid-exercise samples [60]. Additionally, this observation has been corroborated by others who
found increasing levels from baseline following resistance exercise [74,75]. Interestingly, Lewis et al.
(2010) hypothesised that glycerol might be indicative of general ‘physical fitness’ based on its lower

levels within unfit participants resulting in impaired lipid utilisation as a response to exercise [60].

In terms of amino acid metabolism, Pechlavanis et al. (2013) observed a reduction in serum levels of

the branch chain amino acids (BCAA) leucine, isoleucine and valine as a result structured sprint
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interval training regimes [53]. The authors attributed this to an increased uptake of BCAAs in muscle
tissue due to the tissue’s propensity to degrade these amino acids during exercise [53]. Interestingly,
they also observed a reciprocal increase in the downstream products of this BCAA catabolism in the
urine samples of the participants. These products included 2-hydroxyisovalerate, 2-oxoisovalerate,
3-methyl-2-oxovalerate, 3-hydroxyisobutyrate and 2-oxoisocaproate [52]. Importantly, the author’s
previous work clarified that this observation is not a result of decreased branched-chain 2-oxoacid
dehydrogenase activity but rather the increase in BCAA transamination leading to increased BCAA
catabolism [52]. This observation highlights the importance of both observing metabolite abundance
changes and understanding the relevant underlying protein biochemistry, although these proteins

may not be biomarkers themselves.

Protein-based biomarkers have generally been observed in serum samples or tissue biopsies, and, to
a lesser extent in urine samples. C-reactive protein (CRP), IL-1B, TNF-a and IL-6 are typical examples
of indirect protein biomarkers of physical activity which have been specifically associated with
musculoskeletal disorders (MSDs). In particular the serum concentration of CRP was observed to
have a strong correlation between upper extremity overuse disorders while IL-1B, TNF-a, and IL-6
displayed moderate correlations [76]. IL-6 have also been found to be elevated following a series of
muscle contraction-based studies, while a-actin has been observed to significantly increase within
the plasma of individuals who had sustained musculoskeletal damage [77,78]. Furthermore, serum
levels of lactate dehydrogenase (LDH), an enzyme that converts lactate to pyruvate under anaerobic

conditions, has been used as an indirect indicator of MSD [79].

Fatty acid binding protein (FABP) has repeatedly been shown to increase following strenuous
exercise. Indeed, FABP is suggested to be a better indicator of muscular stress than CK in a single
training session due its immediate response following an exercise intervention [80]. This response

appears to peak between 2 and 6 hours following exercise and eventually returns to basal levels
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within 24 hours [65,81]. Typically it is measured in plasma but FABP can also be detected within the

urine of healthy subjects making it more accessible for routine analysis [82].

The protein post-translational modifications ubiquitinylation and sumoylation have also been
discussed as potential indirect biomarkers of physical activity, particularly in musculoskeletal injury
based studies [83]. Ubiquitin plays a key role in targeted protein degradation [84] and may provide
insight into the onset of increased musculoskeletal tissue catabolism [83,85]. Various oxidative stress
biomarkers have also been investigated in studies looking at athletes [72], and have been suggested
for application in a workplace context. Due to their lack of tissue specificity, these biomarkers can be
considered indirect indicators of physical exertion [86-88]. Further detail of oxidative stress markers

will be discussed below.

Direct markers of physical activity

Markers of physical activity-induced tissue flux

Tissue adaptation associated with muscle contraction will not only produce aberrations in skeletal
muscle tissue but also adjacent connective-tissue structures. This includes the perimysium structures
which package multiple muscle fibres, the endomysium which surrounds individual muscle fibres,
and the outermost layer of epimysium tissue which is integrated into tendon as it becomes more
collagenous. Thus physical exercise and overexertion injuries will alter the homeostasis of a range of
soft tissues. Traditionally, analyses of protein degradation and turnover have incorporated the
measurements of urea nitrogen [89,90], creatinine [66] and ammonia [91]. The drawback with
measuring these variables, like the other indirect biomarkers discussed above, is that they provide
little information regarding the type of tissue that is involved in the exercise / damage or the degree
of damage. With this in mind, biochemical markers that are tissue specific would appear to hold

more promise as a potential monitoring technology.
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Collagen remodelling

In serum, type-1 collagen markers carboxy-terminal propeptide (PICP) and carboxy-terminal
telopeptide (CTx) have been used to monitor the influence of load bearing exercise on the body [92].
In addition, these two markers have been used to compare the physical exertion of construction
workers to that of sedentary workers [33]. It was found that alterations in serum concentrations of
PICP and CTx appeared to be related to heavy physical work [33] highlighting their potential
application to monitoring of collagen turn-over. Importantly, these two carboxy-terminal peptides of

collagen are able to pass through the kidney and into the urine where they can be readily measured.

