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Eight weeks of episodic visual navigation inside
a non-stationary environment using adaptive
spherical views∗

Feras Dayoub, Grzegorz Cielniak and Tom Duckett

Abstract This paper presents a long-term experiment where a mobile robot uses
adaptive spherical views to localize itself and navigate inside a non-stationary office
environment. The office contains seven members of staff and experiences a continu-
ous change in its appearance over time due to their daily activities. The experiment
runs as an episodic navigation task in the office over a period of eight weeks. The
spherical views are stored in the nodes of a pose graph and they are updated in
response to the changes in the environment. The updating mechanism is inspired
by the concepts of long- and short-term memories. The experimental evaluation is
done using three performance metrics which evaluate the quality of both the adap-
tive spherical views and the navigation over time.

1 Introduction

Functional and useful mobile service robots require the ability to share physical
spaces with humans, and need to deal with a dynamic and ever-changing world.
These changes are mainly caused by human activities making them spontaneous,
discontinuous and unpredictable. This includes changes in the structure of the envi-
ronment as well as its appearance (e.g. rearrangement of the furniture or changing
the colour of a curtain).

In order to maintain an up-to-date inner representation of the world, robots can
use their continuous stream of sensory information, which reflects the momentary
status of their surroundings. However, the amount of sensory information to be pro-
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cessed in a lifetime is vast; therefore, efficient methods are required for filtering,
storing and updating this information over time.

One possible solution for handling this large amount of sensory information can
be inspired by the concepts of short- and long-term stores of the human memory.
While a robotic memory need not be constrained by the fallibilities of human mem-
ory nor the exact details of its biological implementation, we believe that the modal
model of human memory provides a useful framework for the filtering and storage
of perceptual information in artificial agents such as robots.

This paper uses a long-term map-updating mechanism inspired by the multi-
store model of human memory [7] for the application of visual navigation. The map
consists of an adjacency graph of nodes on a global level, and each node on the local
level of the map represents a spherical view of image features extracted from an
omnidirectional image of the node. The spherical views provide both an appearance
signature for the nodes, which the robot uses to localise itself in the environment,
and heading information when the robot uses the map for visual navigation. The
paper presents an evaluation of the navigation performance within a typical office
environment over a period of eight weeks. These metrics are used to evaluate the
effect of the learning and forgetting processes on the quality of the map over time.

The rest of the paper is structured as follows. Section 2 discusses related work.
Section 3 presents an overview of the proposed memory model, Section 4 describes
our method for long-term adaptation and visual navigation. Section 5 discusses the
performance evaluation metrics. Section 6 presents the experiments and results ob-
tained. Finally we draw conclusions in Section 7.

2 Related Work

Although nearly every actual robot real-life environment is dynamic, the majority of
previous work on robotic mapping assumes that the world is static. Whereas, most
previous approaches that consider mapping dynamic environments assume that the
underlying structure of the environment is static, and then try to separate moving
objects from stationary parts by treating the dynamic effects as measurement out-
liers [8, 12, 10]. Alternatively, many authors try to improve the robustness of the
mapping process by detecting and tracking moving objects separately [18, 15, 13].

Considering that the environment consists of static and dynamic objects, other
approaches build two maps, one for the static parts and one for dynamic elements.
The complete state of the environment is obtained by merging the two maps [19].
Other approaches try to maintain one map for both dynamic and static landmarks,
by classifying landmarks as dynamic or stationary using a probabilistic framework.
Movements of the dynamic landmarks are observed and included in the estimation
process of the map [4].

Several authors have investigated mapping systems that incorporate simple for-
getting mechanisms based on recency weighting. Andrade-Cetto and Sanfeliu [1]
developed an EKF-based mapping system that is able to forget landmarks that have
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disappeared, where an existence state associated with each landmark measures how
often it has been seen. However, none of these methods are general enough to han-
dle environmental changes occurring at different rates, nor has the long-term ro-
bustness of these approaches been demonstrated in real world environments. Using
a map learning and forgetting mechanism, Biber and Duckett [5] introduced an ap-
proach to update a laser based map which represents the environment at different
timescales, with older memories fading at different rates. They used samples and
robust statistics to handle noise and contradicting measurements produced by envi-
ronment changes.

