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ABSTRACT 

 

 Unmanned Air Vehicles (UAVs) have the ability to execute missions that include 

detecting and destroying the targets. The Simian simulator developed at NDSU performs 

complex motion calculations for   moment - moment flight and delivers effective inter-agent 

communication for all the UAV’s. Scenarios that focus on the strategy plan and perform 

calculations have been, developed to carry out the mission. The goal of this paper is to address 

the tasks of starting servers, manually writing the required xml files to describe scenario to the 

simulator and launch simulation in the existing Simian system. Simian Plus is, designed and 

implemented to ease the process of building and launching simulation. It is, aligned to the key 

principle “Open- agent architecture” of Simian.  
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1. INTRODUCTION 

         Advancements in technology have replaced the need for manned aircrafts in search/destroy, 

reconnaissance and surveillance missions. Unmanned Air Vehicles (UAVs) have the ability to 

execute missions that include detecting and destroying the targets.  This unique feature of 

technology has gained a lot of attention due to the risk factor and complexities involved in 

today’s world of warfare. UAV are equipped with hardware like sensors, receivers and weapons 

that enable it to search a pre-defined zone and respond as commanded. Based on the strategy of 

the mission, they destroy the detected target. A mission involves either a single UAV or a team 

of UAV that are, focused towards eliminating the need of human intervention. Configuring, each 

UAV with the hardware, planning strategy, helps in efficiently and effectively carrying out the 

mission in complex challenging battlefield scenarios. 

         NDSU has developed a Simian simulator that calculates the step-by-step flight motion of 

each UAV [1]. It also provides the complex calculations for effective inter-agent communication 

among the team of UAVs.  The simulator comprises of a ‘Visualizer’ (Launch_ Vis2d) and 

Lioslane that plays the role of a client. The server and the client communicate with each other 

using the sockets. The Lioslane (client) sends the stream of calculated information to the server 

that gives a visual of the ongoing mission.  The Environment class is the core element that 

performs the repeated calculations for laying out the flight path positions of each UAV involved 

in the mission.  This helps in easing the process of performing the complex calculations for 

determining the UAV motion control and the inter agent communication in the area of interest 

and enables us to build on top of the Simian simulator for demonstrating various battle scenarios.   

Each of the battle scenario situations can be simulated with specific number of targets and the 
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UAVs. The hardware for the UAVs includes sensors, receivers, transmitters and weapons that 

enable the single based communication among the team of UAV. This paper focuses on paving a 

way to easily add UAVs and targets to a battle scenario assemble hardware for each UAV, assign 

controllers, specify the area of interest and the place the targets in the field. 

       The existing simian simulator has a good implementation of the strategy to execute a 

mission. However, the initial phases of the simulation like the scenario description, starting the 

server until invoking the client to start the calculation of the flight path is a tedious job. Attention 

needs to be given, to the detailed problem description such as specifying the whereabouts of the 

targets, configuration of hardware which play a key role in inter-agent communication, 

specification of each air vehicle along with controllers that aid in not just laying out the strategy 

plan but also in executing the mission, simulation specifications that describe the port number 

the client should be using to interact with the server to visualize the mission, time-step that 

indicates the time gap, between each command that is passed for the server , simulation time 

indicates the span of time the simulation should be carried on. With the given description of 

some of the elements that are key to creating a scenario and launching it, equal prominence 

needs to be given to the format and metrics of the input files. Thus, importance needs to be given 

to the job of creating these input files such that, the simian can interpret and perform the required 

calculations to launch and visualize the mission. 

The goal of this paper is to address these tedious tasks of starting servers, manually 

writing the each of four input files and launch the simulation. Simian Plus, is designed and 

implemented to ease of the process of building and launching simulation, strictly aligning to the 
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key principle of “Open- agent architecture” of simian. Below are objectives that Simian Plus 

tackles.  

1.1. Objectives  

 Provide a simple method to start the server that visualizes the simulation. 

 Automate the process of passing the location of the four input files and starting 

Loislane (client) 

 Mechanism to create, describe and configure each of the agents involved in the 

mission. 

 Mechanism to launch the newly created and assembled battle-scenario 

 Mechanism to the save configuration file and provide an easier method to launch 

them. 

This paper illustrates the significance of the core elements required for creating a 

scenario, discusses the design of the enhanced system and explains how it is been implemented 

to achieve the above-mentioned objectives. Chapter 2 and Chapter 3 illustrate the current 

procedure for operating simian, start server and pass the manually created four input files. 

Chapter 4 begins with the layout of the user-friendly Interface, which replaces the existing 

Simian. It shows the systematic procedure to configure the available hardware and the flying 

agents. Chapter 5 encloses the significance of each core element that make up the entire battle 

scenario’s ‘problem-description’ along with detailed implementation of all these features in 

Simian Plus, to achieve each of the previously mentioned objectives. 
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2. BACKGROUND ON EXISTING ARCHITECTURE 

         This chapter illustrates the architecture of simian and the outline of the components that 

carry out mission. The plan and a brief layout of the components to achieve inter-agent 

communication among the flying agents is discussed. It then describes how each of these 

elements, is specified to simian using the xml files. A systematic procedure for starting the main 

server and triggering the processor to perform the calculations in the existing simian system is 

described with visual figures. 

2.1. Simulator Layout 

The simulator developed at NDSU is the combined effort of the research team led by 

Dr.Kendall Nygard [1]. It is a means of simulate the battle scenario and visualize the strategy 

plan executed by the UAVs for searching and destroying targets.  

         Simian uses the Open Agent Architecture and written in Java. The major components are 

the agents, environment and the mechanisms for communication. Agents are the entities that 

have the capability to navigate, change direction and transmit signals. These agents register with 

the ‘environment’, which handles all the inter-agent communication [6].  This helps in the quick 

message passing among the Unmanned Air Vehicles. Invoking a method of the higher-level 

object always does message passing. However, this object does not have a reference to a lower 

level object. Sensors, Transmitters and Receivers are the devices that enable communication by 

transmitting and receiving the signal objects. Another important element is the ‘Controller’, 

which performs the calculations for moment-by-moment flight path. 

Simian is a java-standalone application. It uses Java-Sockets for communication between 

the client (Lioslane) and the main server (Vis2D). XML files are used to describe the scenario 
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and hold the specifications for the targets, UAV and the Area of interest.  “Situation”, “Policy”, 

“Strategy” and “Global” are the four xml files that server as input. They hold the hardware 

configurations of UAV, Controllers, locations of targets and the area of interest dimensions. 

Simian supports the three dimensions making closer to the realistic scenarios in the battlefield. 

Vector3D is the class that supports the three-dimensional data. Below figure illustrates the layout 

of the layers that aid in message passing among the flying agents. 

 

Figure 2.1: Layers of Simian Simulator  
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 Environment: The environment layer registers all the details of each agent in the system. 

It releases the information of these things/agents as needed for facilitating 

communication between UAV’s. Messages are passed to the physical objects/agents and 

extracts messages as well. This layer handles issues such as crashing and radio messages 

[6].  

 Physical Layer/Flying Agents: The flying agents represent a physical object, UAV. 

Situation file specifies the flying agents and the targets. It contains the hardware devices 

for communication and the weapons needed for destroying the identified targets in the 

field. Elements required for UAV motion control are included. “msgsUp” and 

“msgsDown” are called to pass the data to the ‘environment’ object, as required during 

the mission [2]. 

 Autopilot/Strategist: Vehicle is a controller used for specifying the strategy. It can be 

termed as ‘Vehicle Control’ or ‘Autopilot’. It is a standard controller used by Simian, to 

translate the high-level commands into smaller pieces of details that are interpretable by 

the ‘physical objects’. This helps in writing code that aligns to the high-level goals of 

Simian [8].  

2.2. Launching Simulation 

Running Simian needs a Java virtual machine; jar files ‘dom4jh.jar’ & ‘jaxen.jar’ for 

compiling and handling the input XML files. Compile the java code in the package 

‘Orion/simian [3].  XML files ‘situation’, ‘strategy’, ‘policy’ and ‘global’ are the input for 

launching the configured battle scenario. There are two options for launching the scenario. 

Eclipse is one of the options that ease the process of, compiling and launching the simulation. 
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Below are the detailed steps involved to setup and instantiate the simian for starting the 

simulation process. 

Step 1: Set-up Project 

 Import the project into eclipse. This helps in distinguishing different packages. The 

alternate way of compiling/running the application is using the command prompt. “Quick 

start guide to the SimianPlus/simulator” can be referred for the sequence of steps 

needed.[1] 

Step 2: Start Server 

 To start the server, right click on the Vis2D.java and choose “Run Configurations”.  

