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A PRELIMINARY STUDY OF TRUNK KINEMATICS
DURING WALKING IN NORMAL SUBJECTS

ABSTRACT

The purpose o f  this study was to systematically describe the three-dimensional 

trunk kinematics in normal subjects, to establish a  baseline for comparison to future 

research in gait analysis and aid in the identification o f pathological gait. Seventeen 

volunteers between the ages o f twenty and fifty, who met criteria for normal subjects, 

participated in this study. Trunk kinematic data were collected using an optoelectronic 

technique. An ensemble a v e rse  o f trunk kinematic data in each o f  the cardinal planes 

was plotted in degrees o f motion versus percentage o f gait cycle. A distinct pattern o f 

trunk kinematics during gait was found in this study. Trunk motion relative to the pelvis 

was of greater magnitude than motion relative to the lab in the frontal and transverse 

planes. Inter-subject variability ranged from 37% to 644%, with the greatest amount of 

variability occurring in measurements o f trunk movement relative to the lab in all three 

planes. Stride to stride variability within subjects ranged from 28% to 182%, with the 

greatest amount o f intra-subject variability in trunk movements relative to the pelvis.
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CHAPTER 1 

INTRODUCTION

According to  Steindler (1955), "walking is a series o f  catastrophes narrowly 

avoided” ( pg. 67). Although to the casual observer, the walking pattern o f an individual 

without p in e a l  disability does not look like an avoided catastrophe, the process of 

walking is a series o f  complex events. An individual’s walking pattern is referred to as 

gait. Gait can be described as the process of moving the body mass horizontally by 

alternating weight bearing and forward motion between the two lower extremities. Many 

authors have concentrated on the movement characteristics o f  the lower extremities in 

describing gait (Steindler, 1955; Lamoreux, 1971; Sutherland, Olshen, Cooper, & Woo, 

1980; Inman, Ralston, & Todd, 1981; Boccardi, Pedotti, Rodano, & Santambrogio, 1981; 

Cappozzo, 1982; Perry, 1992; and Oberg, Karsznia, & Oberg, 1994). Adrian and Cooper 

(1989) indicated that the body mass first falls forward to initiate gah while the lower 

extremities prevent an actual fall by repositioning under the body, “establishing a new base 

o f support” ( pg. 279).

In describing a complex action, such as gait, it is useful to understand its 

component parts to simplify the analysis. The gait cycle is the series of events progressing 

from initial contact o f  one lower extremity, with forward movement, to the next initial 

contact o f the same extremity. The gait cycle has two nutjor phases, stance and swing.

The stance phase, which makes up approximately 60% o f  the cycle, is divided into 

subphases of initial contact (0%), loading response (0-10%), midstance (10-30%),

I
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terminal stance (30-50%), and pre-swing (50-60%). The remaining 40% o f  the gait cycle 

occurs in swing phase and includes the subphases; initial swing (60-70%), midswing (70- 

85%), and terminal swing (85-100%) (see Figure 1-1). These gait cycle descriptors have 

been thoroughly defined by Perry (1992). Breaking down the gah cycle into subphases 

allows researchers and clinicians to id a iti^  the critical kinematic and kinetic events 

occurring during gait. For example, in pre-swing, the knee must passively flex to forty 

degrees to allow for proper foot clearance and limb advancement (Pathokinesiology 

Department, Physical T her^y  Department, 1989). Kinematics is the description o f 

motions without regard to the forces producing the motions (Ozkaya & Nordin, 1991). 

Although many authors have described the kinematics of the lower extremities during 

walking (Steindler, 1955; Lamoreux, 1971; Sutherland et al., 1980; Inman et al., 1981; 

Boccardi et al., 1981; Cappozzo, 1982; Perry, 1992; and Oberg et al., 1994), there is little 

objective data on trunk kinematics. Waters, Morris, & Perry (1973) supported this 

contention.

Studies o f human walking generally concentrate on the 
most obvious aspect o f  gait, namety, movement o f the lower 
extremities and connecting pelvis. Less attention is paid to 
motion o f the head and trunk (pg. 167).

Human motion, and in particular trunk motion, is complex. Gross trunk motion 

results fi'om the summation o f coupled rotational and translational movements within each 

vertebral motion segment. Gross trunk kinematics, however, cannot be generalized from 

specific q)inal arthrokinematics or osteokinematics of a vertebral segment. Research by 

Nordin & Frankel (1989) has shown that thoracolumbar motion diflfers from cervical and
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Figure 1-1. Subphases of the gait cycle
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sacral movement. For example, the thoracic spine allows for more rotation compared to 

the lumbar spine which allows greater flexion and extension (Nordin & Frankel, 1989). 

Fryette (1954) also described trunk osteokinematic movement between vertebral segments 

as follows: lateral flexion and rotation are coupled to the opposite side when the vertebral 

column is in a neutral position and to the same side when the vertebral column is flexed or 

extended. Although spinal segmental movements are coupled in two or more planes 

simultaneously, generally, assessments o f  trunk kinematics during gait have measured 

gross trunk motion (Cappozzo, Figura, Leo, & Marchetti, 1978; Cappozzo, 1981; 

Cappozzo, 1982; Thorstensson, Carlson, 2k>mlefer, & Nilsson, 1982; & Krebs, Wong, 

Jesevar, O’Riley, & Hodge, 1992). Given the complexity o f vertebral motion segment 

kinematics, it is dffîcult to study these motions in vivo with present day motion analysis 

qrstems. Analysis o f spinal motion has concentrated on gross trunk kinematics because of 

this complexity. There is a need to better quantify the three-dimensional kinematics o f 

gross trunk motion during the gait cycle, in order to begin to identify critical kinematic 

events occurring in the trunk. The identification o f critical kinematic events can guide 

clinicians in their assessment and treatment o f pathological gah.

In describing three-dimensional trunk motion, the researcher needs to define a 

reference system around which movement occurs. Coordinate Qrstems referenced to the 

body allow motion to be described in the cardinal planes. Three planes o f motion exist 

with reference to anatomical position. These are the cardinal planes: frontal, sagittal and 

transverse (see Figure 1-2). Trunk motion which occurs within the frontal plane can be 

defined as lateral flexion, either toward or away from the stance limb. Sagittal plane



FRONTAL SAGITTAL

Figure 1-2. Representation of the three cardinal planes. From 
Joint Structure & Function, by C. Norkin & P. 
Levangie, 1992, Philadelphia, PA: F.A. Davis Co.
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motion includes trunk flexion and extension. Axial rotation occurs in the transverse plane 

and is described as a rotation toward (retraction) or away from (protraction) the reference 

limb. Some researchers have measured trunk displacement during gah in only one or two 

o f the cardinal planes (Weber & Weber, 1894; Gregerson & Lucas, 1967; Chapman & 

Kurokawa, 1969; & Thorstensson et al., 1982), while other researchers have studied 

vertical trunk displacement (Waters et al., 1973 and Cappozzo, 1981). Krebs et al. (1992) 

and Crosbie, Vachalathhi, and Smhh (1997a) appear to be the only researchers, using 

modem computerized gait analysis, who have published research on trunk motions 

occurring in all three planes simultaneously.

Researchers have not yet fully established the function o f the trunk during gait An 

analysis of the relationship between trunk Idnematics and the gah cycle subphases may 

lead to an understanding o f basic trunk fiinction in gah. Thorstensson et al. (1982) stated 

that "an adequate control o f  the trunk in relation to the movement o f the extremities is 

essential for efficient and smooth locomotion" (pg. 13). Norkin and Levangie (1992) 

indicated that the trunk provides a stable base for extremity movement. Most researchers 

have suggested that the lower extremities drive human locomotion, while the trunk 

functions primarily as a stabilizer. On the other hand, Gracovetsky (1988) theorized that 

the trunk was the locomotor engine for human movement. He stated, ‘̂ he spine and its 

surrounding tissues emerge as the pervasive element - the primary engine - o f  locomotion 

in animals such as ourselves” (pg. 7).

Orthopedic and neurological physical therapy treatment techniques are geared to 

restoring function in patients with deficits. As gait is one of the most functional tasks, an
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analysis o f  pathological gah is imperative for a comprehensive patient evaluation. There is 

limited objective normative data regarcting trunk movement during gait which the clinician 

can use for comparison. Most current clinical techniques for analyzing gait are based on 

observation. According to Krebs et al. (1985), “observational kinematic gait analysis 

appears to  be a convenient, but only moderately reliable, technique” (pg. 1027). There is 

a lack o f objective research in analyzing trunk kinematics even among researchers who 

have had access to more accurate computerized analysis systems. Most research which 

has utilized computerized motion analysis technology to study trunk kinematics have used 

small samples which represented a  limhed and homogenous population (Thorstensson et 

al., 1982; Thorstensson, Nilsson, Carlson, & Zomlefer, 1984; Opila-Correia, 1990; and 

Krebs et al., 1992). These researchers generally concluded that a small amount o f trunk 

movement occurred during gait (Thorstensson et al., 1982; Thorstensson et al., 1984; 

Opila-Correia, 1990; and Krd)S et al., 1992). Waters et al. (1973), Chapman and 

Kurokawa (1969), Thorstensson et al. (1982), and Crosbie et al. (1997a) have 

demonstrated that there is a repeatable sequence o f trunk movement during gait.

However, an accepted database o f research has not been established which consistently 

describes or quantifies patterns o f trunk motion occurring in the gah cycle.

In past research, trunk movement has been measured relative to time, other body 

s%ments, and/or a  reference point within the laboratory area (Chapman & Kurokawa, 

1969; Carlson & Thorstensson, 1981; (Zappozzo, 1981; Thorstensson et al., 1982; and 

Thorstensson et al., 1984). Only two studies have related trunk movement to percentage 

o f gait cycle. However, neither study described trunk motion with regard to the subphases
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of gait (Waters et al., 1973 and Crosbie, et al., 1997a). Some studies have identified 

events in the gait cycle when maximum trunk displacement occurred. However, analysis 

o f  trunk position relative to the subphases o f the gait cycle has not been completed and is 

needed for a  thorough comparison to pathological gah. A considerable amount of 

research on trunk kinematics has fiKused on parameters, other than quantifying 

displacements, such as; speed o f walking (Chapman & Kurokawa, 1969; Lamoreux, 1971; 

Waters et al., 1973; Cappozzo et al., 1978; Cappozzo, 1981, and Crosbie et al., 1997b), 

low versus high-heeled gait (Opila-Correia, 1990), age related differences in trunk 

kinematics (Crosbie et al., 1997b) and treadmill versus free walking (Waters et al., 1973; 

Carlson & Thorstensson, 1982; Thorstensson et al., 1982; and Thorstensson et al., 1984). 

While these studies have been important in building an understanding of conditions 

afifecting trunk motions during gah, they do not provide a  concrete reference for clinicians 

to use in their gah assessments, nor do they provide a clear understanding of trunk 

function during gah.

The purpose o f  this study was to systematically analyze three-dimensional trunk 

kinematics relative to the subphases of the gait cycle in normal subjects, to establish a 

preliminary baseline for comparison to future research in gah analysis and aid in the 

identification o f pathological gah. This data may contribute to an understanding of trunk 

control during locomotion.

Normative trunk kinematic data during gait will be o f  value to many health 

professionals including physical therapists, physicians, biomechanists, and other individuals 

who utilize gait analysis in developing treatment protocols. Normative data can be used as
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a reference to identify gait abnormalities. Specifically, the Grand Valley State 

Universify/Mafy Free Bed Rehabilitation Hospital Center for Human Kinetics Studies has 

identified a need for normative trunk data to assist in their clinical decision making 

regarding amputee, cerebral palsy, post-polio, stroke, traumatic brain injury, and other 

patients with neurological and musculoskeletal pathologies.