Very recently [17] proposed a method to update a laser-based metric map. The
method uses a pose graph SLAM approach to optimise the trajectory of the robot
and produce the map. In order to update the map, the robot compares its current
laser scan view with scans stored from previous passes through the same sections
of the environment. The author makes the assumption that the environment contains
only low dynamic objects, i.e. objects that move only outside of the robot’s view,
which makes the environment static when the robot is passing through it. However,
in a dynamic environment, changes can occur while the robot is operating inside the
environment. As such, these changes need to be detected and filtered out.

The main aspect of the previous works on vision-based navigation that is super-
seded by our approach is the ability to adapt and maintain only one reference view
for each place in the robot’s map in response to environmental changes instead of
keeping a history of multiple views to represent the same place over time.

Fig. 1 Multi-store memory model. SM: Sensory memory. STM: Short-term memory. LTM: Long-
term memory. Selective attention, which involves the LTM, determines what information moves
from SM to STM. Through the process of rehearsal, information in STM can be transferred to
LTM and be retained for longer periods of time. Information from the LTM store is retrieved using
a process called “recall”.
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3 An Overview of the Memory Model

According to the basic model of Atkinson and Shiffrin [2], human memory is di-
vided into separate stores for sensory memory (SM), short term memory (STM) and
long term memory (LTM). The sensory memory contains information perceived by
the senses, and selective attention determines what information moves from sensory
memory to short-term memory. Through the process of rehearsal, information in
STM can be committed to LTM to be retained for longer periods of time. In return,
the knowledge stored in LTM affects our perception of the world, and influences
what information we attend to in the environment. In our approach, perceptual at-
tention includes detection of local image features for subsequent processing in the
memory model. (see Fig. 1).

The concepts of the above memory model is used to update the the map, incre-
mentally, by gradually adding information about new stable image features in the
environment, while removing information about features that no longer exist. The
sensory memory contains the features extracted from the current image. Then an
attentional mechanism selects which information to move to STM, which is used as
an intermediate store where new image features are kept for a short time. Over this
time the system uses a rehearsal mechanism to select features that are more stable
for transfer to LTM. In order to limit the overall storage requirements and adapt to
changes in the environment, the system also contains a recall mechanism that forgets
(i.e. removes) unused feature points in LTM. LTM is used in turn by the attentional
mechanism for selecting the new image features to update the map.

3.1 Map Representation

The robot’s world is represented as a hybrid map consisting of two levels, global
and local. Fig. 2 illustrates the hybrid map. On the global level, the world is repre-
sented as n optimized pose-graph. On the local level of the map, each node stores
a spherical view representation of image features. The spherical views contain the
3D location of the image features on a sphere, so only the directions of the features
(but not their distance or depth) from the centre of the sphere are stored. The centre
of the sphere in this case corresponds to the centre of that node.

Each spherical view is initialised from an omnidirectional image recorded from
the centre of each node in the global map. The spherical representation of the nodes
creates a connection between the global and local levels of the map, where the group
of image features is used as a qualitative descriptor for localisation on the global
level, and the 3D location of these features on the sphere is used for estimating the
heading needed for the navigation system at the local level [7].

Localisation on the global level is achieved by using an image similarity score
based on the number of matched feature points between the current view of the
robot and the group of points stored in each node. The robot localises itself to the
node which has the highest similarity score in the map. Navigation on the local
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Fig. 2 The environment is represented as an adjacency graph of nodes on a topological level and
each node on the metric level of the map represents the 3D location of image features on a unit
sphere. Our method represents the direction of the features from the centre of the sphere, which
corresponds to the centre of that node.

level is done by using multiple view geometry for spherical views to estimate the
robot’s heading during autonomous navigation. This navigation method is described
in Section 4.3. The same image features used for navigation are also used to update
the spherical views stored inside each node over time, in response to changes in the
appearance of the environment.

