

SIMIAN PLUS: A MISSION SIMULATION ENHANCEMENT TOOLKIT

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Divya Govardhana Dayala

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

August 2013

Fargo, North Dakota

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NDSU Libraries Institutional Repository

https://core.ac.uk/display/19541255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

North Dakota State University

Graduate School

Title
 SIMIAN PLUS – A MISSION SIMULATION ENHANCEMENT TOOLKIT

 By

Divya Dayala

 The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted standards

for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Kendall E. Nygard

 Chair

Gursimran Walia

Samee Khan

 Approved:

 1-27-2014 Brian M. Slator

 Date Department Chair

iii

ABSTRACT

 Unmanned Air Vehicles (UAVs) have the ability to execute missions that include

detecting and destroying the targets. The Simian simulator developed at NDSU performs

complex motion calculations for moment - moment flight and delivers effective inter-agent

communication for all the UAV’s. Scenarios that focus on the strategy plan and perform

calculations have been, developed to carry out the mission. The goal of this paper is to address

the tasks of starting servers, manually writing the required xml files to describe scenario to the

simulator and launch simulation in the existing Simian system. Simian Plus is, designed and

implemented to ease the process of building and launching simulation. It is, aligned to the key

principle “Open- agent architecture” of Simian.

iv

ACKNOWLEDGEMENTS

I take this opportunity to express my gratitude to Dr. Kendall Nygard for his

immense support. Appreciate his time and help for setting me in the right direction to

achieve my goals. My sincere thanks to, Dr. Gursimran Walia and Dr. Samee Khan for

serving on the committee. I would also like to thank my fellow researchers, whose work

has helped me gain knowledge and build the enhanced system.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

1. INTRODUCTION ... 1

1.1. Objectives ... 3

2. BACKGROUND ON EXISTING ARCHITECTURE ... 4

2.1. Simulator Layout .. 4

2.2. Launching Simulation .. 6

3. MOTIVATION AND PROBLEM DESCRIPTION ... 10

4. PRINCIPLES OF DESIGN ... 13

4.1. Development Platform ... 13

4.2. Visibility/Interface ... 14

4.3. Affordance .. 15

5. LAYOUT - SIMULATION GRAPHICAL INTERFACE .. 17

5.1. Mechanism to Create New Scenario .. 17

5.2. Mechanism to Launch New Scenario... 22

5.3. Mechanism to Launch Saved Scenario .. 22

5.4. Implementation... 23

5.5. Validation ... 34

vi

5.6. Output – Scenario ... 35

6. CONCLUSION ... 43

7. FUTURE WORK .. 44

7.1. Search Strategy ... 44

7.2. Enhance Validation .. 44

8. REFERENCES .. 45

APPENDIX A. LAUNCH SIMULATION SERVLET PROGRAM ... 46

APPENDIX B. LAUNCH_VIS2D SERVER PROGRAM .. 52

APPENDIX C. LAUNCH_DXML PROCESSOR PROGRAM .. 66

vii

LIST OF FIGURES

Figure Page

 2.1. Layers of Simian Simulator ... 5

 2.2. Arguments Tab View ... 7

 2.3. Console View after Opening the Port .. 8

 2.4. ‘Run Configuration’ to Start the Client ... 8

 2.5. Passing the Location of Scenario-Description Files .. 9

 5.1. Create Base Model ... 17

 5.2. Configure the Flying Agent’s Base Model Hardware ... 18

 5.3. Enter Number of UAVs ... 19

 5.4. Configure and Add Flying agents .. 20

 5.5. Add Boundaries ... 21

 5.6. Add Target Position ... 21

 5.7. Simulator Specifications .. 22

 5.8. Target Locations .. 25

 5.9. Base Model and Hardware for UAVs .. 26

 5.10. Team of Flying Agents and Targets... 29

 5.11. Dimensions of the Field ... 31

 5.12. Pass Port to Client (Loislane) & Simulation Details ... 33

 5.13. Invalid Fields Highlighted ... 35

 5.14. Output – After Configuring the (UAV) Model .. 37

 5.15. Output – Team of UAVs .. 38

 5.16. Output – After Assigning the UAVs Position and Configuring Controllers 38

viii

 5.17. Output – After Creating a Team of Targets ... 39

 5.18. Output – After Assigning Each Target’s Position ... 39

 5.19. Output – After Configuring the Field’s Dimensions ... 39

 5.20. Output – After Configuring the Simulator ... 40

 5.21. Output – After Running the ‘Visualizer’ ... 40

 5.22. Output – After Successfully Opening the Port .. 41

 5.23. Output – After Creating the Configuration File ... 41

 5.24. Output – After Launching the Simulation ... 42

 5.25. Output – After Destroying both the Targets .. 42

1

1. INTRODUCTION

 Advancements in technology have replaced the need for manned aircrafts in search/destroy,

reconnaissance and surveillance missions. Unmanned Air Vehicles (UAVs) have the ability to

execute missions that include detecting and destroying the targets. This unique feature of

technology has gained a lot of attention due to the risk factor and complexities involved in

today’s world of warfare. UAV are equipped with hardware like sensors, receivers and weapons

that enable it to search a pre-defined zone and respond as commanded. Based on the strategy of

the mission, they destroy the detected target. A mission involves either a single UAV or a team

of UAV that are, focused towards eliminating the need of human intervention. Configuring, each

UAV with the hardware, planning strategy, helps in efficiently and effectively carrying out the

mission in complex challenging battlefield scenarios.

 NDSU has developed a Simian simulator that calculates the step-by-step flight motion of

each UAV [1]. It also provides the complex calculations for effective inter-agent communication

among the team of UAVs. The simulator comprises of a ‘Visualizer’ (Launch_ Vis2d) and

Lioslane that plays the role of a client. The server and the client communicate with each other

using the sockets. The Lioslane (client) sends the stream of calculated information to the server

that gives a visual of the ongoing mission. The Environment class is the core element that

performs the repeated calculations for laying out the flight path positions of each UAV involved

in the mission. This helps in easing the process of performing the complex calculations for

determining the UAV motion control and the inter agent communication in the area of interest

and enables us to build on top of the Simian simulator for demonstrating various battle scenarios.

Each of the battle scenario situations can be simulated with specific number of targets and the

2

UAVs. The hardware for the UAVs includes sensors, receivers, transmitters and weapons that

enable the single based communication among the team of UAV. This paper focuses on paving a

way to easily add UAVs and targets to a battle scenario assemble hardware for each UAV, assign

controllers, specify the area of interest and the place the targets in the field.

 The existing simian simulator has a good implementation of the strategy to execute a

mission. However, the initial phases of the simulation like the scenario description, starting the

server until invoking the client to start the calculation of the flight path is a tedious job. Attention

needs to be given, to the detailed problem description such as specifying the whereabouts of the

targets, configuration of hardware which play a key role in inter-agent communication,

specification of each air vehicle along with controllers that aid in not just laying out the strategy

plan but also in executing the mission, simulation specifications that describe the port number

the client should be using to interact with the server to visualize the mission, time-step that

indicates the time gap, between each command that is passed for the server , simulation time

indicates the span of time the simulation should be carried on. With the given description of

some of the elements that are key to creating a scenario and launching it, equal prominence

needs to be given to the format and metrics of the input files. Thus, importance needs to be given

to the job of creating these input files such that, the simian can interpret and perform the required

calculations to launch and visualize the mission.

The goal of this paper is to address these tedious tasks of starting servers, manually

writing the each of four input files and launch the simulation. Simian Plus, is designed and

implemented to ease of the process of building and launching simulation, strictly aligning to the

3

key principle of “Open- agent architecture” of simian. Below are objectives that Simian Plus

tackles.

1.1. Objectives

 Provide a simple method to start the server that visualizes the simulation.

 Automate the process of passing the location of the four input files and starting

Loislane (client)

 Mechanism to create, describe and configure each of the agents involved in the

mission.

 Mechanism to launch the newly created and assembled battle-scenario

 Mechanism to the save configuration file and provide an easier method to launch

them.

This paper illustrates the significance of the core elements required for creating a

scenario, discusses the design of the enhanced system and explains how it is been implemented

to achieve the above-mentioned objectives. Chapter 2 and Chapter 3 illustrate the current

procedure for operating simian, start server and pass the manually created four input files.

Chapter 4 begins with the layout of the user-friendly Interface, which replaces the existing

Simian. It shows the systematic procedure to configure the available hardware and the flying

agents. Chapter 5 encloses the significance of each core element that make up the entire battle

scenario’s ‘problem-description’ along with detailed implementation of all these features in

Simian Plus, to achieve each of the previously mentioned objectives.