 Create a new java application configuration and select ‘Vis2D’ as the main class. Below 

is the screenshot of how the eclipse’s configuration window looks. 

 Click on the “Arguments” tab, in the “Program Arguments” to pass the port number, the 

server should run on. Below figure is the screenshot that depicts the process for passing 

the port number to the server. 

 

Figure 2.2: Arguments Tab View 
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 If the port number entered is available, server opens the port. The message displayed on 

console, for successfully opening the port can be seen in the below figure. 

 

Figure 2.3: Console View after Opening the Port  

Step 3: Running the client 

a) Pass the four-xml files as input to the simian’s xml processor. For this, right click on the 

DXML.java and once again choose “Run Configurations”. 

b) Next create a new java application configuration and then select ‘DXML’ as the main 

class. Below is the visual of the ‘run configuration’ window for instantiating the xml 

processor. 

 

Figure 2.4: ‘Run Configuration’ to Start the Client 
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c) Click on Arguments tab, and then add the location of scenario specific, xml input files. 

The figure given below shows the arguments tab, where the location of each file is 

passed. 

 

Figure 2.5: Passing the Location of Scenario-Description Files 

By following the above steps and initiating the simulator, ‘DXml.java’ starts analyzing 

and sorts each of the user specified XML files (policy.xml, strategy.xml, situation.xml and 

global.xml) into a linked list. It then identifies the available models, teams, list of agents and the 

other entire scenario related details. This in-turn starts the socket-client ‘Loislane.java’.  It 

communicates with the server using the specified port number for passing the information related 

to the simulation and the commands to the flying agents. The server listens and uses this 

information to visualize the mission. 
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3. MOTIVATION AND PROBLEM DESCRIPTION 

The Simian simulator developed at NDSU performs complex motion calculations for   

moment - moment flight and delivers effective inter-agent communication for all the UAV’s. 

Many scenarios that focus on the strategy plan and perform calculations to carry out the mission 

are, implemented. This chapter discusses the framework design and refreshes the repetitive 

processes that are involved in starting and running the existing Simian system, until the 

visualization of the mission as noted in the previous chapter. 

One of the design goals of Simian is to have the scenario/problem description separate 

from the strategy that leads to the concept of Open Agent Architecture. Hence, there are four xml 

files used for describing the scenario that involves targets, perimeters of the field, Unmanned Air 

Vehicles and the hardware configurations for each of those agents [6].  Situation, Policy, 

Strategy and Global are the xml input files passed manually as input arguments to DXML class. 

Situation file holds the definition of two models, one for flying object and the other for target. It 

holds the parameters of speed, forward, backward, turn, up & down acceleration. The flying 

object has the elements like receivers, transmitters, weapons and sensors. To specify the no of 

UAVs for a configured model, same file is used. Policy file holds the three-dimensional 

specifications for the area of interest. Details related to the visualization of the mission such as 

time-step, time limit, port number is stored in Global file. Listed below is summary of the 

tedious tasks involved in running simian. 

 Creating the configuration to start the server and run it as java application. 

 Repetitive process of creating another configuration setting, to launch the client as 

java application 
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 Handwritten ‘Situation’ file, to describe scenario. 

 No flexible way for building a new model and configuring each agent involved in the 

mission. 

 Constructing the xml file that holds the required configurations, formatted so that 

simian can interpret the data. 

 Pass the location of each input file, manually. 

The goal of this paper is to address the above-mentioned repetitive and tedious jobs involved in, 

describing a scenario and assembling the required hardware for each of the unmanned air 

vehicles. For this, a user friendly graphical interface ‘Simian Plus’, has been developed that 

offers a flexible way for configuring the battle scenarios, ability to configure each of the 

hardware piece that make up the flying agents which execute the mission. The main objectives of 

this paper are, listed below. 

1. Means to create and describe a scenario. 

 Flexible way to construct a base model for an unmanned air vehicle 

 Ability to configure each of the hardware assembled in the base model. 

2. Means to save and launch the newly created scenario-configuration file. 

 Void the process of creating ‘run configuration’s to launch Simian as java 

application, for both server and client (DXML).  

 Automate the process of creating and saving the scenario-description file in the 

correct format without hindering the existing simian way of interpreting the four-

xml files.  

3. Means to pass the simulation specifications such as time-step, simulation time limit 

etc. with ease. 



 

12 

 

4. Means to launch the previously configured files and trigger the simulation process 

with ease. 

 Easier method to launch the previously created scenarios, without having to 

neither recreate the scenarios nor pass the location of the input files. 
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4. PRINCIPLES OF DESIGN 

In the past, applications and software was, designed with little regard for the user, so the 

user had to figure out a way to adapt to the system for starting/running the program. With this as 

the one of the key goals, Simian Plus is, designed to eliminate this approach and instead aid the 

user in using the system with ease. User Interface facilitates interactions between a system and 

people. In our case, an application and the researcher working towards formulating a 

configuration that can simulate the mission strategy.  This chapter discusses the user interface 

design, concepts that aid in building an effective and functional application.   

The interaction designer needs to take into account as to who the target of the GUI/web 

application is and who will be using it. Based on this, UI designer needs to place emphasis on 

what the goal/purpose is and how it can be, achieved. Key inter actions have to be identified and 

wire-framed or create interfaces. There is a possibility for numerous ideas running through, but 

the application design should align to certain key items to stop it from been overloaded with 

features.  Below are some of the design principles that aid in creating a functional, clutter free 

User interface. 

Development, visibility and affordance are the three factors that are, vital factors that aid 

in creating an interface. They help in keeping the interface not just clutter free but also 

functional. 

4.1. Development Platform 

Platform constraints such as the technology used in implementing the UI, backend 

technology used to integrate with the front end, ease of developing features and integrating with 

the existing framework, libraries and tool kits are the foundations of an application. Action-
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script, j-query and JavaScript are some of the technologies that can be used to implement the 

user interface.  

In Simian Plus, JavaScript is used as the front-end technology, as it has proved to be a 

simple yet functionally effective scripting language. Java is used as the backend technology that 

performs the required calculations to execute the mission. To bridge the front end and back end, 

‘Servlets’ have been used. Java servlets are server-side java program modules that process the 

client-server requests. In other words, it acts as an intermediary between the client/front-end and 

the back-end. Since a servlet is integrated with the Java language, it also possesses all the Java 

features such as high portability, platform independence, security and Java database connectivity 

4.2. Visibility/Interface 

Clear conceptual model, human abilities, product identity are some of the factors that 

express, a strong visual identity and are thus termed as the Visibility factors. A well-designed 

interface is one that allows a user to recognize the context of available controls at a glance. This 

way/mode of interaction refers to all graphical techniques that are, used to convey the context of 

the application. Below are the key elements that help in laying out the initial design/architecture 

of an application’s user interface. 

 Consistency: The same conventions and rules should be, applied to all the elements 

of the graphical interface. Font, abbreviations, terms, data formats, units of 

measurement are the elements that play a key role in achieving consistency. The user 

establishes a connection with the application as they use the graphical interface. For 

example using the same set of colors and font for the entry/input objects, different 

font/style for the titles helps the user to use the application with ease.  
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 Screen Layout: Organization and location of displayed data elements have to be 

standardized. This allows the user to develop spatial expectations.  The screen has to 

be, divided into three basic segments, with each reserved for specific functions. Place 

the objects in one section of the UI and the actions such as “Save”, “Cancel” in a 

different section of the interface. This helps the user in distinguishing the input/entry 

areas from the ‘next action’ area. The topmost segment holds the title that describes 

what the screen/page is, about. Usage of real world metaphors is another factor that 

helps the user. 

 Relationship: Related data has to be, grouped or ‘chunked’ together. Placing related 

items and eliminating unrelated items helps in achieving visual organization. By 

grouping elements, users can gain better understanding of the application.  

 Navigation: Items in a list, should be arranged in some recognizable and useful 

order, such as chronological, alphabetical, or degree of importance. When multiple 

data elements appear on a single line, e.g. line number, authority heading(s) and 

number of related records-the data elements should be broken into separate blocks or 

tabular display and not run together. User interface navigation should always start 

with strong entry points. An entry point can be a simple welcome page with a 

company/university logo and a button that says, “Click here to Begin” or “Start” .The 

options should be what the user would anticipate from the system. 

