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Abstract

Being able to automatically and objectively measure human behavior ubiquitously

would have profound implications within the educational, marketing, advertising, se-

curity/surveillance, human-computer-interaction and behavioral science domains. A

key component in pursuing this lofty goal is to utilise visual modality. However, the

task of measuring human behavior via videos is challenging due to variations caused

by illumination, pose, scale, resolution and occlusion changes. Additionally, gaining

reliable annotations of human behavior to train automatic systems can be problem-

atic as it is often subjective, time-consuming and costly when continuously monitoring

humans over long periods of time (i.e. many hours). This thesis focuses on robust

methods which can deal with: a) visual variability, and b) long-term monitoring of

people.

As the face is the most identifiable part of a person, as well as conveying the ma-

jority of behavioral information, accurate face registration is central to the success of

automatically measuring human behavior. A plethora of work has been conducted in

face registration with notable progress being made. Depending on the application and

resolution of the input image, face registration is typically performed using either a

coarse (e.g. bounding-box) or dense (e.g. Active Appearance Models (AAMs)) align-

ment approach. For conditions which do not vary over time, adequate solutions for

face registration have already been formulated. However, when conditions vary over

time (such as illumination), such approaches fail. The first contribution of this thesis
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is a novel alignment algorithm based on applying the Lucas-Kanade (LK) algorithm

within the Fourier domain, which is robust to illumination variation. With respect to

AAMs, the Fourier AAM (FAAM) interprets the joint alignment across filter responses

as a form of the weighted AAM algorithm. This particular method empirically shows

the substantial improvement in person specific AAM fitting performance over canon-

ical LK inspired fitting algorithms, when using the proposed Fourier variants. With

faces of a small resolution, a similar approach is used to track the bounding box of a

person’s face using a template update approach, which we call the Fourier Template

Update algorithm.

In this thesis, we used two real-world data sources which are representative of scenar-

ios where automatic systems could be effectively deployed in the future. These were:

1) people driving in an automotive environment and 2) a group of people watching a

movie. As these environments had a specific target application with respect to measur-

ing human behavior (i.e. speech recognition and audience engagement), as well as be-

ing in challenging environments (e.g. poor and fluctuating lighting conditions, varying

head-pose, resolution and long in duration) - we were able to evaluate the effectiveness

of automatic approaches in these domains. Consequently, the second contribution of

this work was to show that we could improve speech recognition by tracking a person’s

mouth region from multiple camera-views.

The third contribution stemming from this thesis, is a method of representing audience

behavior through facial and body motions from a single video stream, and using these

features to objectively measure and summarize audience reactions to feature-length

movies. As the movie viewing environment is dark and contains views of many people

at different scales and viewpoints, we introduce an IR based test-bed. We use the

FLK algorithm to register and stabilize audience faces, and generate flow-profile of

each person, contained within their local 3D temporal volume via optical flow. We

then use an “entropy of pair-wise correlations” method, which compares short-term



iii

motion features across audience members to obtain an objective measure of audience

“coherency”. Additionally, we utilize an off-line change-point detection algorithm to

temporally cluster and summarize audience behaviors into a series of interest segments,

as well as to learn behaviors associated with good and bad movies using crowd-sourced

audience ratings from rottentomatoes.com. As audience interest segments are highly

synchronized and occur over very small periods of time (i.e. a number of frames), we

show that our approach can outperform human-annotated labels, which do not pick up

on these fine details.
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Chapter 1

Introduction

1.1 Motivation and Overview

The recent dramatic improvement in video technology has opened up a plethora of

potential assistive tools which have the possibility of making people’s day-to-day lives

safer and more efficient. As video is passive and non-invasive, information stemming

from the visual modality is often seen as the solution in making these tools robust to

real-world scenarios. An example of this is in speech recognition within a vehicle,

which is acoustically very noisy (see Figure 1(a)), where using the visual information

from around a speaker’s mouth can help improve the speech intelligibility. Another

example is measuring the emotion state or response of a person or group of people

watching a movie by automatically measuring facial expressions or movements (Fig-

ure 1(b)). Even though the deployment of these applications is quite exciting, major

bottlenecks exist - mostly due to the variability or noise that injects itself in the video

signal over long-periods of time (such as illumination variation, head-pose, occlusion

and resolution). Additionally, gaining reliable annotations of human behavior to train

automatic systems can be problematic as it is often subjective, time-consuming and
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(a) Recognizing human speech through lip reading within a vehicular environment. Here, illumination
changes constantly or has fluctuating lighting conditions.

(b) Recognize audience collective/uninterested synchronized behavior in very dark environment through
detecting facial expressions and body gestures.

Figure 1.1: Real world challenging examples of recognizing human behaviour using
rich amount of visual information in very challenging lighting conditions.

costly when continuously monitoring humans over long periods of time (i.e. many

hours). This thesis focuses on robust methods which can deal with: a) visual variabili-

ties, and b) long-term monitoring of people.

Central to the success in automatically measuring human behavior is the accurate reg-

istration of a person’s face as it is conveys the majority of behavioral information. Face

registration has got to the stage where it is widely used in a host of applications such

as smart-phones, online applications (picasa, iPhoto etc.), video games (e.g. Xbox

Kinect), face retargeting [167] and marketing and advertising [127]. These approaches

are typically performed using either a coarse (e.g. bounding-box) or dense (e.g. Ac-

tive Appearance Models (AAMs)) alignment approach. These approaches work well
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but when conditions vary over time (such as illumination), such approaches fail. The

first contribution of this thesis is the development of a novel alignment algorithm which

can deal with this variation. It is based on the Lucas-Kanade (LK) algorithm within the

Fourier domain, which can be applied to both AAMs and bounding-box approaches.

We also show the utility of this approach on videos of people driving with fluctuating

illumination environments (see Figure 1(a)). Stemming from this work, we show an-

other contribution which is improving speech recognition by tracking a person’s mouth

region from multiple camera-views.

The final contribution of this thesis is to learn, summarise and predict audience be-

haviors over long-periods of time (Figure 1(b)). As automatic systems rely on human

annotation to train classifiers, the quality of the classifier heavily depends on the re-

liability and quality of annotations. However, when dealing with large volumes of

video data across long-periods of time - the reliability, quality and quantity of anno-

tations are low due to the monotonous nature of the task in addition to the cost and

time involved with the task. In this thesis, we use the Fourier Lucas-Kanade (FLK)

algorithm to register and stabilize audience faces, and generate flow-profile of each

person contained within their local 3D temporal volume via optical flow in a very dark

environment. We then use a novel “entropy of pair-wise correlations” method, which

compares short-term motion features across audience members to obtain an objective

measure of audience “coherency”. Additionally, we utilize an off-line change-point

detection algorithm to temporally cluster and summarize audience behaviors into a se-

ries of interest segments, as well as to learn behaviors associated with good and bad

movies using crowd-sourced audience ratings from rottentomatoes.com1. As audience

interest segments are highly synchronized and occur over very small periods of time

(i.e. a number of frames), we show that our approach can outperform human-annotated

labels which do not pick up on these fine details.
1rottentomatoes.com

rottentomatoes.com
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Face Sensing Feature Extraction Classification 

Video In

Figure 1.2: This thesis attempted to remove the expenses associated with the lighting
variations and recognise human behavior using visual modality. The normal pipeline
would be to first sense the face and then extract out features which contains informa-
tion and finally do the classification task. In this dissertation all these stages will be
investigated.

1.2 Scope of Thesis

Recognising human behavior through visual information is a challenging task. A ma-

jor reason stymieing the full deployment of such a system in “real-world” applications,

is the lack of research being conducted that focuses on unwanted variabilities that lie

within the visual domain, such as various illumination conditions (i.e fluctuating, very

dark lightings etc...). The key problem is obviously sensing the face in these illumi-

nation conditions as the face contains a rich amount of behavioral information. In an

attempt to remedy this situation, the work in this thesis has concentrated on researching

and developing methods to recognize human behavior through visual information by

focusing on face sensing, feature extraction and classification stages (See Figure 1.2).

Within this multi-tasked problem, the scope of this thesis was constrained to the fol-

lowing objectives:

1. Remove the expenses associated with the lighting variations for the task of face

sensing which limits the use of computer vision theory for many real-world ap-

plications.

2. Recognise human speech when multiple frontal or near-frontal views of speak-

ers’ faces are available in an automotive environment which has fluctuating

lighting conditions, to improve the audio-visual automatic speech recognition
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(AVASR) performance.

3. Develop an automatic real-time objective measure of audience in very dark light-

ing conditions through analysing the collective facial and body movements.

All the work contained in this thesis is designed to address each of these novel and

previously unsolved problems.

1.3 Outline of Dissertation

The remainder of this thesis is structured as follows:

Chapter 2 presents a background review of human behavior recognizing focusing on

the effect of visual information. This Chapter has given insights on the transition

process of human behavior to a computer-vision perspective. A brief history of

three specific tasks (i.e facial expression recognition, visual speech recognition

and activity recognition) of human recognising using visual information espe-

cially focusing on face and body are described.

Chapter 3 gives comprehensive evaluation of existing face alignment technologies

relevant to the work in this thesis. This Chapter has given insights into pub-

licly available coarse-type of face alignment methods (i.e Viola-Jones, Apple

face detector and “Fraunhofer” face detector) and the well known fine align-

ment method called AAMs. The model construction of person-specific AAMs

and generic AAMs are briefly detailed and two common fitting algorithms (i.e

Simultaneous and Project-out algorithm) are described.

Chapter 4 presents a novel solution to overcome the problem of poor fitting perfor-

mance with varying illumination. When unaccounted appearance variations are
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encountered due to a change in the environment (e.g.,illumination or camera

change), person specific AAMs perform poorly. The Chapter introduces the use

of filters with AAM fittings in the Fourier domain which improves the fitting

performance. In the beginning of the Chapter, the LK algorithm and FLK algo-

rithm are reviewed. A detailed comparison of these two algorithms is outlined.

In addition to that this Chapter shows the substantial improvement in person spe-

cific AAM fitting performance, over canonical LK inspired fitting algorithms (i.e

Simultaneous and Project-out algorithm).

Chapter 5 presents review of an audio-visual speech recognition (AVASR) system in

a real world automotive environment. Each component of AVASR system (i.e

acoustic feature extraction, visual front-end, visual feature extraction, speech

modeling) is deeply outlined, and single-view, multi-view and in-car audio-

visual databases are highlighted. Audio-visual speech recognition has previ-

ously been shown to provide a considerable improvement over acoustic-only

approaches in noisy environments, but most audio-visual speech recognition ap-

proaches have only been examined in relatively clean conditions and have rarely

dealt with the visual variabilities such as head movement, poor/varying illumi-

nation and poor video resolution/quality. The Chapter reviews advanced speech

enhancement techniques for improved audio-only speech recognition in an auto-

motive environment. Another avenue for improving AVASR in real world con-

ditions is to take advantage, if possible, of multiple views of the visual-speech

information, or lip-movements, of the active speaker. This Chapter extended

upon the established audio-visual speech recognition literature to show that, in

a real-world automotive environment, further improvements in speech recogni-

tion accuracy over traditional single-camera AVASR approaches can be obtained

when multiple frontal or near-frontal views of speakers’ faces are available. It

also investigates the usefulness of the visual information from different camera

angles.
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Chapter 6 proposes the novel problem of an automatic real-time objective mea-

sure of audience engagement, through automatically analysing the collec-

tive/uninterested synchronized behaviour in a very dark environment in detecting

facial expressions and body gestures. In addition to introducing a new problem

to the field of face and gesture analysis as well as a solution on how to cap-

ture such data, there are numerous technical challenges that are highlighted in

this Chapter for which solutions are presented. The first part of the Chapter

highlights various kinds of problems with illumination and reflection from the

test-screen and a novel solution has been proposed to capture smooth data in a

dark environment. A new set-up of data has been collected while audiences of

various sizes are watching movies, live-sports matches and public presentations.

Next the Chapter reviews the individual audience behavior and group behavior

via smiles and optical flow energy measurements. Experiments are conducted

while an audience engage with movies, live sports events and live presentations.

Finally it proposes an entropy of pair-wise correlations measure to give an indi-

cation of audience coherency. Additionally, it proposes an off-line change-point

detection algorithm to temporally cluster and summarize audience behaviors into

a series of interest segments.

Chapter 7 summaries the work contained in this thesis and outcomes are highlighted.

In addition to the contributions, this Chapter also suggests future research av-

enues which can be taken to improve the research conducted in this dissertation.

1.4 Original Contribution of Thesis

The summarised key contributions from the work presented in this thesis are as fol-

lows:
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(i) Chapter 3 illustrates the behavior of coarse-type of face alignments methods and

fine registration methods. The performance of face alignments methods is also

compared with different lighting conditions and demonstrates that it degrades

with illumination, especially in low-light conditions when coarse-type of face

alignments methods are used.

(ii) In Chapter 4.5 a novel method is demonstrated of how LK inspired AAM fit-

ting gives identical performance in the spatial and Fourier domains. Further, we

demonstrate how the effect of multiple filter responses can be re-interpreted as

a diagonal weighting matrix in the Fourier domain leading to substantial com-

putational savings when performing inverse compositional simultaneous fitting

across multiple filter responses.

(iii) We demonstrate the process of applying the inverse compositional project-out al-

gorithm in the Fourier domain by showing how: (i) Fourier transform to the cur-

rent image, and (ii) the application of multiple filter responses can be completely

pre-computed offline (Chapter 4.5.1). This contribution is of key importance to

person specific AAM face fitting as it provides an extremely computationally ef-

ficient method that affords both invariance to both expression and environmental

variations.

(iv) Chapter 4.6 presents empirically the substantial improvement in person specific

AAM fitting performance, over canonical LK inspired fitting algorithms (i.e. si-

multaneous and project out), when using our proposed Fourier variants. For all

our experiments we employed biologically motivated Gabor filter banks.

(v) We synchronised the audio and visual streams of the phone-number portion of the

AVICAR database, allowing audio-visual experiments to be conducted and intro-

duce a novel audio-visual protocol in Chapter 5.3.1 for the AVICAR database for

the task of speaker-independent speech recognition.

(vi) We provide a comparison of the recognition performance of single channel
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and multi-channel enhanced speech (in Chapter 5.4.2) with the performance

of audio-visual speech using data from a challenging automotive environment

(AVICAR [98]), which introduces a number of visual challenges, including

changes in illumination and speaker pose as well as severe audio impairment aris-

ing from car engine, wind and road noise. Chapter 5.7 shows that visual speech

recognition results within a vehicle-environment are obviously diminished from

what is obtained in ideal laboratory conditions.

(vii) We extend this study to also demonstrate that the complementary nature of vi-

sual information and enhanced audio observed in [45] still holds true when using

multi-channel speech enhancement algorithms and state-of-the-art middle inte-

gration techniques (i.e synchronous hidden Markov model (SHMM)) for audio-

visual fusion. Experimental results in Chapter 5.8 show that the combination

of acoustic speech enhancement and SHMM-based AVASR can provide further

gains in accuracies.

(viii) Chapter 5.8.2 presents that further improvements in speech recognition accuracy

over traditional single-camera AVASR approaches can be obtained when multi-

ple frontal or near-frontal views of speakers’ faces are available in a real-world

automotive environment.

(ix) Chapter 5.6 re-examines the current state of-the art visual HMM by comparing

off-the shelf face detector with FLK approach.

(x) Audience environments and test-screenings are very dark and suffer from reflec-

tions from the screening. To counter these issues, we employ a hardware solution

which gives us a uniform smooth signal in Chapter 6.3.

(xi) Chapter 6.3.2 introduces a labelled dataset of audiences of varying sizes watch-

ing movies. A key insight from this data collection effort is the lack of move-

ment/actions, which highlights the sensitivity of this task.
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(xii) Even though the movie viewing environment is very dark and contains views of

people at different scales and viewpoints, we can measure audience behavior by

improving smile detection by using the FLK algorithm to register audience mem-

bers faces. This overcomes instances when there is abrupt change in illumination

caused by sudden movement. Chapter 6.4 shows that improved smile detection is

possible using this method. In addition to smiles Chapter 6.5 introduces a method

to obtain an indicator for audience engagement or disengagement using standard

optical flow. We generate a flow-profile of each person contained within their

local 3D temporal volume via optical flow which is aggregated into a collective

stillness measure.

(xiii) Chapter 6.6 shows that the proposed unsupervised approach outperforms human-

annotated labels, which do not pick-up these fine details. Using the audience

ratings from rottentomatoes.com, we are able to learn to differentiate between

good and bad movies based on these interest segments. The introduced method

showed that we can give a reasonable approximation of audience behavior com-

pared to rottentomatoes.com ratings.

1.5 Notations

1.5.1 General Notation

Vectors are always represented in lower-case bold (e.g., a). Matrices are always ex-

pressed in upper-case bold (e.g., A). Scalars in lower-case (e.g. a). Images in this

thesis shall always be expressed in capitalized form A. Warp functions W(x;p)

will be used throughout this paper to denote a warping of a 2D coordinate vec-

tor x = [x, y]T by a warp parameter vector p 2 RP , where p is the number of warp

parameters, back to a fixed base coordinate system. This base coordinate system is
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defined when p = 0 such that W(x;p) = x. An abuse of notation is entertained

in this paper for when an image A is warped by the warp parameter vector p, such

that A(p) = [A(W(x
1

;p)), . . . , A(W(xD;p))]

T . In this instance A(p) is a d dimen-

sional vector of image intensities, where d denotes the number of discrete coordinates

in the base coordinate system. The steepest descent matrix of an image A(p) is defined

as @A(p)

@p
. This p⇥ d matrix is formed by combining image gradients of A(p) with the

Jacobian of the warp function W(x;p), more details on the formation of this matrix

can be found in [120]. Finally, the notation k a k2
Q

to represent the quadratic form

aTQa, and Q is a symmetric, positive semi-definite weighting matrix.

1.5.2 Fourier Notation

This thesis also borrows concepts from signal processing. A 2D convolution op-

eration is represented as the ⇤ operator. A ˆ applied to any vector denotes the 2D

Discrete Fourier Transform (DFT) of a vectorized 2D image A(p) or signal a such

that ˆA(p)  F A(p) and ˆa  Fa. F is the D ⇥D matrix of complex basis vectors

for mapping to the Fourier domain for any D dimensional vectorized image/signal.

We have chosen to employ a Fourier representation in this thesis due to its particularly

useful ability to represent convolutions as a Hadamard product in the Fourier domain.

Additionally, we take advantage of the fact that diag(

ˆg)

ˆa =

ˆg � ˆa, where � represents

the Hadamard product, and diag() is an operator that transforms a D dimensional vec-

tor into a D ⇥ D dimensional diagonal matrix. The role of filter ˆg or signal ˆa can

be interchanged with this property. Any transpose operator T on a complex vector or

matrix in this paper additionally takes the complex conjugate in a similar fashion to

the Hermitian adjoint [137].
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Chapter 2

Understanding Human Behavior via

Faces and Bodies

2.1 History of Recognising Human Behavior

The understanding and recognition of human behaviour is a very broad research field.

It spans multiple research specialties (i.e. speech, vision, behavioral science) and is

concentrated in sub-fields (e.g. vision - activity recognition, facial expression recogni-

tion etc.).

The work by Charles Robert Darwin (1809 1882) concerning genetically determined

aspects of behavior can be identified as one of earliest works in understanding hu-

man behavior [52]. In the book The Expression of the Emotions in Man and Animals

he seeks to trace the animal origins of human characteristics. According to Austrian

neurologist Sigmund Freud (1856-1939), human beings are just mechanical creatures,

whom he views as prisoners of primitive instincts and powers. He states that our
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purpose is to control/understand these behaviors 1. Understanding human behavior

involves analysis and recognition of motion patterns and well as the production of

high-level description of actions and interactions between or among objects [184].

According to the recent Video and Image Retrieval Analysis Tool (VIRAT) project

human behavior can be classified into two categories (i) events and (ii) activities [29].

An event refers to a single low-level spatio temporal entity that cannot be further de-

composed such as speaking and walking. On the other hand, an activity refers to a

composition of multiple events such as a person loitering [29].

According to the survey conducted by Pantic et al. [140] the scientific and engineering

challenges related to the realization of machine sensing and understanding of human

behaviors can be described as follows [140]:

• Which types of messages are communicated by behavioral signal? The term

behavioral signal is usually used to describe a set of temporal changes in neu-

romuscular and physiological activity that can last from a few milliseconds (a

blink) to minutes (talking) or hours (sitting). This question is related to psycho-

logical issues pertaining to the nature of behavioral signals and the best way to

interpret them.

• Which human communicative cues convey information about a certain type

of behavioral signal? This issue shapes the choice of different modalities to be

included into an automatic analyser of human behavioral signals.

• How are various kinds of evidence to be combined to make inferences about

shown behavioral signals? This question is related to issues such as how to dis-

tinguish between different types of messages, how best to integrate information

across modalities, and what to take into account in order to realize context-aware

interpretations.
1http://library.thinkquest.org/26618/

http://library.thinkquest.org/26618/
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All human interactive modalities such as audio, tactile and visual modality should in-

clude automated analys of human behavior and should analyse all verbal and nonverbal

interactive signals (speech, body gestures, facial and vocal expressions, and physiolog-

ical reactions) [140]. The recent advent of non-intrusive sensors and wearable comput-

ers can be seen as possibilities for including tactile modality into automatic analyzers

of human behavior [144]. However, the visual model which carryies facial expressions

and body gestures can be identified as the most important in the human judgment of

behavioral cues [5]. Ambady et al. [5] found that humans seem to be most accurate in

their judgment when they are able to observe the face and the body. They found that

ratings based on the face and the body were 35% more accurate than the ratings based

on the face alone.

The ability to recognise human behaviors by vision, is key for a machine to interact

intelligently with a human. [75]. Over the past decades extensive research has been

conducted by psycho-physicists, neuro-scientists and engineers on various aspects of

human behaviors [34]. Psychological studies on visual analysis of body movement

show that human movement differs from other movements [16]. Several studies from

psychology have focused on the relationships between emotion and movement quali-

ties [26, 28]. This has been the focus of many areas such as visual surveillance [51],

event mining [135], event detection and recognition [134], and motion of the human

body [154].

Simple approaches to recognise human behaviour are the use of templates [23, 147]. In

these methods, human behaviors are characterised by patterns. Then, a set of features

are extracted and matched with pre-defined patterns to recognise the person’s behav-

ior. These methods are computationally inexpensive and sensitive to the variance in

different patterns of the same activity and to noise in the observations. Other tech-

niques use deterministic models such as finite state machines [11] to recognise human

behaviour. The advantage of these models is they do not account for uncertainty, which
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is essential for modeling complex behaviors. Due to this fact, probabilistic models in

human behavior recognition are much more widely investigated [168, 200]. Bayesian

network [143], the Markov network [32], the Dynamic Bayesian Network [58] and the

Hidden Markov Model [155] are some of the probabilistic models used in behavior

recognition.

Some works have been proposed to study the affect of human behavior by combining

several modalities such as face and body. Ambady et al. [5] suggests that the com-

bined face and body are the most informative for the analysis of human expressive

behavior [5]. Most of these works use the rich information from face to recognise be-

havior, however, detection of face using vision based approaches is quite challenging

and the most challenging/interesting problem in the vision community.

2.2 Importance of Face Sensing

The most important stage in the use of the visual modality for recognising human

behavior is to reliably track and detect the persons ROI (i.e area around the face). The

success of the entire system depends on the reliability of this stage, as the face contains

a rich amount of behavioral information.

Given an arbitrary image, the goal of face detection is to determine whether there are

any faces that are exist. Humans are very capable of recognising the faces and also

recognising the behavior such as facial expression and lip-reading. With the rapid

increase of computational powers and availability of modern sensing computers are

becoming more intelligent. However this task is still more challenging to computers

due to pose, change of illumination occlusions etc as shown in Figure 2.1. When com-

puters can understand a face well in those conditions, then they begin to understand

human behavior such as recognising facial expressions, lip reading in noisy environ-
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Figure 2.1: Examples of face images. Variations of pose, illumination, facial expres-
sions, occlusion, image orientations and presence of structural components are some
of the challengers for face detections.

ments well. If the face detection or face sensing stage is not accurate, it will have

a detrimental effect on the remaining stages of the recognising pipeline (i.e feature

extraction and classification).

2.2.1 Why Face Sensing is Difficult?

As mention in Chapter 2.2 to recognise and reliably track the face using computer

vision has many challenges. Yang et al. [203] has identified the following challenges

which associated with face sensing. According to Yang et al. [203] these factors can

be identified as follows:
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• Pose: The images of a face vary due to the relative camera-face pose such as

frontal, different angle views, profile, upside down and some facial features such

as an eye or the nose may become partially or wholly occluded.

