
Def1 promotes polymerase exchange at 
stalled replication forks upon DNA damage 

 
 
 
 
 
 
 

Doctoral thesis 
(Ph.D. Dissertation) 

 
 
 
 

Andreea Daraba  
 

Supervisor: Dr. Ildikó Unk  
 

 
 

 
 
 
 
 
 
 

Doctoral School of Biology of the Faculty of Science and Informatics 
University of Szeged 

 
 The Institute of Genetics 

 Biological Research Center of the Hungarian Academy of Sciences 
 
 

2014  
 

Szeged 



 2

Table of contents 
 
Table of contents ....................................................................................................... 2 
List of abbreviations.................................................................................................. 3 

List of figures ........................................................................................................ 5 
1. Introduction........................................................................................................... 6 

1.1 DNA Damage .................................................................................................. 6 
1.2 DNA repair pathways ...................................................................................... 9 

1.2.1 Direct Reversal ......................................................................................... 9 
1.2.2 Base excision repair ................................................................................ 11 
1.2.3 Nucleotide excision repair....................................................................... 12 
1.2.4 Mismatch repair ...................................................................................... 16 
1.2.5 Double strand break repair ...................................................................... 17 

1.3 DNA damage tolerance pathways .................................................................. 19 
1.3.1 Rad52 dependent recombinational pathway............................................. 20 
1.3.2 Rad6-Rad18 dependent DNA damage tolerance pathway........................ 20 
   1.3.2.1 Error-free post replication repair........................................................ 21 
   1.3.2.2 Translesion synthesis:  Rev1, Rev3, Rev7 and Rad30........................ 24 

1.4 Polymerase exchange..................................................................................... 27 
1.5 Ubiquitin and its role in proteasomal degradation and DNA damage bypass .. 29 
1.6 Def1-degradation factor 1 .............................................................................. 32 

2. Goals and objectives............................................................................................ 36 
3. Materials and methods......................................................................................... 37 

3.1 Media ............................................................................................................ 37 
3.2 Yeast nomenclature ....................................................................................... 37 
3.3 Yeast strains and growth conditions ............................................................... 38 
3.4 Plasmids ........................................................................................................ 39 
3.5 Generation of deletion strains by homology based gene replacement ............. 40 
3.6 Epitope tagging.............................................................................................. 41 
3.7 Yeast two-hybrid assay .................................................................................. 42 
3.8 Quantitative assay of sensitivity to UV .......................................................... 42 
3.9 Qualitative assay of sensitivity to MMS......................................................... 42 
3.10 UV-induced mutagenesis ............................................................................. 42 
3.11 MMS-induced mutagenesis.......................................................................... 43 
3.12 Cell synchronization .................................................................................... 43 
3.11 Protein tehniques- whole cell extract and western blotting ........................... 44 
3.12 GST Fusion protein expression and pulldown assay..................................... 45 

4. Results................................................................................................................. 47 
4.1 Genetic relations between DEF1 and DNA damage tolerance genes .............. 47 
4.2 Deletion of DEF1 abolishes the UV and MMS-induced mutagenesis ............. 53 
4.3 Yeast two hybrid assays fail to identify Def1 interaction partners .................. 55 
4.4 Pol3 is degraded upon DNA damage by a Def1-dependent manner ................ 56 
4.5 Def1 induces the ubiquitination and proteasomal degradation of Pol3............ 60 
4.6 Pol31 and Pol32 are not subject to UV-induced degradation .......................... 62 
4.7 In vitro complex formation between Pol31, Pol32 and Rev1 .......................... 63 

5. Discussion ........................................................................................................... 64 
6. Acknowledgement............................................................................................... 70 
7. References........................................................................................................... 71 
Summary in English ................................................................................................ 83 
Summary in Hungarian............................................................................................ 86 



 3

 List of abbreviations 
 
 
AP site Apurinic/Apyrimidinic site (also known as an abasic site) 
APF-1 ATP-dependent Proteolysis Factor 1 
ATP Adenosine-5'-triphosphate  
BER Base Excision Repair 
Chr IX Chromosome IX 
CS Cockayne Syndrome  
DDT DNA Damage Tolerance 
DEF1 RNAPII Degradation Factor 1 
DNA  Deoxyribonucleic Acid  
DNA-PKcs DNA-dependent Protein Kinase, catalytic subunit 
DSBs Double-Strand Breaks  
DTT Dithiothreitol  
E.coli Escherichia coli 
E1 Ubiquitin activating enzyme 
E2 Ubiquitin conjugating enzyme 
E3 Ubiquitin ligase enzyme 
EDTA Ethylenediaminetetraacetic Acid 
EST Ever Shorter Telomeres 
FOA 5-Fluoroorotic Acid 
g Gram 
GAL Galactose 
GGR Global Genom Repair 
GST Glutathione S-Transferase 
HA Hemagglutinin  
HLTF Helicase Like Transcription Factor 
HNPCC Hereditary Nonpolyposis Colorectal Carcinoma 
HR Homologous Recombination 
H2S Hydrogen Sulfide 
IDLs Insertion/Deletion Loops  
kDa Kilodalton 
LIF1 Ligase Interacting Factor 1 
MALDI-TOF Matrix-Assisted Laser Desorption/Ionization-Time-Of-Light  
MGMT  O6-methylguanine DNA methyltransferase 
min. Minute 
ml Millilitre 
MMR Mismatch Repair  
MMS Methyl methanesulfonate  
Mms2 Methyl methanesulfonate sensitivity protein 2 
MQ water Water purified with a Milli-Q water purification system  
MRE Meiotic REcombination  
MS Mass Spectrometry 
MSI Microsatellite Instability  
NEJ1 Nonhomologous End-Joining defective 1 
NEM N-ethylmaleimide 
NER Nucleotide Excision Repair 



 4

NHEJ Non-Homologous End-Joining 
OD600nm Optical Density of 600 nanometers 
O6-mG O6-methylguanine  
O/N Overnight 
ONPG O-nitrophenol- β-D-galactopyranoside 
ORF Open Reading Frame 
PBS Phosphate Buffered Saline 
PCNA Proliferating Cell Nuclear Antigen 
PEP 4 Carboxypeptidase Y-deficient 4 
PGK Phosphoglycerate kinase 
POL  Polymerase  
PRB 1 Proteinase B 1 
PRR Postreplication repair 
Rad  Radiation sensitive 
Rev  Reversionless  
RNA Ribonucleic acid 
RNAPII RNA Polymerase II 
RRM rDNA Recombination Mutation 
SC-medium Synthetic Complete medium 
SDS Sodium Dodecyl Sulfate 
S phase Cell cycle Synthetic phase 
ssDNA Single-Stranded DNA 
SHPRH SNF2, histone-linker, PHD and RING finger domain-containing helicase 
SWI/SNF SWItch/Sucrose NonFermentable 
TCA Trichloroacetic acid  
TCR Transcription Coupled Repair 
TLS Translesion Synthesis 
Ub Ubiquitin 
Uba1 Ubiquitin Activating enzyme E1 
Ubc Ubiquitin Carrier  
UV Ultraviolet light 
WB Western Blott 
XP-V Xeroderma Pigmentosum Variant 
XRCC X-ray Repair Cross Complementing  
XRS X-ray Sensitive  
YPD Yeast extract, Peptone and D-glucose medium 
 

 
 
 
 
 
 
 
 
 
 

 



 5

List of figures 
 
 
 

Figure 1 DNA damage response 
Figure 2 Direct reversal of T-Tdimers. 
Figure 3 The base excision repair pathway 
Figure 4 Main repair systems in Saccharomyces cerevisiae 
Figure 5 Nucleotide excision repair 
Figure 6 The mismatch repair pathway in E. coli 
Figure 7 The pathways of DSB repair 
Figure 8 The RAD6-RAD18 dependent damage tolerance pathway 
Figure 9 Domain architecture and functions of Rad5 and its putative orthologs 

   SHPRH and HLTF 
Figure 10 DNA damage tolerance pathway 
Figure 11 The Ubiquitin system 
Figure 12 Schematic diagram of a principle of gene targeting 
Figure 13 Genetic analysis of DEF1 with mutants of different branches of the RAD6 
 pathway upon UV-irradiation 
Figure 14 Genetic analysis of DEF1 with mutants of the different branches of the   
 RAD6 pathway upon MMS treatment 
Figure 15 Genetic interactions of RAD30 with MMS2 and REV3 mutants upon MMS  
 treatment  
Figure 16 DNA damage-induced mutagenesis in different mutants 
Figure 17 UV-induced mutagenesis is abolished in def1 deletion mutants 
Figure 18 MMS-induced mutagenesis in def1 strain is abolished. 
Figure 19 The effect of increasing UV doses on the level of Pol3 
Figure 20 UV Induced degradation of Pol3 in different mutants 
Figure 21 Pol3 UV-induced degradation is mediated by the proteasome 
Figure 22 Def1 assists Pol3 poly-ubiquitination 
Figure 23 Pol31 and Pol32 are not affected by UV-induced degradation 
Figure 24 Rev1 forms a complex with Pol31 and Pol32 
Figure 25 DEF1 in the RAD6-RAD18 dependent damage tolerance pathway 
Figure 26 Model for polymerase exchange at a DNA damage site 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6

1. Introduction 

1.1 DNA Damage  
 

The publication of Watson and Crick’s famous paper titled „Molecular 

Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid” marked the 

dawn of a new scientific era, the age of molecular biology. As these authors drew to a 

close, their brief but far-reaching description of the DNA double helix, they pointedly 

commented, “It has not escaped our notice that the specific [base] pairing we have 

postulated immediately suggests a possible copying mechanism for the genetic 

material” [1]. The mechanism for DNA replication that Watson and Crick viewed as 

intuitively obvious is strand separation followed by the copying of each strand. In the 

process, each separated strand acts as a template for the synthesis of a new 

complementary strand whose nucleotide sequence is fixed by the base-pairing rules 

Watson and Crick proposed. Previously it was postulated that during evolution DNA 

has been selected as a major carrier of genetic information due to its relative stability 

over other macromolecules such as RNA, however it is by no means inert. The 

reactivity of DNA with endogenous or environmental agents results in chemical 

modifications, which can have mutagenic or lethal effect upon replication [2]. 

Damage to DNA is unavoidable and arises in many ways. It is estimated that in a 

single human cell the number of DNA damage events range from 104 to 106 per day 

[3]. DNA damage (Fig.1) can be caused by spontaneous cleavage of chemical bonds 

in DNA, by environmental agents such as ultraviolet radiation from sunlight and 

cigarette smoke [4] or exposure to therapeutic agents used in the treatment of  cancers 

including chemotherapeutic drugs and ionising radiotherapy [5]. DNA damage can be 

also caused by reaction with genotoxic chemicals, like reactive oxygen species 

(ROS), that are by-products of normal cellular metabolism or occur in the 

environment [6]. ROS can cause  oxidative  damage  to  DNA  leading  to  single- and 

double-strand  breaks  (SSBs  and  DSBs) [7]. 

A change in the normal DNA sequence, called a mutation, can occur during 

replication when a DNA polymerase inserts a wrong nucleotide as it reads a damaged 

template. Mutations also occur at a low frequency as the result of copying errors 

introduced by DNA polymerases when they replicate an undamaged template. If 

mutations were left uncorrected, cells might accumulate too many mutations that can 
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have detrimental effects on genetic stability. Failure to repair DNA lesions may result 

in blockages of transcription and replication, mutagenesis, and/or cytotoxicity [3]. In 

addition, the DNA in germ cells might incur too many mutations for viable offspring 

to be formed.  In humans DNA damage induced alterations have been shown to be 

involved in a variety of genetically inherited disorders, in aging [8], and in 

carcinogenesis [9, 10]. 

Thus the prevention of DNA sequence errors in all types of cells is important 

for survival, and several cellular mechanisms for repairing damaged DNA and 

correcting sequence errors have evolved.  Prokaryotic and eukaryotic cells encode 

multiple repair systems that can deal with the damage [3, 11]. Although cells are 

equipped with repair mechanisms, they are not always able to clear the DNA template 

of all damage ahead of a replication fork. The different types of DNA damage and 

obstacles on the template will lead to different consequences if met by a replication 

fork [12]. 

The DNA damage response (DDR) is  the  name  given  to  the  network  of 

coordinated, highly regulated signalling pathways that monitor and protect the 

integrity of the genome [12]. DDR involves numerous  proteins which  detect  DNA  

lesions  and  transduce  signals  to downstream effector proteins that  determine the 

response to resolve the induced DNA damage [13]. Upon sensing DNA damage or 

stalls in replication (Fig.1), cell cycle checkpoints are activated to arrest cell cycle 

progression to allow time for repair before the damage is passed on to daughter cells. 

In addition to checkpoint activation, the DNA damage response leads to induction of 

transcriptional programs, enhancement of DNA repair pathways, and when the level 

of damage is too severe to repair to initiation of apoptosis [13].  All of these processes 

are carefully coordinated so that the genetic material is faithfully maintained, 

duplicated, and segregated within the cell. Signalling in the DDR is mediated in large 

part through the post-translational modification of downstream effector proteins, 

which leads to the recruitment of a plethora of proteins to the sites of damage. Post-

translational modifications include phosphorylation, ubiquitination, SUMOylation, 

glycosylation, ADP-ribosylation, and methylation [14].  
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 Significantly, defects in DNA repair mechanisms and cancer are closely 

related. When repair mechanisms are compromised, mutations accumulate in the 

cell’s DNA. If these mutations affect genes that are normally involved in the careful 

regulation of cell division, cells can begin to divide uncontrollably, leading to tumor 

formation, and cancer [9]. 

With so many types of DNA lesions occurring at such a high frequency, 

multiple responses to DNA damage have evolved. These processes can be divided 

into two main categories: DNA repair and DNA damage tolerance. DNA repair is a 

cellular response to DNA damage that results in the restoration of the original 

nucleotide sequence and DNA structure. If -by any means- the DNA repair pathways 

are unable to repair lesions prior to the onset of S phase that can result in the breakage 

of the replication fork leading to recombination, chromosomal rearrangements and 

finally cell death. To prevent cell death in such circumstances, all cells are able to 

Figure 1 DNA damage response  
DNA damanage is caused by a variety of sources. The cellular response to damage 
may involve activation of cell cycle checkpoint, commencement of transcriptional 
programs, execution of DNA repair, or when the damage is severe, initiation of 
apoptosis. (R&D Systems, Inc) 
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activate DNA damage tolerance pathways. DNA damage tolerance acts to reinitiate 

replication in the presence of damage but without lesion removal.  

1.2 DNA repair pathways 
 

Eukaryotic and prokaryotic cells possess multiple mechanisms to repair DNA 

and control damage to their genomes. These include direct reversal, base excision 

repair (BER) and nucleotide excision repair (NER) that excise and replace damaged 

bases and helix-distorting lesions, respectively. In addition, mismatch repair (MMR) 

proteins act to replace mismatched nucleotides and repair insertion/deletion loops. 

Furthermore, there are two types of double-stranded DNA break repair, homologous 

recombination (HR) and non-homologous end-joining (NHEJ). 

1.2.1 Direct Reversal  

Cells are known to eliminate three types of damage to their DNA by 

chemically reversing it. These mechanisms do not require a template, since the types 

of damage they counteract can occur in only one of the four bases. Such direct 

reversal mechanisms are specific to the type of damage incurred and do not involve 

breakage of the phosphodiester backbone. Only a few types of DNA damage are 

repaired in this way, particularly pyrimidine dimers, alkylated guanine residues that 

have been modified by the addition of methyl or ethyl groups at the O6 position of the 

purine ring and methylated adenine and cytosine bases.  

The formation of pyrimidine dimers upon irradiation with UV light results in 

an abnormal covalent bond between adjacent pyrimidine bases (Fig.2). The 

photoreactivation process reverses this damage by the action of a photolyase. This 

enzyme is activated by the energy absorbed from blue/UV light (300-500nm 

wavelenght) [15]. Photolyase is a phylogenetically old enzyme present and functional 

in many species from bacteria to animals [16]. However, in humans and other 

placental mammals this photolyase activity is missing and its function is replaced by 

the less efficient nucleotide excision repair mechanism [17]. 
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Another type of damage methylation of guanine bases [18] is directly reversed 

by the protein methyl guanine methyl transferase (MGMT) [19]. This is an expensive 

process because each MGMT molecule can be used only once; that is, the reaction 

is stoichiometric rather than catalytic. The inactivated alkyl-MGMT protein is then 

degraded in an ATP-dependent ubiquitin proteolytic pathway [20]. This energetically 

expensive repair mechanism for the correction of a relatively simple alkyl-adduct, O6-

mG, is extremely detrimental to the cell. Accordingly, a number of chemotherapeutic 

agents that attack the O6 position of guanine have been developed and are in clinical 

use [20].  

