
Master’s thesis in the course of studies
Computer Science and Media

Implementation and evaluation of a hybrid
microservice infrastructure

submitted by

PATRICK KLEINDIENST

Matr-Nr. 31924

at Stuttgart Media University
on October 24, 2017

in partial fulfillment of the requirements
for the degree of Master of Science

Supervisor:
PROF. DR. DIRK HEUZEROTH,
Stuttgart Media University

Co-Advisor:
DIPL.-ING. (FH) THOMAS POHL,

IBM Deutschland R&D GmbH

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hochschulschriftenserver der Hochschule der Medien Stuttgart

https://core.ac.uk/display/195394255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ehrenwörtliche Erklärung
(Declaration of honour)

Hiermit versichere ich, Patrick Kleindienst, ehrenwörtlich, dass ich die vorliegende
Masterarbeit mit dem Titel: Implementation and evaluation of a hybrid microservice in-
frastructure selbstständig und ohne fremde Hilfe verfasst und keine anderen als die
angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit, die dem Wortlaut oder
dem Sinn nach anderen Werken entnommen wurden, sind in jedem Fall unter Angabe
der Quelle kenntlich gemacht. Die Arbeit ist noch nicht veröffentlicht oder in anderer
Form als Prüfungsleistung vorgelegt worden.

Ich habe die Bedeutung der ehrenwörtlichen Versicherung und die prüfungsrecht-
lichen Folgen (§ 23 Abs. 2 Master-SPO (3 Semester)) einer unrichtigen oder unvoll-
ständigen ehrenwörtlichen Versicherung zur Kenntnis genommen.

Ort/Datum Unterschrift

III

Acknowledgement

Foremost, my sincere thanks goes to my first advisor Prof. Dr. Dirk Heuzeroth for his
outstanding support of my master’s thesis.

I would also like to express my sincere gratitude to my second advisor
Dipl-Ing. (FH) Thomas Pohl for offering me the opportunity to spend a great and in-
structive time at the labs of IBM Deutschland Research and Development GmbH in
Böblingen while working on this thesis. His patient and enthusiastic guidance helped
me in all the time of research and writing.

In this sense, I thank all my colleagues of the IBM System z firmware department
for their warm welcome, the pleasant working atmosphere and their constant support
over the last months.

Besides, I would like to thank M.Sc. Stephan Soller for his encouragement, his
insightful comments and the sound discussions.

Last but not least, I would like to express my sincere thanks to my family and
girlfriend for their emotional and spiritual support during my studies.

IV

Abstract

Large-scale computing platforms, like the IBM System z mainframe, are often admin-
istrated in an out-of-band manner, with a large portion of the systems management
software running on dedicated servers which cause extra hardware costs. Splitting up
systems management applications into smaller services and spreading them over the
platform itself likewise is an approach that potentially helps with increasing the uti-
lization of platform-internal resources, while at the same time lowering the need for
external server hardware, which would reduce the extra costs significantly. However,
with regard to IBM System z, this raises the general question how a great number of
critical services can be run and managed reliably on a heterogeneous computing land-
scape, as out-of-band servers and internal processor modules do not share the same
processor architecture.

In this thesis, we introduce our prototypical design of a microservice infrastruc-
ture for multi-architecture environments, which we completely built upon preexisting
open source projects and features they already bring along. We present how schedul-
ing of services according to application-specific requirements and particularities can
be achieved in a way that offers maximum transparency and comfort for platform
operators and users.

V

Kurzfassung

Die Adminstration von Großrechnerplattformen, wie beispielsweise des IBM System z
Mainframes, erfolgt oftmals anhand einer Out-of-Band Herangehenweise, bei der ein
Großteil der Systems Management Software auf dedizierten Servern betrieben wird,
welche zusätzliche Hardwarekosten verursachen. Indem Systems Management Ap-
plikationen in kleinere Services aufgetrennt und gleichermaßen über die Plattform
selbst verteilt werden, kann möglicherweise die Auslastung der Plattform-internen
Ressourcen erhöht und gleichzeitig der Bedarf nach externer Serverhardware gesenkt
werden, was die zusätzlichen Kosten deutlich reduzieren würde. Im Fall von IBM
System z wirft dies allerdings die allgemeine Frage auf, wie eine große Anzahl an
kritischen Services auf einer heterogenen Rechnerlandschaft zuverlässig ausgeführt
und verwaltet werden kann, da Out-of-Band Server und interne Prozessormodule auf
unterschiedlichen Prozessorarchitekturen basieren.

In dieser Masterarbeit stellen wir unseren prototypischen Entwurf einer Microser-
vice-Infrasturktur für Multiarchitekturumgebungen vor, der vollständig auf bereits
existierende Open-Source-Projekte und darin verfügbare Features aufgebaut ist. Wir
demonstrieren, wie Scheduling von Services entsprechend anwendungsspezifischer
Anforderungen und Besonderheiten in einer Weise umgesetzt werden kann, die so-
wohl Plattformbetreibern als auch -nutzern maximale Transparenz sowie größtmög-
lichen Komfort bietet.

VI

Contents

List of Figures IX

List of Tables X

List of Listings XI

List of Abbreviations XII

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis objectives and scope . 4
1.3 Outline . 4

2 Background 6
2.1 About systems management . 6
2.2 Rethinking IBM System z firmware . 8
2.3 Monoliths vs. microservices . 9
2.4 Common requirements to microservice orchestration tools 16
2.5 Challenges of hybrid microservice orchestration 19

3 A microservice infrastructure based on Apache Mesos 24
3.1 State-of-the-art microservice orchestration 24
3.2 Mesos fundamentals and overview . 28
3.3 High-level comparison between Marathon and Aurora 32
3.4 Coordinating Mesos with Apache ZooKeeper 36
3.5 Workload isolation with Linux containers and Docker 42

4 Practical implementation of a microservice infrastructure 47
4.1 The interim goal . 47
4.2 Manual installation of Docker on CentOS 49
4.3 Hosting a private Docker registry . 52
4.4 A ZooKeeper ensemble in Docker . 53
4.5 Deploying Mesos in Docker containers . 54

VII

4.6 Marathon and Aurora in Docker . 56
4.7 Facilitating container management . 58

5 A hybrid cluster management setup 59
5.1 A hybrid prototype as the next step . 59
5.2 Status quo of Docker on s390x Linux . 60
5.3 Docker Compose on IBM System z . 65
5.4 The porting of cross-platform components to s390x 65
5.5 Compiling Apache Mesos for IBM System z 69
5.6 Remaining s390x porting . 74
5.7 Job scheduling on hybrid clusters . 75

6 Evaluation 83
6.1 Resource consumption . 83
6.2 Performance . 89
6.3 Reliability testing . 90
6.4 Evaluation of remaining mandatory requirements 95
6.5 Current limitations and thinkable improvements 96

7 Conclusions and future work 99
7.1 Summary . 99
7.2 Outlook . 100

Appendices 101

A amd64 Dockerfiles, shell scripts & configuration files 102

B s390x Dockerfiles 108

C Mesos build files 110

Bibliography 112

VIII

List of Figures

1.2 Partially shifting firmware onto the platform can save additional hard-
ware. 3

2.1 Shifting systems management workload from SEs to firmware partitions. 8
2.2 High-level comparison of monolits and microservices. 11
2.3 A homogeneous job’s tasks are distributed across machines of the same

type. 20
2.4 A heterogeneous job’s tasks can be spread across different kinds of ma-

chines. 21

3.1 Mesos architecture diagram . 29
3.2 The resource offer mechanism in Mesos 30
3.3 ZooKeeper organizes znodes hierarchically. 38
3.4 The Mesos masters use ZooKeeper for leader election. 41
3.5 OS-level virtualization and hardware virtualization compared. 43

4.1 An ensemble of three amd64 hosts running a fully functional Mesos setup. 48

5.1 The next stage in the evolution of our hybrid microservice infrastruc-
ture prototype. 60

5.2 Storage driver recommendations for Ubuntu, SLES and RHEL. 63
5.3 Docker Images are represented by manifests that point to n image layers. 80

6.1 Virtual and actual sizes of the infrastructure Docker images. 85
6.2 Mesos and peripherals RAM consumption with Marathon. 87
6.3 Mesos and peripherals RAM consumption with Aurora. 88
6.4 Average job startup, scale-up, scale-down and shutdown duration per

framework. 90

IX

List of Tables

5.1 Available Docker packages and versions for s390x at the beginning of
this thesis. 64

5.2 Available Docker packages and versions for s390x since the v17.06.1 re-
lease. 65

5.3 Cross-platform infrastructure components and their code base languages. 66
5.4 List of constraint operators in Marathon. 76

6.1 Average Mesos agent resource consumption depending on the frame-
work in use. 89

X

List of Listings

4.1 Docker daemon failure due to missing AUFS support in CentOS. 49
4.2 How to change the storage driver to overlay2 with systemd. 52
5.1 Dockerfile for ZooKeeper on s390x. 67
5.2 Compilation of Aurora components written in Python fails for s390x. . . 68
5.3 The configure step fails due to IBM JVM incompatibility. 70
5.4 Relevant excerpt of the configure.ac file. 71
5.5 The location of the libjvm.so shared library for the IBM JVM. 71
5.6 Environment variables for linker flags and shared library path. 72
5.7 Applying the necessary patch for IBM Java SDK compliance. 73
5.8 Increasing the heap space memory limit for the Maven Javadoc plugin. . 73
5.9 Basic control file structure for building a s390x DEB package. 74
5.10 Mesos agents can be assigned custom attributes. 75
5.11 Job with execution environment limited to amd64 hosts. 76
5.12 Two possible Marathon constraint definitions for heterogeneous jobs. . . 77
5.13 A fat manifest for multi-architecture images. 81
5.14 Sample YAML file for creating a fat manifest. 82

XI

List of Abbreviations

APT Advanced Package Tool

API Application Programming Interface

ARM Advanced RISC Machines

ASF The Apache Software Foundation

AUFS Advanced Multi-Layered Unification Filesystem

AWS Amazon Web Services

CD continuous delivery

CLI command-line interface

CNCF Cloud Native Computing Foundation

CoW copy-on-write

CPU central processing unit

DCIM Data Center Infrastructure Management

DNS Domain Name System

Docker CE Docker Community Edition

Docker EE Docker Enterprise Edition

DoS Denial of Service

DSL Domain Specific Language

ESB Enterprise Service Bus

FIFO first-in-first-out

GPG GNU Privacy Guard

HTML Hypertext Markup Language

XII

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

JDK Java Development Kit

JNI Java Native Interface

JRE Java Runtime Environment

JSON JavaScript Object Notation

JVM Java Virtual Machine

LXC Linux Containers

LPAR logical partition

OS operating system

RAM random-access memory

RDBMS relational database management system

REST Representational State Transfer

RHEL Red Hat Enterprise Linux

RPC remote procedure call

SDK Software Development Kit

SE Support Element

SLES SUSE Linux Enterprise Server

SQL Structured Query Language

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

VM virtual machine

WSC Warehouse-Scale Computer

XML Extensible Markup Language

XIII

Chapter 1

Introduction

1.1 Motivation

Nowadays, a wide range of computing platforms exists, each one with a slightly dif-
ferent focus in terms of who uses them and in which way. While, in the meantime,
almost everyone has a smartphone to run apps, companies like Google or Amazon
operate large-scale data centers in order to supply private or commercial customers
with cloud storage as well as an universal platform for running their IT services or
web applications. Critical businesses, like financial institutions, have their own main-
frames in order to process financial transactions in a reliable manner.

Especially large computing platforms like mainframes or data centers usually re-
quire some sort of "high-level firmware" which, as part of a platform’s systems man-
agement infrastructure, provides the basic functionality to execute end user work-
load, for instance a MySQL database. This firmware, which we also refer to as system
management software, performs tasks like initializing peripheral hardware, installing
software and supervising power consumption [44, 11]. The exact functional scope of
firmware depends on the concrete type of platform as well as its characteristics, since
different computing landscapes usually have different needs related to systems man-
agement. Nevertheless, the overall goal of each kind of firmware is bringing a system
into operational state and keep it there as long as possible.

It is crucial to not confuse firmware as we understand it in the context of sys-
tems management with software which responsibilities are limited to enabling inter-
action of an operating system (OS) with a single specialized hardware component like
a graphic card [37]. Even though the latter variant is probably closer to the general
interpretation of firmware, what we mean by it is administrative software that con-
denses a large number of central processing units (CPUs), memory modules etc. into
a single reliable computing platform.

Depending on which type of computing platform is considered, there are differ-
ent ways in which firmware and hardware can be organized. Taking multi-machine

1

1.1. Motivation 2

platforms like data centers as an example, we can imagine firmware services which
are not tightly bound to a certain hardware component, for example applications that
periodically create snapshots of virtual machines (VMs) or watch the global health
state of all servers. One option is to put such services on extra servers residing outside
the actual computing platform, as shown by figure 1.1. This leads to a strict isolation
between the platform itself, which almost exclusively runs customer workload, and
some external hardware, which solely serves the purpose of running systems man-
agement services. Such a design is quite common for mainframes like IBM System z*,
where a large portion of the firmware runs on dedicated Support Elements (SEs) [44].
The idea behind this model is to achieve a high level of fault-tolerance for the platform
by means of redundancy as well as a strict hardware boundary between firmware and
customer workload.

Figure 1.1: Platforms may be managed in an out-of-band manner.

While this makes perfectly sense from a risk management perspective, it must be
considered that extra hardware still causes additional costs related to acquisition and
power consumption. Besides, supplying hardware components redundantly usually
causes their overall utilization to be low. Consequently, from an economical perspec-
tive, the question is raised if the same level of reliability and stability of the platform
can also be reached with less extra hardware. A thinkable approach to reach this goal
is the moving of great parts of the firmware from external components to the platform
itself. On condition that the mainframe’s availability guarantees can be sustained, we
expect the additional out-of-band servers, at least partially, to become obsolete and the
overall utilization with respect to remaining external components and the platform-
internal resources to grow. Figure 1.2 illustrates this idea.

A direct consequence of the lower demand for extra hardware are lower costs.

* Trademarks of IBM in USA and/or other countries.

1.1. Motivation 3

Figure 1.2: Partially shifting firmware onto the platform can save additional hardware.

However, there are even more possible benefits that might not be so obvious at first
sight: Shifting firmware onto a platform which is logically and/or physically dis-
tributed by design would enforce the firmware applications themselves to follow a
modular and decentralized software architecture. Today, even though many parts of
a mainframe’s systems management software already execute in their own processes,
the software design as a whole is still highly monolithic. If we, however, embrace the
inherently distributed nature of large-scale computing platforms, then we can pos-
sibly evolve firmware towards a microservice-based architecture, which can benefit
from clear interfaces and responsibilities, and, as a side effect, offers the opportunity
to help with improving code quality.

Unfortunately, operating software as microservices entails increased operational
costs, as a large number of independent and distributed processes must be controlled
and managed. Because the complexity that comes along with the administration of mi-
croservices grows exponentially with the number of applications deployed, using an
automation and management infrastructure for microservice orchestration becomes
inevitable at a certain point. While cluster management in data centers is not a nov-
elty any more today, this is not true for less common platforms like mainframes. This is
because, especially in the case of IBM System z, expanding the scope of firmware ser-
vices towards the platform introduces the need for managing applications in a system
comprising more than just one kind of processor architecture. Consequently, we end
up with a so-called hybrid platform, consisting of amd64-based SEs as well as s390x*

processor modules [44].

* Trademarks of IBM in USA and/or other countries

1.2. Thesis objectives and scope 4

1.2 Thesis objectives and scope

In this thesis, we introduce our prototypical implementation of a hybrid microservice
orchestration infrastructure, using the IBM System z mainframe as a reference target
platform. Our work was mainly driven by achieving the goal of a reliable and flexible
microservice management system which is able to meet possibly specific characteris-
tics and individual demands of applications if necessary. Although this project has its
origins in the context of systems management software, we want to clarify that, for the
scope of our prototype development, the actual sort of workload is irrelevant and that
we have not limited ourselves to firmware in any sense. Consequently, while infras-
tructure characteristics like application-aware scheduling make sense in the context of
firmware, others probably do not.

We also put emphasis on reusing existing open source projects and tools that al-
ready exist rather than developing a custom solution from scratch in order to see how
far we can get by doing it this way. In order to fulfill the special requirements of
our mainframe use case, we decided upon designing our prototype around Apache
Mesos [78], a highly-available and scalable resource abstraction layer that condenses
an arbitrary number of machines into a single pool of computing resources. Mesos
offers the opportunity of running multiple frameworks on a single cluster, a fact we
took advantage of in order to realize application-aware scheduling, which considers
the divergent nature of firmware applications, by maximizing the overall utilization
of the available hardware resources simultaneously.

It should be noted that the scope of this thesis is limited to describe our idea of how
hybrid microservice management could work, without demanding to demonstrate a
complete and production-ready setup which covers all the details of operating dis-
tributed systems. We therefore mainly focused on the issues of platform heterogeneity
and high-availability of infrastructure parts and deployments, leaving equally impor-
tant aspects like monitoring and security aside for further advancement of the solution
we present as the outcome of our work.

Terminology. Note that, even though we explicitly refer to the more up to date 64-
bit variants of the processor architectures in question (amd64 and s390x), we implicitly
include their 32-bit (x86 or rather s390 [44]) predecessors. Furthermore, we use the
terms service, application and job synonymously. A task denotes a single instance of a
job, which can consist of n tasks with n ≥ 1.

1.3 Outline

We begin with providing some background in chapter 2, giving a more precise def-
inition of systems management and the problems it solves. Furthermore, we explain
the advantages and challenges of transforming a monolithic application design into

1.3. Outline 5

a microservice architecture and cover the most essential issues in terms of orchestrat-
ing microservices, with a special focus on multi-architecture platforms. Chapter 3 de-
scribes the basic ideas and concepts behind Apache Mesos and its peripherals, while
chapter 4 shows how this knowledge can be applied to establish a microservice infras-
tructure in a common amd64 environment. In chapter 5, we expand the basic setup to
span not only across amd64 VMs but also a s390x firmware partition to end up with a
prototype that simulates a mainframe scenario. We evaluate our results in chapter 6,
and chapter 7 closes.

Chapter 2

Background

First, this chapter takes a closer look at systems management and the responsibilities
of systems management software in particular. In the next step, the focus is placed
on systems management software design and how changing its monolithic structure
towards a highly modular microservices architecture can contribute to both a plat-
form’s stability and cost-efficiency. Lastly, this chapter covers microservice manage-
ment infrastructure, its general necessity and the added value it provides with respect
to orchestrating a large number of applications.

2.1 About systems management

The concrete challenges related to the administration of computing platforms strong-
ly depend on characteristics like structure, size (in terms of number of machines and
resources like random-access memory (RAM) and storage), involved processor archi-
tectures and purpose. Despite their similarities, platforms like data centers and main-
frames obviously differ in these aspects, showing a diversity that makes finding a
universal definition for systems management very hard. As a consequence, there is no
uniform concept of systems management in computer science that describes a gener-
ally valid set of disciplines and techniques which is suitable for all computing land-
scapes. Therefore, we considered it reasonable to take a look at this topic from different
angles. Before that, though, we want to give a concise overview of different kinds of
platforms and their characteristics.

2.1.1 Large-scale computing platforms

Computing platforms, or - more simply - systems, can take various forms, from small
end-user devices like smartphones to huge data centers being made up of thousands
of servers [5]. Because or focus is on large-scale computing platforms and their inher-
ent administration complexity, we will mainly focus on data centers and especially
mainframes.

6

2.1. About systems management 7

Barroso et al. [5] describe data centers as buildings that, in a traditional sense,
host a great number of software applications that run on their dedicated hardware
infrastructure each. While these infrastructures, which might even belong to different
companies, probably differ from each other, each one is homogeneous within itself.
The homogeneity property is even more present regarding Warehouse-Scale Comput-
ers (WSCs), which, according to Barroso et al. [5], are a more modern kind of data
center. WSCs are usually operated by a single large company like Google or Amazon
and thus comprise highly homogeneous hardware and software [5].

Mainframes, for instance IBM System z, pose another type of computing platform
or system. They can be viewed as large-scale servers that can run multiple host OSes
in their distinct logical partitions (LPARs) simultaneously. In contrast to a data center
unit or a WSC, the IBM System z mainframe is a strongly heterogeneous platform,
comprising amd64-based SEs for out-of-band system control as well as a s390x-based
processor complex which is responsible for executing the actual workload [44]. While
data centers are used for rolling out large deployments of web applications particu-
larly, mainframes play an important role for critical businesses like finance and health
care [44].

2.1.2 What is systems management?

In the field of data centers, systems management, which is also referred to as Data
Center Infrastructure Management (DCIM) in this context, is defined as a set of tools
that "monitor, measure, manage and/or control [..] use and energy consumption of
all IT-related equipment", for instance servers and storage [11]. As its core disciplines,
DCIM includes, inter alia, power, network and alert management. It must be noted,
though, that these aspects are not solely implemented in software, but also require
hardware components like sensors for temperature measurement [11].

Drawing our attention towards mainframes, we discovered that Jones et al. [44]
define systems management in a similar way, describing as "a collection of disciplines
that monitor and control a system’s behavior.". While they discuss this topic with a
special focus on IBM System z, they still stress its inherent context sensitivity. As their
main aspects of systems management, they list business management, configuration
management, performance management, operations management, change manage-
ment and problem management. As with DCIM, it is important to understand that
systems management as it is described here is not limited to firmware, but also "de-
signed into System z hardware" [44]. As for tasks which are exclusively related to
systems management software, Jones et al. [44] allude, amongst others, to hardware
testing, loading of operating systems and failure recovery.

2.2. Rethinking IBM System z firmware 8

2.2 Rethinking IBM System z firmware

Of course, the stability and reliability of a computing platform do not only depend
on systems management firmware, but also on the hardware components a system is
built upon as well as their quality and durability. Nevertheless, firmware can make
its contribution to a robust system by following mature practices for good software
development and architecture. As for IBM System z, the current, mostly monolithic
systems management software design is strongly dominated by the strict separation
between firmware and workload infrastructure, with the firmware being located - to
a large extent - on two integrated SEs between which the system can switch in case
of failure. The SEs serve the purpose of operating and monitoring the System z main-
frame [44].

The actual workload, for example one or more databases, is executed on host sys-
tems booted in dedicated LPARs. Unlike the SEs, which basically are common amd64
servers, the processor modules running the LPARs are based on IBM’s custom s390x
processor architecture [44]. As explained in the introduction, it makes perfectly sense
to think about how free resources on the processor modules (and also on the alternate
SE) can be used more efficiently, for example by moving some of the system manage-
ment services from the SEs onto the platform itself.

Figure 2.1: Shifting systems management workload from SEs to firmware partitions.

Practically, this can be done by creating one or more so-called firmware partitons on
top of the LPAR hypervisor (see figure 2.1). Consequently, the degree of distribution
of firmware applications automatically increases. We can embrace this fact and exploit
it as a motivation to rethink the overall design of the IBM System z firmware.

2.3. Monoliths vs. microservices 9

Considering modern software architecture, the microservice architectural style is
a lasting trend over the last years, promising to be the key to highly available, scal-
able and flexible application deployments. Today, these topics are mainly discussed
in the context of web applications backed by cloud providers like Amazon Web Ser-
vices (AWS) or the Google Cloud Platform, which are backed by numerous large scale
data centers spread across the world. The microservice style is, however, by no means
limited to end-user applications running on cloud provider infrastructure. Instead,
regarding our mainframe scenario illustrated in figure 2.1, we can also exploit it to re-
work the System z firmware design towards a microservice-based structure that takes
advantage of the physical distribution between the SEs and the firmware partitions.
The resulting microservice architecture can help with improving the stability of not
only the systems management software, but of the mainframe platform as a whole.
Pursuing this idea even further, moving more and more parts of the firmware onto
the processor modules could, at least, render the alternate SE obsolete since the plat-
form itself could be used for redundancy purposes. In this way, the utilization of ex-
istent hardware could be increased while the costs for additional components would
partially disappear.

The next section gives an accurate introduction to both monolithic and microservice-
based architecture and works out in which way software services in general, but
maybe also systems management applications, can benefit from moving along the
path towards a more modular design.

2.3 Monoliths vs. microservices

2.3.1 The monolithic architectural style

According to Fowler et al. [36], the monolithic style can usually be observed in classi-
cal enterprise web applications, which, in essence, are made up of three major parts:
A client-side User Interface (UI), consisting of Hypertext Markup Language (HTML)
documents enriched with JavaScript code, a relational database management system
(RDBMS) comprising one or more databases which in turn can include several tables,
and lastly a server-side backend application. The server-side application listens for
Hypertext Transfer Protocol (HTTP) requests and handles these by executing business
logic and reading from or writing to the underlying database. At least, it selects a cer-
tain HTML view which is then populated with the required data and finally delivered
to the client’s web browser [36].