• Presence or absence of structural components: Facial features such as beards,

moustaches, and glasses may or may not be present and there is a great deal of

variability among these components including shape colour and size.

• Facial expression: The appearance of a person’s face can vary due to their facial

expressions, such as smile, surprise, anger, disgust, fear, sadness and contempt.

• Occlusion: Faces may be partially occluded by other objects (ex: own hands,

newspapers etc). In an image with a group of people, some faces may partially

occlude other faces.

• Image orientation: Face images directly vary for different rotations about the

camera’s optical axis.

• Imaging conditions: When the image is formed factors such as varying lighting

conditions or poor lightings (i.e very dark illumination) and camera characteris-

tics affect the appearance of a face.

The factors listed above show that the task of face sensing through a computer is quite

a complex task. Most of the work has focused on data that has been collected in ideal

laboratory conditions. However, as mentioned in Chapter 1, this thesis is focused on

overcoming the problems associated with illumination variations.

2.3 Facial Expression Recognition

A facial expression or emotional expression of the brain can be identified as motions

of the muscles of the face. These motions express the emotional state of a person.
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These expressions can be identified as conveying social information between humans

in an action of nonverbal communication. The book Mcanisme de la Physionomie

Humaine from Guillaume Duchenne [60] in 1862 illustrates which muscles are used

for which expression. Thirteen primary emotions were identified by Guillaume, all of

which are controlled by one or two muscles. Humans tighten the muscles around eyes

and expose teeth for expressions of anger and there is also a major effect around the

mouth and chin area for laughter/smiles. Charles Darwin (1809 - 1882) illustrated that

emotions illuminate not only the expressions of humans, but also of animals. This was

highlighted in the book The Expression of the Emotions in Man and Animals [52].

One of the major works in literature is the work conducted by psychologists Ekman and

Friesen [66]. This work has a large influence on the development of automatic facial

expression recognisers. From this work, Ekman and Friesen [66] identified a total of

six universal facial expressions known as: (i) happiness, (ii) disgust, (iii) anger, (iv)

fear, (v) sadness, and (vi) contempt (recently added). Following this initial motivation,

the Facial Action Coding System (FACS) [67] was developed by Ekman and Friesen in

1977.

Facial expressions have been studied by social psychologists, medical practitioners and

artists. With the advance of computer vision technology, computer scientists started

showing interest in the study of facial expressions. Earlier work on automatic facial

expression recognition was the work conducted by 1978 by Suwa et al [182] in which

they attempted to recognise facial expression using a sequence of images. Since the

1990s, research on automatic facial expression recognition has become a very broad re-

search field [68, 141]. A facial expression detection system consists of face detection,

feature extraction and classification. A plethora of work has been conducted and a sur-

vey of recent work in automatically measuring a person’s behavior using vision-based

approaches can be found in [207]. Much of this work has centered on recognizing an

individual’s facial expression, with notable progress made in the areas of smile detec-
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tion in consumer electronics [197], pain detection [114, 115].

Emotional responses to multimedia content have been studied in the research com-

munity [83, 172, 188]. In 2011, Teixerira et al. [185] demonstrated that joy is one

of the states and to analyse engagement with commercials through facial expres-

sion such as smiles would be a significant indicator in evaluating joy. Recognising

emotions induced by video has also been studied in the affective computing commu-

nity [86, 93, 105, 175, 183].

2.4 Visual Speech Recognition

Speech is multi-model. Humans can understand speech better if they can see the

speaker [22]. It provides complimentary information about the place of articulation,

such as tongue, teeth and lips. This is of particular benefit to those who have poor hear-

ing because they would normally use this lip-reading information as the primary source

of speech information. Humans use visual speech information to improve speech in-

telligibility from a very young age [7]. Dodd [59] noticed that toddlers at the age

of 19 months actually perform lipreading. The majority of visual speech stems from

the areas around the lips, even though visual speech is located throughout the human

face [96]. The research conducted by McGrath et al. [124] showed that the human

lips alone carry more than half the visual information compared with that of the face.

Benoı́t et al. [20] illustrates that a combined lip/jaw model gives higher performance

over a lip only model.

Once we have tracked the face and lip area we can use this information to derive

features from the lip area. Even though a plethora of research has been conducted

within the field of visual feature extraction for lipreading, it is still not clear which

approach is best. Potamianos et al. in their review paper [151], highlight two very
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important points in the argument towards appearance based features. Firstly, their

use is well motivated by human perception studies of visual speech as these contain

information about the visible articulators (such as tongue, teeth, muscles around the

jaw etc.), which are not contained just by the contours of the lips [20]. In the perception

studies cited, perception of the mouth using the entire mouth ROI was far superior to

just the lip movement [179]. Secondly, appearance based features can be computed

very quickly, which lends itself to real-time implementation. This point is probably

the most important in terms of deploying a real-world lipreading system. Another

point also very important, is that the appearance based features are generic and can be

applied to mouth ROIs of any viewpoint compared to the contour based approaches

as specific contours have to be developed for the many views which may be a very

cumbersome and exhaustive task.

The current state-of-the-art in visual feature extraction is that of multi-stage cascade

of appearance features devised by Potamianos et al. [153]. For both frontal and non-

frontal poses, the same process applies. Following ROI extraction, feature mean nor-

malisation (FMN) is applied, which consists of removing the mean ROI across the

utterance. This step removes a lot of speaker redundancies and non-speech related

variabilities. A two-dimensional, separable, discrete cosine transform (DCT) is then

applied on the resulting mean-removed ROI ( This process is known as “static-feature”

extraction stage).

Visual speech is represented by the movements of the visual articulators. The best

features for representing visual speech are generally considered focus on the move-

ment of the features, rather than the features within each frame. The simplest method

to extract dynamic features is through the use of time-derivative-based delta and ac-

celeration coefficients. These coefficients are used in addition to the original static

features [152] which result in a higher feature vector. Recently one technique which

has shown good performance is the use of linear discriminant analysis (LDA) to extract
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the relevant dynamic speech features from the ROI. In order to incorporate dynamic

speech information the static features from the static feature extraction stage are con-

centrated before speech-class based LDA is performed based on a known transcription.

The linear transforms such as DCT and LDA assume that the information contained

in the image is high dimensional and try to preserve as much information as possi-

ble whilst gaining a low dimensional representation. Once the features are extracted

hidden Markov models (HMMs) [205] can be applied to understand visual speech.

2.5 Activity Recognition

The goal of activity recognition is to recognise ongoing activities - one or a group of

agents - from a series of observations. Using computer vision to recognise activities

has been active in research areas since 1980s. The ability to recognise human activi-

ties from videos enables many real-world applications such as surveillance systems in

airports and subway stations.

Most of the activity recognition work is focused on analysing patterns of motion. Ag-

garwal et al. [4] categorise human activities into four different categories: (i) gestures,

(ii) actions, (iii) interactions and (iv) group activities. They have defined gestures as

elementary movements of a person’s body part such as stretching an arm and raising

a leg. On the other hand actions were categorised as single agent activities that may

consist of multiple gestures such as walking and punching. Thirdly, interactions were

defined as human activities that involve two or more persons and/or objects such as

hand-shaking and two persons fighting. Finally, they defined group activities as the

activities performed by a group of multiple agents, such as a group having a meeting.

In the late 1990’s, Cutler and Davis [48] presented a system which can detect and

classify periodic motions. Bobick and Davis [24] presented a system to capture not
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only motion but also the shape. Global template [64] and bag-of-words models [170]

have been shown to be effective in activity recognition tasks. One of the well-know

techniques, in order to analyse the relation of the motion field, is optical flow. In 2009,

Wang et al. [196] presented a system to recognize single person activities such as

run, jump, wave in a surveillance system with optical flow features by representing

a compact motion representation. Chaudhry et al. [33] proposed a method with a

histogram of oriented optical flow (HOOF) which is independent from the the direction

of motion to identify human actions. Recently, in Mahbub et al. [119] optical flow was

employed to present the direction of motion and random sample consensus (RANSAC)

which is used to further localization. They extend this work to recognize human actions

using frequency domain features [118].

2.6 Chapter Summary

Monitoring the behaviors of single and multiple people using vision-based approaches

is an interesting task. Understanding and recognition of human behavior spans mul-

tiple research specialties (i.e. speech, vision, behavioral science) and is concentrated

in sub-fields (e.g. vision - activity recognition, facial expression recognition etc.). Ini-

tially the Chapter introduces a holistic view of understanding human behavior. This

chapter presented the holistic view associated with recognising human behavior with

visual information. The major works associated with this field are listed. The review

then gives insights on transition process of human behavior to a computer-vision per-

spective.

The major component of this pipeline is face, as it contains rich amounts of behavioral

data and this chapter highlights the importance of face and technical challenges of face

detection. The later part of this chapter presents a brief history of three specific tasks of

human recognising using visual information specially focusing on face and body. The
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three tasks are facial expression recognition, visual speech recognition and activity

recognition.

Ekman and Friesen [66] identified a total of six universal facial expressions known as:

(i) happiness , (ii) disgust, (iii) anger, (iv) fear, (v) sadness, and (vi) contempt (recently

added). Following this initial motivation FACS was developed by Ekman and Friesen

in 1977. Since then Some of the subsequent major works in facial expression recog-

nition are highlighted in this Chapter. In addition to understanding facial expression

humans can understand speech better if they can see the speaker. It provides compli-

mentary information about the place of articulation, such as tongue, teeth and lips. Hu-

mans use visual speech information to improve speech intelligibility from very young

age [7]. Understanding speech using vision-based approaches is also highlighted in

this Chapter. Finally, the Chapter concludes with a brief review of activity recogni-

tion. According to Aggarwal et al. [4] human activities are divided into four different

groups: (i) gestures, (ii) actions, (iii) interactions and (iv) group activities. They have

defined gestures as elementary movements of a person’s body parts such as stretching

an arm or raising a leg. On the other hand, actions were catergorised as single agent

activities that may consist of multiple gestures, such as walking or punching. Thirdly,

interactions were defined as human activities that involve two or more persons and/or

objects, such as hand-shaking or two persons fighting. Finally, they defined group ac-

tivities as the activities performed by group of multiple agents, such as a group having

a meeting. These three major activities of understanding human behavior using face

and body are presented in this Chapter.
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Face Alignment: Background

3.1 Introduction

The human face contains a rich amount of information and it is a unique feature of

human beings. This feature is one of the major reasons for widespread applications

such as surveillance. Humans are highly capable of detecting a face pattern by casual

inspection of the scene. As an example, people accurately detect the face even when

the face is occluded. Also humans are capable of detecting the faces in a variety of

conditions such as bad lightings, different variation of poses and far distance. Hu-

man face detection mechanisms are very strong [164]. However this task is still more

challenging to computers due to pose, change of illumination occlusions etc as shown

in Figure 2.1. The last few decades has seen a plethora of work conducted in face

detection using machine learning and computer vision techniques. Yang et al. [203]

categorise locating a person’s face and facial features from a single image or colour

image into four broad categories. According to Yang et al. [203] these can be grouped

as follows:
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1. Knowledge-based methods: These rule-based methods encode human knowl-

edge of what constitutes a typical face. Usually, the rules capture the relation-

ships between facial features.

2. Feature invariant approaches: The aim of these algorithms is to find structural

features that exist even when the viewpoint, illumination or pose of the person

varies and then use these to locate faces. Such features include facial features,

skin colour, texture, size, shape and edge information.

3. Template matching methods: In this approach, several standard patterns of a

face are stored to describe the face as a whole or the facial feature separately. The

correlations between input and the stored patterns are computed for detections.

These methods have been used for both face localization and detection.

4. Appearance-based methods: In contrast to template matching, the models (or

templates) are learnt from a set of training images which should capture the

representative variability of facial appearance. These learned models are then

used for detection.

Knowledge-based methods are based on predefined set of rules. For example, a face

within an image has two eyes, which are symmetrical to each other, a mouth and a

nose. The relationship between those features can be represented by their distance.

Earlier work on this approach can be seen in research conducted by Yang et al. [202].

They defined three levels of rule. At the top level, all possible face regions are found

by scanning a window over the given image and applying set of rules at each location.

This information is more likely to be What is a face looks like. In the middle level,

local histogram equalization is performed on the face regions received from the top

level followed by edge detection. The bottom levels rely on details of facial features.

Finally, the successful face regions from level 2, are examined through set of rules that

respond to facial features.
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An abundance of research has been conducted using facial features, texture informa-

tion, edge information and skin colour. Using a Canny detector [30], Sirohey proposed

a method to extract a face from a cluttered background [174]. In 1995, Graf et al. [77]

proposed a method to locate facial features and faces in gray-scale images. Leung et

al. [99] introduced a method based on local feature detectors and random graph match-

ing. The goal behind this work was to find certain facial features that were (i.e two

eyes, nose/lip) most likely to be a pattern of a face.

In the template matching method, for a given input image the correlation values with

standard patterns are computed for facial features. These correlation values are used to

determine whether there is a face existing, or not. These methods can be divided in two

sub groups: (a) Predefined templates and (b) Deformable Templates. Sakai et al. [163]

attempted to detect faces using predefined templates. They used several sub templates

for eyes, nose, mouth and face contours to model a face. Using a Sobel filter, Craw

et al. [46] presented a face detection method based on a shape template of a frontal-

view. The generated edges from the Sobel filter is grouped together to search for the

template of a face. Samal et al. [165] presented a method using face silhouettes. A set

of these features were obtained using principal component analysis (PCA) on faces.

Silhouette is represented by an array of bits, then these eigen-silhouettes are used with

a Hough transform for localisation. Miao et al. [126] introduced a method for face

detection using a hierarchical template matching. These methods work well for single

face images compared with multiple face images.

Using deformable templates, Yuille et al. [206] first applied a template matching

method for mouth and eye localisation using appearance and shape models. In this

approach, deformable template of the eyes and labial contour is fitted to an intensity

model, by calculating a cost function based on the grayscale intensity edges around

the template boundary. Unfortunately, this approach has poor performance due to the

heuristic nature of the shape models and intensity models when applied across a large
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number of subjects. Cootes et al.[43] introduced a similar method for building a de-

formable template incorporating texture and shape, known as an active shape model

(ASM). The ASM was able to statistically learn allowable variations in shape of an ob-

ject pre-labeled object shapes in a point distribution model (PDM) [41, 43]. Edwards et

al. [63] extended this approach using Kalman filters to estimate the shape-free intensity

parameters. A major improvement in deformable face modelling are the Active Ap-

pearance Models (AAMs) proposed by Cootes et al. [41]. These models have shown

themselves to be an accurate method of aligning a predefined shape model that also has

linear appearance, to a previously unseen source image that is the object of interest.

Although deformable template approaches have been shown to be useful for face/eye

detection they are highly sensitive to initialisation and do not guarantee convergence.

In appearance-based methods, the models are learnt from a set of training images

which should capture the representative variability of facial appearance. Generally

these methods use statistical analysis and machine learning to find the relevant fea-

tures of face and non-face. Eigenface [190], distribution method [181], neural network

[160], SVM [103], Naive Bayes classifier [169], hidden Markov model [131] and in-

formation theoretical approach [40, 100] are some of appearance based methods which

can be found in literature. Recently Viola-Jones [194] introduced a rapid object detec-

tion algorithm. The main principle of the algorithm, which was based on a boosted

cascade of simple classifiers, is to scan sub windows within an image to detect objects

of interest (ex:faces). It provides a quick and accurate framework, which can be used

in real-time object detection applications.

The importance of good alignment is heightened, as any misalignment will greatly af-

fect detection of human behavior such as facial expressions (ex: smiles, anger, happy,

disgust) and visual speech recognition (Two real-world applications are highly de-

tailed in Chapter 5 & 6). This Chapter provides a review of existing face alignment

technologies relevant to the work in this thesis. A complete review of face alignment
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Figure 3.1: An example of face alignment methods to obtain rich amount of behavioral
information in faces. Clockwise from left (a) Coarse-type of registration and (b) Fine
registration

technologies is beyond the scope of this work.

The Chapter mainly centered around two main methods of face alignment (Refer to

Figure 3.1):

(a) Coarse type of alignment (bounding box)

(b) Deformable face modelling

Chapter 3.2 presents an overview of coarse type of face detection methods. Specifi-

cally, Chapter 3.2 presents three publicly available off-the-shelf face detectors namely:

(a) Viola-Jones face detector [194]: which comes with the OpenCV libraries 1

(b) The Apple Face detector which is in built with apple frameworks 2

(c) The Fraunhofer Face Engine. 3

1http://sourceforge.net/projects/opencvlibrary/
2http://developer.apple.com/library
3http://www.iis.fraunhofer.de/en/bf/bsy/produkte/shore/

http://sourceforge.net/projects/opencvlibrary/
http://developer.apple.com/library
http://www.iis.fraunhofer.de/en/bf/bsy/produkte/shore/
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58 Chapter 4. Visual Front-End

(a) Original set of haar-like features

(b) Extended set of haar-like features

Figure 4.3: Comparison of the feature sets used by: (a) Viola and Jones with the

original 4 haar-like features; and (b) Lienhart and Maydt with their extended set

of 14 haar-like features including their rotated features. It is worth noting that

the diagonal line feature in (a) is not utilised in (b).

set of four features were later extended by Lienhart and Maydt [94], to fourteen

by introducing features which were rotated by 45

o
. The motivation behind using

these extended features was that they add additional domain-knowledge to the

learning framework which is otherwise hard to learn. Lienhart and Maydt showed

that improved performance is achieved with these set of extended features with an

average of 10% reduction in the false alarm rate at a given hit rate. A comparison

of these two feature sets are given in Figure 4.3. The value of these haar like

features are calculated as the sum of the pixels within the white rectangles are

subtracted from the sum of the pixels in the black rectangles.

If the object of interest, say a face, was 16 ⇥ 16 pixels within an image, the

number of features derived could be well over 100 000 for that face. This is

because the feature set shown in Figure 4.3(b) are found sliding over the face

(a)
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original 4 haar-like features; and (b) Lienhart and Maydt with their extended set

of 14 haar-like features including their rotated features. It is worth noting that

the diagonal line feature in (a) is not utilised in (b).

set of four features were later extended by Lienhart and Maydt [94], to fourteen

by introducing features which were rotated by 45

o
. The motivation behind using

these extended features was that they add additional domain-knowledge to the

learning framework which is otherwise hard to learn. Lienhart and Maydt showed

that improved performance is achieved with these set of extended features with an

average of 10% reduction in the false alarm rate at a given hit rate. A comparison

of these two feature sets are given in Figure 4.3. The value of these haar like

features are calculated as the sum of the pixels within the white rectangles are

subtracted from the sum of the pixels in the black rectangles.

If the object of interest, say a face, was 16 ⇥ 16 pixels within an image, the

number of features derived could be well over 100 000 for that face. This is

because the feature set shown in Figure 4.3(b) are found sliding over the face

(b)

Figure 3.2: Comparison of the haar-like feature sets used by: (a) Viola and Jones
with the original four features; and (b) Lienhart and Maydt with their extended set of
features including their rotated features with an angle of 45�.

Chapter 3.3 briefly highlights a well-known deformable face modelling technique

AAMs. The central motivation of this Chapter is to review, how well these methods

perform in noisy lighting conditions. The Chapter concludes with extensive compari-

son of these methods.

3.2 Coarse-type of Alignment

Coarse type of alignment, (bounding box) detects the face and facial features such as

eyes and mouth region coarsely. The Chapter reviews the above three different publicly

available face detection methods in controlled, fluctuating and low-light illumination

conditions.



3.2 Coarse-type of Alignment 33

3.2.1 The Viola-Jones Algorithm

The Viola-Jones algorithm is a rapid object detection algorithm proposed by Viola and

Jones in 2001 [194]. The main principle of the algorithm, which is based on a boosted

cascade of simple classifiers is to scan sub windows within an image to detect objects

of interest (ex:faces). It provides a quick and accurate framework, which can be used

in real-time object detection applications. The main steps of the Viola-Jones algorithm

are described briefly in the following sub sections.

Feature representation

The Viola-Jones algorithm uses a “Haar-like” feature representation of the images in-

stead of pixels. The original features were extended to fourteen features by Lienhart

and Maydt [104] by introducing a new set-up of features which are rotated by 45�. The

original features and the extended features are shown in Figure 3.2.

Each haar-like’ feature consist of black and white rectangles. The value of the haar-like

feature is the subtraction of the sum of the pixel values in white rectangles from the sum

of the pixel values in black rectangles. An object of size 16⇥16 pixels with an image,

can have over 100,000 haar-like features. These features can be computed rapidly

using the concept of integral image [194]. However, calculating over 100,000 features

is a time consuming process. The Viola-Jones algorithm overcomes this problem by

selecting the features using the “AdaBoost” algorithm [70].

AdaBoost algorithm

The Viola-Jones algorithm uses an efficient and effective learning algorithm called the

AdaBoost algorithm. The main concept of the algorithm is to produce a strong clas-
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sifier which has a high detection performance by linearly combining weak classifiers.

The steps of the algorithm are:

1. Given n example images (x
1

, y
1

), . . . , (xn, yn) where x is the sub-window of the

entire image and yi = 0, 1 for negative and positive examples respectively.

2. Initialize weights w(1, i) =

1

2m
, 1

2l
, for yi = 0, 1 respectively, where m is the

number of negative examples and l is the number of positive examples.

3. For t = 1, . . . , T

• Normalize the weights at each stage, so that wt is a probability function

wt,i  
wt,iPn

j=1

wt,j

(3.1)

• For each feature j , train a classifier hj which is restricted to using a single

feature. The error is evaluated with respect to wt,

✏j =

X

j

wi|hj(xi)� yi| (3.2)

• Choose the classifier with ht, with the lowest error ✏t

• Update the weights :

wt+1,i = wt,i�
1�ei
t (3.3)

where et = 0 if example xi is classified correctly, et = 1 otherwise, and �t =

✏t
1�✏t

4. The final classifier is :

h(x) =

8
<

:
�1 :

PT
t=1

↵tht(x) � 1

2

PT
t=1

↵t

0 : otherwise
(3.4)

where ↵t = log

1

�t
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Figure 3.3: Block diagram of a N cascade of classifiers to detect the interest of object
in a given search window.

The AdaBoost algorithm updates the weights of testing data in every stage. Mainly,

it gives higher weight for the misclassified data and lower weight for correctly classi-

fied data in the next stage. The process is iterate for T times to generate the T weak

classifiers. Finally, the generated classifiers are linearly combined to produce a strong

classifier.

Cascading the classifications

Viola et al. [194] proposed the use of a cascade of weak classifiers instead of a single

strong classifier to detect objects. The complexity of each stage increases in the cas-

cade and dramatically increases the detection speed of the object. A key innovation in

having a cascade of classifiers is the ability to reject the majority of sub windows that

are not likely to contain the object at early stages rather than allowing them to go to

complex stages as shown in Figure 5.15.
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3.2.2 The Apple Face Detection Framework

With the face detection Application Programming Interface (API) included within the

Core Image library in the iPhoneOS (IOS) 5.0 and Lion 10.7, face detection along with

the locations of the eyes and mouth is straightforward. This API was mainly built to

detect faces with the IOS. Even though the implementation of this face detector is not

publicly available, it is easy to use with two adjustable levels of accuracy (i.e high/low

accuracy of detection). The face detection capability is available in IOS 5.0 and later

(with Mac operating system).

3.2.3 The Fraunhofer Face Detector

The “Fraunhofer” face engine [161] is another publicly available API which can be

used to detect faces and the position of the eyes, nose and corners of the mouth. The

developed algorithms are embedded in a library called Sophisticated High-speed Ob-

ject Recognition Engine (SHORE). The “Fraunhofer” face engine can be used for

either simple face detection or for more complex tasks such as gender classification,

facial expression recognition, classification of eyes that are opened and closed and the

analysis of facial features using different set-ups. This commercial face engine pro-

vides a black-box framework which can be configured easily. However the details of

the algorithms are not publicly available and are hidden by the framework interfaces.

3.3 Fine Registration: Active Appearance Models

In order to obtain a fine registration, deformable model approach where a dense of 60-

70 points on the face is used. This method is ideal in situations where there is a lot-of

head movement, especially out-of-plane rotations. AAMs [41, 120] have been widely
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�1 �2 �K= + ...}+ +

A�A0(0)A�(0)

}}

Figure 3.4: Construction of the appearance A�(0) of an AAM. This can be represent
using mean appearance A

0

(0) plus a linear combination of K orthonormal appearance
vectors A�.

used and succeed the fine registration method in facial expression recognition [9, 10,

114, 116] therefore this Chapter focused AAMs. This approach needs manual labelling

of the training sequence (up to 5%-10% of key frames).

The AAMs [41, 120] employ a paradigm of inverting a synthesis model (or in machine

learning terms, a generative model) of how an object can vary in terms of shape and

appearance. As a result, the ability of AAMs to register an unseen object image is

intrinsically linked to how well the synthesis model can reconstruct the object image.