Figure 2 Direct reversal of T-Tdimers. 
Upon UV irradiation an abnormal covalent bond is formed between adjacent 
pyrimidine bases. The photoreactivation process reverses this damage by the 
action of a photolyase enzyme, activated by the energy absorbed from blue light. 
http://www.studyblue.com/notes/note/n/chapter-14/deck/1327947 
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1-methyladenine and 3-methylcytosine are repaired by oxidative 

demethylation catalyzed by a dioxygenase enzyme. This reaction occurs on both 

single and double-stranded DNA, with strong preference for double- stranded DNA 

and requires molecular oxygen, alpha-ketoglutarate and iron to oxidize the offending 

methyl group [21]. Direct reversal of methylated adenine and cytosine is important 

because failure to repair 1-methyladenine and 3-methylcytosine can lead to cell death 

in both E. coli [22] and human cells [23]. 

Although it might seem that direct reversal of damage would be the simplest 

way to correct the damage, in most cases the reverse reaction is not possible for 

thermodynamic or kinetic reasons. In a few cases, the reaction is reversible. Taking in 

consideration the vast variety of DNA lesions, cells have developed specialised repair 

mechanisms that can deal with several types of DNA damage.  

1.2.2 Base excision repair   

Base excision repair, a critical machinery which corrects DNA lesions and 

ensures that mutations are not propagated is a multi-step process that corrects non-

bulky damage to bases resulting from oxidation, methylation, deamination, or 

spontaneous loss of the DNA base itself [24]. These alterations, although simple in 

nature, are highly mutagenic and therefore represent a significant threat to genome 

fidelity and stability [25]. The process of base excision repair is carried out by 

specific and sequential enzyme activities (Fig.3). Damaged bases are first identified 

and removed by DNA glycosylases, which break beta-N glycosidic bonds to create an 

abasic (AP) site. Depending on the initial events of base removal, repair proceeds 

through either the short patch (1 nucleotide) or long patch (2-10 nucleotides) repair 

pathways. This involves the AP site being recognized by an endonuclease, which 

nicks the damaged DNA, hydrolyzes the phosphodiester backbone 5’ to the AP site, 

leaving a 3’-hydroxyl group and recruits DNA polymerases to fill the gap in the 

DNA. Finally, base excision repair is complete when the new DNA strand is sealed by 

DNA ligase [24].  
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1.2.3 Nucleotide excision repair  

Nucleotide excision repair is perhaps the most flexible member of the DNA 

repair pathways considering the diversity of DNA lesions it acts upon. The most 

significant of these lesions are pyrimidine dimers, other NER substrates include bulky 

chemical adducts, DNA intrastrand crosslinks, and some forms of oxidative damage. 

The common features of lesions recognized by the NER pathway are that they cause 

both a helical distortion of the DNA duplex and a modification of the DNA chemistry 

[26].   

This is a very precise process where only the defected strand is removed without 

affecting the undamaged DNA strand because that serves as the template for the 

Figure 3 The base excision repair pathway 
BER is initiated by a DNA glycosylase, which excises the damaged base to 
generate an abasic site for subsequent processing. The AP endonuclease incises 
the abasic site to yield a 3’OH. DNA polymerase replicates DNA from the 3’OH, 
generating a nick ready for subsequent ligation by DNA ligase. 
http://jonlieffmd.com/blog/the-many-ways-neurons-repair-their-own-dna 
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modification and repairing process. The NER proteins are assembled in a way that 

allows for the verification of the damaged site before the actual removal of the DNA 

backbone [27]. When a distortion (like pyrimidine dimer) is recognized a 12 

nucleotide segment containing the damage is excised, which generates a short DNA 

gap. This gap is subsequently filled in by DNA polymerase and finally, DNA ligase 

seals the ends [28]. The difference between BER and NER is that BER has the ability 

to detect and remove single nucleotides with the smallest modification such as the 

addition of one single methyl group. Thus, it is extremely efficient in fixing distorted 

DNA strands [27]. 

In yeast (Fig. 4), the proteins involved in removing the damaged nucleotides 

are named RadXX (“RAD” stands for “radiation sensitive”) [29]. Damage recognition 

and incision of DNA during nucleotide excision repair in yeast [28] and mammalian 

cells [30, 31] requires multiple gene products. Amino-acid sequence homology 

between several yeast and mammalian genes suggests that the mechanism of 

nucleotide excision repair is conserved in eukaryotes [32]. 

 

 
 

 

 

 

 

Figure 4 Main repair systems in Saccharomyces cerevisiae 
Yeast mutants sensitive to UV or ionizing radiation are classified in three 
"epistasis" groups that are important for cell survival. The major genes in these 
three groups are listed above.  
http://www.acsu.buffalo.edu/~kowalsk/dnarepair/bypass.html 
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Considerable insight into the process of human NER has been gained through 

the study of two rare, autosomal recessive, but heterogeneous disorders - xeroderma 

pigmentosum (XP) [33] and Cockayne Syndrome (CS) [32] an extreme form of 

accelerated aging that is fatal early in life. The XP gene products are now known to 

perform various functions during NER, like damage recognition and DNA 

incision. The CS gene products, on the other hand, are required for NER-based repair 

of transcriptionally active genes [34].  

Transcription-coupled repair (TCR) [35] is responsible for the fact that 

damage from the active strand of transcribed genes is more rapidly removed than 

those located on the non-transcribed genomic DNA [36]. The transcribed DNA strand 

is preferentially repaired compared with non-transcribed DNA strand in expressed 

genes because the stalled RNA polymerase II is the signal for recruitment of TCR 

factors (CSA and CSB proteins in humans and Rad26 and Rpb9 in yeast) (Fig.5). 

Following detection, the transcription factor II H (TFIIH) complex is recruited, and 

unwinds a stretch of approximately 30 nucleotides around the damage, providing 

access for other repair factors like endonucleases, which subsequently incise the DNA 

around the damage. After excision of the damaged strand, the resulting gap of 25 to 

29 nucleotides is filled in by DNA synthesis and ligation [37].  

Global genome repair (GGR) removes damage existing elsewhere in the 

genome [36]. GGR is initiated by UV-DDB ubiquitin ligase complex in humans. In 

yeast Rad7 and Rad16 form a complex that binds specifically to UV-damaged DNA 

in an ATP dependent manner (Guzder et al, 1997) (Fig.5). GGR utilizes specific 

proteins for the recognition of the damage, which constantly scan the genome for the 

presence of DNA damage. Except for the way of damage recognition, TCR and GGR 

share the same enzimatic pathway. 
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Figure 5 Nucleotide excision repair 
NER is executed by two different damage-detection mechanisms, which utilize the 
same machinery to excise and repair the damage (Tatum D. and Shisheng Li, 
2011, DNA Repair-On the Pathways to Fixing DNA Damage and Errors, 
Chapter6) 
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1.2.4 Mismatch repair  

The DNA mismatch repair pathway plays an essential role in the correction of 

replication errors such as base-base mismatches and insertion/deletion loops (IDLs) 

that result from DNA polymerase misincorporation of nucleotides and template 

slippage, respectively. Mispairs generated by the spontaneous deamination of 5-

methylcytosine and heteroduplexes formed following genetic recombination are also 

corrected via MMR. [38].  

The overall process of MMR is similar to the other excision repair pathways. 

The DNA lesion (mismatch or IDL) is recognized (Fig. 6) and a patch containing the 

lesion is excised. The strand is corrected by a DNA polymerase and religated [39].  

 

 
 

 

 

 

Figure 6 The mismatch repair pathway in E. coli 
MMR is initiated by the recognition of mismatches by the MutS homodimer 
followed by recruitment of the MutL and MutH, which nick the DNA. This serves 
as an entry point for exonuclease 1 that removes a segment of DNA. This is 
subsequently filled in by DNA polymerase III and ligated to complete repair. 
(Biochemistry, Seventh Edition, 2012, W. H. Freeman et al.) 
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In E.coli a number of genes were identified that, when mutationally 

inactivated, cause hypermutable strains. This so-called "mutator" cellular phenotype 

is characterized by elevated frequencies in spontaneous mutations and increased 

microsatellite instability [38]. The gene products are therefore called the "Mut" 

proteins, and are the major active components of the mismatch repair system. Three 

of these proteins are essential in detecting the mismatch and directing repair 

machinery to it: MutS, MutH and MutL [39]. Homologs of MutS and MutL have been 

identified in yeast, mammals, and other eukaryotes. 

Mutations in several human MMR genes cause a predisposition to hereditary 

nonpolyposis colorectal carcinoma (HNPCC) [40], as well as a variety of sporadic 

tumors that display MSI [41].  

1.2.5 Double strand break repair  

Double strand breaks (DSBs) are perhaps the most severe form of DNA 

damage because they pose multiple problems for transcription, replication, and 

chromosome segregation. Damage of this type is caused by exogenous agents such as 

ionizing radiation and certain genotoxic chemicals. It may also originate from 

endogenous sources such as replication of single-stranded DNA breaks, endogenously 

generated reactive oxygen species, and mechanical stress on the chromosomes [42, 

43]. DSBs differ from other types of DNA lesions in that they affect both strands of 

the DNA duplex and therefore prevent use of the complementary strand as a template 

for repair (see BER, NER, and MMR). Failure to repair these defects can result in 

chromosomal instabilities, which leads to dysregulated gene expression and 

carcinogenesis [9]. To counteract the detrimental effects of these potent lesions, cells 

have evolved two distinct pathways of DSB repair, homologous recombination (HR) 

and non-homologous end joining (NHEJ) [44]. The cellular decision as to which 

pathway to utilize for DSB repair is unclear, however, it appears to be largely 

influenced by stage within the cell cycle at the time of damage acquisition [42].  

Homologous recombination directed repair corrects DSB defects in an error-

free manner using a mechanism that retrieves genetic information from a homologous, 

undamaged DNA molecule. The majority of HR-based repair takes place in late S- 

and G2-phases of the cell cycle when an undamaged sister chromatid is available for 

use as repair template (Fig.7). The Rad52 epistasis group of proteins (Fig 4), 

including Rad50, Rad51, Rad52, Rad53, Rad54, Rad55, Rad56, Rad57, Rad59 and 
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Mre11 mediate this process [45]. The Rad52 protein itself is thought to be the initial 

sensor of the broken DNA ends. Processing of the damaged ends results in the 

production of 3' single-stranded DNA (ssDNA) overhangs. The newly generated 

ssDNA ends are bound by Rad51 to form a nucleoprotein filament [46]. The Rad51 

nucleoprotein filament then searches the undamaged DNA on the sister chromatid for 

a homologous repair template [47]. Once the homologous DNA has been identified, 

the damaged DNA strand invades the undamaged DNA duplex in a process referred 

to as DNA strand invasion. A DNA polymerase then extends the 3' end of the 

invading strand and subsequent ligation by DNA Ligase I yields a heteroduplexed 

DNA structure. This recombination intermediate is resolved and the precise, error-free 

correction of the DSB is complete [42]. 

 

 
 

 

 

 

 

In contrast to HR, non-homologous end joining does not require a 

homologous template for DSB repair and usually results in the correction of the break 

in an error-prone manner. Essential to the NHEJ pathway is the activity of the 

Figure 7 The pathways of DSB repair 
DNA DSBs are repaired by either NHEJ or HR. In NHEJ, the broken DNA ends 
are bound by the KU70/KU80 heterodimer and are processed prior to ligation. In 
contrast, HR is an error-free repair pathway that utilizes as template to repair DSB 
a sister chromatid. http://tewlab.path.med.umich.edu/ResearchProjects.html 



 19

Ku70/Ku80 heterodimeric protein [48]. The Ku heterodimer initiates NHEJ by 

binding to the free DNA ends (Fig.7) and recruiting other NHEJ factors such as, LIF1 

[49] the yeast homologue of human XRCC4 [50], NEJ1 a strong bindig partner of 

Lif1 globular head, and DNA Ligase IV to the site of injury. Because the ends of most 

DSBs generated by genotoxic agents are damaged and unable to be directly ligated, 

they often have to undergo limited processing by nucleases and/or polymerases before 

NHEJ can proceed. The nuclease(s) responsible for this processing remains to be 

determined, but strong candidates for this activity include the MRE11/RAD50/XRS2 

complex [51, 52]. The final step in NHEJ repair involves ligation of the DNA ends by 

Ligase IV [53]. 

1.3 DNA damage tolerance pathways 
 

In addition to the true repair pathways, the postreplication repair (PRR) 

pathway or the so called DNA damage tolerance (DDT) pathway allows lesions or 

structural aberrations that block replicative DNA polymerases to be tolerated. There 

are two bypass mechanisms: an error-free mechanism that involves a temporary 

switch to an undamaged template for synthesis past the lesion and an error-prone 

mechanism that utilizes specialized translesion synthesis DNA polymerases to 

directly synthesize DNA across the lesion [54]. 

UV-induced DNA lesions are usually repaired by NER, but if this pathway is 

not functional, these lesions will persist into S phase and interfere with DNA 

replication. This is manifested in the appearance of single-stranded DNA breaks (or 

nicks), which can be observed through separation of genomic DNA in an alkaline 

sucrose gradient [55-58]. After a short incubation period the fragmented genomic 

DNA converts to larger molecular weight species, similar to the DNA of unirradiated 

controls [55-58]. This restoration process is defined as postreplication repair. The low 

molecular weight DNA detected using alkaline sucrose gradients is assumed to arise 

from stalled replication forks creating areas of single-stranded gaps [55, 57, 58]. The 

lesions responsible for stalling replication are not removed from the DNA during this 

process, and persist even after the gaps are resolved [59, 60], that is why post 

replication repair is called as DNA damage tolerance.  
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In yeast, Saccharomyces cerevisiae stalled replication forks at DNA damage 

sites are rescued by two independent pathways: a RAD52 dependent recombinational 

mechanism and a RAD6-RAD18 dependent DNA damage tolerance [61]. 

1.3.1 Rad52 dependent recombinational pathway 

Genes of the RAD52 pathway, which are indispensable for mediating DSB 

repair by HR, contribute also to the repair of discontinuities that form in the newly 

synthesized DNA in UV-irradiated yeast cells [57].  

It is highly probable that the gap left opposite the DNA lesion on the lagging 

strand is filled in by the action of the RAD52 group proteins via a nonrecombinational 

pathway, wherein the Rad51-coated single stranded nucleoprotein filament invades 

the DNA duplex on the leading strand side and the gap on the lagging strand is then 

filled in by DNA synthesis using the newly synthesized leading strand as the template 

[62, 63]. The reason for suggesting a nonrecombinational mode of PRR for the 

Rad52-dependent pathway is that recombination is normally suppressed in yeast cells 

and it is only in the absence of Srs2 DNA helicase [64-66] or in the absence of Siz1-

mediated PCNA sumoylation [67-69] that the recombinational repair pathway 

becomes activated. 

1.3.2 Rad6-Rad18 dependent DNA damage tolerance pathway 

RAD6 and RAD18 were isolated in a screen to identify UV-sensitive S. 

cerevisiae mutants [70]. Both rad6 and rad18 mutants were sensitive to a wide range 

of DNA damaging agents [57, 58]. Prior to any biochemical studies on Rad6, it was 

observed that rad6 cells displayed increased spontaneous mutagenesis and a loss of 

UV-induced mutagenesis [71-73]. These initial results led to the conclusion that the 

RAD6 pathway promoted damage-induced mutagenesis [72]. It was later confirmed 

that the mutagenic response was indeed dependent upon RAD6 and RAD18 [74, 75]. 

Rad6 is one of 13 ubiquitin-conjugating enzymes (Ubcs) in S. cerevisiae and is 

involved in diverse cellular functions. Rad6 and Rad18 exist in a tight complex in the 

cell [76, 77] and are required for both error-free and mutagenic bypass processes. 

They govern at least three different damage bypass pathways [57, 78, 79] (a) the 

REV1, REV3, REV7-dependent error-prone translesion synthesis (TLS); (b) the 

RAD30-dependent error-free translesion DNA synthesis and (c) the RAD5-dependent 

error-free postreplication repair (Fig.8). The first step in the activation of all three 



 21

patyways is the Rad6–Rad18 dependent monoubiquitination of proliferating cell 

nuclear antigen (PCNA) at its K164 lysine residue [80, 81]. PCNA, the sliding clamp 

encircling DNA is the processivity factor of DNA polymerases and a key component 

of the replication machinery. PCNA ubiquitination by Rad6–Rad18 occurs only when 

PCNA is loaded onto DNA [82-84].  