4

2. BACKGROUND ON EXISTING ARCHITECTURE

 This chapter illustrates the architecture of simian and the outline of the components that

carry out mission. The plan and a brief layout of the components to achieve inter-agent

communication among the flying agents is discussed. It then describes how each of these

elements, is specified to simian using the xml files. A systematic procedure for starting the main

server and triggering the processor to perform the calculations in the existing simian system is

described with visual figures.

2.1. Simulator Layout

The simulator developed at NDSU is the combined effort of the research team led by

Dr.Kendall Nygard [1]. It is a means of simulate the battle scenario and visualize the strategy

plan executed by the UAVs for searching and destroying targets.

 Simian uses the Open Agent Architecture and written in Java. The major components are

the agents, environment and the mechanisms for communication. Agents are the entities that

have the capability to navigate, change direction and transmit signals. These agents register with

the ‘environment’, which handles all the inter-agent communication [6]. This helps in the quick

message passing among the Unmanned Air Vehicles. Invoking a method of the higher-level

object always does message passing. However, this object does not have a reference to a lower

level object. Sensors, Transmitters and Receivers are the devices that enable communication by

transmitting and receiving the signal objects. Another important element is the ‘Controller’,

which performs the calculations for moment-by-moment flight path.

Simian is a java-standalone application. It uses Java-Sockets for communication between

the client (Lioslane) and the main server (Vis2D). XML files are used to describe the scenario

5

and hold the specifications for the targets, UAV and the Area of interest. “Situation”, “Policy”,

“Strategy” and “Global” are the four xml files that server as input. They hold the hardware

configurations of UAV, Controllers, locations of targets and the area of interest dimensions.

Simian supports the three dimensions making closer to the realistic scenarios in the battlefield.

Vector3D is the class that supports the three-dimensional data. Below figure illustrates the layout

of the layers that aid in message passing among the flying agents.

Figure 2.1: Layers of Simian Simulator

6

 Environment: The environment layer registers all the details of each agent in the system.

It releases the information of these things/agents as needed for facilitating

communication between UAV’s. Messages are passed to the physical objects/agents and

extracts messages as well. This layer handles issues such as crashing and radio messages

[6].

 Physical Layer/Flying Agents: The flying agents represent a physical object, UAV.

Situation file specifies the flying agents and the targets. It contains the hardware devices

for communication and the weapons needed for destroying the identified targets in the

field. Elements required for UAV motion control are included. “msgsUp” and

“msgsDown” are called to pass the data to the ‘environment’ object, as required during

the mission [2].

 Autopilot/Strategist: Vehicle is a controller used for specifying the strategy. It can be

termed as ‘Vehicle Control’ or ‘Autopilot’. It is a standard controller used by Simian, to

translate the high-level commands into smaller pieces of details that are interpretable by

the ‘physical objects’. This helps in writing code that aligns to the high-level goals of

Simian [8].

2.2. Launching Simulation

Running Simian needs a Java virtual machine; jar files ‘dom4jh.jar’ & ‘jaxen.jar’ for

compiling and handling the input XML files. Compile the java code in the package

‘Orion/simian [3]. XML files ‘situation’, ‘strategy’, ‘policy’ and ‘global’ are the input for

launching the configured battle scenario. There are two options for launching the scenario.

Eclipse is one of the options that ease the process of, compiling and launching the simulation.

7

Below are the detailed steps involved to setup and instantiate the simian for starting the

simulation process.

Step 1: Set-up Project

 Import the project into eclipse. This helps in distinguishing different packages. The

alternate way of compiling/running the application is using the command prompt. “Quick

start guide to the SimianPlus/simulator” can be referred for the sequence of steps

needed.[1]

Step 2: Start Server

 To start the server, right click on the Vis2D.java and choose “Run Configurations”.

 Create a new java application configuration and select ‘Vis2D’ as the main class. Below

is the screenshot of how the eclipse’s configuration window looks.

 Click on the “Arguments” tab, in the “Program Arguments” to pass the port number, the

server should run on. Below figure is the screenshot that depicts the process for passing

the port number to the server.

Figure 2.2: Arguments Tab View

8

 If the port number entered is available, server opens the port. The message displayed on

console, for successfully opening the port can be seen in the below figure.

Figure 2.3: Console View after Opening the Port

Step 3: Running the client

a) Pass the four-xml files as input to the simian’s xml processor. For this, right click on the

DXML.java and once again choose “Run Configurations”.

b) Next create a new java application configuration and then select ‘DXML’ as the main

class. Below is the visual of the ‘run configuration’ window for instantiating the xml

processor.

Figure 2.4: ‘Run Configuration’ to Start the Client

9

c) Click on Arguments tab, and then add the location of scenario specific, xml input files.

The figure given below shows the arguments tab, where the location of each file is

passed.

Figure 2.5: Passing the Location of Scenario-Description Files

By following the above steps and initiating the simulator, ‘DXml.java’ starts analyzing

and sorts each of the user specified XML files (policy.xml, strategy.xml, situation.xml and

global.xml) into a linked list. It then identifies the available models, teams, list of agents and the

other entire scenario related details. This in-turn starts the socket-client ‘Loislane.java’. It

communicates with the server using the specified port number for passing the information related

to the simulation and the commands to the flying agents. The server listens and uses this

information to visualize the mission.

10

3. MOTIVATION AND PROBLEM DESCRIPTION

The Simian simulator developed at NDSU performs complex motion calculations for

moment - moment flight and delivers effective inter-agent communication for all the UAV’s.

Many scenarios that focus on the strategy plan and perform calculations to carry out the mission

are, implemented. This chapter discusses the framework design and refreshes the repetitive

processes that are involved in starting and running the existing Simian system, until the

visualization of the mission as noted in the previous chapter.

One of the design goals of Simian is to have the scenario/problem description separate

from the strategy that leads to the concept of Open Agent Architecture. Hence, there are four xml

files used for describing the scenario that involves targets, perimeters of the field, Unmanned Air

Vehicles and the hardware configurations for each of those agents [6]. Situation, Policy,

Strategy and Global are the xml input files passed manually as input arguments to DXML class.

Situation file holds the definition of two models, one for flying object and the other for target. It

holds the parameters of speed, forward, backward, turn, up & down acceleration. The flying

object has the elements like receivers, transmitters, weapons and sensors. To specify the no of

UAVs for a configured model, same file is used. Policy file holds the three-dimensional

specifications for the area of interest. Details related to the visualization of the mission such as

time-step, time limit, port number is stored in Global file. Listed below is summary of the

tedious tasks involved in running simian.

 Creating the configuration to start the server and run it as java application.

 Repetitive process of creating another configuration setting, to launch the client as

java application

11

 Handwritten ‘Situation’ file, to describe scenario.

 No flexible way for building a new model and configuring each agent involved in the

mission.

 Constructing the xml file that holds the required configurations, formatted so that

simian can interpret the data.

 Pass the location of each input file, manually.

The goal of this paper is to address the above-mentioned repetitive and tedious jobs involved in,

describing a scenario and assembling the required hardware for each of the unmanned air

vehicles. For this, a user friendly graphical interface ‘Simian Plus’, has been developed that

offers a flexible way for configuring the battle scenarios, ability to configure each of the

hardware piece that make up the flying agents which execute the mission. The main objectives of

this paper are, listed below.

1. Means to create and describe a scenario.

 Flexible way to construct a base model for an unmanned air vehicle

 Ability to configure each of the hardware assembled in the base model.

2. Means to save and launch the newly created scenario-configuration file.

 Void the process of creating ‘run configuration’s to launch Simian as java

application, for both server and client (DXML).

 Automate the process of creating and saving the scenario-description file in the

correct format without hindering the existing simian way of interpreting the four-

xml files.

3. Means to pass the simulation specifications such as time-step, simulation time limit

etc. with ease.

12

4. Means to launch the previously configured files and trigger the simulation process

with ease.

 Easier method to launch the previously created scenarios, without having to

neither recreate the scenarios nor pass the location of the input files.

13

4. PRINCIPLES OF DESIGN

In the past, applications and software was, designed with little regard for the user, so the

user had to figure out a way to adapt to the system for starting/running the program. With this as

the one of the key goals, Simian Plus is, designed to eliminate this approach and instead aid the

user in using the system with ease. User Interface facilitates interactions between a system and

people. In our case, an application and the researcher working towards formulating a

configuration that can simulate the mission strategy. This chapter discusses the user interface

design, concepts that aid in building an effective and functional application.