4 Methodology

4.1 Map Updating Mechanism

We represent STM and LTM as finite state machines (see Fig. 3), where each mem-
ory type consists of a set of states (Si). There is one STM and one LTM associated
with each node of the map that stores information about features. The LTM repre-
sents the recent stable configuration of features in the environment and these are
the features that are used as reference views of the map. The rehearsal process for
a stored feature in STM is the process of continually recalling information into the
STM in order to memorise it. In order to transfer a feature point from STM to LTM
the feature has to be seen frequently. Features enter STM from sensory memory and
must progress through several intermediate states (S1 to Sn) before transfer to LTM.
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Fig. 3 The proposed multi-store memory model. SM: Sensory memory. STM: Short-term memory.
LTM: Long-term memory.

Every time the robot finds the feature (“detect”), the state of the feature is moved
closer to LTM. However if the feature is missing from the current view (“miss”), it
is returned to the first state (S1) or forgotten if it is already there. This policy means
that spurious features should be quickly forgotten, while persistent features will be
transferred to LTM. The recall process for a stored feature in LTM first involves up-
dating the LTM by a process of feature matching. In order to remain in the LTM, a
feature has to be seen occasionally. In contrast to rehearsal, features enter LTM from
STM and must progress through several intermediate states (S1 to Sv) before being
forgotten. Stored features which have been seen in the current view are reset to the
first state (S1), while the state of features which have not been seen is progressed,
and a feature point that passes through all states without a “detect” is forgotten.
Finally, recall returns the list of new features that were not already present in the
LTM (i.e. the difference in appearance between the current and reference views).
We use multiple view geometry to transfer the image features from the current view
to the spherical views of the nodes. The geometric method by which we update the
spherical views of the map is presented in full detail in [7].

4.2 Temporal calibration for the updating mechanism

Temporal calibration means selecting the real-time unit in which the robot uses the
memory system to update its map. In this work, it is assumed that the system is used
by a mobile service robot working inside a house or public environment, where life
is a series of daily episodes. This suggests that using days as a basic time unit would
be a realistic choice. After each working day, during which it spends its time navi-
gating inside the environment and visiting different nodes inside the map, the robot
goes through what could be called a “sleep” period where it activates its memory
system to update the map. However, in other situations where life and human activ-
ities do not follow daily cycles, the robot can adopt a time scale to update the map
which reflects the natural cycle of activities in its surroundings.

Depending on the nature of the task, the robot may visit some nodes in the map
multiple times during one day, whereas other nodes will be visited less frequently.
This means that it is important to unify the rate at which the appearance of each
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Fig. 4 The proposed navigation strategy using heading estimation. The robot is required to re-
execute a path consisting of a number of key images which were recorded during a previous map-
ping stage. In the figure, Nk is the current node in the path and N j is the next node. The red dashed
line is the intended path. θk,θ j are the relative orientations between the robot’s heading and the
reference orientation of the nodes Nk, N j respectively. θr is the desired heading which results from
a weighted sum of θk and θ j .

node is updated. In order to achieve this aim, the robot selects, at the end of each
working day and for each visited node in the map, one view only to use for map
updating. The selected view is the one which has the highest number of matched
points with the reference view of each visited node over the whole day.

4.3 Using the Map for Navigation

Every map can be judged by its usefulness for practical purposes. In our case the
map is used for a daily path following routine inside a continually changing envi-
ronment.

When robots work inside an indoor environment, their navigation generally is
restricted to what the humans consider to be a path inside that environment, such as
corridors and the areas between the furniture. These routes effectively simplify the
task of navigation by limiting the robot to only one degree of freedom along the path.
And by representing this path as a sequence of images, the following framework
of the appearance-based approach for visual navigation is repeatedly used in the
literature:
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• The path is first built during a learning phase where the robot is controlled by a
human operator. During this phase the robot captures a sequence of images along
the path.

• A subset of the captured images is selected to represent the reference images
along the path.

• During the replay phase, the robot starts near the first position and is required to
repeat the same path.

• The robot extracts motion directions by comparing the currently observed image
with the reference images along the path.

