

Toward the design of functional foods and biobased products by 3D printing: A review

Stéphane Portanguen, Pascal Tournayre, Jason Sicard, Thierry Astruc,

Pierre-Sylvain Mirade

▶ To cite this version:

Stéphane Portanguen, Pascal Tournayre, Jason Sicard, Thierry Astruc, Pierre-Sylvain Mirade. Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, Elsevier, 2019, 86, pp.188-198. 10.1016/j.tifs.2019.02.023 . hal-02048852

HAL Id: hal-02048852 https://hal.archives-ouvertes.fr/hal-02048852

Submitted on 26 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Toward the design of functional foods and biobased products by 3D printing: A review

Stéphane Portanguen, Pascal Tournayre, Jason Sicard, Thierry Astruc, Pierre-Sylvain Mirade

PII: S0924-2244(18)30308-X

DOI: https://doi.org/10.1016/j.tifs.2019.02.023

Reference: TIFS 2429

To appear in: Trends in Food Science & Technology

Received Date: 4 May 2018

Revised Date: 6 August 2018

Accepted Date: 6 February 2019

Please cite this article as: Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P.-S., Toward the design of functional foods and biobased products by 3D printing: A review, *Trends in Food Science & Technology*, https://doi.org/10.1016/j.tifs.2019.02.023.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, . DOI : 10,1016/i.tifs.2019.02.023

1 Toward the design of functional foods and biobased products by 3D printing:

2 A review

- 3
- 4 Stéphane Portanguen, Pascal Tournayre, Jason Sicard, Thierry Astruc and Pierre-Sylvain Mirade*
- 5 INRA, UR 370 Qualité des Produits Animaux (France), 63122 Saint-Genès-Champanelle, France.
- 6 *Corresponding author: <u>pierre-sylvain.mirade@inra.fr</u>
- 7
- 8
- 9
- 10 **Declarations of interest:** none
- 11 This research did not receive any specific grant from funding agencies in the public, commercial, or
- 12 not-for-profit sectors.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/i.tifs.2019.02.023

13 Abstract

14 Background:

- 15 3D printing or additive manufacturing (AM) now provides enormous freedom to design, manufacture
- 16 and innovate in various domains, even in foodstuffs development. Given the immense potential
- 17 applications related to AM, many authors are even talking about a new industrial revolution.
- 18 Scope and approach:
- 19 In this article, we review the state of the science in applied AM methods for developing biobased
- 20 products in the medical and food sectors, with these two sectors having similar points. We were
- 21 therefore interested in the technological locks encountered in the various studies carried out on the
- subject. Consideration has also been given to the possibility of using alternative sources of protein,
- 23 such as animal by-products, to address resource management and sustainable development issues.
- 24 One of the strengths of 3D printing is personalization, so we chose to evaluate the impact of this
- 25 technology on target populations and evaluate the possible evolutions.
- 26 Key findings and conclusions:
- In order to design food in optimal conditions, the development of new 3D printers is fundamental 1)
 to ensure the sanitary quality (both microbiological and chemical) of these products, and 2) to
 control the structure and texture of these 3D-printed foods. From there, it will be possible to
 propose personalized foods, adapted to different categories of population (e.g. seniors or young
- 31 people...). The major challenge in the next years will be to develop, using 3D printing, meat products
- 32 or products blending alternative protein sources that remain perfectly structured without having to
- 33 use additives. The final step will be to garner consumer acceptance for these 3D-printed foods.
- 34

Keywords: Additive manufacturing; by-products; protein; personalization; sustainable development;
 consumer acceptability.

37 38

39 Highlights:

- 40 We reviewed the state of the science on the 3D printing of biobased products;
- 41 Some 3D printing applications developed in the medical and food sectors were analysed;
- 42 We looked at 3D-printed functional foods targeting various sectors of the population;
- 43 The consumer acceptability of 3D-printed food products was also deeply discussed;
- 44 Some development prospects for 3D printed biobased products were also investigated.
- 45

I) Introduction

47

46

48 Additive manufacturing (AM), popularly dubbed "3D printing", has emerged, expanded and matured 49 to a stage where it provides enormous freedom to design, manufacture and innovate in spheres from 50 mechanical engineering (Chen et al., 2017) and aeronautics (Ford, Mortara & Minshall, 2016) to 51 design science (Lanaro et al., 2017; Areir, Xu, Harrison & Fyson, 2017; Takezawa & Kobashi, 2017), 52 biomedical engineering (Singh & Ramakrishna, 2017), the pharmaceutical industry (Icten et al., 2017; 53 Goole & Amighi, 2016), biotechnology (Krujatz et al., 2017), and even food (Pinna et al., 2017). The 54 literature on 3D printing technologies is booming, and with the immense promise and potential 55 applications unlocked by AM, a number of authors are even starting to talk about a new industrial 56 revolution (Campbell, Williams, Ivanova & Garett, 2011; Gross, Erkal, Lockwood, Chen & Spence, 57 2014; Attaran, 2017). There are niche markets (jewellery, luxury cars, and others) where AM is 58 already used to produce certain objects which are then marketed (Ford et al., 2016). Research in 3D 59 printing is expanding, as the technology is ideally geared to the rapid prototyping phases (Berman, 60 2012; Attaran, 2017) that require feasibility without mass production and rapid manufacturing. AM is 61 a digitally-controlled robotic construction process, which can build up complex solid forms layer by 62 layer and apply phase transitions or chemical reactions to bind the layers together (Sun, Peng, Yan, 63 Fuh & Hong, 2015a). To do this, several reference techniques exist, using different materials. We can 64 cite: binder jetting (Meteyer, Xu, Perry & Zhao, 2014), directed energy deposition (Heigel, Michaleris 65 & Reutzel, 2015), material jetting (Krujatz et al., 2017), powder bed fusion/binding (Huang, Liu, Mokasdar, & Hou, 2012), sheet lamination (Shimizu et al., 2014), vat photopolymerization (Singh, 66 67 Ramakrishna & Singh, 2017) and material extrusion (Huang et al., 2012). Versatility is another big 68 reason to use AM, particularly for biobased products. Indeed, being able to work from the 69 macroscopic scale (e.g. 3D-printing of foodstuffs) up to a microscopic scale (e.g. cell-by-cell 70 deposition for the construction of organs or tissues) makes it possible thanks to the wide range of 71 existing printing techniques. For 3D printing of biobased products or foods, the following techniques 72 are well-suited: 1) extrusion-based printing, the most popular method in food printing (Sun, Zhou, 73 Yan, Huang & Lin, 2017), 2) inkjet printing (Singh, Haverinen, Dhagat, Jabbour, 2010), and 3) laser-74 assisted printing (Guillotin et al., 2010). Figure 1 schematizes the operating principles of these 75 methods.

Practically all commercial 3D printing machines outside heavy industry, chiefly extrusion machines, are customizable, and there are even some project device designs that are open-source, enabling custom-tailored manufacturing, which is an important feature for research and R&D labs as it enables them to adapt the devices to their applications. For example, Zeleny & Ruzicka (2017) managed to adapt a commercial printer model for printing foodstuffs which originally used for fused

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/j.tifs.2019.02.023

81 deposition modelling of thermoplastic. While metal feed 3D printers for industry can cost up to 82 \$500,000 (Severini, Derossi & Azzolini, 2016), there are mainstream 3D printers now available that 83 offer perfectly acceptable performances for an affordable few hundred dollars (Prusa i3[®], RepRap, 84 France; Hephestos 2[®], BQ[®], Spain...). This means that cost of the hardware is no longer a barrier, and 85 so a huge number of applications can now be developed, by anyone ready to make a few appropriate 86 machine customizations: e.g. adding of syringe pump system, embedded cooking system, or cooling 87 system ... In our opinion, personalization means a major modification and not simply to use various 88 nozzles or needles. For instance, Bégin-Drolet et al. (2017) have developed a new printhead for 89 making structures out of sugar, based on a system using a lead gear and a worm gear combined with 90 an ultra-fine pitch screw to deliver a syrup contained in a syringe. To obtain a quickly solidification of 91 the sugar, an air cooling system was added near the nozzle. Attaran (2017) reported that worldwide revenues from AM are growing exponentially, from \$3.07 92 93 billion in 2013, nearly doubling to \$5 billion in 2016, and on a curve to exceed \$21 billion in 2020. 94 However, this expansion may get slowed by some key technology-related drawbacks, chiefly the size, 95 time-to-manufacture, and cost of printed objects, and change in the regulatory landscape. That said, 96 the many advantages over conventional 'hard' manufacturing—customizability, rapid prototyping, 97 on-demand manufacture of spare parts, decentralized/distributed manufacturing, and more—can be 98 expected to drive further expansion of AM in a whole number of sectors, and especially the 99 automotive industry. Healthcare may be the sector where 3D printing holds the greatest 100 transformative potential: the AM-driven healthcare economy, estimated at just \$11 million in 2012, 101 is projected to hit \$1.9 billion by 2025 (Attaran, 2017). 3D-printed implants and tissue organs are 102 currently the focus of intensive research (So, Mandas & Hlad, 2018; Almela et al., 2018). To our 103 knowledge, regarding the food sector, no economic data exist, but several industrial projects are in 104 progress, especially in Europe (e.g. with Barilla group).

Here, in response to this content, we set out to review the state of the science in applied AM 105 106 methods for developing biobased products in the medical sector, and in the food sector. Indeed, 107 there are many common points between these two sectors, especially in terms of printing methods 108 of proteins-based hydrogels. The review analyses the applications developed on the back of these 109 methods, targeting the impact these methods have on the design and production-line sustainability 110 of the biobased products per se and on consumer acceptability of these 3D-printed products. We also 111 look at 3D-printed functional foods targeting different sectors of the population, and the 112 development prospects for 3D-printed biobased products in the coming decade. 113