The interaction designer needs to take into account as to who the target of the GUI/web

application is and who will be using it. Based on this, UI designer needs to place emphasis on

what the goal/purpose is and how it can be, achieved. Key inter actions have to be identified and

wire-framed or create interfaces. There is a possibility for numerous ideas running through, but

the application design should align to certain key items to stop it from been overloaded with

features. Below are some of the design principles that aid in creating a functional, clutter free

User interface.

Development, visibility and affordance are the three factors that are, vital factors that aid

in creating an interface. They help in keeping the interface not just clutter free but also

functional.

4.1. Development Platform

Platform constraints such as the technology used in implementing the UI, backend

technology used to integrate with the front end, ease of developing features and integrating with

the existing framework, libraries and tool kits are the foundations of an application. Action-

14

script, j-query and JavaScript are some of the technologies that can be used to implement the

user interface.

In Simian Plus, JavaScript is used as the front-end technology, as it has proved to be a

simple yet functionally effective scripting language. Java is used as the backend technology that

performs the required calculations to execute the mission. To bridge the front end and back end,

‘Servlets’ have been used. Java servlets are server-side java program modules that process the

client-server requests. In other words, it acts as an intermediary between the client/front-end and

the back-end. Since a servlet is integrated with the Java language, it also possesses all the Java

features such as high portability, platform independence, security and Java database connectivity

4.2. Visibility/Interface

Clear conceptual model, human abilities, product identity are some of the factors that

express, a strong visual identity and are thus termed as the Visibility factors. A well-designed

interface is one that allows a user to recognize the context of available controls at a glance. This

way/mode of interaction refers to all graphical techniques that are, used to convey the context of

the application. Below are the key elements that help in laying out the initial design/architecture

of an application’s user interface.

 Consistency: The same conventions and rules should be, applied to all the elements

of the graphical interface. Font, abbreviations, terms, data formats, units of

measurement are the elements that play a key role in achieving consistency. The user

establishes a connection with the application as they use the graphical interface. For

example using the same set of colors and font for the entry/input objects, different

font/style for the titles helps the user to use the application with ease.

15

 Screen Layout: Organization and location of displayed data elements have to be

standardized. This allows the user to develop spatial expectations. The screen has to

be, divided into three basic segments, with each reserved for specific functions. Place

the objects in one section of the UI and the actions such as “Save”, “Cancel” in a

different section of the interface. This helps the user in distinguishing the input/entry

areas from the ‘next action’ area. The topmost segment holds the title that describes

what the screen/page is, about. Usage of real world metaphors is another factor that

helps the user.

 Relationship: Related data has to be, grouped or ‘chunked’ together. Placing related

items and eliminating unrelated items helps in achieving visual organization. By

grouping elements, users can gain better understanding of the application.

 Navigation: Items in a list, should be arranged in some recognizable and useful

order, such as chronological, alphabetical, or degree of importance. When multiple

data elements appear on a single line, e.g. line number, authority heading(s) and

number of related records-the data elements should be broken into separate blocks or

tabular display and not run together. User interface navigation should always start

with strong entry points. An entry point can be a simple welcome page with a

company/university logo and a button that says, “Click here to Begin” or “Start” .The

options should be what the user would anticipate from the system.

4.3. Affordance

Developing better visual (color or black-and-white) communication is an important part

of making computer graphics that communicate effectively and efficiently through graphic

design. Affordance is the quality of an object that provides a user with the visual cue to perform

16

an action. The user should naturally perceive how to interact with the application objects and

quickly determine:

 What can be pressed

 What areas need input

 What areas provide feedback

 Simulation of a scenario includes a single java thread. The existing Simain uses the four

user specified xml files to initialize this thread. Simian-Plus voids the manual process of creating

four files and passing the file locations. On clicking “Run Simulation” button, related java thread

is, initialized.

Eclipse IDE (Integrated Development Environment) is a useful tool that helps in writing

and executing the code. It comprises of basic workspace and extensible plug-in feature making

the customization of an environment easy. The plug-in architecture supports creating

applications using various programming languages such as C, Python etc. including networking

applications such as database management and telnet. It also supports the version control

systems such as CVS, Teamprise explorer and GIT.

17

5. LAYOUT - SIMULATION GRAPHICAL INTERFACE

To demonstrate the user-friendly features that have been designed and implemented in

Simian Plus, this chapter illustrates the steps that enable a simpler and easier way for the

‘scenario-description’ process in Simian. As an example, Simian Plus is used to, create and

configure a scenario that comprises of two UAVs to search the targets. The area of interest is a

horizontal field and contains two static targets. One controller is, assembled for each of the air

vehicle. The flying agents use ‘Lawn mow’ strategy to detect and destroy targets. User Manual

can be, referred to for details on how to set up the project.

5.1. Mechanism to Create New Scenario

This section, talks about the steps for creating a new scenario using Simian Plus. In

current Simian, the only way to specify the hardware for a base model of a flying agent was, by

manually creating xml tags, elements and attributes. Each hardware has its own element name,

confining to which the user would have to pay keen attention in creating the first input xml file,

“Situation.xml”.

5.1.1. Construct base model

 Simian Plus has implemented a feature where the base model is, constructed with ease.

Below figure, shows the available hardware that can be equipped to a physical flying agent. A

unique name and the count of hardware can be, specified to build a basic model.

Figure 5.1: Create Base Model

18

The next figure shows the screen displayed, to configure hardware that a flying agent is

equipped. This feature in Simian Plus not only replaces the monotonous way of manually writing

the xml but also provides a flexible way to the user. It helps in trying and testing out the

capabilities of the hardware and aids in formulating new strategies UAV.

Figure 5.2: Configure the Flying Agent’s Base Model Hardware

19

5.1.2. Create team and assign UAVs

 With the above listed hardware and its detailed specifications, the probability of human

error just increases. In Simian, the teams and the UAVs are, described using the ‘Situation.xml’

file. Simian-Plus has the ability to not just create the base model, but also create teams and

designate a number of UAVs to it. This reduces the user effort and instead enables the user to

experiment with different settings to formulate a successful mission strategy. The next figure

depicts the interface in Simian Plus, where the user can create and name a team.

Figure 5.3: Enter Number of UAVs

Simian Plus offers an easier method to replace the manual way of creating each of the

UAV elements in xml. After selecting the number of UAVs, the next screen displayed, can be

seen in the below figure. This page can be, used to specify the count of flying agents. Parameters

such as the position it should start from and velocity can be, entered using this screen. The below

screen gives the view on how the controller, that determines the manner a UAV should turn with,

to make a second sweep search can be configured.

20

Figure 5.4: Configure and Add Flying agents

5.1.3. Add boundaries

Each team has a limited area, within which the physical agents can fly. The dimensions

of this field is based on x, y and z co-ordinate axis. To describe the specifications of ‘area of

interest’ to the simian simulator, ‘policy.xml’ file is used. This file is manually, written using the

‘<policy>’ and ‘<boundaries> tag elements. This is now, replaced with the page/screen in figure

5.5. Simian Plus provides an easier method to state the boundary specifications voiding out one

of the many tedious jobs of scenario-description.

21

Figure 5.5: Add Boundaries

5.1.4. Add targets

In Simian, a target’s structure is, based on the model of type “sitting duck”. It has a

structure similar to the flying agent’s base model except that there is no hardware. The motion

parameters, referred as ‘limits’ are all set to zero, as the target is immobile i.e. it is a stationary

object in the field. In existing simian this is, described to the simulation processor using the

‘situation.xml’ file. Rewriting the xml structure for target using the same, structure as model can

be, observed here. Simian Plus, replaces this by displaying a screen that has user-friendly

interface, where the position of the target can be specified eliminating the input file format. User

can add a custom name for the ‘suiting duck’ base model and the team of the targets that belong

to it. Figure 5.6 is the screen that is, displayed in Simian Plus to add target’s location in a field.

Figure 5.6: Add Target Position

22

5.2. Mechanism to Launch New Scenario

 After adding the UAVs and targets to the battle scenario, the next step would be

configuring the simulator specifications, for the client (Loislane) to communicate the

calculations to the server. This section illustrates the feature to pass the port number and other

such parameters. Processor calculations provide the systematic flight of the UAV to search and

destroy the target. Currently this is, described using the ‘global.xml’ file. Once again formatting

of elements and attributes that can be, interpreted by Simian are involved. Simian Plus voids this

process and instead displays the screen in figure 5.7, where simulator details can be, entered.

Figure 5.7: Simulator Specifications

Once the simulator is, assembled, clicking on “Create Configuration” creates the input

file that can be, interpreted by Simian. The xml processor is, triggered at this point. It processes

the input file and groups all the details like models, assigned teams based on each model, list of

UAVs, list of targets and the controllers for each of the available UAVs.