 

 
 

 

 

1.3.2.1 Error-free post replication repair 

Rad5, Mms2 and Ubc13 have been so far the only assigned members to the 

error-free PRR sub-branch of Rad6–Rad18 (Fig.8). The three proteins form an 

ubiquitin-conjugating-ligating complex. Deletion of MMS2 or UBC13 results in 

moderate UV-sensitivity, while RAD5 deletion exhibits much higher UV-sensitivity 

[85]. The high sensitivity of the rad5 strain indicates that either PRR is not 

completely inhibited in the lack of MMS2 or UBC13, or that RAD5 has additional 

role(s) beside PRR. Alkaline sucrose gradient sedimentation experiments helped to 

clarify the individual contribution of different genes in PRR and proved that in cells 

exposed to acute high dose of UV light, the repair of discontinuities is equally 

impaired in the absence of either MMS2 or RAD5 [79, 85]. This suggests that the 

higher UV-sensitivity of the rad5 strain is due to the other functions of Rad5 besides 

PRR. Indeed, Rad5 has been shown to play a limited role in translesion synthesis, and 

Figure 8 The RAD6-RAD18 dependent damage tolerance pathway 
The Rad6–Rad18 governs at least three ways of replication of UV-damaged DNA 
through the ubiquitination of PCNA. (Unk I. et al, 2010, DNA Repair) 
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also in double-strand break repair and in the repair of DNA minor groove adducts in 

connection with nucleotide excision repair proteins [72, 85, 86].  

Rad5 belongs to a subgroup of the SWI/SNF2-like family characterized by a 

RING finger domain (Fig.9), characteristic of ubiquitin ligases, inserted between the 

C-terminal helicase motifs III and IV of the seven helicase modules. In addition to the 

helicase and RING domains, Rad5 has a HIRAN domain in its N-terminus followed 

by a leucine heptad repeat motif [87, 88]. 

The ubiquitin ligase and the ATP-ase functions of Rad5 have been shown to 

be equally important for PRR, since inactivation of any of these activities by 

mutations, confers the same level of PRR defect as the RAD5 deletion in sucrose 

gradient experiments [85]. A function of the ubiquitin ligase activity of Rad5 in PRR 

has been determined to promote the polyubiquitination of PCNA [80, 89, 90]. In rad5, 

mms2 or ubc13 deletion strains only the monoubiquitylated form of PCNA appears. 

Similarly to ubi (K63R) mutants, which express a ubiquitin variant incapable to form 

polyubiquitin chains linked through lysine 63, as a sole source of ubiquitin [77]. Since 

in these mutants mutagenesis is proficient, the K63-linked polyubiquitination of 

PCNA by Rad5 and Mms2-Ubc13 is necessary only for the Rad5-dependent PRR to 

operate [81, 87].  

The various genetic and biochemical observations have suggested a role for 

Rad5 in mediating error-free lesion bypass by transient template switching. In this 

process the DNA helicase activity of Rad5, which is highly specialized for replication 

fork regression, could promote template switching and a copy choice type of DNA 

synthesis, where the lesion on the leading strand is bypassed by template switching 

using the newly synthesized lagging strand as the template that would be formed upon 

fork regression [61, 91]. 

In recent years two homologs of Rad5 have been identified in human cells, the 

HLTF and SHPRH proteins (Fig.9), showing 39% and 21% similarities to Rad5, 

respectively [92-95]. Both HLTF and SHPRH can form multiprotein complexes with 

human Rad6–Rad18 and Mms2-Ubc13. Furthermore, in vitro both HLTF and SHPRH 

function as ubiquitin ligase for Mms2-Ubc13 dependent lysine 63 linked 

polyubiquitination of PCNA, previously monoubiquitylated by Rad6–Rad18. Both 

HLTF and SHPRH promote PCNA polyubiquitination in vivo. Rad5, HLTF and 

SHPRH belong to the SWI/SNF2 family of DNA dependent ATPases [96-103].  
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Figure 9 Domain architecture and functions of the E3 ubiquitin ligase Rad5 
and its putative orthologs SHPRH and HLTF 
(a) Structural comparisons between S. cerevisiae Rad5 and its human orthologs, 
HLTF and SHPRH. (b) The possible effects of helicase activity on a model 
homologous fork substrate. Helicases known to exhibit these activities are listed in 
blue. (c) A possible mechanism for template switching mediated by fork reversal. 
Model four-way junction and homologous fork structures, which are known 
substrates of Rad5 in vitro, are placed in brackets adjacent to the fork structures 
that they are thought to mimic. Yellow triangle, replication-blocking lesion; 
dashed line, leading strand; red box, template. (Chang D.J. et al, 2009, Nature 
Chemical Biology) 
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1.3.2.2 Translesion synthesis:  Rev1, Rev3, Rev7 and Rad30 

Translesion synthesis is a DNA damage tolerance process that allows the DNA 

replication machinery to replicate past DNA lesions such as thymine dimers or AP 

sites [104]. It involves switching regular DNA polymerases for specialized translesion 

polymerases, with less restrictive active sites that can facilitate the insertion of bases 

opposite damaged nucleotides. TLS polymerases often have low fidelity (high 

propensity to insert wrong bases) on undamaged templates relative to replicative 

polymerases. However, many are extremely efficient at inserting correct bases 

opposite specific types of damage. From a cellular perspective, risking the 

introduction of point mutations during translesion synthesis may be preferable than 

resorting to more drastic methods, which may cause gross chromosomal aberrations 

or cell death. All TLS polymerases except one, Polζ, are Y-family polymerases that 

lack a 3’-5’ proofreading exonuclease activity that could correct misincorporations 

and contain relatively non-restrictive active sites compared with the replicative 

polymerases [105]. 

At a site of lesion, PCNA is ubiquitinated at its K164 lysine residue (Fig. 10) 

by the Rad6-Rad18 protein complex to provide a platform for the specialized 

polymerases to bypass the lesion [106]. After translesion synthesis, extension is 

required. This extension can be carried out by the same TLS polymerase if the TLS is 

error-free, as in the case of the T-T dimer bypass by Pol η, yet if TLS results in a 

mismatch, a specialized polymerase is needed to extend it; Polζ. So when a lesion is 

encountered, the replication fork stalls, the replicative polymerase is exchanged to a 

TLS polymerase, that inserts nucleotides opposite lesions and the same or a second 

TLS polymerase extends from it. After bypass the TLS polymerase is switched back 

to the replicative polymerase to continue replication [107].  

To study this mutagenic process in yeast, Lemontt [108] isolated S. cerevisiae 

mutants incapable of reverting the arg4-17 and lys1-1 alleles in response to UV 

irradiation. These reversionless mutations (rev1, rev2, rev3 and later rev7) [109] 

rendered cells moderately UV-sensitive, indicating that mutagenesis was indeed a 

damage tolerance mechanism.  
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Rev1, the first characterized eukaryotic Y-family member, is a C-specific 

DNA polymerase that also inserts a dCMP efficiently opposite a template abasic site 

and is probably responsible for 60-85% of the bypass events at an abasic site in vivo 

[110]. The yeast rev1 mutant displays a complete loss of mutagenesis activity 

comparable to that of rev3. Analysis of site-specific mutations confirms that the Rev1 

enzymatic activity is not essential for TLS, but its BRCT domain and polymerase-

associated domain [111] required for protein interactions which are necessary for 

mutagenesis implying a scaffold role of Rev1 in TLS. The Rev1 structure and 

function appears to be highly conserved in higher eukaryotes [110]. 

The possibility of a common mutageneic pathway in S. cerevisiae came from 

the finding that rad6 was epistatic to rev3 for UV-sensitivity [72]. REV3 encodes a 

Figure 10 DNA damage tolerance pathway (DDT) 
Lesions (yellow Square) in the DNA template block replication fork progression. 
Upon genotoxic stress, PCNA is ubiquitylated at K164 to initiate DDT pathways. 
Monoubiquitination of PCNA by RAD18-RAD6 promotes TLS, while 
polyubiquitination by Rad5 facilitates template switching. (Gargi Ghosal et al, 
2012, Traslastional Cancer Research) 
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173 kDa protein with conserved DNA polymerase motifs [112]. Biochemical studies 

have shown that Rev3 and Rev7 dimerize to form DNA polymerase ζ [113]. Rev3, 

the catalytic subunit of Polζ, belongs to the B-family DNA polymerases, which 

include the replicative polymerases α, δ, and ε. Unlike Polδ or ε, however, Polζ lacks 

the proofreading exonuclease activity, and unlike the three replicative polymerases, 

Rev3 is not essential for cell viability or for growth in yeast cells. Disruption of REV3 

in mice, however, causes embryonic lethality [114]. Both subunits of Polζ, Rev3 and 

Rev7, are indispensable for UV mutagenesis [109, 115, 116] and for mutagenesis 

resulting from TLS occurring through abasic sites [117] or through bases damaged by 

certain chemical agents but not others [118]. Polζ ’s action, however, is not limited to 

the mutagenic bypass of DNA lesions, as it also enables error-free bypass through a 

variety of DNA lesions [78]. 

RAD30 was discovered by searching the Saccharomyces Genome Database 

for DinB-like sequences. In Escherichia coli, the DinB gene is required for the SOS-

induced lambda untargeted mutagenesis pathway and confers a mutator phenotype 

[119] to the cell when the gene product is overexpressed. The purified DinB protein is 

a DNA polymerase [120]. Like DinB, RAD30 is UV-inducible [121, 122]. The rad30 

mutant is moderately sensitive to killing by UV [121, 122], with minor sensitivities to 

other DNA damaging agents [122]. RAD30 has been placed in the RAD6 epistasis 

group by virtue of rad6 and rad18 being epistatic to rad30 for UV-sensitivity [121]. 

As rad30 was additive to rev1, rev3, and rev7 for UV-sensitivity, and the rad30 

mutant displayed no defect in UV-induced reversion of trp1-1, RAD30 was placed in 

the error-free arm of PRR [121]. Genetic results show that the RAD30 encoded Polη is 

needed for error free T-T dimer bypass [123]. Indeed in vitro Polη has low fidelity on 

an undamaged template, but it has a high fidelity over T–T dimers, where it inserts 

A’s across from both T’s [123], unlike Polδ, which arrests before the T–T dimer. 

Thus, Polη is required for error-free TLS of UV-induced DNA damage. It was 

further shown that Polη activity is required for both resistance to killing and 

prevention of mutagenesis in response to the UV irradiation of yeast cells [124]. Not 

only is Polη required for error-free TLS of UV-induced DNA damage, but it is also 

involved in N-methyl-N-nitro-N-nitrosoguanidine (MNNG) - induced mutagenesis. 

Thus, Polη is either error-prone or error-free, depending upon the DNA lesion 

encountered.  
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Polη, a Y family polymerase, differs from the other TLS polymerases in its 

way of binding PCNA. Given, that PCNA is a homotrimer ring Polη, similarly to 

Polδ, binds the interdomain connector loop of PCNA through its conserved PCNA-

interacting peptide motif [125]. Polδ and Polη can bind the same PCNA ring 

simultaneously. Meanwhile Rev1 and Polζ bind the intermolecular interface at the 

outer face of the PCNA ring [126, 127].  

Different TLS polymerases are required to bypass different DNA lesions, as a 

rev1Δ, rev3Δ or rev7Δ mutation abolishes abasic site-induced forward mutation [117], 

whereas the pol32Δ rad30Δ double mutant abolishes O6-MeG-induced forward 

mutation [128]. The unanswered questions are: how does the Rad6 pathway regulate 

polymerase switching and how is it decided which polymerase is used at a given 

lesion and at a given cell-cycle stage?  

1.4 Polymerase exchange 
 

The eukaryotic replicative DNA polymerase δ forms a stable holoenzyme 

complex with proliferating cell nuclear antigen. The holoenzyme is responsible for the 

highly accurate and processive DNA synthesis in eukaryotes [129]. However, in the 

presence of DNA damage Polδ faces difficulties in synthesizing through the damaged 

base, which results in replication fork stalling and interruption in genomic DNA 

duplication. Prolonged stalling of the replication fork causes premature replication 

fork collapse and generates deleterious DNA damage in the form of dsDNA breaks 

that compromises genome stability [130]. Both error-free and error-prone damage 

avoidance mechanisms have been discovered in eukaryotic cells. In the error-free 

branch a template switch to sister chromatid after replication fork regression is 

proposed to ensure accurate DNA synthesis through the lesion [2, 79, 91]. In the 

error-prone branch a specialized TLS polymerase is believed to release the replication 

fork blockage by carrying out TLS through the damaged site [78, 131]. Although the 

essential role of the specialized Pols in TLS has been well documented, it is not clear 

how a specific Pol is selected and how an exchange between replicative and TLS Pols 

occurs. The answers to these questions are crucial for our understanding of TLS in 

view that it is essential to restrict the actions of TLS Pols only to the site of DNA 

damage to avoid further undesirable mutagenesis during genome replication.  
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The phenomenon of ‘‘polymerase exchange’’ was first uncovered in T4 

bacteriophage DNA replication. Using a catalytically impaired T4 replicative Pol 

(gp43) trap, it was found that gp43 from solution undergoes active exchange with 

gp43 in the holoenzyme [132]. A model was proposed to explain the Pol exchange 

process in T4 phage based on known x-ray crystal structures of both gp43 and gp45. 

In this model T4 clamp protein gp45 serves as a platform that interacts with both the 

resident and the incoming Pols. Because gp45 exists as homotrimer, a transient 

intermediate with two Pols tethered to the same clamp is possible with no major steric 

clashes given the flexibility in the gp43 C-terminal tail. Interestingly, DNA Pol 

exchange has also been shown in the bacteriophage T7 system through an interaction 

between Pol gp5 and helicase gp4 [133, 134]. 

  During DNA replication in Escherichia coli, the DNA polymerase III 

holoenzyme will stall upon encountering a lesion. At this point, special translesion 

synthesis polymerases like pol IV take over and bypasses the lesion, allowing normal 

replication to continue. It remains unclear how TLS polymerases gain access to the 

primer site while stalled pol III sits there, although a “tool belt” model has been 

proposed by Indiani et al. [135]. Both enzymes are attached simultaneously to the 

polymerase β subunit (the sliding clamp) and switch on and off as needed. Indiani et 

al. also found that such an intermediate is essential for the exchange between Pol IV 

and Pol III on DNA and is instrumental for the TLS in E. coli [135].  

Asako Furukohri and colleagues propose an alternative where pol IV displaces 

pol III [136]. Using an assay measuring the DNA synthesis burst of primed pol III 

following the addition of dTTP, they found that adding pol IV before or after the 

nucleotide inhibited the synthesis burst. During this slow-down, the pol III* complex 

(two core units and the DnaX protein) no longer fractionated with the template DNA, 

instead being replaced by pol IV. The researchers propose a dynamic exchange 

model, where a stalled pol III complex enables pol IV to replace the stuck enzyme, 

and following lesion bypass, free pol III exchanges back in through mass action. In 

eukaryotes TLS is also indispensable for the fitness of the organism. 

Elegant genetic studies in Saccharomyces cerevisiae revealed the complex 

nature of the initiation and regulation of TLS inside the cell [67, 80, 81]. Hoege et al. 

[80] found that in the yeast cell TLS function is directly linked to the covalent 

modification of PCNA by monoubiquitin. In response to DNA damaging agents, 

PCNA is ubiquitinated at the conserved Lys-164 residue by Rad6, an E2 ubiquitin 
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(Ub)-conjugating enzyme, and Rad18, a RING finger-containing E3 Ub ligase. It was 

later established that the monoubiquitination of PCNA by Rad6/Rad18 activates the 

TLS by Polη [67, 81]. Recently, it was found that many Y-family TLS Pols contain an 

Ub-binding domain (UBD) [83, 137], and from coimmunoprecipitation studies, it has 

been inferred that human Polη interacts with monoubiquitinated PCNA through both 

the UBD and the PCNA interacting protein (PIP) motif [137, 138]. An efficient 

exchange of S. cerevisiae Polδ with Polη requires both the stalling of the holoenzyme 

and monoubiquitination of PCNA. PIP is strictly required for Pol exchange. 

Furthermore, the monoubiquitin moiety needs to be removed from PCNA after the 

lesion-bypass synthesis to resume normal DNA synthesis by Polδ [139]. Despite the 

recent advance in our knowledge of TLS, the molecular basis of the regulation of TLS 

in eukaryotes is still not fully understood. 