4.3. Affordance 

Developing better visual (color or black-and-white) communication is an important part 

of making computer graphics that communicate effectively and efficiently through graphic 

design. Affordance is the quality of an object that provides a user with the visual cue to perform 
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an action. The user should naturally perceive how to interact with the application objects and 

quickly determine: 

 What can be pressed 

 What areas need input 

 What areas provide feedback  

   Simulation of a scenario includes a single java thread. The existing Simain uses the four 

user specified xml files to initialize this thread. Simian-Plus voids the manual process of creating 

four files and passing the file locations. On clicking “Run Simulation” button, related java thread 

is, initialized.    

Eclipse IDE (Integrated Development Environment) is a useful tool that helps in writing 

and executing the code. It comprises of basic workspace and extensible plug-in feature making 

the customization of an environment easy. The plug-in architecture supports creating 

applications using various programming languages such as C, Python etc. including networking 

applications such as database management and telnet.  It also supports the version control 

systems such as CVS, Teamprise explorer and GIT.  
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5. LAYOUT - SIMULATION GRAPHICAL INTERFACE 

To demonstrate the user-friendly features that have been designed and implemented in 

Simian Plus, this chapter illustrates the steps that enable a simpler and easier way for the 

‘scenario-description’ process in Simian. As an example, Simian Plus is used to, create and 

configure a scenario that comprises of two UAVs to search the targets. The area of interest is a 

horizontal field and contains two static targets. One controller is, assembled for each of the air 

vehicle. The flying agents use ‘Lawn mow’ strategy to detect and destroy targets. User Manual 

can be, referred to for details on how to set up the project. 

5.1. Mechanism to Create New Scenario  

This section, talks about the steps for creating a new scenario using Simian Plus. In 

current Simian, the only way to specify the hardware for a base model of a flying agent was, by 

manually creating xml tags, elements and attributes. Each hardware has its own element name, 

confining to which the user would have to pay keen attention in creating the first input xml file, 

“Situation.xml”.  

5.1.1. Construct base model 

 Simian Plus has implemented a feature where the base model is, constructed with ease. 

Below figure, shows the available hardware that can be equipped to a physical flying agent. A 

unique name and the count of hardware can be, specified to build a basic model.  

 

Figure 5.1: Create Base Model  
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The next figure shows the screen displayed, to configure hardware that a flying agent is 

equipped. This feature in Simian Plus not only replaces the monotonous way of manually writing 

the xml but also provides a flexible way to the user. It helps in trying and testing out the 

capabilities of the hardware and aids in formulating new strategies UAV.     

 

Figure 5.2: Configure the Flying Agent’s Base Model Hardware  
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5.1.2. Create team and assign UAVs 

 With the above listed hardware and its detailed specifications, the probability of human 

error just increases. In Simian, the teams and the UAVs are, described using the ‘Situation.xml’ 

file. Simian-Plus has the ability to not just create the base model, but also create teams and 

designate a number of UAVs to it. This reduces the user effort and instead enables the user to 

experiment with different settings to formulate a successful mission strategy. The next figure 

depicts the interface in Simian Plus, where the user can create and name a team. 

 

Figure 5.3: Enter Number of UAVs 

Simian Plus offers an easier method to replace the manual way of creating each of the 

UAV elements in xml. After selecting the number of UAVs, the next screen displayed, can be 

seen in the below figure. This page can be, used to specify the count of flying agents. Parameters 

such as the position it should start from and velocity can be, entered using this screen. The below 

screen gives the view on how the controller, that determines the manner a UAV should turn with, 

to make a second sweep search can be configured. 
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Figure 5.4: Configure and Add Flying agents  

5.1.3. Add boundaries 

Each team has a limited area, within which the physical agents can fly. The dimensions 

of this field is based on x, y and z co-ordinate axis. To describe the specifications of ‘area of 

interest’ to the simian simulator, ‘policy.xml’ file is used.  This file is manually, written using the 

‘<policy>’ and ‘<boundaries> tag elements. This is now, replaced with the page/screen in figure 

5.5. Simian Plus provides an easier method to state the boundary specifications voiding out one 

of the many tedious jobs of scenario-description.  
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Figure 5.5: Add Boundaries  

5.1.4. Add targets 

In Simian, a target’s structure is, based on the model of type “sitting duck”. It has a 

structure similar to the flying agent’s base model except that there is no hardware. The motion 

parameters, referred as ‘limits’ are all set to zero, as the target is immobile i.e. it is a  stationary 

object in the field. In existing simian this is, described to the simulation processor using the 

‘situation.xml’ file. Rewriting the xml structure for target using the same, structure as model can 

be, observed here. Simian Plus, replaces this by displaying a screen that has user-friendly 

interface, where the position of the target can be specified eliminating the input file format. User 

can add a custom name for the ‘suiting duck’ base model and the team of the targets that belong 

to it. Figure 5.6 is the screen that is, displayed in Simian Plus to add target’s location in a field.      

 

Figure 5.6: Add Target Position 
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5.2. Mechanism to Launch New Scenario 

 After adding the UAVs and targets to the battle scenario, the next step would be 

configuring the simulator specifications, for the client (Loislane) to communicate the 

calculations to the server. This section illustrates the feature to pass the port number and other 

such parameters. Processor calculations provide the systematic flight of the UAV to search and 

destroy the target. Currently this is, described using the ‘global.xml’ file. Once again formatting 

of elements and attributes that can be, interpreted by Simian are involved. Simian Plus voids this 

process and instead displays the screen in figure 5.7, where simulator details can be, entered.  

 

Figure 5.7: Simulator Specifications  

Once the simulator is, assembled, clicking on “Create Configuration” creates the input 

file that can be, interpreted by Simian. The xml processor is, triggered at this point. It processes 

the input file and groups all the details like models, assigned teams based on each model, list of 

UAVs, list of targets and the controllers for each of the available UAVs. 

5.3. Mechanism to Launch Saved Scenario 

This section refers to the feature, where any of the saved configurations can be launched 

using the improvised system. Main page of the Simian Plus’s interface, displays two options 
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“Launch New” and “Launch Saved”. On clicking the “Launch Saved Configuration”, it displays 

a screen with a dropdown, loaded with the configurations that were, saved earlier.  Certain 

frequently used scenario configurations can be, saved and re-used on demand. This saves time, 

effort and redundancy of tasks.  

Once the file is loaded, clicking “Run Simulation” will trigger the xml processor to 

interpret the scenario configurations, which in turn invokes the client. The client (Loislane) then 

communicates, with the server to visualize the mission. 

5.4. Implementation 

This section describes the implementation of the key features illustrated in the previous 

section. As we have seen the various features that Simian Plus provides, it eases the entire 

process of describing a scenario and configuring the agents involved. It plays a significant role in 

keeping the user’s focus on formulating newer strategies instead of the repetitive problem-

description process. To implement the design goal of Simian Plus, JSP is used to the render the 

user-friendly interface. Java, Servlets and Tomcat are, used as the backend technologies to create 

the configuration file that can be, saved and launched for simulation. This interface has been, 

developed using eclipse and a configured Tomcat server, to compile and access it, as a web-

application. All the files related to the Interface are placed in /WebContent folder of the simian 

project. 

The existing simian framework uses four different input files to describe the agents 

involved in the simulation and specifications surrounding the strategy and area of interest. In the 

new setup this is, replaced with just one file “situation.xml”. The layout of the configuration 

details is, broadly divided into blocks of elements in the file. Below are the elements that serve 

as the building blocks for creating a new scenario-description file. 
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 Basic model 

 Team – associated team for each model.  

 Configurations/Position of each Unmanned Air Vehicle and Targets in each team. 

 Boundaries of each team   

5.4.1. Model 

Model is a template that holds the constraints related to the motion.  In 

Simian, objects can be of two types, one UAV and the other, a target. Thus, model 

is a basic structure for every agent that is involved in the simulation of a scenario. 

It holds an attribute called “class” that distinguishes the type of object defined.  It 

contains an element called <limits> that holds the parameters like up acceleration, 

speed and fuel capacity. Each UAV is , based on a model. 

Files, that are used to create a basic model for a flying agent are ‘Model’, 

Model_AddHardware’,‘Model_ConfigHardware’, XML_AddHardware, XML_ConfigHardware. 

The limits would be upward acceleration, upward speed, downward acceleration, downward 

speed, turn acceleration, forward acceleration, backward acceleration, speed and the fuel 

capacity for an agent. If the agent is a physical/flying agent, then quantity of the hardware can 

be, added. All the agents that are, based on the configured model will inherit the added 

equipment.  