5.3. Mechanism to Launch Saved Scenario

This section refers to the feature, where any of the saved configurations can be launched

using the improvised system. Main page of the Simian Plus’s interface, displays two options

23

“Launch New” and “Launch Saved”. On clicking the “Launch Saved Configuration”, it displays

a screen with a dropdown, loaded with the configurations that were, saved earlier. Certain

frequently used scenario configurations can be, saved and re-used on demand. This saves time,

effort and redundancy of tasks.

Once the file is loaded, clicking “Run Simulation” will trigger the xml processor to

interpret the scenario configurations, which in turn invokes the client. The client (Loislane) then

communicates, with the server to visualize the mission.

5.4. Implementation

This section describes the implementation of the key features illustrated in the previous

section. As we have seen the various features that Simian Plus provides, it eases the entire

process of describing a scenario and configuring the agents involved. It plays a significant role in

keeping the user’s focus on formulating newer strategies instead of the repetitive problem-

description process. To implement the design goal of Simian Plus, JSP is used to the render the

user-friendly interface. Java, Servlets and Tomcat are, used as the backend technologies to create

the configuration file that can be, saved and launched for simulation. This interface has been,

developed using eclipse and a configured Tomcat server, to compile and access it, as a web-

application. All the files related to the Interface are placed in /WebContent folder of the simian

project.

The existing simian framework uses four different input files to describe the agents

involved in the simulation and specifications surrounding the strategy and area of interest. In the

new setup this is, replaced with just one file “situation.xml”. The layout of the configuration

details is, broadly divided into blocks of elements in the file. Below are the elements that serve

as the building blocks for creating a new scenario-description file.

24

 Basic model

 Team – associated team for each model.

 Configurations/Position of each Unmanned Air Vehicle and Targets in each team.

 Boundaries of each team

5.4.1. Model

Model is a template that holds the constraints related to the motion. In

Simian, objects can be of two types, one UAV and the other, a target. Thus, model

is a basic structure for every agent that is involved in the simulation of a scenario.

It holds an attribute called “class” that distinguishes the type of object defined. It

contains an element called <limits> that holds the parameters like up acceleration,

speed and fuel capacity. Each UAV is , based on a model.

Files, that are used to create a basic model for a flying agent are ‘Model’,

Model_AddHardware’,‘Model_ConfigHardware’, XML_AddHardware, XML_ConfigHardware.

The limits would be upward acceleration, upward speed, downward acceleration, downward

speed, turn acceleration, forward acceleration, backward acceleration, speed and the fuel

capacity for an agent. If the agent is a physical/flying agent, then quantity of the hardware can

be, added. All the agents that are, based on the configured model will inherit the added

equipment.

 Sensor range indicates the distance; a UAV can spot the target from. Here, the used

conical sensor class can be found in ‘orion.simian.things.sensors’. Half Angle denotes

an angle at which a sensor can spot a target at a given position.

25

 Weapon corresponds to a missile carried by the UAV. Range speed and the blast

radius of the missile are, specified. The simple missile class can be found in

‘orion.simian.things’

 Transmitter is the hardware that aids in transmitting a message to the environment

that handles all communication.

 The commands issues are, received by the UAV with the help of sensors. The range

indicates the area/distance the UAV can receive the messages.

 In Simian, ‘Situation.xml’ is, used for describing unmanned air vehicle and a targets

model. Below is the model–xml element structure, where the motion parameters and the

hardware configurations cluster can be, seen. The screen displayed in Simian Plus, that replaces

the manual creation of this file and automate xml creation can be, seen in figure 5.8. & figure

5.9. Here, the target positions screen, not only describes the whereabouts of its location but also

creates the model for ‘sitting duck’/targets using backend with one simple interface.

Screen displayed to automate the process of creating the xml:

Figure 5.8: Target Locations

26

Figure 5.9: Base Model and Hardware for UAVs

XML element in configuration file:

<model name='UAVModel1' class='uav' crashradius='10'>

 <limits up_ac='1' up_sp='5' down_ac='3' down_sp='10' turn_ac='40.0' fwrd_ac='4'

back_ac='5' speed='50' fuelCapacity='800' />

 <transmitter class='rangedtransmitter' range='4000'/>

 <receiver class='rangedreceiver' />

 <sensor class='conicalsensor' range='200' halfangle='75'>0 0 -1 </sensor>

 <weapon class='simplemissile' range='300' speed='500' blastradius='50' />

 <weapon class='simplemissile' range='300' speed='500' blastradius='50' />

</model>

27

<model name='targetModel' class='sittingduck' crashradius='5'>

<limits up_ac='0' up_sp='0' down_ac='0' down_sp='0' turn_ac='0.0' fwrd_ac='0' back_ac='0'

speed='00' fuelCapacity='300' />

</model>

<team name='targetsTeam1'>

 <smallthing model='targetModel'>

 <position>-950 150 0</position>

 <velocity>0 0 0</velocity>

 </smallthing>

 <smallthing model='targetModel'>

 <position>-750 750 0</position>

 <velocity>0 0 0</velocity>

 </smallthing>

</team>

5.4.2. Team

 Every model has a team. Every team has a set of unmanned air vehicles. Each UAV is

based on a model and has a controller. The agents are termed as 'small things' in the simian

world. For a UAV, position indicates the starting position in the field and velocity is the speed at

which the UAV should navigate in the mission. Controller is the element that determines the path

increment for a UAV. To calculate the path increment, ‘Start’, ‘Second’ and ‘End’ are the

parameters used. In other words, it determines the degree a UAV should turn before making the

second sweep search in the field.

 'Model_ConfigHardware' is the file that handles the number of UAVs that are, added to

the mission which are, based on the newly configured model. Teams are, created for both, targets

and flying agents. This is, described to the current simian processor using “Situation.xml’ file.

28

Information of the team formed and the assigned UAVs to it mentioned, by the tedious job of

manually writing the given below xml element. Simian Plus provides a feature that eases this

process and voids the human error in writing the file. Figure 5.10 denotes the screen displayed in

the enhanced system. It is, used for forming the teams and providing details related to each of the

agent/item with its location.

 'UAV_AddAndConfig' corresponds to configure each of the UAVs starting with

position, velocity and the controller. All the mentioned configurations are, added to

the file that has been, created in the initial stages of "Launch New" step. The below

example shows that two UAV are added built on 'UAVModel1' model.

 The velocity would be zero for the targets, as they are static in the field.

XML element created in configuration file:

<team name='DamnYankees'>

 <smallthing model='targetModel'>

 <position>-950 150 0</position>

 <velocity>0 0 0</velocity>

 </smallthing>

 <smallthing model='targetModel'>

 <position>-750 750 0</position>

 <velocity>0 0 0</velocity>

 </smallthing>

</team>

<team name='Twins'>

 <smallthing model='UAVModel1' name='Rod'>

 <position>-750 750 100</position>

29

 <velocity>0 27 0</velocity>

 </smallthing>

 <smallthing model='UAVModel1' name='Harmon'>

 <position>-800 750 100</position>

 <velocity>0 27 0</velocity>

 </smallthing>

</team>

Screen displayed to automate the process of creating the xml:

Figure 5.10: Team of Flying Agents and Targets

30

5.4.3. Boundaries

 As mentioned in the earlier chapters, to describe the ‘area of interest’ to the

simian simulator, ‘policy.xml’ file is used. This file is manually, written using the

‘<policy>’ and ‘<boundaries> tag elements. The "aoi" is the tag, used for

representing the boundaries. It stands for 'Area of Interest'.

Every team of flying objects has a corresponding policy. The unmanned vehicles should

fly within the specified limits across the coordinate axis.

UAV_AddAndConfig' and 'XML_UAV' are the files used to display the view to prompt

the user to enter the start and the end, points of the field. Figure 5.11 shows the screen that is,

displayed where the boundaries for the team can be, stated with ease. Below is the snippet of

code, that formats the values entered and forms the xml element in the situation file.

 str="bound1_1_"+(t+1);

 b1=request.getParameter(str);

 str="bound1_2_"+(t+1);

 b2=request.getParameter(str);

 str="bound1_3_"+(t+1);

 b3=request.getParameter(str);

 //second boundary

 str="bound2_1_"+(t+1);

 b4=request.getParameter(str);

 str="bound2_2_"+(t+1);

 b5=request.getParameter(str);

 str="bound2_3_"+(t+1);

 b6=request.getParameter(str);

31

 //tags

 tag="<policy team='"+tname+"' >";filedata+="\n"+tag;

 tag="<aoi>";filedata+="\n"+tag;

 tag="<bound>"+b1+""+b2+""+b3+"</bound>";filedata+="\n"+tag

 tag="<bound>"+b3+""+b4+" +b5+"</bound>";filedata+="\n"+tag;

 tag="</aoi>";filedata+="\n"+tag;

 tag="</policy>";filedata+="\n"+tag;

XML element created in configuration file:

 <policy team='UAVTeam1'>

 <aoi>

 <bound>-1000.0 -1000.0 -100.0</bound>

 <bound>1000.0 1000.0 200</bound>

 </aoi>

 </policy>

Screen displayed to automate the process of creating the xml:

Figure 5.11: Dimensions of the Field

5.4.4. Simulation details

 The field “port” corresponds to the port number to be , used by the client to

communicate with the class that visualizes the mission. In Simian, Vis2d is the

server that listens to the message commands from the Loislane (client) and

32

simulates the mission. 'Port', 'Hobbes', 'Filename' and 'feedback' are some of the

parameters. The ‘Loislane’ class holds. The time limit denotes span of time the

simulation should run for. 'Host' is an optional parameter that holds the port

number for a server connection to be established; if/incase the server is not started.