The AAMs are usually constructed from a set of training images with the AAM mesh

vertices hand-labelled on them [42]. The training mesh vertices are first aligned with

procrustes analysis. Then principal component analysis (PCA) is used to build a 2D

linear model of shape variation [42]. The shape s of an AAM is described by a 2D

triangulated mesh. The 2D shape s = (x
1

, y
1

, . . . , xv, yv)
T can be represented as a

base shape s
0

plus a linear combination of P shape vectors si:

s = s
0

+

PX

i=1

pisi (3.5)

where p = [p
1

, . . . , pP ]

T is the shape parameter vector. The AAM model of appear-

ance variation is obtained by first warping all the training images onto the mean shape

and then applying PCA on the shape normalized appearance images. The appearance

of an AAM A(0) is an image vector defined over the pixels x 2 s
0

inside the base

mesh s
0

when p = 0. The appearance A�(0) can be represented as a mean appear-
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(a)

(b)

Figure 3.5: Comparision of construction of an AAM using hand annotated (68 points)
ground-truth images. (a) Person specific AAMs are construct using 5%-10% key
frames using a single subject with different expression in a given video sequence
and(b) Generic AAMs are construct across many subjects with many expressions.

ance A
0

(0) plus a linear combination of K orthonormal appearance vectors Aj(0):

A�(0) = A
0

(0) +

KX

j=1

�jAj(0) (3.6)

= A
0

(0) + A�

where � = [�
1

, . . . ,�K ]

T is the appearance parameter vector and A =

[A
1

(0), . . . , AK(0)] is the matrix of concatenated appearance vectors. A visual ex-

ample is given in Figure 3.4

3.3.1 Person Specific vs Generic AAMs

As mentioned above, AAMs are usually constructed from a set of training images with

the AAM mesh vertices hand-labelled on them. The AAMs can be constructed in two

different ways. The most successful method is to construct an AAM using a single

subject to model the variation in the appearance pose, illumination and expression as
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shown in Figure 3.5(a). Such a person specific AAM might be useful for facial expres-

sion recognition in consumer electronics [197] and pain detection [114, 115]. How-

ever, this approach is not practical, where manually labelling of frames is prohibitive.

Alternatively, one can overcome this problem by constructing an AAM model across

many subjects, expressions as shown in Figure 3.5(b). However, the generic AAMs

are very poor in registration performance compared with person specific AAMs, [79]

which limit the use of generic AAMs for real-world applications.

3.3.2 AAM fitting

A number of approaches have been proposed in literature for fitting AAMs [42, 120].

The most notable and popular approach is to minimize the sum of squared distances

(SSD) between the input image I(p) and AAM model A(�) [120]. In this approach

one can pose AAM fitting as minimizing the following objective function:

arg min

p,�
k I(p)� A�(0) k2

Q

(3.7)

arg min

p,�
k I(p)� A

0

(0)�A� k2
Q

(3.8)

where I(p) represents the warped input image using the warp specified by the param-

eters p.

The central task of the objective function described in Equation 3.8 is to find the

shape p and appearance � that minimizes the weighted SSD between the warped input

image and the AAM. For most AAM fitting problems the weight matrix Q is assumed

to be an identity matrix I (i.e. unweighted SSD).
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Generally, the objective function in Equation 3.8 is difficult to solve as there is a non-

linear relationship between the shape p, and appearance � parameters. A key insight,

stemming from Lucas & Kanade (LK) [110], was that a linear approximation can be

made between p and � through the judicious use of image gradients and the chain rule

to form steepest descent matrices (i.e. @A(p)

@p
). The LK algorithm is briefly described in

Chapter 4.2. This section briefly reviews two common approaches in AAM fitting.

(a) Simultaneous algorithm

(b) Project-out algorithm

3.3.3 Simultaneous Algorithm

The simultaneous algorithm [120] linearizes the objective function in Equation 3.8

such that:

arg min

�p,��
k I(p)� A�(0)� @A�(0)

@p
�p�A�� k2

Q

. (3.9)

Instead of solving for the shape p and appearance � parameters directly, through the

linearization step in 3.9 we iteratively solve for the updates�p and��. The objective

function in Equation 3.9 takes advantage of a computationally efficient extension to

the LK algorithm referred to as the inverse compositional (IC) algorithm [120]. The

IC algorithm linearizes the template image A�(�p), with respect to�p, instead of the

source image I(p+�p). The rationale for this switch shall be examined more closely

in the next section concerning the project-out algorithm.

A consequence for this switch is that the update to the the current warp parameters

are updated by the inverse (as we want to update the source image not the template)

of the warp update p  p } �p�1. The operation } represents the composition of

two warps (e.g. for an affine warp this is represented as a matrix multiplication). The
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update to the appearance parameters, however, remain additive such that � �+��.

The explicit solution to �p and �� can be found “simultaneously” such that:
2

4�p

��

3

5
= H�1

simJ
T
simQ[I(p)� A�(0)] (3.10)

where the pseudo simultaneous Hessian matrix is defined as:

Hsim = JT
simQJsim (3.11)

The simultaneous Jacobian matrix is defined as:

Jsim =

2

4
@A�(0)

@p

AT

3

5 . (3.12)

Empirically, the simultaneous algorithm has been noted to have excellent fitting per-

formance compared other LK inspired methods to AAM fitting. A major problem,

however, with the simultaneous algorithm occurs with respect to computational effi-

ciency. Specifically, as a consequence of the update step � � +�� the appearance

image A�(0), Jacobian matrix Jsim, and Hessian matrix Hsim must be re-estimated at

each iteration.

3.3.4 Project-out Algorithm

The project-out algorithm [120] circumvents the computational limitations of the si-

multaneous algorithm by attempting to “project-out” appearance variation:

arg min

�p

k I(p)� A
0

(0)� @A
0

(0)

@p
�p k2

Q?
. (3.13)
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where Q? is the modified weight matrix where the appearance basis A has been pro-

jected out:

Q? = Q� (AAT
)Q(AAT

) . (3.14)

Equation 3.13 is an approximation to the simultaneous algorithm in Equation 3.9 as it

is no longer updating the appearance template A� (note A
0

is instead used, which is

the mean appearance template).

The computational advantages of inverse compositional inspired fitting are readily ap-

parent for the project-out algorithm. Specifically, one can solve the objective function

in Equation 3.13 such that:

�p = B[I(p)� A
0

(0)] (3.15)

where B can be completely pre-computed and the current warp parameters are itera-

tively updated by the inverse (as we want to update the source image not the template)

of the warp update. The update matrix is defined as:

B = H�1

po J
T
poQ? (3.16)

where the pseudo project-out Hessian matrix is Hpo = JT
poQ?Jpo. The project-out

Jacobian matrix is defined as Jpo =

@A0(0)

@p
. For the project-out algorithm the Jacobian

and Hessian matrices remain static across all iterations, thus allowing B to remain

static. To gain an insight into the speedup that is afforded by pre-computing B, im-

plementations of project-out AAM face fitting have been reported in literature [120]

running at real-time (i.e. 30 fps) on a modern PC (Intel core dual 3.0 GHz).
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3.4 Experiments: Off-the-shelf Face Detectors and

AAMs

Face alignment experiments are conducted using (a) Off-the-shelf face detectors

(Chapter 3.2) and (b) Person-specific AAMs (Chapter 3.3) in varying illumination con-

ditions.

3.4.1 Off-the-shelf Face Detection Results

As the central theme of this thesis is to recognize human behavior in noisy environ-

ments, initially different coarse-type face detectors are evaluated in controlled, fluctu-

ating and low-light illumination conditions.

In order to calculate the face detection performance, this work followed a similar ap-

proach described by Vidit et al. [192]. To represent the score of a match between a

detection region dj and groundtruth region gi, we employ the commonly used ratio of

intersected areas to joined areas as follows,

S(gi, dj) =

area(gi) \ area(dj)

area(gi) [ area(dj)
(3.17)

and the score S(gi, dj) is 0 < S(gi, dj) < 1.

Initially, ground-truth coordinates were manually labelled for 1200 images in con-

trolled, fluctuating and low-light illumination conditions. Figure 3.6 shows the true-

positive rate for the three face detectors in controlled, fluctuating and low-light illu-

mination conditions for a given false positive rate. Even though the off-the-shelf face

detectors work reasonably well in controlled and fluctuating conditions, it is interesting
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Figure 3.6: The Face detection performance using the off-the-shelf face detectors. All
the face detectors work reasonably well in fluctuating lighting conditions, even though
the hit-rate is less than controlled lighting conditions. In all the face detectors, the
performance in low-light conditions (i.e an audience environment) dramatically drops.
The performance of the Apple face detector is very poor in low light conditions .

to observe that the performance dramatically decreases in all the three face detectors

in low-light conditions (i.e an audience environment) as shown in Figure 3.6. The per-

formance of the Apple face detector in low-light condition is poorest (less than 2%).

3.4.2 AAM Face Registration Results

The experiments were conducted with the MultiPIE face image dataset [80]. The Mul-

tiPIE database consisted of 19 illumination conditions (i.e., 18 variations of flash firing

and without flash) with a range of facial expression including neutral, smiles, surprise,

squints, disgust and screams. Examples of this variation can be seen in Figure 3.7. All

images were hand annotated with 68 points. More details about the MulitiPIE database

can be found in [80].
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(a)

(b)

(c)

Figure 3.7: (a) Five of the hand annotated (68 points) ground-truth images for a specific
subject used to construct the AAM model. (b) Sample of testing images with the
matched illumination condition. (c) Sample of testing images with the mismatched
illumination condition.

Person specific AAM fitting experiments were conducted as they have shown better

fitting performance than Generic AAMS [79]. For all our experiments, two types of

fitting performance were measured: (a) matched (i.e illumination in training and test-

ing images are same) and (b) mismatched illumination (i.e illumination in training

and testing images are different). We measured fitting performance in terms of root

mean square error (RMS) between the 2D mesh location of the current fit results and

the ground-truth 2D mesh coordinates with respect to the base mesh. Results were

calculated for (a) and (b) when the initialized shape was randomly perturbed from

ground-truth.

Simultaneous results

Figure 3.8(a) depicts the average RMS mesh location error against iterations for si-

multaneous variants of AAMs (a) matched and (b) mismatch illumination. Similarly,

Figure 3.8(b) depicts the number of converged trials as a function of the RMS error
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Figure 3.8: Performance comparison using simultaneous algorithm when the input and
training images have the same illumination, and varying illumination condition. When
the illumination change AAM diverge.

threshold for matched and mismatched illumination conditions. While the illumination

matched person-specific AAM shows better performance, however in the presence of

mismatched illumination AAM fitting is divergent, which results in poor fitting perfor-

mance.

Project-out results

The performance in terms of convergence rate and fittings for project-out algorithm

is shown in Figure 3.9. The observation was similar compared with the simultaneous

algorithm. Even though AAMs have good registration performance in matched illu-

mination, once the illumination changes the performance is degraded. Note that the

fitting performance and convergence rate using the simultaneous algorithm is much

better than the project-out algorithm as shown in Figure 3.8.
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Figure 3.9: Performance comparison using project-out algorithm when the input and
training images have the same illumination, and varying illumination condition. When
the illumination change AAM diverge.

3.5 Comparison: Coarse vs Fine Alignment

This section briefly describes the advantages and disadvantages of the described face

alignment methods. Generally, coarse-type of alignment (i.e off-the-shelf face detec-

tion methods) is more robust to unseen objects compared with AAMs. These state-

of-the art methods perform reasonably well in controlled or fluctuating lighting con-

ditions, however performance dramatically decreases in low light conditions such as

audience environment.

A major drawback to person specific AAMs stems from their tendency to general-

ize unseen objects. When unaccounted appearance variations are encountered due

to a change in the environment (e.g., illumination or camera change), person specific

AAMs perform poorly. In situations, where manually labelling of frames is prohibitive

such as marketing, health-care off-the-shelf face alignment is a practical solution as

they are more robust to unseen objects.
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Systems which can detect unseen subjects with high accuracy are required for real-

world applications such as facial expression recognition, pain recognition systems in

health-care and visual speech recognition in automotive environments. The validation

results in this Chapter show that, even though fine alignment methods such as person-

independent AAMs are highly accurate, in practice, this type of dense alignment has so

far been impossible to achieve in a generic sense. On the other hand, off-the-shelf face

detectors are more robust to unseen subjects, which have the potential to be applied for

real-world applications with less accuracy of face alignment.

3.6 Chapter Summary

This chapter has given insights into publicly available, coarse-type of face alignment

methods (i.e Viola-Jones, Apple face detector and “Fraunhofer” face detector) and

the well-known fine alignment method called AAMs. Three major off-the-shelf face

detectors are detailed, which have influenced this field of research. In the second part of

the chapter, widely used AAMs are described in great detail. The model construction of

person-specific AAM and generic AAMs are briefly detailed and two common fitting

algorithms (i.e Simultaneous and Project-out algorithm) are reviewed.

The Chapter experimentally validates the behaviour of coarse-type of alignments and

AAMs fittings in different lighting conditions. The Chapter concludes with off-the-

shelf face detection methods that are more robust to unseen objects compared with

AAMs with less alignment accuracy.

A major drawback to person specific AAMs stems from their tendency to general-

ize unseen objects. When unaccounted appearance variations are encountered due to

a change in the environment (e.g., illumination or camera change), person specific

AAMs perform poorly. Motivated from this work, the next chapter describes a novel
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method to overcome the problem with illumination in AAMs.
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Chapter 4

Face Alignment in Fourier Domain

4.1 Introduction

Generic non-rigid face fitting is still an ongoing topic in computer vision with notable

theoretical inroads being made [47, 106, 166]. However, none of these approaches

can provide the level of registration accuracy or computational efficiency achieveable

through a person specific AAM [39, 79]. As a result, person specific AAMs are still

the method of choice in a number of applications where users are willing to provide

subject specific images and labels. Notable applications of person specific AAMs in

literature can be found in areas such as expression classification, avatar synthesis, and

visual speech synthesis [39].

Even though state-of-the art person specific AAM face fitting outperforms generic non-

rigid face fitting methods, significant problems still remain. A major drawback to

person specific AAMs stems from their capacity to only generalize to small amounts

of appearance variation (essentially appearance variation that can be expressed as a

linear combination of the training instances, e.g. expression variation). However, as
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Figure 4.1: Example of person specific AAM fitting in the presence of: Clockwise
from left AAM output in the same illumination condition as the training images, (b)
output in a different illumination condition compared to training images. In this chapter
a computationally efficient and accurate solution that provides environmental invari-
ance to overcome the problem in (b) is introduced.

shown in Chapter 3, AAMs are very sensitive to illumination. When illumination

conditions during the testing are significantly varied with illumination with the training

images, AAMs tend to suffer as shown in Figure 4.1. This effect severely limits the

usefulness of person specific AAMs, as one either needs to: (i) ensure the environment

is strictly controlled, or (ii) collect and label training examples of the subject in the

new environment.

To overcome this problem one can: a) manually label landmarks of the subject in the

different illumination environments, or b) preprocess the image to encode illumina-

tion invariance through a bank of filters. However, the fundamental drawback of the

first approach is the requirement of multiple examples of the face under changing il-

lumination conditions as labelling ground-truth for every illumination condition can

be impractical. Filter-banks have been shown to be useful in gaining invariance to

spectral distortions such as those encountered in the presence of illumination varia-

tions on approximately Lambertian surfaces [95]. Unfortunately, in the spatial domain

the complexity is a direct function of the number of filter banks being applied, greatly

increasing the computational and memory requirements of image matching on raw

pixels.
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Recently, Ashraf et al. [8] proposed image alignment in Fourier domain using a bank

of filters which are referred to as Fourier LK (FLK). The LK and FLK algorithms are

briefly described in Chapter 4.2 and Chapter 4.4. Using this as our motivation this

Chapter introduces a novel framework by employing the AAM in the Fourier domain

with a bank of filters. We refer to this method as the Fourier AAM (FAAM) algorithm.

The FAAM can handle substantial illumination variations, poor in standard AAM and

it is much more efficient computationally with a bank of filters.

4.1.1 Related work

Gaining invariance to environmental variations such as camera and illumination vari-

ations has been a muchwell investigated topic in AAM fitting literature [44, 79, 187].

Notably, Gross et al. [79] modelled illumination variation by using an abundance of

examples from different illumination conditions. As discussed earlier, this approach is

unattractive in practice as one has to collect multiple images/labels of the subject from

a wider variety of environmental conditions. In 2006 Theobald et al. [187] demon-

strated the usefulness of robust-error functions for AAM fitting for dealing with previ-

ously unseen appearance variations. Although successful, this approach is problematic

as it requires a re-computation of the Hessian for each iteration of fitting, irrespective

of the approach employed (i.e., simultaneous and project-out). This problem is partic-

ularly limiting for the project-out algorithm as it dramatically slows down its real-time

performance. The work described in the Chapter differs as it reformulates the problem

with a constant matrix, which results in for a constant Hessian for each iteration of

fitting.

Filter-based solutions have also been utilized in the past to gain environmental invari-

ance in AAM fitting. Of particular note is the work of Cootes and Taylor [44] where the

authors explored the use of multiple filter (specifically orientated gradients) responses

for fitting. Although exhibiting impressive results, the approach is problematic as it
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requires the explicit computation of multiple image filter responses at each iteration of

AAM fitting. The work present in the Chapter differs to the work presented in [44]

by proposing a novel method for completely pre-computing the effect of multiple filter

responses, such that the online portion of the AAM fitting algorithm operates solely

and efficiently on raw pixels.

4.2 Lucas & Kanade Algorithm

The goal of the LK algorithm [111] is to find the parametric warp p that minimizes

the sum of squared difference (SSD) between a template image T and a warped source

image I . The error term can be written as,

arg min

p

k I(p)� T (0) k2 (4.1)

where I(p) represents the warped input image using the warp specified by the param-

eters p, while T (0) represents the un-warped template image.

The LK algorithm finds an effective solution to Equation 4.1, by iteratively solving for

�p and refining the parameters at each iteration till converge such that p p +�p.

The non-linear Equation 4.1 can be linearised by performing Taylor series expansion,

arg min

�p

k I(p) + J�p� T (0) k2 (4.2)

where the Jacobain matrix J =

⇣
@I(p)

@p

T
⌘

. The explicit solution for�p, that minimizes

the linearized objective function in Equation 4.2:

�p = H�1JT
[T (0)� I(p)] (4.3)

where the pseudo Hessian matrix is defined by,

H = JTJ (4.4)
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The fundamental problem with canonical LK formulation referred as the forwards ad-

ditive (FA) algorithm [13] is the requirement of the re-estimation of the Hessian matrix

at each iteration which greatly impacts computational efficiency.

4.2.1 Inverse Compositional Algorithm

In 2003, Baker and Matthews [12] introduced a computationally efficient algorithm to

minimize the SSD objective function described in Equation 4.1 which they referred

to as inverse compositional (IC) algorithm. The main change is this algorithm lin-

earizes T (�p) rather than I(p + �p) resulting in the following objective function,

arg min

�p

k I(p)� T (0)� @T (0)

@p

T

�p k2 (4.5)

Since @T (0)

@p
needs only to be computed once, irrespective of the current value of p, one

can then solve the linearized objective function,

�p = B [I(p)� T (0)] (4.6)

where matrix B,

B = H�1

ic

@T (0)

@p
(4.7)

and the pseudo Hessian matrix can be defined as Hic =

@T (0)

@p
@T (0)

@p

T
. The current warp

parameters are iteratively updated by the inverse of the incremental update warp p  

p ��p�1. The operation � represents the composition of two warps.

4.3 Fitting with Filter Responses

The employment of filter banks as a pre-processing step in many tasks in vision involv-

ing illumination variations is motivated by two widely accepted assumptions about hu-
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man vision: (i) human vision is mostly sensitive to scene reflectance and mostly insen-

sitive to the illumination conditions, and (ii) human vision responds to local changes in

contrast rather than to global brightness levels [78]. These two assumptions are closely

related since local contrast is a function of reflectance. A natural way to encode lo-

cal contrast is through the employment of a bank of filters that encode local intensity

differences at different orientations and scales.

Linear filters are widely used to extract feature representations. Gabor wavelets [72]

are the most popular filter which can be used to extract the useful features due to their

biological relevance and computational properties [53, 54, 55, 69]. However, any type

of filter that encodes relative intensity differences across many different orientations

and scales is suitable.

4.3.1 Filter Responses in Spatial Domain

The reformulation of the LK algorithm to entertain fitting across multiple linear filter

responses can be written as,

arg min

p

k {gi ⇤ I(p)}M
i=1

� {gi ⇤ T (0)}M
i=1

k2 . (4.8)

Where gi is i-th filter with M filters in total, while {.}M
i=1

represents the concatenation

operation i.e. {xi}M
i=1

= [xT
1

. . .xT
M ]

T .

Computational cost

As previously pointed out by [15, 17, 107] a particular problem with Equation 4.8 is

the inherently large memory and computational overheads required for representing

images in this over-complete filter response domain. The main fundamental problems

when applying to the LK framework are:
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• If there are M filters in the bank, and D pixels in the input image, we need to do

M 2D convolutions involving images containing D pixels each.

• The number of columns in the Jacobian J matrix increases from PD to PMD,

where P is the number of warp parameters. For the special case of the simulta-

neous algorithm P refers to the number of warp & appearance parameters.

• The computational cost for building Hessian H matrix increases from P 2D

to P 2MD.

As a result of these computational overheads, the idea of doing object alignment

with even a modest number of Gabor filter banks (e.g., 9 scales times 8 orientations,

i.e. M = 72, as employed in [107]) becomes prohibitively expensive and impractical

when employing the forward additive algorithm. Even for the inverse compositional

algorithm, where the Jacobian and Hessian matrices can be pre-computed to form B,

the additional cost of estimating the overcomplete image representation {gi ⇤ I(p)}M
i=1

and M -fold increase in the size of the pre-computed matrix B remains. For smaller fil-

ter bank sizes authors in literature have resorted to methods for approximating the full

response vectors such as: (i) downsampling of filter responses [107], (ii) employing fil-

ter responses at certain fiducial positions within the image [198], (iii) the employment

of feature selection methods to select the most discriminative filter responses [15], and

most recently (iv) where individual classifiers are learnt for each filter response and a

fusion strategy employed to combine the outputs in a synergistic manner [101].

4.4 Fourier Lucas & Kanade

Recently, Ashraf and Lucey [8] proposed an extension to the LK algorithm for fitting

a template across multiple filter responses in the Fourier domain, which they referred
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to as the Fourier Lucas-Kanade (FLK) algorithm, that can be written as follows,

arg min

p

MX

i=1

k gi ⇤ [I(p)� T (0)] k2 . (4.9)

which can further written as,

arg min

p

k ˆI(p)� ˆT (0) k2
S

(4.10)

where,

S =

MX

i=1

diag(

ˆgi)
T diag(

ˆgi) (4.11)

and ˆI, ˆT , ˆgi are the 2D Fourier transforms of vectorized I, T,gi respectively. The ma-

trix S is a diagonal matrix that can be precomputed and is independent of the number

of filters being applied. We also know that the operation of a 2D Fourier transform can

be replaced by pre-multiplying a signal (of length D) by a D ⇥ D matrix F contain-

ing the Fourier basis vectors. This can be seen by subsuming Equation 4.10 into the

weighted LK objective function,

arg min

p

k I(p)� T (0) k2
F

T
SF

. (4.12)

4.4.1 Fourier Inverse Compositional Algorithm

The derivation of the FLK IC algorithm follows a similar approach as described in

Section 4.2.1. The difference to the LK algorithm defined in Equation 4.7 is that the

matrix B is defined as,

B = H�1

flk(ic)(FJic)
TSF (4.13)

As with all instances of the inverse compositional approach, the Jacobian Jic depends

only on the template image i.e. Jic =

⇣
@T (0)

@p

⌘T

remains constant across all iterations.

Consequently, the pseudo-Hessian Hflk(ic) = JT
icF

TSFJic also remains constant for

all iterations.
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(d) Frequency of convergence adding noise to
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Figure 4.2: The effect of intensity noise on the rate of convergence rates and frequency
of convergence. For all the cases white gaussian noise with standard deviation 16.0
grey levels is added to face images. Gabor FLK is sightly more robust for the case
where there is noise added.



60 4.5 AAMs with Filter Responses

4.4.2 Registration: LK vs FLK

A series of synthetic experiments were conducted on images: (i) without noise, (ii)

noise added to the image, (iii) noise added to the template image and (iv) noise added

to both the image and template image (white gaussian noise with standard deviation

16.0 grey levels is added to face images). The performances were computed and the

convergence rate and frequency of convergence with the LK-IC and FLK-IC algo-

rithms for different added noise levels compared to ground-truth point locations. The

weighting matrix S for FLK is defined using a bank of Gabor filters (9 scales times 8

orientations). We refer to this as Gabor FLK algorithm. As shown in Figure 4.2 Gabor

FLK-IC is slightly more robust for the case where there is noise added.