CHAPTER 2 

LITERATURE REVIEW

Introduction

Research on trunk motion during gait has been documented since 1894. This 

chapter will chronologically review the various studies which analyzed trunk motions 

during gait and review other variables which appear to affect an individual’s walking 

pattern. Prior to modem day motion analysis ^stem s, research on trunk movement during 

gait has differed in recording, description, and explanation methods. Some researchers 

described trunk movements as displacements in centimeters (Weber & Weber, 1894; 

Murray, Drought, and Kory, 1964; and Waters et al., 1973), others described trunk 

movement in degrees o f motion (Chapman & Kurokawa, 1969 and Cappozzo, Figura,

Leo, and Marchetti, 1978), while a third group o f researchers qualitatively described trunk 

motion ^ rau n e  6  Fischer, 1987 and Gregerson & Lucas, 1967). Since different 

approaches have been used to describe trunk motion during gait, it has been difficult to 

make generalizations regarding spinal function and dysfunction.

History o f  Trunk Kinematic Research 

The cardinal study o f trunk kinematics was completed by the Weber brothers in 

1894. In this study, a telescope was used to observe the motion of a particular line on the 

trunk to determine overall trunk movement. These researchers determined the trunk’s 

vertical oscillation to be approximately 32 mm and described an anterior trunk inclination 

during walking on a horizontal surface (Wdjer & Weber, 1894). Although results could

10



11

not be generalized to the greater population because one subject was used and motion was 

only described in two planes, the Weber brothers inspired further gait research.

In a  series o f two experiments in 1895, Braune and Fischer, using photography, 

analyzed trunk motions occurring in the three cardinal planes. Their subject was required 

to wear an insulated jumpsuit with nitrogen filled glass tubes attached along major body 

segments. The glass tubes represented the rigid body structure o f  each individual 

segment. Electric charges illuminated the tubes to capture segmental positions on film at 

approximately 30 &ames/sec (30 Hz). Lines drawn on photographs connecting hip joints 

and shoulder joints were compared to assess trunk rotation. Sagittal and frontal plane 

motion was determined by comparing both shoulder and hip joint lines with the 

movements o f the lower extremities. Braune and Fischer (1987) recorded minimal trunk 

movement in all planes. Movements in the transverse plane, however, were not quantified 

because there were irregularities in their data. Sagittal plane movement was described as a 

forward or backward tilt. Forward tilt occurred maximally before initial contact while 

maximum backward tih occurred at mid-stance. Frontal plane motion was described as a 

trunk tih either toward or away from the stance limb. Braune & Fischer (1987) described 

a maximum tilt o f  the trunk, toward the stance limb, shortly after heel strike. These 

researchers reported that following this maximum excursion, the trunk returned to neutral. 

Limitations o f  the study included: (a) Trunk motions may have been inhibhed due to the 

intricate measurement apparatus and the subject’s fear o f potential electrocution with 

movement, (b) Motions were quantified only in one plane, and (c) There was only one 

subject. Therefore, generalizations could not be made to the general population.



12

However, Braune and Fischer pioneered two concepts related to studying trunk movement 

during gah. One, body segments could be thought of as rigid bod&es, enabling kinematic 

calculations using classical mechanics principles. Two, tb^r developed a 

stereophotogrammetric technique which was a precursor to optoelectronics, a  technique 

used in modem day gait analysis.

In 1964, Nhirray, Drought, and Koiy conducted a comprehensive gait study on 

males to establish parameters for normal gait. Sixty subjects were first divided into five 

cat%ories by age and then further divided into sample groups by height (short, medium, 

and tall). They used interrupted light photography to record the position o f reflective 

targets on ambulating subjects. The following gait determinants were studied: step and 

stride length, foot angle, and kinematics o f the trunk and lower extremities. Trunk 

kinematics were analyzed and described with respect to movement occurring in the 

cardinal planes and in the vertical direction. The authors also analyzed the difference in 

pelvic and thoracic rotation to  describe the amount of counter-rotation which occurred 

within the varying height and age groups. The results of the kinematic analysis showed 

strikingly similar data for repeated trials with the same subject and between subjects, 

except for transverse rotation o f the trunk. The pattern found in the transverse plane was 

variable. Tall subjects showed the least amount o f thoracic rotation but the greatest 

amount of pelvic rotation, while data on the other height groups was not conclusive. The 

authors were unable to calculate the average time for peak thoracic or pelvic rotation 

because of this inter-subject variability. The authors suggested that “these [transverse] 

excursions are produced more by an individual's attitude of locomotion than by
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mechanical demands” (pg. 358). Since different height groups showed differing amounts 

o f pelvic and thoracic excursion, no proportional pattern in the counter-rotation data 

could be shown. In the frontal plane, t h ^  reported lateral trunk oscillations occurring 

toward the stance limb, with a  mean peak magnitude o f 6.0 ± 1.7 cm at mid-stance. The 

measurements taken in the sagittal plane represented forward displacement and not trunk 

fledon or extension. The researchers found an oscillating pattern o f forward displacement 

with two peaks o f  forward movement occurring “shortly afrer heel strike [initial contact] 

during periods o f  double limb support” (pg. 349). In the vertical direction, two periods of 

maximum excursion were found to have occurred during each period o f single limb 

support “as the trunk rotates over the fixed foot” (pg. 349). The authors calculated an 

average vertical displacement o f 4.9 ± 1.1  cm. No correlation between %e and kinematic 

variables were found.

Subsequent assessment o f trunk movement during gah involved an in vivo study in 

which Gregerson and Lucas (1967) measured axial rotatioiL T h ^  analyzed spinal 

movements by inserting pins into spinous processes at different segmental levels and 

measured the movement between the pins. Although segmental movement measurements 

were inconsistent, a general pattern of trunk movement was found: (a) An opposite 

rotation between the shoulders and pelvis was found during treadmill walking at 4.38 

km/hr, (b) The magnitude o f shoulder rotation was found to be less than pelvic rotation, 

and (c) The T? level remained neutral throughout gah, representing the pivot point 

between pelvis and shoulder motion Due to small sample size and an inconsistent testing
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protocol, results o f  segmental movements were not generalizable to the general 

population.

In 1969, Chapman and Kurokawa described the transverse rotation of the pelvis 

and shoulders (upper trunk) as subjects walked on a treadmill at three different speeds. 

Thqr also compared upper trunk rotation in relation to the pelvic rotation, which they 

defined as counter-rotation. As subjects walked faster, the amount o f upper trunk rotation 

decreased while the amount o f pelvic rotation and trunk counter-rotation increased. Mean 

upper trunk rotation decreased from 7.8° to 5.8° with changes in speed from 2.93 km/hr to 

5.86 km/hr, respectively. Average pelvic rotation increased from 7.6° to 13.2° and mean 

counter-rotation increased from 9.4° to 17.0°, during the same test. Chapman and 

Kurokawa (1969) indicated that counter-rotation was “not exactly 180° out o f phase” (pg.

39). This meant that the upper trunk was not moving ^chronously  in opposition to the 

pelvis. The authors admitted that th ^  had difficulty quantifying rotations during gah 

because the subject was “tethered by electrical wiring to the recording equipment” (pg.

52) . Furthermore, this study was limited by the fact that h  only described motion in one 

plane.

Waters et al. (1973) studied trunk kinematics during gait by using transducers 

attached to subjects at the head, Tio, and S2. The transducers registered trunk 

displacement in the lateral, vertical, and progressional directions while subjects walked on 

a treadmill at three different speeds r a n ^ g  from 2.92 to 5.84 km/hr. Measurements 

were related to percentage o f gah cycle and were correlated with differences in walking 

speed. Waters et al. (1973) found that increases in displacement o f the trunk in all
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directions were proportional to walking speed, except excursions in the lateral direction. 

“The amplitude o f lateral displacement is relatively unchanged at increasing walking 

speeds” (pg. 171). Lateral displacements were found to move, on average, 4.5 cm away 

from the swinging limb, at 62% o f the step cycle and continued until “the same time in the 

next step cycle” (pg. 170). There were no differences found between the magnitudes of 

pelvic and head displacements in the lateral direction. Average vertical trunk displacement 

was found to be approximately 4.2 cm. There was no difference found between vertical 

displacement at the pelvis and head, i.e. the head and pelvis move together in the vertical 

direction. “Maximum downward displacement occurred at 17 % o f the step cycle [double 

support] and maximum upward displacement occurred at 6 8 % o f the step cycle [single 

support]” (pg. 170). Unlike vertical displacement, movements in the progressional 

direction were not coupled between the head and pelvis. Progressional displacements 

were measured as the amount o f upward or downward movement o f the various segments 

(Sz, Tio, and head). Waters, et al. (1973) found that all segments displaced sinusoidally, 

with excursions in both directions. However, the amplitude o f excursions decreased from 

2 .6  cm at Sz to 0.5 cm at the head. Limitations for this study included; (a) Only five 

subjects were assessed and (b) Results for lateral and vertical displacements were reported 

in relation to step cycle. However, the authors did not objectively define “step cycle”. 

Therefore, it was difficult to interpret where in the gait cycle, the displacements in these 

three planes occurred.

It was not until 1978 that Cappozzo, Figura, Leo, and Marchetti utilized the 

stereophotogrammetric technique developed by Braune and Fischer in analyzing motions
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of the trunk. Stereophotograminetiy is the ‘"three-dimensional reconstruction o f  the 

instantaneous position o f  a moving point in a laboratory coordinate system" (Cappozzo, 

1984). Light emitting diodes were attached to the subjects’ trunk and upper and lower 

extremities. Using four open-shutter cameras positioned symmetrically at the four comers 

of the lab, trunk movements in the frontal, transverse, and sagittal planes were calculated 

from photographs o f targeted anatomical landmarks. Measurements o f trunk motions 

were related to movements o f the pelvis, described in relation to percentage of gait cycle, 

and correlated with changes in walking speed. The authors stated that ‘"when speed of 

progression increases, the movement pattern changes” (pg. 278), however, they did not 

spedfy if  this relationship between kinematics and speed were found in all the cardinal 

planes. In their discussion, they cited research by Waters et al. (1973) as having consistent 

findings with their study. One might deduce that the movement changes which were 

correlated with walking speed were within the sagittal and transverse planes, as these were 

the planes which Waters et al. (1973) investigated. Limitations in this study included; (a) 

Only two subjects were used in thdr design and, (b) Subjects’ movements may have been 

inhibited due to imposed upper extremity flexion during gait (the arms were flexed to 

enable researchers to  view all targets during the gait cycle).

Using similar methodology, Cappozzo (1981) found a repeatable pattern o f head 

and trunk displacement during walking, which supported results from the 1978 study. In 

1981, Cappozzo used harmonic analysis to differentiate two patterns o f trunk movement, 

intrinric and extrinsic. He described the intrinric pattern as a “stereotyped” movement in 

the antero-posterior, medio-lateral, and vertical Erections that was consistent within and
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between subjects. The extrinsic pattern was described as "not inherent to the locomotor 

act in its essential form but rather ascribed to  some sort o f external disturbance” (pg. 4 17). 

The extrinsic pattern was found to have a high degree o f variability due to factors such as, 

anatomical or functional asymmetries and environmental disturbances. Along the 

anteroposterior axis, the pelvis was found to displace further than the shoulder or head, 

while in the medio-lateral axis, head and shoulders underwent a larger excursion than the 

pelvis. Results from Cappozzo s 1978 and 1981 studies were quantified in unconventional 

terras using Lissajour plots and harmonic analysis which have not been practical for 

clinicians to use.

Current Trunk Kinematic Research 

Whittle (1991) stated, "... photography remained the method o f choice for the 

measurement o f human movement [lower extremities] for about 1 0 0  years until it was 

displaced by electronic ^sterns” (pg. 161). In reference to photographic analysis o f the 

trunk, Cappozzo (1984) stated, "measurements in the strict sense could not be sufficiently 

accurate” (pg. 28). In the past, small amplitudes o f trunk motion have been difficult to 

detect and consistently quantify using photographic techniques. Small amplitude 

movements can now be detected through the use o f optoelectronic techniques. 