1.5 Ubiquitin and its role in proteasomal degradation and DNA 
damage bypass  

 

Ubiquitin (originally, ubiquitous immunopoietic polypeptide) was identified as 

an 8.5 kDa protein of unknown function expressed in all eukaryotic cells. The basic 

functions of ubiquitin and the components of the ubiquitination pathway were 

elucidated in the early 1980s by Aaron Ciechanover, Avram Hershko and Irwin Rose 

for which the Nobel Prize in Chemistry was awarded in 2004 [140, 141]. No ubiquitin 

and ubiquitination machinery are known to exist in prokaryotes. However, ubiquitin is 

believed to have descended from prokaryotic proteins similar to ThiS [142] or MoaD 

[143]. These prokaryotic proteins, despite having little sequence identity (ThiS has 

14% identity to ubiquitin), share the same protein fold and sulfur chemistry with 

ubiquitin. 

 Ubiquitination (also known as ubiquitination) is an enzymatic, post-

translational modification process in which a ubiquitin protein is attached to 

a substrate protein. This process most commonly binds the last amino acid of 

ubiquitin (glycine 76) to a lysine residue on the substrate through an isopeptide bond 

[144]. Cases are known in which the amine group of a protein's N-terminus is used for 

ubiquitination, rather than a lysine residue [145]. In a few rare cases nonlysine 

residues have been identified as ubiquitination targets, such as cysteine, threonine and 

serine [146]. The end result of this process is the addition of one ubiquitin molecule 
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(monoubiquitination) or a chain of ubiquitin molecules (polyubiquitination) to the 

substrate protein [147]. 

Monoubiquitination is the addition of one ubiquitin molecule to one substrate 

protein residue. Multi-monoubiquitination is the addition of one ubiquitin molecule to 

multiple substrate residues. Monoubiquitination of a protein can have different effects 

compared to the polyubiquitination of the same protein. The addition of a single 

ubiquitin molecule is thought to be required for to the formation of polyubiquitin 

chains [148]. Monoubiquitination affects cellular processes such as membrane 

trafficking, endocytosis, viral budding and DNA damage tolerance [149]. 

Polyubiquitination is the formation of a ubiquitin chain on a single lysine 

residue on the substrate protein. Following addition of a single ubiquitin moiety to a 

protein substrate, further ubiquitin molecules can be added to the first, yielding a 

polyubiquitin chain [148]. These chains are made by linking the glycine residue of a 

ubiquitin molecule to a lysine of ubiquitin bound to a substrate. Ubiquitin has seven 

lysine residues and an N-terminus that may serve as points of ubiquitination, they are 

K6, K11, K27, K29, K33, K48 and K63. Lysine 48-linked chains were the first 

identified and are the best characterised type of ubiquitin chains. K63 chains have also 

been well characterised, whereas the function of other lysine chains, mixed chains, 

branched chains, N-terminal linear chains and heterologous chains (mixtures of 

ubiquitin and other ubiquitin like proteins) remains more unclear  [148, 149]. Lysine 

48-linked polyubiquitin chains target proteins for destruction, by a process known 

as proteolysis. At least four ubiquitin molecules must be attached to a lysine residue 

on the condemned protein in order for it to be recognised by the 26S proteasome 

[150]. This protein complex is a barrel-shaped structure comprising a central 

proteolytic core made of four ring structures, flanked by two cylinders that selectively 

allow entry of ubiquitinated proteins. Once inside, the proteins are rapidly degraded 

into small peptides (usually 3–25 amino acid residues in length). Ubiquitin molecules 

are cleaved off the protein immediately prior to destruction and are recycled for 

further use [151]. Although the majority of proteasomal substrates are ubiquitinated, 

there are examples of non-ubiquitinated proteins targeted to the proteasome[152]. The 

polyubiquitin chains are recognised by a subunit of the proteasome; S5a/Rpn10 [153]. 

Lysine 63-linked chains are not associated with proteasomal degradation of the 

substrate protein. Instead they allow the coordination of other processes such as 

endocyctic trafficking, inflammation, translation and DNA repair [154]. Normally in 
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cells lysine 63-linked chains are bound by the ESCRT-0 complex, which prevents 

their binding to the proteasome [155]. 

Ubiquitination requires three types of enzymes; ubiquitin-activating enzymes, 

ubiquitin-conjuating enzymes and ubiquitin ligases, known as E1s, E2s and E3s, 

respectively. The process consists of three main steps (Fig.11): 

1. Activation: Ubiquitin is activated in a two-step reaction by an E1 ubiquitin 

activating enzyme, which is dependent on ATP. The initial step involves production 

of a ubiquitin-adenylate intermediate. The E1 binds both ATP and ubiquitin and 

catalyses the acyl-adenylation of the C-terminus of the ubiqutin molecule. The 

second step transfers ubiquitin to an active site cycteine residue, with release 

of AMP. This step results in a thioester linkage between the C-terminal carboxyl 

group of ubiquitin and the E1 cysteine sulfhydryl group [144, 156]. While in 

Saccharomyces cerevisiae there is one E1 ubiquitin activating enzyme, the human 

genome contains two genes that produce enzymes capable of activating ubiquitin 

UBA1 and UBA6 [157].  

2. Conjugation: E2 ubiquitin-conjugating enzymes catalyse the transfer of ubiquitin 

from E1 to the active site cysteine of the E2 via a trans(thio)esterification reaction. 

In order to perform this reaction, the E2 binds to both activated ubiquitin and the E1 

enzyme. Humans possess 35 different E2 enzymes, whereas other eukaryotic 

organisms have between 16 and 35. They are characterised by their highly 

conserved structure; known as the ubiquitin-conjugating catalytic (UBC) fold [158]. 

3. Ligation: E3 ubiquitin ligases catalyse the final step of the ubiquitination cascade. 

Most commonly they create an isopeptide bond between a lysine of the target 

protein and the C-terminal glycine of ubiquitin. In general, this step requires the 

activity of one of the hundreds of E3s. E3 enzymes function as the 

substrate recognition modules of the system and are capable of interaction with both 

E2 and substrate. Some E3 enzymes also activate the E2 enzymes 

[159]. The anaphase-promoting complex (APC) and the SCF complex (for Skp1-

Cullin-F-box protein complex) are two examples of multi-subunit E3s involved in 

recognition and ubiquitination of specific target proteins for degradation by 

the proteasome [160]. In the ubiquitination cascade, E1 can bind with many E2s, 

which can bind with hundreds of E3s in a hierarchical way. Having levels within the 

cascade allows tight regulation of the ubiquitination machinery [161]. 
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1.6 Def1-degradation factor 1 
  

Def1 (RNAPII Degradation Factor 1) is the product of the YKL054C ORF on 

Chr. XI of Saccharomyces cerevisiae [162]. It was first isolated as a Rad26-associated 

protein [163]. Rad26 is the yeast homologue for the best-studied Cockayne's 

syndrome gene [164], CSB, which codes for a Swi/Snf-like DNA-dependent ATPase. 

The DEF1 gene encodes a 738-amino-acid polypeptide with a theoretical and 

practical molecular mass of 84 and 120 kilodaltons in SDS-PAGE, respectively [162]. 

The amino-acid sequence of Def1 predicts a protein with unusually extensive regions 

of   low complexity, such as a large region with homology to coiled-coil domains and 

very high glutamine content over almost the entire protein. The high glutamine 

content probably explains the aberrant gel-electrophoretic properties of the protein 

and probably because of extensive low complexity regions a convincing metazoan 

homologue of the protein has not yet been identified by database searching [165]. 

Figure 11 The Ubiquitin system 
Ubiquitination requires three types of enzymes; ubiquitin-activating enzymes 
(E1s), ubiquitin-conjuating enzymes (E2s) and ubiquitin ligases (E3s). The E1 
binds both ATP and ubiquitin, and transfers ubiquitin to an active site 
cycteine residue, with release of AMP. E2s catalyse the transfer of ubiquitin from 
E1 to the active site cysteine of the E2. E3s  catalyse the final step of the 
ubiquitination cascade by creating an isopeptide bond between a lysine of the 
target protein and the C-terminal glycine of ubiquitin. (Julie Maupin-Furlow, 
2012, Nature Reviews Microbiology) 
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In Def1 the glutamine residues occupy ~23% of the total sequence, from aa 

381 to aa 480, which contains a coiled-coil domain of Def1, of which 65 residues are 

glutamines. It is believed that the expansion of glutamine repeats causes eight 

neurodegenerative diseases [166-168], including Huntington disease. In some of these 

neurodegenerative diseases, e.g. Huntington disease, the proteins with glutamine 

repeats have been shown to form granular and fibrous deposits in the cell nuclei of the 

affected neurons. In vitro, the recombinant 51- and 83-glutamine peptides of 

Huntington disease protein are able to form amyloid-like fibers. Although there are 

intervals between the segments of glutamines in the glutamine-rich region (aa 381– 

480) of Def1, it is possible that the middle part of Def1, especially the glutamine-rich 

region, might mediate its oligomerization and thereby facilitate the interaction 

between DNA and other proteins, which presumably interact with the C-terminal of 

Def1 [169]. 

def1 mutants are viable, but slow growing [162]. Genetic crosses revealed that 

the weak UV sensitivity of a rad26 deletion was not enhanced by additional def1 

deletion. In a rad16 (only defective in GGR) or rad14 (completely NER-deficient) 

strain def1 deletion enhanced UV sensitivity. The fact that def1 disruption synergies 

the UV sensitivity of a NER-deficient background indicates that DEF1 acts 

independent of the core excision repair reaction. Nevertheless, deletion of DEF1 

alone did not affect the TCR rate as shown by unaltered repair kinetics in the 

transcribed and non-transcribed strand of the mutant strain compared to wild type 

cells [170]. 

In addition, def1 mutation like rad26, failed to increase the UV-sensitivity of 

strains defective in other repair pathways, such as recombination repair and the DNA 

damage tolerance/post-replication repair pathway [162]. 

In order to explain def1 strain  behaviour in the epistatis analysis, Woudstra 

and colleagues suggested a possible link between Def1 and RNAPII-mediated 

transcription [170]. They show that def1 cells are as sensitive to the transcription 

elongation inhibitor 6-azauracil (6AU) as strains lacking the prototype elongation 

factor TFIIS (coded by DST1) and def1dst1 double mutant was extremely 6AU 

sensitive. Moreover, whereas def1 and dst1 single mutants grew at both 30°C and 

37°C, the double mutant grew very slowly at 30°C and was unable to grow at the 

elevated temperature [165].  



 34

Cells degrade irreversibly stalled RNAPII as a last resort when a transcription 

block, such as a DNA lesion, cannot be repaired or bypassed. Def1 is required for 

proteolysis of RNAPII in response to DNA damage. RNAPII is degraded in response 

to UV-irradiation in wild-type cells. Surprisingly, UV-induced RNAPII degradation 

occurs more rapidly and to a greater extent in rad26 cells than in wild-type cells. In 

contrast, cells lacking DEF1 did not degrade RNAPII at all, leading to apparent 

accumulation of the protein in response to DNA damage. These results demonstrate 

that Def1 is essential for damage-induced degradation of RNAPII in the presence of 

Rad26, but not for TC-NER [165], while Rad26 is required for normal TC-NER, it is 

not necessary for RNAPII degradation. 

Together, these data suggests that cells contend with damage-stalled RNAPII 

by a two-pronged approach. First, rapid repair of the lesion by Rad26- mediated TC-

NER is attempted. If this fails, RNAPII is degraded via Def1-mediated ubiquitination/ 

degradation, presumably allowing the damage to be dealt with later via general 

genome repair [165, 171, 172]. 

In vitro Def1 contributes directly to the preferential degradation of stalled/ 

arrested RNAPII ternary complex during transcript elongation by increasing the rate 

of its ubiquitination [172]. 

Def1 was identified also as an interactive partner of Rrm3 [169], which 

promotes the replication fork progression through both telomeric and subtelomeric 

DNA. Loss of Rrm3 resulted in very modest telomere lengthening, which is likely due 

to the replication defect in the telomere regions. In rrm3 cells replication fork pausing 

at both telomeric and subtelomeric DNA was observed [173]. Rrm3 is required for the 

normal replication of ~1,400 sites (including centromeres, tRNA genes, inactive 

replication origins, the silent mating type loci, telomeres, and rDNA) [173]. In S. 

cerevisiae, the telomere integrity is maintained through both telomere 

elongation/shortening and telomere end capping activities [174, 175]. In def1 mutants, 

telomeres were ~200-bp shorter than that in wild-type cells. DEF1 is also required for 

the stable maintenance of mitochondrial DNA and the telomere shortening phenotype 

seen in def1 cells is not a secondary consequence of a mitochondrion defect. 

Telomerase, a specialized reverse transcriptase that is comprised of several subunits 

including Est1, Est2 (catalytic subunit), Est3, and Tlc1 (the RNA template), is 

responsible for the elongation of TG 1–3 tracts [176-179]. Disrupting any of them will 

cause progressive telomere shortening and eventually cellular senescence [176, 180, 
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181]. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted 

in an accelerated senescence phenotype, suggesting that Def1 is not involved in the 

telomerase recruitment pathway, but rather in telomere protection. This argument is 

supported by the observation that the N-terminal part of Def1 could bind DNA both in 

vitro and in vivo using telomeric DNA oligonucleotides [169]. In the absence of 

telomerase, cells escape senescence by either amplifying Y’ regions or TG-telomeric 

repeats to generate type I or type II survivors, respectively [182, 183] . Only type I 

survivors were recovered from def1, est2 and def1, est3 double mutant cells, further 

suggesting that the function of Def1 in telomere maintenance is specific. Def1 is a 

positive regulator in telomere maintenance [169]. 

 DEF1 was among the eight genes identified, whose deletion caused an 

increase in intracellular glutathione of more than 1.2-fold as compared to the wild-

type strain. Glutathione is an antioxidant [184], preventing damage to important 

cellular components caused by reactive oxygen species such as free radicals and 

peroxides [185]. Because glutathione is synthesized through the sulfur-containing 

amino acids metabolism pathway the production of hydrogen sulfide (H2S) was 

examined and the Def1-overexpressing strain formed brown-colored colonies on the 

YPDL plates, indicating that these strains overproduced H2S [185].  

Interestingly, in this study, both overexpression and deletion of DEF1 

increased the content of intracellular glutathione, especially the oxidised state. These 

results suggest that overexpression or deletion of DEF1 induced some stress response 

through RNAPII. Preliminary results indicate that glutathione changes the level of 

reactive oxygen species in isolated cells grown in a laboratory [186, 187], which may 

reduce cancer development [188]. None of these tests were performed in humans. 

However, once a cancer has already developed, by conferring resistance to a number 

of chemotherapeutic drugs, elevated levels of glutathione in tumour cells are able to 

protect cancerous cells in bone marrow, breast, colon, larynx, and lung cancers [188].  

Since DNA-damage-dependent ubiquitination of RNAPII also occurs in 

human cells, a mechanism similar to that in yeast can be envisaged [165, 189]. 

However, no DEF1 candidate orthologue has been identified so far in mammals. The 

possible absence of a mammalian orthologue might be explained by the fact that 

multi-cellular organisms have other solutions to clear dangerously impeded cells. It 

has been shown that transcriptional blockage is a potent inducer of apoptosis [190], an 

option that is not applicable for single-celled organisms. 
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2. Goals and objectives 
 
 
 

Our main goal was to search for additional factors that affect DNA damage 

bypass. For this purpose we chose to examine the DEF1 gene since from the literature 

it was known that deletion of DEF1 rendered cells sensitive to UV-radiation, and the 

def1 rad18 double deletion mutant showed the same UV-sensitivity as the rad18 

single mutant [162], which might indicate an epistatic relationship, where the function 

of DEF1 was dependent on RAD18.  

 To determine the involvement of DEF1 in the RAD6-RAD18 pathway, we 

planned the following steps: 

1. To analyse the genetic relations between DEF1 and members of all three branches 

of the RAD6 pathway upon DNA damage. 

2. To check the interaction between DEF1 and members of the RAD6 pathway. 

3. To determine the exact function of Def1  
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3. Materials and methods 

3.1 Media 
 
 YPD medium: 2% D-glucose (Molar Chemicals Kft.), 2% bacto peptone 

(MERCK), and 1% yeast extract (MERCK) in destilled water, autoclaved for 25 

min at 110°C. For plates, 1.7% agar (agar bacteriological, Molar Chemicals Kft.) 

was added before autoclaving. 

 Synthetic complete medium: 2% D-glucose, 0.17% Difco yeast nitrogen base 

without amino acids and with ammonium sulfate and synthetic complete mixture. 

Synthetic complete mixture contained the following components (all from Sigma) 

weighed in as powder and added before autoclaving (final concentrations are 

indicated): adenine 40 mg/liter, L-arginine 30 mg/liter, L-histidine 20 mg/liter, L-

isoleucine 20 mg/liter, L-leucine 30 mg/liter, L-lysine-HCl 30 mg/liter, L-

methionine 20 mg/liter, L-phenylalanine 50 mg/liter, L-tryptophane 30 

mg/liter, L-tyrosine 30 mg/liter, uracil 20 mg/liter, L-valine 100 mg/liter. 