115

114 II) Biobased product development by additive manufacturing

II.1) In the medical sector

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/j.tifs.2019.02.023

117 Bose, Ke, Sahasrabudhe, & Bandyopadhyay (2018) dichotomizes the two categories of 3D printing 118 processes for biomaterials: acellular (ceramics, hydrogels, thermoplastics...) and cellular. Cellular-119 category biomaterials can serve as scaffolds to print living cells that will multiply and form tissue 120 constructs. For Krujatz et al. (2017), biofabrication and bioprinting are two tightly-linked 121 bioengineering fields that are both synonymous with processes for living-cell and biomaterials. Most 122 commonly used methods are inkjet printing, extrusion-based printing and laser-assisted printing 123 (fig.1). The main biomedical applications are for 3D printing body tissue (Chia & Wu, 2015), from 124 bone and organs to blood vessels, nerves, and more. Almela et al. (2017) demonstrated that 3D 125 printing could be used to fabricate a human bone-like calcium-scaffold microstructure, and their 126 study opens promising perspectives for bone grafting. However, despite the opportunities these 127 techniques bring to medicine for building or regenerating organ tissue in situ, there are a number of 128 technical issues still to overcome, as highlighted by Gudapati, Dey & Ozbolat (2016), such as the 129 droplet-based bioprinting technique that leads to narrow range of available bioink material, cell damages induced by bioprinting, restrictions on the size of constructs due to lack of vascularization 130 131 and porosity... Over and above complex ethical or regulatory issues, there are also fundamental 132 technical bottlenecks to contend with, like the narrow range of available biomaterials, the cellular 133 lesions induced by the bioprinting process, or the mechanical and structural integrity of the tissue 134 constructs that will affect the vascularization—and therefore the viability—of 3D-bioprinted tissue 135 organs. Jakab et al. (2010) assert that it is crucial to design a fully-controllable cellular environment in 136 order to provide a biomimetic paradigm that can place the right cells in the right place and with the 137 right phenotype to make functional assemblies. The authors also underscore the core role of the 138 scaffold in the tissue fabrication process, as it is the scaffold, designed from biodegradable material, 139 that serve as the template providing the tissue with specific topological features at nano, micro and 140 macro scale. However, the use of biodegradable scaffolds leads to the residual presence of polymer 141 fragments, which may disrupt the normal organization of the vascular wall (Jakab et al., 2010; 142 confirmed by Gudapati et al., 2016). Several studies (Melchels et al., 2012; Inzana et al., 2014; Munaz 143 et al., 2016; Wlodarczyk-Biegun & Del Campo, 2017; Shanjani et al., 2017) deal with ways to 144 implement the scaffolds, which are absolutely crucial architectures for fabricating tissue. 145 Wlodarczyk-Biegun & Del Campo (2017) reviewed recent achievements in bioprinting major 146 structural proteins like collagen, silk and fibrin that confirm how porous and networked scaffolds are 147 readily 3D printable. Note that it is possible to use different cellular types or materials simultaneously 148 or sequentially during the same tissue engineering process. Scaffolds or hydrogels which offer the 149 advantage of being biocompatible (Melchels et al., 2012) and providing a suitable environment for 150 the cells due to their high water content and low polymer content (Wlodarczyk-Biegun & Del Campo,

116

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198., DOI : 10.1016/j.tifs.2019.02.023

2017). There are still-unresolved technical challenges with using them (rheological properties,
crosslinking density, and more), but natural compounds (like gelatin or hyaluronic acid) can be
already combined with synthetic polymer network components like methacrylamide to promote
crosslinking (Melchels et al., 2012).

155 Collagen gels in 3D bioprinting can serve in medical applications for targeted cell placement to 156 generate a given form, and extend cellular viability. Dunn, Yarmush, Koebe & Tompkins (1989), cited 157 by Melchels et al. (2012), showed that hepatocytes conserved their functions for several weeks when 158 sandwiched between two layers of collagen gel, against just a few days with a single layer. After 159 observing similar effects, Munaz et al. (2016) concluded that the longer cellular viability conferred by 160 this collagen hydrogel was because it keeps the cells better hydrated and better aggregated for a 161 long time, without settling. Smith et al. (2004) developed a script to construct an artery branch of a 162 pig heart using bovine aortic endothelial cells suspended in type-1 collagen. This data, even if it 163 comes from the medical sector, suggests that 3D-printed foods containing collagen may hold an 164 excellent level of hydration, which in turn would have a positive influence on their texture or 165 mouthfeel.

166 167 168

II.2) In the food sector

169 Godoi, Prakash & Bhandari (2016) claim that AM technology holds huge potential to fabricate foods 170 with complex geometries, advanced textures and tailored nutritional contents, but Liu, Zhang, 171 Bhandari & Wang (2017) noticed only few studies dealing in the degree of precision required to make 172 structurally-controlled foods by AM. In reality, the major difficulties for 3D printing novel foods stem 173 from a number of factors, including material properties, printing-process parameters and post-174 processing parameter (methods of cooking, conservation, and so on). Even if some authors find that 175 uptake of AM in the specialty food industry has ultimately disappointed (Gausemeier, Echterhoff, 176 Kokoschka & Wall, 2011, cited by Mawale, Kuthe & Dahake, 2016), there are nevertheless signs of an 177 emerging trend for culinary applications tied to the 'food design' movement, with several recent 178 papers addressing these applications (Pallottino et al., 2016). The European project 179 PERFORMANCE—Personalised Food using Rapid Manufacturing for the Nutrition of Elderly 180 Consumers (Lipton, Cutler, Nigl, Cohen & Lipson, 2015; Liu et al., 2017), had even set out to use 3D 181 printing for the development or appealing new foods for seniors. 3D printing can thus be used to 182 enhance certain foods and make them more attractive to consumer populations, or simply to create 183 new forms or structures for commercial profit. The technological angle may be interesting—printer 184 customization, open source, programming, and so on—and the societal angle may be important— 185 food attractiveness to certain populations—but there are legitimate grounds to stop and question

the real scientific impact value of studies focused exclusively on food design. For example, Zhao et al.
(2018) investigated the potential reach of programming with the aim of fashioning a personalized
food product that can be printed with a face from a photo.

189 One of leading products studied this context is chocolate (Liu et al., 2017; Zeleny & Ruzicka, 2017; 190 Lanaro et al., 2017). A review by Godoi et al. (2016) showed that 3D printing can create complex 191 structures made out of chocolate or sugar, provided the process can firmly control a certain number 192 of key parameters, including feedstock vat and extrusion system temperature, nozzle geometry and 193 height from the forming bed, rheological behaviour, among others. Adding magnesium stearate to 194 the chocolate feedstock provide a better flowability during deposition, and thus lends the chocolate 195 better 'printability' (Mantihal, Prakash, Godoi & Bhandari, 2017). There are also studies on 196 confectionery sugar, and on plant- or meat-based purees. As a rule, product rheology has to be 197 modified using food additives, typically xanthan gum or agar-agar for plant foods or transglutaminase 198 or gelatin for meat products (Lipton et al., 2015). However, as today's consumers tend to prefer clean 199 label products containing as few additives as possible, blending additives into otherwise additive-free 200 foods just to fit food to process is surely not the right way forward. Effort should instead be directed 201 towards reworking the process to fit the food to be printed. Lipton (2017) reached this same 202 conclusion, explaining that research in AM for the food industry is overconcerned with aesthetics 203 factors and unconcerned with consumer health factors—yet aesthetics should only really be addressed further into the longer term, whereas it is by using AM technologies to design nutrition-204 205 controlled and/or nutrition-adapted foods that the benefits for human health could be most 206 important. Lipton (2017) goes on to say that it would be possible to define a person's dietary energy 207 needs and directly custom-print a food that meets their requirements. However, there is not, to our 208 knowledge, a single study that has purposively addressed the nutritional value of 3D-printed foods, 209 other than research just published by Derossi, Caporizzi, Azzolini & Severini (2018) on the antioxidant 210 activity of 3D-printed fruit-based snacks. 211 Lipton et al. (2015) address the topic of manufacturing whole muscle tissue for human food supply,

212 where the idea would be to remove the need to farm livestock in order to produce meat muscle and 213 fat cells, in which case the nutritional value of these products would supposedly be identical or near-214 identical to 'conventional' meat. This is one of the goals of American start-up Modern Meadow, 215 which is working on 3D printing stem cells that, once developed, should be able to render a meat-like 216 matrix. However, even if right now, these approaches are still in their early days, we can already see 217 the kind of difficulties to come in the future: the economics, nutritional and organoleptic properties, 218 industrial scale-up, nutrient inputs needed for cell culture, food safety, ethics issues, and the list goes 219 on.

7

221 222

III) Impact of additive manufacturing processes on food macromolecules

223 Le Tohic et al. (2018) explain an AM process as subjecting the product to two types of constraints: 1) 224 thermal treatment as the product melts, and 2) shear strain as the product extrudes through the 225 nozzle. Process used thus has one or more effects on macromolecules making up the food product 226 which will modify its properties. A majority of studies on compounds of interest in food applications 227 of AM have focused on the 'printability', where printability is the set of material properties that lend 228 a product enough stability in space to support its own weight (Godoi et al., 2016). 229 Although it is relevant to study a food in whole, in the case of the design of a food with therapeutic 230 aim, it can be necessary to have elements in connection with the main macromolecules of nutritional 231 or structural interest. Moreover, within the scope of the 3D printing of a food intended to be 232 consumed by people within the framework of a deficiency or of a pathology, it is perfectly 233 conceivable to resort to a basic medium having the form of a hydrogel containing meat proteins, 234 which could be enriched in vegetable proteins, lipids and carbohydrates. In this case, understanding 235 the interactions between the printing process and all the compounds taken one by one is 236 fundamental.

237

238

239

III.1) Impact on proteins

Relatively few animal protein-rich products have been studied for applicability in AM. Exceptions 240 241 include various types of pureed meat (Lipton et al., 2015), collagen (Inzana et al., 2014) and gelatin 242 (Farag & Yun, 2014). Nevertheless, certain studies are hugely instructive on the difficulties posed by 243 this kind of food matrix: For Godoi et al. (2016), materials should be homogenous, have appropriate 244 flow properties for extrusion and should support its structure during and after printing process. For 245 Wang, Zhang, Bhandari & Yang (2018), as a mixture, each component (proteins, carbohydrates, lipids 246 and water) can undergo changes that will influence the fusion and the plasticization of the food. For 247 example, printability of fish surimi gels systems was the best with a sodium chloride (NaCl) 248 concentration of 1.5 g/100 g surimi (Wang et al., 2018). Gracia-Julia, Hurtado-Pnol, Leung & Capellas 249 (2015) (cited by Severini et al., 2016) observed a better printability of beef-based preparations when 250 the myofibrillar proteins were solubilized, due to salt adding. Electron microscopy showed that the 251 added NaCl had led to myofibrillar protein crosslinking, enabling free amino acids to bind to the 252 proteins, shrinking the void spaces, and changing the structure of the gel into a fine-strand network 253 (Wang et al, 2018). This effect is maximal, and holds constant, at 1.0 g NaCl/100 g surimi. Protein 254 printing is thus governed by the properties of the proteins, and crucially protein aggregation, which is 255 further governed by the isoelectric point (pl). Godoi et al. (2016) assert that AM technologies can

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/j.tifs.2019.02.023

create new textures by intercalating layers of food proteins with layers of polysaccharide materials
like alginate, applying temperature or mechanical stresses, or incorporating acid or base compound
ingredients in the AM process to promote aggregation. Finally, Liu et al. (2017) posited that precise
and accurate 3D food-based structures cannot be successfully printed without adding texturizers like
hydrocolloids or gelable proteins, which has since been confirmed by Yang, Zhang, Bhandari & Liu
(2018) for 3D food printing with turkey meat.