Post-translationally modified amino acids are commonly observed within the musculoskeletal
system. Thus in addition to PICP and CTx, 5-hydroxylysine - which is a derivative of lysine that has
undergone hydroxylation - is a target of interest in exercise related areas of research. 5-
hydroxylysine is a major component of collagen and has been utilised previously as an indicator of
collagen break-down. For example, Tofas et al. (2008) measured serum levels in a control and
exercise group who underwent 96 plyometric box jumps to assess tissue loading and subsequent
collagen breakdown. The authors observed an increase in serum levels after 48 hours which is
thought to be due to an exercise-induced inflammatory response [93]. Additionally, Brown et al.
(1997) reported a significant increase in urinary 5-hydroxylysine following voluntary eccentric
actions of the knee extensors [94]. Similarly, hydroxyproline is specifically hydroxylated to stabilise
and influence the structural arrangement of the triple helix of collagen. In models of connective
tissue damage hydroxyproline has been shown to increase in both concentric and eccentric modes
of contraction above the levels of age-matched controls [95]. Like hydroxylysine, hydroxyproline can
also be readily assayed in urine and has been shown to increase following a bout of eccentric

contractions [94].
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Muscle remodelling

Two commonly used direct markers of muscle catabolism are 1-methylhistidine and 3-
methylhistidine which are modified versions of histidine containing a methyl group (R-CHs) located
on the imidazole ring. This post-translational modification to histidine is specific to the muscle
contractile proteins, actin and myosin. Moreover, urinary levels of 1 / 3-methylhistidine have been
found to be increased in abundance following a range of exercise / physical activity parameters
[52,54,55]. However, care must be applied when interpreting such results as dietary intake of meat
can also influence urinary abundance of these biomarkers [96]. Elevated blood levels of myoglobin
(Mb), the oxygen transporting protein found specifically in muscle cells, has also been discussed as a
possible indicator of MSD [97]. Another common marker used to indicate muscle damage is CK
which is involved with the regulation of intracellular ATP levels, particularly in tissues with high
energy demands [98]. When muscle tissue is compromised the CK can ‘leak’ from muscle cells into
the circulation. The CK enzyme consists of two subunits which reflect tissue specificity, either brain
type (B) or muscle type (M). The CK-BB isoforms are expressed at low levels in many tissues whereas
damaged skeletal muscle predominantly expresses the CK-MM isoforms (over 90%) and the CK-MB
isoforms at <1%. Injured cardiac muscle releases about 25% of CK as CK-MB isoforms and 75% as CK-
MM isoforms. Thus the relative abundance of circulating CK- MB isoforms have been used
extensively as a clinical biomarker of myocardial infarction [99]. The CK-MM isoforms have been
used extensively in serum samples as a direct marker of skeletal muscle damage [100]; however, it

has not been described in urine samples as being associated with muscle damage.

Inflammation promotes tissue flux

The metalloproteinase family of zinc dependent endopeptidases have been shown to play a role in
extracellular matrix homeostasis, along with injury repair and remodelling [101]. Recently the
temporal expression of matrix metalloproteinases (MMPs) has been illustrated in and around muscle

cells. For instance MMP-9 has been shown to be up-regulated following a single bout of exercise
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(non-damaging), while MMP-2 and MMP-14 were elevated after 10 days following repeated bouts of
exercise [102]. Along with MMP-2, -9 and -14, skeletal muscle tissue also contains MMP-3 and -7
[101]. Typically MMPs are related to ECM remodelling during normal tissue turnover, however, it has
been demonstrated in humans that collagen metabolism is significantly influenced directly following

eccentric exercise [103] indicating that MMPs play a role post injury during the remodelling phase.

Aside from MMP activity, other proteases may also be active following damage. The intracellular
release of Ca** into skeletal muscle tissue of rodents has been well characterised following muscle
damage in mice [104,105], and it is thought that this early release of Ca®* into skeletal muscle tissue
is a result of sarcolemmal ruptures. This has subsequently been shown to up-regulate calcium
dependent proteases, notably calpain activity in human quadriceps following eccentric muscle
damage [106]. Importantly, calpain is a protease that is spatially located very close to a range of
filamentous muscle proteins at the | and M-bands of the sarcomere [107]. Due to its spatial
proximity it has been implicated with the targeted removal of Z-lines from cardiac and skeletal
muscle, which implies it may be involved in myofibrillar protein release during muscle damage
[108,109]. An increase in Ca** mediated protein degradation via calpain correlates with the invasion
of neutrophils following exercise induced damage in rats [110], in humans neutrophil infiltration is
well documented, especially under supra-physiological conditions [111-113]. This suggests that
protein degradation products act as damage associated molecular patterns (DAMPS) which attract
these neutrophils to the site of injury, in turn causing additional damage themselves. Interestingly,
sustained exercise studies such as that performed by Margonis and colleagues (2007) demonstrates
an initial positive trend in leukocyte response after week one of the exercise protocol. This trend
became significant at weeks two and three as the exercise volume increased [114]. Their work also
undoubtedly highlights the large degree of redox biochemistry occurring during prolonged training /

exercise which results in lipid peroxidation, protein degradation and protein modification.
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Oxidative Stress markers and Post-translational Modifications

Skeletal muscle is a metabolically active tissue. As such its protein constituents are prone to damage
through oxidative stress and oxidative damage [115]. Oxidatively modified proteins have a
propensity to lose their physiological activity and may as a consequence be sensitive to digestion by
endogenous proteases [116,117]. Such modifications consist of carbonylation which occurs through
the oxidation of proline, arginine, lysine and threonine residues, or reaction of cysteine, lysine and
histidine residues with aldehydes or other reactive carbonyl species [118,119]. In hamster cell lines,
others have demonstrated an augmented superoxide release response from within the muscle into
the extracellular space which is accompanied by a reversible oxidation of muscle protein thiols
[120,121]. Such adaptations in carbonyl derivatives have been reported previously using western
blot analysis of rat gastrocnemius muscle tissue following a series of daily 60+ minute bouts of
swimming over a period of 9 weeks [122]. Endurance studies have also illustrated an increase in
protein carbonyls measured by ELISA within the blood of resistance trained men [123]. Factors
influencing the rate of protein modification due to oxidative stress depend on the rate of protein
degradation and the degree of oxidative stress [122]. These small proteins and protein degradation
products pass from the blood to the urine, via the kidney. Subsequently, levels of oxidatively
modified proteins / peptides have been shown to increase in urine samples of ultra-marathon
runners across a four day event [122]. However, based on this particular study it is difficult to
determine exactly when levels of reactive carbonyl derivatives and nitrotyrosine return to baseline,
such information might inform future study designs by allowing estimations of clearance rates.
Although, from this evidence it is clear that oxidative markers of physical activity are detectable
within urine samples obtained from subjects exposed to physical activity, this area is yet to be truly

explored in urinary proteomics with current technologies.