It must be considered that a server-side application does not necessarily need to re-
turn HTML documents as HTTP response payload. Alternatively, it might accept and
return raw data in JavaScript Object Notation (JSON) or Extensible Markup Language
(XML) format, which is normally true for applications adhering to the Representational

2.3. Monoliths vs. microservices 10

State Transfer (REST) paradigm. Such a RESTful design allows for rich client applica-
tions, which either reside on distinct web servers or directly on end-user devices and
communicate with server backends by exchanging data representations. Following the
RESTful paradigm entirely frees the server backends from all UI concerns. Instead,
they can offer a web-based HTTP and/or remote procedure call (RPC) Application
Programming Interface (API) that can be consumed by a wide range of client applica-
tions [59].

Since server application, database and UI are executed in separate processes and
are usually located on different hosts or VMs, enterprise applications can already be
considered distributed systems in some way. However, this statement is merely valid
to a limited extent. Despite potential physical boundaries between the processes, it is
still the application server process which owns the entire business logic [36]. Such a
design, which is commonly referred to as a monolithic architecture [36], shows certain
significant characteristics:

• The entire business logic is consolidated into one executable is owned by a single
process [36].

• Shipping updates requires compiling, packaging and deploying a new version
of the application artifact [36].

• Depending on the programming language in use, a monolith might be modular-
ized in terms of classes, functions, packages or namespaces [36].

• In case of capacity bottlenecks, scaling is done horizontally by putting several
instances of the same server application behind a load balancer [36].

2.3.2 Drawbacks of monolithic applications

There are lots of use cases where a monolithic design is perfectly suitable. However,
the software industry has experienced substantial changes for a couple of years, and
is still doing so. Because software thrills a constantly increasing amount of business
segments, numerous IT companies have already started moving their applications to
the cloud, striving for shorter release cycles and fast adaption to customer needs in
order to create even more business value. As a consequence, some essential properties
of the monolithic approach have evolved into serious handicaps:

• Establishing short release cycles with legacy applications is hard to achieve,
since applying changes related to a single business logic aspect implicitly re-
quires recompilation and redeployment of the application as a whole. Conse-
quently, all developers working at different application parts must coordinate
closely and should agree on synchronous release cycles [36].

2.3. Monoliths vs. microservices 11

• Keeping a clean modular structure in a single software project is an enormous
challenge. As bypassing module boundaries in order to implement features the
quick and convenient way is always a temptation, it might introduce undesirable
dependencies that span across many parts of the system [35].

• Horizontal scaling comes along with a huge demand for computing resources,
because the monolith itself poses the smallest scalable unit. This demand causes
substantial extra costs, regardless of whether the application is hosted in cloud
environments or in-house [36].

2.3.3 The microservice architectural style

The microservice architectural style as described by Fowler et al. [36] tends to over-
come these issues by disposing business logic over a suite of services instead of keep-
ing it within a single deployment unit, as figure 2.2 illustrates. Each one of these so-
called "microservices" is built around a certain business capability, providing function-
ality tied to a discrete domain. Communication between services is done via lightweight
mechanisms like HTTP web requests or RPCs protocols. In addition, microservices are
independently deployable and may even be written in different programming lan-
guages [36].

Figure 2.2: High-level comparison of monoliths and microservices [36].

Wootton [102] chooses a similar explanation, describing microservices as an ap-
proach that relies on a set of services with a certain set of properties:

• Simple and focused on doing one thing well.

2.3. Monoliths vs. microservices 12

• Possibly built upon different technologies, picking "the best and most appropri-
ate tool for the job".

• Designed in a way yields an implicitly decoupled system.

• Can independently be evolved and delivered by separate development teams.

• Promote continuous delivery (CD) by enabling frequent releases whilst the sys-
tem itself always remains stable and available.

Fowler et al. [36] also emphasize that the differences between currently existing
systems based on the microservice style complicate drawing up a more formal and
generally valid definition. Instead, they provide a list of characteristics that, according
to their practical experience, most paratical implementations have in common.

Componentization via Services

Splitting up larger systems into pluggable components is a field-tested technique in
software development. A brief definition for a component is given by Fowler et al.
[36], who describe it as a "unit of software that is independently replaceable and up-
gradeable". Whereas most monolithic architectures make use of libraries, classes or
packages for componentization, microservices go one step further by putting com-
ponents into their own processes. In this way, each component’s life cycle becomes
independently manageable.

Organization around Business Capabilities

Forming teams with a focus on technology leads to the emerge of UI teams, server-side
teams as well as database teams. According to Conway [13], this eventually results
in an equally layered software design. Conway [13] generalized this theorem, which
finally became famous as Conway’s Law [12] and today is an important driver for the
microservice architecture.

"Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization’s communication struc-
ture."

Melvin Conway, 1968 [12]

The microservice style utilizes the causal link between software design and or-
ganization structure by forming cross-functional teams which possess all the skills
required in order to build an application around business capabilities. That increases
the chance to end up with a suite of highly decoupled services with a strong focus on

2.3. Monoliths vs. microservices 13

their business domain [36]. Newman [59] correlates the narrow focus of microservices
to cohesiveness of source code, which reveals to what extent code that is grouped
together (in a class or package) is actually related. He translates Robert C. Martin’s
definition of the Single Responsibility Principle to microservices, claiming that it should
be "obvious where code lives for a given piece of functionality" [59].

Products not Projects

Instead of a project-oriented model, which solely pursues the goal of giving birth to
a piece of software that is handed over to another maintenance and operations team
after development, the microservice style favors the product model. This mentality
widens a team’s accountability to not only developing, but also maintaining and run-
ning software in production [36]. Amazon CTO Werner Vogels [61] paraphrases this
notion as "You build it, you run it", arguing that bringing developers in day-to-day
contact with operating their own applications and also with the customers using them
has a positive impact on the quality of the software they produce.

Smart endpoints and dumb pipes

Another important property Fowler et al. [36] mention is that "microservices aim to
be as decoupled and as cohesive as possible". They make a comparison between the
microservice style and classical Unix* command line tools, which take some input,
apply their logic and produce output that can be further processed. In the context
of microservices, a single service acts as a filter in a similar sense, receiving requests
via lightweight protocols like REST over HTTP or a simple message bus, applying
domain logic and producing a response that returns the result. This idea differenti-
ates the microservice architecture from concepts like the Enterprise Service Bus (ESB),
which tends to put lots of business logic, like message routing, into the communication
channel [36].

Decentralized Governance

Decentralized governance is about relieving teams, each of which is responsible for
another service, from exhaustive internal standards and instead enables them to solve
their problems in a way that best fits their individual needs. This relates to technolo-
gies like the programming languages and frameworks in use, but should also encour-
age teams to build and share tools in the sense of an open source model, so that others
can use them for similar issues. Just like the product-oriented way of thinking, decen-

* UNIX is a registered trademark of The Open Group in the United States and other countries.

2.3. Monoliths vs. microservices 14

tralized governance can be considered another manifestation of the "You build it, you
run it" principle [36, 61].

Decentralized Data Management

Monoliths are usually backed by a single Structured Query Language (SQL) database.
Updates to SQL databases are processed in a sequential and transactional manner,
with the RDBMS ensuring transitions between consistent states only. The strong con-
sistency guarantees of SQL databases are at the expense of higher performance. The
microservice style favors the idea of letting each service manage its own database and
accordingly allow them to make use of different storage technologies where it makes
sense. Fowler et al. [36] call this "Polyglot Persistence". Since distributed transactions
are hard to manage, microservices relax their consistency guarantees towards eventual
consistency, meaning that the propagation of updates across the whole system might
take a while, leaving it in a inconsistent state for a short period of time [35].

Infrastructure automation

In order to increase confidence in the correctness and quality of software, Fowler et al.
[36] recommend to automate repetitive tasks as much as possible, for instance test ex-
ecution and deployments. In their opinion, CD should be applied as a means to make
the deployment process literally "boring" [36]. In addition, Newman [59] brings up vir-
tualization platforms as a crucial factor for infrastructure automation, since they allow
to mostly automate provisioning and scaling of VMs for development or production.

Design for failure

In an environment consisting of many interacting components, every service must
constantly be prepared for the case of another service it depends on being unavailable.
This might be the consequence of an application or an entire machine being crashed.
Such error conditions must be detected quickly and ideally be fixed in an automated
fashion. This requires extensive logging and monitoring of a microservice landscape
in order to deal with the increased operational complexity compared to monolithic
applications [36].

Evolutionary design

Fowler et al. [36] regard service composition as an instrument helping developers with
gaining control over changes in a strictly bounded environment. They consider it an
important factor which prevents the overall application from suffering from a loss of
evolutional speed. They recommend that component boundaries should be chosen
with a strong focus on independent replaceability and upgradeability. As an example,

2.3. Monoliths vs. microservices 15

features that are only needed temporarily should be put into self-contained units, so
that they can simply be thrown away once they are no longer required [36].

2.3.4 Downsides and challenges of microservices

Of course, the microservice style does not only entail benefits. Embracing this kind of
software architecture also introduces some serious drawbacks that must be handled
in some way:

• Moving towards microservices means getting involved with distributed sys-
tems and their inherent complexity. For example, remote calls hardly achieve the
same performance as in-memory calls due to network latencies. Moreover, re-
mote communication is constantly exposed to network link failures and crashes
of processes or entire machines. In order to mitigate performance difficulties,
distributed services utilize asynchronous communication protocols, which are
much more difficult to handle than synchronous protocols. Facing these com-
plexities requires software developers to adapt a new mindset and think in dis-
tributed way [35].

• Eventual consistency yields the risk of business logic operating on inconsistent
information, which might lead to serious trouble. Software developers must be
exceptionally careful to implement their services with regard to inconsistency
issues [35].

• Defining component boundaries is a non-trivial task, as they are subject to con-
stant change. Thus, Fowler et al. [36] recommend adhering to the evolutionary
design principles and shaping them in a manner that makes refactoring them as
simple as possible.

• The refactoring of service boundaries is also far from being simple. Wootton
[102] denotes component boundaries as "implicit interfaces" between dependent
services which demand all changes applied to a service’s public API to be propa-
gated to all consumers and hence induce undesirable coupling. Fowler et al. [36]
suggest backwards compatibility strategies as an effective countermeasure, but
Wootton [102] answers that this does not relax coupling between services from
the business logic’s perspective.

• The oftentimes large scale of microservice-based systems, as well as aspects like
asynchronism and nondeterministic network behavior massively hampers test-
ing. For that reason, such systems prefer another approach, which comprises ex-
tensive logging and monitoring of production services, as well as quickly rolling
back faulty deployments if necessary. This can indeed speed up delivery, but

2.4. Common requirements to microservice orchestration tools 16

also poses a risk that can impossibly be taken by highly critical business seg-
ments like finance or health care [102].

• A large amount of independent services generates significant operations over-
head, because additional infrastructure is needed to automate tasks like com-
piling, testing, deployment and monitoring that can barely be managed manu-
ally [102]. This raises the need for high-quality microservice management tool-
ing, which however requires software developers to not only adopt a new set of
skills, but also embrace the DevOps [35] culture which suggests close interaction
between development and operations.

The main focus of this thesis lies on the last point and is about demonstrating how
to construct and deploy a hybrid microservice infrastructure by means of plumbing
of available open source tools. Since aspects like compiling, testing and packaging are
usually covered by a CD pipeline, microservice management tools particularly con-
centrate on assisting development teams in concerns related to operations, including
deployment, scaling and failover. The following section takes a closer look at the over-
all requirements that should be met by a suitable microservice infrastructure solution.

2.4 Common requirements to microservice orchestration tools

Before introducing a possible approach of building a microservice or cluster manage-
ment platform, we want to give an overview of the purposes such tools actually serve
as well as the most essential requirements they are expected to comply with. Over the
last years, various open source projects emerged, e.g. Kubernetes [99], Apache Mesos [78]
or Docker Swarm [27], which promise to be capable of orchestrating a large number
of services in a reliable and highly available manner, with a particular focus on long-
running web applications oftentimes. Despite their differences, certain similarities can
still be detected regarding the problems these tools intend to solve. These commonali-
ties identify a set of fundamental aspects that outline what microservice management
essentially is about.

Resource abstraction layer

One of the main goals of microservice orchestration is to provide an abstraction layer
across a set of physical machines and make them appear as a single pool of hardware
resources (CPU, RAM, storage etc.) [78]. Thereby, application developers and oper-
ators shall not need to know about the details of the underlying platform since the
microservice platform makes the decisions concerning the exact physical location of
workload within a cluster.

2.4. Common requirements to microservice orchestration tools 17

On demand provisioning

The traditional infrastructure provisioning model involves developers sending pre-
defined specifications for VMs to system administrators and then waiting some time
until they can continue with their work. Cluster management tools break up this time-
consuming process by encouraging the concept of developers autonomously and al-
most instantly allocating the computational resources they need for their purposes [59].

Increased hardware utilization

Clustering tools are based on a scheduling policy, which can be considered a set of
mandatory conditions to be optimized in terms of workload placement and usually
promotes hardware utilization in the most cost-effective manner. To achieve this, a va-
riety of scheduling algorithms ranging from simple to very complex is conceivable.
Additional factors determining if a server gets allocated by the scheduler are, for ex-
ample, data locality, application dependencies, the server’s health state and explicitly
defined constraints by application developers [39].

Deployment automation

A microservice infrastructure performs automated deployments and rolling upgrades,
i.e. avoiding down time while bringing new versions of applications in production. In
case of a faulty deployment, it induces a interference-free rollback to the old software
version and keeps the system available under all circumstances [59].

Service availability and scaling

Another primary purpose of cluster management is keeping all active services and the
system as a whole available. It must be ensured services are running anywhere in the
cluster while their exact physical residence is actually irrelevant. Since the different
parts of a microservice-based application frequently experience different amounts of
requests, another challenge is dynamically scaling up individual services which face
a load peak. For this, additional resources must be allocated and used to start more
instances of a service in order to sustain the system’s stability. Once the load starts
decreasing after a while, these instances must again be stopped and their resources
must be revoked in order to be assignable afresh [59].

Service Discovery

As the number as well as the exact position of a service’s instances within a clus-
ter of machines can dynamically change over time, the question is how applications
can keep track of Internet Protocol (IP) address and ports of services they depend on,

2.4. Common requirements to microservice orchestration tools 18

which is crucial for communication via the network [59]. Hard-coding network ad-
dresses in client code is a far too fragile approach which besides corrupts the idea of
lose coupling between services. Accordingly, other solutions must be found, like pass-
ing information about network locations as environment variables [100] or integrating
a Domain Name System (DNS) capabilities [27] which make services addressable by
means of an unique and consistent identifier.

Isolation

In situations where a variety of applications and tasks share a common physical en-
vironment isolation mechanisms are absolutely vital to prevent processes from inter-
fering in any way that might constitute an operational or security-related risk. Most
clustering tools achieve this by leveraging container technology [59], either bringing
their own APIs and containerization mechanisms or including support for third party
vendors like Docker [17]. In chapter 3, we cover containers and Docker in more detail.

Authentication and authorization

Production-ready tools which are in charge of the stability and availability of a system
should be accessible only by authorized employees. Furthermore, as most users solely
need entrance to a subset of the entirety of functions to do their job, such tools should
also follow the principle of least privilege [67], limiting a user’s permissions to the
bare minimum they actually need. Another security aspect focuses on different attack
vectors related to cluster membership [27]: Every attempt to join the cluster should
require authentication, for example by means of Transport Layer Security (TLS) cer-
tificates. A similar mechanism might be applied to prevent a compromised worker
node from taking over leadership of the cluster and possibly occupying all available
computing resources.

Logging and Monitoring

Section 2.3.4 already stressed the importance of employing a mature monitoring strat-
egy in order to get a clear view of a distributed system’s state. An appropriate cluster
management solution should either integrate functionality to monitor infrastructure
as well as application health state or provide a user-friendly API by means of which
different kinds of metrics can be exported and aggregated by third party tools [59]. In
the ideal case, it also offers the opportunity to gather the logging output of services
and management components at a central point where it can be accessed quickly [59].

2.5. Challenges of hybrid microservice orchestration 19

Shared and exclusive persistent storage

When using containers as a mechanism to establish a certain level of isolation between
physically co-located tasks, it must be kept in mind that container state is ephemeral,
which means that all changes applied to a container are irreversibly gone once it is
destroyed [14]. This is fine for stateless applications, but nevertheless containerized
applications sometimes need to create or modify data which is desired to survive a
container crash, which is true for stateful services [83]. Another aspect is that having
multiple service instances on different cluster hosts working on the same data nor-
mally requires replicating potentially large sets of files across several machines and
keep the copies in sync [39]. An ideal microservice infrastructure remedies this by ei-
ther shipping with shared persistent storage capabilities [85] or providing APIs for
integration with appropriate third party implementations.

2.5 Challenges of hybrid microservice orchestration

We already explained that, despite its advantages, the microservice architectural style
is still a trade-off. Dealing with increasing operational and organizational complex-
ity introduces the need for orchestration infrastructure in order to make things man-
ageable. In terms of multi-architecture environments, some special demands emerge
that make microservice management on heterogeneous computing landscapes signif-
icantly different from the traditional homogeneous data center scenario, especially if
a high degree of workload flexibility shall be achieved, too.

Heterogeneous platform

In section 2.1.1, we already mentioned that while data centers usually comprise a
homogeneous amd64-based server landscape [5], mainframes pose a more heteroge-
neous type of platform. For example, IBM System z includes uses amd64 servers for
as out-of-band control infrastructure, whereas the actual processor modules which
are responsible for running workload are based on IBM’s* s390x processor architec-
ture [44].

Since data centers increasingly apply Advanced RISC Machines (ARM) processors
next to amd64 CPUs due to their high energy efficiency [5], multi-architecture comput-
ing environments become indeed more and more common. Nevertheless, administrat-
ing hybrid microservices introduces basically two platform-related challenges: First,
a microservice infrastructure must be found which is capable of orchestrating jobs
across a cluster based on different processor architectures. Second, a possible solution

* Trademarks of IBM in USA and/or other countries.

2.5. Challenges of hybrid microservice orchestration 20

must of course itself be available on all CPU architectures involved. While a grow-
ing number of open source projects integrates ARM support, this is a much greater
problem in terms of mainframes, since for example s390x processors are only used
in System z mainframes rather than being part of mainstream computing, so there is
usually no native s390x support by most open source projects.

Diversity of workload

On hybrid computing landscapes, we basically differentiate between two categories
of jobs. Generally, we assume that a job j (also called service) consists of n stand-alone
tasks (also called instances). T denotes the set of all tasks that belong to a job j.

1. Homogeneous jobs: We refer to a job j as homogeneous, if the set of all tasks
T is obliged to run on a homogeneous group of cluster components. Two cluster
components, or machines, are considered homogeneous if they are based on the
same kind of CPU architecture. Consequently, all tasks of a homogeneous job
either run on amd64 or s390x systems exclusively (see figure 2.3).

Figure 2.3: A homogeneous job’s tasks are distributed across machines of the same type.

Within a group of homogeneous cluster components, it shall be assumed that
no explicit placement constraints are established, meaning that the exact loca-
tion of tasks within a homogeneous group is entirely the responsibility of the
scheduling algorithm in use.

2. Heterogeneous jobs: A job j shall be called heterogeneous, if two tasks t, u ε T
are principally allowed to placed on machines which differ in their underlying
CPU architecture. Emphasis is placed on principally, because having all tasks of

2.5. Challenges of hybrid microservice orchestration 21

a heterogeneous job being scheduled to a homogeneous group of machines is
perfectly valid, whereas the opposite is not allowed.

Figure 2.4: A heterogeneous job’s tasks can be spread across different kinds of machines.

One of our goals is to establish a microservice infrastructure that supports a wide
range of of jobs, for example cron jobs, ad-hoc jobs, batch jobs or common long-lived
services. Furthermore, we want to respect the case that two jobs j and k might be in-
terdependent, which means that j has to be finished before k can be launched or vice
versa. This is useful when, for example, k has to operate on the output of j for some
reason. Generally, we want scheduling to take individual application characteristics
and requirements (e.g data locality, dependencies or placement constraints) into ac-
count as far as possible, which might sometimes even be a contradiction to the goal of
maximum hardware utilization.

Operation at moderate scale

In terms of scale, the conditions on an IBM System z mainframe can barely be com-
pared to classical data centers as described by Barroso et al. [5]. Although System z
includes two SEs and a variable amount of processor modules and memory which
can run up to 60 LPARs (status as of February 2010) [44] hosting a dedicated OS each,
this is nothing compared to the enormous capacity of today’s huge large-scale centers
with their thousands of servers [5].

Accordingly, the space of operation on a mainframe is much more limited, which
at first sight helps with reducing complexity. On the other hand, however, this also
means that a suitable microservice infrastructure must be able to operate its jobs as
well as itself at a much smaller scale than highly elastic data center deployments.
Moreover, while the amount of resources than can be allocated is virtually unrestricted,

2.5. Challenges of hybrid microservice orchestration 22

there is a predefined limit on mainframes depending on a predefined technical config-
uration.

Minimal footprint

With respect to the fixed amount of resources available on mainframes, we consider
it very important that a microservice infrastructure has a footprint (regarding CPU,
memory and storage) which is as low as possible, in order to leave as much resources
for service deployments as possible. This might be also desirable in the context of data
center deployments, but we think this point deserves special attention with regard to
a mainframe’s bounded amount of resources.

2.5.1 Summary and prioritization of requirements

After having explained the most important differences between traditional data cen-
ters and mainframes in terms of microservice orchestration, we will now give a brief
overview of the requirements of a microservice infrastructure as they will be treated
throughout this thesis, ordered in two different categories. Thereby, the first category
summarizes the requirements we considered critical for the development of our pro-
totype, so they should finally be met as far as possible. The second category contains
demands related to aspects like security and monitoring. We want to emphasize we
do not consider them second-class requirements as these topics are crucial for operat-
ing microservices. However, we found it reasonable to limit the scope of our work by
delaying our work on these aspects until we achieved building a basically functional
prototype. In this way, we were able to focus on the main issues caused by hybrid
clustering at first.

Mandatory requirements

• Representation of an abstraction layer for available hardware resources (RAM,
CPU, disk space, network etc.).

• Autonomous and transparent on demand resource allocation for developers and/or
operators for their deployments.

• Scheduling of tasks with respect to optimal hardware utilization and optional
user-defined invariants, for example placement constraints.

• Automation of deployments, upgrades and rollbacks.

• Assurance of service availability and dynamic scaling in accordance with expe-
rienced workload.

2.5. Challenges of hybrid microservice orchestration 23

• Dynamic service discovery and provisioning of a level of indirection for inter-
microservice communication.

• Isolation of service instances from host systems by means of OS-native mecha-
nisms, for example containers (see section 3.5).

In addition, the hybrid mainframe ecosystem use case leads to some special de-
mands that must also be considered:

• Aggregation of machines based on divergent CPU architectures into a transpar-
ent platform for heterogeneous tasks, i.e. tasks which can be placed at an arbi-
trary location within a multi-architecture computing environment.

• Optional deactivation of platform transparency for homogeneous tasks which
are, for some reason, bound to a certain type of machine, like services that can
only run on a LPAR within a System z mainframe.

• Integrated support for long-lived services, batch jobs, ad-hoc jobs which may
or may not be interdependent, and scheduling according to application-specific
characteristics and requirements.

• Reliable operation at moderate scale induced by a mainframe’s much smaller
size and scope compared to modern large-scale data centers.

• Low footprint to leave as much resources as possible to service deployments.

Optional requirements

• Authentication and authorization for administrators and individual computing
nodes joining the microservice management cluster, following the principle of
least privilege.

• Comprehensive monitoring, either built-in or by attaching third party tools via
APIs, for infrastructure components as well as deployments.

• Support for stateful applications and storage sharing between service instances
by means of both exclusive and shared persistent volumes.

Chapter 3

A microservice infrastructure based
on Apache Mesos

In this section, we provide an in-depth overview of the components our microservice
infrastructure prototype is based upon. We start with a short comparison between
several popular orchestration tools, justifying our decision to stick with Mesos for our
hybrid target environment. Then, we step through Mesos as well as its peripherals
and dependencies and explain the roles they play from the overall system’s point of
view.

3.1 State-of-the-art microservice orchestration

Currently, the probably most dominating tools for microservice management are Docker
Swarm [27], Kubernetes [99] and Apache Mesos [78]. Their most frequently mentioned
area of use is related to highly available deployments in homogeneous data center
environments. Thus, we throw a short glance at these tools and evaluate their basic
eligibility for hybrid computing platforms.

3.1.1 Relevant tools for microservice management

Docker Swarm

Since the 1.12 release, the Docker engine comes with built-in cluster management sup-
port and facilitates orchestrating services across a set of nodes without the need for
any other third party dependencies. Docker in high availability mode is usually re-
ferred to as Docker Swarm. Having started as a simple container runtime, Docker has
continuously evolved into a fully-integrated ecosystem for distributed applications
that includes many features like service discovery, load balancing and networking
that would otherwise require the use of additional tooling [27]. It should be noted,
however, that Docker can only handle containerized applications (i.e. services running

24

3.1. State-of-the-art microservice orchestration 25

within a Docker container) and is not able to manage or execute other formats, for
example raw binaries. Although Docker and thus Docker Swarm is completely open
source and under great influence of its community, only some parts of the product are
actually held by an independent foundation. The strategic direction with respect to
the project’s evolution is mostly set by Docker Inc., the company behind it.