Then we compared the tracked/detected mouth regions with the ground-truth anno-

tations for FLK and Viola-Jones (VJ) approaches and the root mean square (RMS)

point location error is calculated. Figure 4.3 shows the RMS of point location errors

for the two approaches performed on consecutive images. As this figure shows, the

FLK approach starts tracking the mouth region, with a better fitting accuracy than VJ.

However, as it continues tracking, it reaches the RMS of VJ at around 400

th frame

and then again it continues to degrade. This suggests that the template image needs

to be updated at a particular frame to avoid failing in the subsequent frames (Refer to

Figure 4.4).

4.5 AAMs with Filter Responses

A major drawback to person specific AAMs stems from their ability to generalize

unseen objects. When unaccounted appearance variations are encountered due to

a change in the environment (e.g., illumination or camera change), person specific

AAMs perform poorly. An overview of AAMs and AAM fitting algorithms are given
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Figure 4.3: FLK mouth detection degradation based on RMS of point location errors
over time
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Figure 4.4: Proportion of images that have RMS of point location errors of mouth
region less than specified values

in Chapter 3.3.

Fitting an AAM in Equation 3.8 across multiple linear filter responses can be repre-

sented as minimizing the following objective function,

arg min

p,�

MX

i=1

k gi ⇤ [I(p)� A�(0)] k2 . (4.14)
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Exploiting the fact that convolution becomes a Hadamard (i.e., element-by-element)

product in the Fourier domain, and employing Parseval’s relation [137] (energy content

is preserved as we move from the spatial to the Fourier domain), we may write the error

in Equation 4.14 as follows:

arg min

p,�
k ˆI(p)� ˆA�(0) k2

S

(4.15)

where,

S =

MX

i=1

(diag(

ˆgi))
T diag(

ˆgi) (4.16)

and ˆI(p), ˆA�(0), ˆgi are the 2D Fourier transforms of vectorized images I(p), A�(0)

and filters gi respectively. The matrix S is a diagonal matrix that can be precomputed

and is independent of the number of filters being applied.

As described in Chapter 4.4, Equation 4.15 can be described with a matrix F which

contains the Fourier basis vectors, resulting in the following FAAM objective function,

arg min

p,�
k I(p)�A�(0) k2

F

T
SF

(4.17)

4.5.1 Fourier Simultaneous and Project-Out

An immediate consequence of Equation 4.17 is that it now becomes possible to ap-

ply the canonical simultaneous and project-out AAM fitting algorithms, described in

Chapter 3.3.3 and 3.3.4, by setting the weight matrix to:

Q = FTSF (4.18)

where S (Equation 4.16) is determined by the choice of filters being used. Moreover we

can also see that FLK and LK inspired fitting strategies become equivalent when S = I
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since FTF = I. It should be noted that in many practical formulations of a 2D-

DFT FTF = cI, where c is a constant. Typically, c = D where D is the dimensionality

of the feature space.

In practice, however, one never explicitly computes Q, instead applying efficient DFTs

to the source and appearance images directly. For the simultaneous algorithm, this has

the small drawback of having to perform a DFT at each iteration of the algorithm

adding to its already sizable computational cost.

For the project-out algorithm, however, the entire role of Q and its Fourier transform F

can be completely pre-computed incurring no additional computational cost. This re-

sult is one of the major contributions, as it allows one to obtain the favorable properties

of multiple filter responses in the project-out algorithm without the need to explicitly

compute those multiple responses.

4.5.2 Weighted PCA

The appearance basis A is traditionally found using unweighted principal component

analysis (PCA) to find the first K eigenvectors from raw pixel shape normalized train-

ing images. However, for the case when Q 6= I the weighting matrix must be included

in the canonical PCA objective function:

arg max

A

tr(ATVCVTA) subject to ATA = I (4.19)

where C is the scatter matrix of the training images and V is the decomposition of the

positive semi-definite weighting matrix Q = VVT
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Step Complexity
Warp I with p to compute I(p) O(nN)

Compute the error image: I(p)�A�(0) O(mN)

Compute FFT of the error image O(NlogN)

Compute the steepest descent images O((n + m)N)

Compute the Jacobian O((n + m)N)

Compute FFT for the Jacobian O((n + m)NlogN)

Compute the Hessian Hsim O((n + m)

2N
Compute the inverse of the Hessian O((n + m)

3N)

Compute �q O((n + m)

2

)

Update p p }�p�1 O(n2

)

Update � � +�� O(m)

Table 4.1: The computation cost of the Gabor FAAM algorithm.

4.5.3 Computational Concerns

By casting the AAM algorithm in the Fourier domain, we have shown that it is equiva-

lent to the AAM with a weighting matrix Q = FTSF. In practice, however, one never

explicitly computes Q, instead applying efficient DFTs to the source and appearance

images directly. For the simultaneous algorithm, this has the small drawback of having

to perform a DFT at each iteration of the algorithm adding to its already sizable com-

putational cost. However, what makes this approach computationally feasible is that

we can replace the matrix form of the Fourier transform F which has a cost of O(N2

)

with a computationally feasible Fourier transform which is O(NlogN) [137], where

N is the number of pixels.

Computational cost of most of the steps depends on (i) n number of warp parameters

and (ii) m number of appearance parameters. The computational cost is independent

from the number of Gabor filters. Table 4.1 shows the summary of the computational

cost.
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Figure 4.5: Examples of tracking with the Euclidean AAM: (a) Iteration frames with
the matched illumination condition, (b) Iteration frames with the mismatched illumi-
nation condition.

4.6 MultiPIE Experiments

Throughout this section we will be comparing AAM fitting algorithms for two different

weighting matrices: (i) Q = I, and (ii) Q = FTSF where S is defined through a bank

of Gabor filters (9 scales times 8 orientations, see [8] for more details). We shall refer

to all variants of (i) and (ii) as Euclidean Active Appearance Models (AAM) and Gabor

Fourier Active Appearance Models (FAAM).

4.6.1 Measuring Fitting Performance

For all our experiments, a person specific AAM was estimated using MultiPIE

database [80] for frontal illumination. Two types of fitting performance were mea-

sured: (a) matched and (b) mismatched illumination. We measured fitting performance

in terms of root mean square error (RMS) between the 2D mesh location of the current

fit results and the ground-truth 2D mesh coordinates with respect to the base mesh. Re-

sults were calculated for (a) and (b) when the initialized shape was randomly perturbed

from ground-truth.
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Figure 4.6: Examples of tracking with the Gabor FAAM: (a) Iteration frames with the
matched illumination condition, (b) Iteration frames with the mismatched illumination
condition.

��� ���

Figure 4.7: Average convergence rates for simultaneous algorithm: (a) when the input
and training images have the same illumination conditions, both algorithms perform
equally well. (b) when the illumination of the input image changes, the Gabor FAAM
algorithm is still able to do the fitting, while the Euclidean AAM diverge.
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��� ���

Figure 4.8: Fitting performance curves for simultaneous algorithm using Euclidean
AAM and Gabor FAAM: (a) when the input and training images have the same illumi-
nation, (b) when the input and training images have the mismatched illumination.

4.6.2 Simultaneous Results

Figure 4.7 depicts the average RMS mesh location error against iterations for simul-

taneous variants of Euclidean AAMs and Gabor FAAMs for (a) matched and (b) mis-

match illumination. Visual examples of fitting performance can be seen in Figures 4.5

and 4.6 for Euclidean AAM and Gabor FAAM respectively. Similarly, Figure 4.8 de-

picts the number of converged trials as a function of the RMS error threshold for (a)

and (b). For (a) Euclidean AAM and Gabor FAAMs obtain almost identical perfor-

mance. However, for (b) in the presence of mismatched illumination there is a clear

advantage in using a Gabor FAAM.
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��� ���

Figure 4.9: Average convergence rates for project-out algorithm: (a) when the input
and training images have the same illumination conditions, both algorithms perform
equally well, (b) when the illumination of the input image changes, the Gabor FAAM
algorithm is still able to do converge, while the Euclidean AAM diverge.

4.6.3 Project-out Results

Figure 4.9 depicts the average RMS mesh location error against iterations for project-

out variants of Euclidean AAM and Gabor FAAM for (a) matched and (b) mismatch

illumination. Figure 4.10 depicts the number of converged trials as a function of the

RMS error threshold for (a) and (b). As expected the results in Figures 4.9 and 4.10

for the project-out algorithm, are poorer than the simultaneous results depicted in Fig-

ures 4.7 and 4.8. In a similar fashion to the simultaneous results, however, (a) obtains

almost identical performance to Euclidean AAM and Gabor FAAM. In the presence of

substantial illumination mismatch (b) the Gabor FAAM outperforms Euclidean AAM

by a substantial margin with no additional computational burden during online fitting.



4.7 Tracking Experiments 69
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Figure 4.10: Fitting performance curves for project-out algorithm using Euclidean
AAM and Gabor FAAM: (a) when the input and training images have the same il-
lumination, (b) when the input and training images have the mismatched illumination.

4.7 Tracking Experiments

We conducted a tracking experiment on video sequences containing substantial vari-

ations in illumination over time. The sequence was obtained in a laboratory setting.

Ground-truth for the first-frame was given for both the Euclidean AAM and Gabor

FAAM. Results in terms of RMS error from ground-truth can be seen in Figure 4.11

showing a substantial benefit to Gabor FAAM in person specific face tracking tasks.

Examples of tracking sequence in a real world car environment and an indoor envi-

ronment are shown in Figure 4.12(a) and Figure 4.12(b) respectively. The tracking

performance with Gabor FAAM is much better compared with the AAM tracking re-

sults.
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Figure 4.11: Example of a tracking with the Euclidean AAM and the Gabor FAAM in
a video sequence. Illumination is changing over the time using the 3 different flashes.
Euclidean AAM and the Gabor FAAM showed smiler results in the initial frames, but
only Gabor FAAM showed good tracking results when the illumination changing over
the time.

4.8 Chapter Summary

This Chapter presented a novel extension to the AAM fitting algorithm which allows

for them to be equivalently cast in the Fourier domain. The algorithm is referred to

as Fourier AAM. This formulation allows us to interpret the joint alignment across

filter responses as a form of the weighted AAM algorithm. We have shown that doing

image & object alignment in the high dimensional multiple filter response space is

mathematically equivalent to doing alignment in a lower dimensional image intensity

space, if appropriate weightings are applied in the Fourier domain.

The key contributions of this Chapter include: (i) show how LK inspired AAM fitting

gives identical performance in the spatial and Fourier domains. Further, we demon-
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���

���

(a) Tracking with sequence of image frames in a a real-world automobile environment for
frames 1, 200, 350, 400. Note: The video sequence was obtained from the [98] database.

!"#

!$#

(b) Tracking with sequence for frames 1, 70, 100, 130 of person who is walking along a passage
in a building.

Figure 4.12: Examples of tracking in a real world applications. Gabor FAAM showed
better tracking results when the illumination changing over the time. Top Row : track-
ing sequence with the AAM, Bottom row: tracking sequence with the Gabor FAAM
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strate how the effect of multiple filter responses can be re-interpreted as a diagonal

weighting matrix in the Fourier domain leading to substantial computational savings

when performing inverse compositional simultaneous fitting across multiple filter re-

sponses, (ii) demonstrate the process of applying the inverse compositional project-out

algorithm in the Fourier domain by showing how: (a) the Fourier transforms to the

current image, and (b) the application of multiple filter responses can be completely

pre-computed offline incurring no additional computational cost. This contribution

is of key importance to person specific AAM face fitting as it provides an extremely

computationally efficient method that affords both invariance to both expression and

environmental variations, (iii) empirically show the substantial improvement in per-

son specific AAM fitting performance over canonical LK inspired fitting algorithms

(i.e. simultaneous and project out), when using the proposed Fourier variants. For all

our experiments we employed biologically motivated Gabor filter banks with person-

specific AAMs.



Chapter 5

Analysis I: Visual Speech Recognition

in Varying Lighting Conditions

One of the primary aims of this dissertation is to demonstrate that human behavior

in noisy environments can be identified using face information, as the face contains a

rich source of information. However, implementing a human recognizing framework

requires a system able to accurately locate and track the person’s face in real-time.

In Chapter 3, a review of face alignment technologies are presented and problems are

identified. A novel solution for the problem with varying illumination is presented in

Chapter 4. This Chapter presents a comprehensive study of recognizing human behav-

ior (i.e speech recognizing) in vehicles which have fluctuating illumination conditions.

Recognizing human speech within a vehicular environment has the potential of reduc-

ing driver distraction. With the addition of in-vehicle navigational, phone and other

operational systems, this problem is heightened. Giving a driver the ability to interact

with this technology via voice-only commands (i.e. hands-free) has the potential to

reduce these safety concerns. Vehicles, by nature, create very acoustically noisy envi-

ronments with the amount of noise varying with respect to the speed of the vehicles;
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Figure 5.1: Examples of the challenging environments encountered within an auto-
motive environment. Clockwise from top-left (a) head position, (b) head scale, (c)
illumination, and (d) resolution/image quality.

whether the windows are down or up; people are speaking in the vehicle; the radio

is on/off and the quality of the insulation of the vehicle. Acoustically, car cabins are

extremely noisy and as audio-only automatic speech recognition (ASR) systems are

susceptible to these conditions; poor performance is normally obtained, which inhibits

its use within a vehicle. The chapter addresses the above mentioned real-world appli-

cation and provides potential solutions by identifying the speech using visual modality,

which is somewhat immune to these variabilities and a potential method to improve the

robustness of these conditions in conjunction with the audio stream.
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5.1 Introduction

One of the major issues affecting driver safety is the continuing increase in the com-

plexity of in-vehicle navigational and other operating systems [156]. The use of voice

recognition technology has the potential to provide solutions to this problem by pro-

viding voice based control, as a less distracting alternative to manual control, for the

operation of such in-vehicle systems. A vision of an in-vehicle voice recognition sys-

tem in action was depicted the 1980’s television series “Knight Rider” [1]. In this show,

KITT (Knight Industries Two Thousand) which is a fictional computer that controls the

high-tech black Pontiac Firebird automobile, is essentially capable of conducting a nat-

ural conversation with the driver as well as enacting any command given by the driver.

Unfortunately, current voice recognition systems are a long way from achieving this

vision.

One of the main reasons for this is that they rely solely on the audio channel for input

which can be corrupted by many environmental factors, some examples of which are

road, wind and/or engine noise. One possible solution is to make use of the bimodal

nature of speech, by incorporating visual-speech information from the driver’s face,

to improve speech intelligibility in noisy conditions [38]. The field of recognizing

speech using both audio and visual inputs is known as audio visual automatic speech

recognition (AVASR) [152].

Notable progress has been made with AVASR technology in the last few decades and

continuous research in this field has been ongoing [27, 38, 116, 133, 150, 153, 189].

Over this period of time, the need for the visual modality in voice recognition sys-

tems has been established theoretically and prototype systems have been built that

have demonstrated improved performance over audio-only systems under clean record-

ing conditions. One major reason behind the lack of progress in getting a real-world

AVASR system deployed is that most research has neglected addressing variabilities in
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the visual domain such as viewpoint, lighting conditions, out-of-plane face movements

and occlusions [116, 153] that could be expected in a vehicular scenario as shown in

Figure 5.1. This is mainly due to the restricted position of speaker’s faces in early

AVASR databases, but as more research is being concentrated in more ‘real-world’

conditions, such as meeting rooms or automotive environments, audio-visual speech

data has recently become available to allow AVASR to be conducted where the speaker

has more freedom to move their head naturally.

One avenue for improving AVASR in real world conditions is to take advantage, if

possible, of multiple views of the visual-speech information, or lip-movements, of the

active speaker. Limited work in this area has begun by focusing on recognising visual

speech from profile views [204], and where both frontal and profile views of the visual

speech are available, combining them to show that visual speech recognition can be

improved when multiple views of the speaker are available. [116]. However, these

limited studies have only been conducted in relatively clean conditions by combining

quite distinct frontal and profile views. By taking advantage of the multiple cameras

available in the AVICAR database [98] which captures challenging visual variabilities

in a vehicular scenario, this Chapter proposes that multiple near-frontal views of a

speaker can provide for improved AVASR performance over traditional single-camera

approaches.

The Chapter presents AVASR experiments using four multiple cameras using the

AVICAR dataset and investigates the usefulness of the visual information from dif-

ferent camera angles. A series of visual speech recognition experiments are conducted

on the four-camera AVICAR database to demonstrate that the best visual speech per-

formance can be obtained using the side and central orientated cameras in a four-

stream visual synchronous hidden Markov model (SHMM). The combination of the

four visual streams with a single audio stream in a five-stream audio-visual SHMM

demonstrates even better performance when compared to any single camera audio-
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visual SHMM and improves upon the acoustic-only HMM approach across every noise

condition of the AVICAR database.

5.2 AVASR System

Recognizing speech in noisy environments has been a topic of interest for engineers

since the 1890s [178] and has continued more recently into speech understanding by

computers. The main challenge of speech recognition in noisy environments is the

presence of a number of environmental factors such as acoustic noise. During the

1940s and 1950s, with the rapid growth in military and civil aviation, an important

application of interest to engineers working in the field was improving ways in which

air traffic controllers could communicate with pilots.

All of this interest led to the first work on audio-visual speech processing, published

by Sumby and Pollack in 1954 [177]. In this work, Sumby and Pollack examined the

contribution of visual factors to oral speech intelligibility as a function of the speech-

to-noise (SNR) ratio and the size of the vocabulary. The first actual implementation

of an AVASR system was developed by Petajan in 1984 [145], where simple black

and white images of a speaker’s mouth were extracted and the mouth height, width,

perimeter and area were used as visual features. The next major progress in AVASR

was when Bregler and Konig [27] in 1994, published their work using eigenlips. This

work was further extended by Duchnowski et al. [61] in 1994 by employing linear

discriminant analysis (LDA) to improve the visual feature extraction.

In the summer of 2000, IBMs Human Language Technologies Department at the T.J.

Watson Research Center coordinated a workshop at the John Hopkins University in

Baltimore, USA, where leading researchers from around the world converged to collect

audio-visual database and to further improve techniques associated with AVASR [133].
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Audio-only Speech Recognition

Video Signal

Audio Signal

Figure 5.2: Block diagram comparing an AVASR system with uni-modal acoustic and
visual speech recognition.

In 2003, Potamianos et al. [150] conducted AVASR experiments in typical office and

automobile environments. In this work, they found that the performance degraded

in both modalities by more than twice their respective word error rates, however, the

visual modality still remained beneficial in recognizing speech. As the main benefit

of using the visual modality in speech recognition systems is to counteract the prob-

lems associated with real-world acoustic environments, it is interesting to note that

the majority of research conducted in AVASR has not yet focused on real-world envi-

ronments, mostly due to the time and the cost, which it takes to capture, rather than

simulate, typical real-world audio and visual degradation [133].

A block diagram comparing a typical AVASR system with traditional uni-modal acous-

tic and visual speech recognition systems is shown in Figure 5.2. An overview of the

each subsystem of the AVASR system will be presented in the remainder of this sec-

tion, followed by a brief overview of AVASR databases.
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5.2.1 Acoustic Feature Extraction

The main aim of the feature extraction stage is to reduce the dimensionality of the

incoming acoustic signal and to obtain useful features for speech recognition. The

incoming audio signal is sampled by an analog-to-digital (ADC) converter to obtain

a digital signal, typically at a sampling rate of between 8 and 16 kHz [199]. The two

most common audio feature extraction methods are Mel-frequency cepstral coefficients

(MFCCs) or perceptual linear predictive (PLP). MFCCs are motivated speech repre-

sentation based on Fourier transform and filter bank analysis, first proposed by David

and Mermelstein in 1980 [56]. Lockwood et al. [108] showed that MFCC features are

superior to the alternative feature extraction methods in clean speech and more robust

to background noise, especially in a vehicle environment. Therefore, MFCC feature

representation is used extensively in this thesis work.

MFCC Features

MFCCs are motivated speech representation based on Fourier transform and filter

bank analysis, first proposed by David and Mermelstein in 1980 [56]. Psychophys-

ical studies have shown that the human ear resolves non-linearly across the speech

spectrum [205]. This behavior can be represented by a triangular filter bank spaced

across the speech spectrum using the Mel-frequency scale such that,

fmel = 2595 log

10

 
1 +

f

700

!
(5.1)

where f is the linear frequency and fmel is the perceived Mel frequency. The en-

ergies for each filter bank are then calculated and summed up together. Finally, the

Mel-frequency cepstral coefficients can be obtained by applying the Discrete Cosine
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Figure 5.3: Block diagram of visual front-end system for visual speech recognition and
the cascading of the front-end effect. The output ROI from the visual front-end system
has a detrimental effect on the remaining stages of the AVASR.

Transform (DCT) and logarithmic compression as follows,

Ci =

NX

j=1

log

10

(mi)cos

 
(2j + 1)⇡i

2N

!
(5.2)

where mi is the filter bank energy of the ith filter bank, N is number of cepstral coef-

ficients and Ci are the cepstral coefficients.

5.2.2 Visual Front-End

In AVASR, the most important stage in the use of the visual modality is to reliably

track and detect the speaker’s region of interest (ROI). The majority of these visible

articulators emanate from the region around a speaker’s mouth. The success of the en-

tire system depends on designing a robust visual front-end which will be able to locate

and track the speaker’s face and facial features across many variables (i.e. illumination

and head pose). If the visual front-end system is not highly accurate, it will have a

detrimental effect on the remaining stages of the AVASR system [112]. This error will
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cascade throughout the system and will most likely recognize the visual speech incor-

rectly. This effect is known as the front-end effect. The front-end effect can be written

as,

 O =  D ⇥ C (5.3)

where  D is the probability that the ROI has been located,  C is the decision prob-

ability given the located ROI and  O is the overall probability that the system will

recognize the correct speech. An overview of the visual-front-end process with the

front-end effect is depicted in Figure 5.3.

The selection of visual front-end systems is dependent on the type of application being

used. In lip reading literature, appearance based approaches have been widely used in

visual front-end systems, [102, 201] they being well suited to many different objects

(face, eyes, nose etc.) under varied conditions due to their probabilistic nature and

having shown good performances compared with other approaches.

Matthews et al. [122] used AAMs to fit a lip shape model to an image containing

a mouth. Although AAMs and FAAM which were introduced in Chapter 4, have

been shown to be useful for face and facial feature tracking the main problem is the

need for a massive amount of annotated training data. The accuracy of registration

is highly dependent on this training data. This problem was highlighted in the exper-

iments conducted by Matthews et al. [122], where the results show that the AAMs

often failed to follow small facial motions, which results in poor visual speech recog-

nition results [122]. This is very problematic for real world applications such as an

automotive environment due to long term driver’s face monitoring and occurrence of

a lot of unseen subjects. As the main motivation of this dissertation is to recognise

human behaviour in very noisy environments, and due to the problems associated with

deformable face modellings as shown in previous research [122], we therefore im-
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Figure 5.4: The visual feature extraction step seeks to find representations of the ob-
servation (ex: 32 ⇥ 32 lip region).

plemented the visual front end system for this AVASR system using coarse type of

registration which can generalised well for unseen subjects. A good comparison of

coarse-type of registration and AAMs is given in Chapter 3.

The most common coarse-type of approaches is the haar-like feature matching ap-

proach of the off-the-shelf Viola Jones (VJ) object detector (available in the OpenCV

image processing libraries [194]). The VJ algorithm [194], which is based on a boosted

cascade of simple classifiers will be used to develop a baseline visual face detection

system as it showed a reasonable detection rate in fluctuating conditions as shown in

Chapter 3.

5.2.3 Visual Feature Extraction

While acoustic feature extraction for speech recognition is relatively mature, in that

MFCCs and PLP have been extensively verified in practical experiments, visual speech

feature extraction is still a developing research area. Visual speech is best discrim-

inated by the movements of the visual articulator (i.e mouth, lip and jaw move-

ment) [153]. The visual feature extraction step seeks to find representations of the
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given observations as shown in Figure 5.4 that provide discrimination between the

various speech units whilst providing invariance to irrelevant transforms on the obser-

vations that are in the same class.

Various sets of visual features for visual speech recognition have been proposed in the

literature [151] and can generally be separated into three groups:(a) appearance-based,

(b) contour-based, or (c) combinations of both.

Appearance based features utilise the entire ROI to extract the visual features [133,

150, 153], while the contour based representation are concentrated on capturing the

geometric parameters of the lip region, such as mouth height and width [3, 35, 76] as

depicted in Figure 5.5. Conversely, the AAM creates a single model of both shape and

appearance. The main disadvantage of this approach is that it requires an extremely

large number of manually annotated points for the training examples and does not

perform well for unseen subjects. Matthews et al. [122] showed that the appearance

features are outperformed AAMs using the task of large vocabulary speaker indepen-

dent AVASR.