Oxidative modifications to proteins may come about due to the increased presence of metabolic by-

products produced during physical exertion, or they may come from an oxidative burst which
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contributes to secondary injury following initial invasion by neutrophils and macrophages [124,125].
Neutrophils lyse muscle cell membranes, presumably to begin the repair process by removing
unusable cellular debris. This occurs via a superoxide dependent mechanism [126], hence with the
invasion of neutrophils there is an assorted increase in superoxides which have been shown to
increase muscle cell lysis in rodents [127]. Superoxides can be converted readily into a stronger
oxidizing agent, hydrogen peroxide, which can naturally be converted in vivo into hydroxyl radicals
or under enzymatic conditions to hypochlorous acid by myeloperoxidase, a hemeoxido-reductase
which is increased within one hour of eccentric exercise [63]. Additionally, hydrogen peroxide has
the ability to induce lipid peroxidation, causing degradation to polyunsaturated lipids which can
cause the subsequent rupture to cell membranes [128]. The oxidation of polyunsaturated lipids
results in the reactive electrophile bi-product, malondialdehyde (MDA), which is commonly used as
an indicator of oxidative stress [129,130] and can be measured accurately in urine samples [131].
Others have correlated increasing abundance of urinary F,-isoprostane in a healthy male cohort who
performed a series of multi-joint exercises at varying degrees of intensity from ‘light’ to ‘over-
training’ [114]. Additionally, an acute eccentric bout of exercise has also been shown to increase
urinary isoprostane levels [132]. These data suggest cell membranes are oxidatively damaged during

exercise and possibly following exercise due to leukocyte infiltration.

Clearly muscle tissue is under oxidative assault due to normal homeostasis during high energy tasks
and as a result of muscle damage. Such an environment lends itself to an increased incidence of
oxidatively modified proteins and subsequently, an increase in protein digestion and degradation
due to an oxidation event. As is the case with protein degradation products, these post-translational
modification events may provide additional routes to further characterise diagnostic targets of
inactivity, exercise and soft tissue damage. Combined with the propensity for musculoskeletal

protein to break down following strenuous bouts of exercise, targeting these degradation products
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within urine in conjunction with oxidatively modified amino acids within them may hold even more

specificity for a particular physical activity or tissue state.

Other markers

We recently found that the urinary concentration of the Laminin G-like Domain 3 or ‘LG3’ peptide, a
C-terminal bioactive fragment of the extracellular matrix-derived protein endorepellin, was elevated
in mining workers who were exposed to a more physically demanding work environment compared
to more sedentary co-workers [133]. Endorepellin is otherwise known as domain-V of the heparin
sulphate proteoglycan, perlecan [134]. Perlecan, in turn, is a major extracellular matrix (ECM)
constituent of vascular basement membranes, articular cartilage and neuromuscular junctions [135-
138]. Within the latter, perlecan regulates the localisation of acetylcholine esterase in
neuromuscular junctions, and is thus critical for proper muscle function [139]. Stress on the
microvasculature, muscle tissue and articular cartilage during physical activity results in minor tissue
damage and remodelling [140-142]. These processes may induce the release of endorepellin and / or
the LG3 peptide from perlecan into the circulation [134,143] where the LG3 peptide may be cleared
by filtration through the kidney glomerular membrane into the urinary filtrate. Others have
observed that a similar matrix-derived protein called endostatin, which is derived from the C-
terminal of type XVIII collagen, is also released into the circulation following vigorous physical
activity [144-147]. Endorepellin / LG3 and endostatin have been shown to be anti-angiogenic and
anti-tumourigenic, restricting tumour neovascularisation through their interaction with specific
integrins on endothelial cells both in vitro and in vivo [148-150]. This interaction results in
cytoskeletal disruption, cell detachment, and inhibition of cell migration and proliferation [151-153].
It is therefore plausible that the acute release of these anti-angiogenic proteins in response to
physical activity could limit the blood supply in developing tumours. This may represent a novel and
potentially very important biological mechanism contributing to the observed beneficial effects of

physical activity on cancer risk or survival from cancer. Certainly others have highlighted the benefits
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of exercise in this regard. Matthews et al. (2012) found that high levels of physical activity (>42+
metabolic equivalent hours / week) was positively correlated with reduced levels of urinary estradiol
and specific estrogen metabolites, particularly in the 2-hydroxylation and 16-hydroxylation
pathways. The authors suggest that their observations may be indicative of one of the mechanisms

by which physical activity is thought to reduce the risk of premenopausal breast cancer [154].