In this work we adopted a similar framework for visual path following using a
sequence of nodes from the map. Fig. 4 illustrates the navigation strategy. First the
robot localizes itself to one of the nodes in the path. This is done by selecting the
node which has the highest similarity score with the currently observed view. Let
Sk be the similarity score, i.e, the number of matched points. The similarity score is
also computed between the current view and the next node in the sequence. Let S j
be the similarity score with the next node. After that the following ratio is computed:

ωk =
Sk

Sk +S j
, ω j =

S j

Sk +S j
. (1)

Then the heading angle θr is computed as a weighted sum:

θr = ωk ∗θk +ω j ∗θ j. (2)

where θk and θ j are the relative orientation between the current view and the nodes
Nk and N j respectively (see Fig. 4). By following this navigation strategy, the nodes
in the path can be considered as directional signs which lead the robot toward its
goal.

In order to estimate the relative orientation between two views, such θk and θ j in
the above case, we use epipolar geometry to estimates the essential matrix E, which
is factored to give a rotation matrix R ∈ SO(3) and the skew-symmetric matrix [t]×
of a translation vector t ∈ R3 [11] as follows:

E = [t]×R. (3)

After that, the the relative orientation is extracted from the rotation matrix R.

5 Performance Evaluation

5.1 Map Adaptability

The main goal of the proposed memory model is to make the reference views of the
map adapt to the changes in the appearance of the environment over time. In order to
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measure this adaptability we use the similarity between the views of the nodes and
the reference views as a metric. Higher similarity means better representation for
the environment where the similarity is measured as the number of matched feature
points between two views. We compare how the similarity changes over time when
the memory is used to update the reference views and again when the reference
views were left static.

5.2 Map Consistency

Map consistency in our case means that the updating process of the reference views,
which involves removing and adding image features over time, does not cause the
map to degrade. If the map degraded over time, the robot would have difficulties to
use the map for tasks such as autonomous visual navigation. Therefore, measuring
the performance of executing a visual navigation task over time would be a good
indicator of the quality of the map. In other words, the map is considered to be
consistent if the performance does not drop over time.

In order to evaluate the performance of the proposed navigation strategy pre-
sented in Section 4.3, we use two metrics. The first is the length of the trajectory. If
the length of the trajectory increased over time this would mean that the robot took
more steps to execute the path due to poor directional information from the map.
The second metric is the curvature of the executed trajectory by the robot [14]: the
lower the curvature the smoother the trajectory. The smoothness of the trajectory is
a good indicator of the consistency of the decision-action relationship in the navi-
gation system. Similar to the first metric, if the curvature of the trajectory increased
over time this would indicate that the robot performance is degrading.

Representing the trajectory of the robot as a curve in a 2D plane:

y = f (x), (4)

the length of this trajectory can be calculated as:

L =
n−1

∑
i=1

√
(xi+1− xi)2 +( f (xi+1)− f (xi))2, (5)

where (xi, f (xi)), i=1...n, are the n points of the trajectory in Cartesian coordinates.
The curvature of the trajectory at any point can be calculated as:

k(xi) =
f
′′
(xi)

[1+( f ′(xi))2]
3
2
. (6)

Using the above curvature factor, the smoothness of the trajectory can be mea-
sured as follows:
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Fig. 5 An ActivMedia P3-AT robot equipped with an omnidirectional vision system.

BE =
1
n

n

∑
i=1

k(xi)
2, (7)

where BE is called the bending energy [16]. The bending energy can be understood
as the energy needed to bend a rod to the desired shape. The less the energy the
smoother the trajectory.

6 Experiment and Results

Our experimental platform was an ActivMedia P3-AT robot equipped with a GigE
progressive camera (Jai TMC-4100GE, 4.2 megapixels) with a curved mirror from
0-360.com. See Fig. 5

The experiment was carried out inside the faculty office at the School of Com-
puter Science in the University of Lincoln. We choose this area to conduct a long-
term experiment because the room is designed as open offices where seven members
of staff perform their daily activities. These activities result in changes to the appear-
ance of the room over time. On the first day the robot was driven in a loop and a
map with 10 nodes was created. For each node in the map, a spherical view of SURF
features [3] was built. Using these spherical views, the map was used by the robot
to perform a visual navigation routine from node number 1 to node 10. The 10 node
route was repeated 38 times over a period of 8 weeks and after each run the robot
used the memory model to update the map. Fig. 7 shows three images taken by the
robot from the same place but at different times.