 Sensor range indicates the distance; a UAV can spot the target from. Here, the used 

conical sensor class can be found in ‘orion.simian.things.sensors’. Half Angle denotes 

an angle at which a sensor can spot a target at a given position.  
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 Weapon corresponds to a missile carried by the UAV. Range speed and the blast 

radius of the missile are, specified. The simple missile class can be found in 

‘orion.simian.things’  

 Transmitter is the hardware that aids in transmitting a message to the environment 

that handles all communication. 

 The commands issues are, received by the UAV with the help of sensors. The range 

indicates the area/distance the UAV can receive the messages. 

 In Simian, ‘Situation.xml’ is, used for describing unmanned air vehicle and a targets 

model. Below is the model–xml element structure, where the motion parameters and the 

hardware configurations cluster can be, seen. The screen displayed in Simian Plus, that replaces 

the manual creation of this file and automate xml creation can be, seen in figure 5.8. & figure 

5.9.  Here, the target positions screen, not only describes the whereabouts of its location but also 

creates the model for ‘sitting duck’/targets using backend with one simple interface. 

Screen displayed to automate the process of creating the xml: 

 

Figure 5.8: Target Locations 
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Figure 5.9: Base Model and Hardware for UAVs  

XML element in configuration file: 

<model name='UAVModel1' class='uav' crashradius='10'> 

 <limits up_ac='1' up_sp='5' down_ac='3' down_sp='10'  turn_ac='40.0' fwrd_ac='4'               

back_ac='5' speed='50'  fuelCapacity='800' /> 

 <transmitter class='rangedtransmitter' range='4000'/> 

 <receiver class='rangedreceiver' /> 

 <sensor class='conicalsensor' range='200' halfangle='75'>0 0 -1 </sensor> 

 <weapon class='simplemissile'  range='300' speed='500'   blastradius='50' /> 

 <weapon class='simplemissile'  range='300' speed='500'  blastradius='50' /> 

</model> 
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<model name='targetModel' class='sittingduck' crashradius='5'> 

<limits up_ac='0' up_sp='0' down_ac='0' down_sp='0' turn_ac='0.0' fwrd_ac='0' back_ac='0' 

speed='00' fuelCapacity='300' /> 

</model> 

<team name='targetsTeam1'> 

 <smallthing model='targetModel'> 

  <position>-950 150 0</position> 

  <velocity>0 0 0</velocity> 

 </smallthing> 

 <smallthing model='targetModel'> 

  <position>-750 750 0</position> 

  <velocity>0 0 0</velocity> 

 </smallthing> 

</team> 

5.4.2. Team 

 Every model has a team. Every team has a set of unmanned air vehicles. Each UAV is 

based on a model and has a controller. The agents are termed as 'small things' in the simian 

world. For a UAV, position indicates the starting position in the field and velocity is the speed at 

which the UAV should navigate in the mission. Controller is the element that determines the path 

increment for a UAV. To calculate the path increment, ‘Start’, ‘Second’ and ‘End’ are the 

parameters used. In other words, it determines the degree a UAV should turn before making the 

second sweep search in the field.   

 'Model_ConfigHardware' is the file that handles the number of UAVs that are, added to 

the mission which are, based on the newly configured model. Teams are, created for both, targets 

and flying agents. This is, described to the current simian processor using “Situation.xml’ file. 
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Information of the team formed and the assigned UAVs to it mentioned, by the tedious job of 

manually writing the given below xml element. Simian Plus provides a feature that eases this 

process and voids the human error in writing the file. Figure 5.10 denotes the screen displayed in 

the enhanced system. It is, used for forming the teams and providing details related to each of the 

agent/item with its location. 

 'UAV_AddAndConfig' corresponds to configure each of the UAVs starting with 

position, velocity and the controller. All the mentioned configurations are, added to 

the file that has been, created in the initial stages of "Launch New" step.  The below 

example shows that two UAV are added built on 'UAVModel1' model.  

 The velocity would be zero for the targets, as they are static in the field. 

XML element created in configuration file: 

<team name='DamnYankees'> 

 

 <smallthing model='targetModel'> 

 

  <position>-950 150 0</position> 

  <velocity>0 0 0</velocity> 

 </smallthing> 

 <smallthing model='targetModel'> 

  <position>-750 750 0</position> 

  <velocity>0 0 0</velocity> 

 </smallthing> 

</team> 

<team name='Twins'> 

 <smallthing model='UAVModel1' name='Rod'> 

   <position>-750 750 100</position> 



 

29 

 

  <velocity>0 27 0</velocity> 

 </smallthing> 

 <smallthing model='UAVModel1' name='Harmon'> 

   <position>-800 750 100</position> 

  <velocity>0 27 0</velocity> 

 </smallthing> 

</team> 

Screen displayed to automate the process of creating the xml:  

 

 

Figure 5.10: Team of Flying Agents and Targets 
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5.4.3. Boundaries 

 As mentioned in the earlier chapters, to describe the ‘area of interest’ to the 

simian simulator, ‘policy.xml’ file is used. This file is manually, written using the 

‘<policy>’ and ‘<boundaries> tag elements. The "aoi" is the tag, used for 

representing the boundaries. It stands for 'Area of Interest'.  

Every team of flying objects has a corresponding policy. The unmanned vehicles should 

fly within the specified limits across the coordinate axis. 

UAV_AddAndConfig' and 'XML_UAV' are the files used to display the view to prompt 

the user to enter the start and the end, points of the field. Figure 5.11 shows the screen that is, 

displayed where the boundaries for the team can be, stated with ease. Below is the snippet of 

code, that formats the values entered and forms the xml element in the situation file.  

 str="bound1_1_"+(t+1); 

 b1=request.getParameter(str); 

 str="bound1_2_"+(t+1); 

 b2=request.getParameter(str); 

 str="bound1_3_"+(t+1); 

 b3=request.getParameter(str); 

 //second boundary  

 str="bound2_1_"+(t+1); 

 b4=request.getParameter(str); 

 str="bound2_2_"+(t+1); 

 b5=request.getParameter(str); 

 str="bound2_3_"+(t+1); 

 b6=request.getParameter(str); 
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 //tags 

 tag="<policy team='"+tname+"' >";filedata+="\n"+tag; 

 tag="<aoi>";filedata+="\n"+tag; 

 tag="<bound>"+b1+""+b2+""+b3+"</bound>";filedata+="\n"+tag 

 tag="<bound>"+b3+""+b4+" +b5+"</bound>";filedata+="\n"+tag; 

 tag="</aoi>";filedata+="\n"+tag; 

 tag="</policy>";filedata+="\n"+tag; 

XML element created in configuration file: 

 <policy team='UAVTeam1'> 

 <aoi> 

  <bound>-1000.0 -1000.0 -100.0</bound> 

  <bound>1000.0 1000.0 200</bound> 

 </aoi> 

          </policy> 

Screen displayed to automate the process of creating the xml: 

 

Figure 5.11: Dimensions of the Field 

5.4.4. Simulation details 

 The field “port” corresponds to the port number to be , used by the client to 

communicate with the class that visualizes the mission. In Simian, Vis2d is the 

server that listens to the message commands from the Loislane (client) and 
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simulates the mission. 'Port', 'Hobbes', 'Filename' and 'feedback' are some of  the 

parameters. The ‘Loislane’ class holds. The time limit denotes span of time the 

simulation should run for.  'Host' is an optional parameter that holds the port 

number for a server connection to be established; if/incase the server is not started. 

All these are, described to the simian using ‘Global.xml’ file. As pointed out in the 

outlined challenges of simian, this has to be, written and formatted manually to 

make sure that the simulation processor can interpret all the files without running 

into errors and issues while visualizing.  

Below is the snippet of code that formats the specifications in Simian Plus. By default, 

'seminar', 'hobbes', 'nofile' has the values set to align with the existing architecture of Simian 

Framework. This piece corresponds to the 'global' details in the simian world. 'Simulator_Config' 

and 'XML_Sim' are the files that are used to assemble the simulation specifications to an xml 

element in ‘global’ file. Figure 5.12 shows the interface that corresponds to the mentioned 

specifications. Once can see that the port number can be easily entered here eliminating the 

process of ‘creating & running client’ as java application discussed in Chapter 2. It also voids the 

process of manually passing the location of the newly created configuration file. This is 

automated by the enhanced system, Simian Plus. 