Optoelectronic motion analysis consists o f using high speed videography in conjunction 

with computer video processing software to identify three-dimensional positions o f 

anatomically placed targets. Additional processing software uses these three-dimensional 

coordinates to calculate angular displacements o f body s%ments during gait. Some 

current researchers and clinicians have taken advantage of optoelectronics to obtain
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objective kinematic data with a higher degree of accuracy compared to observational 

analysis (Thorstensson et a!., 1982; Krebs et al., 1992; Opila-Correia, 1990, and Crosbie 

etal., 1997a). Unobservable three-dimensional trunk movements have been more 

accurately quantified in the cardinal planes (sagittal, frontal, and transverse) using 

optoelectronic systems (K r*s et al., 1992; and Crosbie et al., 1997a).

Until the optoelectronic technique was utilized, researchers had difficulty 

consistently quantifying trunk kinematics in the cardinal planes during gait. High speed 

videography has revealed sagittal plane movement magnitudes between two and ten 

degrees (Thorstensson et al., 1982; Krebs et al., 1992; Opila-Correia, 1990; and Crosbie 

et al., 1997a). Thorstensson et al. (1982) described two oscillations o f  movement 

(forward and backward) in the sagittal plane during one gah cycle. Backward 

displacement began at initial contact and continued through the initial phase o f double 

support. Forward displacement began at the end of the initial phase o f  double support 

(Thorstensson et al., 1982). Krebs et al. (1992) supported Thorstensson’s finding by 

describing “patterns [which] typically included a flexion peak near each heel strike’Xpg-

40). However, Krebs reported that maximum extension occurred during single-limb 

support, rather than fi«don as Thorstensson found. Crosbie et al. (1997a) also agreed that 

there were two oscillations in the sagittal plane which occurred during the gait cycle. He 

reported maximum trunk flexion at heel strike, however, maximum trunk extension was 

found during single-limb support. Crosbie s work supported the findings o f Krebs et al. 

(1992).
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Researchers have disagreed regarding trunk movements in the frontal plane. 

Opila-Correia (1990) denied that there were any significant patterns in the frontal plane 

during gait. Contrary to Opila-Correia (1990), Krebs et al. (1992), Thorstensson et al. 

(1982), and Crosbie et al., (1997a) stated that there was a predictable pattern o f frontal 

plane motion during gait. They found that the trunk was displaced toward the stance limb 

at heel strike, and reached maximum magnitude at contralateral toe-ofif. The magnitude of 

these motions were between two and nine degrees (Thorstensson et al., 1982 and Crosbie 

et al., 1997a). Crosbie et al. (1997a) described trunk motions which occurred at three 

spinal regions (pelvis, lumbar, and thoracic) and noted a greater “ peak-to-peak range of 

motion for lateral flexion” (pg. 1 0 ) at the lumbar segment through the gait cycle.

Optoelectronic systems have helped to quantify transverse trunk motion both 

relative to the pelvis and relative to the coordinate system in which they were recorded. 

Krebs et al. (1992) described transverse plane movement of the trunk during gait as 

“rotating so that the ipsilateral shoulder was posterior to the heel-strike [initial contact] 

limb, nearly directly over the foot at mid-stance, and maximally anterior to the stance limb 

near toe-off [pre-swing]” (pg. 40). At pre-swing and initial contact these motions were 

shown to reach a maximum of ten degrees. Krebs et al. (1992) reported transverse trunk 

motion relative to both the pelvis and room coordinates, and found a greater variability of 

trunk motion relative to the pelvis. Crosbie et al. (1997a) showed a similar pattern o f 

trunk motion in the transverse plane, but reported only two degrees oscillation about a 

neutral axis.
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Theories on Trunk Function during Gah 

There appears to be a controversy regarding the function o f the trunk during gait. 

On one side o f the debate, researchers have asserted that the trunk functions as a stabilizer 

for motions o f  the lower extremities or a dampener to ground reaction forces produced 

during walking. Chapman and Kurokawa (1969) su^ested  that the muscles o f the trunk 

and shoulders inhibited the rotatory forces which occurred at higher walking speeds. They 

postulated that if  shoulder motion were passive in response to pelvic rotation, shoulder 

rotation would increase proportionately to pelvic motion. They did not find this increase 

in shoulder rotation in their study, but suggested that the forces produced by the lower 

extremities were dampened due to the “mechanical characteristics o f the linkage between 

the pelvis and shoulder girdle” (Chapman & Kurokawa, 1969, pg. 57). Cappozzo et al. 

(1978) agreed with Chapman and Kurokawa’s theory regarding the dampening function of 

the trunk and further assumed that dampening occurs to decrease the effect o f ground 

reaction forces on the brain. He stated, “the reduction o f head and trunk energy is to 

lighten the burden on important sensory organs, such as the eyes and labyrinth, that play a 

fundamental role in controlling the movement that is being performed” (pg. 279). In 

1972, Waters and Morris suggested that it was the ground reaction forces which caused 

the trunk muscles to ‘react’ during gait. They indicated that the center o f gravity for the 

entire body resided within the trunk at the level o f Sz. Using electromyography during 

gait testing, they identified back extensor activity as the most probable event in retarding 

the forward flexion moment created by the trunk falling in fi'ont o f the line of the center of 

gravity.
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Ground reaction forces during walking are transmitted through 
the lower extremities and the pelvis to the trunk. These forces 
tend to flex the trunk forward because o f the relatively anterior 
location of the center o f  gravity o f the body. However, it seems 
probable that the [back extensor muscles] act to oppose the 
tendency of the trunk to flexion (Waters & Morris, 1972, pg.
198).

Waters and Morris did not indicate whether the trunk response to ground reaction forces 

also occurred to dampen the mechanical forces induced by the lower extremities. In 1981, 

Cappozzo hypothesized that dampening must occur because the trunk did not move 

rigidly with the pelvis, if it had, the difference in mechanical energy between the trunk and 

lower extremities would have been higher. Townsend (1981) looked at the mechanics o f 

the torso and also hypothesized that dampening occurred, but could not identify the trunk 

as the primary dampening agent.

On the other side o f  the debate, Gracovetsky (1988) stated that the trunk was the 

primary initiator of gait; that it fueled locomotion. He developed his theory by exploring 

the evolutionary history o f  animals in motion. Gracovetsky suggested that, through years 

o f  evolution, humans have evolved to combine the lateral flexion o f  the fish with the 

exploitation o f gravity to power locomotion. He supported his theory by arguing that it 

is the transverse motion o f  the spine, coupled with lateral flexion, which produces a 

characteristic pelvic rotation. It is pelvic rotation which propels movement o f the lower 

extremities. Further, Gracovetsky theorized that through natural selection, humans have 

developed a very efficient gah. Efficiency is obtained through exploitation of gravity and 

ground reaction forces which act on the posterior ligamentous system o f the spine. The 

passive elastic qrstem of the posterior ligaments and fascia allows transfer o f  kinetic to
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potential energy and vice versa for smooth locomotion. Gracovetsky disagreed with 

other researchers’ assertions that the spine was a passive dampener o f ground reaction 

forces, but cited evolutionary evidence that the spine was more than a quiescent spectator 

during gait. Gracovetsky suggested that “the argument is not whether bipedalism 

requires a human spine but, rather, if  human gait can be achieved with a passive, fosed or 

otherwise disabled spine” (pg. 288). He indicated that when a patient wore a spinal 

brace, restricting the natural movement o f the spine, their gait was altered. Additionally, 

Gracovetsky postulated that human gait does not require the use o f  the lower extremities. 

He cited the example of a  patient who was a double above knee amputee and was able to 

walk without prostheses. This individual’s trunk motions were similar to the trunk 

motions of an individual who walked on two legs, except in amplitude o f trunk motion. 

The individual with the double amputation demonstrated a  higher amplitude of trunk 

motion. Gracovetsky contended that “the legs serve to amplify the motion of the spine; 

when they are absent, the motion o f the trunk must become more dynamic in order to 

maintain a reasonable forward velocity, but there is no need to change the basic pattern of 

motion”( pg. 365). According to Gracovetsky, it appears that the dynamic interplay of 

the spine and the surrounding soft tissues are essential for the fluidity o f human gait.

Despite the number o f  researchers in support o f the trunk functioning to dampen 

ground reaction forces produced during gait, there is still no direct evidence to support 

mther theory regarding trunk function during gait. Developing a normative database on 

trunk kinematics may provide some o f the information needed to determine trunk 

function during gait.
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Other factors considered in analysis o f the trunk during gait

Speed

To control for variability in kinematic data and accommodate for bulky measuring 

equipment, m aty researchers have utilized a treadmill in their studies. In treadmill gait, a 

subject is forced to walk at a predetermined and continuous pace. The question has been 

posed as to the speed which best represents a “normal”  walking speed. A 1958 study by 

Ralston determined that 4.38 km/hr was the optimal speed for minimizing energy 

consumption and maximizing comfort. Many gah studies that have used a treadmill have 

chosen this speed (G rierson  & Lucas, 1967; Chapman & Kurokawa, 1969; and Waters 

et al., 1973). Lamoreux (1971), in writing on the importance o f gait analysis, proposed 

that each subject in a study may have many different gait patterns depending on speed. He 

focused more on the differences in kinematics than on efficiency, stating that the “energy 

cost deviating from the so-called optimum is not great” (pg. 8 ). Kinematic changes 

resulting from varying speeds during gait have been observed by numerous researchers 

(Murray et al., 1964; Chapman & Kurokawa, 1969; Waters et al., 1973; Cappozzo, 1981; 

and Crosbie et al., 1997b). Crosbie et al. (1997b) found that there was an increased 

motion between trunk segments with increased speed. Most changes in trunk kinematics 

relative to speed have been documented in the transverse plane. With the exception of 

Chapman & Kurokawa (1969), who found changes in the pattern of trunk movement in 

the transverse plane with increasing speed, most researchers found that only the amplitude 

of trunk movements changed with increases in speed (Murray et al., 1986; Waters et al., 

1973; Cappozzo, 1981; and Crosbie et al., 1997b).
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Gender

Most studies which have analyzed trunk kinematics have predominately used male 

subjects (Weber & Weber, 1894; Braune & Fischer, 1895; Gregerson & Lucas, 1964; 

Mirray et al., 1964; Waters et al., 1973; Cappozzo et al., 1978; Cappozzo, 1981; 

Cappozzo, 1982; Thorstensson et al., 1982; and Thorstensson et al., 1984). A relatively 

small amount of research has been performed addressing differences in trunk and pelvic 

kinematics between men and women at any walking speed. One o f the first studies to look 

at the male/female difference was Chapman and Kurokawa (1969). T h ^  found no 

mgniScant differences between gender, but “at a moderately fast walk, the pattern of 

rotation was sufficiently consistent and individualized [between genders]” (pg. 49). 

Though this was not statistically significant, when walking patterns were graphed, the 

different gender graphs were visibly discernible. Gender effects on trunk motion during 

gait have also been studied by Crosbie et al. (1997b). These researchers found that gender 

had little effect on trunk motion. Krebs et al. (1992) included both male and female 

subjects in their study (5 males, 6  females), but did not report difkrences in male and 

female trunk kinematics. It is premature to postulate that there are no differences in gait 

between the genders, as past researchers have not comprehensively studied this variable. 

Although kinematics during gait may differ with gender, analysis o f  this variable is beyond 

the scope of this study.

Trunk Movement in Clinical Assessment and Treatment 

Abnormal trunk or pelvic movement patterns are often observed in the gait of 

patients with orthopedic disorders. Patients with acute spinal or pelvic dysfunction may
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manifest altered gah patterns as a resuh o f pain, muscle imbalance, soft tissue restrictions, 

or bony malalignment. For example, patients with acute herniated disc injury ambulate 

with an increased lumbar kyphoris and a lateral trunk shift (Hertling and Kessler, 1990). 