In this experiments the robot uses 3 stages in STM and 7 stages in LTM (one
week) as the parameters for the memory. In other words, the robot rehearses new
information for 3 days before transferring it to the LTM. In the LTM the robot forgets
any information which has not been used for a week, taking into account the weekly
episodic nature of our daily life.
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Fig. 6 Left:A laser based occupancy map for the area of the room where the experiments took
place. Right: The trajectory of the path taken by the robot at one of the navigation episode during
the experiment.

At the beginning of each run, the robot was placed in the vicinity of the first
node. Then the robot performed global localization by matching the extracted fea-
ture points from its current view with all the reference views in the map and local-
ized itself to the node with the highest number of matched points. Then the robot
estimated its heading as described in Section 4.3. The obstacle avoidance procedure
used in this work is as follows. When the robot receives a command to rotate, it
checks its sonar range readings first. If the sonar ranges allow for movement, the
robot simply executes the movement; otherwise, it turns 10o in the opposite direc-
tion and then moves forward for a distance of 50 mm. After that it re-estimates the
desired heading using the view from its new position. If both directions are blocked,
the robot moves backward 100 mm and then re-estimates the desired heading from
its new position. Finally, if the robot receives a command to move forward but there
is no room for the movement based on sonar readings, the robot checks the sonar
ranges on its right and left sides and then turns in the direction which has the most
free space. This procedure is done in a recursive manner.

In order to obtain the ground truth data, we used Laser Range Finder (LRF)
sensor with the GMapping library [9]. The GMapping algorithm provides a Simul-
taneous Localization and Mapping (SLAM) solution for static environments based
on a Rao-Blackwellized particle filter. The output of the algorithm is an estimate of
the robot trajectory along with an occupancy grid map of the environment. This data
provides us with information about the total distance travelled by the robot and the
smoothness of the trajectory. Fig. 6 shows a laser-based occupancy map for the area
of the room where the experiments took place.

The robot was able to perform the path following task successfully during all
runs. As mentioned earlier, we use the similarity metric as an indicator for the adapt-
ability of the map. The mean number of matched points between the view which
has the best number of matching points and the reference views of the map was
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Fig. 7 Three images recorded from the same place at different times. The appearance changes
through the existence of new objects in the arena and the disappearance of others.

Fig. 8 A comparison between the static and the adaptive map showing the change of the similarity
over the 38 runs for node number 4.

170.9±84.6 when the static reference views were used for the map and 255.7±92.6
when the adaptive map was used. This result shows the effect of using our memory
model in increasing the similarity of the map to the environment. Fig. 8 shows how
the similarity score changed over the 38 runs for node number 4 in the map.

The second metric is the change of the length of the trajectory over time. Fig. 9
shows that the length of the trajectory does not increase over time. The mean dis-
tance traveled over all runs was 19.9±0.8 m.

The third metric used for the evaluation is the smoothness of the trajectory mea-
sured by the bending energy. Fig. 10 shows that the bending energy of the trajectory
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Fig. 9 The change of trajectory length over time. The mean distance travelled over all runs was
19.9±0.8 m. Between days 27 and 28 a big box was delivered into the office, taking up part of the
robot’s path and forcing it to take a longer trajectory.

Fig. 10 The change of the smoothness of the trajectory measured by its bending energy. Between
days 27 and 28 a big box was delivered into the office which affected the smoothness of the trajec-
tory.

is not increasing over time but it is consistent. This means that the quality of the
map is also consistent over time.

7 Conclusion

This paper presented am eight weeks episodic visual navigation experiment in a real
office environment. An updating mechanism, based on short- and long-term mem-
ory concepts, incorporates a spherical view representation of image features, is used
to keep robot’s map up-to-date. The spherical views are used for navigation using
multi-view geometry, as well as representing appearance signature of the environ-
ment. The results show that the proposed system has a persistent performance in
such a real changing environments.
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