Snippet of code that creates model: 

String filedata="",tag=""; 

tag="<global>"; 

filedata+="\n"+tag; 

tag="<loislane seminar=\"134.129.125.221\" hobbes=\"192.168.125.25\" 

port=\""+port+"\" delay=\"5\" winbox=\"192.168.125.21\" feedback='false'"; 

filedata+="\n"+tag; 

if(cf.equals("Y")) 
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 tag=" nofile='LoisLane.txt' />"; 

else 

 tag=" nofile='' />"; 

filedata+=tag; 

tag="<simulator timestep='"+simtime+"'  timelimit='"+timelimit+"'/>"; 

filedata+="\n"+tag; 

tag="</global>"; 

filedata+="\n"+tag; 

tag="</situation>"; 

filedata+="\n"+tag; 

XML element created in configuration file: 

<global> 

 

 <loislane seminar="134.129.125.221"hobbes="192.168.125.25" 

port="9906" delay="10" winbox="192.168.125.21"               

feedback='true' nofile='LoisLane.txt' /> 

 <simulator timestep='0.40' timelimit='200' /> 

 

</global> 

Screen displayed to automate the process of creating the xml: 

 

Figure 5.12: Pass Port to Client (Loislane) & Simulation Details  

 

 

 



 

34 

 

5.5. Validation 

 The Simulation-Graphical Interface has a feature that validates certain parameters that 

are core in creating/running a scenario.  These validators are easy to configure for different 

behavior. Validators used in this interface evaluate if the user has entered a value for a specific 

field. For every flying agent’s model, ‘turn’, ‘speed’, ‘fuel capacity’ and the ‘transmitter range’ 

needs to be, configured. Below is the snippet of java script that implements the validator used. 

This interface has used only the “required fields” validator. Different types of validators are 

available in “gen_validatorv4.js”. With the above format, they can all be, configured and used. 

Below is the snippet that shows the validator, that validates the unmanned air vehicle’s motion 

related parameters and the simulator specification’s validator. Figure 5.13 shows the highlighted 

fields that are invalid by the corresponding validator.  

Model – Validator: 

<script type="text/javascript"> 

 

var frmvalidator = new Validator("f2"); 

frmvalidator.EnableOnPageErrorDisplay(); 

frmvalidator.EnableMsgsTogether(); 

//validator 

frmvalidator.addValidation("turn", "req", "Please enter the turn   parameter"); 

frmvalidator.addValidation("speed", "req", "Please enter speed"); 

frmvalidator.addValidation("cap", "req", "Please enter fuel capacity"); 

</script> 

Simulation – Validator: 

<script type="text/javascript"> 

 var simValidator = new Validator("simForm"); 
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 simValidator.EnableOnPageErrorDisplay(); 

 simValidator.EnableMsgsTogether(); 

 simValidator.addValidation("port", "req", "Please enter the port"); 

 simValidator.addValidation("simtime", "req", "Please enter time limit for 

simulation"); 

 simValidator.addValidation("timelimit", "req", "Please enter simulation time  

limit"); 

//end of script 

</script> 

 

 

Figure 5.13: Invalid Fields Highlighted 

5.6. Output – Scenario  

This section illustrates the process for creating a new configuration file for scenarios 

using ‘Sweep Search’. The sweep search suggested in this scenario is, based on controller 

program implemented by the researches under the guidance of Dr. Kendall E. Nygard. The UAV 
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start navigating from their initial positions. State change occurs when they reach an end in the 

field before making another pass on the area.    

The below scenario consists of two UAVs and two targets. The static targets are, placed 

in the field. Two UAVs start navigating and search the field starting from specific positions 

relative to the field, based on x, y, and z co-ordinate axis. The whole process until launching 

simulation can be, divided as follows: 

 Create the ‘Simulation/Configuration’ File 

 Launching Simulation 

5.6.1. Create configuration file 

The steps for creating a configuration file to simulate this scenario are, given 

below. 

Step 1: Construct and Configure Base Model.  
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Figure 5.14: Output – After Configuring the (UAV) Model  
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Step 2: Create a Team & Configure each UAV 

 

Figure 5.15: Output – Team of UAVs 

 

Figure 5.16: Output – After Assigning the UAVs Position and Configuring 

Controllers 
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Step 3: Create Team & Add Target locations 

 
Figure 5.17: Output – After Creating a Team of Targets  

 

Figure 5.18: Output – After Assigning Each Target’s Position  

Step 4: Add field dimensions & Configure simulation 

 

Figure 5.19: Output – After Configuring the Field’s Dimensions  
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Figure 5.20: Output – After Configuring the Simulator  

5.6.2. Launching simulation 

 Once the configuration file is created the next steps depict the steps 

followed to launch the simulation are illustrated here. Figure 5.21 depicts the 

‘running’ server that is , started by running the main ‘LaunchVis2D.java’ as java 

program.  

Step 1: Start server and enter the port number 

 

Figure 5.21: Output – After Running the ‘Visualizer’  
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Figure 5.22: Output – After Successfully Opening the Port  

Step 2: Choose the created configuration file to launch simulation and click on “Run 

Simulation”. SimianPlus displays a screen as in the figure 5.23 

 

Figure 5.23: Output – After Creating the Configuration File  

Step 3: On clicking the “Run Simualtion”, SimianPlus starts performing the calculation to 

simualte the scenario. It displays a popup window, just like the figure 5.24 below 
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Figure 5.24: Output – After Launching the Simulation 

 

Figure 5.25: Output – After Destroying both the Targets  
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6. CONCLUSION 

This paper provides the design and the implementation of a Simian Plus that has various 

features to enable a simpler process of ‘scenario-description’ to Simian. It describes the 

technologies used to achieve the objectives paving way to a user-friendly Simian simulator. This 

enables the researchers to easily create new scenarios/situations and focus more on building new 

strategy to execute the mission instead. Mechanism to create new scenarios, ability to start and 

run the application, ability to save and launch the previously configured scenarios can all 

achieved by following the user intuitive interface. We have seen the basic validation that is 

included on the interface, which requires certain values/parameters to be entered. Simian Plus 

aids in not just creating scenarios but also in running them by minimizing human error in 

formulating the input file. Default values are plugged in, to create a valid configuration file. With 

the below flexible features, it thus aligns to the one of the main principle of simian where 

problem description is separate from the strategy of executing a mission. 

Summary of Features: 

 Mechanism to build a base model for the flying agents 

 Build/configure hardware for each UAV 

 Place targets 

 Create new scenarios with different combinations of hardware and agents 

 Launch the newly created scenario 

 Launch the saved/previous scenarios. 
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7. FUTURE WORK 

7.1. Search Strategy 

Search strategy refers to the patterns of investigating the area of interest/field to detect the 

targets. Simian Plus uses ‘Sweep search’ pattern i.e. the unmanned air vehicles start from one 

corner of the field and travel towards the horizontal end of the grid, turn and continue to the 

other end of the next horizontal grid. A feature that displays various other patterns that simian 

offers, such as Hunter and Killer UAVs and Forward Air Control search would enable the user to 

choose the specific search strategy to execute the mission 

7.2. Enhance Validation 

Currently all the fields, are validated to verify if the user has entered the values for it. 

This validation can be further, enhanced to validate the values entered. For example, verifying 

the validity of values such as speed, blast radius of a weapon, receiver’s range limit, swath etc. 

entered by the user during the hardware configuration process. 
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APPENDIX A. LAUNCH SIMULATION SERVLET PROGRAM 

 
package util; 

import java.io.File; 

import java.io.IOException; 

import java.net.InetAddress; 

import java.net.InetSocketAddress; 

import java.net.ServerSocket; 

import java.util.HashMap; 

import java.util.Map; 

 

import javax.servlet.http.HttpServlet; 

import javax.servlet.http.HttpServletRequest; 

import javax.servlet.http.HttpServletResponse; 

import javax.xml.parsers.ParserConfigurationException; 

 

import org.dom4j.Document; 

import org.dom4j.DocumentException; 

import org.dom4j.Element; 

import org.dom4j.io.SAXReader; 

 

import orion.simian.drivers.Launch_DXML; 

 

@SuppressWarnings("serial") 

public class LaunchSimServlet extends HttpServlet { 

  

 protected void doPost(HttpServletRequest req, HttpServletResponse 

res){ 
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  Map<String, String> messages = new HashMap<String, 

String>(); 

  Map<String, String> errors = new HashMap<String, String>(); 

  ServerSocket listener = null; 

  Element simDoc = null; 

  String configFileName = null; 

   

  configFileName = (String) 

req.getSession().getAttribute("name"); 

  String serverPortStr = req.getParameter("serverPort"); 

   

  try{ 

   //loadDocument 

   simDoc = processFile(configFileName); 

   //extractPort 

   if(serverPortStr == null){ 

    serverPortStr = extractPort(simDoc); 

   } 

   //startProcessor 

   startProcessor(simDoc); 

  }catch(DocumentException de1){ 

   System.out.println("Exception :"+de1.getMessage()); 

   de1.printStackTrace(); 