“The sacroiliac joints and symphysis pubis are closely linked functionally to the hip and 

intervertébral joints and therefore affect and are affected by movements o f  the trunk and 

lower extremities” (Norldn and Levangje, 1992, pg. 158). During ambulation, the 

sacroiliac joints experience shearing forces as a result o f lateral pelvic tilt. Patients with 

sacroiliac joint dysfunction may not be able to compensate for these shearing forces that 

accompany weight bearing during ambulation. As a result, the pelvis may become painful 

and unstable and increase the stress on the vertebral column as well as the hip joints. 

Pelvic instability may be identified in observational gait analysis as a shortened step length 

or decreased gah speed. Identification o f abnormal trunk and pelvic movements during 

gait can assist the clinician in determining the source of orthopedic dysfunction, aiding in 

clinical decision making. The return o f normal spinal kinematics, as identified by three- 

dimensional gait analysis, can also serve as an objective outcome measure.

Patients whh neurological disorders may also exhibh altered trunk kinematics 

during gah. Many techniques used in the treatment o f neurologic disorders begin by 

6 cilitating ‘normal’ trunk movement. It has been suggested that the trunk serves as the 

base for all body movements (Davies, 1985 and Voss, lonta, & Myers, 1985). This means 

that in order to control the extremities, one needs control over the base, the trunk.

Bobath, who brought to bear neurologcal developmental treatment (NDT), concentrated 

on trunk retraining with the intention that control of trunk movement would lessen the
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dysfunctional movement patterns o f the extremities (Davies, 1985). In NDT, the trunk is 

retrained using repeated patterns of diagonal and rotational movements. Once the 

individual can control these movements, treatment moves to more distal segments. These 

concepts are used not only for retraining o f activities o f daily living, but also include the 

most functional task, gah. Treatments to Acilhate gait are directed toward control o f 

rotations between the trunk and pelvis for smooth and coordinated lower extremity 

movement. Temporal gah parameters, such as cadence, velocity, and step length, are 

often used as a reliable measure in studies o f the efficacy o f neurological treatment 

techniques. Although this is a quantitative way to look at function, it does not account for 

kinematic variables which may influence the efficiency and quality o f gait. Goal writing 

for lower extremity dysfunction during gah is often aimed at improving specific critical 

kinematic events which are lacking. For example, if  an individual has foot drag during 

swing phase, a short term goal may be the following: Patient will ambulate to and from the 

bathroom (50 ft.) without toe drag at least 50% o f  the time whhin two weeks. 

Understanding how the trunk moves during the gait cycle is the first step in identifying the 

critical kinematic events that occur in the trunk during the gait cycle. Knowledge o f 

critical trunk kinematic and kinetic events could guide clinicians in their assessment and 

treatment o f individuals who have pathological trunk movement which affects their gait 

pattern.

Summary

b* summary, past research on trunk movement during gah described motion 

occurring in the three anatomical planes, however, a normalized database on trunk
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kinematics has not been compiled. Conclusive descriptions o f trunk position throughout 

the gait (^cle, in particular, have not been well researched. Researchers have been unable 

to generalize to ‘the greater population’ due to use o f  few subjects and unreliable 

techniques. Some previous studies have concentrated on defining trunk movement with 

changes in gait speed during treadmill walking (Chapman & Kurokawa, 1969; Waters et 

al., 1973; Cappozzo et al., 1978; Cappozzo, 1981; Cappozzo, 1982; Carlson & 

Thorstensson, 1982; Thorstensson et al., 1982; Thorstensson et al., 1984; and Krebs et al., 

1992). It can be concluded from these researchers that controlling gait speed during 

kinematic analysis may decrease the amount of variability between subjects’ kinematic 

data. However, Murray et al., 1966 indicated that controlling speed may change an 

individual’s normal gait.

Methods of research have evolved from the use o f simple photography to modem 

day use o f optoelectronic systems to quantify trunk movements. Despite cumbersome 

techniques used by past researchers, their ideas have begun to create a base from which to 

analyze the role o f trunk movement during gait. Researchers have found that minimal 

trunk movement occurred during gah. These trunk movements were found to follow a 

repetitive sequence. General patterns o f trunk movement during locomotion have been 

described. However, normative values for movement in all planes relative to the 

subphases o f the gait qrcle have not been established. Therefore, the purpose o f this study 

was to establish a preliminary normative database for three-dimensional trunk movement 

relative to the subphases of the gait cycle.
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METHODOLOGY

Subjects

Seventeen normal subjects participated in this study. Normal subjects were 

defined as individuals between the ages o f twenty and fifty who had been without 

incidence o f pain or orthopedic injury within the past six months. Subjects were recruited 

on a volunteer basis via advertisement at local universities and hospitals. Prior to the 

study, subjects received a letter and brochure informing them o f the date of testing and 

descriptions o f the study's purpose and procedures (Appendix A and B). On the day of 

testing, participants were asked to fill out a past medical history form and underwent a 

preliminary clinical examination (Appendix C and D). Admission to the study was based 

on results o f  past medical history and clinical examination. Exclusion criteria based on 

past medical history and clinical examination are defined in Appendix E. A history of the 

following criteria also excluded subjects firom this design: spinal surgery, spondylolisthesis, 

aniqdosing spondylosis, neurological injury to the spinal cord and nerves, and fractured 

vertebrae or herniated disc, or other disorders, dysfunctions, or diseases of the spine. 

Subjects were asked to sign a consent form prior to data collection (Appendix F).

Instnimentatinn

Cameras

Movements o f the trunk and lower extremities were recorded with the Elite four-

28
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camera optoelectronic system.’ Each camera contains a  ring of light emitting diodes 

(LEDs) which surround the lens. Infrared r s ^  are emitted from the LEDs and reflected 

back to the camera lens from the targets placed on the subject. Targets are constructed o f 

wooden spheres covered with 3M Scotchlite Brand High Grain 7610 retroreflective tape^. 

Camera measurements, synchronized with LED impulses, were sampled at 100 Hz. From 

the reflected signal, each camera generates an object image on a two-dimensional plane.

A video processor sends ^chronous camera signals to a computer so that corresponding 

frames o f video data from each camera are processed simultaneously. At least two 

cameras are needed to identify the individual targets’ three-dimensional position in space. 

Mathematically, this is accomplished through direct linear transformation which will be 

discussed in a later section. The Elite system has a reported accuracy in identifying target 

location within 3.2 mm (Ehara, 1995). Cameras were placed at the four comers o f the 

designated testing space (see Figure 3-1). Prior to data collection, calibration was 

performed to  detemnne the cameras’ orimtation in relation to the working volume and the 

relative portion o f each camera to another (see Figure 3-2).

Two Panasonic X20 Digital Zoom Super VHS video cameras^ collected video 

images o f  the subjects’ gah in the frontal and sagittal planes simultaneously for 

observational docummitation. Images were fed into a Panasonic Digital Effects 

Generator^ so that both sagittal and frontal plane motion could be viewed on one screen. 

The video images will be used in future research by the Human Kinetics Laboratory, but

’ Elite. BTS, Milano, Italy
2 3M Health Care, Medical Supply Division, St. Paul, MN 
 ̂ Panasonic Co., Matushshita Electrical Corp., Secaucus, NJ
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Figure 3-1. Laboratory, camera, and force plate configuration
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Figure 3-2. The three-dimensional working volume. From Human
Walking (pg.33) by V.T. Inman, H.J. Ralston, & F. Todd, 
1982, Baltimore: Williams & Wilkins. Copyright 1981 by 
Williams & Wilkins.
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were not analyzed in this study.

Force Plates

To identify trunk movements relative to the gait cycle, two Advanced Mechanical 

Technologies, Inc. (AMTI) force plates^ were used to signal the begtnidng and end o f the 

gait Qfcle. The plates were placed flush with the lab floor and covered with carpeting so 

thqr were not detectable to subjects (see Figure 3.1). Collection o f force plate data 

occurred synchronously with kinematic data. The AMTI force plate collected data when 

IS N (3.37 lbs) were exerted on the plate. This quantity was chosen to decrease the 

incidence o f false triggers.

Electromyography (EMG)

EMG data were collected on all subjects for use in future research by the Center 

for Human Kinetic Studies, but were not analyzed in this study. A TELEMG 

Multichannel Electromyography system^ recorded the electrical activity of trunk muscles 

during the gah cycle at a frequency o f SOO Hz. Sur&ce electrodes made o f silver/silver 

chloride with a differential impedance of one megaohm were placed over specific trunk 

muscles. These trunk muscles included; bilateral erector spinae at the level of and Tg.9 

and bilateral external obliques. A lightweight patient unh collected pre-amplified analog 

signals from the surface electrodes and sent them through a fiber-optic cable to the base 

unit for additional amplification, dighal conversion, and filtering. Six EMG trials were 

performed following kinematic data collection, in order to minimize error in kinematic 

data collection. The patient unh may have restricted subjects’ trunk movements or

* AMTI, Advanced Medical Technologies Inc., Newton, MA 
® TELEMG, Bioengineering Technology Systems, Milano, Italy
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obstructed the camera’s view o f trunk targets.

Procedures 

Targeting Pilot Study 

Prior to subject testing, a comparison o f three trunk targeting protocols was 

p^fbrmed. Protocol one included measurement o f trunk movement from targets placed 

on bilateral mid-clavicles and spinous process ofT^ Protocol two included targeting o f 

the sternal notch, xiphoid process, and spinous process o f T«. Protocol three included 

placement o f targets on the sternal notch and the spinous processes o f  T 4  and T 9 .  Two 

researchers had all targets from each protocol placed on these anatomical landmarks 

during the pilot test. The researchers walked within the calibrated testing volume and data 

were collected and processed as per the procedure outlined in this methodology. Angles 

in each of the cardinal planes were calculated from each protocol. Patterns o f trunk 

movement from each protocol were similar. However, the first protocol was excluded 

from this study, due to possible extraneous movement o f clavicular targets due to arm 

swing and shoulder movement. This additional movement may have contributed to more 

trunk movement measured than actual. Protocol two was excluded from this study as 

there was a concern o f camera’s not seeing the xiphoid target in full-figured women. 

Therefore, protocol three was established as the targeting protocol for this study.

Calibration

The first step in collecting kinematic data is to define a working volume in which 

movement occurs. In order to define the working volume, a rigid grid system with 

retroreflective targets placed at known X, Y, and Z coordinates was positioned within the
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working volume. The grid system represented the estimated size o f the subjects' stride 

length and shoulder height. Once this space was defined, calibration allowed the Elite 

^stem cameras to  determine their own position relative to the working volume using 

direct linear transformation (DLT). Known camera position is necessary for determining 

the three dimensional coordinates o f the targets. Internal parameters of the camera are 

used with known camera pondons to eliminate the unknowns in equadons used to 

calculate target coordinates on moving subjects.

Direct Linear Transformadon 

Direct linear transformadon is a mathemadcal algorithm used to accurately identify 

the three-dimensional posidon o f targets placed on the subject. “Cameras are only capable 

of viewing a three dimensional image as a two dimensional projection; a minimum o f two 

cameras must be qmchronized and [both view the target] in order to establish the three 

dimensional posidon o f an object in laboratory space” (Ellexson, Nawrocki, & Schober, 

1995). As targets reflect the infrared rays back to the camera lens, the image is viewed on 

the two-dimensional plane of the camera Two synchronized camera images o f each target 

are combined through direct linear transformation to develop the three-dimensional target 

position relative to the laboratory coordinate ^stem. The target position is calculated by 

creating a vector from one camera eye to the two-dimensional image o f the target and 

projecting this vector out into three-dimensional space from that camera’s position. The 

second camera synchronously completes the same process to calculate the target’s image. 