In general, appearance-based methods are preferred by most researchers as they are

perceptually motivated by human perception studies and do not require finer locali-

sation and tracking, reducing the impact of the ‘front-end effect’ (i.e the impact for

visual-speech recognition system on having the visual speech articulators successfully

located). For all these reasons, the appearance-based approach is preferred and will be

the focus in this dissertation.

Cascading appearance-based features, devised by Potamianos et al. [153] have been

established as the state of the art for AVASR visual feature extraction as they contain

information about the visible articulators such as tongue, teeth, and the muscles around

the jaw and can be computed very quickly, lending themselves to real-time implemen-

tation. Essentially, this process is broken into two sections:
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H

W

Figure 5.5: Comparison of Appearance based features and Contour based features.
(left) Appearance based features utilize the entire ROI to extract visual features. (right)
Contour based features based on the geometric parameters of the lip region such as
mouth height, width.
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Figure 5.6: Block diagram of showing static feature extraction

(a) Static feature extraction

(b) Dynamic feature extraction

Static visual features

The goal of the static feature extraction stage is to maximise the amount of relevant

visual speech information contained within each frame of the ROI within the least

number of features. Typically, following a ROI tracking stage, the ROI images are

converted to grayscale and image-mean normalization is performed to help attenuate

any irrelevant information, such as illumination or long-term variations in speaker ap-

pearance. This process is performed by subtracting a mean image calculated over the

entire utterance from every incoming frame in the utterance. Then a two-dimensional,

separable, DCT is applied to the mean-removed image. The top M higher energy
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Figure 5.7: Block diagram of showing dynamic feature extraction stage

components according to a zig-zag pattern from the top-left, are then used as static

features to represent the visual speech information within the image, which contains

the most variability in the tracked ROI. An overview of the static feature extraction

stage is given in Figure 5.6.

Dynamic visual features

Visual speech is represented by the movements of the visual articulators [153]. The

best features for representing visual speech are generally considered to be focus on the

movement of the features, rather than the features within each frame. The simplest

method to extract dynamic features is through the use of time-derivative-based delta

and acceleration coefficients. These coefficients are used in addition to the original

static features [152] which result in a higher feature vector. Recently one technique

which has shown good performance is the use of LDA to extract the relevant dynamic

speech features from the ROI. In order to incorporate dynamic speech information the

static features from the static feature extraction stage are concentrated before speech-

class based LDA is performed based on a known transcription.

Such an approach is shown in Figure 5.7. It can be seen in this figure that the transfor-
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mation matrix is found from the concatenation of ±J frames surrounding the current

frame. Each input frame to the LDA step can be represented as follows and the resulted

feature vector is size of (2J + 1)M.

OCt = [(Os
t�J)

0, . . . , (Os
t)

0, . . . , (Os
t+J)

0
]

0 (5.4)

The obtained static features (input feature vectors span across multiple frames and

not just within the frame) can then be projected via an inter-frame LDA stage, where

the LDA transformation is trained on acoustically-aligned subword units, to yield a Q

dimensional ‘dynamic’ visual feature vector. Earlier work by Neti et al. [132] and

Potamianos et al. [151], found that using J = 2 (i.e 5 adjacent frames ) gave optimal

results.

5.2.4 Audio-Visual Speech Modelling

The most widely used classifier for modelling and recognising in audio-only and

visual-only speech recognition is the hidden Markov models (HMMs), due to the

natural ability to model temporal signals [205]. Here, the internal states are hidden

compared with a standard Markov process where the states are known. Figure 5.8(b)

represents a left-to-right topology of a HMM with five states (i.e entry, 3 emitting states

and exit state). In this left-to-right topology, the transactions between the states can be

either, move the next state to the right or bounce back to the same state compared with

an ergodic model as shown in Figure 5.8.

While a number of alternative modelling techniques have been proposed and demon-

strated for audio-visual modelling, the state-of-the-art is generally considered to be the

middle-integration synchronous hidden Markov model (SHMM) [57, 150] approach

which couples the acoustic and visual observations at every frame. It has the ability

to reliably weight each modality (i.e. audio features and visual features) on an individ-



5.2 AVASR System 8742 3.4 Hidden Markov models

Figure 3.1: A Markov process can be modelled as a state machine with probabilistic
transitions (aij) between states at discrete intervals of time (t = 1,2, . . .).

algorithm will conclude.

3.4 Hidden Markov models

Hidden Markov models (HMMs) are a well-establish mathematical tool for establish-

ing a statistical model of temporal observations. Whereas the GMM introduced in the

previous section model individual observations independent of each other, HMMs are

designed to treat observations as a sequence in time or space. While spatial HMMs

can be useful for applications such as handwriting recognition [3], most applications

of HMMs involve temporal observations, of which speech is a very common applica-

tion [194]. For this reason, HMMswill be introduced in this section, and used through-

out this thesis, as a temporal model.

3.4.1 Markov models

HMMs are designed to model sequences of observations based on the underlying as-

sumption that these observations came about from a hidden state machine, where the

parameters of this state machine are not known. In the underlying state machine, re-

ferred to as a Markov chain or model [153], the states can change based on statistical

probabilities at discrete points in time, as shown in Figure 3.1.
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Figure 5.8: Comparison of the markov models. The probabilistic transactions are
denoted as aij (a) ergodic model; and (b) left-to-right HMM topology with entry, 3
emitting states and exit state.
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(b)

Figure 5.9: HMM modelling approaches for AVASR. Emission densities for acoustic
and visual modality is shown in blue and red in respectively. (a) Unimodal (acoustic)
HMM and (b) Synchronous HMM.

ual basis. This approach can be seen to be similar to a unimodal acoustic (or visual)

HMM, but with multiple observation-emission Gaussian mixture models (GMMs) for

each feature-stream in each HMM state as is depicted in Figure 5.9.

While any number of feature streams can be supported by SHMM modelling, AVASR

approaches typically have two streams, one for audio and one for video. One of the ma-

jor advantages of the SHMM approach over alternative approaches is that each stream

can be weighted on an individual basis, and by allowing the streams to be treated in-

dependently, the SHMM model is more flexible and can generally provide improved

AVASR performance [57, 150].
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Typically the observation-emission score of an individual state u in a SHMM is given

in terms of the acoustic stream weighting parameter ↵ as

P (ot|u) = P (oa,t|u)

↵P (ov,t|u)

1�↵, (5.5)

where P (os,t|u) is the probability of stream s having an feature observation vector os,t

at time t in HMM state u. For example audio and visual observation vectors are rep-

resented as, oa,t and ov,t respectively. The parameters ↵ and 1- ↵ are the audio stream

and visual stream weighting parameter respectively and 0  ↵  1. The SHMM

observation-emission score can be written in the more general form of S streams as

follows:

P (ot|u) =

SY

s=1

P (os,t|u)

ws (5.6)

where ws is the stream weight for stream s and
P

s ws = 1. It can be seen that Equation

5.6 is equivalent to Equation 5.5 for the case where S = 2, wa = ↵ and wv = ↵� 1.

The choice of the stream weighting parameter ws is typically taken by maximising the

speech recognition performance on an evaluation session.

5.2.5 Audio Visual Databases

Single-view audio-visual databases

To date, a number of interesting databases have been developed in the AVASR research

community, but most are focused on single-camera views of speakers in relatively clean

conditions. Coinciding with the first ever AVASR system, Petajan [145] collected a

database consisting of a single subject uttering 2-10 repetitions of 100 isolated English
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words. Since then, similar single-subject databases have been collected [3, 37, 76,

81, 157, 176, 186, 189]. Apart from the single subject audio-visual databases many

multiple speaker databases have been collected over the last years. However, due to the

cost of capturing, storing and distributing, these have only been concerned with small

vocabulary tasks [35, 121, 128].

In recent years, the multi-speaker databases have been extended to include many more

speakers. However, most of these databases are still concerned with small vocabulary

tasks in very clean conditions [125, 142, 146]. One of the most popular databases

in the late 1990’s was the M2VTS database, [146] which consisted of 37 speakers.

This database was later extended to form the XM2VTS database [125], which contains

295 subjects in fully frontal with four sessions. The XM2VTS database is currently

the largest publicly available audio-visual database in terms of number of speakers in

clean controlled conditions. The CUAVE [142] database is another publicly available

audio-visual database which contains speakers talking in frontal and non-frontal poses.

This database consists of 36 speakers with two sections: (i) individual utterances and

(ii) group section (i.e look at pairs of simultaneous speakers).

Multi-view audio-visual databases

There are a few audio-visual databases that provide multiple close-up views of a

speaker’s face suitable for performing visual speech recognition, although limited re-

search has taken advantage of this data. The IBM smart-room database [148] was

captured using two microphones and three PTZ (Pan Tilt Zoom) cameras and it is not

a publicly available database. It consists of 290 fully frontal subjects uttering continu-

ous speech with mostly verbalised punctuation, dictation style. The AMI meeting cor-

pus [31] consists of 100 hours of meeting recordings captured with either two or three

cameras. The VACE multi-model meeting corpus [36] was recorded using wireless

microphones and stereo-vision cameras. The MM4 audio-visual corpus [123] was cap-
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Figure 5.10: Set up of the microphones and the cameras in the AVICAR database. An
8-microphones array is positioned on the passenger’s sun-visor and a 4-camera array
is positioned on the dash board. For this paper we have labelled the cameras based
upon whether they are side (S) or central (C) and left (L) or right (R) according to the
cameras’ viewpoint. (image from [98])

tured in a single meeting room with high quality miniature lapel microphones and three

close-circuit television cameras fitted with an adjustable wide angle lens. The NIST

meeting room database [74] was captured using five Sony EUI-D30 motorized NTSC

analogue video cameras and four microphones. Finally the AVICAR [98] database

captured audio-visual speech in a real-world vehicle environment using four passenger

facing cameras and an eight microphones arranged in a linear array.
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In-Car audio-visual databases

When studying the behaviour in-car conditions, there are few databases that have been

collected [49, 138]. Even though these databases have captured a vehicular environ-

ment [49, 138], they: (i) are not publicly available, (ii) are very expensive to acquire

(iii) neglect the viewpoint or pose of the speaker or (iv) are not recorded in English

words. The AURORA-3J-AV database [49] consists of 58 Japanese speakers with

three different driving conditions (idling, city road and express-way). All the recorded

speech is in Japanese. The AV@CAR [138] Spanish database was captured using 20

speakers (10 male and 10 female speakers) whose ages range from 25 to 50. The

database is composed of seven audio channels, one video channel and information

about the speed of the car, the conditions of the road, the weather, the traffic as well as

information about the speaker and the lighting conditions.

For the evaluations performed in this Chapter, we focused on the AVICAR

database [98], which is publicly available with English recording and captures the

types of variabilities that could be expected in a vehicular scenario as shown in Fig-

ure 5.1

5.3 The AVICAR Database

The AVICAR database is a publicly available in-car speech corpus containing multi-

channel audio and video recordings [98] which was recorded by researchers at the Uni-

versity of Illinois. The collection was designed to examine the performance of speech

recognition through combining multi-channel audio and visual speech recognition in

adverse conditions.

As shown in Figure 5.10, the audio-visual speech was captured using an array of 8
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Figure 5.11: Examples of captured visual data from the AVICAR database. Each row
shows a simulateous capture from cameras SL, CL, CR and SR (from left to right).
The top row shows a example of a person without occlusion, while remainding show
examples of occlusions which can occur when the vehicle is moving with windows
down.

microphones on the passenger’s sun-visor and a 4-camera array positioned on the dash,

with each camera aimed towards the passenger to capture the different views of the

face. While the cameras were not labelled in the AVICAR database, we have labelled

them as SL, CL, CR and SR according to whether they are side (S) or central (C)

cameras and left (L) to right (R) according to the cameras’ view point. All audio

channels were recorded using 16 bit resolution at a sampling rate of 48kHz and down

sampled to 16kHz after segmentation of individual utterances. The video streams are

combined using a multiplexer in order to be stored in a single file for each utterance

with 29.97 frames per second with each camera having an individual resolution of

360⇥240 pixels. Some examples of a speaker captured simultaneously captured from

the four cameras are shown in Figure 5.11.

The AVICAR database consists of audio and video recording of 100 speakers (50 male

and 50 female). However, the released portion of the AVICAR database contains less
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Noise Description
35U Car traveling at 35mph and windows closed
35D Car traveling at 35mph and windows open
55U Car traveling at 55mph and windows closed
55D Car traveling at 55mph and windows open
IDL Car stopped and engine idling

Table 5.1: Noise Conditions in the AVICAR database

data than documented in [98], with full audio only included for 87 speakers and video

for 86. All of the recorded speech is in English. Most of the speakers are American

English speakers, with the reminder of speakers from Latin America, Europe, East

or South Asia. The AVICAR database is also recorded across five distinct recording

conditions, as shown in Table 5.1, based upon the speed the car was traveling and

whether the windows were up or down. An idle condition is also provided based upon

the car idling in park to serve as a baseline.

For the experiments performed in this Chapter, the audio-visual speech data is taken

from the phone numbers portion of the AVICAR database across all noise conditions.

This portion consisted of two sessions of 10 digit utterances for each speaker and noise

condition. The phone number digit sequences were identical across all subjects with

all digits used for each 10 digit phone number. Subjects were instructed to pronounce

the digit 0 as ‘zero’ in session 1 and ‘oh’ in session 2.

5.3.1 AVICAR Protocol

The AVICAR database captures the types of variabilities that could be expected in a

vehicular scenario, there has been very little work performed on the visual portion of

the dataset apart from [71] and no work done on the audio-visual portion. This is due

to the poor synchronisation of the audio-visual data which limits its use. A significant

contribution for the research community is to resolve these synchronisation issue as the
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AVICAR dataset presents itself as an ideal test-bed to evaluate and investigate different

strategies. As a result of this work, a novel speaker-independent audio-visual protocol

is presented in this section(which has been lacking). This protocol1 can be used to

facilitate further research in the area of AVASR in a vehicular environment.

Audio-video alignment

The main problem with the AVICAR database is that the audio and video streams were

not synchronised. Therefore a significant amount of work has been conducted to find

the correct timing details in the video files for corresponding phone utterances and this

task was only considered in this protocol.

The following steps were followed to align the audio and video information.

1. Locate the positions (phone numbers 0 to 9) of the selected audio files in the

full-session audio (i.e. raw audio file).

2. Align the full-session audio beep track with the full-session beep track contained

in the video files.

3. Use the previous alignment to determine the position of the video frames that

correspond to the audio files.

Development of the audio-visual protocol

Initially the speakers were selected according to the protocol developed by Klein-

schmidt et. al [92] by selecting speakers according to the following conditions:
1The synchronise timing information is available for the researches by contacting

{rajitha.navarathna@student.qut.edu.au}
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Condition Subjects
AF3, AM4, AM5, BF1, BF2, BF5, BM1, BM2, BM3, BM4

IDL CF5, CM1, CM3, DF1, DF3, DF4, EM2, FM4, FM5, GF1
GF3, GF4, HF1, HF2, HF3, HM4, IF3, JF1, JF4, JM2

BF1, BF5, BM1, BM3, BM4, CF1, DF1, DF3, DF4, DM2
35U DM3, EF3, EF4, EM1, EM2, EM3, FF2, FM3, GF3, GF4, HF3

HF5, HM1, HM4, IM4, IM5, JF2, JF4, JF5, JM4
AF3, AM2, AM4, AM5, BF2, BF5, BM3, CF1, CM1, DF4

35D DM2, EF3, EM1, EM3, FF2, FM3, FM5, GF1, GF3, GF4
HF2, HF3, HM1, HM3, HM4, IM5, JF2, JF4, JF5, JM4

AF2, AM2, AM4, AM5, BF2, BF5, BM2, BM3, CF1, CM1
55U DF1, DM3, EM3, FF2, FM5, GF1, GF3, HF1, HF3, HM1

HM3, HM4, IF1, IF3, IM4, IM5, JF1, JF4, JM2, JM4
AF3, AM3, AM4, AM5, BM2, BM3, BM4, DF1, DF3, DF4

55D DM2, DM3, EF3, EM3, FF2, FF5, FM2, FM5, HF1, HF2
HF3, HF4, HF5, HM1, HM4, IF3, IM4, JF1, JF4, JM2

Table 5.2: Develpoed AVICAR protocol speaker list

• A single phone number utterance in any noise condition must have all micro-

phones in working condition (i.e. audio exists, and not considered poor due to

hardware failure).

• The corresponding raw-audio file should exist and it should be in working con-

dition.

In order to develop an audio-visual protocol, the following condition was added.

• The video should be in working condition. (i.e. video exists, and be of reason-

able quality).

The resulting speaker groups are listed in Table 5.2. Since the effect of noise is the

most important parameter, speakers with only one condition of data available were

still included in the final list. The final list consisted of 3000 phone-number utterances

with 150 video files (30 videos per condition).
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Figure 5.12: An overview of the experimental design, showing both the acoustic and
visual speech recognition systems in combination with the audio-visual SHMM ap-
proach.

5.4 Experimental Configuration

In order to evaluate the performance of visual and audio-visual speech recognition

when mulitple camera view ports were available, a series of experiments will be per-

formed in Sections 5.7 and 5.8 of this Chapter comparing multiple video-stream based

SHMMs with single-stream acoustic and video approaches. A basic overview of this

experimental design is shown in Figure 5.12, showing both the acoustic and visual

speech recognition systems in combination with the audio-visual SHMM approach.

This section will outline the experimental design of the AVASR system, beginning

with an overview of the evaluation protocol which was used to conduct the speech

recognition experiments. The specifics of the acoustic, visual and audio-visual speech

recognition approaches will then be outlined.

5.4.1 Evaluation Protocol

Speech recognition experiments were conducted with native English speakers in the

AVICAR database according to the protocol developed in [130]. This protocol di-

vided the available audio-visual speech portions of the database into 6 groups with a

non-native English group covering 3000 phone-number utterances across 150 separate

video sessions.
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Group Speakers
I BF5, BM4, CF5, DF1, EF4,

EM1, FF2, HF2, HM3, IF1
II AM3, AM4, BM1, CM1, DM2,

EM4, FF5, HF3, IM5, JM2
III AM5, BM3, CF1, DF4, EM2,

FM2, GF1, HF5, JF1
IV AF2, BF2, DF3, EF3, EM3,

FM4, GF5, HF1, HM4, JF5
V AM2, BF1, EF5, FM5,

GF4, HM1, IM4, JF4

Table 5.3: Native-English speaker groups available in the AVICAR audio-visual eval-
uation protocol [130].

Fold Training Evaluation Testing
1 I, II, III IV V
2 I, III, IV V II
3 I, IV, V II III
4 I, II, III V IV
5 II, III, V IV I

Table 5.4: Five folds were used across the evaluation protocol to ensure that all speak-
ers were available for testing.

The experiments were conducted using only native-English speakers due to the limited

number of non-native-English speakers in the protocol list. The selected native-English

subjects were grouped into five groups as presented in Table 5.3. These groups were

further divided into five separate folds as shown in Table 5.4, to ensure that all speakers

are included at least once in a testing partition. In the Bowen Lee’s doctoral disserta-

tion [97], the author has used a five validation fold system by selecting six groups

for training two groups for testing and two groups for validation in the audio domain.

However, due to the limited number of utterances in the protocol, for each of the five

validation folds, three groups of speakers were selected for training, the fourth for

validation and system tuning, and the fifth group was used for testing of the AVASR

system.
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Speech recognition performance measure

All speech recognition results quoted in this paper are HTK-style [205] word accura-

cies for the small-vocabulary task of connected digits (in %) collated by noise condi-

tion, with the average results presented over all folds. The word recognition accuracies

are calculated using:

Accuracy =

 
1� D + S + I

N

!
⇤ 100% (5.7)

where N is the true number of words, D the number of deleted words, I the number

of inserted words and S the number of substitutions.

5.4.2 Acoustic Speech Extraction

AVASR studies to date have generally concentrated on improving the quality of the

visual information [152], and inherently assume that adding visual information to the

ASR system will improve its robustness under noise. Moreover, it is assumed that the

inclusion of visual information will be superior to (or at least comparable to) speech

enhancement performed on the audio channel. One of the only examples where this

comparison was made directly was in [45] where an AVASR system was presented

incorporating spectral subtraction [25]. This system showed significant benefits in

combining speech enhanced audio and visual speech information.

Since this study, there have been a number of advances in both speech enhancement

and AVASR. Apart from this work, there has been no detailed study reporting AVASR

with more modern speech enhancement techniques and audio-visual feature extraction

and fusion techniques. Even though the focus of this Chapter is in the visual domain,

we wanted to ensure that full use was made of all seven microphones for the acoustic

speech extraction, so that the acoustic speech recognition performance provided both a
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sensible baseline for visual speech recognition, and provided the most improvement in

fusion for AVASR. Initially this section reviews speech enhancement techniques which

are used in this Chapter followed with acoustic feature extraction

Enhancement techniques can be broadly classified by the number of microphones used.

Single-channel techniques are well suited to a number of applications, for example

where hardware costs are a key factor. Multi-channel techniques, whilst increasing

hardware requirements, can reduce the distortion introduced by single-channel tech-

niques through the use of spatial filtering [19], which consequently improves ASR

performance in comparison.

Spectral subtraction

Spectral subtraction (first proposed by Boll [25]) aims to estimate the spectrum of the

clean speech signal by subtracting an estimate of the noise spectrum from that of the

noise-corrupted speech. Subtraction typically takes place in the magnitude or power

spectrum assuming that the noise and speech signals are statistically independent and

can therefore be regarded as being added acoustically.

The generalised frequency-domain spectral subtraction rule derived from [21, 25] is

defined as:

| ˆSt(f)|� = |Y (f)|� � ↵(f)| ˆD(f)|�

| ˆS(f)|� =

8
><

>:

| ˆSt(f)|� | ˆSt(f)|� > �|Z(f)|�

�|Z(f)|� otherwise

(5.8)

where | ˆD(f)| is the estimate of the noise spectrum, |Z(f)| is either the instantaneous

noisy speech signal magnitude |Y (f)| or the noise magnitude estimate, and � de-

termines the spectrum the subtraction takes place in; either magnitude (� = 1) or



100 5.4 Experimental Configuration

power (� = 2). The frequency-dependent subtraction factors, ↵(f), compensate for

over- or under-estimating the noise spectrum, and � is the noise floor factor which en-

sures the clean speech spectrum cannot become negative. A number of variations to

this generalised subtraction rule have been proposed in literature, including subtraction

in the power spectral domain [21], and multi-band spectral subtraction (MBSS) [89].

The MBBS method determines the subtraction factors ↵(f) using the local signal-to-

noise ratio, and an additional subtraction factor, �b(f) is introduced to each pre-defined

frequency band, b. This technique was designed to improve speech intelligibility as op-

posed to ASR performance.

Delay-Sum beamforming

Multi-channel beamforming combines the acoustic signals from all microphones to

perform spatial filtering which differentiates the signal of interest from the background

noise based on propagation delays between the source and each microphone. Having

compensated for the delays, microphone channels are individually weighted and com-

bined in order to reinforce the speech signal. This is referred to as filter-sum beam-

forming which is represented as:

S(k) =

1

N

NX

n=1

Gn(k)Yn(k) exp

�j2⇡k�n (5.9)

where N is the number of microphones, Yn(k) is the signal received at the nth mi-

crophone, Gn(k) are the filter coefficients (Gn(k) = 1 for Delay-Sum Beamform-

ing (DSB) [19]), and the exponential term is compensation for the delay �n.

The acoustic features were extracted using four speech enhancement techniques based

on those described in above and applied as per Figure 5.12, plus a baseline system

without speech enhancement. In particular, the 39-dimensional acoustic features used

in this experiment were:
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(a) Baseline MFCC

(b) MFCC with Spectral Subtraction (SpecSub) according to Equation (5.8)

(c) MFCC with Kamath & Loizou’s MBSS [89]

(d) MFCC with Dual-channel delay-sum beamforming (2-ch DSB)

(e) MFCC with 7-channel delay-sum beamforming (7-ch DSB)

For each set of acoustic features listed in the above, all acoustic speech was repre-

sented using 39-dimensional audio features (13 MFCC including C
0

, plus deltas and

accelerations coefficients), captured every 10 ms from 25 ms windows.

5.4.3 The VJ Based Visual-Front End

An efficient visual front end system which is able to track and locate the speaker’s face

and mouth ROI was developed using the VJ algorithm [194]. Initially, the classifiers for

the face, eyes and mouth were developed using the OpenCV libraries [2] as described

in Patrick Lucey’s doctoral dissertation [112]. The overall visual frond-end system was

developed using Microsoft Visual C++ to detect the face and extract the mouth ROI.