All these are, described to the simian using ‘Global.xml’ file. As pointed out in the

outlined challenges of simian, this has to be, written and formatted manually to

make sure that the simulation processor can interpret all the files without running

into errors and issues while visualizing.

Below is the snippet of code that formats the specifications in Simian Plus. By default,

'seminar', 'hobbes', 'nofile' has the values set to align with the existing architecture of Simian

Framework. This piece corresponds to the 'global' details in the simian world. 'Simulator_Config'

and 'XML_Sim' are the files that are used to assemble the simulation specifications to an xml

element in ‘global’ file. Figure 5.12 shows the interface that corresponds to the mentioned

specifications. Once can see that the port number can be easily entered here eliminating the

process of ‘creating & running client’ as java application discussed in Chapter 2. It also voids the

process of manually passing the location of the newly created configuration file. This is

automated by the enhanced system, Simian Plus.

Snippet of code that creates model:

String filedata="",tag="";

tag="<global>";

filedata+="\n"+tag;

tag="<loislane seminar=\"134.129.125.221\" hobbes=\"192.168.125.25\"

port=\""+port+"\" delay=\"5\" winbox=\"192.168.125.21\" feedback='false'";

filedata+="\n"+tag;

if(cf.equals("Y"))

33

 tag=" nofile='LoisLane.txt' />";

else

 tag=" nofile='' />";

filedata+=tag;

tag="<simulator timestep='"+simtime+"' timelimit='"+timelimit+"'/>";

filedata+="\n"+tag;

tag="</global>";

filedata+="\n"+tag;

tag="</situation>";

filedata+="\n"+tag;

XML element created in configuration file:

<global>

 <loislane seminar="134.129.125.221"hobbes="192.168.125.25"

port="9906" delay="10" winbox="192.168.125.21"

feedback='true' nofile='LoisLane.txt' />

 <simulator timestep='0.40' timelimit='200' />

</global>

Screen displayed to automate the process of creating the xml:

Figure 5.12: Pass Port to Client (Loislane) & Simulation Details

34

5.5. Validation

 The Simulation-Graphical Interface has a feature that validates certain parameters that

are core in creating/running a scenario. These validators are easy to configure for different

behavior. Validators used in this interface evaluate if the user has entered a value for a specific

field. For every flying agent’s model, ‘turn’, ‘speed’, ‘fuel capacity’ and the ‘transmitter range’

needs to be, configured. Below is the snippet of java script that implements the validator used.

This interface has used only the “required fields” validator. Different types of validators are

available in “gen_validatorv4.js”. With the above format, they can all be, configured and used.

Below is the snippet that shows the validator, that validates the unmanned air vehicle’s motion

related parameters and the simulator specification’s validator. Figure 5.13 shows the highlighted

fields that are invalid by the corresponding validator.

Model – Validator:

<script type="text/javascript">

var frmvalidator = new Validator("f2");

frmvalidator.EnableOnPageErrorDisplay();

frmvalidator.EnableMsgsTogether();

//validator

frmvalidator.addValidation("turn", "req", "Please enter the turn parameter");

frmvalidator.addValidation("speed", "req", "Please enter speed");

frmvalidator.addValidation("cap", "req", "Please enter fuel capacity");

</script>

Simulation – Validator:

<script type="text/javascript">

 var simValidator = new Validator("simForm");

35

 simValidator.EnableOnPageErrorDisplay();

 simValidator.EnableMsgsTogether();

 simValidator.addValidation("port", "req", "Please enter the port");

 simValidator.addValidation("simtime", "req", "Please enter time limit for

simulation");

 simValidator.addValidation("timelimit", "req", "Please enter simulation time

limit");

//end of script

</script>

Figure 5.13: Invalid Fields Highlighted

5.6. Output – Scenario

This section illustrates the process for creating a new configuration file for scenarios

using ‘Sweep Search’. The sweep search suggested in this scenario is, based on controller

program implemented by the researches under the guidance of Dr. Kendall E. Nygard. The UAV

36

start navigating from their initial positions. State change occurs when they reach an end in the

field before making another pass on the area.

The below scenario consists of two UAVs and two targets. The static targets are, placed

in the field. Two UAVs start navigating and search the field starting from specific positions

relative to the field, based on x, y, and z co-ordinate axis. The whole process until launching

simulation can be, divided as follows:

 Create the ‘Simulation/Configuration’ File

 Launching Simulation

5.6.1. Create configuration file

The steps for creating a configuration file to simulate this scenario are, given

below.

Step 1: Construct and Configure Base Model.

37

Figure 5.14: Output – After Configuring the (UAV) Model

38

Step 2: Create a Team & Configure each UAV

Figure 5.15: Output – Team of UAVs

Figure 5.16: Output – After Assigning the UAVs Position and Configuring

Controllers

39

Step 3: Create Team & Add Target locations

Figure 5.17: Output – After Creating a Team of Targets

Figure 5.18: Output – After Assigning Each Target’s Position

Step 4: Add field dimensions & Configure simulation

Figure 5.19: Output – After Configuring the Field’s Dimensions

40

Figure 5.20: Output – After Configuring the Simulator

5.6.2. Launching simulation

 Once the configuration file is created the next steps depict the steps

followed to launch the simulation are illustrated here. Figure 5.21 depicts the

‘running’ server that is , started by running the main ‘LaunchVis2D.java’ as java

program.

Step 1: Start server and enter the port number

Figure 5.21: Output – After Running the ‘Visualizer’

41

Figure 5.22: Output – After Successfully Opening the Port

Step 2: Choose the created configuration file to launch simulation and click on “Run

Simulation”. SimianPlus displays a screen as in the figure 5.23

Figure 5.23: Output – After Creating the Configuration File

Step 3: On clicking the “Run Simualtion”, SimianPlus starts performing the calculation to

simualte the scenario. It displays a popup window, just like the figure 5.24 below

42

Figure 5.24: Output – After Launching the Simulation

Figure 5.25: Output – After Destroying both the Targets

43

6. CONCLUSION

This paper provides the design and the implementation of a Simian Plus that has various

features to enable a simpler process of ‘scenario-description’ to Simian. It describes the

technologies used to achieve the objectives paving way to a user-friendly Simian simulator. This

enables the researchers to easily create new scenarios/situations and focus more on building new

strategy to execute the mission instead. Mechanism to create new scenarios, ability to start and

run the application, ability to save and launch the previously configured scenarios can all

achieved by following the user intuitive interface. We have seen the basic validation that is

included on the interface, which requires certain values/parameters to be entered. Simian Plus

aids in not just creating scenarios but also in running them by minimizing human error in

formulating the input file. Default values are plugged in, to create a valid configuration file. With

the below flexible features, it thus aligns to the one of the main principle of simian where

problem description is separate from the strategy of executing a mission.

Summary of Features:

 Mechanism to build a base model for the flying agents

 Build/configure hardware for each UAV

 Place targets

 Create new scenarios with different combinations of hardware and agents

 Launch the newly created scenario

 Launch the saved/previous scenarios.

44

7. FUTURE WORK

7.1. Search Strategy

Search strategy refers to the patterns of investigating the area of interest/field to detect the

targets. Simian Plus uses ‘Sweep search’ pattern i.e. the unmanned air vehicles start from one

corner of the field and travel towards the horizontal end of the grid, turn and continue to the

other end of the next horizontal grid. A feature that displays various other patterns that simian

offers, such as Hunter and Killer UAVs and Forward Air Control search would enable the user to

choose the specific search strategy to execute the mission

7.2. Enhance Validation

Currently all the fields, are validated to verify if the user has entered the values for it.