The location o f the target is calculated at the intersection o f the projected vectors from the 

two cameras in three dimenâonal space (see Figure 3-3).
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Figure 3-3. Illustration of Direct Linear Transfonnation. A process 
of establishing three-dimensional coordinates from 
two-dimensional projections.
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Clinical Examination 

A clinical ecamination was performed to detemune which subjects met the criteria 

for normative data collection. Information r%arding patient past and current medical 

history was collected via questioimaire (Appendix C). A clinical examination was used to 

determine if  the subjects’ general trunk and lower extremity range o f motion, lower 

extremity strength, and posture were within normal limits. The clinical examination 

consisted of observation o f posture, tests to determine strength and range of motion for 

the lower extremities, leg length measurements, trunk flexibility, a standing forward 

flexion test, and a quick screen for scoliosis (Appendix D). See Appendix £  for exclusion 

criteria. U ^ g  a standard tape measure and caliper, other anthropometric measurements 

were gathered for use by the Human Kinetics Laboratory, but were not analyzed in this 

study. Procedures for gathering anthropometric measurements were consistent with those 

defined in Appendix G (Appendix G  & H).

Test Preparation

Subjects were required to wear shorts and a top which revealed the required trunk 

bony landmarks for targeting. Targets were placed directly on the subjects’ skin using 3M 

hypoalletgenic adhesive tape in the following areas; spinous process o f T4 and T9, sternal 

notch, bilateral ASIS’s, spinous process o f S2 (midpoint between bilateral PSIS’s), thigh 

wand on lateral mid thigh, lateral condyle o f  femur, tibial tuberosity, distal anterior shank 

o f tibia, distal posterior shank o f tibia, calcaneus, lateral foot posterior to 5th metatarsal 

head, and medial foot posterior to the 1st metatarsal head (see Figure 3-4).
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Figure 3-4. Illustration of targeting placement protocol
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For those trials where EMG data were collected, subjects' skin overlying the following 

muscles was shaved and cleaned whh an alcohol swab: bilateral erector spinae (L.m) 2  cm 

lateral to the spinous processes at the level o f the iliac crest, bilateral erector spinae (Tg^)

2 cm lateral to the 9th thoracic spinous process, and bilateral external obliques midway 

between the lower costal margin and the midpoint o f  the iliac crest (Winter, 1991). 

Shaving and cleansing o f the overlying skin was done to optimize the conduction of the 

muscles’ electrical signal through the skin to the electrode and minimize electrical noise 

resulting from various factors such as hair, dirt, and oil. Using a bipolar technique, 

disposable self-adhesive electrodes were placed approximately 30 mm apart, parallel to the 

muscle fibers. The electrode lead wires were also taped down to the subjects’ skin to 

reduce the amount o f  noise resulting from movement o f the wires while the subject was 

walking.

Testing Protocol

Prior to data collection, subjects had an opportunity to walk through the calibrated 

volume to become accustomed to the equipment. With the targets in place, the subjects 

stood on the force plate to normalize force plate data relative to their body weight. The 

subjects were then asked to walk barefoot through the calibrated volume. Subjects were 

required to strike the first force plate with their entire targeted foot and contact the second 

force plate at initial contact with that same foot in order to  have a successful trial.

Right trials were taken with the lower extremity targets on the right lower extremity. Left 

trials were taken with the lower extremity targets on the left lower extremity. Trunk 

targets were not removed between right and left sided trials. A total of six successful
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walking trials were recorded per lower extremity for each subject (twelve trials). EMG 

data were collected after the walking trials wwe completed so EMG equipment would not 

interfere with an individual’s normal gait. Following the walking trials, subjects were 

asked to stand in the working volume so a  standing file could be recorded. The standing 

file is used to identify additional target locations (medial condyle and medial and lateral 

malleoli) and to calculate those targets’ position relative to their adjacent dynamic local 

coordinate qrstems. Additionally, knee and ankle joint centers are calculated using the 

standing file data. The hip joint center is calculated using methods described by Seidel, 

Marchinda, and Soutas-Little (1993). Dynamic and standing file target locations and 

calculated joint centers relative to dynamic local coordinate systems are used to calculate 

local coordinate systems which are aligned with the body segments. Adjacent local 

coordinate systems are used to define angular relationships between body segments. For 

the trunk, the local coordinate system is used to describe motions o f the trunk relative to 

the pelvis and relative to the laboratory coordinate system. Pelvic orientation is described 

relative to the laboratory coordinate system. To eliminate inter-rater error, the clinical 

examination, targeting, and data collection were performed by a consistent researcher for 

all subjects.

Data

Processing

Following data collection, further processing was necessary to convert the data 

into meaningful forms, such as a graph representing trunk kinematic angles. Three- 

dimenrional target coordinates were determined through DLT by combining two cameras’
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two-dimensional target position vectors; a process called tracking. Tracking involved 

identification, by a researcher, o f  all corresponding targets from at least two different 

cameras, for calculation o f  three-dimensional data. Following tracking; a linear 

interpolation algorithm was used to substitute missing data points if targets were 

momentarily obstructed. Foot targets w a e  most frequently obstructed due to the swing of 

the contralateral extremity interfering with a camera’s view o f  targets. Trunk and pelvic 

targets were not fiequently obstructed. Therefore, most interpolation was performed with 

foot and ankle data. Data fi'om all subject trials included in this study were interpolated 

over no more than twenty fiâmes. Twarty fiâmes corresponded to approximately .2  

seconds worth o f data or one-fifth o f  the gait cycle. The three-dimensional position data 

were low-pass filtered in the fi'equency domain with a batch-adaptive linear phase filtering 

procedure developed by D Amico and Ferrigno (1990). This is an autoregressive model 

which selects the f ih a  band-width and the filter shape by assessing the target coordinates 

within the signal and noise spectrum. Data were then converted into a standard computer 

language format (ASCII) for use in lab developed computer processing software. To 

process kinematic data, local coordinate systems aligned with the trunk and pelvis were 

calculated. The local coordinate systems were aligned with these segments using three 

non-colinear targets attached to the respective body segments. Two target positions were 

used to first create an anatomical axis, while the third target made up an anatomical plane. 

For the trunk, the sternal notch and T4 targets were used to create the anatomical axis, 

while the Tg target made up the plane. At the pelvis, left and right ASIS targets formed 

the axis, while the S2 target made up the anatomical plane. The orientation o f the trunk
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local coordinate system was described relative to both the local pelvic and global 

laboratory coordinate systems using a joint coordinate system. The joint coordinate 

system is a non-orthogonal Qrstem (not mutually perpendicular) fixed to a joint and was 

devdoped by Grood and Suntay (1983). The joint coordinate system was used to 

determine the orientation of one segment relative to another, described as joint angles. 

Trunk kinematic data in each of the cardinal planes (sa^ttal, frontal, and transverse) was 

plotted in degrees o f motion versus percentage o f gait cycle.

Statistical Analysis

Descriptive statistics including mean and standard deviation calculations were 

performed on the kinematic and demographic data. Six trials o f  kinematic data per subject 

were averaged to  represent the mean intra-subject trunk kinematics in each o f the cardinal 

planes. For one subject, only four trials were used to develop mean trunk kinematics due 

to difficulties with data tracking. These four trials did not require greater than twenty 

fiâmes o f interpolation. In order to determine the mean inter-subject trunk kinematics in 

each of the cardinal planes, all o f the mean intra-subject kinematic files were compiled and 

an ensemble average was calculated at each one percent o f  the gait cycle. We expected 

trials between and within subjects would not consistently occur within the same interval 

Ç.e. trial 1 occurs over the interval fi'om 1 - 800 ms while trial 2  occurs over the interval 

1-900 ms) due to variability within an individual’s walking pattern. As a result, each 

sample could have been associated with a different percentage o f the gait cycle. Using the 

method of cubic splining, each trial graph was defined by a polynomial equation to 

normalize the data points to each percentage o f the gait c^cle. This allowed for
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comparison between two separate trials and was essential for calculating the ensemble 

average.

Smith (1993) indicated that a subject’s walking pattern varied between repeated 

trials. In order to best represent a normative kinematic database, the amount o f  intra- and 

inter- subject variability was assessed. Therefore, a coefficient o f variation (C V), as 

described by Winter (1987), was used to determine the variance in motion for each one 

percentage o f the gait cycle. This CV can best be described as a variability to signal ratio. 

This means that the amount o f  variability about the ensemble average is divided by the 

mean value o f a trunk kinematic data point at each percentage of the gait cycle. C V is 

expressed as a  percentage o f  variability. A CV was calculated for each subject to 

determine the amount o f stride variation between his/her six trials (intra-subject variation). 

A CV was also calculated on group data to determine the amount o f stride variation 

between subjects (inter-subject variation). Group CV was calculated by using all trials 

(100). The equation for CV was as follows;

'Acv=
n Z o i ' 

i=l

i=l

where:

n was the number o f  intervals analyzed (in this study, n = 1 0 0 , as each
percentage of the gait cycle represented one interval)

X| was the mean value o f  the kinematic data points, at each i* interval, for all trials

Oi was the standard deviation from the mean value of the kinematic data points, at
each i^ interval, for all trials



CHAPTER FOUR 

RESULTS

Normal range o f trunk rotations in the three cardinal planes relative to  the lab and 

the pelvis will be presented. Subjects ambulated with an average velocity o f  1.36 m/s ± 

.18 m/s. Graph 4.1 is provided to allow for comparison o f all trunk and pelvic motions. 

Additionally, trunk motion will be qualitatively described relative to each subphase o f the 

gait cycle. Quantitative descriptions o f trunk motion including mean, standard deviation, 

and intra- and inter-subject coefficient o f  variation will also be presented. A larger intra

subject coefficient o f variation was found for combined right and left trials, than for trials 

on the left or the right alone. This variation between right and left trials differs from that 

found by Sutherland, Olshen, Biden, & Wyatt in 1989. Equal numbers o f  right and left 

trials (3 o f each) were taken &om each subject to calculate ensemble averages in order to 

accommodate these intra-subject variations. For the purpose of this study, ensemble 

averages will be presented using right and left trials combined. Due to processing 

difficulties, only four total trials (two per side) were analyzed for one o f the subjects and 

two subjects were dropped from the study.

Demographics

Seventeen normal subjects (1 1 females and 6  males) voluntarily participated in this 

study. Subjects ranged in age from 21 - 47, with an average age of 28 ± 7 yearn. All 

subjects were ftee o f spinal deformity and dysfunction and were screened for neurological 

and musculoskeletal abnormalities. Patients not meeting requirements for normal were
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eliminated from the stucfy. For a sumniaiy o f descriptive demographic data see Table 4 .1.

Tninlc displacements in the three cardinal planes 

Sagittal plane

Sagittal plane angles ranged from 1.97 ± 4.76 degrees o f  flexion to .65 ± 4.23 

degrees of extension for trunk relative to lab. However, sagittal plane angles for trunk 

relative to pelvis bad a mean range o f 5.34 ±  6.15 degrees of extenmon to 6.95 ± 5.60 

degrees of extension. Finally, angles in the sagittal plane for pelvic tilt ranged from 7.52 ±

3.24 degrees o f anterior tilt to  5.93 ± 3.62 degrees o f anterior tdt.

Frontal plane

Frontal plane angles for trunk relative to the lab ranged from 1.03 ± .97 degrees of 

lateral flexion away from the stance limb to .6 8  ± 1 .0 1  degrees o f  lateral flexion toward 

the stance limb. Angles for trunk relative to pelvis had a mean range o f 5.96 ± 1 .6  degrees 

o f lateral flexion toward the stance limb to 6.16 ± 1.73 degrees o f  lateral flexion away 

from the stance limb. Frontal plane angles for the pelvis relative to  the lab had a mean 

range of 4.86 ± 1.09 degrees o f  right pelvic obliquity to 4.80 ±1.19 degrees o f left pelvic 

obliquity.