Kubernetes

Kubernetes considers itself "an open-source system for automating deployment, scal-
ing, and management of containerized applications" [99] which is, in a sense, very
similar to Docker Swarm. The most significant difference between them probably is
that Kubernetes by itself does not bring its own container runtime, but instead leaves
this to third party providers like Docker. Currently, it is the only cluster manage-
ment tool implementing the concept of pods, which denotes a group of physically
co-located containers forming a logical unit [100]. The Kubernetes project has orig-
inally been initiated at Google and is now hosted by the Cloud Native Computing
Foundation (CNCF), a sub-organization of The Linux* Foundation.

Apache Mesos

According to its documentation, Mesos is as a "distributed systems kernel" [78] that
provides resource management APIs for applications in a similar manner as the Linux
kernel does, but at another level of abstraction. Instead of only managing a single
machine, Mesos can be employed to perform application orchestration and schedul-
ing across entire computing platforms. However, in contrast to Kubernetes or Docker,
Mesos is not restricted to container deployment. Moreover, it does not integrate a wide
range of functionality like service discovery but, as an alternative, offers APIs and
leaves concrete implementation of lots of behavior to custom components. In this way,
Mesos achieves to provide a maximum of flexibility while keeping itself lightweight.
Mesos has been introduced in 2011 by Hindman et al. [39] at the 8th USENIX Sym-
posium on Networked Systems Design and Implementation and meanwhile is hosted by
The Apache Software Foundation (ASF), which demands the project’s further devel-
opment to be neutral towards commercial, company-specific interests.

3.1.2 Eligibility for clustering in hybrid computing environments

If an application orchestration solution is suitable for managing hybrid platforms pri-
marily depends on if the tool itself can be run on each of the different types of ma-

* Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

3.1. State-of-the-art microservice orchestration 26

chines in question. As for the IBM System z s390x architecture, support for the tools
mentioned above is - to anticipate it - at most work in progress and surely additional
efforts are required to get things operational. Nowadays, the probably most progres-
sive technology in terms of multi-architecture support, especially when it comes to
System z, is Docker (see section 5.2).

Another important aspect is that hybrid cluster management must be able to con-
dense a diverse set of machines into a single system, that can execute architecture-
agnostic jobs without the platform’s inherent heterogeneity shining through. At the
same time, it must still be aware of the architectural differences between machines
in order to add placement constraints to jobs where the sort of machine they should
execute on does actually matter.

Docker Swarm, Kubernetes as well as Mesos integrate the concept of user-defined
node labels, that their corresponding schedulers can use as optional selectors to choose
appropriate target machines for launching tasks. Even though this sounds relatively
simple, labels pose a powerful mechanism which is - we will see - exactly what we
need to split up a multi-architecture cluster into n pools of machines of the same kind.
In theory, this functionality is already sufficient for dealing with both homogeneous
and heterogeneous jobs, as it allows the definition of placement constraints. Section 5.7
shows that there are, however, additional challenges that must be considered in prac-
tice.

So far, it can be seen that the most common mircoservice management platforms
already supply basic functionality which makes them a candidate for hybrid envi-
ronments, while constantly expanding their focus towards multi-architecture support
anyway. Coming from IBM System z and s390x, going with Docker Swarm seems to
be the best way to get started. The next part, though, provides a justification why our
choice has still fallen on Mesos.

3.1.3 The rationale behind using Apache Mesos

There are essentially three arguments why we preferred Apache Mesos over Docker
Swarm and Kubernetes. In the first instance, we already had a rough idea of what
Mesos is about before we started our work on this thesis. Admittedly, this is also ap-
plies to Docker, so Kubernetes was the first option to be excluded due to missing
familiarity.

Another important point is that Mesos was known to be a popular and field-tested
tool that has successfully been used by companies and organizations like Twitter, Uber,
Airbnb or Cisco [81] over a long period. In contrast, Docker only provides information
about customers using their fee-based products [17].

This directly leads to the next point pleading for Mesos. As a project hosted by
the ASF, it is ensured that, as already mentioned above, the future development is

3.1. State-of-the-art microservice orchestration 27

not dominated by the interests of a single company but rather serves the good of the
community. Unlike Mesos, the evolution of the Docker ecosystem is mainly subject
to a single company, namely Docker Inc. This should be a major consideration when
searching for an option that is ideally able to serve as the foundation of a sustainable
prototype.

Altogether, the most essential advantage of Mesos is that, unlike Docker and Ku-
bernetes, it does not raise a claim to be full solution to all cluster management issues
thinkable. Instead of integrating a large number of features for all kinds of problems,
the philosophy behind Mesos is to bundle a minimum of functionality that can be
extended as needed. What that means is Mesos prefers delegation over integration,
leaving the implementation of possibly varying behavior to third party tools which
leverage the Mesos APIs. In this way, custom features can simply be added if nec-
essary while the Mesos core itself can stay lightweight [39]. On the other side, com-
prehensive tools like Docker Swarm carry the risk of shipping with a vast number
of features most of which may not actually be required for the majority of use cases.
Indeed, Docker Swarm and also Kubernetes expose some plugin APIs [25, 98] which
allow some parts of the predefined behavior to get customized (for example, adding
custom volume drivers to Docker engine), but they are still far off Mesos’ flexibility.

The most relevant example for this is that Mesos is based on the philosophy of
decentralized scheduling [39], giving its users the opportunity to exactly implement
the scheduling behavior which fits best for a certain scenario. One of our goals is to end
up with an infrastructure that is suitable for a wide range of application types (long-
lived services, cron jobs, batch jobs etc.) which possibly require to optimize scheduling
and task distribution towards different criteria, like data-intensive workload that tries
to achieve high data locality. Therefore, we think that the Mesos approach fits best to
our needs as it enables application-aware scheduling.

Docker Swarm, on the other hand, does not implicitly implement the notion of
various kinds of jobs, but instead is designed with a special focus on long-lived ser-
vices and the goal of keeping them available as long as possible. This does not nec-
essarily mean that cron jobs or interdependent jobs cannot be run on top of Docker
Swarm. However, that would require an additional custom management layer on top
of Docker Swarm which takes care of this. In our opinion, this is a clear sign that
Docker Swarm does not really meet our requirements.

Further evidence of Mesos’ flexibility is that, in contrast to Docker and Kubernetes,
it is not limited to containerized deployments or Docker containers in particular. In-
stead, the deployment format of applications can be arbitrary and is entirely up to
third party scheduling components.

3.2. Mesos fundamentals and overview 28

3.2 Mesos fundamentals and overview

The fundamental ideas and technical concepts behind Apache Mesos have been de-
scribed in detail by Hindman et al. [39] in their paper released in 2011. This section
summarizes the central characteristics of Mesos as one of the key components our
hybrid cluster management system we present in this thesis is built upon.

3.2.1 Basic idea

Mesos has been designed around the observation that today, clusters are increasingly
shared between different "frameworks", a designation Hindman et al. [39] use to de-
scribe "software system[s] that manage[.] and execute[.] one or more jobs on a clus-
ter". Each framework is tailored to a certain kind of application, for example large-
scale web applications or data-intensive scientific applications. Concrete examples
are, amongst others, Hadoop and MapReduce. Hindman et al. [39] argue that, since
no framework is optimal for all use cases, the need to run multiple frameworks on
the same infrastructure ("cluster multiplexing" [39]) is a logical consequence. In their
opinion, high utilization and efficient data sharing can, however, only be achieved if
resources are shared across framework boundaries, which is not the case if clusters
are logically or even physically split up between frameworks. Thus, the paper [39]
justifies the necessity for Mesos as "a thin resource sharing layer that enables fine-
grained sharing [...], by giving frameworks a common interface for accessing cluster
resources".

The most significant technical innovation that came with Mesos was the absence
of a single central scheduler. Considering Docker Swarm [27] as a counterexample,
it relies on a global scheduler that is responsible for managing all tasks of a job. A
global scheduler makes scheduling decisions based on a centralized view of a cluster,
including the entirety of all framework requirements, available resources and user-
defined policies. Although this system-wide knowledge can be applied to develop
an optimal scheduling policy that converges the overall cluster utilization towards
a global maximum, it may not be optimal from a single framework’s point of view
which, for example, suffers from poor data locality. This can be the case if a framework
wants to run multiple jobs on the same dataset, but has to make several copies of it as
the respective tasks are scheduled to different machines. Moreover, it must be taken
into account that new kinds of frameworks with their own scheduling demands will
emerge in the future, forcing centralized implementations into constantly keeping up
with the latest developments [39].

Thus, the Mesos philosophy is to push accountability for scheduling to the frame-
works, with each framework managing a set of jobs with similar scheduling needs.
This is achieved through a concept called resource offers [39]. A resource offer is a bun-
dle of free computing resources (inter alia CPU and RAM) which Mesos passes on to

3.2. Mesos fundamentals and overview 29

frameworks. A framework that receives such an offer can use free resources in order
to run tasks. Hindman et al. [39] formulate this as follows: "Mesos decides how many
resources to offer each framework, [...], while frameworks decide which resources to
accept and which tasks to run on them".

3.2.2 Architecture

In essence, Mesos is made up of three components: A Mesos master that manages
Mesos agents running on each node in the cluster, and one or more Mesos frameworks
that launch tasks on these agents (see figure 3.1).

Figure 3.1: Mesos architecture diagram [81].

The Mesos master’s responsibility is to bundle free resources, about which it gets
constantly notified by the Mesos agents, into resource offers, which are basically lists
of free resources on agent nodes, and to pass them on to registered frameworks. It
thereby follows a certain policy in the form of an interchangeable allocation module, that
determines how unused resources shall be divided up between frameworks. Figure
3.1 further shows that each Mesos framework consists of a scheduler as well as an
executor process. The scheduler’s purpose is to register with the Mesos master in order
to receive resource offers, while an executor can be regarded a control process that
runs and observes a framework’s tasks [39].

The basic principal behind resource offers can be seen in figure 3.2. In step (1),
agent 1 informs the Mesos master about free resources, whereupon the master invokes
the allocation module which determines that the resources shall be offered framework
1. Subsequently, the master creates a resource offer in step (2) and sends it to frame-
work 1, which, as next step (3), answers with a list of task descriptions it would like
to run on these resources. At least, the master passes on the task list to the agent node,

3.2. Mesos fundamentals and overview 30

which then allocates the resources and launches the framework’s executor process that
in turn starts the actual tasks [39].

For the purpose of isolation, Mesos supports running both executors and tasks in
containers, using a mechanism which Mesos calls containerizers. Currently, the Docker
containerizer (requires the Docker engine to be installed on the agent) as well as the
Mesos containerizer (Mesos native container technology without external dependen-
cies) are at disposal. Wrapping up workload in containers comes with several advan-
tages, like isolation, ease of resource usage limitations and reusability [81]. Containers
are discussed more detailed in section 3.5.

As a complement, it is important to mention that a framework scheduler is not
obligated to accept resource offers. Given that a certain offer does not match a frame-
work’s demands, for example because it only wants to launch tasks on a particular
agent node to achieve data locality, it is free to reject it and wait for another one to be
sent by the Mesos master [39].

Figure 3.2: The resource offer mechanism in Mesos [81].

In order to short-circuit this process, Mesos allows frameworks to set filters on the
master. A filter is a simple Boolean predicate that the master can evaluate to check if a
certain framework would reject an offer anyway. A sample filter might look like "only
offer resources from nodes in List L to framework f" [39].

3.2.3 Fault tolerance

It is absolutely vital for a microservice infrastructure to be extremely fault-tolerant. As
for Mesos, there is a number of critical points where potential failures could endanger
the stability of the entire cluster management platform and also of its deployments.

3.2. Mesos fundamentals and overview 31

Fortunately, Mesos implements sophisticated failover strategies to ensure availability
and reliability.

Mesos master failover

The master is at the heart of Mesos, since all frameworks rely on for obtaining com-
puting resources. In order to be able to intercept the loss of the master process, Mesos
allows for running multiple master instances in what Hindman et al. [39] call a "hot-
standby configuration" (see figure 3.1), with a single node acting as the leader. If the
leading master fails, a new leader is elected to which the frameworks and agent nodes
can reconnect afterwards. It is recommended to run at least three Mesos master in-
stances as an ensemble for the purpose of fault tolerance. The Mesos masters employ
ZooKeeper [92] for leader election (see section 3.4).

The leading master stores cluster information as soft state, meaning that it is kept
in volatile RAM only. Losing it in succession of a crash failure or a power outage is
not critical, though, as the new leader can simply restore its state by means of the in-
formation stored at the agents as well as the schedulers. The information ephemerally
held by the leader includes a list of active agent nodes, a list of active frameworks and
another list capturing currently active tasks [39].

Nevertheless, there are still some edge cases that might lead to inconsistencies, for
example if an agent fails while a master leader election is currently in progress and
no leader is available for a short period of time. As soon as the remaining agents re-
connect to the new leader, the failed agent node would literally be forgotten by the
leading master, whereas the framework would still assume the crashed agent’s tasks
to be running. Thus, the ensemble of master nodes applies a persistent registry to
keep track of active agent nodes, so that agent failures can reliably be recognized at
any point in time. This registry can be stored in memory (which is not recommended
for production setups) or by using the Mesos replicated log library [91], which facili-
tates the creation of fault-tolerant append-only logs that store data in a safe, replicated
and especially durable fashion across multiple master nodes. In order to be able to
guarantee a strong consistency model, the replicated log implements the Multi-Paxos
consensus algorithm, which requires a majority of Mesos master nodes to be live [81,
43].

Mesos agent failover

If a Mesos agent process exists, for instance due to a bug or because it shall be up-
graded to a new version, it loses contact to all executors it has been managing. The
leading master grants it a defined period of time to recover (75 seconds by default)
before it marks the agent node as unreachable. The leader then notifies all affected
frameworks of the loss, which are free to determine their own error handling strate-

3.3. High-level comparison between Marathon and Aurora 32

gies (for example scheduling replacement tasks). From the moment when the agent
crashes, the executors also wait for a certain amount of time (15 minutes by default)
and self-terminate if they cannot reconnect within this period [80, 43].

Assuming that a crashed agent successfully recovers and reregisters with the lead-
ing master, its standard behavior is to kill all running executors and let the frame-
works reschedule them. To avoid the deletion of existing executors when the agent is
restored again the frameworks can activate checkpointing, which impels the agent to
periodically write executor state to disk. On a subsequent restart, the agent can reload
its state from the previously checkpointed information and reconnect to the executors
which are still running [80].

While the official documentation points out that wiping out all executors on agent
restart is the default strategy for the latest Mesos versions [80], Ignazio [43] describes
caching and recovery of executor state as the standard approach for earlier releases.

Framework executor failover

Mesos supports native task checking by leveraging the executors running on agent
nodes to perform health checking of tasks. If a task fails, the leading master will be
notified by the corresponding executor and immediately passes on the status updates
to the affected framework schedulers. In the event of an executor crash, the leading
Mesos master will also be advised and informs the scheduler right away. In both cases,
each framework must define its own response to the loss of tasks, for example the
scheduling of replacement tasks [90].

Framework scheduler failover

The third component that could possibly fail is the framework scheduler. Therefore,
frameworks are free to register multiple scheduler instances with the master ensemble,
with one scheduler being active and the other ones running in standby mode. If the
Mesos master finds the active scheduler to be unavailable, it notifies one of the standby
instances which immediately takes its role. It should be noted that Mesos does not
dictate the frameworks how their scheduler state shall be persisted and shared across
multiple instances. Once again, this concern is left to the frameworks and can be im-
plemented in different ways, as the following comparison of Marathon and Aurora will
show [39].

3.3 High-level comparison between Marathon and Aurora

This section takes a glance at two different Mesos frameworks, namely Marathon [50]
and Apache Aurora [72], which we consider suitable candidate frameworks for flexible
and reliable microservice orchestration. Because both frameworks are developed as

3.3. High-level comparison between Marathon and Aurora 33

open source projects with extensive documentation [48, 74] that covers many details,
the focus will be on the most significant similarities and differences. Instead of sticking
with a single framework, we decided to take a broader approach by examining how
different implementations compare to each other. This comparison is especially inter-
esting because on the one hand, Marathon is backed by Mesosphere, Inc., which offers
it in a standalone version or as part of an integral cluster management stack called
DC/OS [49]. Aurora, on the other hand, belongs to the Apache Software Foundation
and is entirely community-driven project [72].

Marathon and Aurora will also be evaluated with respect to the demands on a
microservice infrastructure we established in section 2.5.1. Some of them, like provid-
ing an abstraction layer across distributed physical hardware, are already fulfilled by
Mesos itself.

3.3.1 Use case

Both Marathon and Aurora imply the idea of jobs as an abstraction for a collection
of identical tasks, which is important because Mesos only operates at the notion of
tasks [73]. They both characterize themselves as platforms especially for long-running
services in the first place. Besides, Aurora ships with support for cron jobs (i.e. tasks
that shall be executed periodically) [74], while Marathon integrates functionality tar-
geting job dependencies [51], which is currently limited to keep a group of jobs in sync
in terms of state and size. So neither Marathon nor Aurora cover the whole spectrum
of job types we originally defined. Though, that issue can theoretically be bypassed by
running multiple frameworks side by side on top of a single Mesos deployment and
combining their capabilities.

3.3.2 Architecture

Marathon or rather the Marathon scheduler can be deployed as a single artifact which,
as a Scala project, depends on a Java* Runtime Environment (JRE) to be available. It
does not bring its own executor but instead relies on the pre-defined Mesos command
executor [51] for launching tasks on agents.

Aurora goes a different way here and is split up into multiple components that
have to be deployed independently. Apart from the scheduler, Aurora requires a cus-
tom executor implementation to be present on each agent node, and the Aurora com-
mand-line interface (CLI) is another separate deployment unit. Along with the fact
that the Aurora components are partially implemented in different programming lan-

* Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates.

3.3. High-level comparison between Marathon and Aurora 34

guages (scheduler in Java, client and executor in Python) this makes setting up Aurora
very cumbersome [73].

3.3.3 Resilience and reliability

Mesos enables frameworks to operate in high availability mode by letting frameworks
register multiple scheduler instances with the leading master, one of which is elected
as the active scheduler, while the remaining ones stay in standby mode, waiting for
the leading scheduler to fail and possibly taking its position [81].

Mesos leaves the concern of persistently saving scheduler state in order to allow it
to survive a crash of the leading scheduler to frameworks [39]. Marathon and Aurora
choose different strategies in oder to guarantee that in case of a scheduler failover,
the new master can seamlessly continue from the point where the old one failed.
Marathon, for example, creates dedicated ZooKeeper nodes (see section 3.4) which
keep track of scheduler state. This is a reasonable approach since Mesos requires
ZooKeeper as a dependency anyway [53].

On the other hand, Aurora waives relying on ZooKeeper for persisting its state
and rather refers to the Mesos replicated log (see section 3.2.3) for that purpose [75].
What speaks in favor of this approach is that, compared to how Marathon deals with
persisting state, an additional dependency between the framework and a third party
tool like ZooKeeper is avoided.

3.3.4 Application deployment and scaling

Marathon as well as Aurora both promise deployment and scaling of applications
to be simple. They come with various interfaces for creating, updating and watching
jobs. Marathon, for example, offers a sophisticated UI where all activities related to job
administration can be performed [50]. Aurora also ships with an UI which is designed
to be read-only, though. That means its purpose is limited to observe the state of jobs
and their tasks. Deployments and updates can only be done via the Aurora CLI and
the Aurora Domain Specific Language (DSL) [73]. Marathon does not have a CLI but
instead provides a RESTful HTTP API [50] which allows the definition of jobs in JSON
format.

In terms of functionality, both frameworks supply a very similar set of basic fea-
tures which let users define jobs, transparently scale them up/down and and finally
delete them again. Since Aurora requires a dedicated DSL to be learned, interacting
with Marathon through its UI feels a little bit more user friendly.

With regard to supported deployment formats, both Marathon and Aurora are able
to launch tasks by either directly executing binaries on the agent hosts or starting tasks
as Docker or Mesos containers (see section 3.5) [89].

3.3. High-level comparison between Marathon and Aurora 35

3.3.5 Service discovery

Keeping different services loosely coupled means giving them the opportunity to refer
to each other by a unique identifier instead of hard-coded network addresses. This
identifier states a permanent reference by which services can reach each other even if
their exact locations within the network changes over time. Ideally, given that more
than one instance for a certain service is deployed, requests issued to that service are
transparently and evenly load balanced across all instances.

Service discovery can be implemented in different ways. Marathon, for exam-
ple, delegates the translation of an identifier into a network address and port to a
standalone component named Mesos-DNS [55]. Mesos-DNS constantly fetches the list
of active tasks from the Mesos master using the Mesos APIs, and creates appropri-
ate DNS records which make Mesos deployments addressable based on the naming
schema <app-name>.<framework-name>.domain. While the name of a frame-
work can be defined at startup time, domain defaults to mesos if not specified oth-
erwise [55].

For service discovery via Mesos-DNS to work, all client host’s networking settings
need to be changed to point to Mesos-DNS as their primary nameserver, which causes
significant configuration overhead [55].

According to its documentation, Aurora has also started to integrate Mesos-DNS
support for service discovery [77]. Previously, ZooKeeper was (and still can be) used
to perform service discovery. Under the hood, this works by having the framework
executors publishing tasks and their network addresses in what Aurora calls Server-
Sets, which are based on the ZooKeeper-native group membership pattern [77]. As this
approach seems deprecated, the details shall be skipped.

3.3.6 Persistent storage

Marathon leverages the Mesos persistent volumes capabilities in order to allow tasks
to permanently store their state on disk beyond their lifetime [48]. Persistent volumes
are especially practical for stateful applications [54], which can restore their state even
if they crash, but also for sequential batch jobs where one job processes data produced
by a previous one. By default, persistent volumes can only be accessed by tasks man-
aged by the the same executor [83].

Besides, Mesos provides support for shared persistent volumes [85] in order to
share data sets between tasks running on executors. However, it is still required that
tasks sharing a volume reside on the same agent node. From a framework perspec-
tive, the Marathon documentation states that persistent volumes are not yet fully sup-
ported at the moment [54]. As for Aurora, the documentation currently lacks any in-
formation about the integration of persistent volumes. The only hint related to this

3.4. Coordinating Mesos with Apache ZooKeeper 36

topic is a ticket (AURORA-17131) in the JIRA issue tracker that suggests the integra-
tion of the corresponding functionality.

3.3.7 Scheduling constraints

Both Aurora and Marathon allow for job definitions being supplemented with schedul-
ing constraints. These constraints can be matched against custom labels that must be
added to Mesos agents at startup time. The concept of node labels has already been
introduced in section 3.1.2. Scheduling constraints make it possible to split up the en-
tirety of agents into subsets which, for examples, run on machines sharing the same
CPU architecture. In this way, placement constraints for homogeneous jobs that are re-
stricted to only execute at particular places within a divergent platform can easily be
defined. Both frameworks offer similar ways of scheduling constraint definition [52,
76], yet the Marathon approach based on various operators (see section 5.7) appears
to be more powerful, while Aurora’s constraint capabilities seem rudimentary.

3.4 Coordinating Mesos with Apache ZooKeeper

3.4.1 Why Mesos needs coordination

As a critical component of a microservice infrastructure, Mesos is implicitly designed
to be reliable and highly available. This is particularly important for the Mesos mas-
ters, since all agents and frameworks depend on a operational leading master in order
to get their job done. Mesos allows n master nodes to form an ensemble consisting of
exactly one leader and, given that every node is healthy, n− 1 standby masters [43]. Be-
cause it is unknown a priori which master node will be the elected leader when Mesos
is initially started and because the distribution of roles between nodes might change
over time, it is obvious that the configuration state of Mesos is highly dynamic. That
brings on some problems that must somehow be tackled:

• How can the Mesos masters can come together and form an ensemble?

• How do the Mesos masters agree on a single leader?

• How can Mesos agents and framework schedulers learn which one is the leading
master and where it lives in the network (IP address and port)?

• How can Mesos agents and framework schedulers determine if the leading mas-
ter has failed? How can they reconnect to a new leader?

1 https://issues.apache.org/jira/browse/AURORA-1713

https://issues.apache.org/jira/browse/AURORA-1713

3.4. Coordinating Mesos with Apache ZooKeeper 37

Of course, Mesos could bring its own library for dealing with distributed consen-
sus and synchronization, but, due to high availability reasons, would also have to han-
dle configuration data replication and consistency. The increasing complexity result-
ing from this approach would, however, be in contradiction with the design principle
of keeping the Mesos core lean and lightweight. Thus, Mesos uses ZooKeeper to im-
plement custom coordination primitives while delegating replication and persistence
of configuration information [43].

In the following, we will explain the purpose and some technical details of ZooKeeper
and then walk through the questions above and see how ZooKeeper helps with an-
swering them.

3.4.2 Intent and purpose of ZooKeeper

Hunt et al. [41] describe ZooKeeper as "a service for coordinating processes of dis-
tributed applications". However, ZooKeeper itself does not integrate any ready to use
coordination mechanisms, but instead is designed around the goal to provide an API
that enables clients to implement arbitrary complex primitives for different kinds of
coordination needs at the client-side. Common coordination needs include [41]:

• Configuration: Sharing lists of static and/or dynamic parameters between mul-
tiple processes.

• Group membership: Informing a process belonging to a certain group of the
other members and which one of them are currently alive.