This validation can be further, enhanced to validate the values entered. For example, verifying

the validity of values such as speed, blast radius of a weapon, receiver’s range limit, swath etc.

entered by the user during the hardware configuration process.

45

8. REFERENCES

[1] Altenburg, Karl, Joseph Schlecht, and Kendall E. Nygard, An Agent-based Simulation for

Modeling Intelligent Munitions in Proceedings of the Second WSEAS Int. Conf. on Simulation,

Modeling and Optimization, Skiathos, Greece, 2002.

[2] M. Hennebry, “Quickstart Guide to the Simian Simulator”, Department of Computer Science,

NDSU.

[3] Rachid Alami, Raja Chatila and Hajime Asama, Distributed Autonomous Robotic Systems 6

[4] Yaniv Altshuler, Vladimir Yanovsky, Israel A. Wagner, and Alfred M.Bruckstein, “The

Cooperative Hunters —Efficient Cooperative Search For Smart Targets Using UAV Swarms”,

Computer Science Department, Technion, Haifa 32000 Israel.

[5] Ivan Maza and Anibal Ollero, “Multiple UAV cooperative searching operation using polygon

area decomposition and efficient coverage algorithms”, University Of Seville, 41092 Seville,

Spain

[6] Yan Jin, Ali A. Minai, Marios M. Polycarpou, “Cooperative Real-Time Search and Task

Allocation in UAV Teams”, University of Cincinnati, OH 45221-0030.

[7] Randal W. Beard, Timothy W. McLain, “Multiple UAV Cooperative Search under Collision

Avoidance and Limited Range Communication Constraints”, Brigham Young University,

Electrical and Computer Engineering, Provo, Utah 84602.

[8] Altenburg, Karl, M. Hennebry, J. Pikalek and Kendall E. Nygard, “Simian: A Multi-agent

Simulation Framework for Decentralized UAV Task Allocation

[9]http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.jst.ws.axis.ui.doc.user%2Ftopic

s%2Fttomcatserv.html

46

APPENDIX A. LAUNCH SIMULATION SERVLET PROGRAM

package util;

import java.io.File;

import java.io.IOException;

import java.net.InetAddress;

import java.net.InetSocketAddress;

import java.net.ServerSocket;

import java.util.HashMap;

import java.util.Map;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.xml.parsers.ParserConfigurationException;

import org.dom4j.Document;

import org.dom4j.DocumentException;

import org.dom4j.Element;

import org.dom4j.io.SAXReader;

import orion.simian.drivers.Launch_DXML;

@SuppressWarnings("serial")

public class LaunchSimServlet extends HttpServlet {

 protected void doPost(HttpServletRequest req, HttpServletResponse

res){

47

 Map<String, String> messages = new HashMap<String,

String>();

 Map<String, String> errors = new HashMap<String, String>();

 ServerSocket listener = null;

 Element simDoc = null;

 String configFileName = null;

 configFileName = (String)

req.getSession().getAttribute("name");

 String serverPortStr = req.getParameter("serverPort");

 try{

 //loadDocument

 simDoc = processFile(configFileName);

 //extractPort

 if(serverPortStr == null){

 serverPortStr = extractPort(simDoc);

 }

 //startProcessor

 startProcessor(simDoc);

 }catch(DocumentException de1){

 System.out.println("Exception :"+de1.getMessage());

 de1.printStackTrace();

 }

 }

48

 private Element processFile(String fileName) throws

DocumentException {

 File file = new File(fileName);

 Document docFile=(new SAXReader()).read(file);

 Element rootEl = docFile.getRootElement();

 return rootEl;

 }

 /**Process file and extract value

 * @param fileName

 * return value

 * **/

 private String extractPort(Element root){

 Element el1 = root.element("global");

 Element lois = el1.element("loislane");

 String value = lois.attributeValue("port");

 return value;

 }

 @SuppressWarnings("unused")

 private boolean validatePort(int port){

 ServerSocket listener = null;

 boolean isValid = false;

 try{

49

 listener=new ServerSocket(port, 50,

InetAddress.getByName("0.0.0.0"));

 System.out.println("Connection Succesful. Port :"+port);

 }catch(IOException e){

 System.out.println("Connection Refused. Could not open

server, Port ::"+port);

 System.out.println("Detail message

::"+e.getMessage());

 }finally{

 if(listener != null){

 try {

 killSocket(port);

 //listener.close();

 System.out.println("Killing Connection

succefull :"+port +

 " \n

Listener status" +listener.isClosed());

 isValid = true;

 } catch (IOException e) {

 System.out.println("Exception occured while

closing the socket port :"+port);

 e.printStackTrace();

 }

 }

 System.out.println("Exitting");

 }

 return isValid;

 }

50

 private void killSocket(int port) throws IOException {

 System.out.println("killSocket(): Releasing port "+port);

 }

 /**Start Server Listener

 * @param port

 * return serverSocket

 **/

 private ServerSocket startServer(int port){

 ServerSocket listener = null;

 try{

 InetSocketAddress address = new

InetSocketAddress(InetAddress.getByName("0.0.0.0"), port);

 listener = new ServerSocket();

 listener.setReuseAddress(true);

 listener.bind(address, 10);

 //listener=new ServerSocket(port, 50,

InetAddress.getByName("0.0.0.0"));

 System.out.println("Connection Succesful. Port :"+port);

 }catch(IOException e){

 System.out.println("Connection Refused. Could not open

server, Port ::"+port);

 System.out.println("Detail message

::"+e.getMessage());

 System.out.println("Killing the listner ::");

 }

 return listener;

51

 }

 /**Invoke Client DXML Processor

 * @param

 * @throws Exception

 * @throws ParserConfigurationException

 *

 **/

 protected void startProcessor(Element rootElement){

 Launch_DXML xmlProcessor = new Launch_DXML();

 try{

 xmlProcessor.processDocument_DXML(rootElement);

 } catch (Exception e) {

 System.out.println("startProcessor(): Exception

occured. \n Detail Maessage:"

 + e.getMessage());

 e.printStackTrace();

 }

 }

52

 APPENDIX B. LAUNCH_VIS2D SERVER PROGRAM

package orion.simian.util ;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Insets;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintStream;

import java.net.InetAddress;

import java.net.ServerSocket;

import java.net.Socket;

import java.net.UnknownHostException;

import java.util.ArrayList;

import java.util.ListIterator;

import javax.swing.JFrame;

import orion.simian.util.Vector3D;

public class Launch_Vis2D {

 static final int UAV=1;

 static final int SITTINGDUCK=2;

 static final Color darkGreen=new Color(0.0f, 0.5f, 0.0f);

53

 public static void main(String[] args){

 String input = null;

 Launch_Vis2D vis2D = null;

 ServerSocket listener = null;

 TrackThreads tracker = new TrackThreads();

 BufferedReader br = new BufferedReader(new

InputStreamReader(System.in));

 System.out.println("Enter the port :");

 try {

 input = br.readLine();

 } catch (IOException e) {

 System.out.println("Launch_Vis2d(): Invalid Port

\n"+e.getStackTrace());

 System.exit(1);

 }

 if(input != null || input!= ""){

 int port = Integer.parseInt(input);

 try {

 listener = new ServerSocket(port,10,

InetAddress.getByName("0.0.0.0"));

 System.out.println("Launch_Vis2d(): Sucessful in

opening the port."+listener.getLocalSocketAddress());

 } catch (UnknownHostException e1) {

 System.out.println("Launch_Vis2d(): Issue in

opening the port.\n"+e1.getStackTrace());

 System.exit(1);

54

 } catch (IOException e2) {

 System.out.println("Launch_Vis2d(): IO Issue in

opening the port.\n"+e2.getStackTrace());

 System.exit(1);

 }

 }

 while(true){

 SocketThread thread = null;

 try {

 Socket sock = listener.accept();

 thread = new SocketThread(sock);

 thread.start();

 tracker.updateCount(1, thread);

 System.out.println("Launch_Vis2d(): Sucessful in

creating a thread. \n Client Details: "+thread.toString());

 } catch (IOException e) {

 System.err.println("Launch_Vis2d(): Client

accept failed " +e.getStackTrace());

 System.exit(3);

 }

 if (vis2D != null && vis2D.painter != null) {

 vis2D.painter.dispose();

 }

55

 vis2D = new Launch_Vis2D();

 System.out.println("Launch_Vis2d(): About to

visualize. ");

 vis2D.run(thread);

 try {

 thread.csocket.close();

 thread.interrupt();

 } catch (IOException e) {

 System.out.println("Launch_Vis2d(): Unsucessful

in closing the port for thread. \n Socket LocalAddress

:"+thread.getName());

 }

 }

 }

 static class STD {

 Vector3D position, fwrd;

 int kind;

 boolean live;