262 The major structural proteins (collagen, elastin, and fibrin) have already been studied for fabrication 263 of complex-architecture scaffolds as a step towards performing cell-by-cell deposition. The 264 organization of these fibrous proteins, governed by alignment constraints, diameter constraints and 265 pore structure constraints, varies according to type of tissue and has a huge influence on its 266 mechanical properties. Fibrin is a protein produced naturally by the body where it is used to repair 267 injury, but it can also be 3D-printed in gel form (Melchels et al., 2012; Chia & Wu, 2015). Fibrin is 268 used in AM for fabricating scaffolds to repair bone, neurons or heart valves (Munaz et al., 2016). 269 Collagen, which is the most abundant protein in mammals, can be bioprinted as a gel, after 270 extraction and enzymatic digestion. According to Wlodarczyk-Biegun & Del Campo (2017), printable 271 collagen-based solutions vary in concentration between studies, from 0.2 mg/mL up to 20 mg/mL in 272 an ionic strength adjustment solution. Choice of concentration will depend on the mechanical 273 properties targeted, such as maintaining tissue integrity, or the viability characteristics of the seeded 274 cells. For example, a 1 mg/mL gel can generate cohesive and reproducible structures, provided that 275 pH is kept under control, as a high pH can clog the printhead nozzles. Pure collagen lacks the stability 276 needed to form a 3D structure, so it has to be combined with other polymers. Furthermore, without 277 inducing added crosslinking, collagen will form mechanically inferior hydrogels. Crosslinking is 278 inducible by chemical reaction using formaldehyde or glutaraldehyde or by enzymatic reaction using 279 transglutaminase (Wlodarczyk-Biegun & Del Campo, 2017). Inkjet, extrusion and laser-assisted 280 bioprinting processes have all been mobilized for difficult-to-print collagen solutions (Inzana et al., 281 2014; Jakab et al., 2010; Wlodarczyk-Biegun & Del Campo, 2017). Extrusion processes can already 282 work with multi-printhead and/or crosslinking system-coupled 3D printers (Smith, Christian, Warren 283 & Williams, 2007; Hinton et al., 2015). However, according to Murphy, Skardal & Atala (2013), and 284 Wlodarczyk-Biegun & Del Campo, (2017), the main difficulties with using collagen as an extrusionprocess bioink are the gel time, which is long, and swelling, which was also flagged up by Munaz et al. 285 286 (2016) who concluded that despite being easily constructed for 3D structures, collagen biomaterial 287 molecules will eventually lose shape due to swelling or dissolution, which are the main limits to 288 further use. 289 As gelatin is derived from collagen, the literature often pairs the two, even if each has its own set of

290 properties. Gelatin has nevertheless been used in many applications. Munaz et al. (2016) showed

291 that a collagen/gelatin hydrogel synergized the properties of each, making it possible to build a 292 hydrogel scaffold and to use the gelatin to create fluidic channels which, once the gelatin has 293 dissolved, would leave a vascular network architecture. The thermal properties of gelatin and 294 collagen differ: indeed, gelatin (at 10%) is solid at room temperature and liquid at 37 °C (reversible 295 phenomenon) while the collagen must be kept in ice until printing. Moreover, gelatin is more viscous 296 at 37 °C than collagen, which imposes to increase the pressure for the 3D printing of the collagen 297 (Lee et al., 2014). Gelatin has been used to study bacterial cell-to-cell communication by creating 298 crosslinked microstructures (Connell, Ritschdorff, Whiteley & Shear, 2013), and to create scaffolds by 299 AM for bone tissue regeneration, notably to improve the properties of ceramic scaffolds (Farag & 300 Yun, 2014). Godoi et al. (2016) claim gelatin makes a good candidate for use as an ingredient of AM 301 bio-inks. Gelatin gels possess a unique characteristic texture that provides appreciable mouthfeel 302 together with good flavour perception. As stated earlier, pl has a major effect on protein structure. In 303 the case of gelatin, at the pl, its contraction is maximal, and therefore its viscosity is minimal. This 304 viscosity is a parameter that increases when pH changes. However, if the pH change is too sharp, the 305 molecule will depict its maximum extension, in which case the gelatin will adopt a non-Newtonian 306 behaviour—gelatin normally exhibits Newtonian flow in dilute solution, except when extended by 307 charged groups. Shear also has a major effect on viscosity, and extreme shear can trigger an 308 irreversible loss of viscosity (Godoi et al., 2016).

309 Both Lipton et al. (2015) and Godoi et al. (2016) talk up the use of transglutaminase to build complex 310 geometries out of meat. Transglutaminase is an enzyme that can catalyse new protein matrices by 311 forming covalent bonds between lysine and glutamine residues, in a calcium-dependent reaction. 312 This process thus manages to enzymatically crosslink proteins present in meat purees, giving rise to 313 self-supporting hydrogels. However, the use of additives like transglutaminase, even if has potentially 314 valuable effects in terms of the resulting mechanical properties, runs counter to the current market trend of getting back to more 'natural' foods. This means that any product developed via this kind of 315 316 process is likely to meet with consumer resistance, let alone regulatory hurdles in certain countries. 317 The biggest challenge for printing food, then, remains getting the right kind of texture to deliver an 318 appreciable mouthfeel. Proteins, as key structural macromolecules, are no exception to the rule. The 319 next step forward is to engineer printing strategies that can deliver fully-controlled structures—and, 320 if possible, without using texture-stabilizing additives (fig. 2).

- 321
- 322 III.2) Impact on lipids
- 323

Even though 3D printing studies have tackled high-fat-content foods like chocolate, very few have
 investigated the effect of 3D printing on lipids and, *vice versa*, the effect of lipids on printability. To

326 the best of our knowledge, only Le Tohic et al. (2018) and Lille, Nurmela, Nordlund, Metsä-327 Kortelainen & Sozer (2018) have tackled the issue. Le Tohic et al. (2018), working with an untreated 328 (i.e. non-extruded) cheese matrix, showed that the fat globules were round and homogeneously 329 distributed in a continuous protein phase. A comparable structure was observed in cheese melting at 330 75°C, although with bulkier fat globules due to heat ramp-induced coalescence. Cheese extrusion-331 printed at 4 mL/min and 75°C showed heavily altered microstructure: the protein phase had become 332 discontinuous and the fat globules had changed morphology—losing sphericity and gaining volume— 333 with the appearance of interstitial fat. However, the print parameters also have a visibly major effect, 334 since fat globule size and distribution were more homogeneous after printing at 12 mL/min (75°C), 335 likely due to a higher shear rate in this condition. Protein-lipid interactions are though to explain the 336 rheological changes observed to occur in 3D-printed cheeses, i.e. a softer texture that is not as sticky 337 due to the greater amount of surface fat released during the shear processes. 338 Lille et al. (2018) examined the role of lipids during food printing processes by working on milk 339 powder as a source of both proteins and fat. They tested two formulations presenting equivalent 340 protein contents (21% and 22%, respectively) in solutions of water with skimmed (0.4% fat) and 341 semi-skimmed (9% fat) milk powder. They showed that the skimmed-milk formulation gave a highly-342 viscous and difficult-to-print paste that was too sticky to evenly deposit, and when the milk powder 343 concentration was upped from 50% to 60%, printing became simply impossible, whatever the nozzle 344 diameter used, whereas with the semi-skimmed formulation, even at 60% concentration, printability 345 proved to excellent, both in terms of precision and of holding printed shape. Lille et al. (2018) 346 explained that fat had acted as a lubricant in the extrusion system and that the biomaterial was more 347 fluid. Note that carbohydrate content differed substantially between the two formulations (32% and 348 23%, respectively), which may also have influenced fluid flowrate. 349 Godoi et al. (2016) are optimistic about the use of lipids in AM, given that their triglyceride 350 composition and different melting points influence meat texture and, crucially, tenderness and 351 flavour. 3D printing methods (especially extrusion) thus have the potential for fabricating custom-352 textured foods. Using different-chain-length fatty acids with different degrees of unsaturation should 353 make it possible lock down melting points, which would improve layer-on-layer adhesion, enabling 354 the constructs to better hold their shape, in pre- and post-processing. 355 356 III.3) Impact on carbohydrates 357 358 Several studies have investigated the printability of sugar polymers. Holland, Foster, MacNaughtan & 359 Tuck (2018) demonstrated that cellulose (powder) is printable layer-by-layer, provided the process 360 can firmly control the rheological properties, surface tension and density of the build material. Kim,

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/j.tifs.2019.02.023

361 Bae & Park (2018), using methyl cellulose as reference biomaterial to simulate the printability of 362 various food-inks, showed that 9%, 11% and 13% hydrocolloid concentrations were able to scaffold 363 28 mm-diameter cylindrical constructs with heights of 20 mm, 40 mm and 80 mm, respectively, 364 without collapse. Working on printable pectin-based formulation, Vancauwenberghe et al. (2017) 365 tested the effect, at otherwise-constant print parameters, of different formulations involving 366 different stirring speeds and different concentrations of pectin, calcium chloride, bovine serum 367 albumin (BSA) and sugar syrup. A coherent and lasting 3D structure was only achievable by adding 368 CaCl₂ to partially crosslink the pectin. This study showed that pectin and sugar syrup concentrations 369 directly influenced viscosity of the mixture, and that BSA stabilized and aerated the mixture. 370 Vancauwenberghe et al. (2017) thus demonstrated the feasibility of 3D printing textured variable-371 microstructure foods.

372 Starch, a commonplace food additive, has also been investigated. Liu, Zhang, Bhandari & Yang (2018) 373 led research on 3D printing low-starch to high-starch potato purees and found that a puree had to 374 contain at least 2% starch to be printable. In this condition, the material showed an increase in elastic 375 limit, and better extrudability. However, at 4% starch content, despite the material comfortably 376 holding its 3D shape and structure, it had poor extrudability due to over-high viscosity. Yang et al. 377 (2018) also confirmed that complex sugars like potato starch are 3D printable. Their study, which 378 paired lemon juice and starch (at 15 g/100 g), managed to determine the optimal print-process 379 parameters—nozzle diameter, printhead speed and extrusion rate—that fabricating smooth-surfaced 380 constructs with zero deformation. Research by Lille et al. (2018) demonstrated, much like for lipids 381 (see section III.2), that a 15% starch solution had better printability when the formulation contained 382 semi-skimmed milk powder instead of skimmed-milk powder. However, feedrate through the 383 extrusion system was dependent on the particle size of the food components, as for plant-based 384 foods containing protein, starch and fibre, the viscous aspect of the starch, which comes from the 385 presence of particles, quickly clogs up the system.

The papers published to date point to two big problems for 3D food printing: 1) particle size of the food components used (Lille et al., 2018), and 2) the material–material bonding mechanisms. Some upstream control over the process steps should suffice to address the first problem. On the second, authors like Liu et al. (2017) advise using additives, such as fats or blood plasma proteins, to improve solidification on cooling or crosslinking. Considering only 'natural' additives as candidates, it is easy to imagine using highly unsaturated lipids, which would also bring health benefit to consumers.