In addition to protein/metabolite targets, microRNAs and mRNAs have shown the potential to have
future outcomes in the domain of exercise physiology. While relative to metabolomic and
proteomics this field is still in its infancy, some interesting incites have been made into the
differential expression or microRNAs and mRNAs following a range of exercise bouts. Tonevitsky and
collegues revealed a dynamic response in microRNA-mRNA following a short bout of aerobic
exercise [155]. Likewise Uhlemann et al. (2012) showed a significant change in serum miRNA-126
due to aerobic exercise while miRNA-133 appeared to increase following a eccentric muscle
damaging protocol demonstrating some degree of exercise dependency [156]. Investigation into the
dynamic expression of microRNAs following exercise is an exciting area of research that might yield
an important biological understanding. At a systems-level perspective, such information would
complement proteomic and metabolomic datasets giving more of a global perspective on exercise

physiology and disease.

Overall, the physical activity biomarker landscape is comprised of a suite of molecules observed from
across a diversity of physical activities. A large proportion of these markers relate to the increase in
metabolic demand that is generally associated with exercise; others however, appear more specific,
likely as a result of a direct relationship to a specific activity class. Through further controlled
investigations, across the spectrum of physical activity, the roles and utility and value of these
markers will become more apparent. The breadth and impact of such investigations are discussed

below.
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Expert commentary

Technology:

Data acquisition is a key factor in the analysis of biochemistry. The evolution of mass spectrometry
(MS) as a discovery technology is at a point where both qualitative and quantitative information
surrounding thousands of peptides or metabolites can be measured in a single assay. These
advances allow researchers to take more holistic views of multiple biological systems in each study.
As such, modern MS technologies and workflows incorporating Data Independent Acquisition (DIA),
such as SWATH-MS/MS A* [157], will be invaluable for omic investigations of exercise and the
emerging field of inactivity physiology now and into the near future. A particular advantage with this
type of analysis is that the data can be continually re-interpreted after acquisition and upon

discovery of new molecular features, thus demonstrating a new approach to data management.

The exponential increase in the sensitivity of analytical technologies over the last decade has
resulted in drastic increases in the size and therefore richness of MS data files. This therefore,
presents additional challenges in data handling and storage along with data analytics and
informatics. In this regard, multivariate statistical approaches and systems-based analyses continue
to be developed and refined to combine and interpret increasingly complex data sets which
incorporate multi-omics information including the lipidome and glycome. The complexity of the bio-
statistical model is illustrated when considering the convolution of physical activity in combination
with the multiple factors involved in determining final outcome including genetic profile, age,

lifestyle behaviours, health status and / or exercise prescription to name a few.

Biology:
Molecular biomarkers of physical activity, including those found in urine, will provide an important

means of monitoring the biological impact of physical activity and exercise prescription. Given that
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these markers have been primarily observed in small sample studies, additional research is required
with larger sample sizes to verify current findings and identify stronger relationships between the

multiple variables involved.

Research into the efficacy of monitoring exercise-related aberrations in the urinary proteome is
relatively limited. This is somewhat surprising considering current knowledge of the propensity for
post-exercise musculoskeletal protein degradation and the opportunity to investigate this
mechanism using urine. However, when examining the links between the release of biomolecules
into urine and physical activity, omics researchers need to recognise the complexity of exercise /
inactivity and the difficulty in the determination of optimal and individualised prescription models.
These and other exercise-related factors should be carefully considered during study design in order
to control for variability and provide more reliable and meaningful outcomes. These studies will
clearly add to our knowledge of the biochemical responses to physical activity but they are not
without challenges. For instance, exercise intervention studies involving human subjects are often
time consuming and expensive to perform. Moreover, there are no relevant in vitro models that
cover the breadth of co-variates / risk factors known to influence the pathology of tissue adaptation
or mal-adaptation. The need to control for physical activity in research must also extend beyond

investigations of activity / inactivity.

Physical activity status must be accounted for in disease versus control cohort cross-sectional
studies. Through this review we have cite the breadth of research demonstrating the direct influence
of physical activity on biochemistry. As such, the discovery of biomarkers which characterise one
disease cohort from another may in some instances be attributed to the relative difference in
physical activity levels. In addition, because of the significant temporal variance in exercise
outcomes and molecular profiles, more emphasis should be placed on the design of multiple time

point analyses in exercise intervention studies in contrast to cross-sectional or case study designs.
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Renal function must be accounted for when examining urinary levels of proteins or metabolites.
Given inconsistency in observations of creatinine response to across a range of exercise studies,
urinary analyte normalisation to this metabolite should probably be avoided. In proteomic studies
normalising to total protein is a common practice; however, this will likely result in a potential bias
since a fraction of the proteome will derive from the blood filtrate and a fraction from the lower
urinary tract. If the ratios between these fractions differ between subjects then this may introduce a
bias between the two urinary protein sources. Other options include normalising to estimated
glomerular filtration rate based on theoretical equations which account for a range of covariates
such as age, gender, ethnicity etc. Importantly, such equations still require the measurement of
creatinine and typically do not take into account activity status. Another promising method could be
to normalise to Cystatin-C which does not appear to be influenced by confounders like muscle mass

or energy requirement of muscle tissue in the same way that creatinine is [158].