 STD(STD src) {

 position=new Vector3D(src.position);

 fwrd=new Vector3D(src.fwrd);

 live=src.live;

 kind=src.kind;

 }

56

 STD() {

 position=new Vector3D();

 fwrd=new Vector3D(1, 0, 0);

 live=true;

 kind=UAV;

 }

 } // STD

 ArrayList paintable=new ArrayList(), backup=new ArrayList();

 double axlo, axhi, aylo, ayhi;

 double xlo, xhi, ylo, yhi;

 static final int slop=10;

 static final long period=1000; // milliseconds

 long nextPaintTime=0; // milliseconds

 boolean painted=false;

 class Painter extends JFrame {

 public boolean done=false;

 Painter() { setSize(500, 500); show(); }

 Graphics graphics=null;

 public void paint() { if(null != graphics) paint(graphics); }

 public void paint(Graphics g)

57

 {

 nextPaintTime=System.currentTimeMillis()+period;

 graphics=g;

 if(axlo>=axhi || aylo>=ayhi) return;

 Insets insets=getInsets();

 Dimension size=getSize();

 g.clearRect(0, 0, size.width, size.height);

 for(ListIterator it=paintable.listIterator();

it.hasNext();) {

 STD fred=(STD)it.next();

 if(fred != null) {

 if(fred.position.x< xlo) xlo=fred.position.x;

 if(fred.position.x> xhi) xhi=fred.position.x;

 if(fred.position.y< ylo) ylo=fred.position.y;

 if(fred.position.y> yhi) yhi=fred.position.y;

 }

 } // it

 double xscale=(size.width-insets.left-insets.right-2*slop)

 /(xhi-xlo);

 double yscale=(size.height-insets.top-insets.bottom-

2*slop)

 /(yhi-ylo);

 double scale=xscale;

 if(yscale< scale) scale=yscale;

 if(scale<=0) return;

58

 double xoffset=(size.width +

 insets.left-insets.right-

scale*(xlo+xhi))/2.0;

 // y scaled with -scale

 double yoffset=(size.height +

 insets.top-

insets.bottom+scale*(ylo+yhi))/2.0;

 for(ListIterator it=paintable.listIterator();

it.hasNext();) {

 STD fred=(STD)it.next();

 if(fred==null) continue;

 double xc=xoffset+scale*fred.position.x;

 double yc=yoffset-scale*fred.position.y;

 if(fred.kind==UAV) {

 double xp=xc+8*fred.fwrd.x;

 double yp=yc-8*fred.fwrd.y;

 double xl=xc-5*fred.fwrd.x-5*fred.fwrd.y;

 double xr=xc-5*fred.fwrd.x+5*fred.fwrd.y;

 double yl=yc+5*fred.fwrd.y-5*fred.fwrd.x;

 double yr=yc+5*fred.fwrd.y+5*fred.fwrd.x;

 int x [] = { (int)xc, (int)xl, (int)xp, (int)xr }

;

 int y [] = { (int)yc, (int)yl, (int)yp, (int)yr }

;

 if(fred.live) g.setColor(Color.blue);

59

 else g.setColor(Color.gray);

 g.drawPolygon(x, y, x.length);

 /*-------------

 g.drawLine((int)(xc-4), (int)yc,

 (int)(xc+4), (int)(yc));

 g.drawLine((int)xc, (int)(yc-4),

 (int)xc, (int)(yc+4));

 */

 } else {

 if(fred.live) g.setColor(Color.red);

 else g.setColor(Color.black);

 g.drawLine((int)(xc-4), (int)(yc-4),

 (int)(xc+4), (int)(yc+4));

 g.drawLine((int)(xc-4), (int)(yc+4),

 (int)(xc+4), (int)(yc-4));

 }

 } // it

 {

 int xlo2=(int)(scale*axlo+xoffset);

 int xhi2=(int)(scale*axhi+xoffset);

 int ylo2=(int)(scale*aylo+yoffset);

 int yhi2=(int)(scale*ayhi+yoffset);

 g.setColor(Color.white);

60

 int x[] = { xlo2, xlo2, xhi2, xhi2 } ;

 int y[] = { ylo2, yhi2, yhi2, ylo2 } ;

 g.drawPolygon(x, y, x.length);

 g.setColor(Color.black);

 int col_inc = (xhi2-xlo2)/6 ;

 int row_inc = (yhi2-ylo2)/4 ;

 for (int i = xlo2; i <= xhi2 ; i+=col_inc)

 {

 g.drawLine(i ,ylo2 , i, yhi2);

 }

 for (int j = ylo2; j <= yhi2 ; j+=row_inc)

 {

 g.drawLine(xlo2, j ,xhi2, j);

 }

 }

 painted=true;

 } // paint

 } // Painter

 Painter painter;

 private void run(SocketThread st) {

61

 BufferedReader br = null;

 PrintStream pstream = null;

 try {

 br = new BufferedReader(new

InputStreamReader(st.csocket.getInputStream()));

 pstream = new

PrintStream(st.csocket.getOutputStream());

 runSimulation(br, pstream);

 } catch (IOException e) {

 System.out.println("Launch_Vis2d(): Error in

running simulation for Client-Thread : "+st.csocket.toString());

 e.printStackTrace();

 } catch (InterruptedException e) {

 System.out.println("Launch_Vis2d(): Interruption in

running simulation for Client : "+st.csocket.toString());

 e.printStackTrace();

 }

 System.out.println("Launch_Vis2d():Client is connected"

+st.csocket.toString());

 }

 /**

 * @param fin

 * @param fout

 * @throws IOException

 * @throws InterruptedException

 */

 private void runSimulation(BufferedReader fin, PrintStream fout)

62

 throws IOException, InterruptedException {

 int stIndex=0;

 STD std=null;

 painter=new Painter();

 painter.addWindowListener(

 new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 painter.done=true;

 System.out.println("painter.done=true");

 }

 }

) ;

 String line;

 while(!painter.done && (line=fin.readLine())!=null) {

 line=line.trim();

 String tokens [] = line.split(" *");

 if(tokens.length==0 || tokens[0].length()==0) continue;

 if("TICK".equals(tokens[0])) {

 ArrayList tmp=backup;

 backup=paintable;

 paintable=tmp;

 painted=false;

 painter.repaint();

 if(System.currentTimeMillis()>=nextPaintTime) {

 for(int j=1; !painted; j+=j) Thread.sleep(j);

 }

63

 fout.println(line);

 for(int j=backup.size()-1; j>=0; --j) {

 backup.set(j, new STD((STD)paintable.get(j)));

 }

 // make backup a deep copy of paintable

 while(backup.size()< paintable.size()) {

 backup.add(new

STD((STD)paintable.get(backup.size())));

 }

 } else if("AOI".equals(tokens[0])) {

 axlo=Double.parseDouble(tokens[1]);

 aylo=Double.parseDouble(tokens[2]);

 axhi=Double.parseDouble(tokens[4]);

 ayhi=Double.parseDouble(tokens[5]);

 if(axlo> axhi) { double tmp=axlo; axlo=axhi;

axhi=tmp; }

 if(aylo> ayhi) { double tmp=aylo; aylo=ayhi;

ayhi=tmp; }

 xlo=axlo; xhi=axhi;

 ylo=aylo; yhi=ayhi;

 } else if("UAV".equals(tokens[0])) {

 stIndex=Integer.parseInt(tokens[1]);

 while(backup.size()<=stIndex) backup.add(null);

 if(backup.get(stIndex)==null) {

 backup.set(stIndex, new STD());

 }

64

 std=(STD)backup.get(stIndex);

 std.kind=UAV;

 } else if("SITTINGDUCK".equals(tokens[0])) {

 stIndex=Integer.parseInt(tokens[1]);

 while(backup.size()<=stIndex) backup.add(null);

 if(backup.get(stIndex)==null) {

 backup.set(stIndex, new STD());

 }

 std=(STD)backup.get(stIndex);

 std.kind=SITTINGDUCK;

 } else if("DEAD".equals(tokens[0])) {

 int j=Integer.parseInt(tokens[1]);

 if(0<=j && j< backup.size())

 { ((STD)backup.get(j)).live=false; }

 } else if("POSITION".equals(tokens[0])) {

 double x=Double.parseDouble(tokens[1]);

 double y=Double.parseDouble(tokens[2]);

 double z=Double.parseDouble(tokens[3]);

 std.position.setTo(x, y, z);

 } else if("FORWARD".equals(tokens[0])) {

 double x=Double.parseDouble(tokens[1]);

 double y=Double.parseDouble(tokens[2]);

 double z=Double.parseDouble(tokens[3]);

 std.fwrd.setTo(x, y, z);