 Drop-out media: Synthetic complete medium lacking nutrilite supplements. For 

example, "uracil-less" medium is without uracil (SC-ura). 

 Canavanine medium: SC –arg containing 40 mg/liter L-canavanine (Sigma). 

 5-Fluoroorotic acid plates: SC plates containing 1 g/liter 5-fluoroorotic acid (5-

FOA, Fermentas), added after autoclaving as powder when medium was cooled to 

50˚C). 

 G418 plates: YPD plates containing G418 (200µg/ml; Sigma), added as solution 

(50mg/ml in water) after autoclaving when medium was cooled to 50˚C. 

 MMS plates: YPD plates containing MMS (100% Sigma), added as solution 

(diluted in water) in different concentrations after autoclaving when medium was 

cooled to 50˚C. 

For sterile filtered media, all components were dissolved in water and filtered through 

Millex GV disposable sterile filter units (0.22µm pore size; Millipore). 

3.2  Yeast nomenclature 
 

Gene names, also referred to as genetic names (for example, DEF1 or RAD5), are 

conferred upon genes by researchers on the basis of genetic, biochemical, or 

molecular characterization. Most genes having Gene Names are ORFs. The accepted 
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format for gene Names in S. cerevisiae is comprised of three uppercase italic  letters 

followed by an Arabic number. Generally, the letters signify a phrase (referred to as 

the "Name Description" in SGD) that provides information about a function, mutant 

phenotype, or process related to that gene, for example "ADE" for "ADEnine 

biosynthesis" or "CDC" for "Cell Division Cycle".  Protein products are designated by 

the corresponding gene symbol in nonitalic type with an initial capital letter (for 

example Def1). Deletion mutants are designated by the corresponding gene symbol in 

italic type smallcase letters (for example def1) and usualy mean the gene is deleted 

form ATG to STOP codon. 

3.3  Yeast strains and growth conditions 
 

Saccharomyces cerevisiae strains used (table 1) in the genetic studies are 

haploid and isogenic to wild type strain BY4741 (MATa, his3-D1, leu2, met15, ura3) 

and were obtained from the Euroscarf collection. Double deletion mutant strains were 

generated by one-step gene disruption method [191]. Strains used for whole cell 

extract preparation are haploid and isogenic to EMY74.7 (MATa, his3-D1, leu2-3, 

leu2-112, trp1D, ura3-52).  Chromosomally C-terminally tagged POL3, POL31 and 

POL32 with 3 copies of the hemagglutinin epitope tag (3HA) were also created in 

EMY74.7 strain, made bar1Δ.  

The protease deficient yeast strain used for protein overexpression, BJ5464 

(Matα, ura3-52 trp1 leu2-D1 his3-D200 pep4::HIS3 prb1-D1.6R can1 GAL) was 

obtained from the Yeast Genetic Stock Center (Berkeley, CA). BJ5464 contains 

deletions of the vacuolar proteases PEP4 and PRB, which are responsible for most 

proteolytic activity observed in yeast supernatants and extracts [192]. 

Yeast strains used for yeast two hybrid assays HF7c (genotype: MATa, ura3-

52, his3-200, lys2-801, ade2-101, trpl-901, leu2-3, 112, gal4-542, gal80-538, LYS2 :: 

GAL1-HIS3, URA3 :: (GAL4 17-mers) 3-CYC1-lacZ) and pJ69-4A (MATa leu2-

3,112 ura3-52 trp1-901 his3-200 gal4Δ gal80Δ GAL-ADE2 lys2::GAL1-HIS3 

met2::GAL7-Lac Z) were obtained from BD Biosciences Clontech. All yeast strains 

were grown at 30°C. 

The rpn7-3 mutant and its corresponding W303 (MATa ura3-52 trp1∆2 leu2-

3_112 his3-11 ade2-1 can1-100) wild type strain [193], a kind gift from Erika Isono, 

were used in experiments showing the effect of temperature sensitive inhibition of the 
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proteasome. Poly-ubiquitination of Pol3 was shown in MHY500 (MATa his3-200 

leu2-3,112 ura3-52 lys2-801 trp1-1) strain background [194]. The MHY500 was a 

kind gift from Mark Hochstrasser. 

 

Strain  Genotype 

BY4741 MATa, his3-D1, leu2, met15, ura3 

EMY74.7 MATa, his3-D1, leu2-3, leu2-112, trp1, ura3 

BJ5464 MATα, ura3-52 trp1 leu2-1 his3-200 pep4::HIS3 prb1-D1.6R can1 

GAL 

HF7c MATa, ura3-52, his3-200, lys2-801, ade2-101, trpl-901, leu2-3, 112, 

gal4-542, gal80-538, LYS2 :: GAL1-HIS3, URA3 :: (GAL4 17-mers) 

3-CYC1-lacZ 

pJ69-4A MATa leu2-3,112 ura3-52 trp1-901 his3-200 gal4Δ gal80Δ GAL-

ADE2 lys2::GAL1-HIS3 met2::GAL7-Lac Z 

W303 MATa ura3-52 trp1∆2 leu2-3_112 his3-11 ade2-1 can1-100 

MHY500 MATa his3-200 leu2-3,112 ura3-52 lys2-801 trp1-1 

 

 

 

3.4  Plasmids 
 
 

pGBKT7 (TRP1, 2 µm) Gal4p DNA binding domain vector and pGADC3 

(LEU2, 2 µm) Gal4p activation domain vector were obtained from Clontech 

Laboratories, Inc.  DEF1 and other DDT genes were cloned into the Gal4 DNA-

binding domain vector pGBKT7. All yeast two-hybrid prey plasmids were generated 

by introducing the corresponding cDNAs into the transcriptional activation domain 

vector pGADC3.   

Gene blaster plasmids containing the deletion 'cassette' were constructed in a 

sequential, one-step PCR reaction and two step cloning process. Two pairs of primers 

were used, 24bp UPTAG and 24bp DOWNTAG primers which amplify a region 

consisting of (5' to 3') 700 to 1000bp of genomic sequence that flank either the 5' or 3' 

end of the ORF (directly proximal and distal to the START and STOP codons 

Table 1 Yeast strains used in this study 
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respectively) and used to replace each yeast gene of interest. These two amplified 

regions were cloned in the proper orientation into the pUC19 vector and the URA3 

marker was inserted afterwards in between the two regions. 

DEF1 and the genes coding for the three subunits of Polδ, POL3, POL31 and 

POL32 respectively, were cloned in frame in N-terminal GST fusion in pID370, 

pID458 and pID460, respectively (pBJ842 backbone) [195]. 

Def1 was expressed, for complementation in yeast, from the centromeric 

vector pID394 (p416ADH backbone) [196]. 

In the plasmid pRS426-pCUP1-His7-Ubiquitin (G76A) [197], a kind gift from 

William P. Tansey, the mutation was reversed by site directed mutagenesis resulting 

in plasmid pID198. 

3.5  Generation of deletion strains by homology based gene 
replacement 

 
Deletions of different genes were made by using the one-step gene disruption 

method [191] (Fig 4). In mutants all or most of their open reading frames (ORFs) 

were replaced by the URA3, HIS3, or TRP1 genes as selectable markers. Briefly, cells 

were grown to logarithmic phase at 30 ºC in liquid yeast extract-peptone-dextrose 

(YPD) medium. Cells were washed once in sterile water and resuspended in a final 

volume of 500µl (2x109cells/ml), which is about 400µl of 100 mM lithium acetate 

(LiAc), pH 7.5 and 100 µl of cells. For integrative transformation, 50µl of cells were 

pelleted and mixed with 250µl of 50 % PEG4000, 36µl 1 M LiAc, 25 µl of sonicated 

herring sperm DNA (2 mg/ml), and 50µl of MQ. Finally the linearized deletion 

generating plasmid (1-5 µg of DNA) was added to the cells and incubated for 30 

minutes at 30 ºC. After incubation the cells were exposed to heat shocked at 42 ºC for 

20 minutes, washed in sterile water and plated on synthetic complete (SC) media 

lacking either uracil, histidine, or tryptophan, depending on the selectable marker 

used. Yeast colonies were grown for three to five days at 30 ºC and screened for 

integration by standard polymerase chain reaction (PCR). To remove the URA3 gene 

from the integrated "gene blaster" [198], strains were plated on SC plates containing 1 

mg/ml 5-fluoroorotic acid (5-FOA) and incubated at 30 ºC for three to five days. PCR 

was performed on genomic DNA of each strain to confirm loss of the URA3 gene. 

Multiple deletions were generated by sequential gene deletion using the same method.  
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3.6  Epitope tagging 
 

To simplify the detection of polymerase δ subunits, POL3, POL31 and POL32, we 

used epitope tagging [199]. The 3HA6HIS double tag cassette [200] and the 3HA 

cassette [201] for C terminal tagging of proteins, were amplified by PCR, purified and 

transformed into yeast. The tag was integrated based on sequence homology and was 

checked by PCR. The functional, tagged proteins were detected and purified with the 

epitope-specific antibody. 

Epitope tagging eliminates the laborious, time-consuming task of producing an 

antibody to the specific protein being studied. Unlike a large fusion protein, these 

small epitope tags generally have minimal, if any, effects on the biological function of 

the tagged protein. To determine whether the tag affected the biological function of 

the protein the strain, in which the protein was tagged, was tested for growth and 

resistens toward DNA damaging agents. If the tagged strain displays normal groth and 

similar resistance to DNA damaging agents like the untagged wild type strain then the 

tag does not affect the function of the protein. After a protein was tagged  

Haemagglutinin tag [202], a nonapeptide sequence (YPYDVPDYA) from residues 

Figure 12 Schematic diagram of the principle of Gene Targeting 
(Sivakumar Gowder, 2012: Cell Interaction, chapter 9) 
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98–106 of the hemagglutinin protein (HA1 protein), a surface glycoprotein required 

for the infectivity of the human influenza virus, was used in three copies.  

3.7  Yeast two-hybrid assay 
 

The MATCHMAKER GAL4 two-hybrid system (Clontech Laboratories Inc.) 

was used according to the manufacturer’s instructions.  The yeast strains pJ69-4A and 

HF7C were co-transformed with the bait and prey plasmids and plated on synthetic 

medium lacking leucine and tryptophan to select for the plasmids. To detect 

interactions co-transformants were transferred to selective media lacking leucine, 

tryptophan and histidine and media lacking leucine, tryptophan, histidine and adenine.  

To eliminate residual growth on selection media, since HIS3 has a leaky expression in 

many yeast strain, 3-amino-1,2,4-triazole (3AT) was added, a known inhibitor of 

the HIS3 gene product. The results from each combination represents the average of 

five to seven separate co-transformants assayed in triplicate. 

3.8  Quantitative assay of sensitivity to UV   
 

Yeast cultures grown overnight in YPD medium were counted under 

microscope, spread onto YPD plates at appropriate dilutions and irradiated with UV 

light (254nm) for varying times to apply the specified dosage. Plates were incubated 

in the dark to avoid activation of photolyase and conseqvent repair (chapter 1.2.1). 

Colonies were counted after 3 days. All experiments were repeated at least three 

times, and relative survival was averaged. 

3.9  Qualitative assay of sensitivity to MMS 
 

Sensitivity to chemical mutagens was analyzed by serial dilutions. Methyl 

methanesulfonate (MMS, Sigma, M4016), was added to agar medium in various 

concentrations. Yeast cultures were counted under microscope, serial diluted and 

spotted onto those plates and grown at 30ºC for 3 days.  

3.10  UV-induced mutagenesis 
 

Yeast cultures grown overnight in YPD medium were spread onto SC plates 

and SC plates without arginine (SC-arg) and SC plates without arginine but 
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supplemented with 60mg/l L-canavanine, a toxic analogue of arginine, at appropriate 

dilutions (1x107cells on SC-arg and 200 cells on SC plates for plating viability) and 

irradiated with UV light (254nm) for varying times to apply the specified dosage. 

Plates were incubated in the dark and colonies were counted after 5 days. UV-induced 

mutation frequencies in the CAN1 locus were measured by estimating frequencies of 

can1R mutants in the surviving populations at a given UV dose, selected on synthetic 

medium without arginine containing 60 mg/ml canavanine. The arginine system 

enables detection of UV-induced Arg+ revertants, of the arg 4-17 ochre allele. UV-

induced mutation frequencies of the arg 4-17 ochre allele were measured by 

calculating the frequency of Arg+ revertants in the surviving population at a given UV 

dose, selected on synthetic medium without arginine. 

Standard deviations were calculated from triplicate measurements. All 

experiments were repeated independently 2–5 times. 

3.11 MMS-induced mutagenesis 
 

Yeast cultures were grown in YPD medium to a final concentration of 2x107 

cells/ml. Cells were centrifuged and resuspended in 600µl steril phosphate buffer 

(mixture of 40 ml 1M K2HPO4 and 10ml 1M KH2PO4 in 50ml final volume) (pH:7).  

100 µl cell culture was used for control. The remaining 500 µl volume was 

supplemented with 500 µl of 0, 2% MMS solution and incubated at 30ºC. At given 

time points 100 µl samples were removed and neutralised with sterile sodium 

thiosulphate solution. Following serial dilution cells were plated onto YPD plates and 

grown at 30ºC for 3-6 days.  

3.12 Cell synchronization 
 

Cells were grown in YPD medium to OD600nm=0,600 (or 5 x 106cells/ml), then 

pelleted by centrifugation, washed with sterile water and resuspended in fresh YPD 

medium. To arrest the cells in the G1-phase of the cell cycle 50 ng/ml (30 nM) α1-

Mating factor (Sigma T6901) was added for bar1 strains.  α1-Mating Factor (α-factor) 

was stored as a 5 mg/ml stock in methanol at -20°C. Arrest of cells requires about 120 

minutes in YPD at 30°C. The degree of arrest was monitored by light microscopy 

starting at about 90 min after the addition of α-factor. Small samples were taken and 

sonicated, then examined by microscopy. During the arrest protein synthesis is not 
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affected and all cells that were past START when α-factor was applied would divide. 

The full arrested population was collected by centrifugation, washed and resuspended 

in 1 x PBS. Following irradiation with the indicated dose of UV light cells were 

collected by centrifugation, resuspended in fresh YPD medium and released from 

arrest with 50µg/ml Pronase (Calbiochem 53702). All the strains used in these 

experiments were bar1. After release cells were incubated at 30˚C with shaking. 

Every 15 min at least two samples were taken and the pelleted samples were frozen in 

liquid nitrogen and stored at -80°C. For experiments where Pol3 polyubiquitination 

was investigated, the growth media always contained 100µM CuSO4 to induce 7His-

ubiquitin expression. 100 ml cell culture was used as control. The remaing cell culture 

was collected by centrifugation and resuspended in 1XPBS and irradiated with 

200J/m2 UV light. Released cells were incubated at 30˚C with shaking. Samples of 

100ml culture were taken at given time points for whole cell extract preparation. 

Experiments employing MG132 (Sigma) were done in pdr5 background to faccilitate 

the accumulation of MG132 in the cells. MG132 (50µM) was added to the α-factor 

synchronized cultures 1 hour before UV irradiation. The rpn7-3 mutant and its 

isogenic wild type strain were grown at 25°C. To detect the mutant phenotype we 

followed the protocol described [193]. Briefly, 100 ml culture of logarithmically 

growing cells (A600:0.5) were split. Half of the culture was kept at 25°C and the other 

half was shifted to 37°C. At A600:0.8 cultures were synchronised by α-factor for 3 

hours and processed as detailed above. 

3.11 Protein tehniques- whole cell extract and western blotting 
 

Whole cell extracts were prepared by the trichloroacetic acid (TCA) protein 

purification method [201]. Cells from -80°C (chapter 3.10) were thawn on ice and 

resuspended in 1 ml cold MQ water. The cell suspensions were mixed with freshly 

prepared 150 µl freshly prepared NaOH (1.85 M) supplemented with 7.5% β-

mercaptoethanol solution and placed on ice for 15 min. Then 150 µl of 55% TCA 

solution (stored in the dark) was added to the mixture, which was incubated for 20 

min on ice. Cells were pelleted (10 min at 13 000 rpm, at 4°C) and the supernatant 

was removed. Following a second brief centrifugation all residual traces of TCA were 

aspirated off.  Samples were washed with 1ml ice cold acetone (-20°C) and pelleted 

(1min at 13 000 rpm, at 4°C) again and the pellets were air-dried O/N. Dry pellets 
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were resuspended in 45mM Tris- HCl and 1%SDS (pH8.5). An aliquote of each 

sample was diluted 100 times and absorbance was measured at 260nm and 280nm. 