    

  } 

    

 } 



 

48 

 

  

 private Element processFile(String fileName) throws 

DocumentException { 

  File file = new File(fileName); 

  Document docFile=(new SAXReader()).read(file); 

  Element rootEl = docFile.getRootElement(); 

  return rootEl; 

 } 

  

 /**Process file and extract value 

  *  @param fileName 

  *  return value 

  * **/ 

 private String extractPort(Element root){ 

  Element el1 = root.element("global"); 

  Element lois = el1.element("loislane"); 

   

  String value = lois.attributeValue("port"); 

  return value; 

 } 

  

 @SuppressWarnings("unused") 

 private boolean validatePort(int port){ 

  ServerSocket listener = null; 

  boolean isValid = false; 

  try{ 
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    listener=new ServerSocket(port, 50, 

InetAddress.getByName("0.0.0.0")); 

        System.out.println("Connection Succesful. Port :"+port); 

  }catch(IOException e){ 

   System.out.println("Connection Refused. Could not open 

server, Port ::"+port); 

   System.out.println("Detail message 

::"+e.getMessage()); 

  }finally{ 

   if(listener != null){ 

    try { 

     killSocket(port); 

     //listener.close(); 

     System.out.println("Killing Connection 

succefull :"+port + 

           " \n 

Listener status" +listener.isClosed()); 

     isValid = true; 

    } catch (IOException e) { 

     System.out.println("Exception occured while 

closing the socket port :"+port); 

     e.printStackTrace(); 

    } 

   } 

   System.out.println("Exitting"); 

  } 

  return isValid; 

 } 
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 private void killSocket(int port) throws IOException { 

  System.out.println("killSocket(): Releasing port "+port); 

   

 } 

 /**Start Server Listener 

  * @param port 

  * return serverSocket 

  **/ 

 private ServerSocket startServer(int port){ 

  ServerSocket listener = null; 

  try{ 

   InetSocketAddress address = new 

InetSocketAddress(InetAddress.getByName("0.0.0.0"), port); 

    

   listener = new ServerSocket(); 

   listener.setReuseAddress(true); 

   listener.bind(address, 10); 

    //listener=new ServerSocket(port, 50, 

InetAddress.getByName("0.0.0.0")); 

       System.out.println("Connection Succesful. Port :"+port); 

  }catch(IOException e){ 

   System.out.println("Connection Refused. Could not open 

server, Port ::"+port); 

   System.out.println("Detail message 

::"+e.getMessage()); 

   System.out.println("Killing the listner ::"); 

  } 

  return listener; 
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 } 

  

 

 /**Invoke Client DXML Processor 

  * @param  

  * @throws Exception  

  * @throws ParserConfigurationException  

  *  

  **/ 

 protected void startProcessor(Element rootElement){ 

  Launch_DXML xmlProcessor = new Launch_DXML(); 

  try{ 

   xmlProcessor.processDocument_DXML(rootElement); 

  } catch (Exception e) { 

   System.out.println("startProcessor(): Exception 

occured. \n Detail Maessage:" 

     + e.getMessage()); 

      e.printStackTrace(); 

  } 

 } 
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 APPENDIX B. LAUNCH_VIS2D SERVER PROGRAM 
 

package orion.simian.util ; 

import java.awt.Color; 

import java.awt.Dimension; 

import java.awt.Graphics; 

import java.awt.Insets; 

import java.awt.event.WindowAdapter; 

import java.awt.event.WindowEvent; 

import java.io.BufferedReader; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.PrintStream; 

import java.net.InetAddress; 

import java.net.ServerSocket; 

import java.net.Socket; 

import java.net.UnknownHostException; 

import java.util.ArrayList; 

import java.util.ListIterator; 

import javax.swing.JFrame; 

 

import orion.simian.util.Vector3D; 

 

public class Launch_Vis2D { 

    static final int UAV=1; 

    static final int SITTINGDUCK=2; 

    static final Color darkGreen=new Color(0.0f, 0.5f, 0.0f); 
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    public static void main(String[] args){ 

  String input = null; 

  Launch_Vis2D vis2D = null; 

  ServerSocket listener = null; 

  TrackThreads tracker = new TrackThreads(); 

  BufferedReader br = new BufferedReader(new 

InputStreamReader(System.in)); 

  System.out.println("Enter the port :"); 

  try { 

   input = br.readLine(); 

  } catch (IOException e) { 

   System.out.println("Launch_Vis2d(): Invalid Port 

\n"+e.getStackTrace()); 

   System.exit(1); 

  } 

   

  if(input != null || input!= ""){ 

   int port = Integer.parseInt(input); 

   try { 

    listener = new ServerSocket(port,10, 

InetAddress.getByName("0.0.0.0")); 

    System.out.println("Launch_Vis2d(): Sucessful in 

opening the port."+listener.getLocalSocketAddress()); 

   } catch (UnknownHostException e1) { 

    System.out.println("Launch_Vis2d(): Issue in 

opening the port.\n"+e1.getStackTrace()); 

    System.exit(1); 
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   } catch (IOException e2) { 

    System.out.println("Launch_Vis2d(): IO Issue in 

opening the port.\n"+e2.getStackTrace()); 

    System.exit(1); 

   } 

  } 

   

  while(true){ 

   SocketThread thread = null; 

   try { 

    Socket sock = listener.accept(); 

    thread = new SocketThread(sock); 

    thread.start(); 

     

    tracker.updateCount(1, thread); 

    System.out.println("Launch_Vis2d(): Sucessful in 

creating a thread. \n Client Details: "+thread.toString()); 

     

   } catch (IOException e) { 

    System.err.println("Launch_Vis2d(): Client  

accept failed " +e.getStackTrace()); 

                System.exit(3); 

   } 

    

   if (vis2D != null && vis2D.painter != null) { 

    vis2D.painter.dispose(); 

   } 
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   vis2D = new Launch_Vis2D(); 

   System.out.println("Launch_Vis2d(): About to 

visualize. "); 

   vis2D.run(thread); 

   try { 

    thread.csocket.close(); 

    thread.interrupt(); 

   } catch (IOException e) { 

    System.out.println("Launch_Vis2d(): Unsucessful 

in closing the port for thread. \n Socket LocalAddress 

:"+thread.getName()); 

     

   } 

  } 

 } 

  

    static class STD { 

        Vector3D position, fwrd; 

        int kind; 

        boolean live; 

 

        STD(STD src) { 

            position=new Vector3D(src.position); 

            fwrd=new Vector3D(src.fwrd); 

            live=src.live; 

            kind=src.kind; 

        } 
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        STD() { 

            position=new Vector3D(); 

            fwrd=new Vector3D(1, 0, 0); 

            live=true; 

            kind=UAV; 

        } 

    } // STD 

 

    ArrayList paintable=new ArrayList(), backup=new ArrayList(); 

    double axlo, axhi, aylo, ayhi; 

    double  xlo,  xhi,  ylo,  yhi; 

    static final int slop=10; 

    static final long period=1000;  // milliseconds 

    long nextPaintTime=0;  // milliseconds 

    boolean painted=false; 

 

    class Painter extends JFrame { 

        public boolean done=false; 

        Painter() { setSize(500, 500); show(); } 

 

        Graphics graphics=null; 

 

        public void paint() { if(null != graphics) paint(graphics); } 

 

        public void paint(Graphics g) 
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        { 

            nextPaintTime=System.currentTimeMillis()+period; 

            graphics=g; 

            if(axlo>=axhi || aylo>=ayhi) return; 

 

            Insets insets=getInsets(); 

            Dimension size=getSize(); 

            g.clearRect(0, 0, size.width, size.height); 

            for(ListIterator it=paintable.listIterator(); 

it.hasNext(); ) { 

                STD fred=(STD)it.next(); 

                if(fred != null) { 

                    if(fred.position.x< xlo) xlo=fred.position.x; 

                    if(fred.position.x> xhi) xhi=fred.position.x; 

                    if(fred.position.y< ylo) ylo=fred.position.y; 

                    if(fred.position.y> yhi) yhi=fred.position.y; 

                } 

            } // it 

 

            double xscale=(size.width-insets.left-insets.right-2*slop) 

                          /(xhi-xlo); 

            double yscale=(size.height-insets.top-insets.bottom-

2*slop) 

                          /(yhi-ylo); 

            double scale=xscale; 

            if(yscale< scale) scale=yscale; 

            if(scale<=0) return; 



 

58 

 

            double xoffset=(size.width + 

                            insets.left-insets.right-

scale*(xlo+xhi))/2.0; 