Transverse plane

Transverse plane rotations for trunk relative to the lab ranged from 2.79 ± .82 

degrees of protraction to 2.83 ±  1.42 degrees o f retraction. Rotation in the transverse 

plane for trunk relative to pelvis had a mean displacement range o f  7.53 ±2.14 degrees of 

retraction to 6.40 ± 1.53 degrees o f protraction. Angles for pelvis relative to lab in the



46

Subiect Aoe G ender Heiom fini W eioht flbs.1
DM1 27 m 71.5 153.81
KD2 26 f 67.0 156.54
TC3 23 f 63.0 130.73
BH5 31 m 68.0 182.77
KS6 24 f 64.5 119.97
SA7 42 f 68.0 163.32
BS8 23 f 63.0 133.79
BW9 23 f 68.0 118.32
TA10 32 f 65.0 125.49
MJ11 29 f 65.0 134.63
TM12 25 f 66.0 152.11
AD13 22 f 69.0 147.41
MA14 21 m 69.0 179.33
CE15 47 f 67.5 148.32
CS17 26 m 67.5 126.93
KA18 25 m 72.5 178.16
RC19 30 m 71.0 172.08

Average 28 67.4 148.45

Std Dev. 7.0 m = 5 2.8 21.41
f = 1 2

Table 4.1 Subject Demographics
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transverse plane had mean range from 5.38 ± 2.48 degrees o f counterclockwise rotation to

4.24 ±  1.73 d%rees o f clockwise rotation.

Trunk movement during the aihph«»M»s n f  pair 

Sagittal plane

Mean pelvic tilt at initial contact/loading response (0-10% o f the gait cycle) was 

7.52 ±  3.24 degrees o f anterior tilt. The pelvis remained in approximately the same 

amount of pelvic tilt throughout the gait cycle (see Graph 4.2). Mean trunk sagittal plane 

movement relative to the pelvis was also consistent through the gait cycle starting with 

5.34 ±  4.53 degrees o f extension at initial contact (see Graph 4.3). Two small oscillations 

into extension occurred, one at the end of midstance (26%) and one during midswing 

(76%). These oscillations had a peak mean value o f 6.71 ±  5.8 and 6.95 ± 5.59 degrees of 

extension, respectively. Trunk values relative to the lab showed a similar trend of dual 

oscillations (see Graph 4.4). These oscillations occurred at end o f midstance (26%) and 

during midswing (73%) with peak mean values o f .28 ±  3.61 and .65 ± 4.17 degrees of 

extension, respectively.

Frontal Plane

Pelvic porition in the frontal plane at initial contact was relatively neutral at 1.17 ±

1.23 degrees o f upward obliquity (see Graph 4.5). There was an upward progression of 

the stance side o f the pelvis through loading response, when it reached a maximum of 4.86 

± 1.09 degrees at 12% o f the gait cycle. The pelvic motion returned to neutral at late 

midstance (29%) and continued in a neutral position until terminal stance (48%). Motion 

then progressed in a downward obliquity with an inferior peak at initial swing (62%). The
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mean value o f maximum downward obliquity was 4.80 +1.19 degrees. The pelvis 

returned to neutral during midswing (79%) and remained so until the second initial 

contact.

Relative to the pelvis, the trunk at initial contact was positioned in 1.49 ± 1.14 

d^rees o f lateral flexion toward the stance limb (see Graph 4.6). The trunk continued to 

laterally flex until midstance (12%), with a mean peak excursion over the stance limb o f 

5.96 ±  1.6 degrees. Trunk motion returned to neutral at late midstance (26%) and 

remained in a neutral position until terminal stance (48%). The trunk then moved away 

from the stance limb at pre-swing and peaked away from the reference limb at midswing 

(62%) with mean value 6.16 ±  1.67 degrees of lateral flexion. Movement o f the trunk 

away from the swinging reference limb during pre-swing corresponded to trunk movement 

toward the contralateral limb which was beginning to contact the ground. The trunk 

returned to neutral during midswing (76%) and remained neutral until the second initial 

contact. Relative to the lab, the mean trunk displacement fluctuated only 1.7 degrees 

about neutral throughout the gait (ycle (see Graph 4.7).

Transverse Plane

The pelvis began the gait cycle in 5.38 ± 2.49 degrees o f protraction (see Graph 

4.8). Gradual pelvic retraction occurred immediately, putting the pelvis in neutral at 

midstance (30%). The pelvis reached peak retraction o f 4.24 ±  1.73 degrees at terminal 

stance (50%). The pelvis remained in retraction into midswing (72%) until it reversed 

direction, where h  was protracted through the remainder o f the swing phase.
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The trunk relative to the pelvis, was at 7.53 ±  2.14 degrees o f retraction at initial 

contact (see Graph 4.9). Following initial contact, the trunk relative to  the pelvis moved 

into protraction and reached a peak mean value of 6.40 ±  1.53 degrees o f  protraction in 

terminal stance (48%). From this peak protraction, the motion reversed and progressed to 

6.85 + 1.98 d ^ e e s  o f peak retraction by late terminal swing (98%).

The trunk relative to the lab began in 2.32 ±  1.59 degrees o f retraction and 

progressed to 2.79 ± .82 o f protraction at terminal stance (35%) (see Graph 4.10). 

Gradually, the rotation reversed and progressed to a peak mean retraction value of 2.83 ± 

1.45 degrees. This retraction remained throughout the rest o f  the swing phase.

Coefficient o f Variation

Intra-subject coefficient o f  variation (CV) was calculated to determine the amount 

of stride variability in an individual s gait pattern. An inter-subject CV was also calculated 

to determine the amount o f  stride-to-stride variability between subjects. Subjects had low 

stride variability in trunk kinematics. A low intra-subject coefficient o f  variation was 

found in pelvic movements in all three planes, while the highest stride variability within 

subjects was found in movements o f  the trunk relative to the pelvis. There was a high 

degree o f stride variability between subjects. The greatest amount o f inter-subject 

variability occurred in the sagittal plane and the least amount o f variability occurred in the 

frontal plane. See Tables 4.2 and 4.3 for values of intra- and inter-subject variation. 

Additionally, the inter-subject coefficient o f variation can be found in the upper right hand 

comer of graphs 4.2 through 4.10.
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Sagittal Frontal Transverse
Tnnik Rdative 

to Lab 52% 69% 76%

Tniok Rdative 
to Pdvis 80% 182% 170%

Pelvis 28% 55% 82%

Table 4.2 Intra-subject coefficients of variation

Sagittal Frontal Transverse
Trank Relative 

to Lab 644% 194% 71%

Trank Relative 
to P el^ 99% 67% 37%

Pdvis 53% 52% 59%

Table 4.3 Inter-subject coefiBcients of variation



CHAPTERS

DISCUSSION

There was a distinct pattern o f kinematics in the pelvis and trunk during gait in the 

normal subjects tested within this study. In the sagittal plane, relatively small amounts of 

movement were found in the pelvis compared to the trunk, which is consistent with 

findings o f Cappozzo’s 1981 study. The trunk, in the sagittal plane, was extended through 

the gait qrcle but exhibited two small peak oscillations in extension at the end o f mid- 

stance and during mid-swing (single support phases). These oscillations ranged from 5.34 

to 6.95 degrees o f extensiotL Past researchers also found two consistent peaks of 

extension oscillations which ranged between two and ten d%rees (Thorstensson et al., 

1982, Krebs et al., 1992, and Crosbie et al., 1997a). The researchers in the present study 

noted that trunk movement relative to the lab fluctuated near neutral, while trunk 

movement relative to  the pelvis remained near five degrees of extension. An anteriorly 

tilted pelvis would predispose the trunk relative to the pelvis to be in an extended position 

throughout the gait cycle. An anterior tilt was found in the pelvis, throughout the gait 

cycle, in this present study (see Graph 4.1). Other researchers have reported that the 

pelvis was in an anteriorly tilted position throughout the gait cycle (Murray et al., 1967 

and Perry, 1992) Conversely, Crosbie et al. (1997a) found different patterns o f trunk and 

pelvic movement during ambulation, however, the targeting protocol that they used was 

different than that which was used in this present study. Additionally, no clear description 

of joint angle calculations were provided by Crosbie et al. (1997a). Crosbie et al. also
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reported a difference in where trunk and pelvis movements occurred in the range, as 

compared to this present study. Other researchers found patterns o f trunk and pelvic 

movements similar to those reported in this study (Thorstensson et al., 1982 and Krebs et 

al., 1992), however, these patterns difined in where they occurred in the range. Most 

researchers found the trunk remained in a neutral or slightly flexed position (Thurston, and 

Harris, 1983, Opila-Correia, 1990, and Krebs et al., 1992) while the trunk movements 

recorded in this present study remained in approximately five degrees o f extension. It is 

possible that anterior tilt and trunk extension positions within the range are representative 

o f the targeting protocol used in this study and variations in subject body types.

A high variation about the mean (standard deviation), in all sagittal plane 

movements, was reported when compared to the fi*ontal and transverse planes. Spinal 

targets were placed at the tip o f  the spinous process. Subjects variability in spinous 

processes length and shape, and interspinous ligament density may have contributed to a 

greater error in reliability o f target placement. Finally, there may be normal anatomical 

and functional variations which also contribute to larger normative bands o f movement in 

the sagittal plane. For instance, during targeting researchers noted that subjects varied in 

their anatomical position o f T« spinous process. In some subjects, the spinous process of 

T4 was superior or inferior to the sternal notch. Functional variations between subjects 

were noted observationally. For example, some subjects seemed to  walk with a more 

extended trunk, while others were in a more neutral position.

Frontal plane motion was determined in this study to have a consistent pattern of 

trunk and pelvic movement. These patterns were nearly out o f phase when comparing the
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pelvic motion to trunk motion relative to the pelvis (see Graphs 4.6 and 4.7). Movements 

o f  the trunk relative to the lab showed marked decreases in amplitude compared to trunk 

motion relative to the pelvis. In the present study, a pattern o f peak lateral flexion of the 

trunk toward the stance limb occurred at loading response, and peak lateral flexion 

occurred away from the stance limb occurred at toe-off. Toe-off for the reference limb 

corresponded to loading response of the contralateral limb. The patterns o f trunk rotation 

in the frontal plane reported in this present study were similar to those of Murray et al. 

(1964), Waters et al. (1973), Thorstensson et al. (1982), Krd)s et al. (1992), and Crosbie 

et al.(1997a). However, Murray et al. (1964) found that peak lateral flexion toward the 

stance limb occurred at midstance, whereas Thorstensson et al. (1982) reported peak 

flexion toward the stance limb at initial contact. The researchers in this present study 

suggest that initial contact is an instantaneous component o f loading response, therefore, 

the results for trunk lateral flexion are quite similar. Opila-Correia (1990) denied any 

significant patterns of trunk movement in the frontal plane, which conflicted with results o f 

this present study and those o f past researchers.

In the transverse plane, this study supports past research that the pelvis and trunk 

move in opposite directions relative to each other during the gait cycle. (Gregerson & 

Lucas, 1967, Chapman and Kurokawa, 1969, Krebs et al., 1992, and Crosbie et al.,

1997a). Maximal rotation o f the trunk toward the referenced limb occurred at initial 

contact while maximal rotation away from the referenced limb occurred during terminal 

stance, just prior to toe-off. These trunk motions were found to be opposite o f the 

movements occurring in the pelvis. Maximal excursions for the trunk and pelvis only
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varied by 2 % o f the gait cycle, with trunk rotation proceeding pelvic rotation. Chapman 

and Kurokawa (1969), found that counter-rotation occurred and the opposite rotations 

between the shoulders and pelvis were not simultaneous. Chapman and Kurokawa (1969) 

indicated that this "out o f phase” relationship may be due to upper trunk movement 

occurring as a passive response to the rotation o f the pelvis. Ongoing EMC study of 

trunk muscles and arm swing may help to «(plain the relationship between trunk and 

pelvic movanent in the transverse plane.

The researchers in the present study noted a trend o f less excursion o f the trunk 

relative to the lab compared to the trunk relative to  the pelvis or the pelvis alone. This 

data could support the theory that the trunk is a dampener o f  ground reaction forces as 

proposed by Chapman and Kurokawa (1969), Waters and Morris (1972), and Townsend 

(1981). This dampening affect is thought to be a component o f stabilization of the head 

and eyes during gait and a reduction of forces on the central nervous system. The 

dampening o f  trunk and pelvic motions may also minimize large shifts in center o f mass. 