Concentration of each sample was determined by using the following formula; 

Concetration (mg/ml)=(1.55xA280)-(0.76xA260). Protein concentrations were 

adjusted in 1xLaemmli buffer and 10µl of each sample was loaded onto 8% SDS–

polyacrylamide gels [203]. Proteins were blotted onto nitrocellulose membrane at 

300mA for 3 hours followed by an 160 mA O/N. Filters were probed with the 

following antibodies: a-HA (Gene Tex, GTX21208), anti-Clb2 (y-180) (Santa Cruz, 

sc-9071), anti-PGK (Molecular Probes, A-6457), Goat Anti-Mouse IgG (H+L) 

(Thermo Scientific, 31430), Goat Anti-Rabbit IgG (H+L) (Thermo Scientific, 31460). 

3.12 GST Fusion protein expression and pulldown assay 
 

POL31, POL32 and REV1 genes were cloned separately into pBJ842 plasmid 

in N-terminal fusion with GST, driven by GAL inducible promoter. The over-

expression contructs were transformed into BJ5464 yeast strain and cells were grown 

in large scale for protein purification experiments. 

Cells coresponding to 1l of saturated culture were ground with dry ice using a 

mortar and pestile, then resuspended in 1XBS buffer (TrisHCl pH 7; EDTA pH8; 3M 

KCl; Sucrose; 150 mM NaCl; β ME; protease inhibitor tablet (Roche). 

After ultracentrifugation at 35,000 rpm for 90 minutes the clear lysates were 

transfered to columns packed with glutathione-Sepharose beads (Amersham 

Biosciences) and preequilibrated with 1XBS buffer. Following the binding step the 

columns were washed with high salt buffer (TrisHCl pH 7,5; 5M NaCl; glicerin; 

NP40) and with precision protease cleveage buffer (TrisHCl pH 7,5; EDTA pH8; 5M 

NaCl and; glicerin; NP40). 

To obtain native proteins (e.g. Pol31 and Rev1) the beads with the bound GST 

tagged proteins were incubated O/N with PreScission protease enzyme, which cleaves 

between the tag and the proteins, and pure proteins were collected. GST alone was 

also produced to use as a negative control in the assay. 

In case of Rev1 purification the 1XBS buffer contains 1M NaCl and after 

resuspension Triton-X was added to 0.1 % final concentration and incubated at 4°C 

for 1 hour before ultracentrifugation to solubilise the protein. 
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For complex formation, GST-Pol32 (3 µg) immobilized on glutathione-

Sepharose beads was incubated O/N on ice (at 4°C) with purified Pol31 (5 µg) and 

Rev1 (3 µg), in buffer containing 50 mM Tris/HCl, pH 7.5, 150 mM NaCl, 1 mM 

EDTA, 1 mM DTT, 10% glycerol, 0.01% Nonidet P-40. Beads were washed five 

times with the same buffer, and bound proteins were eluted in buffer containing 20 

mM reduced glutathione. Various fractions were mixed with 2× Laemmli buffer 

containing 5% β-mercaptoethanol, boiled for 5 min and analyzed by SDS/PAGE. 
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4. Results  
 

Several yeasts have been widely used as model organisms in genetics and 

modern cell biology research, largely because they are quick and easy to grow. 

Particularly Saccharomyces cerevisiae [204], "baker's" or "budding" yeast, is one of 

the most thoroughly researched eukaryotic microorganism. Researchers have used it 

to gather information about the biology of the eukaryotic cell and ultimately human 

biology. This strategy is made possible by the common descent of all living 

organisms, and the conservation of metabolic and developmental pathways and 

genetic material over the course of evolution. Studying model organisms can be 

informative, but care must be taken when extrapolating from one organism to another. 

The cell cycle in yeast is very similar to the cell cycle in humans and is 

regulated by homologous proteins, likewise the protein complexes involved in the 

DNA damage bypass are highly conserved from yeast to humans that is why we chose 

Saccharomyces cerevisie as an in vivo model for our research.  

4.1 Genetic relations between DEF1 and DNA damage tolerance 
genes 
  

Our main goal in this project was to find new genes that might affect the DNA 

damage bypass process and we decided to examine DEF1 gene since it was known 

from the literature that deletion of DEF1 rendered cells sensitive to UV-radiation, and 

the def1 rad18 double deletion strain showed the same UV-sensitivity as the rad18 

single mutant [162] suggesting an epistatic relationship, where the function of DEF1 

was dependent on RAD18.  

Epistasis analysis is a foundation in the analysis of genetic networks. The 

concept of epistasis was introduced nearly 100 years ago and today underpins our 

interpretation of genetic pathways [205]. If a mutation in one gene masks the 

phenotypic effects of a mutation in a second gene, then the first gene is said to be 

epistatic to the second [206].  

 In yeast two genes are in epistatic relationship if they affect the same pathway 

and by deleting them the sensitivity of the double deletion mutant to different agents 

(like DNA damaging agents, chemotherapeutic drugs, a.s.o) should not exceed that of 

the more sensitive single mutant, since both affect the same pathway. If two genes 



 48

affect two different pathways then the double deletion mutant should have higher 

sensitivity than the individual single mutants because two pathways are blocked. 

To explore the possibility that DEF1 might be in an epistatic relationship with 

RAD18, we analyzed the genetic relations between DEF1 and members of all three 

branches (Fig. 8) of the RAD6-RAD18 pathway upon DNA damage. For this purpose 

we deleted the DEF1 gene in different genetic backgrounds and the resulting strains 

were subjected to phenotypic analysis.  

We determined the UV sensitivity of various mutants by measuring the 

survival rate of several genotypes following UV irradiation with different doses. We 

found the sensitivity of the def1 rad6 double deletion strain did not exceed that of the 

rad6 single mutant. From this (Fig. 13, A) we concluded that the relationship between 

DEF1 and RAD6 is epistatic. Same result was obtained with RAD18 (Fig. 13, B) in 

agreement with the literature [162]. However, the def1 rad5 (Fig. 13, C), def1 mms2 

(Fig. 13, D) and the def1 rad30 (Fig. 13, E) double deletion strains displayed much 

higher sensitivity to UV than any of the single mutants. This indicates that DEF1 is 

not epistatic with these genes and acts outside of the RAD30 or the RAD5, MMS2- 

dependent sub-pathways. Nevertheless, the def1 rev3 (Fig. 13, G) strain exhibited the 

same sensitivity as the def1 mutant pointing to an epistatic relationship.  Since Rev3 is 

the catalytic subunit of polymerase ζ we also checked the genetic relationship of 

DEF1 with REV1 (Fig. 13, F), another polymerase of the REV3- mutagenic branch 

and REV7 (Fig. 13, H), the accessory subunit of Pol ζ, and we obtained the same 

result since they all affect the same mutagenic branch of the RAD6-RAD18 pathway.  

In conclusion, our data suggested that DEF1 participates in the REV3-

dependent mutagenic branch of the RAD6-RAD18 regulated DNA damage tolerance. 
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Figure 13 Genetic analysis of DEF1 with mutants of different branches of the 
RAD6 pathway upon UV-irradiation 
Applied UV doses as well as standard deviations are indicated on each graph. All 
experiments were repeated three to five times, and relative survival was averaged. 
Different UV dose is applied for different strains due to their selective sensitivity.   
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  UV radiation is known to induce two of the most abundant mutagenic and 

cytotoxic DNA lesions such as cyclobutane–pyrimidine dimers (CPDs) and 6–4 

photoproducts (6–4PPs) and their Dewar valence isomers [207]. To test whether other 

DNA damaging agents besides UV light classify DEF1 in the same pathway, we 

carried out similar experiments using methyl methanesulphonate (MMS) instead of 

UV as DNA damage source. MMS is an alkylating agent, which generates DNA 

methylated bases exhibiting cytotoxic and mutagenic properties. We have performed 

spot assays (Qualitative assays), where YPD plates were supplemented with various 

amounts of MMS and strains were serial diluted and spotted on these plates. 

Upon MMS treatment def1 rad6 and def1 rad18 double deletion strains 

sensitivity to MMS did not exceed that of the rad6 and rad18 single mutant, 

supporting the epistatic relationship between DEF1 and RAD6 and RAD18 (Fig. 14, A 

and 14, B). This means that DEF1 plays role in the DNA damage bypass process 

controlled by Rad6-Rad18 complex. Similarly to the results obtained with UV, def1 

rad5 (Fig. 14, C) and def1 mms2 (Fig. 14, D) double deletion strains displayed much 

higher sensitivity to MMS than any of the single mutants indicating that DEF1 acts 

outside of the RAD5, MMS2- dependent error-free sub-pathway of the RAD6/RAD18 

group. Also DEF1 like in the case when UV was used as DNA damaging agent, 

showed epistasis with REV1 (Fig. 14, F), REV3 (Fig.14, G) and REV7 (Fig. 14, H) 

proving that it belongs to the REV3 dependent mutagenic branch of the RAD6-RAD18 

controlled DNA damage bypass. 
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Figure 14 Genetic analysis of DEF1 with mutants of the different 
branches of the RAD6 pathway upon MMS treatment 
Used MMS doses are indicated at the top of each panel. Plates were grown 
for 3-5 days and each experiment was repeated 5 times. 



 52

Interestingly, DEF1 showed epistasis with RAD30, upon MMS treatment (Fig. 

14, E) as the double mutant def1 rad30 was as sensitive to MMS as the def1 single 

mutant, contrary to the UV results which clearly showed that DEF1 acts outside of the 

RAD30-dependent subpathway. To check whether this result reflects a real epistatic 

relationship and not only the insensitivity of rad30 to MMS, we performed further 

epistatic analyses where we checked the relationship between RAD30 and MMS2 and 

RAD30 and REV3. Double deletion mutant rad30 mms2 was hypersensitive to MMS 

(Fig.15, A), underlying that RAD30 and MMS2 affect two different pathways of the 

RAD6-RAD18 controled DDT. However, both Rad30 and Rev3 are TLS polymerases 

and upon MMS damage they show epistasis (Fig.15, B) suggesting that in the bypass 

of MMS-induced DNA lesions, RAD30 works in the REV3 branch. 

In conclusion, our data strongly suggest that DEF1 participates in the REV3-

dependent mutagenic branch of the RAD6-RAD18 regulated DNA damage tolerance. 

 

 
 

 

 

  

Figure 15 Genetic interactions of RAD30 with MMS2 and REV3 upon MMS 
treatment 
Used MMS doses are indicated at the top of each panel. Plates were grown for 3-5 
days and each experiment was repeated 5 times. 

(A) The double mutant is much more sensitive, than any of the single mutants 
underlying that there is no epistasis between RAD30 and MMS2 

(B) The double mutant shows same sensitivity as rev3, implying an epistatic 
relationship between RAD30 and REV3. 
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4.2 Deletion of DEF1 abolishes the UV and MMS-induced 
mutagenesis  
 

To confirm the results of the epistatic analysis we performed also a functional 

test. The TLS polymerases of the REV3 branch are responsible for virtually all 

damage-induced mutagenesis, and inactivation of either one causes a strong anti-

mutator effect [208]. 

To verify that DEF1 belongs to the REV3 branch, first we measured the rate of 

UV-induced mutations in def1 strains using two selection systems: the “canavanine” 

and the “arginine system”. The first one is based on the detection of forward 

inactivating mutations at the CAN1 locus (Fig. 8). The other method (Fig. 9) enables 

detection UV-induced Arg+ revertants, of the arg 4-17 ochre allele.  

In both experimental setups in the wild type strains there is a moderate 

increase in the mutation rate, with increasing UV doses, however def1 showed a 

complete defect in induced mutagenesis (Fig. 16 and Fig. 17). In fact, def1 was even 

more defective than the rev3 strain (Fig. 16), which is known to inhibit mutagenesis. 

In mms2 strain the mutation rate is very high, most probably because in the absence of 

the error-free branch, lesions are channeled to the REV3-dependent mutagenic 

pathway. Although given the high level of mutagenesis in mms2 still deletion of 

DEF1 prevented induced mutagenesis. Confirming that the immutability was in fact 

due to the absence of DEF1, we introduced DEF1 in the cells on a plasmid under the 

regulation of the ADH1 promoter. Indeed ectopic expression of DEF1 in def1 cells 

restored the level of mutagenesis back close to wild type (Fig.16). Based on these 

results and in agreement with the results of the epistasis analysis, we concluded that 

DEF1 participates in the REV3-dependent mutagenic branch of the RAD6/RAD18-

regulated DNA lesion bypass. 

To strengthen these results, we carried out similar experiments using MMS 

instead of UV. Since MMS generates different types of DNA damage as compared to 

UV-irradiation. In these experiments def1 mutant proved to be completely defective in 

MMS-induced mutagenesis (Fig. 18). In summary we can conclude that DEF1 plays 

an essential role in induced mutagenesis regardless of the type of DNA damage 

stressor. 
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Figure 17 UV-induced mutagenesis is abolished in def1 deletion mutants 
Spontaneous and UV-induced Arg+ revertants, of the arg 4-17 ochre allele were 
detected after UV treatment. 

Figure 16 DNA damage-induced mutagenesis is abolished in def1 deletion 
mutants 
Forward mutation rates at the CAN1 locus were determined after UV treatment. 
Where indicated, def1 deletion was complemented by wild type DEF1 expressed 
under the control of the ADH1 promoter on a centromeric plasmid. The standard 
deviation is indicated above each bar. Experiments were repeated three times. 
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4.3 Yeast two hybrid assays fail to identify Def1 interaction partners  
 

To further establish that DEF1 operates in the REV3 pathway, using yeast two 

hybrid assays, we examined the interaction of Def1 with TLS polymerases from the 

mutagenic and error- free branches, respectively. We used two selection steps, one 

specific for the detection of weak protein-protein interactions (Table 2, panel 2) and 

another more stringent specific for detection of strong protein-protein interactions 

(Table 2, panel 3). However Def1 presented self-activation and the intensity level of 

all the other interactions did not exceed that of Def1’s self-activation, we concluded 

that no interaction can be detected between Def1 and any of the TLS polymerases 

using yeast two hybrid assays.  

Then we checked whether there is any interaction between Def1 and other 

members of the RAD6-RAD18 pathways. Inspite of all the efforts with yeast two 

hybrid assays we could not detect an interacting partner for Def1, not even in the 

presence of DNA damaging agents like MMS or UV since Def1 is known to act under 

Figure 18 MMS induced mutagenesis in def1 strain is abolished 
Forward mutation rates at the CAN1 locus were determined after MMS treatment. 
Cells were treated with 0.02% MMS and at given time points samples were 
removed, serial diluted and plated on YPD plates. After three days colonies were 
counted. The standard deviation is indicated above each bar. Experiments were 
repeated three times and the results were averaged. 
 



 56

damage. We concluded that Def1 interactions can not be examined with yeast two 

hybrid systems. 

 

 Panel 1 (-LEU-TRP) selection 
 BD Def1-BD Rad5-BD Rad30-BD Rev1-BD Rev7-BD 

AD + + + + + + 
Def1-AD + + + + + + 
Rad5-AD + + + + + + 

Rad30-AD + + + + + + 
Rev1-AD + + + + + + 
Rev7-AD + + + + + + 

Panel 2 (-LEU-TRP-HIS) selection for weak protein-protein interactions 
 BD Def1-BD Rad5-BD Rad30-BD Rev1-BD Rev7-BD 

AD - - - - - + 
Def1-AD + - + - + + 
Rad5-AD - - - - - - 

Rad30-AD - - - - - - 
Rev1-AD - - - - - - 
Rev7-AD - - - - - - 

Panel 3 (-LEU-TRP-HIS-ADE) selection for strong protein-protein interactions 
 BD Def1-BD Rad5-BD Rad30-BD Rev1-BD Rev7-BD 

AD - - - - - + 
Def1-AD + - - - - + 
Rad5-AD - - - - - - 

Rad30-AD - - - - - - 
Rev1-AD - - - - - - 
Rev7-AD - - - - - - 

 

 

 
 
 

4.4 Pol3 is degraded upon DNA damage by a Def1-dependent manner 
 

Our genetic studies placed DEF1 in the REV3 branch of the RAD6-RAD18 

pathway. Next we examined the role of DEF1 in the mutagenic pathway. Unlike other 

members of the REV3 branch, Def1 protein lacks the domains characteristic to a 

polymerase and does not show DNA polymerase activity. One of its known functions 

from the literature [162] is to advance the removal of the stalled RNA polymerase by 

facilitating its proteolytic degradation upon transcriptional blockage due to DNA 

damage. We surmised that it might play a similar role in replication and promote the 

removal of the replicative polymerase from the stalled replication fork, thereby 

Table 2 Checking the interaction of DEF1 with members of RAD6-RAD18 
pathway with yeast two hybrid systems 
. “+” indicates the positive interaction, “-“indicates the absence of interaction. AD 
(Activating Domain vector), BD (Binding Domain vector) 
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facilitating the exchange between the TLS and the replicative polymerases at DNA 

damage sites. 