• Leader election: Making multiple processes agree on role allocation, i.e. which
one is the leader.

Instead of being a service with a special focus on only one of these points, ZooKeeper
aims for enabling "multiple forms of coordination adapted to the requirements of ap-
plications" [41]. Additionally, it ensures safe and reliable replication of configuration
data across multiple ZooKeeper servers [41]. ZooKeeper frees different applications
from dealing with these configuration concerns on their own and facilitates sharing of
a single service instead of re-implementing similar behavior over and over again.

While coordination primitives are also offered by alternative services like the Chubby
lock service [8], ZooKeeper prefers wait-free data objects over blocking lock primitives
in order to achieve high performance and throughput under read-dominated work-
loads [41].

3.4.3 ZooKeeper internals

Hunt et al. [41] stress that, even though "ZooKeeper seems to be Chubby without
the lock methods" at first sight, it considerably differentiates from Chubby [8], as it is

3.4. Coordinating Mesos with Apache ZooKeeper 38

built upon wait-free data objects instead of blocking primitives such as locks. These
data objects, which are also called znodes in the context of ZooKeeper, are arranged
in a hierarchical manner similar to the structure of filesystems. Figure 3.3 illustrates a
ZooKeeper data tree, which is made up of two subtrees, one that belongs to app1 and
another one for app2. Clients can issue calls via the ZooKeeper client API in order to
create, read, edit or delete znodes within a data tree [41].

In the first place, znodes pose an abstraction for the implementation of coordina-
tion primitives and are not designed for general data storage. Nevertheless, they can
also be used to store small amounts of data (max. 1 MB by default), for example meta-
information like dynamic configuration parameters. ZooKeeper makes a distinction
between two types of znodes [41]:

• Regular: Regular znodes are explicitly created and deleted by clients.

• Ephemeral: Ephemeral znodes are created by clients, which are free to also
delete them explicitly or leave that to the system. They are removed automati-
cally as soon as a client session ends.

Figure 3.3: ZooKeeper organizes znodes hierarchically [41].

On znode creation, additional flags can be set which define a znode’s properties.
The SEQUENTIAL flag causes a monotonic increasing sequence number to be ap-
pended to a new znode’s name. This is shown in figure 3.3, where app1 created three
znodes suffixed with the value of an increasing counter. The WATCH flag, on the other
hand, registers a one-time trigger for a certain znode and associates it with a client
session. In case the corresponding znode is deleted or modified, each client watching
that znode gets notified by ZooKeeper. In this way, clients can be kept informed about
ZooKeeper updates without polling [41].

As part of critical infrastructure, ZooKeeper puts emphasize on high availability,
which is achieved by replication of the in-memory data tree across an ensemble of

3.4. Coordinating Mesos with Apache ZooKeeper 39

servers. For the purpose of consistency between replicas, the ZooKeeper server group
implements a leader-based atomic broadcast protocol called Zab. An extensive discus-
sion of the Zab protocol is beyond the scope of this thesis, but it shall be noted that it
helps with providing two important request ordering guarantees [41]:

• Linearizable writes: All write requests (i.e. requests that modify ZooKeeper
state) from all clients, which may or may not run concurrently, are sequentially
ordered in a manner that respects real-time precedence. Herlihy [38] gives a in-
depth explanation of linearizability as well as its importance as a correctness
property for concurrent systems. Informally, its impact on ZooKeeper is that all
write requests must be forwarded to the Zab leader, where they are totally or-
dered. The Zab protocol ensures that all writes are applied to a majority of replica
servers in exactly the same order [41]. Given that the number of ZooKeeper
servers is n, the minimum number of servers q which must acknowledge a write
operation can be calculated as follows: q = floor(n/2) + 1.

• FIFO client order: All requests (reads and writes) from a certain client are exe-
cuted in a first-in-first-out (FIFO) fashion, meaning they are processed in exactly
the same order as they were sent. In this context, a request being processed means
that, in case of a write operation, it actually takes effect on the internal state of
ZooKeeper rather than being solely acknowledged.

ZooKeeper utilizes various sophisticated techniques to maximize performance. It
is inherently optimized for read-dominant workloads and thus uses Zab to totally or-
der only write operations. Read operations, on the other hand, do not undergo an
atomic broadcast, but instead are processed locally by the replica a client is connected
to. While this restriction bears the risk of clients receiving stale data from a replica
which has not seen the latest updates, it enables highly performant reads, though. Ad-
ditionally, a client-side cache is used to further improve read performance. ZooKeeper
does not explicitly manage these caches, meaning they are, for example, not inval-
idated by ZooKeeper itself in case of updates. This is left to the clients, which can
make use of the watch mechanism to get informed about changes they are interested
in [41].

As the previous explanations are completely sufficient to describe how Mesos can
benefit from ZooKeeper, we refer to the paper written by Hunt et al. [41] which covers
ZooKeeper in much more detail.

3.4.4 How Mesos uses ZooKeeper

Mesos relies on ZooKeeper for different aspects of coordination between the Mesos
master group on the one side and the agents as well as the frameworks on the other,

3.4. Coordinating Mesos with Apache ZooKeeper 40

but also between the servers of the master ensemble themselves. This section gives a
short introduction to the implementations of the corresponding primitives.

Election of leading Mesos master

When Mesos is operated in high availability mode, all servers participating in the
group of Mesos masters must consistently and reliably agree on a single leader. At
any point in time, there must be at most a single master node which acts as the leading
master. We say at most deliberately, because there might be short periods between the
failure of a leader and the takeover of a new one during which the leader election
process takes place and no leading master is available.

The leader election algorithm is not explicitly described by the Mesos maintainers.
Instead, they refer to a collection of ZooKeeper "recipes" [94] that are effectively ref-
erence implementations of coordination primitives. From these blueprints, the leader
election algorithm can be derived to principally work as follows:

1. On startup, each Mesos master m creates an ephemeral znode z with the
SEQUENTIAL flag set under the /mesos path in the data tree. In this way, each
master is associated with a uniquely identifiable znode /mesos/m_i, where i is
a monotonic increasing sequence number.

2. Each master node m queries all children C of /mesos and checks if its znode z
has the lowest sequence number in C. If so, then m is the elected leader l. Other-
wise, it is a standby master s and starts watching the next znode /mesos/m_j
in C where j is the largest sequence number such that j < i.

3. If any standby master s receives a ZooKeeper notification because an observed
znode has been deleted, it again queries C and repeats the sequence number
check from step 2. If the znode /mesos/m_i of the leader l has vanished, standby
master s with the next znode sequence number j > i learns it is the new leader.

Figure 3.4 illustrates the /mesos ZooKeeper subtree with three active Mesos mas-
ter servers forming a quorum. If the current leader master 1 dies, master 2 will be no-
tified as soon as znode /mesos/m_1 is gone (will be removed after a timeout has
expired) and takes over leadership instantaneously [94].

As for the framework schedulers, which also perform leader election, the docu-
mentations of Marathon and Aurora merely refer to the same ZooKeeper recipes [94]
as the Mesos design documents do. The basic algorithm can therefore be assumed to
work similarly to the procedure presented above.

3.4. Coordinating Mesos with Apache ZooKeeper 41

Figure 3.4: The Mesos masters use ZooKeeper for leader election.

Discovery of the leading Mesos master

The second substantial problem is about how the Mesos agents and frameworks can
determine which master is the current leader and by which network address the leader
can be reached. Again, the documentations of Mesos, Marathon and Aurora point
to the ZooKeeper recipes for technical details with regards to leader detection. With
the knowledge of how the Mesos master group manages to agree on a leader, we
can, however, deduce how their /mesos ZooKeeper subtree can help with keeping
peripheral components informed of the ensemble’s state.

Since, as a convention, it is known that the Mesos master which holds the znode
with the lowest sequence number must be the current leader, frameworks and agents
can use that knowledge to determine the leading master by simply retrieving all the
children C of /mesos and look for the znode with the lowest sequence number in
C. Because a leader’s network location (IP and port) is unknown a priori and might
even change over time, Mesos applies the concept of a rendezvous znode [94] in order to
allow Mesos agents and framework schedulers to lookup the leader’s network address
dynamically. A rendezvous znode is just a usual znode at which the leading Mesos
master stores its current network meta data, which can then be retrieved by clients. For
simplicity, the Mesos masters use their leader election znodes /mesos/m_i for that
purpose. This concept enables client applications to stay loosely coupled to Mesos.

3.5. Workload isolation with Linux containers and Docker 42

3.5 Workload isolation with Linux containers and Docker

Section 3.2.2 already outlined the different ways in which Mesos utilizes containers
briefly, concretely mentioning containerization of not only tasks but also executors.
Up to now, no accurate definition of containers and their advantages has been given,
and is has neither been explained how Docker relates to containers. In the following,
we aim to provide a short but clear overview of the idea behind containers and point
out the correlation with the Docker project.

3.5.1 What is a container?

First of all, a distinction must be made between Docker and the concept of containers
in general. A container is a virtualization technique based on features of the Linux
kernel, whereas Docker is a tool which harnesses these features and wraps them with
a user-friendly API. Containers differ from regular VMs by virtualizing at the OS level,
running processes in their own isolated environments on top of the Linux kernel of a
single host system. VMs, however, are managed by a hypervisor that operates at the
hardware level and assigns hardware resources to them, and each VM uses them to
bring up a full-fledged OS with its own kernel. While this sort of virtualization is based
on resource sharing by creating well-defined slices of available hardware, containers
enable OS sharing by means of Linux kernel features like namespaces and control groups
(cgroups) [46].

The Linux kernel offers a wide range of different namespaces (process namespace,
user namespace and network namespace, among others) which serve the purpose of
isolating a container from the underlying host system. Thus, all processes running
within a container only have a limited view of the host OS with their own process
hierarchy, virtual network interfaces and user databases [46]. That allows a variety of
containers to coexist on the same OS without even knowing they are actually sharing
resources with each other. Another important kernel feature are cgroups, which allow
for putting resource constraints upon a collection of one or more processes. By that
means, a container’s resource consumption concerning memory, CPU share and disk
I/O bandwith can be limited and fair resource sharing between containers and other
host OS processes can be achieved [46].

Compared to hardware-level virtualization (see figure 3.5a), resource utilization
with containers is much more efficient (see figure 3.5b) because they avoid the over-
head of booting multiple OS kernels which requires a significant amount of resource
capacity.

Moreover, booting a complete OS from scratch is time-consuming, whereas start-
ing and stopping processes can usually be done in fractions of seconds. Consequently,
bringing up a container can be done orders of magnitudes faster than setting up a
VM. Containers also solve the problem of what Merkel [46] calls "dependency hell".

3.5. Workload isolation with Linux containers and Docker 43

(a) Hardware-level virtualization (b) OS-level virtualization

Figure 3.5: OS-level virtualization and hardware virtualization compared. [57]

Installing several applications on the same system might lead to conflicts between
their dependencies, for example two applications demanding different versions of the
same shared library. The side by side installation of possibly interfering versions of
the same library threatens the stability of deployments and renders periodic updates
almost impossible. By packing up each application along with its, and only its depen-
dencies in a sandboxed process environment which is isolated from the surrounding
host filesystem (e.g. via chroot [57]), these problems no longer exist [46].

3.5.2 What is Docker?

Docker is an open source project written in Go that, at its core, acts as a wrapper
around the set of Linux kernel features described above and offers a convenient in-
terface to launch containers from user space. To achieve this, Docker is split up into
a command line client as well as a server component running as a daemon. While
the Docker client offers a convenient interface for container management, the Docker
daemon is in charge of the heavy lifting by interacting with the kernel. The fact that
the Docker daemon executes with root permissions in order to be capable of accessing
all required OS resources like devices is, however, often considered a major security
risk [57].

The Docker daemon, which is sometimes also referred to as Docker engine [57],
has undergone a major transformation in the past few years, moving from a mono-
lithic structure towards a modular design comprising various standalone open source
projects. One of these projects is the runC container runtime [42], which is build upon
the libcontainer execution driver that has been implemented to talk to the kernel APIs
directly. In its early stages, Docker did not interact with the kernel on its own but

3.5. Workload isolation with Linux containers and Docker 44

instead integrated several drivers that delegated container administration to existing
container technologies like Linux Containers (LXC) [57].

One of Docker’s key features is its strong focus on reusability. In order to avoid
repeatedly packaging of popular software components for usage within a container,
Docker ships with the notion of images, which pose isolated filesystems that can be
populated with arbitrary software. What is special about Docker images is that they
are effectively read-only. Every change that is made to an image goes into a seperate
layer that can again be committed to a new immutable image. Docker images usually
start with an empty root or a minimal distribution-flavored filesystem which can be
enriched with additional packages, configuration files and other modifications that
get stored in their own layers. As a consequence, a Docker image can more precisely
be defined as a read-only filesystem consisting of up to n layers, with n ≥ 1. Docker
launches containers from images, meaning that all n read-only image layers plus an
additional writable container layer get mounted at a common mount point [14], which
is called a union mount [57]. To generate the impression of a single consistent filesys-
tem, the layers are stacked on top of each other in the order of their creation, so the
initial root filesystem must be the bottom layer. The container layer, which is empty at
the beginning, stores all changes so that they shadow the underlying image [14]. This
is a widely spread technique known as copy-on-write (CoW) [57]. The changes kept
in the writable layer be made permanent by committing them to a new image, from
which in turn another container can be launched. If a container (i.e. the writable layer)
gets deleted instead, the modifications it holds are also gone permanently [14].

Docker images are created from Dockerfiles [57], which are basically text files listing
sets of build steps. Each build step includes a single instruction, like running a com-
mand or defining an environment variable, which results in a new layer being added
to the final image. Mouat [57] gives a detailed explanation of how Dockerfiles work.

The layered design of Docker images has a strong impact on reusability and allows
for efficient sharing not only on a per-image but even at a per-layer basis. Firstly, cre-
ating a public place where prepackaged images for commonly used software can be
downloaded seems logical, which is exactly what Docker offers with its public image
registry called Docker Hub. For scenarios where placing images on third party servers
is not an option, self-hosting a private instance of the Docker Registry is another alter-
native. A registry contains n image repositories which usually store different versions
of the same image. These versions can be differed by alphanumeric identifiers - or
tags - that can be attached to images in the same repository and default to "latest".
Consequently, Docker images adhere to the following nomenclature, which must be
followed when pulling an image from or rather pushing it to a registry [57]:
<registry-server>/<repository>:<tag>

3.5. Workload isolation with Linux containers and Docker 45

3.5.3 Mesos and containers

In section 3.2.2, we already mentioned that Mesos is capable of using different con-
tainer technologies as containerizers [89] for tasks as well as executors. That is, frame-
works define tasks that run an arbitrary executable like /bin/echo and Mesos takes
care of launching the command within a container. If desired, it is also possible to
instruct Mesos to put executors, which act as supervisor processes for tasks, in con-
tainers. That makes rolling out new custom executors and switching between existing
ones much more convenient. Mesos is able to leverage third party container technolo-
gies like Docker to implement containerizers, but meanwhile also brings its own con-
tainer tools, which are built upon the same set of kernel features like Docker or LXC,
however with smaller set of features. From a Mesos perspective, integrating a custom
solution for containerization is a reasonable goal, as this approach supersedes the ne-
cessity of external dependencies. If for example Docker is used as a container provider,
it must be ensured that each host running a Mesos agent has the Docker engine in-
stalled. Apart from leaving containerization of tasks to Mesos, frameworks may, as an
alternative, launch containers explicitly by themselves. For instance, Marathon sup-
plies a JSON-based abstraction for the definition of tasks as Docker containers. Behind
the surface, these tasks definitions are translated into plain shell commands using the
Docker CLI which are then passed to Mesos and launched by the default command
executor.

3.5.4 Docker, containers and how they help with building a hybrid mi-
croservice infrastructure

The favorable characteristics of containers and the Docker ecosystem can be exploited
to tackle the demands on a reliable microservices infrastructure defined earlier. Firstly,
employing containers instead of VMs for application isolation significantly lowers
memory and disk space footprints and leaves more resources to application deploy-
ments. Although VMs are still needed for the OSes serving as the container hosts,
much less of them are required to accomplish the same degree of logical cluster parti-
tioning.

Besides, since we assume a heterogeneous amd64/s390x platform, there are many
packages and software tools that are available only on a subset of the Linux distribu-
tions for special processor architectures like s390x. As Docker images may be based on
various Linux flavors independent of the underlying host distribution, we can always
choose the base image that best fits our needs. In this thesis, we even try to go one step
further by putting not only arbitrary applications, but also the microservice infrastruc-
ture components itself, including Mesos and ZooKeeper, into containers. While this
seems like radical approach, it reduces the complexity of running our infrastructure
on different s390x Linux distributions to only having to provide appropriate Docker

3.5. Workload isolation with Linux containers and Docker 46

packages for the respective Linux VMs. As for our infrastructure and possible depen-
dencies, all we have to do is creating one image per component which is derived from
a single, arbitrary s390x base image instead of tweaking the installation processes ac-
cording to the particularities of several Linux distributions.

Chapter 4

Practical implementation of a
microservice infrastructure

The last chapter discussed many technical details of the components that we have
chosen to form our infrastructure for system management services. It has been shown
that, in theory, Mesos comes with an inherent flexibility that makes it a suitable can-
didate even for very special environments like IBM System z. However, this flexible
design comes also at cost: In contrast to integrated ready-for-use solutions like Ku-
bernetes or Docker Swarm, setting up Mesos in practice is much more costly, as ad-
ditional dependencies for coordination, scheduling, networking etc. must also be in-
stalled. Furthermore, regarding a hybrid target platform, it became clear after a while
that moving Mesos to the IBM System z s390x architecture is a non-trivial task.

Thus, we chose a two-step approach to keep complexity manageable: First of all, a
fully functioning Mesos setup shall be established on several amd64 machines in order
to get familiarized with its characteristics as well as potential pitfalls. In a second step,
the existing homogeneous infrastructure shall be extended to also integrate s390x-
based VMs. This chapter covers the first part of this journey. Thereby, the focus will
be on the most relevant impediments we run into when installing Docker, ZooKeeper,
Mesos, Marathon and Aurora.

4.1 The interim goal

The homogeneous setup we decided to strive for as an intermediate milestone (see
figure 4.1) comprised three VMs running CentOS 7.3 (Kernel version 3.10.x) [95] as
their host OS. It has further been determined that a software stack including Docker,
a ZooKeeper server, a Mesos master, a Mesos agent, a Marathon instance as well as
an Aurora instance should be launched on each of these machines. From a resilience
perspective, spreading the ZooKeeper, Mesos and framework components across dif-
ferent sets of hosts might be a reasonable approach for large-scale deployments in or-

47

4.1. The interim goal 48

der to create multiple independent failure domains. However, we decided to adhere
to a smaller scale in order to simulate a scenario that resembles the situation on main-
frames as far as possible. There, we can currently assume to have two SEs (primary
and alternate) as well as a single LPAR at our disposal.

Figure 4.1: An ensemble of three amd64 hosts running a fully functional Mesos setup.

Besides, in order to have a private Docker image store available, one of the ma-
chines hosted a Docker registry, where all containerized infrastructure components as
well as demo services could be saved and from where they could easily be pulled to
the other servers. For service discovery, we placed a single Mesos-DNS instance on
one of the hosts, which was used as the primary DNS server by all VMs.

Due to restrictions enforced by the underlying virtualization platform, our setup
only had a minimal network configuration without DNS and with no direct access to
external package repositories. Thus, we could only use an internal mirror server to
install packages and resolve dependencies, so that software from third party repos-
itories had to be installed by downloading the CentOS RPM packages to our local
workstation and copying them to the VMs manually.

The following list gives an overview of the versions of the software tools that have
been in use for the development of our amd64 prototype:

• Docker CE: 17.03.1 (released March 27, 2017)

• Docker Registry: 2.6.0 (released January 18, 2017)

• ZooKeeper: 3.4.10 (released March 30, 2017)

• Mesos: 1.1.1 (released February 25, 2017)

• Mesos-DNS: 0.6.0 (released September 15, 2016)

• Marathon: 1.4.2 (released March 27, 2017)

4.2. Manual installation of Docker on CentOS 49

• Apache Aurora: 0.17.0 (released February 6, 2017)

4.2 Manual installation of Docker on CentOS

In March 2017, Docker Inc. announced that their core product, the Docker engine,
would be available in two different flavors from now on: The Docker Community Edi-
tion (Docker CE) that comprises all free Docker products, and the fee-based Docker
Enterprise Edition (Docker EE), which is recommended for business-critical deploy-
ments and comes with additional features like vulnerability scanning and monitoring
[68]. For our prototype, we decided upon the free Docker CE version in order to avoid
any license costs during development.

4.2.1 Bringing Docker to our CentOS servers

Basically, Docker officially provides the latest version of Docker CE for amd64 CentOS
via their corresponding RPM repository [19]. As already mentioned, though, we could
not use online repositories as we were unable to access them over the network. Luck-
ily, Docker also publishes their RMPs on one of their websites1, so we were able to
download the Docker packages to our local workstation, from where we could trans-
fer them to the CentOS hosts. At that time, the newest Docker version available was
the 17.03.1 release (as of March 2017).

The dependency resolution process based on the internal mirror server worked
well and the installation process finally finished without an error.

4.2.2 Fixing the Docker storage driver settings

Although the installation procedure itself worked on first try, we discovered that the
Docker daemon was not running afterwards. Trying to launch the daemon by hand
caused the following error message:

$ sudo systemctl restart docker.service

Error starting daemon: error initializing graphdriver: driver not supported

Listing 4.1: Docker daemon failure due to missing AUFS support in CentOS.

At first, this error message was not really helpful as there was no hint on what
Docker actually means by a "graphdriver". Some research on this topic revealed that,
as Estes [34] explains, the term graphdriver derives from the "image graph" formed

1 https://download.docker.com/linux/centos/7/x86_64/stable/Packages/

https://download.docker.com/linux/centos/7/x86_64/stable/Packages/

4.2. Manual installation of Docker on CentOS 50

by the layers of a Docker image, which represents the relationships between them. A
graphdriver or storage driver follows these relationships when mounting image layers
into a consistent root filesystem for a container. A storage driver in Docker can be
defined as a plugin or backend the daemon integrates to interact with the kernel mod-
ules enabling different kinds of filesystems on a host OS [46, 34]. In section 3.5, it has
been explained that each Docker container lives within its own dedicated filesystem
where it can manage its software dependencies in isolation from other containers and
host processes. In order to create these filesystems, Docker ships with several stor-
age drivers that either add union filesystem and CoW capabilities on top of existing
filesystem implementations that do not include these functionalities or, if available,
use filesystem-native features for that [34].

Since distributions are built upon different, mostly modified versions of the Linux
kernel, not every type of filesystem can be used on every distribution out of the box. A
complete list of filesystems supported by a particular Linux flavor can be found under
/proc/filesystems [60]. Supplementary, the Docker documentation [26] offers a
list of available storage drivers which can be used without further ado depending on
the Linux distribution in use.

The standard storage driver used by Docker, given that no other is explicitly con-
figured, is aufs, which sits on top of the Advanced Multi-Layered Unification Filesys-
tem (AUFS) [30]. According to the documentation [30], Docker prefers AUFS over
alternative filesystems because it allows containers to start quickly and manages stor-
age as well as memory efficiently [46]. Estes [34] describes efficient memory handling
more precisely, saying that, for example, memory pages of shared libraries can be used
by multiple containers simultaneously.

Unfortunately, AUFS is not part of the mainline kernel and can therefore not as-
sumed to be present on every Linux distribution [30], which is in fact what causes
the Docker daemon to fail in CentOS (see listing 4.1). Circumventing that issue can
be done by either installing the necessary kernel modules by hand or switching the
Docker daemon to another storage driver. We decided upon selecting an alternative
driver, as enabling AUFS in CentOS requires not only to build the kernel module but
also to patch the Linux kernel itself [62]. The second option is much simpler and less
error-prone. However, the question remains which storage driver shall be chosen.

Alternative no. 1: The overlay/overlay2 storage driver

Since version 3.18, the Linux kernel integrates OverlayFS, a union mount filesystem [6]
which differs from AUFS only in some details, as Petazzoni [63] explains. The corre-
sponding Docker overlay driver should therefore be considered the preferred alterna-
tive for Linux systems based on kernel 3.18 or later. Concerning this matter, the prob-
lem with CentOS is that, as it is based on Red Hat Enterprise Linux (RHEL), even the

4.2. Manual installation of Docker on CentOS 51

latest releases are built upon kernel 3.10.x [66]. Nevertheless, the RHEL 7.3 documen-
tation states that this version comes with at least experimental OverlayFS support, par-
ticularly emphasizing that Docker interoperability is fully supported. Potential users
are still warned against the occurrence of bugs and random errors, though [65].

An alternative option that bypasses this restriction is to manually upgrade to a
more recent kernel version. In CentOS, which runs on a RHEL kernel, this can only be
done by means of a community-maintained third party repository [96] that lacks any
official vendor support by Red Hat. In case this variant is chosen, it is recommended
to use the overlay2 storage driver that first came with the Docker 1.12 release, as this
rewrite of the legacy overlay driver includes several major bug fixes Estes [34] discusses
in detail.

