Statistical guidelines for sampling marine avian populations Elise F. Zipkin Brian Kinlan Allison Sussman Mark Wimer Allan F. O'Connell USGS Patuxent Wildlife Research Center NOAA National Ocean Service 4th International Wildlife Management Conference – July 2012 ## Seabirds in the Atlantic #### Where are the birds? Not a lot known about the distribution and abundances in the Atlantic - Difficult to survey - Rough conditions - Patchily distributed - Highly mobile # Where are the birds? Wind development Off shore wind power garnering lots of interest - Many states have implemented a 20% renewable energy by 2020 mandate - Public perception of oil spills is poor U.S. Bureau of Ocean and Energy Management (BOEM) - 5km x 5km lease blocks - Along the Outer Continental Shelf of the Atlantic Ocean #### Objectives Develop a framework for assessing: - which lease blocks are "hot spots" and "cold spots" - 2) the required surveying effort to guide BOEM and industry in determining wind turbine placement ### What is a hot/cold spot? Hot spot = A lease block with an average species specific abundance that is three times the mean of the region Cold spot = A lease block with an average species specific abundance that is one third the mean of the region ## The Atlantic Seabird Compendium - >250,000 seabird observations from U.S. Atlantic waters - Collected from 1978 through 2011 - Data collected using a mix of methods including non-scientific approaches ## The Atlantic Seabird Compendium - >250,000 seabird observations from U.S. Atlantic waters - Collected from 1978 through 2011 - Data collected using a mix of methods including non-scientific approaches #### We used: - 32 scientific data sets 28 ship-based, 4 aerial - Transects were standardized to 4.63km - 44,176 survey transects representing 463 species #### Two part approach - Determine the best statistical distribution to model the count data for each species in each season - 2) Use the best fitting distribution to produce power analyses #### The rest of the talk - 1) Describe the broad two part approach - 2) Integrate an example using NorthernGannets #### Two part approach - Determine the best statistical distribution to model the count data for each species in each season - 2) Use the best fitting distribution to produce power analyses ## Part 1: Model the data Test eight statistical distributions: Poisson Negative binomial Geometric Logarithmic Discretized lognormal Zeta decay Yule Zeta (power law) #### Examples of the distributions | | Spring | Summer | Fall | Winter | Total | |---------------------------------------|--------|--------|------|--------|-------| | Number species with >500 observations | 12 | 10 | 15 | 11 | 48 | | | Spring | Summer | Fall | Winter | Total | |--|--------|--------|------|--------|-------| | Number species with >500 observations | 12 | 10 | 15 | 11 | 48 | | Discretized lognormal | | | | | | | Yule | | | | | | | Negative binomial
Logarithmic
Zeta decay | | | | | | | | Spring | Summer | Fall | Winter | Total | |--|--------|--------|--------|--------|----------| | Number species with >500 observations | 12 | 10 | 15 | 11 | 48 | | Discretized lognormal | 7 (4*) | 4 (3*) | 8 (3*) | 8 (2*) | 27 (12*) | | Yule | 1* | 3* | 1* | 1 | 1 (5*) | | Negative binomial
Logarithmic
Zeta decay | | | 3* | | 0 (3*) | *Not significantly better for lpha=0.05 #### Northern Gannet Discretized lognormal top distribution for fall and spring Discretized lognormal and Yule fit equally well in winter and summer ### Two part approach - Determine the best statistical distribution to model the count data for each species in each season - 2) Use the best fitting distribution to produce power analyses Part 2: Power analysis Part 2: Power analysis for Northern gannets in the spring *Focusing only on lease blocks where individuals were observed Reference mean = 6.9 individuals per lease block conditional on presence Reference mean = 6.9 individuals per lease block conditional on presence Reference mean = 6.9 individuals per lease block conditional on presence ### Summary of results - Seabirds tend to be highly aggregated and require skewed statistical distributions to accurately describe populations - For many species, we need a large number of surveys to detect areas with atypical abundances ## Implications for wind power Intensive sampling in multiple seasons will be required to determine potential impacts on seabirds A possible approach could be to combine data on functionally similar species or species of high conservation value ## Acknowledgments - The many researchers and their crews who collected the data used in our analyses - Emily Silverman, Diana Rypkema - The Bureau of Ocean, Energy, Management (BOEM) for funding model development and analysis