            // y scaled with -scale 

            double yoffset=(size.height + 

                            insets.top-

insets.bottom+scale*(ylo+yhi))/2.0; 

 

            for(ListIterator it=paintable.listIterator(); 

it.hasNext(); ) { 

                STD fred=(STD)it.next(); 

                if(fred==null) continue; 

                double xc=xoffset+scale*fred.position.x; 

                double yc=yoffset-scale*fred.position.y; 

                if(fred.kind==UAV) { 

                    double xp=xc+8*fred.fwrd.x; 

                    double yp=yc-8*fred.fwrd.y; 

                    double xl=xc-5*fred.fwrd.x-5*fred.fwrd.y; 

                    double xr=xc-5*fred.fwrd.x+5*fred.fwrd.y; 

                    double yl=yc+5*fred.fwrd.y-5*fred.fwrd.x; 

                    double yr=yc+5*fred.fwrd.y+5*fred.fwrd.x; 

                    int x [] = { (int)xc, (int)xl, (int)xp, (int)xr } 

; 

                    int y [] = { (int)yc, (int)yl, (int)yp, (int)yr } 

; 

                     

                    if(fred.live) g.setColor(Color.blue); 
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                    else          g.setColor(Color.gray); 

                    g.drawPolygon(x, y, x.length); 

                    /*------------- 

                    g.drawLine((int)(xc-4), (int)yc, 

                               (int)(xc+4), (int)(yc) ); 

                    g.drawLine((int)xc, (int)(yc-4), 

                               (int)xc, (int)(yc+4) ); 

                    */ 

                     

                } else { 

                    if(fred.live) g.setColor(Color.red); 

                    else          g.setColor(Color.black); 

                     

                    g.drawLine((int)(xc-4), (int)(yc-4), 

                               (int)(xc+4), (int)(yc+4) ); 

                    g.drawLine((int)(xc-4), (int)(yc+4), 

                               (int)(xc+4), (int)(yc-4) ); 

                } 

            } // it 

 

            { 

            int xlo2=(int)(scale*axlo+xoffset); 

            int xhi2=(int)(scale*axhi+xoffset); 

            int ylo2=(int)(scale*aylo+yoffset); 

            int yhi2=(int)(scale*ayhi+yoffset); 

            g.setColor(Color.white); 
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            int x[] = { xlo2, xlo2, xhi2, xhi2 } ; 

            int y[] = { ylo2, yhi2, yhi2, ylo2 } ; 

            g.drawPolygon(x, y, x.length); 

            g.setColor( Color.black );                      

            int col_inc = (xhi2-xlo2)/6 ; 

            int row_inc = (yhi2-ylo2)/4 ; 

                      

             

            for ( int i = xlo2; i <= xhi2 ; i+=col_inc )  

            { 

               g.drawLine( i ,ylo2 , i, yhi2 ); 

            } 

            for ( int j = ylo2; j <= yhi2 ; j+=row_inc ) 

            { 

                   g.drawLine( xlo2, j ,xhi2, j ); 

            } 

            } 

 

            painted=true; 

        } // paint 

    } // Painter 

 

    Painter painter; 

 

  

 private void run(SocketThread st) { 
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  BufferedReader br = null; 

  PrintStream pstream = null; 

  try { 

   br = new BufferedReader(new 

InputStreamReader(st.csocket.getInputStream())); 

   pstream = new 

PrintStream(st.csocket.getOutputStream()); 

   runSimulation(br, pstream); 

  } catch (IOException e) { 

    System.out.println("Launch_Vis2d(): Error in 

running simulation for Client-Thread : "+st.csocket.toString()); 

    e.printStackTrace(); 

  } catch (InterruptedException e) { 

   System.out.println("Launch_Vis2d(): Interruption in 

running simulation for Client : "+st.csocket.toString()); 

   e.printStackTrace(); 

  } 

  System.out.println("Launch_Vis2d():Client is connected" 

+st.csocket.toString()); 

   

 } 

 /** 

  * @param fin 

  * @param fout 

  * @throws IOException 

  * @throws InterruptedException 

  */ 

 private void runSimulation(BufferedReader fin, PrintStream fout) 
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   throws IOException, InterruptedException { 

  int stIndex=0; 

  STD std=null; 

  painter=new Painter(); 

  painter.addWindowListener( 

      new WindowAdapter() { 

          public void windowClosing(WindowEvent e) { 

              painter.done=true; 

              System.out.println("painter.done=true"); 

          } 

      } 

  ) ; 

  String line; 

  while(!painter.done && (line=fin.readLine())!=null) { 

      line=line.trim(); 

      String tokens [] = line.split("  *"); 

      if(tokens.length==0 || tokens[0].length()==0) continue; 

      if("TICK".equals(tokens[0])) { 

          ArrayList tmp=backup; 

          backup=paintable; 

          paintable=tmp; 

          painted=false; 

          painter.repaint(); 

          if(System.currentTimeMillis()>=nextPaintTime) { 

              for(int j=1; !painted; j+=j) Thread.sleep(j); 

          } 
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          fout.println(line); 

          for(int j=backup.size()-1; j>=0; --j) { 

              backup.set(j, new STD((STD)paintable.get(j))); 

          } 

 

          // make backup a deep copy of paintable 

          while(backup.size()< paintable.size()) { 

              backup.add(new 

STD((STD)paintable.get(backup.size()))); 

          } 

      } else if("AOI".equals(tokens[0])) { 

          axlo=Double.parseDouble(tokens[1]); 

          aylo=Double.parseDouble(tokens[2]); 

          axhi=Double.parseDouble(tokens[4]); 

          ayhi=Double.parseDouble(tokens[5]); 

          if(axlo> axhi) { double tmp=axlo; axlo=axhi; 

axhi=tmp; } 

          if(aylo> ayhi) { double tmp=aylo; aylo=ayhi; 

ayhi=tmp; } 

          xlo=axlo; xhi=axhi; 

          ylo=aylo; yhi=ayhi; 

      } else if("UAV".equals(tokens[0])) { 

          stIndex=Integer.parseInt(tokens[1]); 

          while(backup.size()<=stIndex) backup.add(null); 

          if(backup.get(stIndex)==null) { 

              backup.set(stIndex, new STD()); 

          } 
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          std=(STD)backup.get(stIndex); 

          std.kind=UAV; 

      } else if("SITTINGDUCK".equals(tokens[0])) { 

          stIndex=Integer.parseInt(tokens[1]); 

          while(backup.size()<=stIndex) backup.add(null); 

          if(backup.get(stIndex)==null) { 

              backup.set(stIndex, new STD()); 

          } 

          std=(STD)backup.get(stIndex); 

          std.kind=SITTINGDUCK; 

      } else if("DEAD".equals(tokens[0])) { 

          int j=Integer.parseInt(tokens[1]); 

          if(0<=j && j< backup.size()) 

                  { ((STD)backup.get(j)).live=false; } 

      } else if("POSITION".equals(tokens[0])) { 

          double x=Double.parseDouble(tokens[1]); 

          double y=Double.parseDouble(tokens[2]); 

          double z=Double.parseDouble(tokens[3]); 

          std.position.setTo(x, y, z); 

      } else if("FORWARD".equals(tokens[0])) { 

          double x=Double.parseDouble(tokens[1]); 

          double y=Double.parseDouble(tokens[2]); 

          double z=Double.parseDouble(tokens[3]); 

          std.fwrd.setTo(x, y, z); 

      } else if("ECHO".equals(tokens[0])) { 

          painted=false; 
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          painter.repaint(); 

          for(int j=1; !painted ; j+=j) Thread.sleep(j); 

          fout.println(line); 

      } 

  } // while 

 } 

  

 

}   
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APPENDIX C. LAUNCH_DXML PROCESSOR PROGRAM 
 

package orion.simian.drivers; 

import java.io.File; 

import java.util.LinkedList; 

import java.util.List; 

import java.util.ListIterator; 

 

import javax.xml.parsers.ParserConfigurationException; 

 

import org.dom4j.Document; 

import org.dom4j.DocumentException; 

import org.dom4j.Element; 

import org.dom4j.io.SAXReader; 

 

import orion.simian.Environment; 

import orion.simian.things.SittingDuck; 

import orion.simian.things.SmallThing; 

import orion.simian.things.SmallThings; 

import orion.simian.util.Controllee; 

import orion.simian.util.Controller; 

import orion.simian.util.Launch_Loislane; 

import orion.simian.util.LoisLane; 

import orion.simian.util.NamedStrings; 

import orion.simian.util.Strings; 

import orion.simian.util.Vector3D; 

import orion.simian.util.VisualizerMsg; 
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import orion.simian.util.WantsReporter; 

import orion.simian.util.Xml; 