Alternative no. 2: The devicemapper storage driver

In situations where manually updating or patching the CentOS kernel is not eligible
for some reason, working with the devicemapper storage driver is another option. This
storage driver is built upon the kernel-based Device Mapper framework, which is able
to directly interact with storage devices on the block level rather than using an ab-
straction in the form of a filesystem [32].

The most important advantage of the devicemapper storage driver is that the cor-
responding Device Mapper subsystem [7] is also available in slightly older kernels
(since kernel 2.6). On the other hand, this storage driver might introduce serious per-
formance issues when relying on the Docker standard configuration. By default, de-
vicemapper runs in loop-lvm mode [32] and thus puts all container data and meta-
data on a loopback device backed by a sparse file. Such a sparse file comes with the
favorable characteristic of only occupying disk space for blocks that have actually been
written. The remaining blocks are assumed to be zero and are never allocated on disk.
If a running container writes to a new block, the devicemapper storage driver dynam-
ically allocates a fresh 64 KB block from a dedicated thin pool [63].

The problem with this approach is that it causes significant performance overhead
as allocating blocks from the pool is a costly operation, especially on loopback devices.
At worst, write operations are simply stalled given that there are no more blocks avail-
able in the pool. They can only continue if the pool gets increased [63].

While declines in performance may be acceptable for testing, they are definitely
unacceptable for production environments. Petazzoni [63] therefore strongly recom-
mends to place all Docker directories on dedicated, and above all, real devices. This
enables devicemapper to run in direct-lvm mode, which is much more efficient
due to faster block operations. Moreover, dedicated disks offer lots of capacity for the
thin pool to be able to grow as needed. While having to configure a dedicated storage
device for production systems is acceptable, this is certainly too much effort for test-

4.3. Hosting a private Docker registry 52

ing environments which should be able to use the devicemapper driver in loop-lvm

mode without concerns [63, 26].
For our prototype, we went with the overlay2 driver which did not cause any

issues throughout our work on this project. Nevertheless, although the RHEL docu-
mentation [65] claims the built-in OverlayFS interoperability to be mature, it might
not yet be the best choice for production environments.

In order to switch the storage driver to overlay2 on CentOS 7.3, the Docker dae-
mon’s --storage-driver option can be applied to override the default settings [63].
The Docker installation routine should already have created a systemd [97] unit file
similar to the one shown in listing 4.2, by means of which the necessary configuration
adjustments can conveniently passed to the daemon as soon as it gets launched.

[Unit]

Description=Docker Application Container Engine

further unit information ...

[Service]

ExecStart=/usr/bin/dockerd --storage-driver=overlay2

further configuration steps ...

Listing 4.2: How to change the storage driver to overlay2 with systemd [63].

4.3 Hosting a private Docker registry

With a working Docker installation in place, our next step was to bring up a self-hosted
Docker registry in order to store our infrastructure and demo application images and
to conveniently distribute them across the host VMs. Docker must be installed before-
hand, as the image registry is a Docker image by itself and also runs as a container. A
Docker registry can basically be operated in two different modes, either as an insecure
registry or with TLS enabled [16].

4.3.1 Running an insecure registry

An insecure registry can neither be trusted by a Docker daemon, nor can any (possibly
malicious) Docker host in the same network be barred from downloading or upload-
ing images. In order to be able to pull images from an unprotected HTTP registry, the
Docker daemon residing on the requesting host must explicitly be instructed that it is
trustworthy. Otherwise, the daemon refuses to establish a connection with the HTTP
registry service as it enforces Hypertext Transfer Protocol Secure (HTTPS) by default
and thus fails if no valid certificate is provided. To skip all verification steps and allow
traffic over plain HTTP, the Docker daemon must be started with the
--insecure-registry flag pointing to the registry host’s IP address [28]. Although

4.4. A ZooKeeper ensemble in Docker 53

we considered this configuration sufficient for the development phase, it should under
no circumstance be applied in production.

4.3.2 Running a secured registry

For a registry server that shall also be accessible by other machines in the network
and not only by localhost, the Docker documentation recommends to obtain a valid
certificate from any trusted authority and configure the registry to only accept HTTPS
connections. As an alternative, a self-signed certificate can be used to establish an ac-
ceptable level of trust for test environments within a closed network. In both cases,
each registry client must be able to verify a certificate can actually be trusted [28]. This
is usually not a problem for certificates issued by well-known certificate authorities,
but self-signed certificates must explicitly be added to the set of the daemon host’s
trusted certificates. Besides, using TLS certificates also requires checking their expi-
ration dates periodically and renewing them on time. Once a registry certificate has
expired, the Docker daemon refuses to establish a connection to the registry server.

Once the registry serves images over HTTPS, client-side authentication can be en-
abled to ensure that pull and push operations require passing the correct credentials
via basic authentication. Enabling this feature requires setting up HTTPS beforehand,
as otherwise the credentials would be transferred in plain text [28].

4.4 A ZooKeeper ensemble in Docker

Setting up ZooKeeper on a group of three amd64-based VMs is a straightforward pro-
cedure that can be done by simply following the instructions in the Docker image
repository2 and shall therefore not be deepened at this point. What is much more in-
teresting is a new feature we discovered in the upcoming version 3.5 of ZooKeeper,
which is currently in alpha state. So far, a ZooKeeper quorum has always been stat-
ically defined, meaning that the servers making up the ZooKeeper group have been
determined at startup time. Consequently, is was not possible to dynamically add ad-
ditional servers to a running quorum in order to make it more resilient or to replace a
faulty server. The same restriction applies to the removal of a ZooKeeper server from
the ensemble. In such a case, the entire setup had to be restarted after the configuration
had been changed.

With the arrival of ZooKeeper 3.5, such "rolling restarts" [93] are no longer nec-
essary, due to the newly introduced concept of dynamic configuration parameters that,
for example, allows the group membership to change at runtime. Shraer et al. [69] de-

2 https://hub.docker.com/_/zookeeper/

https://hub.docker.com/_/zookeeper/

4.5. Deploying Mesos in Docker containers 54

scribe the details of how this behavior can safely be implemented without risking data
corruption or inconsistencies.

However, we faced some difficulties during our tests with the 3.5 version that pre-
vented the ZooKeeper instances on our three servers from successfully forming a quo-
rum. Because it was not clear what might be responsible for that problem, we opened
an issue3 to discuss this behavior with the development community and, for the mo-
ment, decided to adhere to the stable 3.4 version for our prototype.

4.5 Deploying Mesos in Docker containers

The Mesos project by itself does not offer any official amd64 images for Mesos on
Docker Hub. The most popular publicly available Mesos Docker images are main-
tained by Mesosphere [47], the company behind the Marathon framework. Our first
evaluation of these images raised two substantial concerns:

1. The Mesosphere images are built upon the Ubuntu base image, which is very
large in size and could be replaced with the much smaller Alpine Linux image4.

2. Mesosphere uses custom albeit public DEB repositories5 in order to install Mesos
to their images.

Nevertheless, as both preparing a Docker image based on Alpine as well as build-
ing a custom DEB package would have introduced lots of additional work in terms
of compiling, assessing the arguments lead to the decision of sticking with the Meso-
sphere images for our project. The necessary steps to setup the Mesos master and
agent container are well-documented in the Mesosphere Github repository [47] and
will not be covered in depth. Though, there are some aspects to pay attention to when
operating Mesos in containers.

4.5.1 Mesos master containers

• Usage of the host network: In their Github README [47], Mesosphere indi-
cates that containers running Mesos should be directly attached to the host net-
work due to performance reasons and decrease of configuration complexity. Un-
less specified otherwise, Docker containers get their own virtual network inter-
face assigned that is connected to the host network stack by means of the docker0
bridge network [57]. This indirection can be bypassed by changing a container’s

3 https://issues.apache.org/jira/browse/ZOOKEEPER-2766
4 https://hub.docker.com/_/alpine/
5 http://repos.mesosphere.io/ubuntu/

https://issues.apache.org/jira/browse/ZOOKEEPER-2766
https://hub.docker.com/_/alpine/
http://repos.mesosphere.io/ubuntu/

4.5. Deploying Mesos in Docker containers 55

network settings to host on startup. While this may actually make certain config-
uration steps easier as the bridge network must not be considered, that approach
also revokes some of the isolation mechanisms that are the justifications for us-
ing containers in the first place.

• Volumes for log and working directory: It seems reasonable to use Docker
volumes for a Mesos master’s working and log directories, in order to allow its
persistent data and log files to survive in case the container has to be restarted
or exits unexpectedly [88].

4.5.2 Mesos agent containers

• Usage of the host network: See above.

• Volumes for log and working directory: Besides storing log files in a separate
folder, each Mesos agent has a working directory where executor sandboxes and
checkpointing state are located. Like for the master containers, Docker volumes
should be used to persist log files and critical data on disk [88].

• Grant Mesos agent access to /cgroup and /sys: For a Mesos agent to be
able to report free resources to the leading master, it must have access to the
host’s /sys virtual filesystem as well as the /cgroup directory. These directo-
ries must therefore be accessible from the Mesos agent container, so that it can
use the hosts’s kernel interfaces to monitor and allocate resources as needed [47].
Note that when using CentOS, mounting the /sys directory does not work and
instead the /sys/fs/cgroup directory must be passed into the container.

• Give Mesos agent access to Docker socket: Launching tasks as Docker contain-
ers from within the Mesos agent containers requires them to have access to the
host’s Docker UNIX socket docker.sock residing in the /var/run directory. There
may be no other option in this case, but mounting the Docker socket within
a container should always be treated with caution, as the Docker daemon exe-
cutes with root permissions on the host system. As a consequence, having access
to the Docker socket is synonymous with actually having root privileges on the
host.

• Avoid running Mesos agent container in privileged mode: Mouat [57] explains
that Docker containers can be given extended privileges by launching them in
privileged mode. While containers are normally launched with a limited set of
capabilities by default, privileged containers are, inter alia, allowed to access
the host’s devices. While Mesosphere instructs users to set the --privileged
flag [47], we could not find any problems with running the Mesos agent con-

4.6. Marathon and Aurora in Docker 56

tainer in unprivileged mode during our tests. So this should be avoided in order
to not give the container any permissions it does not actually need.

4.5.3 Remarks to Mesos-DNS in Docker

As for Mesos-DNS, we will skip the basic installation steps just as we did for Mesos
and ZooKeeper, as they are described in the official documentation [56] in detail. The
only critical point that must be noted for Mesos-DNS is that it must be configured as
the primary DNS server for the Mesos agent hosts by adding the respective name-
server entry at the beginning of their /etc/resolv.conf file [56]. We furthermore
attached the Mesos-DNS container to the host network, so no further configuration
steps were necessary.

At the time this thesis has been written, there was no Docker image for Mesos-DNS
built and maintained by Mesosphere, so we decided upon creating our own Docker
Hub repository6. The related Dockerfile can also be found in appendix A.1.

4.6 Marathon and Aurora in Docker

The Mesos frameworks were last microservice infrastructure components which had
to be installed. In 3.3, it has been mentioned that there are currently two popular
frameworks that might pose suitable candidates for our use case, namely Marathon
and Apache Aurora. We have drawn a comparison between these two frameworks
instead of focusing on merely one of them, because it might be a quite conceivable
approach to run both of them side by side, depending on the exact application re-
quirements.

4.6.1 Marathon

Mesosphere supplies an up to date Marathon image repository for amd64-based ma-
chines on Docker Hub7 that receives periodic updates and comprises a comprehen-
sive documentation. The documentation includes detailed instructions on how to start
Marathon from the Docker image and how to connect it to an existing Mesos setup.
In our case, following this guide worked on first try and the only adjustment to make
was attaching the Marathon containers to the host network, as we just did with the
other containers, in order to avoid ending up with a mixed network configuration.

6 https://hub.docker.com/r/pkleindienst/mesos-dns-docker/
7 https://hub.docker.com/r/mesosphere/marathon/

https://hub.docker.com/r/pkleindienst/mesos-dns-docker/
https://hub.docker.com/r/mesosphere/marathon/

4.6. Marathon and Aurora in Docker 57

4.6.2 Aurora

In terms of Aurora, obtaining topical Docker images has been far more time-consuming,
since there were no official repositories related to Aurora on Docker Hub. Admittedly,
we did find several custom repositories but at least determined to build our own ones
for our prototype as we had substantial doubts about these repositories being up-
dated and maintained regularly. The most challenging task about this was that Au-
rora is made up of four essential components (scheduler, executor, observer and CLI)
that must be deployed independently (apart from executor and observer), whereas
Marathon is just a single artifact. Consequently, while Marathon can be operated in a
single container, separate images had to be created for each of the Aurora components.

Aurora scheduler

Putting the Aurora scheduler, which is implemented in Java, along with its JavaScript
based UI in a custom Docker image was straightforward and did not require any spe-
cial considerations. Getting the scheduler to run properly, however, took us quite a
long time. The main obstacle from our point of view was that the installation guide [87]
lacks a complete sample configuration for the scheduler, so we had to experiment at
lot with the command line options until we were successful. The Dockerfile as well as
the accompanying shell script can be viewed in the appendices A.2 and A.3, and we
also published them in a Github8 and Docker Hub9 repository.

Thermos executor and observer

The Thermos executor and observer components must be co-located and are conse-
quently published as a single DEB package for the amd64 architecture. As a result,
they also have to be deployed in a single container. Because the executor, in turn,
must be available in the same filesystem where the Mesos agent lives, we derived
a single Aurora worker Docker image, that contains all Aurora worker components
(Thermos executor and observer), from the Mesos agent image maintained by Meso-
sphere. For our setup, we used this image instead of the Mesosphere image directly
in order to launch our Mesos agents. These Mesos agent instances were unrestrictedly
interoperable with the Marathon framework as the default executor it requires comes
with the Mesos agent base image anyway. The observer configuration, that we moved
into a short shell script (see appendix A.5), is well-documented [87] and did not cause
any problems. Our Dockerfile, that we attached in appendix A.4, is also available on

8 https://github.com/apophis90/aurora-docker
9 https://hub.docker.com/r/pkleindienst/aurora-scheduler/

https://github.com/apophis90/aurora-docker
https://hub.docker.com/r/pkleindienst/aurora-scheduler/

4.7. Facilitating container management 58

Github10, the Docker image can be downloaded from Docker Hub11.

Aurora CLI

Creating a Docker image for the Aurora client application has also been uncompli-
cated as the necessary efforts limited themselves to taking a base image with Python
installed and adding the Aurora CLI DEB file (see appendix A.6). The CLI configu-
ration is done by means of a clusters.json file that follows a clear and concise specifi-
cation [86]. In addition to the Aurora CLI Dockerfile, we also provide a sample clus-
ters.json (see appendix A.7) file for demonstration purposes. Again, all files can also
be found on Github10, while the Docker image repository can be inspected on Docker
Hub12.

4.7 Facilitating container management

After a while, it became clear to us that manually starting and stopping the containers
that make up our core infrastructure (ZooKeeper, Mesos masters/agents and frame-
work schedulers) across three VMs is very cumbersome. Of course, we could simply
have condensed the necessary Docker commands in a shell script which, however,
becomes increasingly unclear the more containers have to be managed. Besides, we
would have to had covered many edge cases like stopping and restarting just a sin-
gle container, so the shell scripting approach would probably have been complex and
time-consuming.

As an alternative, we turned towards Docker Compose [24], a convenience tool
for multi-container applications developed by Docker. Docker Compose employs a
declarative approach that allows the definition of a set of containers within a sin-
gle YAML file [24]. Appendix A.8 shows a slightly shortened version of the docker-
compose.yml file we used for the purpose of managing our Mesos infrastructure con-
tainers. Note that the image names refer to our self-hosted Docker image registry that
we assumed to be located on Host A (see figure 4.1). By means of Docker Compose,
we were able to interact with the entirety of infrastructure containers or just a subset
of them, so that even starting, stopping and updating only a single container could be
achieved without custom shell scripts [24].

10 https://github.com/apophis90/aurora-docker
11 https://hub.docker.com/r/pkleindienst/aurora-worker/
12 https://hub.docker.com/r/pkleindienst/aurora-cli/

https://github.com/apophis90/aurora-docker
https://hub.docker.com/r/pkleindienst/aurora-worker/
https://hub.docker.com/r/pkleindienst/aurora-cli/

Chapter 5

A hybrid cluster management setup

The cluster management setup from the previous chapter is relatively straightforward
with respect to the target environment, which has been entirely amd64-based so far. To
evolve it towards a serious option for platforms like mainframes, it must be demon-
strated that our current software stack can be expanded to heterogeneous infrastruc-
tures as well. Throughout this thesis, IBM System z, which incorporates amd64 servers
and s390x processor modules, serves as the reference target environment for a hybrid
microservice infrastructure. Trying to bring open source software to different kinds of
machines is usually a nontrivial challenge, as in the majority of cases only the most rel-
evant OSes (Mac, Windows* and Linux) and CPU architectures (amd64 and sometimes
ARM) are officially supported by the project maintainers. Consequently, it follows that
using such software on platforms like mainframes, which are less common, requires
compiling the code and building suitable packages from scratch, causing substantial
efforts that mainly on factors like the programming language in use.

5.1 A hybrid prototype as the next step

Starting from the amd64-based prototype that has been presented in the last chapter,
our next objective was expanding our infrastructure to an s390x LPAR and integrate
it into the existing setup. For that purpose, we established a virtualized, RHEL-based
host OS running on a real IBM System z mainframe. The resulting simulation (see
figure 5.1) was very close to the actual mainframe scenario. Although this is currently
is not true on IBM System z, we had a fully functional Ethernet connection between
the VMs acting as the SEs on the one side and the host system residing in a LPAR on
the other.

* Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

59

5.2. Status quo of Docker on s390x Linux 60

The first question that had to be answered was if there were already installation-
ready s390x packages available for the components of our infrastructure stack. Unfor-
tunately, the research we did right at the beginning of the hybrid prototype develop-
ment phase revealed that this was not the case. As a consequence, time and efforts had
to be spend to do the necessary porting and packaging manually.

Figure 5.1: The next stage in the evolution of our hybrid microservice infrastructure prototype.

The following sections will therefore step through our basic software stack, com-
prising Docker, ZooKeeper, Mesos as well as the Mesos frameworks Marathon and
Aurora, and explain the experiences we made but also the problems we had while
trying to bring its pieces to s390x. We have to admit we did not have success with all
components and projects so far, for instance we were not able to make Aurora avail-
able on the mainframe by the time this thesis was written. As a consequence, the draft
shown in figure 5.1 running both frameworks next to each other in a multi-architecture
fashion is still much more a vision than the current state of our work.

5.2 Status quo of Docker on s390x Linux

As our microservice platform has been built upon Docker containers so far, getting the
Docker engine up and running on s390x machines was the first problem that had to be
tackled. For a long time, there has been no official support for Docker on System z by
Docker Inc. themselves, making it hard to setup fairly up to date Docker installations
on System z mainframes. This situation somewhat changed over the last couple of

5.2. Status quo of Docker on s390x Linux 61

months and it could be seen that Docker is going to target a steadily growing number
of platforms, for example IBM System z (s390x) [68]. This section sums up the state of
Docker on the IBM mainframe at that time this thesis has been written, looking beyond
our RHEL use case and thus also taking a look at other Linux distributions that are
relevant for System z, namely Ubuntu and SUSE Linux Enterprise Server (SLES).

5.2.1 Docker CE on Ubuntu

Although there are, for quite a long time, s390x-based Docker binaries available for
Ubuntu which can be installed through the docker.io package residing in the universe
archive [10], this approach comes with two major drawbacks. On the one hand, soft-
ware that is distributed via the universe archive is entirely under the community’s
control rather than being supervised by Canonical and the Ubuntu core development
team [58]. Moreover, the binaries in the docker.io package were slightly outdated com-
pared to the official releases for amd64. With the arrival of Docker v17.06 on June 28,
2017 Docker Inc. released their first Docker CE binaries for s390x Ubuntu systems [3].
In the case of Ubuntu on System z, Docker can thus be installed regularly via the offi-
cial Docker Inc. repository for a few weeks now. The actual installation procedure will
not be covered here since the necessary stages are described in the Docker documen-
tation [20] extensively. Note that, as far as s390x is concerned, this guide only holds
for Ubuntu version 16.04 LTS ("Xenial Xerus") and later.

5.2.2 Docker CE on RHEL

The situation on RHEL is slightly different compared to Ubuntu because until recently,
there has been no Docker support for RHEL at all. By the end of June 2017 [2], Docker
Inc. started providing statically compiled Docker CE binaries1 even for s390x, which
can principally be installed on any s390x Linux system regardless of the concrete dis-
tribution, as all dependencies in their correct versions ship with the executable. The
positive aspect here is that the basic installation procedure only requires downloading
the collection of binaries (there are single ones for the Docker daemon, CLI etc.) and
placing them anywhere on the local system instead of having to deal with package
managers and the setup of a third party repository [2].

However, this approach comes at the cost of additional configuration efforts, as the
manual installation does not involve integrating Docker with other parts of the OS, for
example the init system. While this is not mandatory, it enables more comfortable life
cycle management of the Docker daemon and also automatic restarts after reboot. Fur-
thermore, because the distribution’s native package management system is bypassed,

1 https://download.docker.com/linux/static/stable/s390x

https://download.docker.com/linux/static/stable/s390x

5.2. Status quo of Docker on s390x Linux 62

upgrading Docker to a new version that includes new features or fixes critical security
vulnerabilities needs manual intervention. Doing such things by hand is error-prone
and may even be forgotten over time. If, in extreme cases, a large amount of machines
must be managed and kept in sync simultaneously, reliable and regular maintenance
procedures are almost impossible without using powerful automation tooling.

Just a few weeks ago, another option for Docker on RHEL showed up. With the
arrival of the Docker v17.06.1 release, Docker Inc. announced professional support
for their Docker EE edition not only on RHEL, but also on SLES and Ubuntu [68]. Al-
though this is a major improvement not only for Docker but also for container technol-
ogy on mainframes in general, these announcements are restricted to their fee-based
flavor of Docker for now. For this thesis, however, we determined to stick to the free
version only, which is why our focus is on Docker CE exclusively. Because we were
restricted to RHEL for our s390x VM (see figure 5.1), we went with the static binary
installation variant.

Just as for the installation of Docker on amd64 CentOS, we had to fix the storage
driver settings in exactly the same way as we did in section 4.2.2, since RHEL for s390x
likewise does not come with the AUFS kernel module for the aufs storage driver that
Docker uses by default.

5.2.3 Docker CE on SLES

Just as for RHEL, there are still no Docker CE packages for s390x SLES provided by
Docker Inc. Though, SLES offers the possibility of installing the free version of Docker
via its Containers Module [70]. This comes with two important advantages compared
to the static binary. First, the packages contained in the SUSE modules benefit from
reliable vendor support and periodic updates. Moreover, the integration with other
parts of the system, like the systemd init system, is done automatically during the
installation process. This protects the user from having to setup lots of configuration
details manually, as it has been necessary with RHEL in our case.

Since all SUSE modules are optional, they have to be enabled explicitly before
packages can be downloaded and installed from them [71]. Afterwards, Docker CE
can be installed by means the on-board package management utilities, as described
by SUSE [70].

Some remarks on Docker storage drivers in SLES

SLES has a special characteristic that differentiates it from other distributions like
Ubuntu or RHEL. Regarding version 12, it utilizes Btrfs as its standard filesystem [70].
Btrfs is a copy-on-write filesystem that is also included in the mainline Linux kernel.
Its advantages include block-level operations and copy-on-write snapshots [31].

5.2. Status quo of Docker on s390x Linux 63

Docker implements the btrfs storage driver which can leverage many of these fea-
tures. For Docker packages with a special focus on SLES, like the latest Docker EE
for SLES 12 or the Containers Module releases, the btrfs storage driver is enabled by
default. In case Docker CE has been setup by means of the raw binaries, the Docker
daemon should crash because, just like RHEL, SLES does not ship with AUFS filesys-
tem support included. As a workaround, the storage driver must be switched to btrfs
by hand, at it has been demonstrated in section 4.2.2. If AUFS along with the aufs
driver is obligatory for some reason the necessary kernel module might can still be
added manually [70].

Figure 5.2: Storage driver recommendations for Ubuntu, SLES and RHEL.

Figure 5.2 sums up our recommended Docker storage driver settings for RHEL and
besides shows the default settings for Ubuntu and SLES. For our hybrid prototype,
which already used the overlay2 driver in its amd64-only stages, we adhered to the
same configuration for the Docker daemon located on our s390x RHEL system for
simplicity.

5.2.4 Summing up: Docker on System z

The subsequent tables underline how the situation of Docker availability on IBM Sys-
tem z has changed during our work on this thesis. At the beginning (see table 5.1),
there basically was almost no reliable Docker support for s390x. SLES was the only
distribution that offered reasonably up to date Docker releases via their Containers
Module. As for Ubuntu, only a slightly outdated Docker package could be installed

5.2. Status quo of Docker on s390x Linux 64

by means of the community-driven docker.io repository, while RHEL was entirely lost
out and there was absolutely no option to install Docker rather than compiling it on
one’s own [3, 2, 4, 10]. Docker EE was not available on System z at all.

Linux distribution Docker CE Docker EE

Ubuntu 16.04 (X) (1.13.1)1 X

SLES 12 (X) (<= v17.03.x-ce)2 X

RHEL 7.3 X X

1 Available via the docker.io repository maintained by the Ubuntu community [10], no support
by Docker Inc. or Canonical.