- 392
- 393

IV) Effect of additive manufacturing process on the preservation of 3D-printed food

- IV.1) Solutions for safe fabrication
- 395

396 If uptake of food engineering/manufacture by AM finally takes off, then the heath-safety issue is 397 going to come up during the process, but also during the food preservation stage, both in terms of 398 microbiological safety (pathogenic and spoilage bacteria, fungus) and food chemistry (oxidation, 399 newly-formed compounds). Most current 3D printers for food products were originally developed in 400 laboratories, where easy-to-clean and/or easy-to-decontaminate design is not generally a concern. 401 3D printers tomorrow will need to be made in stainless steel and meet strict industry standards 402 (Lipton et al., 2015) to prevent cross-contaminations between foods while minimizing the amount of 403 time the 3D-printed food product is exposed to open air (presence of oxygen, high temperatures, 404 and so on). This is confirmed by Severini, Derossi, Ricci, Caporizzi & Fiore (2018a). They 3D-printed a 405 fruit-and-vegetable-based smoothie and monitored its microbiological profile over 8 days when the 406 product was stored at 5 °C in air (20% O₂ and 80% N₂) or under modified atmosphere (5% O₂ and 95% 407 N₂). Microbial concentrations (mesophilic flora, psychrophilic microorganisms and yeasts) in the 408 samples started high, at between 4 and 5 log CFU·g⁻¹, on Day 0, remained stable between Day 0 and 409 Day 6 whatever the food preservation conditions, then showed a decrease at Day 8. The authors 410 explained this initially high microbial contamination as introduced by the printer itself, via its pistons, 411 its tubes or the extruder, as they had carefully washed the ingredients beforehand. 412 According to King et al. (2017), global population is expected to reach at least 9 billion by the year 413 2050, requiring 70% more food and requiring fully-sustainable food production systems. Meeting this 414 food security challenge needs to be part and parcel of tackling equally big strategic issues for food 415 research, such as the ageing demographics with a growing population of immunocompromised 416 persons, and ring consumer demand for clean-label foods. The authors thus raised the hypothesis of 417 'extra-safe' food fabrication processes to make irradiated, sterilized, or pasteurized foods that are 418 targeted to higher-risk populations. On 3D food printing, King et al. (2017) raised a number of 419 concerns, chiefly the fact it could make everyone a food manufacturer without having any real 420 control over the water activities and pH of their self-created food, which will necessarily bring food 421 safety risks. Personalized diets, which we touched on earlier, are also a concern for King et al. (2017). 422 As consumers put more focus on the nutritional aspects than on food safety, there is a risk that 423 modifying, for example, the microbial flora of foods could create unintended food safety issues by 424 changing their gut microflora. Clearly, the 3D food printing, where industrially or at home, needs to 425 be tightly regulated to compensate for the evident lack of lookback experience on this technology 426 and eliminate all risks to health. 427 The microbiological quality of the 3D-printed food deserves to be taken into consideration from the

427 The microbiological quality of the 3D-printed food deserves to be taken into consideration from the 428 design of the printing process. In fact, should the raw 3D-printed food be cooked directly after the 429 printing phase? Or, should it be conditioned as it is? These two pathways will not have the same 430 repercussions in terms of food safety. Let us imagine a random food product, 3D-printed raw under

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, . DOI : 10,1016/i.tifs.2019.02.023

431 controlled aseptic conditions. With the technology available today, we could easily directly print up 432 its packaging, which means the packaging step could be integrated directly into the process. From 433 there, imagine too that this packaging is edible, and so does not need to be removed to cook or eat 434 the product. The packaging could even be made to have bacteriostatic or bactericidal action, using 435 natural compounds (Moghimi, Aliahmadi & Rafati, 2017; Saberi, Chockchaisawasdee, Golding, 436 Scarlett & Stathopoulos, 2017), in which case, as there is no further need for human intervention 437 downstream of printing, the risk of microbiological contamination will be dramatically reduced. 438 The other key utility of carefully thinking out the process design is to facilitate storage of the packed-439 packaged product. A seamlessly controlled process, combining printing and packaging, could enable 440 room-temperature no-refrigeration-needed storage, which could substantially reduce energy 441 demand and prove enormously useful, especially in hot-climate countries. 442 443 IV.2) The post-processing issue 444 445 Post-processing operations like drying, cooking and frying, but also pre-treatments like ultrasound 446 and radiofrequency processing, affect the rheology of food materials, especially gel formation. For

447 more substance-dense foods like lean beef paste, transglutaminase has to be added 0.5% by weight 448 to maintain shape fidelity after cooking (Liu et al., 2017). Lille et al. (2018), among others, think that 449 post-processing treatments could have a positive impact on 3D-printed foods. An example would be 450 drying, which could increase their stiffness. Lille et al. (2018) showed that freeze-drying preserved 3D 451 shapes much better than oven-drying, which tended to cause shrinkage. Water content of the 452 product is an equally important parameter, as more water to remove means more risk of losing 453 shape.

454 The data gap on post-processing steps in the 3D printing literature is manifest—a number of articles 455 underline that further studies are needed to determine the most suitable pre- and post-processing 456 (Liu et al., 2017), and that firm control of the physical-chemical, rheological and mechanical 457 properties of the printed foods is essential (Godoi et al., 2016). Furthermore, the health-hygiene 458 dimension has gone completely ignored. However, it is assuredly conceivable to design very precise 459 post-processing processes, e.g. systems using a laser beam or hot air jet, which are directly coupled 460 to the 3D printing system and which would, at the same time, ensure cooking and microbial 461 decontamination of the food.

14

462

464

- 463
- V) Eco-design and sustainability of additive manufacturing
- V.1) Energy consumption and use of raw materials

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI: 10.1016/j.tifs.2019.02.023

466 A number of studies essentially dealing with the fabrication non-food objects, and not foods, have 467 focused on the environmental effects of AM, or at least attempted to investigate the potential 468 effects ahead of widespread industrial-scale uptake (Burkhart & Aurich, 2015; Jackson et al., 2016). 469 This effort translates into energy (electricity) consumption assessments or into raw material savings 470 estimates (Huang et al., 2012). Although the scholarship appears unanimous that there is raw 471 material gain inherent to geometric adjustment (Jin, Du & He, 2017), there is much less consensus on 472 the electricity consumption issue. According to Kellens, Mertens, Paraskevas, Dewulf & Duflou 473 (2017), the specific energy consumption for AM unit processes is one to two-fold higher than 474 conventional machining and injection moulding processes, and according to Yoon et al. (2014), even 475 up to a hundred times higher. However, this higher environmental impact could be minimized by 476 optimizing the parts manufactured and making lighter parts, especially transport-sector applications 477 for road, rail and flight industries. According to Huang et al. (2012) and Peng (2016), 3D printing 478 processes generally outperform traditional manufacturing processes on environmental impacts. 479 However, as full industry uptake of AM methods has not yet taken off, quantifying its effects in mass 480 production remains a difficult exercise. Nevertheless, Mognol, Lepicart & Perry (2006) have shown 481 that optimized machine build parameters can save 40% to 60% energy on certain machines. Although 482 they reached similar conclusions, Griffiths, Howarth, De Almeida-Rowbotham, Rees & Kerton (2016) 483 toned down the prospects for transposing machine build parameter optimization to other processes, 484 and highlighted the importance of developing design-specific models for AM. Implementing a more 485 global approach based on lifecycle analysis, Le Bourhis, Kerbrat, Dembinski, Hascoet & Mognol (2014) 486 showed that it was entirely possible to develop environmental impact analysis tools assessing AM-487 specific electricity, material and fluids flows. They also highlighted that materials consumption 488 actually had a bigger environmental impact that electricity consumption in AM processes. Watson & 489 Taminger (2018) very recently developed a model for comparing additive vs subtractive 490 manufacturing based on energy consumption. Their model accounts for the entire end-to-end 491 fabrication-process lifecycle, from production, transport and recycling of process materials through 492 to post-production waste processing and the energy used by the equipment on standby. Their 493 conclusions, which were fairly disappointing on balance, underline how certain data is difficult to get, 494 especially energy values for producing certain materials, and crucially, that the model results output 495 cannot be readily extrapolated for studying different AM process scripts and scenarios. 496 Peng (2016) gave five benefits of AM for reducing carbon footprint: 1) reducing the amount of raw 497 material in the supply chain, and thus the mining/processing of ores, 2) reducing the need to use 498 energy-intensive processes like casting and wasteful/harmful input materials like cutting fluid for 499 CNC machining, 3) flexibility for efficient process component design by optimizing operational

465

15

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10,1016/i.tifs.2019.02.023

500 performance, 4) reducing the mass weight of process components to reduce the carbon footprint in 501 land and air transport service (which Huang et al., 2012 also mentioned), and 5) limiting logistics-502 factor effects by bring manufacture close to point-of-use. This last point was also flagged up by 503 Huang et al. (2012) and Kietzmann, Pitt & Berthon (2015) who added that this production modality 504 would cut down on inventory by only fabricating objects on-demand. It would also eliminate the 505 need to make spares that may never get used, particularly in the aeronautics industry. The 506 recyclability of 3D-printed materials is another non-negligible advantage of AM that should be seen 507 as an asset (Kietzmann et al., 2015). 508 The environmental impact of AM technologies has not yet been defined in any real depth, and the 509 latest literature gives a fairly good picture of the kind of questions and contradictions raised for 510 large-scale use. However, there are still a number of as-yet unexplored avenues for research to 511 explore that could weed out certain approximations, primarily in energy consumption assessments, 512 in lifecycle analyses, or in the effects of 3D printing technologies on human health, typically volatile 513 organic compound emissions. The paper by Rejeski, Zhao & Huang (2018) spelled out all of these 514 factors. If we take the example of 3D extrusion printing, a process using plastics is forced to work at 515 high temperatures, which necessarily increases energy demand, whereas food applications will work 516 at lower temperatures, especially if the food products are 3D-printed raw, so it is perfectly 517 conceivable that this type of product would be far more energy-efficient. 518 519 V.2) Upcycling animal by-products by additive manufacturing 520

To the best of our knowledge, only Lupton & Turner (2016) and Lupton (2017) touch on the fact that
3D-printed foods could be environment-positive, by reducing waste, reducing the footprint of
transport via local-locale fabrication, reusing foodstuff material categorized as human-inedible, using
substitute foods, or developing edible packaging.

525 According to FAO figures (FAO, 2012), 33% of all food produced for human consumption globally— 526 whether plant-based or animal-origin-gets lost or wasted, which amounts to about 1.3 billion tons 527 per year: 30% of cereals, 20% of meat and dairy, and 45% of fruit and vegetables. In developing 528 countries, 40% of food losses occur upstream of the supply chain, at harvest, post-harvest and 529 processing, whereas in industrialized countries, more than 40% of food waste occur downstream of 530 the supply chain, at retail and consumer level. Food losses and food waste can have many causes, 531 and yet are sometimes based solely on product appearance standards (FAO, 2012). These food loss 532 and food waste figures also feature certain human-edible protein-rich animal by-products like offal, 533 along with human-inedible parts of a carcass like the bones, tendons and feathers. ADEME [the 534 French environment and energy management agency] defines a by-product as material output

16

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, . DOI : 10.1016/i.tifs.2019.02.023

535 inevitably yet intentionally created at the same time through the same manufacturing process as the 536 main product. Main finished product and by-product both have to meet specific characteristics, and 537 each is fit for direct use in its own specific purpose. There is thriving research community looking at 538 ways to up value certain animal by-products for non-food purposes using AM. A good example is 539 Singh et al. (2017) who are working on designing biomaterials made out of poultry-industry feathers. 540 The rationale is that feathers have such a high protein content that they can serve as base material 541 for fabricating biocompatible tailor-made scaffolds. Given the huge pool of untapped resources, 542 especially very-good-quality proteins, locked in animal products that are already very expensive to 543 produce, it is perfectly logical to ask whether there are ways to squeeze every ounce of added value 544 out of these by-products by using AM to engineer innovative functional foods.