Utilisation:

Physical activity is a highly effective, non-invasive and inexpensive therapy for the prevention and
management of major chronic health conditions. Accordingly, any advances in our understanding of
the mechanisms involved in are extremely important. This not only includes the uptake of exercise
but the avoidance of inappropriate physical activity which may have adverse effects exacerbated by
individual differences in health status such as chronic diseases, medication usage etc. When applied,
the potential to determine the effects of various exercise interventions on individual health status
will be extremely valuable in monitoring the efficacy of an intervention as well as appropriate
modification if required. Therefore, the ability to continuously monitor biological and physiological
adaptations to an exercise intervention using non-invasive procedures, such as urine analysis, will
reduce the time required for individual participation in the monitoring process and lead to improved

compliance.
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Chronic health conditions may progressively change over time, being asymptomatic and
undiagnosed in the early stages before progressing to more serious disorders. The knowledge
generated from urinary proteomic and metabolomic physical activity research has the potential to
underpin tools for the early diagnosis and guidance in the early intervention that will avoid the onset
of chronic health conditions. Importantly, the very high levels of inactivity in the community are
recognised as a major cause of significant chronic health conditions such as cardiovascular disease,
diabetes, obesity and cancer. The methodologies being developed that link physical activity and
individual biomolecular profiles will play a major role in increasing our understanding of the
consequences of a sedentary lifestyle and evaluation and efficacy of strategies to modify this

behaviour.

Finally, exposure to risk factors for chronic MSDs can be evaluated by models of muscle and tissue
damage. As in other chronic conditions, MSDs generally occur over long periods of time. As such, the
early detection of tissue micro-injury and adaptation is highly desirable so that levels of exposure to
the harmful activities can be modulated for the prevention of longer term damage. Again, in this
respect, urinary biomarker research will provide important tools for the early detection and

modification of high risk exposures.

Five-year view:

Research into the molecular processes mediated by physical activity is well established and will
continue to be an area of significant research effort. Additionally, the molecular processes
underpinning the physiological consequences of physical inactivity will also be a key emerging area
of research interest as governments struggle with the increasing healthcare burden of chronic
lifestyle diseases. The application of the ‘omics’ disciplines to understand these molecular processes

will continue to provide opportunities for the development of biomarker diagnostics to evaluate the
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maintenance of or progression toward health due to prescription of physical activity. As such, there
is an increasing prioritisation towards health monitoring versus disease diagnosis. This represents a
continuing drive toward preventative personalised medicine of which initiatives such as the ‘Exercise

is Medicine® campaign is a clear example.

Looking towards the future, it is unlikely that single target biomarker diagnostics will be developed
for particular classes of physical activities. Instead the application of systems biology approaches will
identify panels of markers which will offer potential for tissue specific diagnostic classification. Large
amounts of data are now relatively easy to generate but having to use analytical software which is
restricted to single users or to computers with limited processing power restricts the flow of
information arising from increasingly more complex studies. To address this, High Performance
Computing facilities will increasingly be utilised in analytical workflows which may mean software
vendors need to adopt alternative licensing models. Alternatively, with the increasing uptake of
open-source software (e.g. Skyline, Cytoscape etc.) by researchers for data analysis and

interpretation, proprietary software may well become increasingly redundant in the near future.

In summary, physical activity and physical inactivity are major factors influencing morbidity and
mortality across the globe. Investigations into the biochemistry of the physical activity continuum
have demonstrated molecular signatures, in several biofluids - including urine, with potential clinical
utility across a range of health contexts. With an increase in the knowledgebase around the
biochemical responses to physical activity these biomarkers are sure to become an integral means to

prevent injury and promote health in the future.

Key issues:
e Poor physical health threatens economic security of developed nations and this can be

largely attributed to inappropriate levels of physical activity.
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Biomarkers of physical activity offer a means of monitoring maintenance of or progression
toward health.

Urine is an ideal matrix for proteomic and metabolomics studies of physical activity.

Urinary biomarker diagnostics hold potential for broad end-user-uptake due to the non-
invasive nature of sample collection.

Sport science has the most experience in identifying biomarkers of physical activity. Various
metabolites and proteins have been identified as biomarker of physical activity or of injury
to musculoskeletal structures as a result of over-use or over-training.

Systems biology approaches will yield panels of markers with increased diagnostic
resolution.

Larger sample sizes are required to provide improved statistical rigour in physical activity
studies.

There remain limitations in technology, analytics and computing power.
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Figure Legends

A

Population Frequency

Actity e

Figure 1. The distribution of physical activity and disease risk. A. The distribution of an adult (>18
years of age) Australian population as distributed by hours of physical activity undertaken.
Frequencies are approximated from the 2011-2012 Australian Bureau of Statistics Health Survey:
Physical Activity - document 4364.0.55.004 [159]. The distribution captures the very inactive to the
very active which forms a Gaussian distribution skewed towards inactivity. Disease risk, as it relates
to physical activity [1,6-13], is shown by a colour gradient whereby individuals in the darker region of
the graph are at higher risk of morbidity and mortality than individuals in the lighter region of the

graph.
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Figure 2. The physical activity biomarker landscape. A. Network graph of 226 unique candidate
biomarkers of physical activity based on current evidence generated in Cytoscape [160]. Metabolites
are clustered under the Kyoto Encyclopaedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/kegg2.html; [161]) BRITE compound classification hierarchy.
Annotated KEGG molecules that are not found in the BRITE hierarchy are shown as “Unclustered”
and where absent from the KEGG altogether as clustered under the term “Not in KEGG”. Protein-
related biomarkers are clustered under “Proteins” and “Post-translational modifications”. Small
black nodes correspond to the KEGG BRITE Compound hierarchy classifications while molecule
nodes, including proteins, are coloured with a gradient of white-through-green and vary in size with
darker and larger nodes corresponding to physical activity biomarkers that are observed with higher
frequency in the literature. Markers found in urine, serum, both, or neither/unreported are shown
as diamond, triangle, ellipse and square nodes, respectively. Nodes with red boarder colour are
annotated in the KEGG Metabolic Pathways Global Metabolism map (hsa01100; see Supplemental
Figure S1). B. Bar chart depicting the frequency that each of the 20 common amino acids is observed
as being associated with physical activity. C. Bar charts showing the enriched cellular component
(upper) and molecular function (lower) ontology terms as a percentage of the “Proteins” cluster (p <

0.01; Modified Fisher’s Exact Test; DAVID Bioinformatics; http://david.abcc.ncifcrf.gov/; [162]). D.