2 Docker v17.03-ce available via the SLES 12 Containers Module. This is just a rough estima-
tion based on Bacher [4], as SUSE themselves seems not to publish any details related ot
package versions. The Containers Module, however, does also not benefit from direct sup-
port by Docker Inc.

Table 5.1: Available Docker packages and versions for s390x at the beginning of this thesis.

When Docker v17.06 was first published on June 28, 2017, Docker CE support for
s390x finally came to Ubuntu. For the remaining Linux distributions, statically com-
piled binaries have been shared from then on which, however, still lacked distribution-
specific vendor support and caused additional configuration and maintenance over-
head [3, 2]. In terms of SLES, the Containers Module maintained by SUSE has been an
option further on and stepped forward to Docker CE v17.04 by the end of July 2017 [4].

With the arrival of the most recent v17.06.1 release on August 16th, 2017, Docker EE
has been made generally available for all major Linux distributions (see table 5.2),
whereas the situation for Docker CE remained unchanged [68].

5.3. Docker Compose on IBM System z 65

Linux distribution Docker CE Docker EE

Ubuntu 16.04 X(v17.06.1-ce)1 X(v17.06.1-ee)2

SLES 12 (X) (v17.06.1-ce)3 X(v17.06.1-ee)2

RHEL 7.3 (X) (v17.06.1-ce)3 X(v17.06.1-ee)2

1 Already supported since Docker v17.06.0 (June 28, 2017) [3].
2 Docker EE officially available for Ubuntu, SLES and RHEL on s390x since August 16th

2017 [68].
3 Still no official Docker CE packages for RHEL and SLES, but statically compiled binaries

available. For SLES, the Containers Module is still maintained, the most recent Docker ver-
sion it includes is v17.04.0-ce [4] (as at August 2017).

Table 5.2: Available Docker packages and versions for s390x since the v17.06.1 release.

5.3 Docker Compose on IBM System z

Because we already utilized Docker Compose for more comfortable container manage-
ment regarding our pure amd64 prototype, we considered having this tool also avail-
able on the s390x VM very useful. In fact, we found an up to date package repository
on PyPI2, which offered the source code as well as a prepackaged universal wheel [40].
Since such wheels do not depend on any native code, they can be installed on any sys-
tem that has a Python interpreter available, regardless of the underlying system’s CPU
architecture. Thus, the latest Docker Compose for s390x could simply be installed by
means of the pip package management tool, without the need for additional efforts.

5.4 The porting of cross-platform components to s390x

As for the Docker engine and Docker Compose, we were able to install the respective
packages on our s390x host without having had to fix any source code or build scripts
and the need for compiling anything from source. While Docker itself was available in
the form of precompiled s390x executables, Docker Compose gained from the fact that
it is implemented in pure Python, which means we could run and install it seamlessly
on every platform that provided a Python installation. The cross-platform property of
some programming languages is a substantial aspect when porting software projects
between different types of machines. If an application is written in languages like C

2 https://pypi.python.org/pypi/docker-compose/1.15.0

https://pypi.python.org/pypi/docker-compose/1.15.0

5.4. The porting of cross-platform components to s390x 66

or C++ and directly compiles to native (i.e. processor-specific) machine code, the orig-
inal source code has to be compiled and packaged from scratch for every new target
platform that shall be supported. This problem will be examined in depth in the next
section, which covers the transferring of Apache Mesos to the s390x architecture. First,
we want to pay attention to the platform-independent parts of our cluster manage-
ment stack, and we will show how to take advantage of this property if a software
project should be moved to a new type of machines. The infrastructure components in
question and the programming languages they are written in are listed in table 5.3.

It is notable that, with the exception of the Aurora executor and CLI, all the other
infrastructure components are fully implemented in Java or its derivatives, like Scala
in the case of Marathon. What Java and Scala have in common is they both compile
into .class files containing platform-independent intermediate code, or byte code. This
byte code can be executed wherever a Java Virtual Machine (JVM) is present, regard-
less of the underlying machine’s architectural details [1].

The usage of portable programming languages brings up the benefit of only minor
adjustments that have to be made in order to make some of the components, which
have already been used for the homogeneous setup in the previous chapter, usable
on a hybrid landscape. Hereafter, we will focus on the tools listed in table 5.3 and the
necessary adaptations required to build s390x-compliant Docker images which are
compatible to IBM System z.

Infrastructure component Programming Language

Apache ZooKeeper Java

Marathon Scala

Aurora scheduler Java

Aurora executor Python

Aurora CLI Python

Table 5.3: Cross-platform infrastructure components and their code base languages.

5.4.1 Apache ZooKeeper on s390x

For the porting of ZooKeeper, which is written in plain Java, the Dockerfile3 used for
the amd64 Docker image in section 4.4, can remain nearly unchanged. The only thing
that must be fixed is the base image, since the standard OpenJDK Docker images target

3 https://github.com/31z4/zookeeper-docker/blob/master/3.4.10/Dockerfile

https://github.com/31z4/zookeeper-docker/blob/master/3.4.10/Dockerfile

5.4. The porting of cross-platform components to s390x 67

amd64 systems exclusively. However, Docker Hub also includes a constantly growing
number of s390x images in a dedicated repository, which are officially supported by
Docker Inc. and also maintained by the Docker community. One of these images that
perfectly fits as a base image for ZooKeeper on System z is the s390x/openjdk:8-jre-
alpine4 image. Swapping the base image used in a Dockerfile is as simple as changing
the corresponding image name after the FROM instruction, as listing 5.1 shows.

Derive from the official s390x OpenJDK image

FROM s390x/openjdk:8-jre-alpine

Rest of the file is identical to the amd64 version ...

.

.

Listing 5.1: Dockerfile for ZooKeeper on s390x.

As before, the Alpine-flavored base image is used due to its leanness (55MB) com-
pared to base images like Ubuntu or Debian.

5.4.2 Marathon on s390x

In contrast to ZooKeeper, the Dockerfile for the Marathon s390x image had to be
rewritten from scratch. The original amd64 Docker image maintained by Mesosphere
Inc. (accessible via the mesosphere/marathon repository5 on Docker Hub), which is built
upon a Debian base image, first installs the Mesos libraries from their own DEB reposi-
tories and builds Marathon from source afterwards. Compiling Marathon from source
was not a requirement for us, though, because Mesosphere Inc. already provides a pre-
compiled version that is available for download as a .tgz archive.

Since we could not rely on the amd64 version of the libmesos.so shared library, we
had to use a custom base image for the Marathon s390x Docker image instead, which
includes the corresponding binaries compiled for s390x. Marathon requires libmesos.so
to be present at runtime in order to be able to communicate with the leading Mesos
master via Java Native Interface (JNI) [53]. From our perspective, this design is much
rigid and inflexible, but we expect it to be gone in near future as soon as Marathon
will shift towards using the Mesos RESTful API. Consequently, we have derived the
Marathon image from our custom Mesos image (see section 5.5) that, apart from the
required shared libraries, already includes a JRE for executing the precompiled cross-
platform Marathon byte code. The complete version of the Marathon Dockerfile for
s390x, which is quite extensive, can be found in appendix B.1.

4 https://hub.docker.com/r/s390x/openjdk/tags/
5 https://hub.docker.com/r/mesosphere/marathon/

https://hub.docker.com/r/s390x/openjdk/tags/
https://hub.docker.com/r/mesosphere/marathon/

5.4. The porting of cross-platform components to s390x 68

5.4.3 Apache Aurora on s390x

Previously, we noted there are no officially supported amd64 Docker images for Au-
rora on Docker Hub and thus created our own ones. Likewise, custom Aurora im-
ages had to be built for the s390x architecture. At the beginning, the efforts of porting
Aurora were expected to be limited to only having to switch the base images in our
amd64 Dockerfiles as we did for ZooKeeper due to Aurora’s platform-independent
code base. In fact, it turned out to be much more complicated, because the Aurora
community only provides DEB packages targeting amd64 platforms. This limitation
by itself is not an exclusion criterion, as it should always be possible to create a suitable
distribution package given that the source code is available.

In that sense, we started trying to compile the Aurora executor for s390x, without
having been successful so far. Our build of the Aurora client application also failed
with an error message (see listing 5.2) which is related to the Pants build tool [101].
Further investigations in the Pants source code indicated that on Linux systems the
output of the uname command is used to detect the underlying CPU architecture and
then load an appropriate binary from an Amazon S3 bucket6 for assembling the binary.
Examining the bucket’s contents revealed that there are currently no binaries for s390x,
which explains why the Pants build process exited with an error.

$./pants binary src/main/python/apache/aurora/client:aurora

.

.

FAILURE: Update --binaries-path-by-id to find binaries for (u'linux',

's390x')

Listing 5.2: Compilation of Aurora components written in Python fails for s390x.

Fixing the Pants build tool at this point would have caused substantial effort in
order to get the build process working for s390x. Moreover, because prepackaged DEB
artifacts for the Java-based Aurora scheduler component are only available for amd64,
we would also have had to create a s390x version of it. Consequently, all efforts to port
Aurora have been stopped at this point, as we considered this work beyond the scope
of this thesis and decided upon tackling this in the future. Subsequently, Marathon
currently is the only Mesos framework we can operate in a hybrid manner without
any restrictions.

6 https://s3.amazonaws.com/binaries.pantsbuild.org

https://s3.amazonaws.com/binaries.pantsbuild.org

5.5. Compiling Apache Mesos for IBM System z 69

5.5 Compiling Apache Mesos for IBM System z

The previous section has stated that preparing software projects which are written in
portable programming languages for new target platforms can be done with minimal
endeavors in most cases. Using Python and Java as an example, the intermediate byte
code produced by the compiler can be executed wherever an appropriate interpreter
is available.

With programming languages like C or C++ the situation is slightly different, as
they directly compile into platform native machine code that cannot simply be run
by varying types of CPUs. Instead, these languages require explicit compiling of the
source code for each new target platform, which can be a difficult and tedious process.
For code that additionally relies on specific OS-native features that are only available
in very modern versions of the Linux kernel, things get even more complicated in
contexts like IBM System z, where customized kernels are regularly in use.

Regarding Mesos, which comprises about 10,000 lines of C++ code [39], the initial
approach was to search for already existing s390x packages in order to avoid the efforts
of having to compile at package it up from scratch. However, our investigations did
not yield any satisfying results as we only found some outdated RPM repositories7,
which did not make it beyond the Mesos 0.22.1 release. By the time this thesis was
written, the latest Mesos release was 1.3.1 [78]. So the only way to obtain an up to date
s390x Mesos distribution was building it from source at this point.

The following sections will demonstrate the steps we went through while having
built Mesos from source, with a special focus on the pitfalls we had to cope with.
Furthermore, we will explain how to end up with a Mesos Docker image based on
the Ubuntu base image, that allows to launch Mesos master and slave nodes on s390x
systems as Docker containers. A basic understanding of the GNU build system as wee
as the GNU Autotools, which form the basis for working with the Mesos souce code,
will be required. Moreover, all build steps are assumed to be executed on an Ubuntu
s390x system running on top of a 4.4.0 Linux kernel.

5.5.1 Preparing the compile process

The Apache Mesos documentation [82] provides useful information on the steps that
have to be followed in order to successfully build Mesos from source. It all starts with
the installation of several dependencies, which is straightforward and will be skipped
for clarity. A list of those packages can also be found in the documentation [82].

Adhering to the compile instructions, the first step is running the bootstrap

7 https://www.rpmfind.net/linux/rpm2html/search.php?query=mesos

https://www.rpmfind.net/linux/rpm2html/search.php?query=mesos

5.5. Compiling Apache Mesos for IBM System z 70

shell script residing in the project’s root folder after having cloned the repository8.
In essence, what the script does is running the autoreconf utility which is part of
Autoconf [9]. Its main purpose for the Mesos project is running multiple tools in the
right order and finally creating a configure script out of the configure.ac template
file. This happens through the invocations of the following Autotools [9]:

1. libtoolize: Prepares the Mesos project to use Libtool by generating a custom
libtool script. Libtool eases dealing with shared libraries across different Unix
platforms.

2. autoconf: Processes the contents of the configure.ac file in order to generate the
configure script.

3. automake: Takes the Makefile.am file from the top level directory and creates a
standard makefile template named Makefile.in.

Up to this point, we did not find any problems with our s390x build environment
and the bootstrap script exited successfully.

5.5.2 Repairing the configuration phase

For the next stage, the Mesos documentation [82] states that the previously generated
configure script shall be launched. Beforehand, we created a dedicated directory
and set is as the installation path for the final Makefile (see listing 5.3). In this way,
we accomplished ending up with a single folder containing a full Mesos installation
which could then be used as the working directory for the DEB package build.

$ mkdir build/

$ cd build/ && ../configure --prefix=/tmp/mesos-deb

.

.

configure: error: failed to determine linker flags for using Java

(bad JAVA_HOME or missing support for your architecture?)

Listing 5.3: The configure step fails due to IBM JVM incompatibility.

However, as listing 5.3 shows, the configure phase failed at first, confronting us
with the first serious issue related to the compile process. Inspecting the configure.ac9

file which served as a template for the configure script, we found that there was
an attempt to compile and link against some shared libraries for making use of JNI in

8 git://git.apache.org/mesos.git
9 https://github.com/apache/mesos/blob/master/configure.ac

git://git.apache.org/mesos.git
https://github.com/apache/mesos/blob/master/configure.ac

5.5. Compiling Apache Mesos for IBM System z 71

order to invoke native C/C++ code from Java and vice versa [1]. The relevant excerpt
of the configure.ac file (see listing 5.4) that made the process fail sets out that s390/s390x
is indeed considered as a possible target platform, but also reveals that the path to the
folder containing the libjvm.so library is strictly hard coded.

elif test "$OS_NAME" = "linux"; then

for arch in amd64 i386 arm aarch64 ppc64 ppc64le s390 s390x; do

dir="$JAVA_HOME/jre/lib/$arch/server"

if test -e "$dir"; then

Note that these are libtool specific flags.

JAVA_TEST_LDFLAGS="-L$dir -R$dir -Wl,-ljvm"

JAVA_JVM_LIBRARY=$dir/libjvm.so

break;

fi

done

Listing 5.4: Relevant excerpt of the configure.ac4 file

Normally, given that $JAVA_HOME points to an Oracle Java Development Kit (JDK)
or OpenJDK, these assumptions related to the location of the libjvm.so shared library
are perfectly fine. If, however, an IBM Java Software Development Kit (SDK) is in
use they do no longer hold because the shared library paths are slightly different, as
listing 5.5 proves.

$ echo $JAVA_HOME

/usr/lib/jvm/java-ibm-s390x-80

$ find $JAVA_HOME/jre/lib -name "libjvm.so"

/usr/lib/jvm/java-ibm-s390x-80/jre/lib/s390x/default/libjvm.so

Listing 5.5: The location of the libjvm.so shared library for the IBM JVM.

Further research has shown that this issue had already been reported by other
users of the IBM SDK in the Mesos project’s issue tracking system10 in January 2015.
The fact that the issue is still unresolved appears to suggest that the IBM Java SDK’s
peculiarities will not be taken into account by the development team. This is com-
prehensible from our perspective, as favoring the interests of the community over
company-specific demands is an important criterion for Apache projects.

It is a legitimate question if building the Java code of the Mesos project is really
necessary at all. We asked us the same question and thus started examining the code,
trying to get an understanding of why linking against the libjvm.so library is required

10 https://issues.apache.org/jira/browse/MESOS-2216

https://issues.apache.org/jira/browse/MESOS-2216

5.5. Compiling Apache Mesos for IBM System z 72

in the first place. As fas as we understood, the Mesos compile process includes build-
ing the Java client API, which relies on JNI for communicating with the Mesos master,
by default. Because we considered the Java client API not absolutely necessary for our
use case, we could have easily skipped the Java build part by setting the
--disable-java flag specified by the configure.ac file9. For fixing the shared library
path issue instead, we finally came up with three different ways how this could be
achieved in conjunction with the IBM Java SDK:

1. Setup another JDK flavor next to the IBM Java SDK (e.g. OpenJDK) and make
the $JAVA_HOME environment variable point to the corresponding installation
folder.

2. Move the build process into a Docker container that includes OpenJDK.

3. Adjust the shared library path in the configure.ac file manually.

4. Populate the shared library path environment variables beforehand, so that they
already refer to the correct folder when configure is started [45].

In our opinion, the last option poses the fastest and easiest solution for making the
build process compliant with the IBM Java SDK. All that has to be done, as proposed
by the Linux on z Systems Open Source team [45], is exporting the environment vari-
ables containing the correct linker flags and shared library path (see listing 5.6. Even
though that approach worked as expected it turned out to be not our first choice here,
as it breaks the build’s repeatability. Assuming that the build is triggered in a differ-
ent shell with the necessary environment variables not set it will fail as it did before.
One possible way out of this might be forking the repository and moving the environ-
ment variable export statements to a separate file in the repository, so that the shell
environment can be prepared right before configure gets executed.

$ export JVM_DIR=$JAVA_HOME/jre/lib/s390x/default

$ export JAVA_TEST_LDFLAGS="-L$JVM_DIR -R$JVM_DIR -Wl,-ljvm -ldl"

$ export JAVA_JVM_LIBRARY=$JAVA_HOME/jre/lib/s390x/default/libjvm.so

Listing 5.6: Environment variables for linker flags and shared library path [45].

For this thesis, we went with the third option in order to achieve a consistent and
repeatable build. What made fixing the libjvm.so path in the configure.ac file easier for
us was that some contributors of the related JIRA issue mentioned above already sub-
mitted a patch file (see appendix C.1) that makes the configure script setting up the
correct paths in case an IBM Java SDK is found under $JAVA_HOME. We applied the
patch file to our copy of the Mesos repository in order to make the necessary changes

5.5. Compiling Apache Mesos for IBM System z 73

permanent and came to the conclusion that this is a more intuitive solution than com-
pelling other users to fix the shell environment.

$ wget -O ibm-jdk.patch https://issues.apache.org/jira/secure/attachment/\

> 12746484/MESOS-2216_2.patch

$ patch < ibm-jdk.patch

patching file configure.ac

Listing 5.7: Applying the necessary patch for IBM Java SDK compliance.

After having applied the patch as demonstrated in listing 5.7 the configure

phase finally succeeded. Note that bootstrap must again be executed before, so that
an updated version of the configure script is produced from the patched configure.ac
file.

5.5.3 Maven build issues

As the final build step, we had to issue a make install according to the documen-
tation [43] in order to compile the code and install Mesos to the directory
(/tmp/mesos-deb) we determined as the target folder earlier. However, the Java
client API build step again turned out as a major obstacle, since the related Maven
build repeatedly run out of memory while executing the Javadoc plugin. Going to the
pom.xml.in file located in mesos/src/java/ and removing the Javadoc plugin sec-
tion would have been most simple solution, albeit not a very elegant one. Rather than
skipping Javadoc creation, we finally fixed that issue by increasing the default heap
memory limit for the Maven build instead (see listing 5.8) [45].

@@ -131,6 +131,7 @@

<plugin>

<artifactId>maven-javadoc-plugin</artifactId>

<configuration>

+ <maxmemory>512m</maxmemory>

Listing 5.8: Increasing the heap space memory limit for the Maven Javadoc plugin [45].

After that make install finished without an error and Mesos was installed to
the specified target folder. In order to be able to properly install Mesos within a Ubuntu-
based s390x Docker image we decided upon packaging up the compilation output as
a reusable DEB artifact.

5.5.4 Creating a s390x DEB package for Mesos

Packaging up Mesos as an installable artifact for Ubuntu/Debian is not absolutely
necessary since we could simply have copied the installation directory into a Docker

5.6. Remaining s390x porting 74

image. Though, creating a package in a standardized format improves reusability and
is a much cleaner way of distributing and installing software in our opinion. More-
over, DEB files allow for explicitly declaring runtime dependencies, so potential users
can inspect them and install required packages by means of a package manager, for
example Advanced Package Tool (APT).

As a convention, building a DEB package requires a DEBIAN/ directory in the
same folder where the software that is about to be packaged up is located. The DEBIAN/
directory must in turn include a control file that provides necessary information for
creating the package. Listing 5.9 gives an impression of how the control file looks
like [58]. A complete version of this file can be found in appendix C.2.

$ cat > /tmp/mesos-deb/mesos-1.1.1/DEBIAN/control << EOF

Package: mesos-1.3.0

Architecture: s390x

.

.

EOF

Listing 5.9: Basic control file structure for building a s390x DEB package.

With the control file in place, building the Mesos DEB package can be done by
means of the dpkg-deb utility [58]. As this is again straightforward, we will skip the
details.

5.5.5 Installing Mesos to an Ubuntu-based Docker image

At least, we created the s390x Docker image for Mesos by means of a Dockerfile that
installs the DEB package we had built before. Because the only difference between the
Mesos master and slave images is the Mesos executable which must be invoked, we
decided upon building a universal Mesos base image (see apendix B.2) from which
we derived the master (appendix B.3) and agent (appendix B.4) images that merely
specify different entry points for containers.

5.6 Remaining s390x porting

At the time this thesis has been written, not all software components that we cover
here as part of our microservice infrastructure stack have already been prepared to run
on s390x systems. The primary focus was on the most fundamental tools (ZooKeeper,
Mesos, Marathon and Aurora) and we deferred some other parts that can still be
ported in the future once we have a working prototype with basic functionality in
place. For that reason, there are still components, like the Docker Registry or Mesos-
DNS, that we can only run on amd64 machines at the moment. This is, however, not a

5.7. Job scheduling on hybrid clusters 75

problem with respect to our hybrid prototype, since these parts do not absolutely need
to be available on both machine types for a basic setup. Instead, making progress with
Aurora on s390x for having more options in terms of job scheduling is much more
urgent to us.

5.7 Job scheduling on hybrid clusters

In section 2.5, we have made a difference between homogeneous and heterogeneous
jobs as the two basic workload categories on multi-architecture computing landscapes.
This raises the question of how our Mesos infrastructure can be used to put these kinds
of jobs into practice. While Mesos solely provides simple mechanisms like agent node
labeling, using these mechanisms for the implementation of sophisticated scheduling
behavior is a matter of the Mesos frameworks. We will therefore now take a look at
how we achieved to realize the concepts of homogeneous and heterogeneous jobs by
using existent primitives and APIs of the Marathon framework. We decided to skip
the details for Aurora here because its scheduling constraint capabilities are not yet
equally mature and powerful.

5.7.1 Homogeneous job scheduling

Distributing a homogeneous job’s tasks over a group of uniform machines can be
achieved by means of Mesos’ labeling mechanism. Mesos allows to tag agent nodes
with user-defined attributes [79]. Attributes in the context of Mesos are key-value pairs
in the form attribute: text ":"(scalar | range | text) [79].

$ docker run mesosphere/mesos-agent --attributes="arch:amd64"

Listing 5.10: Mesos agents can be assigned custom attributes [79].

Listing 5.10 gives an example of how attaching attributes to mesos agent nodes
works in practice [52]. Further Docker command line options have been omitted for
clarity. Whenever the Mesos master sends resource offers to framework schedulers
it passes along these agent attributes. From a Mesos framework’s perspective, these
attributes can be used to make arbitrary scheduling decisions. Marathon, for example,
facilitates the definition of constraints [52] based on Mesos attributes. Constraints are
created by applying operators on attributes and their respective values. Table 5.4 lists
all operators which are currently available in Marathon.

5.7. Job scheduling on hybrid clusters 76

Operator Description

UNIQUE
Attribute value must be unique for each task to be sched-
uled.

CLUSTER
Tasks are distributed across nodes whose attribute value
matches exactly.

GROUP_BY
Distribute tasks across nodes with different attribute values
evenly.

LIKE Matches a regular expression against an attribute value.

UNLIKE Only choose nodes whose attribute values do not match.

MAX_PER
Limit number of tasks on hosts with a certain attribute
value.

Table 5.4: List of constraint operators in Marathon [52].

According to the explanations in table 5.4, the CLUSTER operator is an appropriate
instrument to partition a collection of servers and group them by their CPU architec-
ture property. Although the GROUP_BY operator might also be a possible choice at
first sight, it must be noted that this operator does not actually evaluate an attribute
value, but instead only checks if the values provided by two or more agents are differ-
ent from each other [52].

Listing 5.11 shows a sample request that creates a Marathon job consisting of
Docker container tasks. Besides, it defines a constraint that instructs the scheduler
to only accept resource offers from agents labeled as amd64 hosts.

$ curl -X POST -H "Content-type: application/json" 10.0.0.2:8080/v2/apps -d

'{

"container": {

"type": "DOCKER",

...

},

"constraints": [["arch", "CLUSTER", "amd64"]]

}'

Listing 5.11: Job with execution environment limited to amd64 hosts [52].