545 Consumption patterns for butchered beef have changed dramatically in the past few years. More and 546 more beef cuts are no longer being used in traditional French slow-cooked recipes like pot-au-feu 547 and beef *bourguignon*. This is explained by a shift in consumer lifestyle trends, where certain recipes 548 are now seen as taking far too long to prepare, and that is before we count the fact that consumers 549 today only want the most tender cuts, and the big background burger trend. The upshot is that 550 consumers today, right from their earliest age, are being taught to eat tender or even very soft food. 551 There are two different technology pathways to re-value-stream meat, especially beef which is 552 currently either processed as ground beef patties or undervalued as its initial tenderness is mediocre 553 at best: 1) work on mechanical tenderization of chunked meat, by optimizing the tumbling processes 554 (Daudin, Sharedeh, Favier, Portanguen, Auberger, & Kondjoyan, 2016); 2) design innovative foods by 555 AM. In both cases, the goal is to fashion meat products presenting a fully process-controlled texture. 556 Muscle is not the only carcass component that AM can upvalue. As discussed earlier, the collagen is 557 also used, especially in the medical sector as a scaffold material (Inzana et al., 2014; Shanjani et al., 558 2017). This structural protein, which is considered a by-product as it comes from the skin, bones and 559 tendons of animals, also finds an array of food-industry applications (gelatin) and could well find 560 great usability in fabricating functional foods engineered by AM (fig. 2). Mobilizing the structural 561 potential of collagen via AM could be a way to develop foods based on undervalued meat or offal 562 that have a texture suitable for young or senior citizens. Indeed, the only studies available to date on 563 AM-engineered meat-based foods (Gracia-Julia et al., 2015; Godoi et al., 2016), used purees or 564 ground beef, except those reporting whole-tissue fabrication by culturing stem cells (Lipton et al., 565 2015). Research led by Shanjani et al. (2017) to spur orthopaedic applications could well inspire new 566 avenues for research in the food sector. Collagen-based architectures (scaffolds) with purpose-567 defined motif and pore structure could serve as the build platform for fabricating texture-controlled 568 meat-based foods.

570 571

VI) Towards personalizable functional foods

572 Spurred by the rapid development of 3D technologies for food, authors like Wegrzyn, Golding & 573 Archer (2012), Sun et al. (2015a), Derossi et al. (2018), Liu et al. (2017), Severini et al. (2018a) and 574 Kousani et al. (2017) all believe that personalization holds bright prospects for the sector, which 575 could really take off if 'home' 3D food printers become mainstream kitchen appliances—something 576 that companies like Natural Machines, with their Foodini system, and Print2Taste, with their Bocusini 577 system, are already offering. The paper by Liu et al. (2017) gives insight into the various applications 578 of personalized food—for populations with medical conditions, for soldiers, for astronauts, and so 579 on-and the inherent difficulties involved-shape fidelity for delicate objects with architectural 580 complexities, printing speed, and so on. Among these target populations, the most widely cited in 581 the literature is elderly people with sarcopenia or dysphagia. Thompson (2007) explains that 582 sarcopenia is a loss of skeletal muscle mass resulting in a reduction of physical strength that can lead 583 to loss of independence, pain, and prolongation of hospitalizations. It is projected that the global 584 population of people aged 60 years and over will reach 1.4 billion by 2030 and 2.1 billion by 2050 585 (including 202 million people aged 80 years and over by 2030 and 434 million by 2050), yet there are 586 no effective therapeutic interventions against this age-related disease. One therapeutic strategy is 587 diet interventions to supply essential specific nutrients for this population (Luo, Lin, Li & Liu, 2017). 588 This is where food-sector AM can prove helpful by proposing new controlled-composition foods with 589 adapted flavours. Dysphagia or swallowing troubles affects 15%–25% of seniors (Sun, Peng, Yan, Fuh, 590 & Hong, 2015b), and the incidence is high in patients who have had stroke, paralysis, Parkinson's 591 disease, the list goes on. In response, as the swallowing reflex is impaired, the food given has to be 592 made texture-appropriate, i.e. purees and thickened fluids (Kousani et al., 2017). Food texture is thus 593 a central concern for these ageing-related syndromes. Food design by 3D printing could make it 594 easier for these populations to intake animal protein-packed foods that do not have to be mashed 595 into a puree.

596 Derossi et al. (2018) underlined how people struggle to meet the nutritional guidelines on getting 5 597 fruits and vegetables per day, with only 10% of the Italian population following these 598 recommendations. The upshot is that there are many children and teenagers with vitamin and 599 mineral deficiencies, especially for iron and calcium, which is partly due to parents struggling to get 600 their children to eat certain foods. Personalization by 3D printing could serve to develop foods or 601 food supplements that are nutritionally targeted to this population by playing on tastes and texture. 602 Derossi et al. (2018) 3D-printed a snack devised to provide the recommended nutritional 603 requirements, and composed of the following ingredients: banana (for palatability), dried

mushrooms, white beans, skimmed milk powder, lemon juice, ascorbic acid (an antioxidant), and

18

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, . DOI : 10.1016/i.tifs.2019.02.023

605 pectin (11% to get consistency and avoid phase separation). All these ingredients were blended then 606 3D-printed to a set geometry while controlling for print speed and flow level. The results showed that 607 flow level had a big effect on microstructure: low flow resulted in irregular structures and filament 608 breakup, whereas higher flow led to better filament fusion but worse porosity (enlarged total 609 volume). Despite running into technical problems, chiefly rheological issues, this study has proven 610 that it was entirely possible to 3D print functional foods targeting a specific population. However, it 611 would have been useful to capture the target population's experience of the food, especially in terms 612 of organoleptics and acceptability.

613 The population segments cited above (seniors and children/teenagers) are not the only populations 614 concerned by food customization, which also directly concerns a large number of 'subpopulations' 615 that, together, represents a substantial mass of people: athletes, pregnant women, people with 616 allergies, or young adults who lack either the time or the desire for cooking. However, where these 617 new technologies really could bring transformative benefit to the masses would be to improve global 618 food security and fight famine. There are a number of countries in the world affected by famine, and 619 the people exposed have specific needs. AM could help these populations by maximizing the 620 nutritional composition of foods available and pulling together different sources of nourishment, 621 from meats to algae, lupine seed, insects, and more (Lupton, 2017). 622 Lipton (2017), who is primarily focused on western populations, asserts that there are two main

623 reasons to use AM for the food industry: one is health, the other is consumer preferences. Lipton 624 (2017) takes the example of the US population, where 4% of people have food allergies, where a 625 substantial fraction of the population has digestive disorders (like lactose intolerance), where 60 to 626 70 million Americans are on dietary adjustments due to diseases (like Crohn's disease or irritable 627 bowel syndrome), and where 69% of the population is overweight or obese—and all this without 628 counting all the people that have difficulty chewing and/or swallowing. Lipton (2017) believes that 629 automated (i.e. computer-controlled) mass customization of food would not only help make life 630 easier for certain people with special food needs but also make food contamination by allergens far 631 less likely, or even completely eliminate an ingredient.

632 This dimension of personalized food has been investigated in a handful of studies in continents 633 worldwide. Examples would include, again, the European PERFORMANCE project, and research by 634 Kousani et al. (2017) who endeavoured to find solutions for people with swallowing difficulties by 635 developing a 3D printer that can fuse visually appetizing foods from pureed tuna, pureed pumpkin 636 and pureed beetroot. They underline that there has been little effort made to use 3D food printing to 637 improve the lives of people with special mealtime needs. They go on to state that 3D food printing 638 could be used to automate the production of pureed foods and thickened liquids, improve the 639 consistency and repeatability of foods produced in terms of texture and moisture, enhance the taste-

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10,1016/j.tifs.2019.02.023

sensory experiences in texture-modified meals, and manufacture visually attractive pureed foods andthickened liquids for people with dysphagia.

- 642
- 643

VII) Consumer acceptability of an innovative process

644

The big consumer demand trend is towards less-processed additive-free foods. That said, how would perceptions change in the case of diagnosis-confirmed and severe malnutrition-related conditions when AM can design a supplemented food, say a protein-supplemented food, offering optimal mechanical and nutritional properties? It would then be possible to define two separate spaces for 3D food printing applications: additive-free foods for masses, and foods for therapeutic intervention that entail a higher level of food processing. However, would they still be perceived as 'foods'? And, if so, how could these foods be integrated into daily diet?

652 Earlier we touched on muscle tissue fabrication by culturing stem cells as potential application for 3D 653 food printing. The studies by Siegrist & Sutterlin (2017) and Carocho, Morales & Ferreira (2015) 654 showed that consumers were looking for foods that were as natural as possible and had better 655 perceptions of traditionally-farmed meat than in vitro meat, even if in vitro (cultured) meat is more 656 environment- and animal welfare-conscious. However, these same studies also underline how 657 consumers will evaluate a food based on symbolic but high-impact information signals. An in-depth 658 survey on consumer attitudes to a new technology and the release of short, sharp, and 659 straightforward information would provide consumers relevant insight on the value and utility of a 660 new process or a new way to eat. Brunner, Dellez & Denkel (2017) tackled this objective by polling 661 2047 people, and learned that consumers had a poor understanding of 3D food printing. However, 662 they were able to test the positive effect of consumer-targeted information by explaining that the 663 new technology could help them prepare healthy, personalized meals, all while injecting a dose of fun. This is confirmed by Lupton (2017) who argued that for a new technology or a new food to win 664 665 acceptance, it must first convince the consumers of its potential and its value, while at the same time 666 offering them reassurances. As we have seen throughout this paper, 3D food printing cannot 667 currently do without additives (Hamilton, Alici & In Het Panhuis, 2018), chiefly texture stabilizers, 668 especially when printing meat products. Evans, de Challemaison & Cox (2010) revealed that in terms 669 of prompting consumer deviation from 'natural', chemical changes were more potent than physical 670 changes. AM today, though, aggregates both types of processing, which is precisely why 3D food 671 printing research needs to press ahead, to attempt to minimize the use of additive inputs while 672 further improving process output. Lupton & Turner (2016) state that 3D food printing technologies 673 will only expand if they manage to keep the food 'natural'. This vision would enable consumers to 674 hold onto their affective ties with food and turn a blind eye to the transgressive side of the

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, . DOI : 10.1016/i.tifs.2019.02.023

technology. Their study also addressed what looks like the biggest segment opportunity for 3D food
printing: personalization/customization. If perceptions of 3D-printed food can be oriented towards
nutrition/health dimensions or towards combating malnutrition, then the technology could become
an asset rather than a barrier to eating 3D-printed food. Niche markets, natural resource
stewardship, food security and culinary creativity are all factors expected to drive uptake of this new
type of food process.