An overview of the front-end system is presented in Figure 5.13.

Given the video of a speaker, initially the system detects the face using the face classi-

fier. Once the face was located, we then locate the eyes and based on these locations,

the face was similarity normalised (i.e. normalised with respect to scale, rotation and

translation) based on an inter-ocular distance of 32 pixels. We then applied a mouth

classifier and from that we extracted a ROI to be used in visual speech recognition.

The extracted mouth region mostly contains jaw and cheeks and it was downsampled
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Face Detection Localise Eyes Face Normalisation

Smoothing using 
Temporal Filter Mouth DetectionDown sample to 

32 x 32

Face Classifier 16 x 16

Video In

Eye Classifier 20 x 20

Mouth Classifier  24 x 24

32 x 32 
 ROI

Yes Yes

Yes

No

No

Close enough 
to previous 

location

Yes

No
Previous Mouth ROI

No

Track Next Frame

Figure 5.13: Block diagram for the visual front end system to detect the face and mouth
region of a speaker.

(a) Camera Side Left
(SL)

(b) Camera Centre Left
(CL)

(c) Camera Centre
Right (CR)

(d) Camera Side Right
(SR)

Figure 5.14: Examples of the extracted mouth ROI images from each camera in the
AVICAR database.

to 32 ⇥ 32 to keep the dimensionality low2. The 32 ⇥ 32 mouth region is smoothed

using a mean filter. Following the ROI localisation, this process was performed over

consecutive frames. The previous ROI location is used if the detected ROI is too far

away from the previous frame. We used the same tracker to capture the mouth region

across all noise conditions and cameras. Some examples of tracked lip regions are

shown in Figure 5.14.
2Jordan and Sergeant [88] observed that no significant effects with image sizes for visual speech

recognition performance
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Figure 5.15: An overview of the visual feature extraction system.

5.4.4 Visual Speech Extraction

Following the tracking of the mouth ROI, the visual features were extracted using the

cascading appearance based feature extraction process, as shown in Figure 5.15. As de-

scribed in Chapter 5.2.3 initially, image mean normalization was performed to remove

any irrelevant information, such as illumination or speaker variances. Then a 2D-DCT

was applied to the mean-removed image and the top 100 higher-energy components

were selected in zig-zag pattern to capture the static visual speech information.

Subsequently, in order to incorporate dynamic speech information, seven of these

neighbouring static feature vectors over ±3 adjacent frames were concatenated, and

were projected via an inter-frame LDA step to yield a 40-dimensional ‘dynamic’ vi-

sual feature vector. The classes used for LDA matrix calculation were HMM states,

based on forced alignment of a separately-trained audio-only HMM.

5.4.5 Speech Modelling

Audio and single-camera visual word models were trained using 9-state left-to-right

HMMs across all speakers and noise conditions in the training portions of each fold to

enable speaker independent speech recognition. Similarly, for the multiple-camera vi-

sual and audio-visual speech recognition experiments, multiple-stream 9-state left-to-

right SHMMs were trained across all speakers and noise conditions. For both the sin-
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gle and multiple-stream models, each stream was represented by an 8-mixture GMM

within each state of the word models.

For the audio-visual experiments, in order to allow the acoustic and visual features to

be aligned, the visual features were upsampled to match the acoustic feature rate of

100Hz using nearest neighbour interpolation to synchronise with the audio signal.

Because SHMMs allow for weights to be applied to each individual stream during

evaluation, we wished to investigate within this Chapter the effect that weighting the

acoustic stream and the various cameras will have on the final visual and audio-visual

speech recognition performance. To that end we wanted to investigate the effect of

three weighting parameters:

• ↵L, the proportional weighting of left cameras in comparison to their right part-

ners,

• ↵C , the proportional weighting of central cameras in comparison to their side

partners, and

• ↵A, the proportional weighting of the acoustic stream in comparison to the video

streams.

Each of these proportional weights would be balanced by its partner, such as the pro-

portional weighting of the right-hand camera which would be represented by (1�↵L).

By experimentally determining these proportional weighting parameters, the process

of which will be outlined later in this Chapter, the final weights in a 5-stream (audio,
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SL camera, CL camera, CR camera, SR camera) can be determined as follows

wA = ↵A, (5.10)

wCL = (1� ↵A)⇥ ↵C ⇥ ↵L, (5.11)

wCR = (1� ↵A)⇥ ↵C ⇥ (1� ↵L), (5.12)

wSL = (1� ↵A)⇥ (1� ↵C)⇥ ↵L, (5.13)

wSR = (1� ↵A)⇥ (1� ↵C)⇥ (1� ↵L). (5.14)

For situations where a particular proportional weighting parameter is not relevant, it

will not be applied to the weights of that particular SHMM. An example of this would

be for visual only experiments, where the (1 � ↵A) proportional weight would not be

applied to every video stream as it would have no effect on the final visual-only speech

recognition performance.

5.5 Acoustic Speech Recognition

The audio-only ASR results with each of the speech enhancement algorithms are

shown in Table 5.5. These results demonstrate a clear improvement over baseline

MFCC performance by applying speech enhancement for all noise conditions. The

7-channel DSB technique outperforms all other speech enhancement techniques, with

the dual-channel system providing the next best overall ASR performance. This re-

sult is consistent with the belief that microphone-array based speech enhancement is

superior to single-channel techniques which typically distort the desired signal, and

have access to less information about the audio signal [19]. It is also important to

note that the spectral subtraction algorithm described by Equation (5.8) outperformed

Kamath & Loizou’s multi-band spectral subtraction [89] when both algorithms were

empirically optimised.
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Evaluation Algorithm Word Accuracy (%)
IDL 35U 35D 55U 55D

Baseline MFCC 61.0 41.9 36.9 32.8 23.7
MFCC with SpecSub 61.9 45.3 43.0 36.7 25.8
MFCC with Kamath 62.4 43.2 42.5 35.7 25.8
MFCC with 2-ch DSB 63.4 48.5 43.4 39.1 27.4
MFCC with 7-ch DSB 64.1 47.8 45.9 41.6 29.8

Table 5.5: Audio speech recognition baseline evaluation results for phone number task

In addition to the above observation, it can be seen that increase in speed causes degra-

dation in the recognition accuracy. The word accuracy of the windows down condition

is less compared to the windows up in the same speed condition for all the algorithms.

With windows open, greater decreases in accuracy occur as the speed increases. The

IDL condition shows good performance accuracy, due to there being less acoustic

noise. In the 55D condition the word accuracy is poor. This is mostly due to increases

in road and wind friction as vehicle speed increases.

5.6 Visual Speech Recognition using FLK

Initially, this cChapter compared the effect of visual-front using VJ face detector and

semi-automatic FLK ( by manually inspection we re-update the template to avoid sub-

sequent failures;. this isWe defined this as semi-automatic FLK.) in terms of visual

speech recognition. We selected a small subset using CL camera from the AVICAR

protocol described in Chapter 5.3.1. We extracted the lip images using VJ and FLK

approach. We implemented the FLK inverse compositional template tracking method

to find the best match to the template mouth region in every subsequent frame in the

given video. The template is updated in every frame and by manually inspecting the

extracted ROI, if it is too far from the actual mouth region we manually re-initialise

the current template. We defined the weighting matrix S in Equation 4.16 using a bank
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Visual HMM accuracy(%)
IDL 35U 35D 55U 55D

VJ 37.93 37.41 38.83 36.14 33.57
semi-automatic FLK 40.02 38.22 39.82 37.64 36.48

Table 5.6: Word recognition accuracy of FLK-based vs VJ based front-end on
AVICAR database organized into different noise conditions

of Gabor filters with 9 scales times 8 orientations [72].

From the selected subset from AVICAR protocol, 70% were used for training and the

remaining 30% were used for testing. We conducted visual speech recognition exper-

iments using 16 states and 8 mixtures. Table 5.6 shows the visual HMM performance

using the two approaches. As it can be seen in this table, the FLK-based mouth de-

tection outperformed the VJ method on AVICAR database with an average of 4.51%

relative improvement in visual SHMM accuracy. Even though this improvement has

an effect for AVASR, the limitation of the FLK based approach is the re-initilisatione

of the template frame after the detection fails. This effect will be applicable to the data

from the other camera angle too.

5.6.1 Visual Speech Recognition using FLK: Discussion

We can conclude that the FLK approach for tracking mouth region is slightly better

than the VJ approach and moreover, it has better fitting performance. Even though

the FLK approach is more robust in handling the illumination variation, it should be

noted that if the detection fails completely at one frame, then the wrong template will

be used in the subsequent frames and the whole tracking process will be failed from

that time onwards. This is not the case for VJ, as it performs detection on each frame

independently. This is a major limitation of the FLK approach for visual speech recog-

nition. Due to this limitation, we selected the VJ approach for further visual speech

recognition experiments and AVASR experiments from single and multiple cameras.
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Figure 5.16: Accuracy of single-camera visual HMM speech recognition across all
noise conditions, averaged across all validation folds.

5.7 Visual Speech Recognition using Multiple Cameras

Before investigating full audio-visual speech recognition, initially the experiments

were conducted to investigate the best visual speech performance that could be ob-

tained from a weighted combination of cameras in a single visual SHMM. In this

section, we will begin by investigating the visual speech recognition performance that

can be obtained from each single camera, and how the four cameras can be combined

to provide the best visual speech recognition performance on the AVICAR database.

5.7.1 Single Cameras

Most approaches to AVASR in the existing AVASR literature [27, 38, 116, 133, 150,

153, 189], have only considered sources of simulated acoustic degradation and used

the same video data in every reported noise condition. However, because the noise con-
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ditions in the AVICAR database correspond to real-world noise conditions that affect

both the acoustic and visual modalities, we have the advantage that we can investigate

what effects a typical driving environment would have on the visual as well as the

acoustic modality.

The first set of experiments that we ran allowed us to investigate the effect that each

driving condition had on visual speech recognition. These experiments trained and

evaluated a series of single-stream visual HMMs (using all 40 visual features) for each

word in the AVICAR database in order to evaluate speaker independent visual speech

recognition across all noise conditions and cameras available in the AVICAR database.

The results of these experiments, shown in Figure 5.16, indicate that the visual-only

speech recognition accuracy using the AVICAR dataset differ considerably according

to the noise condition, and all results are obviously diminished from ideal laboratory

conditions where word level accuracies are typically around 60-70% [149].

By comparing the general visual speech recognition performance across all noise con-

ditions, it can be seen that the visual speech recognition performance is affected by the

driving condition, but not to the extent that would be expected in the acoustic modality.

All moving conditions provide poorer visual speech recognition performance than the

IDL condition, most likely attributable to difficulties in tracking the mouth ROI and

changes in illumination as the car is moving and the speaker within it. There is little

difference in visual speech recognition performance as the speed is increased from 35

to 55 mph, but having the windows down degrades performances, largely due to self

occlusions from subject hair as the wind penetrates the automotive cabin.

In addition to the general degradation in noisier conditions, the visual-only speech

recognition results can be seen to also differ according to the location of the cameras

from the AVICAR database. While the side cameras still provided a near-frontal view

of the speaker’s face, the performance of the two side cameras can be seen to be de-
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graded with reference to the central cameras, which had the most frontal view of the

speaker’s face. While there is no clear difference between the left and right side cam-

eras across all the noise conditions, the left central camera did outperform the right

central camera across all noise conditions, suggesting that it had the best view of most

speakers’ faces throughout the database.

5.7.2 Multiple Cameras

Motivated by the similar performance levels obtained by the single camera visual

speech recognition experiments, we wished to determine if the cameras contained

complementary information that could be combined in fusion to provide improved

visual speech recognition performance when multiple views of the speaker’s face are

available. However, in order to investigate this question, we first had to determine the

weighting parameters wSL, wCL, wCR and wSR that would be optimal for a four-stream

SHMM.

In Equations 5.11-5.14, we showed that the individual stream weights for a visual

SHMM can be expressed in terms of the proportional weighting parameters ↵L show-

ing the proportion of left cameras in comparison to right and ↵C indicating the propor-

tion of central cameras in comparison to side (the ↵A terms can be discarded as we are

only dealing with video).

In order to arrive at the final four-stream visual SHMM, we will first investigate two-

stream fusion where the left and right pairs are fused into two separate dual-stream

central and side visual SHMMs according to the best performing ↵L parameter. We

will then investigate the proportional weighting parameter ↵C between the central and

side visual SHMMs to arrive at the final best performing four-stream visual SHMM.

It should be noted that due to limitations in the HMM toolkit software [205], and to
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limit the processing requirements, only the first 10 video features from each of the

streams (out of 40 extracted) were used in the visual fusion experiments. A limited set

of development experiments were also performed of visual fusion with 15 and 20 from

each stream, but little degradation in speech recognition performance occurred, so 10

features were chosen as the best trade-off between accuracy and processing time for

the full-scale experiments.

Two camera fusion

In order to combine the two left and right camera pairs into a side visual SHMM

and a central visual SHMM, the proportional weighting parameter between left and

right cameras, ↵L was determined by performing a set of two-stream visual speech

recognition experiments between the central left and right cameras on the first fold of

the AVICAR protocol. The best value of ↵L, chosen from the set {0.0, 0.1, . . . , 1.0} to

maximise the average visual speech recognition accuracy across all noise conditions,

was found to be ↵L = 0.5 which also had the simple advantage of keeping the left and

right streams equally weighted.

Experimental results of the combination of visual streams into the side and central

two-camera SHMMs are shown in Figure 5.17. While the two-stream fusion approach

taken here does appear to provide a small improvement across all conditions on the

individual cameras, the improvement is not large, suggesting that this is likely at-

tributable to little complementary information in the left and right views of a speaker’s

face, when taken from similar angles.
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Figure 5.17: Accuracy of two-camera visual SHMM speech recognition in comparison
to the single-camera approach using (a) side and (b) central cameras across all noise
conditions, averaged across all validation folds.

Four camera fusion

Knowing the best value of the left/right proportional weighting parameter ↵L, the

only other parameter required for four-camera visual SHMM speech recognition is

the proportional weighting between the central and side cameras, expressed as ↵C and

(1 � ↵C) respectively. Similar to the set of development experiments conducted to

calculate ↵L, a set of four-camera visual SHMM experiments were conducted on the

first fold of the AVICAR protocol. The ↵L was set to 0.5 and the best value of ↵C was

chosen from {0.0, 0.1, . . . , 1.0} to maximise the average visual speech recognition ac-

curacy across all noise conditions. The results of this development experiment, shown

in Figure 5.18, found that the best speech recognition performance was obtained when

↵L = 0.7.

By combining the chosen proportional weighting parameters of ↵L = 0.5 and ↵C =

0.7, and setting ↵A = 0 as this a visual-only SHMM, it can be seen that the stream
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Figure 5.18: Average accuracy across all noise condition of four stream VSHMM
speech recognition as the central/side proportional weighting parameter ↵C is varied
from 0.0 to 1.0 on the validation fold.

weights in the final four stream SHMM will be given by

wCL = ↵C ⇥ ↵L = 0.35, (5.15)

wCR = ↵C ⇥ (1� ↵L) = 0.35, (5.16)

wSL = (1� ↵C)⇥ ↵L = 0.15, (5.17)

wSR = (1� ↵C)⇥ (1� ↵L) = 0.15. (5.18)

Experimental results of the fully weighted four-camera visual SHMM (Figure 5.19),

show that in comparison to the small improvement of left/right camera fusion, the

fusion of the central and side camera pairs provides a considerable improvement over

the both the side and central camera-pair fusion accuracies. These results demonstrate

that there is considerable complementary information available in differing views of a

speaker’s face, even when the difference in viewing angle is relatively small, as it is in

the AVICAR database. In particular, these results are showing that even though the side
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Figure 5.19: Accuracy of four-camera visual SHMM speech recognition in comparison
to the two-camera side and central SHMMs across all noise conditions, averaged across
all validation folds.

cameras are performing poorly in comparison to the central cameras, there is important

visual speech information in the side cameras’ views that is not being captured by the

central cameras and that can, in fusion, provide improved visual speech recognition

performance.

5.8 Audio Visual Speech Recognition using Multiple

Cameras

In the previous section, we showed that the best performing visual speech recognition

system on the AVICAR database can be obtained from a fusion of all four cameras.

However, while the four-camera visual HMM provided much better performance than

any of the single camera visual speech recognition experiments, the visual speech per-
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Figure 5.20: Average accuracy across all noise conditions for audio-visual SHMM
speech recognition as the audio/visual proportional weighting parameter ↵A is varied
from 0.0 (video only) to 1.0 (audio only) on a validation folds.

formance is still fairly poor in comparison to what would be expected from a normal

acoustic speech recognition system. This section will extend the visual-only speech

recognition experiments in the previous section by incorporating audio as fifth stream

to the SHMM structure, comprised of the multiple-microphone acoustic signal con-

verted into a single MFCC feature stream through the DSB process.

5.8.1 Single Cameras

Before investigating the full five-stream audio-visual SHMM, we first wished to inves-

tigate the performance that could be obtained in a one-camera two-stream audio-visual

SHMM, and investigate the value of the proportional weighting parameter ↵A that

will provide the best audio-visual speech recognition performance. This investigation

was performed by choosing ↵A from {0.0, 0.1, . . . , 1.0} to maximise the audio-visual
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speech recognition performance, averaged across all noise conditions, when the acous-

tic features are combined with camera CL in a two-stream audio-visual SHMM on the

first fold of the AVICAR protocol. In order to demonstrate the robustness to multiple

noise conditions, the weighting parameter ↵ was empirically chosen. The results of

this experiment, shown in Figure 5.20, found that the best audio-visual speech recog-

nition performance was obtained when ↵A = 0.6.

The single-camera audio-visual SHMM experiments, with the acoustic streams

weighted at wA = ↵A = 0.6 and the individual single-camera video streams at

wV = (1� ↵A) = 0.4, are shown in Figure 5.21(a). By comparing these results to the

audio and single-camera visual only approaches, also shown, it can be seen that even

the worst-performing single-camera visual speech recognition systems provide for an

improvement on the acoustic-only approach at all noise levels present in the AVICAR

database, with the greatest improvement in the noisiest 55-mph, windows-down (55D)

condition. This finding is in line with previous audio-visual speech recognition exper-

iments [150] that have shown that even poorly performing visual-speech features can

provide complementary information to acoustic features when combined using audio-

visual SHMMs.

5.8.2 Multiple Cameras

Having chosen an appropriate proportional weighting parameter ↵A for the acoustic

stream, and showing that each of the single cameras can provide an improvement in

audio-visual fusion, we finally had gathered enough information to construct the full

five-stream audio-visual SHMM and demonstrate the improvements that can be ob-

tained from multiple cameras for audio-visual speech recognition in noisy environ-

ments.

By combining the three chosen proportional weighting parameters of ↵A = 0.6, ↵C =
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(a) Single camera audio-visual fusion. Visual-only
results are shown similar to fusion, but dashed.
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(b) Four camera audio-visual fusion.

Figure 5.21: Accuracy of (a) single-camera and (b) four-camera audio-visual SHMM
speech recognition in comparison to audio and video-only baselines across all noise
conditions, averaged across all validation folds.

0.7 and ↵L = 0.5, it can be seen that the stream weights in the final five-stream audio-

visual SHMM will be given by

wA = ↵A = 0.60, (5.19)

wCL = (1� ↵A)⇥ ↵C ⇥ ↵L = 0.14, (5.20)

wCR = (1� ↵A)⇥ ↵C ⇥ (1� ↵L) = 0.14, (5.21)

wSL = (1� ↵A)⇥ (1� ↵C)⇥ ↵L = 0.06, (5.22)

wSR = (1� ↵A)⇥ (1� ↵C)⇥ (1� ↵L) = 0.06. (5.23)

Experimental results of the fully-weighted five-stream audio-visual SHMM (Fig-

ure 5.21(b)), show that the combination of all four cameras into the single five-

stream audio-visual SHMM provides a considerable improvement when compared to

the single-camera audio-visual SHMM results presented in Figure 5.21(a). Over all

of the noise conditions in the AVICAR database, it can be seen that the multiple-

camera audio-visual SHMM approach provides a considerable improvement in word-

level speech recognition accuracy over all of the single-camera visual SHMM systems.
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These results show that there are useful visual-speech cues available in differing views

of speaker’s mouth region that prove complementary both to each other and to the

acoustic speech information for the audio-visual speech recognition application.

5.9 Chapter Summary

Audio-visual speech recognition has previously been shown to provide a considerable

improvement over acoustic-only approaches in noisy environments, but most audio-

visual speech recognition approaches have only been examined in relatively clean

conditions and have rarely dealt with the visual variabilities such as head movement,

poor/varying illumination and poor video resolution/quality. The research presented

in this chapter extended upon the established audio-visual speech recognition litera-

ture to show that, in a real-world automotive environment, further improvements in

speech recognition accuracy over traditional single-camera AVASR approaches can be

obtained when multiple frontal or near-frontal views of speakers’ faces are available.

This Chapter review presents a comparison of the recognition performance of single

channel and multi-channel enhanced speech, which was lacking in the audio-visual

speech community. In addition to that, this Chapter compares the VJ face detector

with the FLK approach in terms of fitting and visual HMM performance.

A series of visual speech recognition experiments conducted on the four-camera

AVICAR database demonstrated that the best visual speech performance was obtained

through a combination of all four cameras in a four-stream visual SHMM. Finally,

combination of the four visual streams with a single acoustic stream in a five-stream

audio-visual SHMM demonstrated a relative improvement of between 6% and 17%

word-level accuracy over traditional single-camera AVASR, and between 9% and 56%

relative improvement in word-level accuracy when compared to the acoustic-only ap-

proach.
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We hope that this research effort will serve as a motivation for including multiple cam-

eras in effective human-vehicle computer interfaces, which reduce driver distraction

over manual alternatives. This research work has further demonstrated the usefulness

of the AVICAR database for real-world speech recognition research, and it is hoped

that researchers, including ourselves, will be able to continue to use the database as a

common benchmark in improving the performance of audio-visual speech recognition

in real-world environments.
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Chapter 6

Analysis II: Long-Term Audience

Analysis

Making a movie is an iterative process where multiple information sources are sought,

obtained, analysed and then fed to the director, which they then use to gauge whether

any changes to the movie are required before it is released to the public. One of the

most important information sources that the director gets is via test screenings. Gen-

erally in a test screening, an audience of volunteers gather to watch the movie and

after the viewing, each volunteer answers a questionnaire about certain aspects of the

movie. Even though the gathered information is useful, these questionnaires are sub-

jective, biased and do not contain specific time information.

This chapter seeks to gain an automatic real-time objective measure of audience

through analysing the collective facial and body movements. Due to the complex-

ity and difficulty of this task, no one has previously looked at this problem. In addition

to introducing a new problem to the field of face and gesture analysis, as well as a solu-

tion on how to capture such data, there are numerous technical challenges highlighted
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in this chapter, for which solutions are then presented.

6.1 Introduction

The iterative process of releasing a movie to the public requires the accumulation and

analysis of information. In the later part of the movie making process, the director uses

this information to make improvements to the movie that are more likely to hold the

public interest. One of the most important information sources that the director uses is

acquired from test screenings. 1

A test screening refers to a special showing of a movie before its release to the public,

in order to gauge audience reaction and generally with an audience of volunteers or

selected audience. After watching the movie, volunteers answer a questionnaire about

certain aspects of the movie. Typically these questionnaires consist of: (i) How did

you engage with the movie? (ii) What are the parts you enjoyed most? (ii) What are

the parts you enjoyed least? This test screening is an interactive and iterative process

(i.e it can go on for several test screenings).

The feedback from the volunteers can be used to better understand the movie and also

can lead to making changes in some of the characteristics of the movie. These feed-

backs may cause a very simple change, such as change to the title of the movie. One of

the examples which can be found in the film industry is the movie Licence to Kill. The

director changed the original name Licence Revoked to Licence to Kill after the test

screening. The Mary Poppins, Final Destination, and Titanic are further examples of

where the ending was changed after a test screening. The negative reactions from the

test-screening audience, has caused film makers to remove some scenes from movies

(eg: The Pelican Brief, The Mighty Quinn). The movie time was reduced in the movie
1http://everything2.com/title/Hollywood+test+screening+process

http://everything2.com/title/Hollywood+test+screening+process
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Figure 6.1: In our infra-red illuminated screening room, we use both face (top left) and
body motion features (top right) to profile each audience member (bottom left) and
find the synchrony or coherence of motion to analyze, summarize and predict audience
ratings to movies (bottom right - each curve color corresponds to an audience member).

Clear and Present Danger after the feedback from the test-screening audience2,3.