The only problem we met with respect to the definition of homogeneous jobs was
that, before we examined the Docker Registry in more detail, we could not use the
same image name for both the amd64 version and the s390x version for a Docker

5.7. Job scheduling on hybrid clusters 77

image. This is because, as far as we knew at the beginning of our work, the Docker
registry only allows 1:1 relationships between identifiers (i.e. names) to images. As-
suming that, for example, a job consisting of a well-defined number of nginx Docker
container tasks shall be launched on amd64 machines, we would have to supply nginx
as the image name, while s390x/nginx would be the correct name for s390x-compliant
Docker images. Although having to use different image names for the same applica-
tion on different types of machines basically works and thus is not an exclusion cri-
terion, it still undermines our goal of achieving maximum transparency for platform
users. More precisely, users have to be aware of architecture-dependent image names
instead of being able to leave choosing the appropriate image for a job to the infras-
tructure. In section 5.7.2, we show how more than one image can be stored behind a
single identifier within a registry.

5.7.2 Heterogeneous job scheduling

Apart from the administrative overhead caused by several architecture-specific names
for a single job’s amd64 and s390x Docker images, launching homogeneous jobs could
easily be achieved by means of Mesos attributes [79] and scheduling constraints [52].
However, this is not true for the scheduling of heterogeneous jobs. From a Mesos
framework perspective, dropping all scheduling constraints is everything that is re-
quired to allow a job’s tasks to be spread across machines regardless of their CPU ar-
chitecture. Thereby, the framework simply ignores the "arch" attribute when receiving
resource offers. As an alternative, the LIKE operator can be used along with a reg-
ular expression that matches both possible attribute values (s390x and amd64) [52].
Listing 5.12 illustrates both approaches by the example of a nginx job.

However, as we could only specify exactly one Docker image per job, defining
multi-architecture jobs was still not possible at first. As we have already learned, the
original implementation of the Docker registry was restricted to 1:1 mappings of iden-
tifiers to images, which are architecture-specific by nature. Taking these aspects into
account, we can conclude that trying to launch containers from a Docker image, af-
ter is has been pulled from a registry, on different types of machines must fail. As a
consequence, the job definition shown in listing 5.12 is effectively invalid.

Target all types of hosts by simply dropping all constraints.

$ curl -X POST -H "Content-type: application/json" 10.0.0.2:8080/v2/apps -d

'{

"container": {

"type": "DOCKER",

"docker": {

"image": "nginx",

...

},

5.7. Job scheduling on hybrid clusters 78

...

},

"constraints": []

}'

Target all types of hosts by defining LIKE to mach both amd64 and s390x.

$ curl -X POST -H "Content-type: application/json" 10.0.0.4:8080/v2/apps -d

'{

... ,

"constraints": [["arch", "LIKE", "*."]]

}'

Listing 5.12: Two possible Marathon constraint definitions for heterogeneous jobs [52].

The problem of multi-architecture Docker images

So far, it has been shown that the platform-sensitivity of Docker images along with
the fact that their names must be unique and can only refer to one image repository
at the same time (which is, as we will show soon, no longer the case for the latest
major version of the Docker Registry) causes additional overhead for the creation of
homogeneous jobs, while these aspects render heterogeneous jobs entirely infeasible.
Consequently, our next step was to think about possible workarounds for that issue.
Here are some ideas we came up with after a while, accompanied by an assessment
concerning their feasibility:

1. Specify one image for each kind of machine type: An obvious solution would
be to introduce the possibility of specifying one Docker image for each pos-
sible value of the arch attribute in job definitions on the framework side. In
this way, the scheduler could instruct the executor to either pull the nginx (for
"arch:amd64") or the s390x/nginx (for "arch:s390x") image. Although such an ap-
proach might be functional, it is neither implemented in Marathon nor Aurora.
As a consequence, this would not only require the development of a non-trivial
patch but would also not help us with our goal of maximum transparency, as
architecture-specific image names still remain.

2. Specify one image tag for each kind of machine type: As a tag is just a unique
extension of a Docker image’s name (see section 3.5.2) and points to a certain
version of an image (e.g. myimage:s390x) [18], that solution cannot be used to
bypass the 1:1 relationship of names to images and therefore did not prove as an
option.

3. Build images locally on target machines and use the same name: This strat-
egy proposes that on each type of machine, the images are built locally from
different Dockerfiles (separate ones for amd64 and s390x), but under the same

5.7. Job scheduling on hybrid clusters 79

name. Consequently, containers could be run on SEs and LPAR hosts by passing
identical image names to the docker run command. However, that produces
considerable effort for manually building the images on each machine separately
and eliminates the advantages of having them in a single Docker registry. Estab-
lishing two different registries (one for s390x and another one for amd64 im-
ages) is also not an option, since the registry name is part of an image name
(see 3.5.2) and thus is different for two registry servers. One Docker registry per
host might be a functional solution, as each machine could refer to images by
localhost:$REGISTRY_PORT/image-name. Although a high level of trans-
parency could be preserved by means of this approach, managing one registry
per host and keeping all of them in sync is simply too much work and thus is
not a real option from our point of view.

A brief summary of the Docker Registry

In fact, it turned out that the second major release of the official Docker registry [15]
supplies capabilities that can be employed to store multiple images for different CPU
architectures under a common name. How that works can be best understood by tak-
ing a look at the traditional way of how storing images in a Docker registry works.

In section 3.5.2, it has already been clarified that each Docker image is made up of
n layers which are stacked to a single consistent filesystem as soon as a container is
launched from it. If an image is not present on disk when a docker run command
is issued, it first gets pulled from a public or private Docker Registry [57]. From the
registry’s perspective, keeping each image as a single blob would be pointless and,
since many layers are usually shared by multiple images [14], would quickly congest
the disk with redundant data. Instead, storing each image layer separately and only
once is much more efficient. This also applies in case multiple containers are launched
from the same image, where having only one copy of a read-only image in memory is
sufficient [14].

This approach, however, requires additional metadata per image that captures the
layers that together form a certain image. In the context of the Docker registry, this
metadata is represented by special data structures called image manifests. A manifest
contains a set of digests (combinations of an algorithm and a hex-encoded hash value,
e.g. "sha256:123abc...") which are actually references to image layers residing in
a registry or at the local disk [57].

So what happens under the hood when an image gets pulled from a registry is that,
as a first step, the image manifest is retrieved from the registry server (see figure 5.3).
Afterwards, the Docker engine goes through all the digests it finds in the manifest,
downloads the layers as compressed tarballs [22] and unpacks them. The latest major

5.7. Job scheduling on hybrid clusters 80

Figure 5.3: Docker Images are represented by manifests that point to n image layers.

release of the registry, Docker Registry V2, behaves in a content-addressable manner,
because a digest not only serves as a unique identifier for a layer but, besides, is a
cryptographically verifiable hash of a layer itself. A digest is calculated by applying a
hash algorithm to the raw bytes of an image layer and append the result to the textual
description of the algorithm that has been used [21].

In a more formal way, the digest d of an arbitrary image layer can be computed as
follows:

d = ”algorithm : ” + EncodeHex(h(x)) (5.1)

where x represents a layer’s raw bytes which get passed to a hash function h (e.g.
SHA-256). Appending the hex-encoded hash to the textual representation of the hash
algorithm yields the image digest d [21].

Besides distinctively identifying an image layer, a layer’s self-verifiability property
facilitates ensuring data integrity by performing the hash computation at the client-
side and compare the result to the digest in the image manifest. Of course, this leaves
open how to guarantee the correct identity of a Docker image, i.e. from where to get the
correct image manifest digest that corresponds to the image, and only the image, we
originally intended to download. For that purpose, Docker applies the Notary service
which shall not be further discussed [29].

Image Manifest Version 2, Schema 2

Version 2 of the image manifest schema specification for Docker Registry V2 [22] in-
troduced the concept of fat manifests in order to enable multi-architecture images. Fat
manifests are an extension of the original idea of having an image name pointing to
exactly one manifest (i.e. Docker image). Instead, a fat manifest acts as an indirec-

5.7. Job scheduling on hybrid clusters 81

tion, representing a list of one or more manifests that hold different values for the
platform field in their manifest JSON structure (see listing 5.13). Each of these mani-
fests is backed by a Docker image consistent with the indicated target architecture [22].

$ curl -X PUT -H "Content-type:application/json" \

> 10.0.0.2:$REGISTRY_PORT/v2/myimage/manifests/mytag

{

"schemaVersion": "2",

"manifests": [

{

/* manifest A */

...,

"platform": {

"architecture": "amd64"

}"

},

{

/* manifest B */

...,

"platform": {

"architecture": "s390x"

}

},

...

]

}

Listing 5.13: A fat manifest for multi-architecture images [22].

From a user’s perspective, there is nothing special that has to be respected when
pulling a multi-architecture image from a registry. As can bee seen from the output of
the docker info command, the Docker client is completely platform-aware. Thus, it
is able to traverse the entries of a fat manifest and to autonomously pull the correct im-
age manifest whose platform property matches. This enables operation at maximum
transparency, because everything that is required to distribute a job across a couple of
heterogeneous machines is the name of the (platform-independent) fat manifest [22,
33].

Since there is currently no Docker-native functionality to build and push multi-
architecture images in a convenient way and because typing things manually is cum-
bersome and error-prone, some third party tooling emerged around that issue. One of
these projects is the manifest-tool started by Estes [33] (IBM Senior Tech Staff Member
and Docker maintainer), which facilitates condensing multiple platform-specific im-
ages into a fat manifest and pushing it to a registry. The manifest tool, whose source

5.7. Job scheduling on hybrid clusters 82

code can be found on Github11, uses the YAML format for its input files [33]. List-
ing 5.14 gives an impression of how such a YAML-based definition file for creating a
multi-architecture nginx image might look like.

image: myrepo/nginx-universal:1.13

manifests:

-

image: nginx:1.13

platform:

architecture: amd64

os: linux

-

image: s390x/nginx:1.13

platform:

architecture: s390x

os: linux

Listing 5.14: Sample YAML file for creating a fat manifest.

11 https://github.com/estesp/manifest-tool

https://github.com/estesp/manifest-tool

Chapter 6

Evaluation

While the previous chapter has introduced a possible approach to build a hybrid mi-
croservice infrastructure upon Mesos, the focus shall now be laid on its evaluation.
We assessed our prototype with regard to three aspects we considered the most es-
sential ones: First of all, an overview of the its basic computing resource demands
(disk space and memory) shall be provided. Second, we present the results of some
tests we carried out in order to check how switching between Mesos frameworks af-
fects job deployment, scaling and cleanup performance. Third, we performed several
experiments in order to verify the availability and failover guarantees given by the
individual components of our infrastructure setup.

Executing the resource consumption and performance measurements on a CentOS
VM running on a single workstation equipped with an AMD A4-400 APU processor
and 8GB of RAM was sufficient and especially prevented network latencies from dis-
torting our performance tests. For local testing purposes, we developed and released a
Mesos playground1 which launches a complete Mesos infrastructure on a single host
by means of Docker Compose. For reliability evaluation, we moved back to our virtu-
alized multi-host setup from section 5.1.

At least, it is examined the solution we came up with complies with the remaining
basic requirements which have been summarized in section 2.5.1. This brings us to
the existing limitations of the current setup as well as possible improvements for the
future.

6.1 Resource consumption

We started our evaluation process with a glance on our infrastructure setup’s resource
requirements. This is a highly critical point, because we aim at keeping them as low

1 https://github.com/apophis90/mini-mesos

83

https://github.com/apophis90/mini-mesos

6.1. Resource consumption 84

as possible in order to leave a maximum of RAM and CPU capacity to application de-
ployments. This is even more important on mainframes, where the amount of avail-
able computing resources is more strictly limited compared to data centers.

In that sense, the first part of this section is about the observations we made when
examining the amount of disk space that is occupied by the Docker images for Mesos
as well as its peripheral components. Afterwards, we show the results of our mea-
surements in terms of memory consumption when putting the infrastructure software
stack under load. At least, we present the outcome of some tests we carried out in
order to check how switching between Mesos frameworks affects job deployment and
scaling performance.

6.1.1 Disk space requirements

Depending on the programming language in use, possible runtime dependencies and
the size of a containerized application itself, the surrounding Docker image tends to
grow up to a size of hundreds of megabytes quickly. We took this as a reason to ex-
amine the amount of disk space that is occupied by all the images that make up our
infrastructure stack. When discussing the size of Docker images, a difference must be
made between an image’s virtual size and its - as we call it - actual size. We chose this
as a designation to underline that there are actually two different dimensions in terms
of image size that must not be confused. Mouat [57] explains that virtual size describes
the size of a Docker image including all the layers from its base image. The base image
relation is transitive, meaning that a Docker image’s direct base image might also be
derived from another base image as well. On the other hand, by actual size we mean
the size of a Docker image without including the base image layers, considering only
the layers that have been introduced by the uppermost Docker image. To express it
more formally:

actualSize(image) = virtualSize(image) − virtualSize(parentImage), (6.1)

where virtualSize(image) denotes the size returned by the docker images com-
mand for image. The graph in figure 6.1 illustrates the virtual and actual Docker image
sizes we measured for the amd64 variants of our images. The sizes of the s390x images,
as far as they already exist, are similar.

While the /var/lib/docker/overlay/ directory on our local CentOS test VM,
where the image layers for the overlay driver reside, was about 3.0GB in size, adding
up the actual image sizes from figure 6.1 results in about 1.8GB of disk capacity. Note
that this is not a perfectly accurate calculcation, we we count the Mesos installation

6.1. Resource consumption 85

for the master and worker image twice.
Consequently, what this means is that from 3.0GB of storage for the image layers

in our case, roughly 1.2GB (≈ 40%) were occupied by the base images that provide
a root filesystem, miscellaneous dependencies and runtime environments. Looking at
the virtual image sizes in figure 6.1 shows that adding them up results in far more than
3.0GB. The reason for this discrepancy is that some of the layers are shared between
several images and so they are included in the virtual sizes of different images mul-
tiple times. Putting it the other way around, the total amount of disk space required
by all Docker images on a host cannot be calculated by simply adding up their virtual
sizes.

As soon as we launched a single instance of our Mesos infrastructure on our local
VM, including ZooKeeper as well as Marathon and Aurora, the size of the
/var/lib/docker/overlay/ folder grew up to a size of about 3.3GB, which means
that the container layers amount to approximately 300MB of disk space. Summing up,
our infrastructure setup required about 3.0GB disk capacity when Mesos was stopped,
and about 3.3GB assuming that it was running.

ZooKeeper Mesos
master

MarathonAurora
sched.

Aurora
worker

0

200

400

600

800

1,000

1,200

143

723

933

1,100

878

62

535

290
244

684

Si
ze

on
di

sk
[M

B]

virtual size actual size

Figure 6.1: Virtual and actual sizes of the infrastructure Docker images.

The difference between virtual and actual image size is particularly noticeable for
the Mesos framework images, which is caused by the full Mesos installation they have

6.1. Resource consumption 86

to carry along as a runtime dependency. We expect this situation to improve once the
maintainers start migrating Marathon and Aurora towards using the scheduler HTTP
API [84] for communicating with the Mesos master.

Summary

The most significant findings we could extract from these experiments was that striv-
ing at keeping base images as lean as possible is very important. This is suggested by
the significant differences we measured between the virtual and actual sizes of our
images which proved that about 40% of disk space is occupied by their base images.
Because we think that the share of the base image layers but also the 3.0GB of disk
space needed in total is just too much, we plan to invest time and efforts in the fu-
ture in order to replace the Debian and Ubuntu base images, which are usually quite
extensive, with much smaller images like Alpine [23].

6.1.2 Memory consumption

For the memory usage measurements, we launched a full Mesos stack based on our
Mesos playground and used the docker stats command to observe the amount of
RAM used by each of the infrastructure containers. As each of the components is repli-
cated three times, we took the memory usage of the three containers per component
and calculated the average value. Our goal was to benchmark the memory consump-
tion per infrastructure component as a function of the number of tasks managed by
Meso. We started in idle state (task count of 0) and scaled up a single job by 10 tasks
per step up to a task count of 100.

In order to observe how employing different Mesos frameworks for task schedul-
ing influences memory consumption, we split the experiment into two parts: In both
cases, we used exactly the same environment with the exception of having swapped
the Mesos framework. While Marathon was in use for the first part, it has been re-
placed with Aurora for the second part. As for the tasks we deployed to simulate dif-
ferent levels of load during our tests, we packaged up a minimal statically compiled
Go application in a scratch Docker image2 (which basically consists of an empty root
filesystem), resulting in a final image size of about 5.8MB. In this way, we were able
to execute a large number of instances of a fully functional web application with min-
imal resource overhead with respect to the tasks. Throughout the entire benchmark
procedure, the workload could be assumed to be evenly distributed across the three
agent instances.

2 https://hub.docker.com/r/pkleindienst/hello-go/

https://hub.docker.com/r/pkleindienst/hello-go/

6.1. Resource consumption 87

Figure 6.2 shows the outcome of the first part of our memory benchmarking ex-
periments. It can be seen that the average memory usage for the Mesos agent con-
tainers grows approximately linear with the number of tasks. The connection between
agent workload and memory usage seems appropriate and is exactly what could be
expected. Another interesting observation is that the RAM demands of the other in-
frastructure parts only increases moderately and is, for example, nearly constant for
the Mesos masters.

10 20 30 40 50 60 70 80 90 100

101

102

103

tasks

M
em

or
y

us
ag

e
[M

iB
]

RAM usage dependent on Marathon task count

ZooKeeper Mesos master Mesos worker
Marathon

Figure 6.2: Mesos and peripherals RAM consumption with Marathon.

Our second memory benchmarking setup (see figure 6.3), which used the Aurora
framework instead of Marathon for task deployment, shows similar curve character-
istics. As before, the graph points out that the memory demands of ZooKeeper, the
Mesos masters and the framework are almost constant, with the framework allocat-
ing about 300MB of RAM on full load. In contrast to the first graph, however, the
Mesos agent group’s average memory requirements are much greater when Aurora is
applied as the scheduler.

We concluded that this is caused by the custom Thermos executor used by Aurora
which seems to have much higher memory demands than the Mesos built-in com-
mand executor. During our first measurements with Aurora, we were unable to scale
up the Go application to 100 instances on our local VM as each Thermos executor
process allocated about 128MB of RAM and a CPU share of 0.25 (25% of CPU time) by
default. We finally managed running 100 tasks in parallel by limiting a Thermos execu-
tor’s requirements to 32MB of RAM and a CPU share of 0.01 respectively. Interestingly,
we experienced a sudden drop in the Mesos agents’ RAM allocation when the Aurora

6.1. Resource consumption 88

10 20 30 40 50 60 70 80 90 100

101

102

103

tasks

M
em

or
y

us
ag

e
[M

iB
]

RAM usage dependent on Aurora task count

ZooKeeper Mesos master Mesos worker
Aurora

Figure 6.3: Mesos and peripherals RAM consumption with Aurora.

task count reached 80 without being able to find a particular reason for this behavior.
We guessed that this could the result of both memory being freed and/or measure-
ment inaccuracy, as we would expect the increase in an agent’s memory reservation
to be linear with its workload, as we have measured in figure 6.2.

Summary

Table 6.1 summarizes our results, showing that the average RAM allocation by the
Mesos agent group grows roughly linear with the number of tasks when either Marathon
or Aurora is used. With Aurora, we experienced a sudden rise followed by fall in the
measurement curve with a task count between 50 and 80. On the basis of our settings,
especially in terms of the resource constraints for the Thermos executors, it can be de-
termined that when Aurora is applied instead of Marathon, the Mesos agent memory
consumption is about three times as high. In order to lower the resource demands for
Aurora, it would be an interesting experiment, from our point of view, to find the low-
est possible resource specifications that the Thermos executor can run on for a certain
task.

6.2. Performance 89

tasks with Marathon with Aurora

0 34.0MiB 28.6MiB

20 94.3MiB 242.4MiB

40 147.5MiB 466.7MiB

60 200MiB 1084.3MiB

80 249.9MiB 935.3MiB

100 303.6MiB 1005.8MiB

Table 6.1: Average Mesos agent resource consumption depending on the framework in use.

6.2 Performance

Another metric of interest is how fast both framework schedulers can create, scale up,
scale down and remove jobs. The graph shown in figure 6.4 illustrates our results.
With respect to our job creation or rather scale-up measurements, the y axis indicates
the elapsed time between the submission of the request and the point when the last
task was reported to be in RUNNING state. Accordingly, it shows the period between
the request and the point when the last remaining task was in STOPPED state for our
job deletion or rather scale-down tests. Every measurement has been performed on the
basis of a clean cluster state (i.e. all infrastructure components have been restarted),
and we allocated 32MB of RAM and a CPU share of 0.01 per task.

We found that with Marathon, it took about 10s to launch a job comprising 10
tasks (10 instances of our sample Go web application). Scaling up from x number of
tasks to x + 10 tasks again completed after about 10s. We also measured a delay of
about 10s when reducing the amount of tasks from x to x − 10 with the Marathon
scheduler. Surprisingly, fully destroying a job of 10 tasks with Marathon only took
about half its creation time (5s). Further measurements showed that these durations
roughly increase linearly with the number of tasks.

Switching to the Aurora framework produced clearly different results for the same
measurements. While initially deploying a job comprising 10 tasks (Go web applica-
tion instances) finished after approximately 20s, which is twice the time it took with
Marathon, we also found that scaling up by 10 tasks caused a delay of 480s (or 8
minutes) in average! Because we specified exactly the same resource requirements for
our reference job when performing both experiments, we assume that the resource
allocation and startup of the Thermos executors is responsible for this delay. Inter-
estingly, reducing the number of tasks by 10 and revoke their resources, as we did

6.3. Reliability testing 90

0-10 10-0 0-20 20-0 +10 -10
0

100

200

300

400

500

10 5 20 8 10 1020 20

120

50

480

20

ti
m

e
[s

ec
]

Marathon Aurora

Figure 6.4: Average job startup, scale-up, scale-down and shutdown duration per framework.

with Marathon previously, complies with the initial startup time for 10 tasks, which
was about 20s for Aurora. This also holds for the time required to fully cleanup a job
comprising 10 tasks, which takes Aurora another 20s.

Summary

In sum, our results show that Marathon seems to be much more performant in ev-
ery aspect of job administration. Admittedly, we cannot definitely rule out our local
workstation testing environment as a reason for the bad performance of Aurora. What,
however, can be said against this assumption is that Marathon performed surprisingly
well on exactly the same setup.

6.3 Reliability testing

Apart from low resource consumption, the second key characteristic of a microservice
infrastructure should be fault tolerance and high availability from our perspective.
The different pieces of our software stack, namely ZooKeeper, Mesos, Marathon and
Aurora, provide a large number of reliability guarantees under certain failure condi-
tions. These guarantees should be verified, though, as for example a faulty configura-
tion or bugs might cause some tools to behave different from what is actually expected.
Thus, we decided upon simulating several error condition scenarios by purposefully

6.3. Reliability testing 91

infiltrating failures into our running system and comparing our expectations to the
actual outcome.

6.3.1 ZooKeeper

ZooKeeper follower failure

We started our reliability tests with killing one of the ZooKeeper follower process,
leaving the leading master intact. In case a ZooKeeper follower fails, we expect no
ZooKeeper leader election to take place and no harmful side effects to occur on the
other infrastructure components. That means frameworks and their tasks should con-
tinue executing without interruption. If any of the dependent processes has an active
session with a follower which has just failed, this process is expected to reconnect to
another ZooKeeper node after a timeout has elapsed. Of course, these expectations as-
sume that, after a ZooKeeper follower has gone away, a quorum (for example 2 out of
3 nodes) is still available. If this is not the case, then the remaining ZooKeeper servers
will stop serving requests.

Our tests have shown that ZooKeeper behaves as expected and keeps itself as well
as the other infrastructure components alive. But we also found that in very rare cases,
the leading Marathon scheduler went down when a ZooKeeper follower had been
killed before. Further investigations have proved that this only happened if, by ac-
cident, we had stopped the ZooKeeper process the leading Mesos master had been
connected to. It turned out that, inadvertently, we had sometimes triggered a Mesos
master leader election, which caused the leading Marathon scheduler to fail. More
details on this are given below.

ZooKeeper leader failure

When we simulated the failure of the current ZooKeeper leader, we have met the exact
same behavior as above, with the exception of a leader election taking place given that
a majority of ZooKeeper servers was still available. Assuming this is not the case, for
instance because 2 out of 3 ZooKeeper servers have become unavailable, we would
expect the entire stack to be still alive but rejecting any requests that aim to modify the
state of the cluster, like the deployment of new tasks.

When a majority of ZooKeeper servers was still active, our setup behaved as we
expected. If this was not the case, then, contrary to our expectations, the Mesos and
Marathon processes also terminated immediately because there were unable to con-
nect to ZooKeeper. According to the ZooKeeper logs, the remaining servers imme-
diately close any incoming Transmission Control Protocol (TCP) connection attempts
in order to avoid state inconsistencies. The Aurora processes were the only ones that
stayed alive for a while, but they also committed suicide after a while when they could
still not find a ZooKeeper quorum.