681 3D food printing could well find a place as a new process in the collective consciousness, and become 682 no more revolutionary than the microwave oven back in its day. Even if, as Brunner et al. (2017) 683 concluded, simply drawing comparisons between an old and a new technology is not enough to 684 break down reticence and resistance to the new one, food neophobia will always crystallize, or even 685 galvanize, in some people. Generation Z today (the demographic cohort born after the year 2000), in 686 France alone, will represent 75% of the working population tomorrow. This new generation is set to 687 turn today's food patterns upside down, using digital devices that will become ubiquitous. Round-688 the-clock home delivery, the influence of social networks on the way we eat, and diet tracking via 689 dedicated apps will emerge new ways to feed our bodies—ways where AM is expected to flourish. 690 Note that several surveys are already reporting that one in two 18–24-year-olds is ready to use a 3D 691 food printer sometime in the future (The NPD Group, 2017; Kantar TNS, 2017). According to analysis 692 by The Nielsen Company (2015), four different categories of Millennials (the demographic cohort 693 born between 1980 and 2000, also labelled Generation Y) are set to coexist: Consumers who are 694 environmentally conscious and concerned about the environmental impact of food-related processes 695 will stand next to people drawn by high-tech, people concerned about their purchasing power, or 696 people who embrace innovation yet hold onto certain more 'traditional' values. Researchers and 697 engineers need to compose with all of these audiences in order to develop the uptake of 3D printing. 698 Another category of people—a multigenerational demographic this time—could also shape the way we eat, particularly meat: they are the flexitarians. Flexitarianism is a diet-lifestyle movement in 699 700 which meat consumption is kept moderate, reduced or even minimized, but not entirely excluded. 701 While around 1.7% of the French population are vegetarian and another 0.5% vegan, 34% of 702 households are flexitarians, and 19% of flexitarians are under-35s (Kantar Worldpanel, 2016). This 703 population, which is convinced climate change is a very real problem, could be receptive to the 704 arguments for 3D food printing based on upcycling animal by-products and minimizing food waste. 705 Flexitarians could also be a first-line target audience for the design of new foods built with different 706 protein sources, as discussed earlier in this paper. The study by Noort, Van Bommel & Renzetti (2017) 707 offers a good foundation for avenues to progress on these challenges. On top of building a pilot-scale 708 3D food-printing facility that can print 60 full meals per hour and using a multi-scale approach to 709 deliver a personalized food texture, they also ran fortified composition tests. Working on plant-based

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, . DOI : 10.1016/i.tifs.2019.02.023

710 products, they kept at least 80% of the main ingredient, with the other 20% allowing for fortification 711 with proteins, fats, micronutrients, and gelling agents. The same strategy was followed by Severini, 712 Azzolini, Albenzio & Derossi (2018b) with using edible insects as a new protein source. These efforts 713 demonstrate that it is possible to 3D print foods composed of different sources of protein or other 714 macromolecules. It is therefore perfectly conceivable to use a similar approach for meat-based 715 products, by lending them added nutritional value and adapting a sustainable development approach 716 in which meat products, fats and plant-crop proteins or proteins from algae, mushroom or insect 717 sources could be co-incorporated.

718

719 CONCLUSION

720

721 3D printing is unquestionably a technology with a bright future in a whole number of sector spaces. 722 The food chain industry can also use these innovative processes to tackle today's issues for 723 tomorrow's generations. Providing custom-tailored turnkey nutritional solutions to populations that 724 have thus far been excluded from certain markets due to their health conditions, deprived of regular 725 access to food resources, or simply too short of buying power, represents a series of issues that, 726 although complex and challenging, are not impossible to overcome. Resolving these issues will 727 undoubtedly revolve around some degree of mass customization of new additive manufacturing 728 processes, or by new product value-streaming processes. This review arrives at the conclusion that 729 3D food printing is on a trajectory to further progress and development. A number of products are, 730 or soon will be, ready to go to market. Nevertheless, the meat-based foods problem, where the main 731 technological hurdle remains texturizing the printed foods, has yet to be resolved. The major 732 challenge for the coming years will be to work on using 3D printing to develop meat products or 733 products blending alternative protein sources that remain perfectly structured without having to use 734 additives. A substantive work remains to be done at this level by seeking to increase the cohesion 735 between the layers of the product by optimizing the 3D-printing parameters, but also by adapting the 736 physical and / or chemical properties of the printed product with no adding of chemical substances. 737 Once this step is completed, research will be essential to enable the manufacture of healthy foods, 738 both from a microbiological and chemical point of view. To achieve this, tomorrow's 3D printers for 739 foodstuffs have to be think from now so that their design accounts for easy cleaning and integration 740 of a post-processing system (cooking, drying ...), and why not, a system of packaging, in order to limit 741 the handling of product and thus the risks of external contamination. From a chemical point of view, 742 the printing times being, for the moment, relatively long, it is therefore necessary to pay careful 743 attention to the immediate environment of the food being printed in order to preserve its various 744 constituents from the oxidation phenomena (printing under nitrogen atmosphere...). If all these

22

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, . DOI : 10,1016/i.tifs.2019.02.023

745	various challenges are raised, the manufacture by 3D-printing of microbiologically and chemically
746	stable foodstuffs that could be then conserved at room temperature will then be a reality, thus
747	leading to a real sustainable development approach. The final step will then be to garner consumer
748	acceptance for these 3D-printed foods. If consumers are properly briefed on the methods employed
749	and the benefits offered, then we see no real barriers to wider acceptability, especially among the
750	future generations coming of age, many of whom will likely embrace both flexitarianism and
751	hyperconnectedness. Today, the signs and signals suggest additive manufacturing is about to usher in
752	the next new industrial revolution. So why not in food manufacturing? Time will tell.
753	
754	Acknowledgments
755	
756	The authors thank ATT (an ISO 9001:2008-certified technical and scientific translation services
757	company) for proofreading the manuscript.
758	
759	

Version preprint

	ACCEPTED MANUSCRIPT
760	REFERENCES
761	
762	Almela, T., Brook, I. M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., Tahriri, M.,
763	Dashtimoghadam, E., El-Awa, A., Tayebi, L., & Moharamzadeh, K. (2017). Simulation of cortico-
764	cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds.
765	Bioprinting, 6, 1-7.
766	Almela, T., Al-Sahaf, S., Brook, I. M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., Tahriri, M.,
767	Dashtimoghadam, E., Bolt, R., Tayebi, L., & Moharamzadeh, K. (2018). 3D printed tissue
768	engineered model for bone invasion of oral cancer. <i>Tissue Cell, 52</i> , 71-77.
769	Areir, M., Xu, Y., Harrison, D., & Fyson, J. (2017). 3D printing of highly flexible supercapacitor
770	designed for wearable energy storage. Materials Science and Engineering: B, 226, 29-38.
771	Attaran, M. (2017). The rise of 3-D printing: The advantages of additive manufacturing over
772	traditional manufacturing. Business Horizons, 60(5), 677-688.
773	Bégin-Drolet, A., Dussault, MA., Fernandez, S. A., Larose-Dutil, J., Leask, R. L., Hoesli, C. A., & Ruel, J.
774	(2017). Design of a 3D printer head for additive manufacturing of sugar glass for tissue
775	engineering applications. Additive Manufacturing, 15, 29-39.
776	Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55(2), 155-162.
777	Bose, S., Ke, D., Sahasrabudhe, H., & Bandyopadhyay, A. (2018). Additive manufacturing of
778	biomaterials. Progress in Materials Science, 93, 45-111.
779	Brunner, T. A., Delley, M., & Denkel, C. (2017). Consumers' attitudes and change of attitude toward
780	3D-printed food. Food Quality and Preference. https://doi.org/10.1016/j.foodqual.2017.12.010.
781	Burkhart, M., & Aurich, J. C. (2015). Framework to predict the environmental impact of additive
782	manufacturing in the life cycle of a commercial vehicle. Procedia CIRP, 29, 408-413.
783	Campbell, T., Williams, C., Ivanova, O., & Garett, B. (2011). Could 3D printing change the world?
784	Technologies, potential, and implications of additive manufacturing. In Strategic Foresight Report,
785	(pp. 16): Atlantic Council.
786	Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends in
787	Food Science & Technology, 45(2), 284-295.
788	Chen, X., Li, J., Cheng, X., He, B., Wang, H., & Huang, Z. (2017). Microstructure and mechanical
789	properties of the austenitic stainless steel 316L fabricated by gas metal arc additive
790	manufacturing. Materials Science and Engineering: A, 703, 567-577.
791	Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological
792	Engineering, 9 (1), 4.
793	Connell, J. L., Ritschdorff, E. T., Whiteley, M., & Shear, J. B. (2013). 3D printing of microscopic
794	bacterial communities. Proceedings of the National Academy of Sciences, 110(46), 18380-18385.
	24

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, DOI : 10.1016/i.tifs.2019.02.023

- Daudin, J.-D., Sharedeh, D., Favier, R., Portanguen, S., Auberger, J.-M., & Kondjoyan, A. (2016). Design
- of a new laboratory tumbling simulator for chunked meat: Analysis, reproduction and
- measurement of mechanical treatment. *Journal of Food Engineering*, 170, 83-91.
- 798 Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized
- food. A case on the development of a fruit-based snack for children. *Journal of Food Engineering*,
 220, 65-75.
- Bunn, J.C.Y, Yarmush, M.L, Koebe, H.G, Tompkins, R.G. (1989). Hepatocyte function and extracellular
 matrix geometry long-term culture in a sandwich configuration. *Federation of American Societies for Experimental Biology (FASEB) Journal, 3*, 174–177.
- Evans, G., de Challemaison, B., & Cox, D. N. (2010). Consumers' ratings of the natural and unnatural
 qualities of foods. *Appetite*, *54*(3), 557-563.
- FAO (2012). Pertes et gaspillages alimentaires dans le monde Ampleur, causes et prévention. Rome,
 Italy, p 41.
- Farag, M. M., & Yun, H.-S. (2014). Effect of gelatin addition on fabrication of magnesium phosphatebased scaffolds prepared by additive manufacturing system. *Materials Letters, 132*, 111-115.
- Ford, S., Mortara, L., & Minshall, T. (2016). The emergence of additive manufacturing: Introduction to
 the special issue. *Technological Forecasting and Social Change, 102*, 156-159.
- Gausemeier, J., Echterhoff, N., Kokoschka, M., & Wall, M. (2011). Thinking ahead the future of
 additive manufacturing Analysis of promising industries. (pp. 103). Germany: University of
 Paderborn, DMRC.
- Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design:
 Status and prospects. *Journal of Food Engineering*, *179*, 44-54.
- Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized
 drug delivery systems. *International Journal of Pharmaceutics, 499*(1-2), 376-394.
- 819 Gracia-Julia, A., Hurtado-Pnol, S., Leung, A., & Capellas, M. (2015). *Extrusion behavior of food*
- 820 materials in a 3D Food Printer. Pectin based bio-ink formulations for 3-D printing of porous foods.
- 821 In Proceedings of the 29th EFFoSt International, 10-12 November, Athens, vol 2, pp 1740-1741.
- 822 Griffiths, C. A., Howarth, J., De Almeida-Rowbotham, G., Rees, A., & Kerton, R. (2016). A design of
- 823 experiments approach for the optimisation of energy and waste during the production of parts
- manufactured by 3D printing. *Journal of Cleaner Production, 139,* 74-85.
- 825 Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing
- and its potential impact on biotechnology and the chemical sciences. *Analytical Chemistry*, *86*(7),
 3240-3253.
- Gudapati, H., Dey, M., & Ozbolat, I. (2016). A comprehensive review on droplet-based bioprinting:
 Past, present and future. *Biomaterials*, *102*, 20-42.