 } else if("ECHO".equals(tokens[0])) {

 painted=false;

65

 painter.repaint();

 for(int j=1; !painted ; j+=j) Thread.sleep(j);

 fout.println(line);

 }

 } // while

 }

}

66

APPENDIX C. LAUNCH_DXML PROCESSOR PROGRAM

package orion.simian.drivers;

import java.io.File;

import java.util.LinkedList;

import java.util.List;

import java.util.ListIterator;

import javax.xml.parsers.ParserConfigurationException;

import org.dom4j.Document;

import org.dom4j.DocumentException;

import org.dom4j.Element;

import org.dom4j.io.SAXReader;

import orion.simian.Environment;

import orion.simian.things.SittingDuck;

import orion.simian.things.SmallThing;

import orion.simian.things.SmallThings;

import orion.simian.util.Controllee;

import orion.simian.util.Controller;

import orion.simian.util.Launch_Loislane;

import orion.simian.util.LoisLane;

import orion.simian.util.NamedStrings;

import orion.simian.util.Strings;

import orion.simian.util.Vector3D;

import orion.simian.util.VisualizerMsg;

67

import orion.simian.util.WantsReporter;

import orion.simian.util.Xml;

public class Launch_DXML {

 interface simConstants extends Strings, NamedStrings {}

 interface s extends Strings, NamedStrings {}

 public Launch_DXML() {

 //super;

 }

 public Launch_DXML(String str) throws

ParserConfigurationException, DocumentException {

 File _file = new File(str);

 Document doc=(new SAXReader()).read(_file);

 System.out.println ("Root element of the doc is " +

doc.getName());

 //processDocument(doc);

 //processDocument_DXML(doc);

 }

 public void processDocument_DXML(Element rootEl){

 //rootElement

 System.out.println("Root name is "+ rootEl.getName());

 List<Element> simElList = new LinkedList<Element>();

68

 simElList.add(rootEl);

 List strategys=new LinkedList();

 strategys.add(rootEl.element("strategy"));

 Xml.printElementList("strategaaay", strategys);

 List globals=new LinkedList();

 globals.add(rootEl.element("global"));

 Xml.printElementList("globalll", globals);

 List policys=new LinkedList();

 policys.add(rootEl.element("policy"));

 Xml.printElementList("policyyyy", policys);

 List gmodels=Xml.selectNodes(s.model, simElList);

 Xml.printElementList("gmodels", gmodels);

 List teams=Xml.selectNodes(s.team, simElList);

 Xml.printElementList("teams", teams);

 SmallThings allSmallThings=new SmallThings();

 for(ListIterator tit=teams.listIterator(); tit.hasNext();) {

 // one iteration for each team

 Element team=(Element)tit.next();

 String teamNm=team.attributeValue(s.name, null);

69

 List teamPids=team.selectNodes(s.smallthing);

 List teamPmodels=new LinkedList();

 teamPmodels.addAll(team.selectNodes(s.model));

 teamPmodels.addAll(gmodels);

 Element policy=(Element)Xml.selectSingleNode(

 "." + s.LSB + "@" + s.team + "=" +

 s.QQUOTE + teamNm + s.QQUOTE + s.RSB,

 policys, true);

 for(ListIterator stit=teamPids.listIterator();

 stit.hasNext();) {

 // one iteration per small thing on team

 Element pid=(Element)stit.next();

 String modelNm=pid.attributeValue(s.model, null);

 if(null==modelNm) {

 throw new Error("smallthing has no model:\n" +

 pid.asXML());

 }

 // the model of the current small thing

 Element pmodel=(Element)Xml.selectSingleNode(

 "." + s.LSB + "@" + s.name + "=" +

 s.QQUOTE + modelNm + s.QQUOTE + s.RSB,

 teamPmodels, false);

 // the making of different kinds of small things

 // is a job for a factory in SmallThing

 SmallThing smallThing=

 SmallThing.make(pid, teamPmodels, globals);

70

 System.out.println("transmitters:\n" +

smallThing.transmitters);

 System.out.println("receivers:\n" +

smallThing.receivers);

 if(smallThing instanceof Controllee) {

 String stNm=pid.attributeValue(s.name, null);

 if(null==stNm) {

 throw new Error(

 "smallthing has no name:\n" +

pid.asXML());

 }

 // the Element containing the

 // controllers for this smallthing

 Element controllersEl=(Element)

Xml.selectSingleNode(

 s.controllers + s.LSB + "@" + s.name + "="

+

 s.QQUOTE + stNm + s.QQUOTE + s.RSB,

 strategys);

 if(null==controllersEl) {

 throw new Error(

 "Controllee " + stNm + " has no

controllers");

 }

 final String

vehicleClassNm="orion.simian.vehicle.Vehicle";

 List controllerEls=controllersEl.elements();

 Controller prevController=null;

71

 try {

 final Class

liClass=Class.forName("java.util.List");

 final Class elClass=Class.forName(

 "org.dom4j.Element");

 // constructor signature

 final Class [] conSig= {

 elClass, elClass, liClass,

 elClass, elClass,

 liClass, liClass };

 for(ListIterator

cit=controllerEls.listIterator();

cit.hasNext();) {

 Element controllerEl=(Element)cit.next();

 String classNm=

controllerEl.attributeValue("class", null);

 if(s.vehicle.equals(classNm))

 { classNm=vehicleClassNm; }

 if(null==classNm) {

if(s.vehicle.equals(controllerEl.getName())) {

 classNm=vehicleClassNm;

 } else {

 throw new

 Error("controller has no

class\n:" +

72

controllerEl.asXML());

 }

 }

 Class

controllerClass=Class.forName(classNm);

 Object [] parms={

 pid, pmodel, globals,

 controllerEl, policy,

 teamPids, teamPmodels

 } ;

 java.lang.reflect.Constructor constructor=

controllerClass.getConstructor(conSig);

 // the new controller

 Object

controllerO=constructor.newInstance(parms);

 if(! (controllerO instanceof Controller)) {

 throw new Error("class " + classNm +

 " is not a Controller"

);

 }

 if(null != prevController) {

 if(!(controllerO instanceof Controllee)

) {

73

 throw new Error("class " + classNm

+

 " is not a

Controllee");

 }

 ((Controllee)controllerO).

setController(prevController);

 }

 prevController=(Controller)controllerO;

 } // cit

((Controllee)smallThing).setController(prevController);

 } catch(Exception e) {

 throw new Error(e);

 }

 }

 allSmallThings.add(smallThing);

 } // stit

 } // tit

 Environment env=new Environment();

 env.fred=allSmallThings;

 Vector3D bound1=null;

 Vector3D bound2=null;

 try {

 List boundEls=Xml.selectNodes("aoi/bound", policys);

74

 ListIterator it=boundEls.listIterator();

 bound1=new Vector3D((Element)it.next());

 bound2=new Vector3D((Element)it.next());

 } catch(Exception e) {

 throw new Error(e);

 }

 // Process Loislane

 //LoisLane rep = null;

 Launch_Loislane rep = null;

 Element loislaneEl = (Element)

Xml.selectSingleNode("loislane", globals);

 if (loislaneEl != null) {

 //rep = new LoisLane(loislaneEl);

 rep = new Launch_Loislane(loislaneEl);

 } else {

 throw new Error("Error: LoisLane Element not found.");

 }

 env.reporter=rep;

 env.reporter.report(new VisualizerMsg("AOI " +

 bound1.x + s.blank + bound1.y + s.blank + bound1.z +

s.blank +

 bound2.x + s.blank + bound2.y + s.blank + bound2.z));

 for(int j=0; j< env.fred.size(); ++j) {

 if(env.fred.get(j) instanceof SittingDuck) {

 SittingDuck sd=(SittingDuck)env.fred.get(j);

75

 env.reporter.report(new VisualizerMsg("SITTINGDUCK " +

j));

 env.reporter.report(new VisualizerMsg("POSITION " +

 sd.position.x + s.blank +

 sd.position.y + s.blank +

 sd.position.z));

 }

 if(env.fred.get(j) instanceof WantsReporter) {

 ((WantsReporter)env.fred.get(j)).setReporter(rep);

 }

 } // j

 Element simulatorEl=(Element)Xml.selectSingleNode("simulator",

globals);

 double timeStep=Xml.getDoubleAttribute(simulatorEl,

s.timestep);

 double timeLimit=Xml.getDoubleAttribute(simulatorEl,

"timelimit");

 env.loop(timeLimit, timeStep);

 try {

 rep.shutdown();

 } catch(Throwable t) {

 throw new Error(t);

 }

 }

 }