Quantitative Venn chart demonstrating the overlap between detected metabolites in urine and
serum as demonstrated by the observations of Pechlivanis et al., (2010) and Pechlivanis et al.,
(2013), respectively, in two cohorts of sprinters with rest intervention. See supplementary

information for further details of biomarker classification and analysis.
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Supplementary Figure S1. Mapping physical activity metabolite biomarkers to known metabolic
pathways. A. Literature-derived metabolite names were manually parsed through the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) database using the KEGG BDGET database retrieval
form to obtain corresponding KEGG compound numbers. Compound numbers were searched

against the KEGG metabolic pathway maps using the KEGG Mapper — Pathway Search which
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assigned 95 of a possible 126 metabolites (75%) to the human Metabolic Pathways Global
Metabolism map (hsa01100). Physical activity biomarkers are displayed as red nodes on the
pathway. B. A bar chart showing the KEGG metabolic pathway maps that encompass 10 or more
reported physical activity metabolite biomarkers. Cumulatively, 85% of the reported physical activity

biomarkers map to known metabolic pathways in the KEGG database (data not shown).
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Table Headings

Supplementary Table S1. Physical activity biomarkers reported in the literature.

Supplementary table 1: Physical activity biomarkers reported in the literature

Biomarker Sample Exercise details Reference Biological
number fluid
1 | 2-Hydroxyisovalerate n=12 6 x 80 meter maximal sprint intervals, two block [1] Urine
2 | 2-Hydroxybutyrate design with either 10s or 1min rest between
3 | 2-Oxoisocaproate every other pair of sprints.
4 | Leucine
5 | Valine
6 | Isoleucine
7 | 3-Hydroxyisobutyrate
8 | 3-Methyl-2-oxovalerate
9 | 2-Oxoisovalerate
10 | 3-Hydroxybutyrate
11 | Lactate
12 | 2-Hydroxyisobutyrate
13 | Alanine
14 | Acetate
15 | Acetoacetate
16 | Pyruvate
17 | Succinate
18 | Citrate
19 | Dimethylamine
20 | 2-Oxoglutarate
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21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Creatinine

cis-Aconitate

Malonate

Carnitine

Trimethylamine N-oxide

Taurine

Glycine

N-Methylnicotinamide

Glucuronate

Allantoate

Allantoin

Inosine

Fumarate

trans-Aconitate

Tyrosine

Phenylalanine

Hippurate

Tryptophan

Hypoxanthine

Formate

Histidine

1-Methylhistidine

3-Methylhistidine

oxidized glutathione

reduced glutathione

3-methylhistidine

L-carnitine

O-acetyl-L-carnitine

creatine

n=1

Stenuous aerobic endurance cycling. 70%
VO2peak for 45 min, was then increased to 90%
VO2peak for 6.5 min until exhaustion.

(2]

Blood
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50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

NAD+

ATP

ADP

D-glucose-6-phosphate

O-propionyl-L-carnitine

tyrosine

arginine

L-phenylalanine

L-histidine

L-glutamic acid

L-glutamine

L-lysine

L-aspartic acid

L-proline

LDL/VLDL n=14 4 x 80 meter maximal sprint intervals prior to [3] Blood
Leucine training session and 6 x 80 meter maximal

Valine sprint intervals post-training. either 10s or 1min

Isoleucine rest between every other pair of sprints.

3-Hydroxyisobutyrate

Alanine

Lactate

Acetate/acetone

Arginine/lysine

Glutamate

Glycoprotein acetyls

Glutamine

Acetoacetate/acetone

Proline

Pyruvate
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79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

Citrate

Methylguanidine

Albumin lysyl

Creatinine

Malonate

Dimethylsulfone

Choline-containing
compounds

Taurine

Trimethylamine N-oxide

Glucose

Glycine

Glycerol

Threonine

Tyrosine

Histidines

Phenylalanine

Formate

2,3-dinor 11-beta-PGF 2alpha

2,3-dinor 8-iso-PGF 2alpha

8-iso-PGF 2alpha

Tetranor-PGEM

11-beta-PGF 2alpha

6-keto-PGF lalpha

n=15

15 triatheletes. Comparisons made between
baseline samples, 2 weeks after intensified
training and a recovery period were compared

(4]

Urine

Lactate

Alanine

Acetate

Acetoacetate

Pyruvate

n=22

Cycling on an ergometer. Short sprints and
prolonged cycling at 75% VO2 max until
exhaustion

(5]

Urine
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107
108
109
110
111
112
113
114
115