830 Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S., Bareille, R., Remy, 831 M., Bordenave, L., Amedee, J., & Guillemot, F. (2010). Laser assisted bioprinting of engineered 832 tissue with high cell density and microscale organization. *Biomaterials*, 31(28), 7250-7256. 833 Hamilton, C. A., Alici, G., & in het Panhuis, M. (2018). 3D printing Vegemite and Marmite: Redefining 834 "breadboards". Journal of Food Engineering, 220, 83-88. 835 Heigel, J. C., Michaleris, P., & Reutzel, E. W. (2015). Thermo-mechanical model development and 836 validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Additive 837 Manufacturing, 5, 9-19. 838 Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H.-J., Ramadan, M. H., 839 Hudson, A. R., & Feinberg, A. W. (2015). Three-dimensional printing of complex biological 840 structures by freeform reversible embedding of suspended hydrogels. Science Advances, 1(9). 841 Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food 842 grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 843 220, 12-19. 844 Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2012). Additive manufacturing and its societal impact: a 845 literature review. The International Journal of Advanced Manufacturing Technology, 67(5-8), 846 1191-1203. 847 Icten, E., Purohit, H. S., Wallace, C., Giridhar, A., Taylor, L. S., Nagy, Z. K., & Reklaitis, G. V. (2017). 848 Dropwise additive manufacturing of pharmaceutical products for amorphous and self-emulsifying 849 drug delivery systems. International Journal of Pharmaceutics, 524(1-2), 424-432. 850 Inzana, J. A., Olvera, D., Fuller, S. M., Kelly, J. P., Graeve, O. A., Schwarz, E. M., Kates, S. L., & Awad, H. 851 A. (2014). 3D printing of composite calcium phosphate and collagen scaffolds for bone 852 regeneration. *Biomaterials*, 35(13), 4026-4034. 853 Jackson, M. A., Van Asten, A., Morrow, J. D., Min, S., & Pfefferkorn, F. E. (2016). A comparison of 854 energy consumption in wire-based and powder-based additive-subtractive manufacturing. 855 Procedia Manufacturing, 5, 989-1005. 856 Jakab, K., Norotte, C., Marga, F., Murphy, K., Vunjak-Novakovic, G., & Forgacs, G. (2010). Tissue 857 engineering by self-assembly and bio-printing of living cells. *Biofabrication*, 2(2), https://doi: 858 10.1088/1758-5082/2/2/022001. 859 Jin, Y., Du, J., & He, Y. (2017). Optimization of process planning for reducing material consumption in 860 additive manufacturing. Journal of Manufacturing Systems, 44, 65-78. 861 Kantar TNS (2017). FoodTech: les Millenials révolutionnent l'alimentation. www.mbanmci.com. 862 (https://mbamci.com/foodtech-millenials-et-alimentation/)

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI: 10.1016/j.tifs.2019.02.023

863 Kantar Worldpanel (2016). A la découverte des « flexitariens » : Qui sont ces foyers qui souhaitent 864 réduire leur consommation de protéines animales ? Newsletter n°48. 865 https://www.kantarworldpanel.com/fr/A-la-une/Newsletter-48 866 Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., & Duflou, J. R. (2017). Environmental impact of 867 additive manufacturing processes: Does AM contribute to a more sustainable way of part 868 manufacturing? Procedia CIRP, 61, 582-587. 869 Kietzmann, J., Pitt, L., & Berthon, P. (2015). Disruptions, decisions, and destinations: Enter the age of 870 3-D printing and additive manufacturing. *Business Horizons*, 58(2), 209-215. 871 Kim, H. W., Bae, H., & Park, H. J. (2018). Reprint of: Classification of the printability of selected food 872 for 3D printing: Development of an assessment method using hydrocolloids as reference material. 873 Journal of Food Engineering, 220, 28-37. 874 King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M., & Hill, J. P. (2017). Food safety 875 for food security: Relationship between global megatrends and developments in food safety. 876 Trends in Food Science & Technology, 68, 160-175. 877 Kousani, A. Z., Adams, S., Whyte, D. J., Oliver, R., Hemsley, B., Palmer, S., & Balandin, S. (2017). 3D 878 printing of food for people with swallowing difficulties. In S. o. E. Paul K. Collins, Deakin University 879 and Ian Gibson, School of Engineering, Deakin University (Ed.), DesTech Conference Proceedings. 880 The International Conference on Design and Technology, (pp. 23-29). Australia: Deakin University. 881 Krujatz, F., Lode, A., Seidel, J., Bley, T., Gelinsky, M., & Steingroewer, J. (2017). Additive biotech-882 chances, challenges, and recent applications of additive manufacturing technologies in 883 biotechnology. New Biotechnology, 39(Pt B), 222-231. 884 Lanaro, M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. 885 (2017). 3D printing complex chocolate objects: Platform design, optimization and evaluation. 886 Journal of Food Engineering, 215, 13-22. 887 Lee, V. K., Lanzi, A. M., Haygan, N., Yoo, S. S., Vincent, P. A., & Dai, G. (2014). Generation of Multi-888 Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology. Cellular and 889 *Molecular Bioengineering*, 7(3), 460-472. 890 Le Bourhis, F., Kerbrat, O., Dembinski, L., Hascoet, J.-Y., & Mognol, P. (2014). Predictive model for 891 environmental assessment in additive manufacturing process. Procedia CIRP, 15, 26-31. 892 Le Tohic, C., O'Sullivan, J. J., Drapala, K. P., Chartrin, V., Chan, T., Morrison, A. P., Kerry, J. P., & Kelly, 893 A. L. (2018). Effect of 3D printing on the structure and textural properties of processed cheese. 894 Journal of Food Engineering, 220, 56-64. 895 Lille, M., Nurmela, A., Nordlund, E., Metsä-Kortelainen, S., & Sozer, N. (2018). Applicability of protein 896 and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering, 220, 20-897 27.

- Lipton, J. I., Cutler, M., Nigl, F., Cohen, D., & Lipson, H. (2015). Additive manufacturing for the food
 industry. *Trends in Food Science & Technology*, *43*(1), 114-123.
- Lipton, J. I. (2017). Printable food: the technology and its application in human health. *Current Opinion in Biotechnology*, 44, 198-201.
- Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3D printing: Printing precision and application in
 food sector. *Trends in Food Science & Technology*, 69, 83-94.
- Liu, Z., Zhang, M., Bhandari, B., & Yang, C. (2018). Impact of rheological properties of mashed
 potatoes on 3D printing. *Journal of Food Engineering*, 220, 76-82.
- Luo, D., Lin, Z., Li, S., & Liu, S.-J. (2017). Effect of nutritional supplement combined with exercise
 intervention on sarcopenia in the elderly: A meta-analysis. *International Journal of Nursing Sciences*, 4(4), 389-401.
- Lupton, D., & Turner, B. (2016). 'Both fascinating and disturbing': Consumer responses to 3D food
 printing and implications for food activism. In K. E. Tanja Schneider, Catherine Dolan and Stanley
 Ulijaszek (Ed.), *Digital Food Activism*, (pp. 17). London: Routledge.
- Lupton, D. (2017). 'Download to delicious': Promissory themes and sociotechnical imaginaries in
 coverage of 3D-printed food in online news sources. *Futures, 93*, 44-53.
- Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by
 correlating thermal and flow properties with 3D structure modeling. *Innovative Food Science & Emerging Technologies, 44*, 21-29.
- Mawale, M. B., Kuthe, A. M., & Dahake, S. W. (2016). Additive layered manufacturing: State-of-theart applications in product innovation. *Concurrent Engineering*, 24(1), 94-102.
- 919 Melchels, F. P. W., Domingos, M. A. N., Klein, T. J., Malda, J., Bartolo, P. J., & Hutmacher, D. W.
- 920 (2012). Additive manufacturing of tissues and organs. *Progress in Polymer Science*, 37(8), 1079921 1104.
- Meteyer, S., Xu, X., Perry, N., & Zhao, Y. F. (2014). Energy and Material Flow Analysis of Binder-jetting
 Additive Manufacturing Processes. *Procedia CIRP*, 15, 19-25.
- Moghimi, R., Aliahmadi, A., & Rafati, H. (2017). Antibacterial hydroxypropyl methyl cellulose edible
 films containing nanoemulsions of Thymus daenensis essential oil for food packaging.
- 926 *Carbohydrate Polymers, 175, 241-248.*
- Mognol, P., Lepicart, D., & Perry, N. (2006). Rapid prototyping: energy and environment in the
 spotlight. *Rapid Prototyping Journal*, 12(1), 26-34.
- 929 Munaz, A., Vadivelu, R. K., St. John, J., Barton, M., Kamble, H., & Nguyen, N.-T. (2016). Three-
- 930 dimensional printing of biological matters. *Journal of Science: Advanced Materials and Devices,*

28

931 1(1), 1-17.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198, DOI : 10.1016/j.tifs.2019.02.023

932	Murphy, S. V., Skardal, A., & Atala, A. (2013). Evaluation of hydrogels for bio-printing applications.
933	Journal of Biomedical Materials Research - Part A, 101(1), 272-284.
934	Noort, M., van Bommel, K., & Renzetti, S. (2017). 3D-Printed Cereal Foods. Cereal Foods World, 62(6),
935	272-277.
936	Pallottino, F., Hakola, L., Costa, C., Antonucci, F., Figorilli, S., Seisto, A., & Menesatti, P. (2016).
937	Printing on food or food printing: A review. Food and Bioprocess Technology, 9(5), 725-733.
938	Pinna, C., Ramundo, L., Sisco, F. G., Angioletti, C. M., Taisch, M., & Terzi, S. (2017). Additive
939	manufacturing applications within food industry: An actual overview and future opportunities. In
940	XXI Summer School "Francesco Turco"- Industrial Systems Engineering, (pp. 7).
941	Peng, T. (2016). Analysis of energy utilization in 3D printing processes. Procedia CIRP, 40, 62-67.
942	Rejeski, D., Zhao, F., & Huang, Y. (2018). Research needs and recommendations on environmental
943	implications of additive manufacturing. Additive Manufacturing, 19, 21-28.
944	Saberi, B., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017).
945	Characterization of pea starch-guar gum biocomposite edible films enriched by natural
946	antimicrobial agents for active food packaging. Food and Bioproducts Processing, 105, 51-63.
947	Severini, C., Derossi, A., & Azzollini, D. (2016). Variables affecting the printability of foods: Preliminary
948	tests on cereal-based products. Innovative Food Science & Emerging Technologies, 38, 281-291.
949	Severini, C., Derossi, A., Ricci, I., Caporizzi, R., & Fiore, A. (2018a). Printing a blend of fruit and
950	vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food
951	Engineering, 220, 89-100.
952	Severini, C., Azzollini, D., Albenzio, M., & Derossi, A. (2018b). On printability, quality and nutritional
953	properties of 3D printed cereal based snacks enriched with edible insects. Food Research
954	International, 106, 666-676.
955	Shanjani, Y., Kang, Y., Zarnescu, L., Ellerbee Bowden, A. K., Koh, J. T., Ker, D. F. E., & Yang, Y. (2017).
956	Endothelial pattern formation in hybrid constructs of additive manufactured porous rigid scaffolds
957	and cell-laden hydrogels for orthopedic applications. Journal of the Mechanical Behavior of
958	Biomedical Materials, 65, 356-372.
959	Shimizu, S., Fujii, H. T., Sato, Y. S., Kokawa, H., Sriraman, M. R., & Babu, S. S. (2014). Mechanism of
960	weld formation during very-high-power ultrasonic additive manufacturing of Al alloy 6061. Acta
961	Materialia, 74, 234-243.
962	Siegrist, M., & Sutterlin, B. (2017). Importance of perceived naturalness for acceptance of food
963	additives and cultured meat. Appetite, 113, 320-326.
964	Singh, M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet printing-process and its
965	applications. Advanced Materials, 22(6), 673-685.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, DOI : 10.1016/i.tifs.2019.02.023