Decreasing the excursion of the center of mass minimizes energy expended during 

walking. An example from this study would be that as the pelvis shifted upward during 

loading response, the trunk laterally flexed over the stance limb, which minimized the 

horizontal excursion o f the center of mass. Crosbie et al. (1997a) hypothesized that lateral 

flexion toward the swing limb reduced the excursion o f the center o f mass, thereby, 

conserving energy during ambulatiotL However, his data did not support this hypothesis.

Although the present research has shown support for the theoretical dampening 

function o f the trunk during gait, there was also support for Gracovetsky's (1988) theory
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o f the spinal engine. I f  Gracovetsl^ were correct, then one would expect to see lateral 

fledon of the trunk occurring immediately prior to opposite rotation of the pelvis. This 

motion should be particularly obvious prior to the pelvis protracting to advance the limb in 

swing. There was evidence of lateral flexion and opposite rotation in the trunk prior to 

pelvic protraction in this study. A sharp rise in lateral flexion occurred away from the 

referenced limb just prior to the initiation o f pelvic protraction in swing. According to 

neutral spine mechanics, lateral fl&don and rotation should occur simultaneously (Fryette, 

1954). However, these opposite trunk and pelvic motions did not occur simultaneously. 

Therefore, other structures such as the posterior ligaments and fascia must have 

contributed to the movements seen. Further support for Gracovetsky s theory can be 

found in the rotation/counter-rotation motion which occurred between the trunk and 

pelvis. According to Gracovetslqr, efScient gait is accomplished through the loading of 

the passive elastic component of the posterior ligaments o f the spine with transfer of 

energy to the lower limbs. In the present study, the counter-rotation of the trunk on the 

pelvis could act in a coiling manner to load the passive elastic component o f the posterior 

ligaments and fascia o f the spine. If the counter-rotation loads the passive elastic 

component of the posterior ligaments o f the spine, as Gracovetsky theorized, the loading 

would play an instrumental role in the transference o f energy to the pelvis and lower 

extremities to fuel gait. Although support for both Gracovetsky’s and dampening theories 

o f trunk function during gait can be found in this present study, the actual function of the 

trunk during gait caimot be determined by data from this research alone. Kinetic and
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kinematic data along with trunk EMG are needed to progress theories on trunk function 

during gah.

When the results o f this present study were analyzed, the researchers noted a 

rdativeiy large difference in the intra-subject coefficient o f  variation when combining 

right and left trials as opposed to trials taken only on the left or only on the right. The 

difference between right and left trials may be due to a  subject’s comfort level. Data 

collection for each subject took approximately 2-3 hours. This time would allow a subject 

to become more familiar with the targeting protocol and lab environment as the test 

proceeded. The subject m ^  have altered his/her gait pattern throughout the course o f 

data collection. Right trials were consistently taken first, therefore, the subject may not 

have been as comfortable at this time and could have had a t>earing on their gait pattern.

Inter-subject coefficient of variation was found to be relatively higher for the trunk 

relative to lab versus the trunk relative to the pelvis and pelvis alone, in all planes. This 

increased CV could be explained by the normal postural variations between subjects, 

targeting protocol, or intra-subject variation in spinal and lower extremity range o f 

motion. As the CV is a ratio of variability about the mean to the mean kinematic data 

points, small means with a corresponding large standard deviations will contribute to a 

large CV. For example, in the sagittal plane for motion o f the trunk relative to the lab, the 

inter-subject coefficient o f variation was 644%. Mean sagittal plane trunk motion relative 

to the lab was approximately .65 ± 4.23 degrees. In transverse plane trunk motion relative 

to the lab, the CV was 71%, with a mean o f 6.40 ± 1.53. Past reports o f CV have been 

focused on the lower extremities or the lower thoracic, lumbar, and pelvic regions
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(Winter, 1991 and Crosbie et al., 1997b). There have not been reports o f trunk 

coefBcienls o f variations, therefore, comparisons to this study cannot be made.

Limitations

This was a preliminary study to develop a normal database for the West Michigan 

area and specifically the Mary Free Bed/ Grand Valley State University Center for Human 

Kinetic Studies. Some variables that were not controlled included age, gender, and 

walking speed. Past research has shown that these variables, except gender, may affect 

trunk motion during gah (Murray et al., 1964; Chapman & Kurokawa, 1969; Waters et 

al., 1973; Cappozzo, 1981; and Crosbie et al., 1997). Due to the lack of research on 

gender kinematic differences, concluding that gender has an affect on gait patterns is 

premature. Gender has been included in the limitations as it was not a controlled variable. 

Methodology limhations included use o f a sample o f convenience, small sample size, and 

targeting protocol.

Sources o f Error

Systematic sources o f error inherent in the Elite camera system and other 

equipment could not be controlled. Andriacchi (1985) indicated that any optoelectronic 

system has inherent difBculties in target detection and processing which can contribute to 

error. The researchers in the present study attempted to  account for these difficulties by 

using larger szed targets which enhanced detection of the infia-red signal and optimized 

reflection. The targeting protocol was developed specifically for use in this study and has 

only been tested in a pilot study. Random error was introduced by variation in postural 

alignment, such as horizontal alignment o f the sternal notch and T4 targets. This variation
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in horizontal alignment resulted in relative extension found in the trunk in the sagittal 

plane. Targets were placed over bony landmarks, on the skin. Although skin mounted 

targets could be susceptible to varying d%rees o f movement during gait, Thorstensson et 

al.(1984) has shown that movement o f targets due to skin movement is less than 2 nun. 

Finally, one researcher consistently targeted all subjects in this study, but determination of 

bony landmarks is subjective and dependent on reliable palpation skills.

Future research

Future research should include a larger sample size to further expand this 

preliminary database o f normal trunk kinematics. Secondly, the targeting protocol could 

be altered by visually aügning the sternal notch target and the superior posterior trunk 

target versus direct placement on T4. This change in targeting protocol may eliminate the 

relative trunk extension seen in the sagittal plane. The EMG, gait parameters, 

anthropometric measurements, and lower extremity kinematic data collected during this 

study could be used in future research to better understand the function o f the trunk in 

gait Additional variables to be included in future gait research are gender, arm-swing, 

and an analysis o f  the different regions o f the trunk (i.e. cervical, thoracic, and lumbar). 

Development o f a  common valid protocol would be helpful to compare these results to 

those from other centers. Finally, test-retest reliability, intra- and inter-rater reliability 

testing would be useful to clinicians and researchers. This data would provide practical 

information on the movements of the trunk during gah, over time.

Clinical Implications 

The present researchers have developed a preliminary database of normal trunk



65

kinematics during gait. The area o f most effective use o f this database is through the 

Mary Free Bed/ Grand Valley State Umverrity Center for Human Kinetic Studies to aid in 

analysis o f pathological gait in adults. Other gait analysis laboratories who use the Elite 

cameras, comparable processing software, and the described testing procedure may also 

utilize this database for comparison. Clinicians can compare this normative data to their 

patient’s gait pattern to determine if pathologes in the trunk exist. The present study can 

be added to the short list o f others regarding trunk movement during gait, to begin to 

postulate on the trunk’s function during gait.

Conclusion

The purpose o f this study on normal trunk kinematics during gait was to establish 

a preliminary normative database for comparison to pathological gait. Future research 

which incorporates trunk kinematic information with trunk kinetics, EMG, detailed trunk 

segmental analysis, and arm swing kinematics will provide a more comprehensive 

understanding of the function o f the trunk during gait. Knowledge o f trunk function can 

guide clinicians in assessment and treatment of patients with pathological conditions which 

affect gait.
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APPENDIX A

THE MARY FREE BED & GRAND VALLEY STATE UNIVERSITY 
CENTER FO R HUMAN KINETICS STUDIES

Dear Participants,

The Mary Free Bed and Grand Valley State University Center for Human Kinetic 
Studies has been designed to analyze the walking patterns o f individuals. Clinically, the 
lab analyzes movement problems associated with neuromuscular disorders; specifically the 
walking patterns o f children with cerebral palsy. The lab uses highly technical, non- 
invasive equipment for its biomechaidcal evaluations.

The purpose of our study is to evaluate how the normal adult’s trunk moves 
during walking. These walking patterns will be used for comparison in analysis o f 
pathologic gait and future research.

This study is being conducted as a master’s thesis by graduate physical therapy 
students at Grand Valley State University and will be supervised by a licensed physical 
therapist.

Your Appointment at the Human Kinetics Lab is Scheduled fon

DATE TIME

What to Brine:

You will be required to wear “speedo”-like shorts and a top which will reveal the 
breastbone and upper spine between the shoulder blades. This is to  enable cameras to 
clearly see the markers which will be placed on the skiiL

Testing Procedures;

1) Gah analyâs tests normally take 2-3 hours. Because of this, formal breaks will 
be provided throughout the test.

2) Upon arrival, you will be asked to fill out a questionnaire regarding your past 
medical history.

3) Following the questionnaire, you will be required to change into the testing apparel so 
that a graduate phyâcal therapy student can perform a clinical examination. This
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clinical examination will determine participation criteria and will be supervised by a 
licensed plysical therapist.

4) If you meet the participation criteria, you will be prepared for data collection;
a) small tape-covered plastic spheres will be placed on your legs and trunk
b) eight small areas w31 be shaved, cleansed, and marked using muscle 

activity sensors

5) You will be asked to walk across the lab several times while videocameras record your 
movements

Thank you for volunteering your time and interest to this project. Enclosed is a brochure 
r%arding additional information about the lab and directions. For further information, 
please contact:

Lisa Elders, Heather Greenwald, or Celeste Sartor 
Suite 101,2020 Raybrook SE 
Grand Rapids, MI 49546 
(616) 954-2318

Sincerely,

Lisa Elders, SPT 
Heather Greenwald, SPT 
Celeste Sartor, SPT



Results•  <y o <> c 3 ; •>

id

Test results are sent to tire referring 
physician within approximately 
three weeks.

Payment
O A i ^ c o o o s n  <1 3   .....................

Testing charges depend upon the 
complexity of the specific evaluation 
requested. Mary Free Bed Hospital and 
Rehabilitation Center works with patients 
and their insurance companies to make 
satisfactory payment arrangements.

% Gall Cycle

D y n am ic  clcc iro m y o g rap h y  
o f  ih c  ih ig h  TOu&clw an d  
k nee  f lcx io n /cx tc iu io n  
angles d u rin g  walking.

Location
2020 Riiybrook SE. 

located South o f  Burton Ave, just West o f the 
East Bcltlinc (M 37).

HL

fvWn
JUi

Detail Burton
Parking in 

front ofbldg. 
Suite 101, 
CHKS, is

■g B

1 X
2020 Raybrook 1

on the »
lottier leuet.

For Further Information Contact: 
Center for Human Kinetic Studies

2020 Raybrook SE, Suite 101 
G rand Rapids, Michigan 4!).‘i‘t()

Phone; (tilti) O.S I 'dSIK 
Pax: (010) i).‘>4 ‘247.'i 

E-Mail; kinetic@river.it.gvsu.edu

Support fo r  the atablishm ent o f  the Kinetics lab 
was provideil by the 

Alary Free Bed G uild &  Steelcase Foundation.

ÉiifliMi Center for
Human Kinetics Studies

Gait Analysis

I
R
03

bital
aenter

Mary Free Bed Hospi 
&  Rehabilitation Cen

Grand Valley State University

mailto:kinetic@river.it.gvsu.edu


The Function Of 
TThe Kinetics Lab
There are many individuals with 
neuromuscular impairments, such as 
cerebral palsy, who have difficulty 
walking. The Kinetics lab was established 
to assess walking ability. The lab uses 
high speed cameras, small spherical 
targets, muscle activity sensors and force 
platforms to record complex joint 
movements, muscle activity patterns and 
forces acting on the body during walking. 
This information is acquired and 
processed by computer. The referring 
physician is sent a written and graphical 
biomechanical summary. The evaluation 
is useful in establishing the most effective 
treatment program for patients with 
walking impairments.