 As Def1 played role in the ubiquitination of stalled RNA polymerase II [162], 

it is possibile that similarly it could efficiently mediate ubiquitination of the stalled 

replicative DNA polymerase. Ubiquitination then could lead to polymerase switch by 

either playing a regulatory role as in case of DNA damage-induced ubiquitination of 

PCNA [80], or it could result in protein removal through degradation. To test these 

possibilities, we followed the fate of replicative polymerase during DNA damage 

bypass by monitoring the protein level of the HA-tagged Pol3, the catalytic subunit of 

the replicative DNA polymerase δ during cell cycle. The α-factor synchronized yeast 

culture was UV treated with the indicated UV doses and samples were taken at the 

indicated time points after release from G1 phase (Fig. 19). For these experiments we 

have used a bar1 yeast strain. With a bar1 strain, the length of time at the arrest is less 

critical than with a BAR1 strain in which cells will continuously degrade α-factor and 

are likely to recover from the arrest on their own. The bar1 strain synchronises better 

then a BAR1 strain and requires less α-factor. 

In order to facilitate translesion synthesis, we first used an mms2 deletion 

strain. Importantly, we observed that increasing UV doses result in more pronounced, 

but transient decrease in the level of Pol3 compared to normal growth conditions. 

(Fig. 19). 
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To check whether the decrease in the level of Pol3 upon UV-irradiation is Def1 

dependent we followed the faith of Pol3 in different mutant backgrounds. As opposed 

to normal growth conditions, we could also detect upon UV-irradiation a transient 

decrease in the level of Pol3 in wild type cells. The decrease was visible in the S 

phase of the cell cycle, as indicated by the expression pattern of the cyclin dependent 

Clb2, which appears in the G2/M phase of the cell cycle (Fig. 20, A). 

Importantly, in experiments using a def1 deletion strain we could not detect 

decrease in the level of Pol3 (Fig. 20, B). To investigate whether the observed 

phenomenon was ultimately under the higher control of RAD6, we performed the 

same experiment in a rad6 strain. Similarly to the result obtained in the def1 strain we 

found that Pol3 diminution was absent in rad6 mutants (Fig. 20, C). On the other 

hand, reduction of Pol3 could be seen in mms2 (Fig. 20, D) and also in rad30 (Fig. 20, 

E) backgrounds. These results, in view of the genetic relations between DEF1 and 

members of the RAD6 group, strongly imply that the observed effect on Pol3 is 

dependent on DEF1, which exerts this function within the RAD6-dependent 

mutagenic DNA damage bypass pathway. 

 

Figure 19 The effect of increasing UV doses on the level of Pol3 
Proteins from whole cell extracts were analyzed by western blotting. HA-tagged 
Pol3 was visualized in whole cell extracts by anti HA antibody. PGK was used as 
a loading control 
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Figure 20. UV Induced degradation of Pol3 in different mutants 
Cultures  were synchronized  by  α-factor,  UV-irradiated  with  150  J/m2 and  
released  back  to  growth media. Proteins from whole cell extracts, prepared from 
cells collected at the indicated time points after UV treatment, were analyzed by 
western blotting. Anti-HA antibody was used to detect HA tagged Pol3 (A to E). 
Cell cycle stages were monitored by Clb2 cyclin levels, and PGK served as a 
loading control. Proteasome inhibitor MG132 (50µM) was added to the α-factor 
synchronized cultures 1 hour before UV irradiation (D). 
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4.5 Def1 induces the ubiquitination and proteasomal degradation of 
Pol3 

 

The most plausible explanation for the transient decrease of Pol3 would be that 

Pol3 underwent regulated protein degradation induced by UV. The majority of 

regulated proteolysis takes place in the proteasome in eukaryotic cells. To resolve 

whether the decrease in the Pol3 protein level was due to protein degradation 

mediated by the proteasome, we inactivated the proteasome by supplementing the 

growth media with a proteasome inhibitor (MG132). Indeed, in the presence of 

MG132, the UV-induced degradation of Pol3 could not be observed (Fig. 20, D). 

To add further evidence, we have repeated the experiment using a temperature 

sensitive proteasome mutant strain rpn7-3. It has been published that Rpn7 is one of 

the lid subunits of the 26S proteasome regulatory particle and the RPN7 gene is 

essential [193]. All the temperature sensitive rpn7 proteasome mutants accumulated 

poly-ubiquitinated proteins when grown at the restrictive temperature, indicating a 

temperature sensitive ubiquitin-proteasome pathway [193]. Using the rpn7-3 mutant 

we could not detect Pol3 degradation at the restrictive high temperature (37ºC), where 

the proteasome was not functional, contrary to the permissive low temperature (25ºC), 

where the actively functioning proteasome degraded Pol3 (Fig. 21, B). Meanwhile in 

the wild type RPN7 strain, degradation occurred at both temperatures (Fig. 21, A). 

These results demonstrated that the proteasome was responsible for the UV-induced 

degradation of Pol3. 

 Ubiquitination is a major signal for proteasomal protein degradation. To show 

ubiquitination of Pol3, we introduced a plasmid which expressed an N-terminally 7 

histidine tagged ubiquitin from a CuSO4 inducible promoter in yeast cells. After 

induction with CuSO4, cells were arrested with α-factor for 4 hours. The culture was 

irradiated with 150J/m2 UV light. After cells were released from arrest samples were 

removed at given time points.  Ubiquitylated proteins prepared from cell extracts were 

enriched on nickel beads. Small amounts from the extracts before adding to the beads 

were run on separate gels to check the input of Pol3 and PGK was used as loading 

control. Also the level of ubiquitilation was checked to eliminate the possibility that 

poly-ubiquitilated forms of Pol3 are not visible in the def1 and rad6 strains because of 

alteration in ubiquitin expression. Indeed in the bound fraction we could detect poly-

ubiquitylated forms of Pol3 upon UV-irradiation in wild type cells, but not in def1 and 
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rad6 cells (Fig. 22). This result confirmed that Def1 assists Pol3 poly-ubiquitination 

upon DNA damage. 

 
 

 

 

 

 

 

 

 
 

Figure 21 Pol3 UV-induced degradation is mediated by the proteasome  
(A) In the wild type RPN7 strain, degradation of Pol3 occurres at both 
temperatures (B) The  rpn7-3 mutant  is deficient in degrading Pol3. Experiments 
were done as described in Figure 12, except for inactivation  of  the  proteasome  
cells  were  shifted  to  37ºC 2  hours  before  α  factor treatment,  and  after  3  
hours  of  synchronization,  irradiated  with  200  J/m2.  Anti-HA antibody was 
used to detect HA tagged Pol3. Cell cycle  progression was monitored by Clb2 
cyclin levels, and PGK served as a loading control. The level of Pol3 relative to 
PGK  is shown at the bottom of each panel. 
 

Figure 22 Def1 assists Pol3 poly-ubiquitination 
Poly-ubiquitylated proteins from cell extracts prepared from 100 ml of cell culture 
were bound to NiNTA agarose (Qiagen) and Pol3 was identified in the bound 
fraction with HA antibody (upper panels). The PGK and Pol3 levels in the extracts 
before adding to the beads are also shown, and the bound fraction was probed with 
anti-ubiquitin antibody (lower panels). The applied UV dose was 150J/m2. 
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4.6 Pol31 and Pol32 are not subject to UV-induced degradation 
 

Polδ is a heterotrimer and consists of two additional non-catalytic subunits, 

Pol31 and Pol32, besides Pol3 [209]. Pol31, like Pol3, is essential for cell viability, 

but Pol32 is a non-essential subunit. Pol3 forms a stable complex with Pol31, and 

Pol32 is attached to this complex through its interaction with Pol31 [210]. 

 We examined whether the whole Polδ enzyme is subjected to UV-induced 

proteolysis, or it affects only the catalytic subunit. We performed similar experiments 

as described in Chapter 4.4 and shown in Fig. 20, but in this chase Pol31 and Pol32, 

the accessory subunits of Pol δ were chromosomaly tagged with 3- HA tag and we 

followed their fate in an -factor synchronized  yeast culture upon UV damage. 

We found that contrary to Pol3, which is degraded Pol31 and Pol32 were not 

affected by UV-induced degradation (Fig. 23, A and B), since no decrease on the 

level of Pol31 orPol31 could be detected after UV treatment. 

 

 
 

 

 

 

Figure 23. Pol31 and Pol32 were not affected by UV-induced degradation 
Proteins from whole cell extracts, prepared from cells collected at the indicated 
time points after UV treatment, were analyzed by western blotting. Anti-HA 
antibody was used to detect HA tagged Pol31 (A), or Pol32 (B). Cell cycle stages 
were monitored by Clb2 cyclin levels, and PGK served as a loading control. The 
applied UV dose was 150J/m2. 
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4.7 In vitro complex formation between Pol31, Pol32 and Rev1 
 

Taken together these results suggested that during DNA damage bypass since 

Pol31 and Pol32 are not affected by UV-induced degradation, they remain at the 

stalled fork, where they protect the fork mantaining its integrity. We postulated that a 

TLS polymerase, like Rev1 could take the place of Pol3 and carry out lesion bypass in 

complex with Pol31 and Pol32. To test this idea, we examined whether Pol31 and 

Pol32 together could form a complex with Rev1 in in vitro assays using purified 

proteins (Fig. 24, A). We chose Rev1, because it had been suggested to function as a 

scaffold in TLS, based on its interaction in yeast with Polη and Polζ [211, 212], and in 

mouse and human cells with Polη, Polι and Polκ [213, 214]. 

In a glutathione S-transferase (GST) pull-down assay we added Pol31 and 

Rev1 to GST-Pol32 immobilised on glutathione-Sepharose affinity beads, and after 

incubation bound proteins were released from the beads by glutathione. As shown in 

Figure 24, B, lane 4, both Pol31 and Rev1 eluted together with GST-Pol32, indicating 

that these proteins formed a complex together.   In contrast, in a control experiment 

using GST instead of GST-Pol32, only GST was present in the elution fraction 

confirming that the interaction between Pol31, Pol32 and Rev1 was specific.  

In conclusion, purified Pol31, Pol32 and Rev1 could interact directly and form 

a stable multi-subunit protein complex. 

 
 

 

 

 
 

Figure 24 Rev1 forms a complex with Pol31 and Pol32 
(A) Purified proteins. GST-Pol32 (lane 2), Pol31 (lane 3), Rev1 (lane 1) and GST 
(lane 4) were run on 10% SDS-polyacrylamide gel. (B) GST pull-down of Pol32 
with Pol31 and Rev1. GST-Pol32 immobilized on glutathione-Sepharose beads was 
incubated with purified Pol31 and Rev1. After washing, bound proteins were eluted 
with glutathione. Aliquots of each sample, taken before addition to the beads (L), 
from the flow-through fraction (F), from the last wash (W), and from the 
glutathione-eluted proteins (E), were analyzed on 10% SDS-polyacrylamide gel 
(lanes 1-4). The results for the control experiment using GST instead of GST-Pol32 
are shown in lanes 5-8.  
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5. Discussion 
 

All organisms need to deal with the problems that arise when a moving 

replication fork encounters damage in the template strand. Obviously the best way to 

deal with this situation is to repair the damage by one of the excision mechanisms. In 

some cases, however, the damage may not be repairable, or the advancing replication 

fork may already have unwound the parental strands, thus preventing excision 

mechanisms from using the complementary strand as template for repair, or excision 

repair may not yet have had an opportunity to repair the damage. There are two 

reasons why it is important for the cell to be able to move replication forks past 

unrepaired damage. First, long-term blockage of replication forks leads to cell death. 

Second, replication of damaged DNA provides a sister chromatid that can be used as 

template for subsequent repair by homologous recombination. Replication fork bypass 

mechanisms cannot, strictly speaking, be considered examples of DNA repair, 

because the damage is left in the DNA, at least temporarily. Nevertheless, 

experiments in yeast demonstrate that damage bypass is an important component of 

the overall cellular response to DNA damage. It contributes to cellular survival of 

radiation damage to roughly the same extent as the pathways for nucleotide excision 

repair and repair by homologous recombination. 

Eukaryotic mechanisms for replication fork bypass of damaged sites in DNA 

are not as well understood, they have been studied most extensively in the budding 

yeast, Saccharomyces cerevisiae. Genetic studies in the yeast have indicated that 

Rad6-Rad18 complex controls the bypass of UV-damaged DNA via at least three 

separate pathways through the ubiquitilation of PCNA: an error-free pathway 

dependent on the RAD5, MMS2 and UBC13 genes, another error free pathway 

dependent on the RAD30 gene, and a third pathway that is mutagenic and dependent 

on the REV1, REV3 and REV7 genes [215].  

Since Rad6-Rad18 complex is indispensable for the function of all three DNA 

damage pathways the question was what would be the mechanism through which 

Rad6-Rad18 regulates these pathways. To better understand how DNA damage 

bypass functions our main goal was to search for additional factors that affect this 

process. 

For this purpose we chose to examine the DEF1 gene since from the literature 

it was known that deletion of DEF1 renders cells sensitive to UV-radiation, and the 
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def1 rad18 double deletion mutant shows the same UV-sensitivity as the rad18 single 

mutant [162]. Contrary to the authors conclusion we wanted to examine whether this 

result could reflect an epistatic relationship, where the function of DEF1 is dependent 

on RAD18.  

 The genetic analysis between DEF1 and members of all three branches of the 

RAD6 pathway upon DNA damage has shown that DEF1 is epistatic to RAD6 and 

RAD18 and shows no epitasis with members of the error-free pathways like RAD5, 

MMS2, and RAD30, indicating that DEF1 acts outside of error-free pathways of the 

PRR.  Nevertheless, DEF1 shows epistasis with REV3 indicating that DEF1 belongs 

to the REV3 branch of the RAD6-RAD18-dependent DNA damage tolerance pathway 

(Fig.25), where it plays an indispensible role during induced mutagenesis. We wanted 

to check with yeast two hybrid whether Def1 ineracts with TLS polymerases, but we 

could not detect any interactions. We have also performed these experiments in the 

presence of DNA damaging agents like, MMS and UV. Despite all our efforts we 

could not detect any interactions so we concluded that either there is no interaction 

between the examined proteins or Def1 can not be examined with yeast two hybrid 

systems. 

 

 
 

 

 

 

 

DEF1 

Figure 25 Def1 in the RAD6-RAD18 dependent damage tolerance pathway 
The Rad6–Rad18 governs at least three ways of replication of UV-damaged DNA 
through the ubiquitination of PCNA. (Adapted from Unk I. et al, 2010, DNA 
Repair) 
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Damage-induced mutagenesis mostly arises from the activity of translesion 

synthesis polymerases during the bypass of replication blocking DNA lesions. 

However, the mechanism that allows the replacement of the replicative polymerase at 

stalled replication forks is unknown. Our genetic studies clearly place DEF1 in the 

REV3 branch of the RAD6-RAD18 pathway.. Unlike other members of the REV3 

branch, Def1 is not a DNA polymerase and from the literature it is known that one its 

functions is to advance the removal of the stalled RNA polymerase by facilitating its 

proteolytic degradation, when transcription is blocked due to DNA damage. We 

surmised that it might play a similar role in replication and promote the removal of 

the replicative polymerase from the stalled replication fork, thereby facilitating the 

exchange between the TLS and the replicative polymerases at DNA damage sites. 

In order to establish the function of Def1 in the mutagenic branch we followed 

the fate of the replicative polymerase during DNA damage bypass by monitoring the 

protein level of Pol3, the catalytic subunit of the replicative DNA polymerase δ 

during cell cycle. We established that Pol3 was degraded upon UV-irradiation. We 

presented evidence that degradation of Pol3 was the result of polyubiquitination 

mediated proteosomal degradation, and it was dependent on DEF1 under the higher 

control of RAD6. Conversely, Pol31 and Pol32, the other two subunits of Polδ were 

not degraded. We also demonstrated that Pol31 and Pol32 together could form a 

stable complex with TLS polymerase Rev1.  

Our data imply that translesion synthesis polymerases carry out DNA lesion 

bypass in complex with Pol31 and Pol32, only after the Def1- assisted removal of 

Pol3 from the stalled replication fork. 