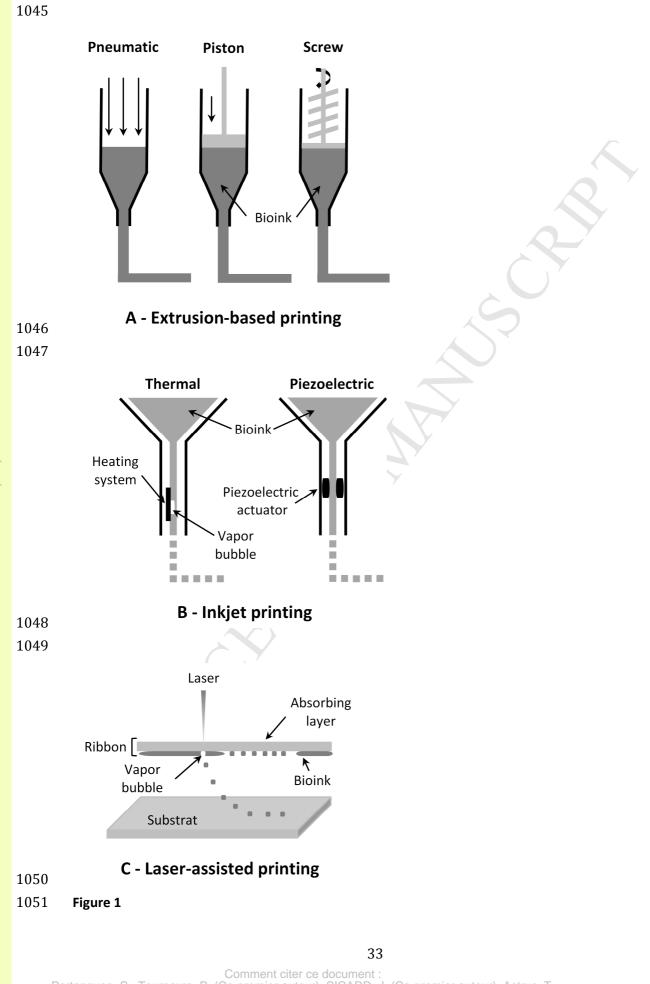
Singh, S., & Ramakrishna, S. (2017). Biomedical applications of additive manufacturing: Present and 966 967 future. Current Opinion in Biomedical Engineering, 2, 105-115. 968 Singh, S., Ramakrishna, S., & Singh, R. (2017). Material issues in additive manufacturing: A review. 969 Journal of Manufacturing Processes, 25, 185-200. 970 Smith, C.M., Stone, A. L., Parkhill, R.L., Stewart, R.L., Simpkins, M.W., Kachurin, A.M., Warren, W.L., 971 Williams, S.K. (2004). Three-dimensional bioassembly tool for generating viable tissue-engineered 972 constructs. *Tissue Engineering*, *10(9-10)*, 1566-1576. 973 Smith, C.M, Christian, J.J, Warren, W.L, Williams, S.K. (2007). Characterizing environmental factors 974 that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly 975 tool. *Tissue Engineering*, *13*(*2*), 373-383. 976 So, E., Mandas, V. H., & Hlad, L. (2018). Large Osseous Defect Reconstruction Using a Custom Three-977 Dimensional Printed Titanium Truss Implant. The Journal of foot and ankle surgery, 57(1), 196-978 204. 979 Sun, J., Zhou, W., Huang, D., Fuh, J. Y. H., & Hong, G. S. (2015a). An overview of 3D printing 980 technologies for food fabrication. Food and Bioprocess Technology, 8(8), 1605-1615. 981 Sun, J., Peng, Z., Yan, L., Fuh, J. Y. H., & Hong, G. S. (2015b). 3D food printing—An innovative way of 982 mass customization in food fabrication. International Journal of Bioprinting, 1(1), 27-38. 983 Sun, J., Zhou, W., Yan, L., Huang, D., & Lin, L.-y. (2017). Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering. 984 985 Takezawa, A., & Kobashi, M. (2017). Design methodology for porous composites with tunable 986 thermal expansion produced by multi-material topology optimization and additive manufacturing. 987 Composites Part B: Engineering, 131, 21-29. 988 The Nielsen Company (2015). Zoom sur les Millenials. www.nielsen.com. 989 The NPD Group (2017). Millenials : les 18-34 ans redessinent la restauration de demain. 990 www.npdgroup.fr. 991 Thompson, D. D. (2007). Aging and sarcopenia. Journal of Musculoskeletal and Neuronal Interactions, 992 7(4), 344-345. 993 Vancauwenberghe, V., Katalagarianakis, L., Wang, Z., Meerts, M., Hertog, M., Verboven, P., 994 Moldenaers, P., Hendrickx, M. E., Lammertyn, J., & Nicolaï, B. (2017). Pectin based food-ink 995 formulations for 3-D printing of customizable porous food simulants. Innovative Food Science & 996 Emerging Technologies, 42, 138-150. 997 Wang, L., Zhang, M., Bhandari, B., & Yang, C. (2018). Investigation on fish surimi gel as promising 998 food material for 3D printing. Journal of Food Engineering, 220, 101-108.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198 DOI: 10.1016/j.tifs.2019.02.023

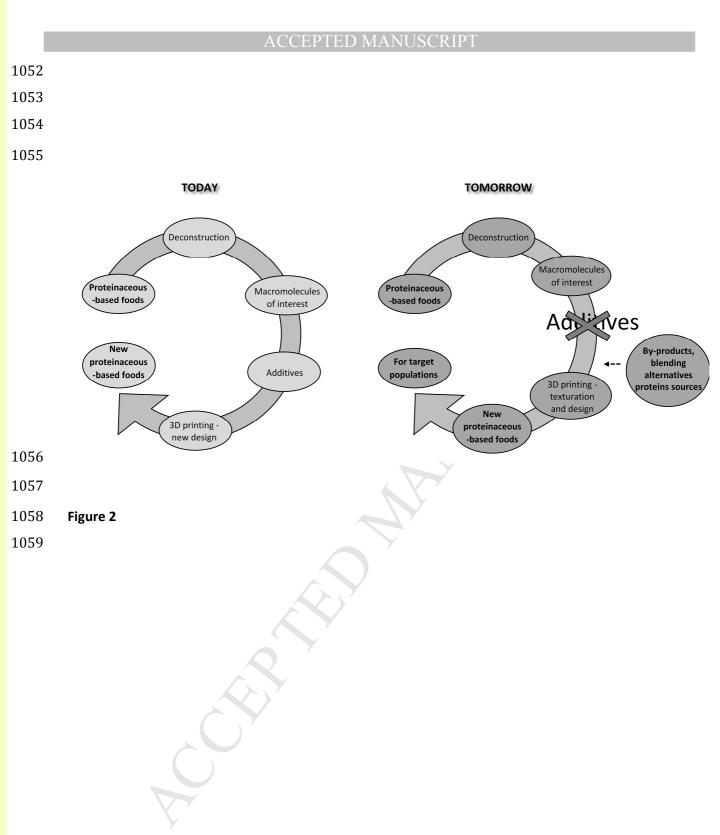
- 999 Watson, J. K., & Taminger, K. M. B. (2018). A decision-support model for selecting additive
- manufacturing versus subtractive manufacturing based on energy consumption. *Journal of Cleaner Production*, *176*, 1316-1322.
- Wegrzyn, T. F., Golding, M., & Archer, R. H. (2012). Food Layered Manufacture: A new process for
 constructing solid foods. *Trends in Food Science & Technology*, *27*(2), 66-72.
- 1004 Wlodarczyk-Biegun, M. K., & Del Campo, A. (2017). 3D bioprinting of structural proteins.
- 1005 *Biomaterials, 134,* 180-201.
- Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). Investigation on lemon juice gel as food material
 for 3D printing and optimization of printing parameters. *LWT Food Science and Technology, 87*,
- 1008 67-76.
- 1009 Yoon, H.-S., Lee, J.-Y., Kim, H.-S., Kim, M.-S., Kim, E.-S., Shin, Y.-J., Chu, W.-S., & Ahn, S.-H. (2014). A
- 1010 comparison of energy consumption in bulk forming, subtractive, and additive processes: Review
- 1011 and case study. International Journal of Precision Engineering and Manufacturing-Green
- 1012 *Technology, 1*(3), 261-279.
- Zeleny, P., & Ruzicka, V. (2017). The design of the 3d printer for use in gastronomy. *Modern Machinery (MM) Science Journal*, 1744-1747.
- 1015 Zhao, H., Wang, J., Ren, X., Li, J., Yang, Y.-L., & Jin, X. (2018). Personalized food printing for portrait
 1016 images. *Computers & Graphics, 70*, 188-197.

1017 1018

1019 1020


1021

1022


1023

	ACCEPTED MANUSCRIPT
1025	Figure captions
1026	
1027	
1028 1029 1030 1031 1032 1033 1034 1035	Figure 1: Schematic representation of the operating principles of the main 3D printing methods used in the food sector: A) extrusion-based printing in the form of pneumatic, piston-driven or screw-driven robotic dispensing systems, in which a continuous stream of hydrogel is dispensed; B) thermal inkjet printers which are configured with a heater creating air- pressure pulses to generate droplets at the printhead. In piezoelectric inkjet printing, an actuator produces a mechanical pulse to force the bio-ink to flow from the nozzle as droplets. C) laser-assisted printing system which consists of a laser-absorbing layer - called the ribbon - a feeding layer of cell-laden hydrogel beneath, and a receiving substrate.
1036	Figure 2: Evolution under consideration for the 3D printing of new proteinaceous-based foods in the
1037	next years.
1038	
1039	
1040	Balck and white print is required for the figures.
1041	
1042	
1043	
1044	CERTER

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198. DOI : 10.1016/i.tifs.2019.02.023

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, DOI : 10.1016/i.tifs.2019.02.023

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology. 86, 188-198, . DOI : 10.1016/i.tifs.2019.02.023

Highlights

We reviewed the state of the science on the 3D printing of biobased products; Some 3D printing applications developed in the medical and food sectors were analysed; We looked at 3D-printed functional foods targeting various sectors of the population; The consumer acceptability of 3D-printed food products was also deeply discussed; Some development prospects for 3D printed biobased products were also investigated.

Comment citer ce document : Portanguen, S., Tournayre, P. (Co-premier auteur), SICARD, J. (Co-premier auteur), Astruc, T. (Co-dernier auteur), Mirade, P.-S. (Auteur de correspondance) (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188-198. . DOI : 10.1016/i.tifs.2019.02.023