116
117
118
119
120
121

122

123
124
125

126
127
128

Succinate

Creatinine

Malonate

trimethylamine-N-oxide

Hipurate
Hypoxanthine
MMP-9 n=10 45 min of one-legged exercise with either 20% [6] Biopsy
blood flow restriction or no restriction
Cartilage oligomeric matrix n=58 Supervised weight-bearing exercises of the [7] Serum
protein (COMP) lower extremity (1 h). Performed at five
stations, intensity > 60% of maximum heart
rate.
malondialdehyde n=18 30s cycle ergometer test [8] Serum
Urea n=1 Cycling 45 miles [9] Urine
Sulfuric acid
Ammonia
Phosphoric acid
Mid region pro- n=12 Double-blind, placebocontrolled study [10] Serum
adrenomedullin 45-92 investigating allopurinol effects on soccer
Growth differentiation factor players post game (markers increased in
15 placebo group).
Dihydroxy benzoates n=9, n=17,n Open water, closed-curcuit diving [11] Urine
C-reactive protein of exposures =
92

N-terminal pro-brain
natriuretic peptide

hs-Troponin T

Creatinine

Cystatin C
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129
130
131
132
133

134
135

136

137

138
139

140
141
142
143
144
145
146
147

148

149

150

Aldosterone

Bilirubin

Aldosterone

Angiotensin Il

n=9

A range of exercises across four days, including
Bicycle ride, circuit training, running and
calisthenics

[12]

Serum

P68133, Actin, alpha skeletal
muscle

P17661, Desmin

P31930, Cytochrome b-c1
complex subunit 1,
mitochondrial

Q15286, Ras-related protein
Rab-35

075112, LIM domain-binding
protein 3

P31415, Calsequestrin-1

P68871, Hemoglobin subunit
beta

n=10

45 min of downhill running

[13]

Muscle biopsy

Isoprostanes

TBARS

Carbonyl protein adducts

Oxidized glutathione

Reduced glutathione

Glutathione peroxidase

Catalase

n=12

12-week multijoint resistance training

[14]

Serum

c-Telopeptide collagen I,
mg/mmol creatinine

c-Telopeptide collagen |,
mg/mmol creatinine

n=208

Comparison of levels measured in urine across
multiple occupations

[15]

Urine

neutrophil gelatinase
associated lipocalin

neutrophil gelatinase

n=16

60 km ultramarathon

[16]

Serum

Urine
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151
152
153
154
155

156
157
158

159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

associated lipocalin

Creatinine Serum
Creatinine Urine
Estradiol 603 Activity status based on questionaire data. Matthews, Endocrine Research, Urine
2-Methoxyestrone premenopausal | Including type of activity, duration and intensity 2012 [17]
2-Methoxyestrone-3-methyl women

ether

16-alpha-hydroxyestrone

16-ketoestradiol

cross-linked N-telopeptide, n=76 A range of athletic disciplines including rowing, [18] Urine
mg/mmol creatinine swimming, running. 16 non-athletic controls.

c-Telopeptide collagen I,

mg/mmol creatinine

8-hydroxy-2'-deoxyguanosine n=18 60 min of cycling at 70% of VO2max [19] Urine
Acetone

Propanal

Pentanal

Malondialdehyde

Butanal

0,0'-dityrosine

Carbonyl protein adducts n=8 4 day supermarathon consisting of 93, 120, 56 [20] Serum
Carbonyl protein adducts and 59 km in each day Urine
Nitrotyrosine Serum
Nitrotyrosine Urine
Catalase n=14 “all-out” 30-s anaerobic Wingate test [21] Serum
malondialdehyde performed on professional judokas

HSP27 n=24 14 sets of 5 repetitions of eccentric actions with [22] Tissue
HSP70 the elbow flexors.

Insulin-like growth factor 1 n=862 Hand grip strength used as a proxy for overall [23] Blood
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176
177

178
179

180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

Bioavailable testosterone

Dehydroepiandrosterone
sulfate

IL-6

strength. Associations made between strength
and catabolic/anabolic markers over time

Catalase

n=20

3 x 20min sesson on cycle ergometer

[24]

blood

superoxide dismutase

glutathione peroxidase

n=9

Incremental cycling on ergometer until
exhaustion

[25]

Serum

hydroxyproline

hydrosylisine

n=18

96 Plyometric box jumps over 50cm hurdles

[26]

Serum

Alanine

Beta-D-
Methylglucopyranoside

Pyroglutamic acid

Threonic acid

Glutamic acid

Uric acid

Palmitic acid

Linoleic acid

Oleic acid

Valine

Phenylalanine

Glutamine

Tyrosine

Omithine

n=28

30 total hours of
technical and aerobic exercise across 2 weeks

[27]

Blood

Butyric acid

2-Aminobutyric acid

Valine

Urea

n=29

65 min of ergometer cycling at 20 min on 55%,
25 min on 70%, 10 min on 55%, 2 min 'all-out’
and final 8 min on 30% VO2max

(28]

Blood
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202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Phosphoric acid

Isoleucine

Glycine

Picolinic acid

Serine

Threonine

S-methycysteine

Beta-alanine

Malic acid

Erythritol

Pyrrolidonecarboxylic acid

Asparagine

Aspartic acid

Non-identified

Creatinine

Cysteine

Threonate

Ornithine

Phenylalanine

Lauric

Taurine

Asparagine

Ribose

Lysine

Ribitol

Hypoxanthine

Citric acid

Arginine

Tyrosine
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231
232

233
234
235
236
237
238
239
240
241
242
243
244
245

246
247
248
249
250
251
252
253
254
255
256
257

D-galactono-1,4-lactone

Beta-
Dmethylglucopyranoside

Palmitelaidic acid

Palmitic acid

Inositol

Uric acid

Tryptophan

Linoleic acid

Elaidic acid

Stearic acid

Cystine

Docosahexaenoic acid

Inosine

Gamma-tocopherol

Adenosine-5-
monophosphate

Alpha-tocopherol

Cholesterol

Beta-sitosterol

glucose

insulin

hepatonoic acid

Valine

Ethanolamine

Phosphoric acid

Isoleucine

Glycine

Glyceric acid

n=24

4 x 90 min ergometer cycling at varying
workloads,

[29]