While the test-screening is useful, these questionnaires are subjective, biased (e.g. loy-

alty to the brand). Moreover, these questionnaires cannot be used in larger popula-

tions, such as children and people who have limited ability to communicate. In ad-

dition, questionnaires or self-report methods do not contain feedback at precise time-

stamps [171].

Having the ability to automatically and objectively measure group or audience behav-

ior would have profound implications within the educational, marketing, advertising

and behavioral science domains. However, due to the volume of data and the complex-
2http://en.wikipedia.org/wiki/Test_screening
3http://uk.movies.yahoo.com/10-films-drastically-changed-after-test-screenings.

html
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ities of the observed environments, the current de-facto standard of measuring audi-

ence/group behavior is still via self-report [14]. As self-report measures are subjective,

labor intensive and do not provide feedback at precise time-stamps, an automated and

objective measure is desirable. In an attempt to provide an objective measure, Madan

et al. [117] utilized a wearable device which measured audio and head movement in

addition to galvanic skin responses of a group interacting. Eagle and Pentland [62]

developed a system to analyze group behavior using a PDA which required continu-

ous user input. While both are interesting approaches, a less invasive and automatic

solution is the goal of this Chapter.

In terms of measuring reactions to consumer products, nearly all ratings are via self-

report (i.e“likes” or a Likert-type scale). Given enough crowd-sourced ratings (100k’s),

useful measures can be obtained, which can be used to predict other scenarios where

people may interested in their previous behaviors. Such recommendation systems are

often based on matrix factorization approaches. Pandora4 (songs), Netflix5 (movies/tv-

shows) and Amazon6 (products) are popular examples for content-based and collabo-

rative filtering approaches [94].

For movies, rotten tomatoes7 has both critic and audience ratings which are crowd-

sourced. Such information is only useful at a coarse level as it captures the overall

global reaction to the stimuli and does not contain any specific local “interest” infor-

mation. For long continuous time-series signals such as movies, knowing at which

parts the audience (or sub-groups of the audience) engage/disengage, would be very

beneficial to writers/directors/marketers/advertisers. Achieving this through self-report

is subjective and difficult as it would require a person to consciously think and docu-

ment what they are watching and subjects may miss important parts of the movie, due

to distractions. Similarly, subjects could be instrumented with a myriad of wearable
4pandora.com
5netflix.com
6amazon.com
7rottentomatoes.com

pandora.com
netflix.com
amazon.com
rottentomatoes.com
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sensors, but such approaches are invasive and unnatural and therefore may not result

in good indicators of the actual rating.

In this chapter, we use a single camera as our input sensor and use face and body

motion features to measure the synchrony and coherency of audience behaviors to a

full-length movie (see Figure 6.1). This work is motivated by the famous film editor

Walter Murch’s book “In the Blink of an Eye” [129], where he speculates that the

engagement of an audience can be gauged through the synchrony of audience motion.

Apart from the very dark environment, monitoring an audience from a single vantage

point for a full-length feature film is a challenging problem because: i) it is across a

very long time (typically movies normally range from 90-150 minutes) which is an

enormous amount of video data to process, ii) people are at different vantage points

and resolutions, iii) we required frame-based measurements to measure synchrony, iv)

getting ground-truth labels of activity is subjective and time-consuming. To counter

these issues, we use a robust face tracker based on the Fourier Lucas-Kanade (FLK)

template update method to locate face and body regions to obtain face and body motion

features.

Finally, it proposes an entropy of pair-wise correlations measure to give an indication

of audience coherency. Additionally, this chapter proposes an off-line change-point

detection algorithm to temporally cluster and summarize audience behaviors into a

series of interest segments. We show that the proposed, unsupervised approach out-

performs human-annotated labels, which do not pick-up these fine details. Using the

audience ratings from rottentomatoes.com, we are able to learn to differentiate between

good and bad movies based on these interest segments.
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6.2 Related Work

In the late 1990’s, theories of group behaviours and interaction were developed [14].

In order to identity the group behaviours and interaction, self-report is the current

standard measure of affect. In the self-report method people answer a questionnaire

about certain aspects and try to scale their feelings [14, 171]. As self-report measures

are subjective, labor intensive and do not provide feedback at precise time-stamps, an

automated and objective measure is desirable. In an attempt to provide an objective

measure, Madan et al. [117] utilized a wearable device which measured audio and

head movement in addition to galvanic skin responses of a group interacting. Eagle

and Pentland [62] developed a system to analyze group behavior using a PDA which

required continuous user input. While both are interesting approaches, a less invasive

and automatic solution is desired.

A survey of recent work in automatically measuring a person’s behavior using vision-

based approaches can be found in [207]. Much of this work has centered on recogniz-

ing an individual’s facial expression, with notable progress made in the areas of smile

detection in consumer electronics [197], pain detection [114, 115], driver fatigue [195],

human-computer-interaction [193] and security/surveillance [162]. Even though these

aforementioned works all acknowledge, these works are with fully frontal images with

controlled lighting conditions. An emerging area of research over the last couple of

years is the use of affective computing for marketing and advertising purposes.

It is well-known that when a user watches video clips or listens to music, they may

experience certain feelings and emotions [91, 159, 175] which manifest through bod-

ily and physiological cues such as laughter. These emotional responses to multimedia

content have been studied in the research community [83, 172, 188]. In 2011, Teixerira

et al. [185] demonstrated that joy is one of the states in which to analyze engagement

with commercials and that smiles would be a significant indicator evaluating this. Rec-
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Figure 6.2: Capturing data in low light conditions. (a) IR illuminators are OFF:
Nothing is visible. (b) IR illuminators are ON and Lens is OFF: Audience is visible
but reflections from the screen vary the illumination conditions. (c) IR illuminators
are ON and Lens is ON: The lens acts as a bandpass filter which results in a uni-
form lighting environment. Note: better uniform signal was obtained using two IR
illuminators.

ognizing emotions induced by videos has also been studied in the affective computing

community [86, 93, 105, 175, 183]. Emotion recognition has also been used in appli-

cations such as for detecting topical relevance, or summarizing videos [6, 86, 87].

Most of the previous work has been: a) limited to stimuli of short duration (i.e. 10�60

seconds), not applied continually over large periods of time (e.g. up to 2 hours), and b)

applied only to individuals, not simultaneously on groups of people. Having a large

window of time to monitor human behavior introduces a broad gamut of additional

gestures/activities associated with boredom or disengagement, which include fidget-

ing, doodling, yawning, looking around and pose change as indicators of inattentive-

ness [191]. These behaviors may be influenced by the fact the person is sharing the

environment with other people, and the amount of motion can be used to determine the

satisfaction level of audience. This Chapter, describes a method which can measure

audience, or group-behavior in a collective manner.
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6.3 Audience Analysis Test-bed

6.3.1 Test-bed

Observing people watching visual stimuli from a screen is difficult because : 1) the

environment is very dark, and 2) the reflections from the visual stimuli causes nonuni-

form illumination. The main interesting questions comeing with this scenario are:

• How can we capture the audience face and body moments in these lighting con-

ditions ?

• How do we remove the reflection from the screen to obtain a smooth video ?

• Can we obtain facial expressions from an audience in these lighting conditions ?

Larger lens and sensor size are two important features to consider when selecting a

good camera to capture the objects in low-light. In order to capture a smooth signal,

we instrumented and proposed a testbed with a low-light camera, infra-red (IR) illu-

minators and an IR band-pass filter. In order to analyze the collective/synchronized

behavior and uninterested/unsynchronized behavior of the audience, capturing a uni-

form signal is the first and most important task. To counter these issues, the Chapter

employs a new hardware solution which gives us a uniform smooth signal.

Infra-red camera:

We used a GX 1920 Infra-red (IR) camera which has 2 Gigabyte ethernet ports each

with 240 Mb/s and ICX674 CCD sony sensor with 2/3”. In order to capture more

light, we used shorter exposure time with f/1.4 and 9 mm lens with a wider angle. The

resolution of the images are 1936 ⇥ 1456.
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Infra-red Illuminator:

Having only an IR camera is not useful. As shown in Figure 6.2 (a), the outcome

from the camera is not visible. To make the environment visible we used two Bosch

UFLED95-8BD AEGIS Illuminators (wavelength of 850 nm and 95

� wider beam pat-

tern). This illuminator has 18 high efficiency surface mounted LED array and can

spread to around 50 m. The constant light technology automatically controls and ad-

justs the lightings.

During the installation process, we powered down the illuminators and keep next to

the camera for safety reasons. In order to prevent the damage to the IR camera, we set

up the illuminators beneath the camera. During data capture we make sure the test-

screening audience was at least 1.64 m away from the illuminators for health issues.

Infra-red Bandpass Filter:

To guard against reflections from the viewing screen, we employed the use of an IR

bandpass filter with wavelength 850 nm. The IR bandpass filter provides a mechanism

to pass certain wavelength ranges while rejecting unwanted radiation. This final set-up

was used to capture a uniform smooth video with 15 fps as shown in Figures 6.2 (c).

6.3.2 Labelled Data

We captured volunteer audiences of various sizes to watch movies. A summary of

the captured data is listed in Table 6.1 while corresponding audience ratings for those

movies from rottentomatoes.com are shown in Table 6.2. As we were interested in both

facial expressions as well as body movements, we manually annotated the following

gestures:
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Movies Movie Type #People Time (s) #Frames
Movie 1 Comedy 12 3605 54075
Movie 2 2D Animation 09 3921 58815
Movie 3 Horror 07 4200 63000

Table 6.1: The footage of analysed movies.

Movie Tomatometer (%) Audience (%)

Movie 1 75 75

Movie 2 98 34

Movie 3 65 55

Table 6.2: Audience ratings for the movies from rottentomatoes.com. The red tomato
illustrates the movie received good reviews. The popcorn indicates the audience like
the movie while splitter popcorn shows audience did not find the movie appealing.

Smiles/laughter: Using FACS [67], we annotated smiles and laughter. The onset of

smiles/laughter were labelled as the onset of AU12 and the offset was labelled at

the end of that occurrence.

Body movements: We annotated the following common actions: talking to

another person, raising arm, moving hand to head/table, moving within

chair, eating/drinking, watching through fingers, using laptop/iPad, checking

phone/watch.

In terms of activity, approximately 90% of the time no activity was observed, as can

be seen in the examples shown in Figure 6.3. However, as the stimulus movies are of

different genres, the activities that did occur varied greatly. Figure 6.4, shows the time-

series plot of the annotated gestures for both a comedy (Figure 6.4(a)) and a horror

movie (Figure 6.4(b)). For the comedy, the peak activities are associated with smiles

and/or laughter. Conversely, the peaks for the horror movie coincide with people mov-

ing at the same time in response to an exciting or scary part of the movie. Motivated by

this analysis, we require a solution that automatically captures both facial (i.e smiles)
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Smiles (4.6 %)
Talk to other (0.22 %)
Check Phones/Watches (0.19%)
Large poses (0%)
Eating/Drinking (0.12 %)
Watch through fingers (0%)
Falling asleep (0%)
Walk away (0.14 %)
Visual distraction (0%)
None (94.73 %)

(a) Percentage of overall timing for labelled activities

 

 

Smiles (84.2 %)
Talk to other (3.5 %)
Check Phones/Watches (7 %)
Large poses (0 %)
Eating/Drinking (1.8 %)
Watch through fingers (0 %)
Falling asleep (0 %)
Walk away (3.5 %)
Visual distraction (0 %)

(b) Occurrence of the activities

 

 

Smiles (0.56 %)
Talk to other (0.13 %)
Checlk Phones/Watches (1.08 %)
Large poses (3.54 %)
Eating/Drinking (3.84 %)
Watch through fingers (0%)
Falling asleep (0%)
Walk away (0.35 %)
Visual distraction (0.29 %)
None (90.21 %)

(c) Percentage of overall timing for labelled activi-
ties

 

 

Smiles (11.08 %)
Talk to other (2.22%)
Check Phones/Watches (4.71 %)
Large poses (59.56%)
Eating/Drinking (10.25 %)
Watch through fingers (0 %)
Falling asleep (0 %)
Walk away (1.66 %)
Visual distraction (10.52 %)

(d) Occurrence of the activities

 

 

Smiles (0.37 %)
Talk to other (0.35 %)
Check Phones/Watches (2.51 %)
Large poses (0.69 %)
Eating/Drinking (1.22 %)
Watch through fingers (6 %)
Falling asleep (0%)
Walk away (0.1 %)
Visual distraction (0%)
None (88.76 %)

(e) Percentage of overall timing for labelled activities

 

 

Smiles (15.2 %)
Talk to other (11.8 %)
Check Phones/Watches (27.1 %)
Large pose (6.3 %)
Eating/Drinking (11.8 %)
Watch through fingers (25.7 %)
Falling asleep (0 %)
Walk away (2.1 %)
Visual distraction (0 %)

(f) Occurrence of the activities

Figure 6.3: Example of statistical breakdown distribution for movies and a presenta-
tion. Top to Bottom: (Top row) a comedy movie, (Second row) a 2D animated movie
and (Third row) a horror movie
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Figure 6.4: The distribution of the number of activities. A sample of peak activities
are highlighted: (a) a comedy and (b) a horror movie.
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Figure 6.5: ROC curve showing the accuracy of the smile classification using HOG
features, pixel intensity values and using the default Fraunhofer smile classifier: (a)
clean data and (b) audience data.

and body movements.

6.4 Audience Facial Behavior : Smiles

6.4.1 Features for Audience Environment

Generally, the detected face region is post-processed to encode for shift and illumi-

nation invariance. Linear filters are often used to extract useful feature representa-

tions in computer vision. The Gabor features [73], Histogram of Oriented Gradients

(HOG) [50], Scale-invariant feature transform (SIFT) [109] and Local binary patterns

(LBP) features [136] are some of the features widely used due to their biological rele-

vance, their ability to encode edges and texture, and their invariance to illumination.

Initially the utility of raw pixels and the HOG features were investigated in clean and
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Figure 6.6: Smile recognition performance

audience environments with manually registered 900 face images. In addition to the

above features, we investigated the performance with the inbuilt Fraunhofer smile clas-

sifier. The smile classifier was trained using the examples from CK+ [113] database

which extended from CK database [90]. As shown in Figure 6.5 the performance de-

creased in the audience environment compared with the clean environment. However,

HOG features outperformed the other methods with an area-under-the-curve (AUC) of

0.803 which emphasised their biological relevance and their invariance to illumination

conditions.

6.4.2 Improved Smile Detection

From the above motivation, the smile detector consists of representing the input face

image via HOG descriptors [50] and then training a linear SVM classifier. Our posi-

tive instances consisted of 750 labelled smiles from our test-bed and we used approx-

imately the same amount of neutral images for our negative instances. We extracted

HOG features using 9 orientation bins with overlapping regions with block size of
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2⇥2, and cell size of 8⇥8.

We analysed smiles with 2731 labelled frontal face video segments from our test-bed

using the detected or fitting faces through off-the-shelf face detector and template up-

date methods (i.e LK and Gabor FLK) respectively. The Gabor FLK and LK showed

AUC of 0.783 and 0.779 respectively, while the commercial face-detector had an AUC

of 0.661.

However, this task is quite challenging due to fact that the resolution, occlusion of

the face and viewing angles for the different participants is quite varied (thick red

boxes in Figure 6.7). Examples of successful and unsuccessful detections are shown

in Figure 6.7.

6.5 Flow-Based Gesture Analysis

In terms of recognizing human activities at a distance, optical flow has been used as

an effective descriptor. Efros et al. [65], used such flow features to recognize actions

of people in ballet, soccer and tennis. More recently, Rodriguez et al. [158] used such

features to analyze crowds. In terms of recognizing individual and specific actions,

there is a plethora of research which has solely focussed on this domain with excellent

progress being made in this area [4]. However, we are not interested in specific ac-

tion of a person but more in the synchrony of action (i.e is everyone doing something

(it doesn’t matter what) at the same time?). While it would be useful in this context

to recognise specific activities such as eating, drinking, looking at mobile phone/wrist-

watch, looking through fingers etc which each member of the audience may be engaged

in, to actually recognise these individual actions would have been an onerous task be-

yond the scope of this research. The main reason is the difficulty in collecting and

annotating ground-truth data for this purpose. Generally it took more than 90 hours



136 6.5 Flow-Based Gesture Analysis

Figure 6.7: An example successful (green boxes) and unsuccessful (red boxes) de-
tections of smiles. Due to the occlusion of the face, viewing angles for the different
participants is quite varies and poor resolution (mostly occurs with the volunteers who
are sitting back of the theater) recognizing smiles is quite challenging. Visual examples
are illustrate with thick red boxes in the top image.

to annotate one session. Even if it is possible to get the level of annotation required it

would be expected that the reliability of recognition would poor due to the high level

of subjectivity and the poor lighting conditions. Because of that difficulty of recognis-

ing individual actions, the focus of the research was on determining the synchrony of

common actions among the audience, independent of the action they are engaged in.

This work uses the approach of Efros et al. [65] by obtaining an aggregated spatiotem-

poral motion descriptor from optical flow. Another benefit was that due to the envi-

ronment of the screening room, a natural spacing of audience occurred, so each person

could watch the movie unoccluded and in comfort, which resulted in each person oc-

cupying an uninterrupted 3D volume – meaning that no background subtraction was

required to gain the flow features of each person.
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6.5.1 Fundamentals of Optical Flow

Optical flow can be defined as physical movement of points in a given image relative

to 2D displacement of pixels on the image plane. This assume that the brightness at a

point (x, y) does not change over the time. Given an image I , let denote the brightness

at the point (x, y) at time t and t + �t as I(x, y, t) and I(x + �x, y + �y, t + �t)

respectively. As the brightness of the image at a point (x, y) is constant this can be

written as:

I(x, y, t) = I(x +�x, y +�y, t +�t) (6.1)

where the parameters (�x, �y) are the horizontal and vertical displacement of point

(x, y) and �t is the small change in time. By assuming the motion at time t + �t is

small the image brightness at time t+�t can be written as follows using the first order

Taylor series expansion,

I(x +�x, y +�y, t +�t) ⇡ I(x, y, t)+
@I

@x
�x +

@I

@y
�y

+

@I

@t
�t

(6.2)

By combining Equation 6.1 and Equation 6.2 yields to:

@I

@x
�x +

@I

@y
�y +

@I

@t
�t = 0 (6.3)

@I

@x

�x

�t
+

@I

@y

�y

�t
+

@I

@t
= 0 (6.4)

Ixvx + Iyvy + It = 0 (6.5)
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where vx =

�x
�t

and vy =

�y
�t

are the velocities in x and y directions and Ix, Iy and It

are the image derivatives at point (x, y) at time t.

Ix =

@I

@x
; Iy =

@I

@y
; It =

@I

@t
; (6.6)

Equation 6.5 can be rewrite in a more compact form which results the standard optical

flow constraint equation as follows

�Iv + It = 0 (6.7)

where �I =

h
Ix Iy

i
and v =

h
vx vy

iT

The optical flow components v can be estimate by minimizing the following error term

using widely used the LK algorithm [111].

arg min

v

k Av � b k2 (6.8)

where, A =

h
Ix(p) Iy(p)

i
, b =

h
�It(p)

iT
and p =

h
p
1

p
2

· · · pi

iT
represent

the neighborhood pixels.

6.5.2 Individual Flow-Profile

The synchronous behavior of the audience is hypothesized to give an indication of

how engaged or disengaged the audience is during various segments of the viewing

stimuli. The literature [191] has identified that group or individual behaviors between

movies/presentations/sports are inconclusive. The positive (+) and negative (-) engage-

ment behaviors for movies are shown in Table 6.5.2. It illustrates the higher energy
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Type + Engagement - Engagement
Movie/Presentations smiles large body poses

watching through fingers talk to another person
raising arms
moving within chair
eating/drinking
checking phones/watches
falling asleep

Table 6.3: The breakdown of the identified behaviors.

gestures as an indication for disengagement. Based on these we derived an indica-

tion of how engaged and disengaged profiles during various segments of the viewing

stimuli.

To measure the synchronous body movement of an audience we developed an energy-

based flow-profile measure [180]. Having N audience members, we initialised a local

3D volume for each person in the horizontal and vertical directions x and y over time

t as:

Q = f(x, y, t) (6.9)

We generated a flow-profile of each person contained within their 3D temporal volume

using horizontal and vertical optical flow components vx and vy respectively. Using

these flows, we calculated the normalized local 3D energy for a person q as,

Eq,t =

1

aq

q
v2q,x,t + v2q,y,t (6.10)

where the aq is the area defined for an individual to move over time. This normalized

energy can be vectorized over the duration of the movie time T as,

eq = [Eq,1, Eq,2, · · · , Eq,T ] (6.11)

Finally, we defined a normalized measure of overall audience engagement over the

duration of the movie time T which can be used as an indication for engagement and
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Figure 6.8: Individual flow fields for an audience member who engaged with the
movies 1, 2 and 3: (a) average flow field within the 3D volume; (b) average flow
magnitude; (c) normalized energy profiles; (d) the cumulative distribution of the nor-
malized energy.

disengagement as follows,

e
movie

=

1

N

NX

q=1

eq (6.12)

An example of an individual flow-field for an audience member across the three movies

is shown in Figure 6.8. We analysed the audience flow profiles and generated an energy

profile ei for each audience member i which we used to measure audience behavior.
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Figure 6.9: The synchrony of audience behavior between (Top) Ground-truth activities
and (Bottom) energy profiles for movie 1, 2 and 3.

6.5.3 Face vs Body Features

To see how reliable each feature source was, we analysed the correlation between flow

features and ground-truth labels for three movies using body and face features. The

overall cross-correlation results are given in Table 6.4. It can be seen that body features

are more robust features as we are only interested in the synchrony of movement.

An example using body features is shown in Figure 6.9. In this environment, the
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Movie Max. Correlation Max. Correlation
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 6.4: The cross-correlation results using body and face features. Body features
are more reliable than face.

result makes sense as the face is often very small and is sensitive to all types of subtle

variations and only contains a very small subset of possible actions that can take place.

As our body features subsume the face features, it makes sense to use the body flow

feature as our feature representation of each person.

6.6 Temporally Segmenting Audience Behaviors

As shown in Figure 6.3, around 90% of the time people are inactive while watching

a movie. This could be due to: i) people not moving at all, ii) intensity or duration

of activity being so low or short that it does not warrant labelling, iii) the activity

not fitting into the pre-set activities vocabulary. It can be argued that ii) and iii) are

due to problems with annotations, but as a result of the long length of input stimuli

(approximately 1-2 hours per movie), it is highly impractical and unscalable to get

this level of annotation. Even if it is possible to get the level of annotation it would

be expected that the reliability of annotation would greatly diminish due to the high

level of subjectivity. In terms of automatic analysis, this can be circumvented as the

continuous flow features of each person can be used to temporally segment or cluster

potentially interesting behaviors.

In terms of temporal segmentation, we used the change-point (CP) detection method

which is an unsupervised temporal clustering method that has the ability to flag abrupt

changes in a stochastic process [84, 85]. Methods can be either online (i.e only knowl-
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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x 104
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
x 104

0

0.2

0.4

0.6

0.8

E(t)

t

Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
x 104

0

0.2

0.4

0.6

0.8

E(t)

t

Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
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⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
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where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These
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Figure 9. The synchrony of audience behavior with movie 1, movie 2 movie 3. Top row: Ground-truth time series. Middle row: Local 3D
energy profiles. Bottom Row: Cross-correlation confidence score with a sliding window.

Movie Max. Confidence Max. Confidence
Body features Face features

Movie 1 0.69 0.48
Movie 2 0.68 0.24
Movie 3 0.72 0.05

Table 3. The breakdown of the analysed movies.

We analyzed the correlation between flow features and
ground-truth labels for three movies using body and face
features. The overall cross-correlation results are given in
Table 3. It can be seen that body features are more robust
features as we are only interested in the synchrony of move-
ment. An example using body features is shown Figure 9.

4. Temporally Segmenting Audience Behaviors
As shown in Figure 3 around 90% of total length of

movie are not labelled by annotators as people are inac-
tive due to: i) people do not move at all, ii) intensity or
duration of activity is too low or short that it does not war-
rant labelling, iii) the activity is not fit into the pre-set ac-
tivity vocabulary. It can be argued that ii) and iii) are due to
problems with annotations, but as a result of the long length
of input stimuli (approximately 1-2 hours per movie), it is
highly impractical and unscalable to get this level of annota-
tions and if it is possible the reliability of annotation would
greatly diminish. However, given the continuous flow fea-
tures of each person, we can use temporal segmentation or
clustering approaches to flag potentially interesting behav-
iors which may not have been labelled.

We use change-point (CP) detection approach which
is an unsupervised temporal clustering method, that has
the ability to flag abrupt changes in a stochastic pro-
cess [12, 13]. Methods can be either online (i.e only knowl-
edge of signal up to current time-stamp) such as the gen-
eralized likelihood ratio [11], or offline (i.e with the full
knowledge of the entire signal), such as the CUSUM [24].