 

public class Launch_DXML { 

  

 interface simConstants extends Strings, NamedStrings {} 

 interface s extends Strings, NamedStrings {} 

  

 public Launch_DXML() { 

  //super; 

 } 

 public Launch_DXML(String str) throws 

ParserConfigurationException, DocumentException { 

  File _file = new File(str); 

  Document doc=(new SAXReader()).read(_file); 

        System.out.println ("Root element of the doc is " + 

doc.getName()); 

        //processDocument(doc); 

        //processDocument_DXML(doc); 

    } 

  

  

 public void processDocument_DXML(Element rootEl){ 

    //rootElement 

    System.out.println("Root name is "+ rootEl.getName()); 

     

    List<Element> simElList = new LinkedList<Element>(); 
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    simElList.add(rootEl); 

   

    List strategys=new LinkedList(); 

       strategys.add(rootEl.element("strategy")); 

       Xml.printElementList("strategaaay", strategys); 

        

       List globals=new LinkedList(); 

       globals.add(rootEl.element("global")); 

       Xml.printElementList("globalll", globals); 

         

       List policys=new LinkedList(); 

       policys.add(rootEl.element("policy")); 

    Xml.printElementList("policyyyy", policys); 

         

       List gmodels=Xml.selectNodes(s.model, simElList); 

       Xml.printElementList("gmodels", gmodels); 

 

       List teams=Xml.selectNodes(s.team, simElList); 

       Xml.printElementList("teams", teams); 

        

       SmallThings allSmallThings=new SmallThings(); 

 

       for(ListIterator tit=teams.listIterator(); tit.hasNext();  ) { 

           // one iteration for each team 

           Element team=(Element)tit.next(); 

           String teamNm=team.attributeValue(s.name, null); 
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           List teamPids=team.selectNodes(s.smallthing); 

           List teamPmodels=new LinkedList(); 

           teamPmodels.addAll(team.selectNodes(s.model)); 

           teamPmodels.addAll(gmodels); 

           Element policy=(Element)Xml.selectSingleNode( 

               "." + s.LSB + "@" + s.team + "=" + 

                       s.QQUOTE + teamNm + s.QQUOTE + s.RSB, 

               policys, true ); 

           for(ListIterator stit=teamPids.listIterator(); 

                                             stit.hasNext();  ) { 

               // one iteration per small thing on team 

               Element pid=(Element)stit.next(); 

               String modelNm=pid.attributeValue(s.model, null); 

               if(null==modelNm) { 

                   throw new Error("smallthing has no model:\n" + 

                                   pid.asXML() ); 

               } 

               // the model of the current small thing 

               Element pmodel=(Element)Xml.selectSingleNode( 

                   "." + s.LSB + "@" + s.name + "=" + 

                       s.QQUOTE + modelNm + s.QQUOTE + s.RSB, 

                   teamPmodels, false ); 

               // the making of different kinds of small things 

               // is a job for a factory in SmallThing 

               SmallThing smallThing= 

                       SmallThing.make(pid, teamPmodels, globals); 
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               System.out.println("transmitters:\n" + 

smallThing.transmitters); 

               System.out.println("receivers:\n" + 

smallThing.receivers); 

 

               if(smallThing instanceof Controllee) { 

                   String stNm=pid.attributeValue(s.name, null); 

                   if(null==stNm) { 

                       throw new Error( 

                               "smallthing has no name:\n" + 

pid.asXML() ); 

                   } 

                   // the Element containing the 

                   // controllers for this smallthing 

                   Element controllersEl=(Element) 

Xml.selectSingleNode( 

                           s.controllers + s.LSB + "@" + s.name + "=" 

+ 

                           s.QQUOTE + stNm + s.QQUOTE + s.RSB, 

                           strategys ); 

                   if(null==controllersEl) { 

                       throw new Error( 

                               "Controllee " + stNm + " has no 

controllers" ); 

                   } 

                   final String 

vehicleClassNm="orion.simian.vehicle.Vehicle"; 

                   List controllerEls=controllersEl.elements(); 

                   Controller prevController=null; 
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                   try { 

                       final Class 

liClass=Class.forName("java.util.List"); 

                       final Class elClass=Class.forName( 

                               "org.dom4j.Element" ); 

                       //  constructor signature 

                       final Class [] conSig= { 

                           elClass, elClass, liClass, 

                           elClass, elClass, 

                           liClass, liClass }; 

        

                       for(ListIterator 

cit=controllerEls.listIterator(); 

                                                           

cit.hasNext();  ) { 

                           Element controllerEl=(Element)cit.next(); 

                           String classNm= 

                                   

controllerEl.attributeValue("class", null); 

                           if(s.vehicle.equals(classNm)) 

                               { classNm=vehicleClassNm; } 

                           if(null==classNm) { 

                               

if(s.vehicle.equals(controllerEl.getName())) { 

                                   classNm=vehicleClassNm; 

                               } else { 

                                   throw new 

                                         Error("controller has no 

class\n:" + 
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controllerEl.asXML() ); 

                               } 

                           } 

        

                           Class 

controllerClass=Class.forName(classNm); 

        

                           Object [] parms={ 

                               pid, pmodel, globals, 

                               controllerEl, policy, 

                               teamPids, teamPmodels 

                           } ; 

    

                           java.lang.reflect.Constructor constructor= 

                                   

controllerClass.getConstructor(conSig); 

                           // the new controller 

                           Object 

controllerO=constructor.newInstance(parms); 

                           if(! (controllerO instanceof Controller)) { 

                               throw new Error("class " + classNm + 

                                               " is not a Controller" 

); 

                           } 

                           if(null != prevController) { 

                               if(!(controllerO instanceof Controllee) 

) { 
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                                   throw new Error("class " + classNm 

+ 

                                                   " is not a 

Controllee" ); 

                               } 

                               ((Controllee)controllerO). 

                                               

setController(prevController); 

                           } 

                           prevController=(Controller)controllerO; 

                       } // cit 

                       

((Controllee)smallThing).setController(prevController); 

                   } catch(Exception e) { 

                       throw new Error(e); 

                   } 

               } 

               allSmallThings.add(smallThing); 

           } // stit 

       } // tit 

 

       Environment env=new Environment(); 

       env.fred=allSmallThings; 

 

       Vector3D bound1=null; 

       Vector3D bound2=null; 

       try { 

           List boundEls=Xml.selectNodes("aoi/bound", policys); 
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           ListIterator it=boundEls.listIterator(); 

           bound1=new Vector3D((Element)it.next()); 

           bound2=new Vector3D((Element)it.next()); 

       } catch(Exception e) { 

           throw new Error(e); 

       } 

 

  // Process Loislane 

  //LoisLane rep = null; 

  Launch_Loislane rep = null; 

  Element loislaneEl = (Element) 

Xml.selectSingleNode("loislane", globals); 

  if (loislaneEl != null) { 

   //rep = new LoisLane(loislaneEl); 

   rep = new Launch_Loislane(loislaneEl); 

  } else { 

   throw new Error("Error: LoisLane Element not found."); 

  } 

       env.reporter=rep; 

       env.reporter.report(new VisualizerMsg("AOI " + 

           bound1.x + s.blank + bound1.y + s.blank + bound1.z + 

s.blank + 

           bound2.x + s.blank + bound2.y + s.blank + bound2.z )); 

 

       for(int j=0; j< env.fred.size(); ++j) { 

           if(env.fred.get(j) instanceof SittingDuck) { 

               SittingDuck sd=(SittingDuck)env.fred.get(j); 
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               env.reporter.report(new VisualizerMsg("SITTINGDUCK " + 

j)); 

               env.reporter.report(new VisualizerMsg("POSITION " +  

                       sd.position.x + s.blank + 

                       sd.position.y + s.blank + 

                       sd.position.z )); 

           } 

           if(env.fred.get(j) instanceof WantsReporter) { 

               ((WantsReporter)env.fred.get(j)).setReporter(rep); 

           } 

       } // j 

 

       Element simulatorEl=(Element)Xml.selectSingleNode("simulator", 

globals); 

       double timeStep=Xml.getDoubleAttribute(simulatorEl, 

s.timestep); 

       double timeLimit=Xml.getDoubleAttribute(simulatorEl, 

"timelimit"); 

       env.loop(timeLimit, timeStep); 

       try { 

           rep.shutdown(); 

       } catch(Throwable t) { 

           throw new Error(t); 

       } 

        

 } 

 }  

 