Blood
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258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

4-Deoxyerythronic acid

Serine

Threonine

Erythrose methoxyamine

Malic acid

Methionine

Pyroglutamic acid

Hydroxyproline

Creatinine

Cysteine

Threonic acid

Glutamine

Ornithine

Phenylalanine

Lauric acid

Taurine

Asparagine

Ribose

Suberic acid

Lysine

Arabitol

Glycerol-3-phosphate

Citric acid

Arginine

3-Methylhistidine

Fructose

Tyrosine

Indole-3-acetic acid

9-(Z)-Hexadecenoic acid
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287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314

myo-Inositol

Uric acid

Palmitic acid

Tryptophan

Linoleic acid

Oleic acid

Stearic acid

Cystine

Pseudouridine

Arachidonic acid

Docosahexanoic acid

Inosine

Sucrose

Adenosine-5-
monophosphate

Cholesterol

Cholic acid

Lactate

Malate

Succinate

Glycerol

Fumarate

Pyruvate

Niacinamide

Pantothenate

Glucose-6-phosphate

Alanine

Inosine

Hypoxanthine

n=70, n=8,
n=25

Range of exercises: bicycle ergometry, exercise
treadmill testing, Boston Marathon athletes

[30]

Blood
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315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Citrulline

AMP

Isoleucine/Leucine

Serine

Glutamate

Xanthine

Cysteine

Allantoin

3-Phosphoglycerate

Homocysteine

Glutamine

Malate

Citric/lsocitrate

Uridine

Fumarate

Aconitic acid

Lactate

Pyruvate

Hypoxanthine

Xanthine

Methionine

Alanine

Succinate

uTp

Niacinamide

Inosine

Xanthosine

Pantothenate

Cystathione
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344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

Glutamine

Hippurate

Uric acid

Ornithine

Allantoin

Quinolinate

Tryptophan

Anthranilate

Pantothenate

Arginosuccinate

Alpha ketoglutarate

Niacinamide

Serine

Proline

Ornithine

Lysine

Lactate

Threonine

Betaine

Pyruvate

Asparagine

Glycerol

Xanthosine

Creatinine

Dimethylglycine

Glycerol-3-Phosphate

Glutamine

Xanthine

Histidine
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373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

396

Malate

Glucose-6-Phosphate

Hypoxanthine

Succinate

Kynurenate

Aconitate

Fumarate

Citrulline

Valine

IMP

Isoleucine/Leucine

Creatine

Homovanilate

Citrate/lsocitrate

Beta-hydroxybutyrate

Hydroxyphenylpyruvate

Arginine

AMP

troponin | n=18 20 min down-hill running at 70%V02max [31] Blood

Myoglobin

Creatine kinase (CK)

Myosin heavy chain

LG3 n=10 Comparison of Operators (active) vs Crew (less- [32] Urine
active) mining workers

Prostaglandin E2 (PGE2) n=11 Bycicle ergometry at 50% VO2max for 2 h [33] Blood
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397

398

399
400
401
402
403
404
405
406
407
408
409
410

411
412
413
414
415
416
417

2,3-dinor6-keto-PGfla n=10 Bicycle ergometry incremental exercise test to [34] Urine
failure
Lipoxin A4 n=9 Bicycle ergometry. Workload set at 25W and [35] urine
increased by 25W every 2 min. Exercise
terminated when estimated max HR reached
83-98%. Duration was 13.3+/-2.3 min
al-antichymotrypsin n=9 Eccentric exercise of the elbow flexors involving [36] blood
C-1 protease inhibitor 3 sets of 10 curls at predetermined weight
Creatine Kinase
Myoglobin
Lactate dehydrogenase
alphal-antichymotrypsin
Myoglobin n=10 Eccentric exercise of the elbow flexors involving [37] Blood
Creatine Kinase 6 sets of 5 curls at predetermined weight
G-CSF
TNF-a
IL-8
IL-10 after second bout of
exercise
LDH n=13 Eccentric exercise of the elbow flexors involving [38] Blood
CK 6 sets of 6 curls on a dynamometer
Complement C3
Platelet activating factor
C-reactive protein n=11 300 unilateral, maximal isokinetic eccentric [39] Blood

Creatine Kinase

monocyte chemoattractant
protein-1

contractions at 30 deg/s
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418

419

420
421
422
423
424
425

426

427

428
429
430
431
432
433
434
435

436
437
438
439

macrophage colony-
stimulating factor

granulocyte colony-
stimulating factor

IL-6

Growth hormone

Endostatin n=7 Graded treadmill exercise [40] Blood
VEGF
sIL-6R n=18 Participants completed 6 sets of 10 repetitions [41] Blood
CK of unilateral eccentric/concentric actions of the
knee flexors
IL-6 n=9 An incremental exercise test on a treadmill with [42] Blood
the gradient set at 1%
Hepcidin
Creatine kinase M-type [43] Muscle biopsy
Beta-enolase
Troponin T
- n=5 6-wk interval training program
Heatshock protein beta-1
CH60
Albumin
ATP synthase [44] Muscle biopsy
NADH-ubiquinone
oxidoreductase
Ubiquinol cyt C reductase n=10 Electrically stimulated isometric contractions

beta-enolase

Tubulin

Superoxide dismutase
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