Due to computation required to generate the optical flow
features and availability of all time stamps, we propose
an offline CP detection method. Compared with CUSUM,
our approach has no gaussian assumption between CPs
while CUSUM assumes the gaussian distribution between
CPs and the parameters are known [5]. The proposed
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Figure 10. An example of our change-point detector compared to
the human annotations. Ground-truth annotations are shown with
red dotted lines.

method is able to select arbitrary number of strongest CPs
and can deal with very noisy data.

4.1. Proposed Individual CP Detection
Given a smoothed audience energy signal s, smoothed

over 6 seconds, we first obtain the first-order derivative of
the signal � = ds

dt . We computed positive peaks p and
negative peaks n by detecting zero crossing values of d�

dt
for a given threshold � = µs + K�s [25]. The parameters
µs and �s are mean and variance of signal s and K is a
constant which has to set experimentally on development
population. Then the CPs can be obtained by maximising
the following objective functions:

8i, � 6 i < � : arg max
i

⇢
si � sp�

sp�

�
; (13)

8j, � < j 6 � : arg max
j

⇢
sj � sn�

sn�

�
; (14)

where � and � are lower and upper bound around each
peak. Equation 13 and 14 detects CP i where the ampli-
tude of signal highly increases and strongly decreases re-
spectively.

We compared our change-point approach with manually
annotated gestures (see Figure 10). It can be seen that the
human annotated labels are not able to pick up the subtle
movements at the fine granular level (i.e. second) while our
automatic approach is able to pickup these movements.

4.2. Audience Change-Points
Audience tends to behave substantially different in vari-

ous segments of the movie according to their interest. These

6

Figure 6.10: CP detection algorithm. (top) Original signal s, (middle) First-order
derivative in s and (bottom) second order derivative in s.

edge of signal up to current time-stamp) such as the generalized likelihood ratio [82],

or offline ((i.e with the full knowledge of the entire signal), such as the CUSUM [139].

Due to the computation required to generate the optical flow features and availability of

all time stamps, we utilized an offline CP detection method. Compared with CUSUM,

our approach has no gaussian assumption between CPs while CUSUM assumes the

gaussian distribution between CPs and the parameters are known [18]. The proposed

method is able to select an arbitrary number of strongest CPs and can deal with very

noisy data.

6.6.1 Proposed Individual Change-Point Detection

Given an audience energy signal s, smoothed over 6 seconds, we first obtain the first-

order derivative of the signal � =

ds
dt

. We computed positive peaks p and negative

peaks n by detecting zero crossing values of d�
dt

for a given threshold ✓ = µ
s

+ K�
s

.

The parameters µ
s

and �
s

are mean and standard deviation of signal s and K is a

constant which has to set experimentally on development population. Then the CPs



144 6.6 Temporally Segmenting Audience Behaviors

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
x 104

0

0.2

0.4

0.6

0.8

E(t)

t

Figure 6.11: An example of our change-point detector compared to the human annota-
tions. Ground-truth annotations are shown with red dotted lines.

can be obtained by maximizing the following objective functions:

8i,↵ 6 i < ⌧ : arg max

i

⇢
si � s

p⌧

s
p⌧

�
; (6.13)

8j, ⌧ < j 6 � : arg max

j

⇢
sj � s

n⌧

s
n⌧

�
; (6.14)

where ↵ and � are lower and upper bound around each peak (set it to 15 frames).

Equation 6.13 and 6.14 detect CP i and j where the amplitude of signal highly increases

and strongly decreases respectively ( Figure 6.10). We compared our change-point

approach with manually annotated gestures (Refer to Figure 6.11). It can be seen

that the human annotated labels are not able to pick up the subtle movements at the

fine granular level (i.e. second) while our automatic approach is able to pickup these

movements.
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6.6.2 Audience Change-Points

Audiences tend to behave differently in various segments of the movies depending on

their interest. These behaviors can be classified as stillness or movement. Given the

normalized smoothed audience energy signal X = {x
1

,x
2

, . . . ,x
N

} where N is

the number of people, first we calculate the first-order derivative dxi
dt

for x
i

and obtain

signal z =

PN
i=1

dxi
dt

. Then we detect audience CPs t
syn

which are the zero-crossing

values in signal dz
dt

for a given threshold. An example of detected audience CPs for

movies 1 and 2 are shown in Figure 6.12. The region between a (+) and a (-) synchrony

point (region (b) in Figure 6.12) identified as the indication of movements and region

between a (-) and a (+) synchrony point can be identified as a indication of stillness.

6.7 Summarizing Audience Behavior

To summarize the reaction of the audience to a movie, we segment the movie into one-

minute windows and for each window we find the strongest audience change-point.

Using that as our index, we use a 1 second window centered at that change-point to

summarize the audience behavior over that minute. We piece this together to form

a summarization of the audience behavior - which allows someone to get an idea of

a 90-minute movie over the course of 90-seconds. Qualitatively, we found that we

could find engaged and disengaged segments on the movie using this approach. Visual

examples are given in Figure 6.13.
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Figure 6.12: Synchrony point detections for a comedy and a 2D animated movie in left
and right hand side respectively.

6.8 Entropy of Pair-Wise Correlations

As we are interested in the synchrony of behavior between each audience member at

the local-level (i.e pair-wise comparison) as well as the global-level (i.e compared to

the whole group), we utilized an entropy of the pair-wise correlation approach. In

this regard, we first compared the small feature segment (i.e 30 seconds) between two
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(a) (b)

Figure 6.13: An example of movie summarization for: (a) movie 1 and (b) movie 2.
The green boxes show examples of similar activities while red boxes illustrates random
activities.
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Figure 6.14: A similarity matrix for a small segment of movie for (a) movie 1 and
(b) movie 2. The left and right figures are for movement and stillness regions (no
intra-person correlations were conducted (white blocks on the diagonal)).

audience members, s
1

and s
2

, and calculate the pair-wise correlation by using,

C
s1s2 = exp

✓
� k s

1

� s
2

k2

2�2

◆
(6.15)
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where � is an adjustable parameter for each similarity matrix (we used � = 1). We

then exhaustively calculated all the pair-wise correlations between audience members

which yielded a similarity matrix which is illustrated in Figure 6.14. As can be seen

in (a), when everyone is doing something at the same time (i.e laughing/smiling) the

cohesion is high, similarly when everyone is doing nothing the audience cohesion is

still high. Given that the similarity matrix of piece-wise correlations can be represented

by X, we can generate a probability distribution of X for that time-segment p(X),

which allows us to gain a measure of audience disorder via entropy [173]

H(X) = �
N�1X

i=0

p(i) log p(i) (6.16)

A high value of entropy means that there is great disorder (i.e random) behavior, while

a low value of entropy means that there is cohesion or predictability of behavior.

6.8.1 Predicting Movie Ratings

To gauge how much the general public likes a particular movie, rottentomatoes.com,

has an interactive feature which allows people to go online and give a rating. Over

time the number of ratings aggregate (100k’s) and based on these crowd-sourced rat-

ings, they generate an “audience measure”. Based on these scores, an average audi-

ence measure is obtained, with a movie rating of 75% or higher being deemed a good

movie, a movie rating between 50-75% being mediocre and below 50% denoteing a

bad movie. Out of our three movies, we had one good, one bad and one satisfactory

movie. Using our audience measure, we wanted to see if it could predict the rating of

a movie based solely on the audience reaction. To do this, we developed a normalized

measure which used the mean of the similarity matrix at each time step Mt, and the

entropy of the similarity matrix Et. We then found the expectation of the ratio using
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Mt Et Automatic Rating rottentomatoes.com

Movie 1 0.527 0.750 0.70 0.75

Movie 2 0.265 0.866 0.31 0.34

Movie 3 0.338 0.924 0.37 0.55

Table 6.5: Results of our automatic audience rating measure compared to the crowd-
sourced ones from rottentomatoes.com.

Mt and Et to gain a normalized rating measure R across the whole movie as follows:

Rating =

1

T

TX

t=1

Mt

Et

(6.17)

where T is the number of time segments analyzed within the movie. Using this mea-

sure, we show our results in Table 6.5. As can be seen from this result we get a rea-

sonable approximation to the rottentomatoes.com crowd-sourced ratings. This shows

a proof-of-concept that a possible measure can be obtained, although large amounts of

footage of audiences are needed to get an indication of significance.

6.9 Chapter Summary

The feedback from the test-screening audience can be used to better understand the

movie. However the current self-report methods are subjective, biased (e.g. loyalty to

the brand) and do not contain specific time information. This Chapter seeks to gain an

automatic real-time objective measure of audience by analyzing the collective facial

and body movements. Due to the complexity and difficulty of this task, no one has

previously looked at this problem. In addition to introducing a new problem to the field

of face and gesture analysis, as well as a solution on how to capture such data, there

are numerous technical challenges which are highlighted in this chapter and solutions

to them presented.
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The Chapter proposes an automatic real-time objective measure of audience engage-

ment through automatically analyzing the collective/uninterested synchronized behav-

ior in a very dark environment through detecting facial expressions and body gestures.

The key contributions of this chapter: (i) Audience environments and test-screenings

are very dark and suffer from reflections from the screening. To counter these issues,

we employ a hardware solution which gives us a uniform smooth signal. (ii) Chap-

ter 6.3.2 introduces a labelled dataset of audiences of varying sizes watching movies.

A key insight from this data collection effort is the lack of movement/actions, which

highlights the sensitivity of this task. (iii) Even though the movie viewing environment

is very dark and contains views of people at different scales and viewpoints, we can

measure audience behavior by improving smile detection by using the FLK algorithm

to register audience members’ faces. This overcomes instances when there is abrupt

change in illumination caused by sudden movement. (iv) Proposal of an offline CP

detection algorithm to temporally cluster audience behaviors into a series of “inter-

est” segments and (iv) proposal of a method to learn behaviors using crowd-sourced

audience ratings from rottentomatoes.com.

At a coarse level, nearly all work in face and gesture analysis can be broken down

into face and body movements - however, there are many different factors, such as lab

vs. real-world, individuals vs. crowd/audience, viewpoints, resolutions, illumination

and temporal windows. The best approach of course varies depending on the combi-

nation of factors and the target application. This chapter looks at the novel problem

of analysing an audience in a dark environment over a long period of attention, i.e.

movies.

We demonstrated our approach on three full-length movies and showed that our un-

supervised approach can pick up fine motions which human annotators cannot, which

allows us to summarize audience behaviors as well as predict them. We showed that

we can give a reasonable approximation of audience behavior and in future work we
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will be collecting a large volume of data to further test out this approach.



Chapter 7

Conclusions and Future Research

The Chapter summaries the dissertation by noting the original contributions made in

the fields of computer vision and AVASR. A summary of future revenues is also high-

lighted in Chapter 7.2.

7.1 Summary of Contributions

Today, computer vision applications such as face detection in cameras/IPhones work

reasonably well in controlled environments where the illumination does not change.

However, use of the computer vision in many practical applications is still far away,

mainly due to the constant change of illumination and very low-light/dark lighting

conditions. The key problem is obviously sensing the face in these illumination condi-

tions as the face contains a rich amount of behavioral information. Prototype systems

have been built to register human face using either coarse-type of alignment or dense

alignment methods to obtain a rich amount of visual information to recognize human

behavior.
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This thesis has attempted to remove the expenses associated with the lighting varia-

tions, which limit the use of computer vision theory for many applications. The nor-

mal pipeline would be to first sense the face and then extract out features which contain

meaningful information and finally do the classification task. In an attempt to remedy

this situation, the work in this thesis has concentrated on researching and developing

methods to recognize human behavior through visual information by focusing on face

sensing, feature extraction and classification tasks. In addition to that, this dissertation

has highly detailed two real-world applications namely, (i) recognizing human speech

through lip reading within an automotive environment and (ii) automatically recogniz-

ing audience collective/uninterested synchronized behavior in very dark environment

while engaging with movies, taking into account the problems associated with lighting

variations and providing solutions to overcome those problems with computer vision.

The work contained in this dissertation was performed with the intention of address-

ing these novel and previously unsolved problems in the fields of computer vision and

AVASR. Within this spectrum of broad problems, the major contributions stemming

from this work are summarized as follows:

(i) Behaviors of coarse-type of face alignments and fine registration methods are

investigated. The performance of face alignment methods is also compared with

different lighting conditions and demonstrates that it degrades with illumination,

especially in low-light conditions when employing the use of coarse-type of face

alignment methods (Refer to Chapter 3). In order to overcome the problem with

illumination with the fine registration method, Chapter 4.5 demonstrates a novel

method showing how LK-inspired AAM fitting gives identical performance in the

spatial and Fourier domains. Further, we demonstrate how the effect of multiple

filter responses can be re-interpreted as a diagonal weighting matrix in the Fourier

domain leading to substantial computational savings, when performing inverse

compositional simultaneous fitting across multiple filter responses.
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(ii) We demonstrate the process of applying the inverse compositional project-out al-

gorithm in the Fourier domain by showing how: (i) Fourier transforms to the cur-

rent image, and (ii) the application of multiple filter responses can be completely

pre-computed offline. This contribution is of key importance to person-specific

AAM face fitting, as it provides an extremely computationally efficient method

that affords both invariance to both expression and environmental variations. The

method was tested with MPIE database and presents empirically the substan-

tial improvement in person-specific AAM fitting performance over canonical LK

inspired fitting algorithms (i.e. simultaneous and project out), when using our

proposed Fourier variants. For all our experiments we employed biologically

motivated Gabor filter banks (Refer to Chapter 4).

(iii) We provide a comparison of the recognition performance of single channel

and multi-channel enhanced speech (in Chapter 5.4.2) with the performance

of audio-visual speech using data from a challenging automotive environment

(AVICAR [98]), which introduces a number of visual challenges, including

changes in illumination and speaker pose as well as severe audio impairment

arising from car engine, wind and road noise. Chapter 5.7 shows that visual

speech recognition results within a vehicle-environment obviously diminished

from what is obtained in ideal laboratory conditions. We extend this study to

also demonstrate that the complementary nature of visual information and en-

hanced audio observed in [45] still holds true when using multi-channel speech

enhancement algorithms and state-of-the-art middle integration techniques (i.e

synchronous hidden Markov model (SHMM)) for audio-visual fusion.

(iv) Chapter 5.8.2 presents further improvements in speech recognition accuracy over

traditional single-camera AVASR approaches that can be obtained when multiple

frontal or near-frontal views of speakers’ faces are available in a real-world au-

tomotive environment. The combination of the four visual streams with a single

acoustic stream in a five-stream audio-visual SHMM demonstrated a relative im-
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provement of between 6% and 17% word-level accuracy over traditional single-

camera AVASR, and between 9% and 56% relative improvement in word-level

accuracy when compared to the acoustic-only approach.

(v) At a coarse level, nearly all work in face and gesture analysis can be broken down

into face and body movements - however, there are many different factors, such

as lab vs. real-world, individuals vs. crowd/ audience, viewpoints, resolutions, il-

lumination and temporal windows. The best approach of course varies depending

on the combination of factors and the target application. In this thesis, we look

at the novel problem of analysing an audience in a dark environment over a long

period of attention, i.e. movies. Due to the complexity, size and difficulty of this

task, no one has previously looked at this problem. This dissertation introduces

a new problem to the field of face and gesture analysis with numerous technical

challenges.

Audience environments and test-screenings are very dark and suffer from reflec-

tions from the screening. To counter these issues, we employ a hardware solution

which gives us a uniform smooth signal in Chapter 6.3. Chapter 6.3.2 introduces

a labelled dataset of audiences of varying sizes watching movies. A key insight

from this data collection effort is the lack of movement/actions, which highlights

the sensitivity of this task.

(vi) Even though the movie viewing environment is very dark and contains views

of people at different scales and viewpoints, we can measure audience behavior

by improving smile detection by using the FLK algorithm to register audience

members faces. This overcomes instances when there is abrupt change in illumi-

nation caused by sudden movement. Recognizing the synchrony of smiles was

challenging due to the occlusion of the face and various pose angles of the par-

ticipants. However, we were able to improve the synchrony of smiles by 12.6%

with proposed Gabor FLK in an audience (dark) environment.
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(vii) This thesis introduces a method to obtain an indicator for audience engagement

or disengagement using standard optical flow. We generate a flow-profile of each

person contained within their local 3D temporal volume via optical flow, which

is aggregated into a collective stillness measure. It shows that this approach can

pick up on the different genres and interest points in movies and can be used to

monitor the engagement of the audience over the time using a battery of experi-

ments.

(viii) In addition to that, Chapter 6 proposes an entropy of pair-wise correlations mea-

sure to give an indication of audience coherency. Additionally, it proposed an

off-line change-point detection algorithm to temporally cluster and summarize

audience behaviors into a series of interest segments. We show that the proposed

unsupervised approach outperforms human-annotated labels, which do not pick-

up these fine details. Using the audience ratings from rottentomatoes.com, we

are able to learn to differentiate between good and bad movies based on these

interest segments. The introduced method showed that we can give a reasonable

approximation of audience behavior compared to rottentomatoes.com ratings.

7.2 Future Research

This dissertation detailed the problems and solutions in recognizing human behaviour

through visual information in noisy environments. The variation of illumination over

time or low-light conditions is one of the biggest challenges to recognize human be-

haviour via visual modality for many applications and this thesis provides solutions

towards overcoming this challenge. As a result of this work, a number of different

avenues of further work have been identified and can be listed as follows:

(a) Chapter 4.5 introduces a novel method to show how LK-inspired AAM fitting
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gives identical performance in the spatial and Fourier domains. Even though the

introduced method is able to handle the variation of illumination, there is a need

for more robust methods to handle the variation of the scale of face.

(b) Throughout this thesis AVASR experiments were conducted using audio modality

and two dimensional (2D) lip images as visual modality. 2D images give only

the height and the width of the ROI. On the other hand, three dimensional (3D)

representation supplies more information that is not available in a 2D image, such

as the depth of an object. Therefore having a system that can represent the lip

region in 3D will give more visual information about the speaker and it will help

to increase the robustness and the effectiveness of the AVASR system. This is an

important future direction to be solved, especially in an automotive environment,

for the design of an efficient human-vehicle computer interface.

(c) This thesis proposes a novel problem of an automatic real-time objective

measure of audience engagement through automatically analysing the collec-

tive/uninterested synchronized behavior in very dark environment through detect-

ing facial expressions and body gestures. This thesis used the state-of-the-art smile

detection method using HOG features and SVM classifier. However, this task is

quite challenging, because the resolution, occlusion of the face and viewing angles

for the different participants is quite varied. In the future, there will be a need for

analysing strong features through an ability to tackle the above-mentioned chal-

lenges in an audience (dark) environment.

(d) To obtain the body features to calculate the audience engagement/disengagement

and audience ratings in Chapter 6, we used optical flow. However, calculation

time for optical flow features is expensive which limits the usage of our method in

a real-time audience application. Methods such as image subtraction is need to be

investigated to calculate body features.

(e) Chapter 6 proposes a method to obtain movie ratings automatically. The proposed
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method showed that it gives a reasonable approximation of audience behavior.

This shows a proof-of-concept, that a possible measure can be obtained, although

large amounts of footage of audiences are needed to get an indication of signifi-

cance.

(f) The detection or tracking faces in very dark lighting is very challenging over a long

period of time (i.e up to 2 hours). Long-term face monitoring in dark conditions

will be another research avenue.

(g) Although illumination variation is a major problem for many real-world applica-

tions, other variabilities, such as appearance, speaking style and speaker emotion

and expression, need to be investigated as well.
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[198] C. Wiskott, J. M. Fellous, N. Krüger, and C. von der Malsburg, “Face recogni-

tion by elastic bunch graph matching,” IEEE Trans. PAMI, vol. 19, pp. 775–779,

July 1997.

[199] H.-W. H. Xuedong Huang, Alex Acero, Spoken Language Processing: A Guide

to Theory, Algorithm and System Development. 2001.



BIBLIOGRAPHY 181

[200] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential

images using hidden markov model,” In Computer Vision and Pattern Recogni-

tion (CVPR), pp. 379–385, 1992.

[201] M. Yang, N. Abuja, and D. Kriegman, “Mixtures of linear subspaces for face

detection,” Proceedings of the International Conference on Automatic Face and

Gesture Recognition, pp. 70–76, 2000.

[202] G. Yang and S. Huang, “Human face detection in complex background”,” Pat-

tern Recognition, pp. 53–63, 1994.

[203] M. Yang, D. Kriegman, and Ahuja.N., “Detecting faces in images: A survey,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 34–58,

2002.

[204] T. Yoshinaga, S. Tamura, K. Iwano, and S. Furui, “Audio-visual speech recogni-

tion using lip movement extracted from side-face images,” In International Con-

ference on Auditory Visual Speech Processing (AVSP), pp. 117–120, 2003.

[205] S. Young, G. Everman, T. Hain, D. Kershaw, G. Moore, J. Odell, V. V. Ollason,

D. D. Povey, and P. Woodland The HTK Book (for HTK Version 3.2.1), 2002.

[206] A. Yuille, P. Hallinan, and D. Cohen, “Feature extraction from faces using de-

formable templates,” Internation Journal of Computer Vision, pp. 99–111, 1992.

[207] Z. Zeng, M. Pantic, G. Roisman, and T. Huang, “A survey of affect recognition

methods: Audio, visual, and spontaneous expressions,” In TPAMI, 2009.


	Abstract
	List of Tables
	List of Figures
	Acronyms & Abbreviations
	Certification of Thesis
	Acknowledgments
	Chapter Introduction
	Motivation and Overview
	Scope of Thesis
	Outline of Dissertation
	Original Contribution of Thesis
	Notations
	General Notation
	Fourier Notation

	Publications Resulting from Research
	International Journal Publications
	International Conference Publications


	Chapter Understanding Human Behavior via Faces and Bodies
	History of Recognising Human Behavior 
	Importance of Face Sensing
	Why Face Sensing is Difficult?

	Facial Expression Recognition
	Visual Speech Recognition
	Activity Recognition
	Chapter Summary

	Chapter Face Alignment: Background
	Introduction
	Coarse-type of Alignment
	The Viola-Jones Algorithm
	The Apple Face Detection Framework
	The Fraunhofer Face Detector

	Fine Registration: Active Appearance Models
	Person Specific vs Generic AAMs
	AAM fitting
	Simultaneous Algorithm
	Project-out Algorithm

	Experiments: Off-the-shelf Face Detectors and AAMs
	Off-the-shelf Face Detection Results
	AAM Face Registration Results

	Comparison: Coarse vs Fine Alignment
	Chapter Summary

	Chapter Face Alignment in Fourier Domain
	Introduction
	Related work

	Lucas & Kanade Algorithm
	Inverse Compositional Algorithm 

	Fitting with Filter Responses
	Filter Responses in Spatial Domain

	Fourier Lucas & Kanade
	Fourier Inverse Compositional Algorithm
	Registration: LK vs FLK

	AAMs with Filter Responses
	Fourier Simultaneous and Project-Out
	Weighted PCA
	Computational Concerns

	MultiPIE Experiments
	Measuring Fitting Performance
	Simultaneous Results
	Project-out Results

	Tracking Experiments
	Chapter Summary

	Chapter Analysis I: Visual Speech Recognition in Varying Lighting Conditions
	Introduction
	AVASR System
	Acoustic Feature Extraction
	Visual Front-End
	Visual Feature Extraction
	Audio-Visual Speech Modelling
	Audio Visual Databases

	The AVICAR Database
	AVICAR Protocol

	Experimental Configuration
	Evaluation Protocol
	Acoustic Speech Extraction
	The VJ Based Visual-Front End
	Visual Speech Extraction
	Speech Modelling

	Acoustic Speech Recognition
	Visual Speech Recognition using FLK
	Visual Speech Recognition using FLK: Discussion

	Visual Speech Recognition using Multiple Cameras
	Single Cameras
	Multiple Cameras

	Audio Visual Speech Recognition using Multiple Cameras
	Single Cameras
	Multiple Cameras

	Chapter Summary

	Chapter Analysis II: Long-Term Audience Analysis 
	Introduction
	Related Work
	Audience Analysis Test-bed
	Test-bed
	Labelled Data

	Audience Facial Behavior : Smiles
	Features for Audience Environment
	Improved Smile Detection

	Flow-Based Gesture Analysis
	Fundamentals of Optical Flow
	Individual Flow-Profile
	Face vs Body Features

	Temporally Segmenting Audience Behaviors
	Proposed Individual Change-Point Detection
	Audience Change-Points

	Summarizing Audience Behavior
	Entropy of Pair-Wise Correlations
	Predicting Movie Ratings

	Chapter Summary

	Chapter Conclusions and Future Research
	Summary of Contributions
	Future Research

	Bibliography