What to Bring:
• Shorts or a bikini type bathing suit.
• Any orthotics, braces or assistive 

walking devices.
• The shoes normally worn by the patient.
• Any pertinent medical notes and/or 

physical therapy notes.
• Insurance information.
• A favorite snack, book, toy or other 

diversional activity to help pass the time 
during waiting periods.

Testing Procedure
• Upon arrival, the patient is asked to 

change into shorts or a bikini type 
bathing suit.

• A physical therapist performs an exami
nation to measure the patient’s joint 
range of motion and muscle strength.

• Small spherical targets and muscle 
activity sensors are placed on the patient 
using tape and straps.

• During walking, data are collected on 
force, motion and muscle activity.

• Testing takes approximately 3-4 hours 
depending upon the complexity
of the test

Referral Procedure
Patients are accepted for a gait analysis by 
physician referral. Once the Kinetics lab 
receives a referral and other medical 
information from the physician the patient 
will be scheduled for a gait test. %



APPENDIX C

CENTER FOR HUMAN iONETIC STUDIES 
HISTORY FORMAT

DATE;___________
SUBJECT IN n iA L S : AGE

MEDICAL HISTORY: Describe past medical history including childhood illnesses, 
injuries such as sprains/strains, etc., and other diseases such as diabetes, heart disease, 
congenital deformities i.e.; club feet, dislocation, etc.)

1 ) Are you taking any prescriptions or over-the-counter medications? Yes No 

If yes, list:

2) Have you had any X-rays, sonograms, computed tomography (CT) scans, bone scans, 
magnetic resonance imaging (MRI) done within the past yea^ Yes No

If yes, why? ( please give results):

3)Have you ever had any surgeries? Yes No

If yes, list type and date:
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4) Have you had any recent illnesses within the last 3 weeks (e.g. colds, influenza, 
infections, other)? Yes No

ffyes, describe;

5) Have you had any injuries within the past six months which required medical 
attention/caused difBculty walking for over 24 hours? Yes No

If  yes, describe:

6) Do you have any pain at the present time? Yes No

If yes, describe:

7) Check below if you have had a history o f any o f the following:

 scoliosis _____ spinal surgery

 spodylolisthesis _____ ankylosing spondylosis

 fractured vertebrae _____ herniated disc

 neurological injury to the spinal cord and/or spinal nerves

7) Have you had any pain within the last 6 months? Yes No

If  yes, describe:



APPENDIX D 

Clinical Examination

Subject’s Initials__________  Date

Posture (make comments on foot, ankle, knee, pelvis, and spine)

free o f  scoliosis
L% Length Discrepancy < 6 mm

Screen:
Lower extremity

Tiunk

SI joint

Squat
Toe raises(Si & S2) Right  Left
Heel walking (L4)
Straight leg raise - to 70®  Right  Left
Thomas Test Right Left
Ober Test Right  Left
Manual Muscle Tests

Hip flexors(L] &L2) Right  Left
Knee extensors ( L 3 )  Right Left
Great toe extensors(Ls)  Right  Left

Forward flexion 
Lateral flexion 
Extension

Standing forward flexion test is negative

Examiners Signature____________________________________  Date
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APPENDIX E

Clinical Examination Parameters and Exclusion Criteria 

Clinical ETaminarion Parameters:

Posture: Examiner is looking for moderate to severe deviations from normal
posture. Specific attention will be paid to the alignment o f the lower 
extremities and the spine.

Scoliosis: Determination o f “free from scoliosis” will be made if there is no curve
present in the spine in standing, and no rib hump is observable during 
standing forward fledon.

Leg Length: Leg Length will be determined by measuring from the inferior border of 
the ASIS to the inferior border o f the medial malleolus.

Screening Procedures:

Squat: Is to be performed with patient using table or therapists arm for
stabilization only. Heels must remain on the floor throughout the squat.

Toe Raises: Subject is to rise 10 consecutive times on his/her toes one foot at a time.
The subject will be allowed to hang on to table or therapist for stabilization 
only.

Heel Walking: The subject is to walk 10 consecutive steps on his/her heels.

Straight Leg Raise: Performed per specifications o f Kendall.

Thomas Test: Performed per specifications of Kendall.

Ober Test: Performed per specifications of Kendall.

Manual Muscles Testing: Subjects must score a 5/5 on all manual muscles tests as 
specified by Kendall.

Forward Flexion: The subject will bend forward and touch the superior medial
malleolus using normal lumbopelvic rhythm. Normal lumbopelvic rhythm is 
described as a two-part movement involving both the spine and the pelvis. In the 
first 60 degrees, the pelvis remains fixed while the lumbar spine flexes. In the 
second phase, the gluteal muscles relax and the pelvis rotates about the femurs
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adding about another 25 degrees o f flexion. Extension back to neutral is 
accomplished in the reverse order

Latent! Flexion: Subject must be able to bend to the side (with no rotation) and touch 
the lateral condyle o f  the femur.

Extension: Subject must be able to obtain and maintain a prone on elbows position.

E¥fliisinn Criteria:

Past Medical ffistory:
Presence o f pain and/or an orthopedic injury within the last six months which has 

limited normal walldng is sufScient cause for subject exclusion from the study. 
Additionally, subjects will not be able to  participate in the study if they have had a history 
o f joint reconstructive surgery o f the lower extremities, osteotomies, or those conditions 
listed under question seven o f the appendix C. Subject report of radiographic or other 
imaging tests, medication use, and recent illness will be assessed on an individual basis, to 
determine whether t h ^  will aflfect gait or are representative o f the exclusion criteria 
indicated above (i.e. MRI report o f  herniated disc).

Clinical Examination:
Presence of scoliosis, a leg length discrepancy of greater than six millimeters, and 

severe postural abnormalities are sufficient cause for subject exclusion from the study. 
Failure to satisActorily meet three or more o f the screening procedure criteria will also be 
cause for subject exclusion from the study.



APPENDIX F

INFORMED CONSENT

MARY FREE BED HOSPITAL AND REHABILITATION CENTER/ 
GRAND VALLEY STATE UNIVERSITY 

CENTER FOR HUMAN KINETIC STUDIES

A PRELIMINARY STUDY OF TRUNK KINEMATICS 
DURING WALKING IN NORMAL SUBJECTS

I understand that I am agreeing to participate in a research study designed to characterize 
parameters o f  walking, such as joint ranges o f motion, forces exerted on the ground, and 
muscle activity during walking. I will allow the Center staff to place reflective markers on 
my skin. I understand that a Physical Therapy Student will ask about my past medical 
condition and perform a physical therapy evaluation on me. If my history and physical 
examination are not consistent with normative standards, I understand I may not be able to 
participate in this study.

I understand that during the test I will be wearing shorts and a top in order to expose the 
skin markers and sensors needed to collect data. I understand that I will be photographed 
and/or videotaped as part o f the evaluation. The Center for Human Kinetic Studies 
(CHKS) w ll have custody o f these data, but will only use the data for the purpose o f 
analysis, education and/or reporting scientific results. I understand that my record will be 
kept confidential, as explained to and understood by me.

I understand that all o f the procedures involved in this evaluation will take approximately 
four (4) hours, are non-invasive (nothing will penetrate my skin), and that the risks 
associated with normal walking, such as tripping or fidling, are minimal. I understand that, 
in the unlikely event o f minor injury, first aid will be provided, but further medical care will 
continue under the direction o f my physician in accordance with my own particular 
financial arrangement.

The benefits o f  this test have been explained to me. T h ^  include assisting the CHKS in 
establishing data on non-impaired individuals and providing me with scientifically collected 
and interpreted data on my walking pattern.

I know that participation in this study is strictly on a volunteer basis and that I may 
withdraw my participation at any time. I understand that in no way would non- 
partidpation or withdrawal finom this study affect treatment while at Mary Free Bed nor 
my educational status at GVSU. There be no payment for my partidpation. I know 
that any questions I have, pertaining to this study, will be answered.
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PARTICIPANT STATEMENT:

The test has been explained to me and I consent to participate. I have had the opportunity 
to ask questions.

Signature o f  Participant Date

I wish to receive project results;

Signature o f  Participant Date

INVESTIGATORS STATEMENT:

I have offered an opportunity for fiirther explanation o f this test.

Signature o f Researcher Date

Signature o f Researcher Date

Signature o f  Researcher Date

For additional questions concerning Human Subject Research Review Committee policies 
and procedures, please contact Professor Huizinga at (616) 895-2472.

Lisa Elders, SPT 
Heather Greenwald, SPT 
Celeste Sartor, SPT 
Suite 101,2020 Raybrook S.E. 
Grand Rapids, MI 49546 
(616)954-2318 (W) 
(616)530-3085 (H)



APPENDIX G

Parameter 

Total Body Mass

Height

ASIS breadth 

PELVIS:

Pelvic height

Pelvic depth

THIGH:

T h i ^  l e n g t h

Midthigh circumference

CALF:

C a l f  l e n g t h

Calf circumference

KNEE:

Knee diameter

ANTHROPOMETRIC PARAMETERS

Description

Measure (on a scale accurate to 0.01 kg) die mass of 
subject with all clothes excqit underwear removed

With the subject standing, measure the distance from the floor 
to the top of the apex of the head

With a beam caliper, measure the horizontal distance 
between, the anterior siqierior iliac spines

)^%h a sliding caliper, measure the distance Aom the pubic 
tubercles to a point bisecting a line drawn vriiich c«mects 
bilateral ASIS's

\^%h a sliding caliper and the subject in a sidelying position, 
measure the distance from ASIS to PSIS

With a sliding caliper, measure die vertical distance 
between the superior point of the grater trodianter 
of the femur and the superior margin of the lateral tibia

With a tape perpendicular to the long axis of the leg 
and at a level midway between the trodianteric and 
tibial landmarks, measure the circumference of the thigh

With a sliding caliper, measure the vertical distance 
between die superior margin of the lateral tibial and 
the lateral malleolus

Wth a tape perpendicular to the long axis of the lower 
leg, measure the maximum circumference of the calf

With a spreading caliper, measure the maximum breadth 
of the knee across the femoral epicondyles

8 1
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FOOT:

Foot length

Malleolus h e i^

Malleolus width 

Foot breadth

With a beam caliper, measure the distance from the 
posterior margin of the heel to the tip of the lœgest toe

With the subject standing, use a sliding caliper to 
measure the vertical distance from the standing 
surfrce to the midpoint of the lateral malleolus

With a slidmg caliper, measure the maximum distance 
between the medial and lateral malleoli

\^%h a beam caliper, measure the breadth across the 
distal ends of metatarsals I and V



APPENDIX H

CENTER FOR HUMAN KINETIC STUDIES 
ANTHROPOMETRIC MEASUREMENT WORKSHEET

Subject Initials:______________ Date:.
Gender M  F   Age:_

ANTHROPOMETRIC MEASUREMENT VALUE UNITS

Total body m ass ________  Kg
Height ________  in
ASIS breadth ________  cm

PELVIS:
Pehflc height ________  cm
Pelvic depth ________  cm

THIGH:
R. Thigh length_________________________ ________  cm
L. Thigh length ________  cm
R. Midthigh circumference ________  cm
L. Midthigh circumference ________  cm

CALF:
R. Calf length ________  cm
L. Calf length ________  cm
R. Calf circumference ________  cm
L Calf circumference ________  cm

KNEE:
R. Knee diameter ________  cm
L. Knee diameter_______________________ ________  cm

FOOT:
R. Foot length ________  cm
L. Foot length ________  cm
R. Malleolus heiÿit ________  cm
L Malleolus height ________  cm
R. Malleolus width ________  cm
L. Malleolus width ________  cm
R. Foot breadth ________  cm
L Foot breadth _ cm

Comments:.

Examiner.
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