Based on these results we propose a new model for polymerase exchange at 

stalled replication forks (Fig. 26). During replication, when Polδ stalls at a DNA 

lesion, PCNA gets ubiquitinated by Rad6/Rad18. Mono-ubiquitinated PCNA activates 

the mutagenic pathway where, for translesion synthesis to occur, Pol3 is ubiquitinated 

by a Def1-dependent manner and removed from the stalled Polδ complex through 

proteasome-mediated protein degradation. A TLS polymerase takes over the place of 

Pol3 and teams up with the remaining Polδ subunits, Pol31 and Pol32, at the stalled 

fork to form a new complex capable of executing DNA lesion bypass. We surmise 

that after lesion bypass and deubiquitination of PCNA, the TLS polymerase is 

removed from the primer terminus, Pol3 restores Polδ by regaining its place, and 

replication continues. Importantly, this finding also gives an explanation for previous 
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genetic results showing that in pol32 cells induced mutagenesis is severely impaired, 

and that deletion of the N-terminal part of Pol32, responsible for binding Pol31, also 

abolish induced mutagenesis [209, 216, 217]. 

 

 
 

 

 

 

 

 

Figure 26 Model for polymerase exchange at a DNA damage site 
DNA damage stalls the replication complex, and triggers the ubiquitination of 
PCNA by Rad6/Rad18 at the stalled fork. Monoubiquitinated PCNA promotes 
polymerase exchange, for which to occur, first Pol3 is removed from the stalled 
complex through ubiquitination mediated proteasomal degradation, assisted by 
Def1. A TLS polymerase takes over the place of Pol3, and together with Pol31 and 
Pol32, carries out lesion bypass. We postulate that after the deubiquitination of 
PCNA, Pol3 regains its place at the replication complex, and normal replication 
resumes. For simplicity, only half of the replication fork is shown. The DNA 
damage site on the template strand is marked by a red inverted triagle symbol. 
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 Our data raises an interesting question: how the RAD30-encoded TLS 

polymerase, Polη can operate independently of Def1? Our results imply that Pol3 

does not have to be removed from the stalled fork for Polη-dependent UV-lesion 

bypass to occur. Polη is mainly specialized for the error-free bypass of cyclobutane 

pyrimidine dimers, formed upon UV irradiation [113, 218]. Since UV radiaton is one 

of the most common DNA damage source in most living organisms, it is reasonable to 

assume that Polη should have preference over the other error-prone TLS polymerases 

in the bypass of UV-induced DNA lesions.  

Polη, a Y family polymerase, differs from the other TLS polymerases, Rev1 

and Polζ, in its way of binding PCNA. While Rev1 and Polζ bind the intermolecular 

interface at the outer face of the PCNA ring [126, 127], Polη, similarly to Polδ, binds 

the interdomain connector loop of PCNA through its conserved PCNA-interacting 

peptide motif [125]. Given, that PCNA is a homotrimer ring, Polδ and Polη could 

bind the same PCNA ring simultaneously. 

 We presume that transient conformational changes, probably induced by the 

stalling of the fork and ubiquitination of PCNA, could allow Polη to take over 

synthesis from Polδ, as also suggested by in vitro experiments [139], while both 

remain attached to PCNA. Since Polη synthesizes opposite pyrimidine dimers with 

the same kinetics as it does opposite undamaged DNA [219], rapid bypass can occur. 

Deubiquitilation of PCNA would restore the original conformation and Polδ could 

continue synthesis. A similar mechanism has already been described in bacteria [135]. 

We note that this is in accord with the in vivo finding that Pol32 is not needed 

for TT dimer bypass carried out by Polη [218]. On the other hand, when the damage 

poses a kinetic barrier also to the TLS polymerases, for the slower kinetic damage 

bypass to occur Pol3 has to be removed so that the TLS polymerases could form a 

stable complex with Pol31 and Pol32. This would also explain the epistasis of RAD30 

with DEF1 in the bypass of MMS-induced DNA lesions, since the efficiency of 

incorporation by Polη is reduced ~20 fold opposite O6-methylguanine, and ~1000 fold 

opposite an abasic site [128, 220]. 

A recent article by Baranovskiy et al., that was published during the 

preparation of the manuscript, which makes the bases of this thesis, shows that the 

accessory subunits of human Polδ can interact in vitro with hRev3, the catalytic 

subunit of human Polζ, but not with the catalytic subunits of hPolα or hPolε [221]. 

This result, and the high conservation between elements of DNA lesion bypass from 
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yeasts to humans, including the Rad6/Rad18, Rad5/Mms2/Ubc13 complexes and their 

enzymatic activities, the TLS polymerases and PCNA ubiquitination [222], strongly 

suggest that subunit recombination between different DNA polymerases, similar to 

that we propose in yeast, drives polymerase exchange in higher eukaryotes as well. 

Many elements of DNA lesion bypass proved to be highly conserved from 

yeasts to humans, including the Rad6/Rad18, Rad5/Mms2/Ubc13 complexes and their 

enzymatic activities, the TLS polymerases, PCNA ubiquitination [78, 222]. The role 

of TLS polymerase in mutagenesis and in cancer makes it highly important to identify 

the human homologue of Def1, and to investigate whether a mechanism of subunit 

recombination between different DNA polymerases, similar to that we observed in 

yeast, drives polymerase exchange for mutagenesis in higher eukaryotes as well. 
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Summary in English 
 

The stalling of the replication machinery that occurs as a consequence of 

encountering unrepaired DNA damages is a challenging problem for cells. Stalled 

replication forks can undergo DNA breakage and recombination that can lead to 

chromosomal rearrangements and cell death. To ensure survival, cells have evolved 

different mechanism that can sustain DNA replication on damaged templates. These, 

so called DNA damage tolerance, or DNA damage bypass processes allow replication 

to continue on damaged DNA without actually removing the damage. DNA damage 

tolerance is achieved through two main mechanisms: template switching and 

translesion synthesis (TLS). Template switching is inherently error-free, since 

replication continues by using the undamaged nascent sister chromatid as template for 

the bypass of the lesion, while during TLS specialized polymerases take over the 

nascent primer end from the replicative polymerase and carry out synthesis opposite 

the DNA lesion in an error-free or error-prone way. 

Rad6 and Rad18 are key mediators of DNA damage tolerance in the yeast 

Saccharomyces cerevisiae. They govern at least three different pathways for the 

replication of UV light-damaged DNA: 1. Rad5-dependent error-free DNA damage 

bypass; 2. Rad30-dependent error-free translesion synthesis; 3. Rev3-dependent error-

prone translesion synthesis. Upon UV-treatment, the Rad6-Rad18 ubiquitin-

conjugase-ligase complex mono-ubiquitinates proliferating cell nuclear antigen 

(PCNA) at lysine-164. Monoubiquitinated PCNA activates the Rev3, and the Rad30-

dependent sub-pathways involving TLS polymerases, while further polyubiquitination 

of PCNA on the same residue by the Rad5-Mms2-Ubc13 ubiquitin-conjugase-ligase 

complex activates the Rad5 subpathway. 

In this study we identify DEF1 as a member of the REV3 branch of the RAD6-

RAD18-dependent DNA damage tolerance pathway and a prerequisite for induced 

mutagenesis in yeast. 

The TLS polymerases of the REV3 branch have to take over synthesis from the 

replicative polymerase stalled at a DNA lesion site, a central but poorly understood 

step in DNA lesion bypass. Since Def1, unlike other members of the REV3 branch, is 

not a DNA polymerase, we surmised that it might facilitate the exchange between the 

TLS and the replicative polymerases. 
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Here we have appointed Def1 as a key factor for polymerase exchange. We 

have also established that Pol3, the catalytic subunit of the replicative DNA 

polymerase Polδ, was degraded upon UV-irradiation. We presented evidence that 

degradation of Pol3 was the result of polyubiquitination mediated proteosomal 

degradation, and it was dependent on DEF1 under the higher control of RAD6. 

Conversely, Pol31 and Pol32, the other two subunits of Polδ were not degraded. We 

also demonstrated that Pol31 and Pol32 together could form a stable complex with 

TLS polymerase Rev1. 

Our data imply that translesion synthesis polymerases carry out DNA lesion 

bypass in complex with Pol31 and Pol32, only after the Def1- assisted removal of 

Pol3 from the stalled replication fork. 

Based on these results we propose a new model for polymerase exchange at 

stalled replication forks. During replication, when Polδ stalls at a DNA lesion, PCNA 

gets ubiquitinated by Rad6/Rad18. Mono-ubiquitinated PCNA activates the 

mutagenic pathway where, for translesion synthesis to occur, Pol3 is removed from 

the stalled Polδ complex by a Def1-dependent manner through proteasome-mediated 

protein degradation. We assume that a mutagenic TLS polymerase takes over the 

place of Pol3 and teams up with the remaining Polδ subunits, Pol31 and Pol32, at the 

stalled fork to form a new complex capable of executing DNA lesion bypass.  

We surmise that after lesion bypass and deubiquitination of PCNA, the TLS 

polymerase is removed from the primer terminus, Pol3 restores Polδ by regaining its 

place, and replication continues. Importantly, this finding also gives an explanation 

for previous genetic results showing that in pol32 cells induced mutagenesis is 

severely impaired. 

 Our data raises an interesting question: how the RAD30-encoded TLS 

polymerase, Polη can operate independently of Def1? Our results imply that Pol3 

does not have to be removed from the stalled fork for Polη-dependent UV-lesion 

bypass to occur. Polη is mainly specialized for the error-free bypass of cyclobutane 

pyrimidine dimers formed upon UV irradiation. Since UV is one of the most common 

DNA damage sources most living things are exposed to, it is reasonable to assume 

that Polη should have preference over the other error-prone TLS polymerases in the 

bypass of UV-induced DNA lesions.  

 Polη, a Y family polymerase, differs from the other TLS polymerases, Rev1 

and Polζ, in its way of binding PCNA. While Rev1 and Polζ bind the intermolecular 
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interface at the outer face of the PCNA ring [126, 127], Polη, similarly to Polδ, binds 

the interdomain connector loop of PCNA through its conserved PCNA-interacting 

peptide motif. Given, that PCNA is a homotrimer ring, Polδ and Polη could bind the 

same PCNA ring simultaneously. 

We presume that transient conformational changes, probably induced by the 

stalling of the fork and ubiquitilation of PCNA, could allow Polη to take over 

synthesis from Polδ, while both remain attached to PCNA. Since Polη synthesizes 

opposite pyrimidine dimers with the same kinetics as it does opposite undamaged 

DNA, rapid bypass can occur. Deubiquitilation of PCNA would restore the original 

conformation and Polδ could continue synthesis. A similar mechanism has already 

been described in bacteria. 

Many elements of DNA lesion bypass proved to be highly conserved from 

yeasts to humans. The role of TLS polymerase in mutagenesis and in cancer makes it 

highly important to identify the human homologue of Def1. 
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Summary in Hungarian 
 

A DNS károsodás következtében elakadt replikációs villa mentése nagy 

kihívást jelent a sejtek számára, mivel a befejezetlen replikáció illetve a felhalmozott 

DNS károsodások kromoszóma instabilitáshoz, végső esetben pedig a sejtek halálához 

vezethet. A sejtek túlélésük érdekében különböző mechanizmusokat fejlesztettek ki, 

amelyekkel képesek a replikációs villa mentésére. Ezek az úgynevezett DNS-hiba 

tolerancia útvonalak teszik lehetővé, hogy a DNS-hibák tényleges eltávolítása nélkül 

a replikáció folytatódhasson tovább. A DNS-hiba tolerancia útvonalnak két fő típusa 

van: a templátváltás (Template switching) és a transzléziós DNS szintézis (TLS). A 

templátváltás hibamentes átírást biztosít, mivel templátként az újonnan létrejövő DNS 

szálat használja. Ezzel szemben a transzléziós szintézis során speciális polimerázok 

veszik át a replikatív polimeráz helyét, és a DNS-hibával szemben hibamentesen a 

megfelelő vagy hibásan egy másik bázist épít be. 

A Rad6-Rad18 kulcsfontosságú szereplői a DNS-hiba tolerancia útvonalnak 

Saccharomyces cerevisiae élesztőben. Ezek a fehérjék három alútvonalon keresztül 

szabályozzák az UV-károsodást szenvedett DNS replikációját: 1. a Rad5-függő 

hibamentes átírás, 2. Rad30-függő hibamentes átírás, 3. Rev3-függő hibát generáló 

átírás. Ismert, hogy UV kezelés hatására a Rad6-Rad18 ubikvitin konjugáló és ligáz 

enzimkomplex monoubikvitinálja a PCNA-t a 164-es lizinén. A monoubikvitinált 

PCNA aktiválja a Rev3 illetve a Rad30 függő transzléziós DNS szintézist. Más 

esetekben azonban további faktorok, mint az Mms2/Ubc13 ubikvitin konjugáló és 

Rad5 ubikvitin ligáz enzimek poliubikvitinálják a PCNA-t és aktiválják a Rad5 

alútvonalat. 

Laborunkban azonosítottuk a DEF1-et, mint a RAD6-RAD18 DNS-hiba 

tolerancia útvonal Rev3-függő ágának tagját és az élesztő mutagenezis egyik 

szabályozóját. A Rev3 útvonalban szereplő TLS polimerázok átveszik a replikatív 

polimeráz helyét, amely fontos lépés, de csak kevéssé ismert része a teljes 

mechanizmusnak. Mivel a Def1 nem polimeráz, ellentétben a Rev3 útvonal többi 

tagjával, ezért feltételeztük, hogy a TLS- és a replikatív polimerázok közötti cserében 

játszik szerepet hiba átirása során. 

Munkánk során bizonyságot nyert, hogy a Def1 kulcsfontosságú szereplő a 

polimerázok cseréjében. Igazoltuk, hogy a Pol3, a replikatív polimeráz Polδ 

katalítikus alegysége lebomlik UV kezelés hatására. Kimutattuk, hogy a Pol3 
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lebomlása poliubikvitináció függő proteoszómális degradáció eredménye, amely a 

Def1 szabályozása alatt áll. Ezzel szemben a Pol31 és a Pol32, a Polδ másik két 

alegysége nem degradálódik. Azt is kimutattuk, hogy Pol31 és Pol32 együttesen stabil 

komplexet képezhetnek a Rev1 TLS polimerázzal. 

 Kutatási eredményeink alapján új modellt állítottunk fel. A DNS károsodás 

következtében elakadt replikációs villánál a Rad6-Rad18 fehérjék monoubikvitinálják 

a PCNA-t. A monoubikvitinált PCNA aktiválja a mutagén útvonalat, ahol a Def1 

közreműködésével a Polδ replikatív polimeráz komplexből a Pol3 poliubikvitin 

szignálnak köszönhetően proteaszómális degradációra kerül. Így a Pol3 helyét egy 

mutagén TLS polimeráz veszi át, amely a Pol31és Pol32 alegységekkel komplexet 

képezve írja át a hibás szakaszt. Miután a sérült szakasz átírásra került, a TLS 

polimeráz ledisszociál, a Pol3 ismét kötődik a replikatív polimeráz alegységeként, így 

a replikáció pedig folytatódhat tovább. 

További kérdés maradt azonban: Hogyan működhet DEF1-től függetlenül a 

RAD30 által kódolt Polη TLS polimeráz? Kísérleteink azt mutatják, hogy a Pol3-t 

ebben az esetben nem kell eltávolítani az elakadt villáról. A Polη elsősorban az UV-

károsodás következtében kialakuló ciklobután pirimidin dimerek hibamenetes 

javítására specializálódott. Mivel az UV az egyik leggyakoribb DNS károsító hatás az 

élőlényekre nézve, ezért úgy gondoljuk, hogy a Polη előnyt kell, hogy élvezzen a TLS 

polimerázok kiválasztásánál DNS hibaátírás sorrán. 

A Pol η a polimerázok Y családjának egy tagja, amely a Rev1 és Pol ζ TLS 

polimerázoktól eltérően kötödik a PCNA molekulához. Míg a Rev1 és a Polζ a PCNA 

gyűrű külső felületéhez kötnek, addig a Polη hasonlóan a Polδ-hoz, a PCNA 

intermolekuláris hurok doménjéhez kötödik. Ez lehetővé teszi, hogy a PCNA 

trimerhez egyszerre mind a két polimeráz kapcsolódjon. Feltételezzük, hogy az 

elakadt replikációs villánál a PCNA monoubikvitinálásának hatására olyan 

konformációs változás zajlik le, aminek során a PCNA-hez kötődött Pol η átveszi a 

szintézist a Pol δ-tól. Elvégezve az átírást, a PCNA deubikvitinálása visszaállítja a 

korábbi állapotot, a Polδ pedig folytathatja a szintézist. 

Bizonyosságot nyert, hogy a DNS-hiba tolerancia útvonal több eleme erős 

konzerváltságot mutat élesztő és az ember között. Ezért úgy gondoljuk, hogy kutatási 

eredményünk hozzájárul az emberi mutagenezis folyamatának megértéséhez is. 