6.3. Reliability testing 92

6.3.2 Mesos

Mesos agent failure

Another error condition that might occur is a Mesos agent going down, which could
have two different reasons: On the one hand, the respective Mesos worker container
could have exited. In that case, we would expect the agent’s tasks to keep running,
while affected frameworks should schedule replacement tasks to the remaining Mesos
agents. For our setup, we could verify that this works as intended. However, there is
one aspect that we missed at the beginning, as we also expected the failed agent to
wipe off its redundant tasks as soon as it recovers, as described in the documenta-
tion [80], which was not the case during our experiments. It turned out we initially
overlooked that when a Mesos agent container terminates, so do the task executors
which are running in the same container. Consequently, a restored agent is neither
aware of the tasks it managed before, nor is it able to destroy them as their executors
are gone. Without manual intervention, these tasks would keep running forever. That
reveals an obvious drawback of operating Mesos in containers and requires additional
work, for example in the form of a startup hook which deletes all containerized tasks
as soon as the Mesos agent container restarts. We do not have a concrete implementa-
tion for this yet, though.

The second reason, that consists in the entire host system going offline, can be
handled much more comfortably, as all containers, including Mesos agent along with
its tasks, are killed. Consequently, one does not have to worry about cleaning up any
unreachable tasks.

Standby master failure

Because all dependent processes, namely the Mesos agents and framework sched-
ulers, only have active TCP connections with the leading Mesos master, we did not
expect the shutdown of a standby master to have any side effects on our infrastruc-
ture. We could confirm this hypothesis during our experiments, except for the situ-
ation when all 2 standby masters were offline. In this case, we observed that Aurora
started rejecting read and write requests, which makes sense as Aurora uses the Mesos
replicated log for backing up its state. If no Mesos quorum is available, the remaining
Mesos masters reject all write operations to the log in order to keep it in consistent
state. In terms of the configuration, we found that setting the correct Mesos quorum
size for Mesos and Aurora is important to obtain the correct replicated log behavior.

Leading master failure

We tested the Mesos master failover procedure by deliberately killing the leading mas-
ter process and keeping an eye on the other components’ reactions. Assumed that ev-

6.3. Reliability testing 93

erything works as expected, the remaining master nodes should elect a new leader,
which the agents and frameworks can reconnect to afterwards. Our investigations
verified this is actually the case, but also revealed a substantial difference between the
Marathon and Aurora in terms of handling Mesos master failover: While all Aurora
scheduler instances continued without interruption, the leading Marathon scheduler
exited immediately. We first thought this might indicate a bug, but after having stud-
ied the logs in detail it seemed likely to us that this is just how Marathon implements
the notion of "fail fast". What that means is the leading scheduler, after having lost
its connection to the active Mesos leader, gives up upon searching for a new leading
Mesos master instantaneously. Instead, it self-terminates quickly in order to open the
way for another scheduler instance to become leader and eventually reconnect to a
newly elected leading Mesos master. Aurora, on the other side, chooses another ap-
proach and rather waits for a certain period of time after the leading scheduler has
lost its Mesos master connection. If it has no success in reestablishing this connec-
tion within a predefined timeout or it cannot detect a Mesos quorum to be live, it
finally self-terminates. The common idea behind these different implementations is
the prevention of inconsistencies concerning the overall cluster state. For automati-
cally restarting terminated scheduler processes, it might be reasonable to rely on the
OS-native init system, for example systemd.

6.3.3 Marathon

Following scheduler failure

Because the way the Marathon framework uses ZooKeeper for leader election is not
majority-based and its entire state is also stored in ZooKeeper, we came to the con-
clusion that, out of 3 scheduler instances, it should be able to remove the 2 following
schedulers from the cluster without causing any harm to our infrastructure or run-
ning tasks. Our results showed that this is actually the case, and we could issue read
as well as write operations which were carried out by the the leading Marathon sched-
uler without problems.

Leading scheduler failure

When the leading scheduler fails instead, a standby master is expected to take over its
role. Of course, this requires at least one more scheduler instance to be live. We could
not find any anomalies when killing the Marathon leader and thus leader election
worked without any difficulties. That also includes that all existing tasks continued to
run without interruption and that the cluster state as seen by the newly elected leading
scheduler did not diverge from the actual cluster state as it was before the previous
leader was taken down. This observation was important, as we strived for making
sure we did not end up in an inconsistent cluster state.

6.3. Reliability testing 94

6.3.4 Aurora

Following scheduler failure

We tested the outage of a following Aurora scheduler the same way as we did in the
case of Marathon. Fortunately, we also experienced the same results, so we could be
sure that even a single remaining Aurora scheduler carries out read and write opera-
tions without any issues.

Leading scheduler failure

In terms of leading scheduler failover in Aurora, we had exactly the same expectations
as of Marathon. Our experiments yielded the same results, as we could observe an
uninterrupted execution of deployed tasks as well as the preservation of a consistent
cluster state.

6.3.5 Summary

On the basis of the results we received and the new insights we gained through our
experiments, we have essentially learned four important things: First, we were able
to improve our configuration settings of several cluster components and found vari-
ous critical parameters, like the size of the Mesos master quorum which manages the
replicated log, that deserve special attention.

Second, we found that, all in all, the different infrastructure components comply
with the promises they make related to reliability and availability. The only thing that
is left for future work is dealing with obsolete tasks that became detached from their
executors due to a failed Mesos agent container. As there is no chance for these tasks
to rejoin the cluster, a thoughtful procedure must be defined which identifies and kills
such tasks after a Mesos agent has terminated. Simply ignoring these tasks is not an
option as we cannot assume the host systems to be rebooted in short intervals, so
remaining tasks could quickly accumulate and occupy valuable resources.

Third, putting all infrastructure components into containers, apart from the that
issue, proved to be an efficient approach. It not only simplified installation due to
dependency isolation, but also facilitated life cycle management and accelerated boot-
strapping within our hybrid demo environment as well as on our local workstation.
Additionally, containers made it much easier to deploy multiple versions of the same
software side by side, as we did in order to test ZooKeeper’s dynamic reconfigu-
ration capabilities. Another advantage we see is that containers and their isolation
mechanisms can help the microservice infrastructure with becoming extremely robust
against host OS software updates.

At least, we have shown that we can reliably operate our microservice manage-
ment stack even at small scale rather than needing hundreds or even thousands of

6.4. Evaluation of remaining mandatory requirements 95

servers. It should therefore be possible to safely apply Mesos in mainframe environ-
ments.

6.4 Evaluation of remaining mandatory requirements

We will now elaborate on to what extent the remaining mandatory requirements we
presented in section 2.5.1 are met by our prototype.

Resource abstraction

In terms of computing resource abstraction, we have shown that Mesos can be used
as an abstraction layer for fine-grained resource sharing even beyond architectural
boundaries. Developers, operators and other users of our infrastructure can transpar-
ently allocate the resources they need for their deployments. The available resources
per user can furthermore be limited through the definition of Mesos roles [79] to keep
a single user from blocking other deployments by allocating a great quantity of com-
puting resources in advance.

Different types of jobs

By means of agent labels and multi-architecture manifests in the Docker registry, we
even achieved to provide a way for homogeneous and heterogeneous deployments
that reduces the need for detailed knowledge of the underlying physical system and
frees operators from having to deal with the platform dependency of Docker im-
ages. Moreover, is has been explained how the Mesos approach of pushing respon-
sibility of task scheduling to dedicated frameworks enables the coexistence of multi-
ple application-specific scheduling policies which coordinate the distribution of their
tasks with respect to different goals. That also includes the various demands coming
along with different types of jobs, like long-lived services or ad-hoc jobs.

Optimized hardware utilization

We are aware that having multiple frameworks which optimize task scheduling with
regard to various goals conflicts with the desire for globally maximized hardware uti-
lization, as pursued by a centralized scheduler. By and large, we think that Mesos’
inherent flexibility in terms of workload and scheduling must be weighed against
overall utilization and that the added value of using Mesos increases with the diver-
sity of the workload that shall be deployed. Performing additional experiments in or-
der to examine compatibility of globally optimized utilization and application-aware
scheduling was beyond the scope of this thesis.

6.5. Current limitations and thinkable improvements 96

Deployment and scaling automation

Our setup reduces the expense of application deployment to the submission of a few
commands via the Marathon UI or the Aurora CLI, and we consider this as an ade-
quate degree of deployment automation. Scaling existing deployments up and down
also requires manual framework interaction and only the replacement of erroneously
terminated tasks works without intervention. We think this is a sufficient level of scal-
ing automation, as a system that scales workload in a fully autonomous manner would
be exposed to Denial of Service (DoS) attacks.

Dynamic service discovery

By using Mesos-DNS, we were able to setup our own lightweight DNS server that
allows tasks deployed on top of Mesos to discover each other by following a uniform
naming schema.

Isolation of tasks

As Mesos is agnostic with regard to the actual format of deployments, we were able to
run Mesos frameworks that optionally allow for running tasks as Docker containers.
In this way, workload can be isolated from the underlying host system which signifi-
cantly reduces the amount of packages that must be installed on the host and ensures
that dependencies from different services do not interfere in a harmful manner.

6.5 Current limitations and thinkable improvements

Aside from the positive characteristics of our solution, its downsides as well as the
remaining work must not be ignored. At the beginning, it has been clarified that, for
example, authentication and authorization are essential subjects, but that additionally
covering them would have massively enlarged the scope of our work and, besides,
makes much more sense as soon as a basically functional prototype is in place from
our point of view. Nevertheless, we decided upon including these and other aspects
that currently constitute serious limitations into this review.

Authentication and Authorization

Section 2.4 already indicated that securing a Mesos-based infrastructure setup has
multiple dimensions, like authenticating not only users but also frameworks and agents
joining the cluster. None of these features is mandatory or active by default, and we
did not activate any of them during our work on this project. However, we appreciate
that taking care of security mechanisms should be done as early as possible and that

6.5. Current limitations and thinkable improvements 97

systems should be secure by design, as pursuing security by the end of a project is not
only complicated but also much more expensive.

Monitoring

Our current setup does not include any instruments for watching the health state of
deployments and infrastructure components. Adding appropriate capabilities by in-
tegrating mature third party tools should also be done in an early phase of microser-
vice infrastructure projects. During the prototype development phase, we already per-
formed first experiments with Prometheus [64], a tool for exporting and collecting pro-
cess metrics as time series.

Persistent volumes

Another important point that is missing so far is a fully functional solution for ef-
ficiently sharing disk space between multiple containerized tasks deployed on our
Mesos stack. A possible solution should meet two essential conditions: First, it must
not be framework-specific. Second, it should allow creating volumes backed by one
or more local disks instead of cloud storage only, as this is not an option for critical
businesses.

Docker images storage demands

In section 6.1.1, we presented our measurement results regarding the disk space con-
sumption of our core infrastructure Docker images. These include ZooKeeper, Mesos
master and slave, Marathon and Aurora. It has been demonstrated that the individ-
ual images sizes amount to about 3.0GB in total per host system. Even though pack-
ing infrastructure components into containers gives us various benefits, we consider
3.0GB of disk space per host too much. A possible solution to that problem is the re-
placement of bloated Ubuntu and Debian base image with their much smaller Alpine
counterparts. Furthermore, reusing as much image layers as possible also helps with
reducing storage complexity.

Rigid quorum size

Currently, the master quorum size in Mesos [43] (throughout all versions) and also in
ZooKeeper [93] (up to version 3.4) cannot be reconfigured with zero-downtime. While
ZooKeeper integrates the necessary capabilities in the upcoming 3.5 version, there is
no explicit indication when this will be possible in Mesos. This means that whenever
the quorum size of a ZooKeeper or Mesos master group shall be changed the entire
group must be restarted, which, especially in the case of ZooKeeper, could easily cause

6.5. Current limitations and thinkable improvements 98

dependent processes to terminate. Dynamic reconfiguration would be a favorable fea-
ture for our mainframe environment, as in this way, for example a SE that has failed
could simply be replaced with another LPAR. Until dynamic reconfiguration is fully
supported, we will, however, have to adhere to a static quorum configuration.

Detached Mesos tasks

Section 6.3.2 already described the issue of containerized tasks becoming detached
from their executors if a Mesos agent container fails for some reason. Given that an
OS-native init system like systemd is used for automatically restarting Mesos mas-
ter and agent containers, we propose the definition of a pre-start hook as a simple
and effective approach to that problem. This could be implemented as a simple shell
command that uses the Docker CLI to filter and destroy the detached tasks, which is
adequate as we can assume the frameworks creating replacement tasks for them. An-
other thinkable option is running executors in their own Docker containers outside of
the agent container, which introduces the problem of having to find a way to start the
task container from within the executor container. We are currently investigating how
this is supported by Mesos and existing frameworks.

Chapter 7

Conclusions and future work

7.1 Summary

In this thesis, a reference implementation of a microservice infrastructure for hybrid
computing environments has been introduced, using IBM System z as an exemplary
target platform. We started with describing our concrete motivation behind this project,
explaining that shifting systems management applications from external hardware de-
vices onto the platform itself could help with eliminating or at least reducing the need
for this hardware. As a side effect, the application architecture is pushed towards a
highly distributed microservice-based design. A major challenge that shows up when
adapting such an approach with regard to mainframes is the life cycle management of
a large number of services across a amd64/s390x multi-architecture platform. In order
to examine how this can be achieved, we engineered a basic prototype which is able
to manage generic workload on a setup comprising two amd64 SEs as well as single
s390x LPAR.

We proved that, by plumbing together various existing infrastructure components
around Apache Mesos and relying on OS-native process isolation capabilities in the
form of containers, a reliable and flexible microservice platform for homogeneous and
also heterogeneous jobs can be built. Our solution has entirely been developed on top
of available features like node labeling or fat manifests for Docker images, without
the need for adding new features to open source projects. Based on what was already
there, we finally ended up with a setup that enables the definitions of deployments,
whether containerized or not, to be highly transparent with regard to the underlying
hybrid computing landscape. Furthermore, it abstracts away the platform-specific de-
tails of Docker images and makes picking the correct executable for a particular type of
machine a concern of the infrastructure itself, rather than leaving this to the operator.

Moreover, as we operate Mesos and its peripheral components in containers as
well, we can make use of community-driven Linux distributions like Ubuntu or Alpine
and their rich ecosystems as an abstraction layer for the oftentimes highly customized

99

7.2. Outlook 100

enterprise Linux flavors used in the field of mainframes. Because Docker images can
be equally used on any host that has the Docker engine installed, only one set of im-
ages per target architecture had to be built for being able to bootstrap our setup on all
Linux distributions. Besides, this simplifies the provisioning of amd64 and s390x VMs
as the number of packages which must be installed beforehand is reduced to Docker
and its dependencies.

7.2 Outlook

The hybrid microservice infrastructure we presented is a prototype and still in an early
stage of its development. At the end of the last chapter, a short overview of existing
limitations has been provided, serving as a rough guiding framework regarding the
aspects our focus will be placed on for the next steps. This will certainly also involve
bringing a lot more tools to the s390x platform, which is lightened by the increasing
popularity of programming languages like Go, which are not only type and memory
safe, but also simplify the creation of statically compiled binaries for easy deployment.
Besides, we are already exited to see how our work is actually applicable to IBM Sys-
tem z firmware, where the motivation for this project originated from.

In conclusion, we want to emphasize that from our perspective, turning towards
hybrid computing is not only relevant with regard to special environments like main-
frames. As ARM chips, which show a much lower energy consumption than their
amd64 counterparts, will become cheaper, they will probably become even more at-
tractive for large-scale data centers. Consequently, issues and challenges similar to
these we faced during our work will surely appear on other computing platforms.
While we of course cannot raise a claim to have answered all questions related to hy-
brid clustering with this thesis, we still hope we have made valuable contributions
with regard to the upcoming evolution of multi-architecture computing.

Appendices

101

Appendix A

amd64 Dockerfiles, shell scripts &
configuration files

A.1 Mesos-DNS Dockerfile

FROM ubuntu:latest

RUN apt-get update && apt-get install gnupg wget bash -y

ARG MESOS_DNS_VERSION=0.6.0

ARG ARCH=amd64

ARG OS=linux

ARG MESOS_DNS_PORT=53

ARG MESOSPHERE_PUB_KEY=111A0371BD292F47

WORKDIR /mesos-dns

RUN wget https://github.com/mesosphere/mesos-dns/releases/download/\

v$MESOS_DNS_VERSION/mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH \

&& wget https://github.com/mesosphere/mesos-dns/releases/download/\

v$MESOS_DNS_VERSION/mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH.asc

RUN gpg --keyserver pgpkeys.mit.edu --recv-key $MESOSPHERE_PUB_KEY \

&& gpg --verify mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH.asc \

mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH

RUN rm mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH.asc \

&& mv mesos-dns-v$MESOS_DNS_VERSION-$OS-$ARCH mesos-dns \

&& chmod 700 mesos-dns

EXPOSE $MESOS_DNS_PORT

ENTRYPOINT ./mesos-dns -config=./config.json

102

A.2. Aurora scheduler Dockerfile 103

A.2 Aurora scheduler Dockerfile

FROM mesosphere/mesos-master:1.1.1

ARG AURORA_VERSION=0.17.0

ARG MESOS_REPLICATED_LOG_PATH=/var/lib/aurora/scheduler/db

ENV USER=aurora

RUN apt-get update && \

apt-get install -y software-properties-common && \

add-apt-repository -y ppa:openjdk-r/ppa && \

apt-get update && \

apt-get install -y openjdk-8-jre-headless wget && \

update-alternatives --set java /usr/lib/jvm/\

java-8-openjdk-amd64/\jre/bin/java

RUN wget -c https://apache.bintray.com/aurora/ubuntu-trusty/\

aurora-scheduler_${AURORA_VERSION}_amd64.deb && \

dpkg -i aurora-scheduler_${AURORA_VERSION}_amd64.deb

RUN service aurora-scheduler stop && \

sudo -u aurora mkdir -p $MESOS_REPLICATED_LOG_PATH && \

sudo -u aurora mesos-log initialize --path=$MESOS_REPLICATED_LOG_PATH

COPY scheduler.sh ./scheduler.sh

RUN chown $USER:$USER /home/$USER/scheduler.sh && \

chmod 500 /home/$USER/scheduler.sh

USER $USER

WORKDIR /home/$USER

ENTRYPOINT ["./scheduler.sh"]

A.3. Aurora scheduler.sh script 104

A.3 Aurora scheduler.sh script

#!/bin/bash

AURORA_HOME=/usr/sbin

AURORA_FLAGS=(

-http_port=${HTTP_PORT:-8080}

-cluster_name=${CLUSTER_NAME:-aurora}

-backup_dir=${BACKUP_DIR:-/tmp/aurora/backup}

-mesos_master_address=${MESOS_MASTERS:?"MESOS_MASTERS must not be empty"}

-serverset_path=${AURORA_ZK_PATH:-/aurora}

-zk_endpoints=${ZK_ENDPOINTS:?"ZK_ENDPOINTS must not be empty"}

-native_log_file_path=${NATIVE_LOG_FILE_PATH:-/var/lib/aurora/scheduler/db}

-native_log_zk_group_path=${NATIVE_LOG_ZK_GROUP_PATH:-/tmp/aurora/\

replicated-log}

-hostname=${HOSTNAME:?"HOSTNAME must not be empty"}

-native_log_quorum_size=${NATIVE_LOG_QUORUM_SIZE:-1}

-allowed_container_types=${ALLOWED_CONTAINER_TYPES:-MESOS,DOCKER}

-thermos_executor_path=${THERMOS_EXECUTOR_PATH:-/usr/share/aurora/bin/\

thermos_executor.pex}

-allow_docker_parameters=true

)

exec "$AURORA_HOME/aurora-scheduler" "${AURORA_FLAGS[@]}"

A.4 Aurora worker Dockerfile

FROM mesosphere/mesos-slave:1.1.1

ARG AURORA_VERSION=0.17.0

ENV USER=aurora

ENV HOME=/home/aurora

RUN apt-get update && \

apt-get install -y python2.7 wget libcurl4-nss-dev

RUN wget -c https://apache.bintray.com/aurora/ubuntu-trusty/\

aurora-executor_0.17.0_amd64.deb && \

dpkg -i aurora-executor_0.17.0_amd64.deb && \

useradd $USER --create-home --shell /bin/bash && \

usermod -aG docker $USER

COPY thermos.sh /home/$USER/thermos.sh

RUN chown $USER:$USER /home/$USER/thermos.sh && \

chmod 500 /home/$USER/thermos.sh

A.5. thermos.sh startup script 105

WORKDIR /home/$USER

ENTRYPOINT ["./thermos.sh"]

A.5 thermos.sh startup script

#!/bin/bash

if [-z "$MESOS_PORT"]; then

echo "MESOS_PORT must not be empty"

exit 1

fi

if [-z "$MESOS_MASTER"]; then

echo "MESOS_MASTER must not be empty"

exit 1

fi

if [-z "$MESOS_SWITCH_USER"]; then

echo "MESOS_SWITCH_USER must not be empty"

exit 1

fi

if [-z "$MESOS_CONTAINERIZERS"]; then

echo "MESOS_CONTAINERIZERS must not be empty"

exit 1

fi

if [-z "$MESOS_LOG_DIR"]; then

echo "MESOS_LOG_DIR must not be empty"

exit 1

fi

if [-z "$MESOS_WORK_DIR"]; then

echo "MESOS_WORK_DIR must not be empty"

exit 1

fi

if [-z "$MESOS_ROOT"]; then

echo "MESOS_ROOT is not set, will be set to \

MESOS_WORK_DIR:$MESOS_WORK_DIR"

MESOS_ROOT=$MESOS_WORK_DIR

elif ["$MESOS_ROOT" != "$MESOS_WORK_DIR"]; then

echo "MESOS_ROOT is set to $MESOS_ROOT, but must match \

MESOS_WORK_DIR:$MESOS_WORK_DIR"

exit 1

fi

A.6. Aurora CLI Dockerfile 106

chown -R $USER:$USER $MESOS_ROOT $MESOS_WORK_DIR $MESOS_LOG_DIR

sudo -E -u $USER nohup /usr/sbin/thermos_observer \

--port=${HTTP_PORT:-1338} --mesos-root=${MESOS_ROOT} --app_daemonize \

--log_to_disk=NONE --log_to_stderr=google:INFO

sudo -E -u $USER nohup mesos-slave

wait

A.6 Aurora CLI Dockerfile

FROM ubuntu:latest

ARG AURORA_VERSION=0.17.0

ENV USER=aurora

ARG AURORA_CONFIG_ROOT=/home/$USER/.aurora/clusters.json

RUN apt-get update && \

apt-get install -y python2.7 wget && \

wget -c https://apache.bintray.com/aurora/ubuntu-trusty/\

aurora-tools_${AURORA_VERSION}_amd64.deb && \

dpkg -i aurora-tools_${AURORA_VERSION}_amd64.deb && \

useradd $USER --create-home --shell /bin/bash

USER aurora

WORKDIR /home/aurora

A.7 Aurora CLI sample clusters.json

[{

"auth_mechanism": "UNAUTHENTICATED",

"name": "aurora",

"scheduler_zk_path": "/aurora",

"slave_root": "/var/tmp/mesos",

"slave_run_directory": "latest",

"scheduler_uri": "localhost:5555",

"zk": "localhost:2181"

}]

A.8. docker-compose.yml 107

A.8 docker-compose.yml

version: '3'

services:

zookeeper:

image: ${HOST_A}:5000/zookeeper

container_name: zookeeper

network_mode: "host"

environment:

ZOO_MY_ID: 1

volumes:

- "./zoo.cfg:/conf/zoo.cfg"

mesos_slave:

image: ${HOST_A}:5000/aurora-worker:latest

container_name: aurora_worker

network_mode: "host"

volumes:

- "./log/mesos:/var/log/mesos"

- "./tmp/mesos:/var/tmp/mesos"

- "/var/run/docker.sock:/var/run/docker.sock"

- "/cgroup:/cgroup"

- "/sys/fs/cgroup:/sys/fs/cgroup"

env_file:

- ./env/mesos_slave_env

mesos_master:

image: ${HOST_A}:5000/mesos-master:1.1.1

container_name: mesos_master

network_mode: "host"

volumes:

- "./log/mesos:/var/log/mesos"

- "./tmp/mesos:/var/tmp/mesos"

env_file:

- ./env/mesos_master_env

marathon:

image: ${HOST_A}:5000/marathon

container_name: marathon

network_mode: "host"

aurora:

image: "${HOST_A}:5000/aurora-scheduler:latest"

container_name: "aurora_scheduler"

env_file:

- ./aurora_env

Appendix B

s390x Dockerfiles

B.1 Dockerfile for s390x Marathon

FROM ibm/mesos-base-s390x

ENV VERSION=1.4.3

ENV USER=marathon

ENV WORKDIR=/marathon \

ENV MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so

RUN apt-get install wget

RUN useradd $USER --no-create-home --shell /bin/bash && \

mkdir -p "$WORKDIR" && chown "$USER:$USER" "$WORKDIR"

WORKDIR "$WORKDIR"

RUN wget "http://downloads.mesosphere.com/marathon/v$VERSION\

/marathon-$VERSION.tgz" && \

wget "http://downloads.mesosphere.com/marathon/v$VERSION\

/marathon-$VERSION.tgz.sha256"

RUN sha256sum -c marathon-$VERSION.tgz.sha256 && \

if ["$?" != 0]; then exit 1; fi

RUN tar -xf marathon-$VERSION.tgz && \

rm marathon-$VERSION.tgz.sha256 marathon-$VERSION.tgz && \

chown -R "$USER:$USER" marathon-$VERSION

WORKDIR $WORKDIR/marathon-$VERSION

RUN su - $USER

ENTRYPOINT ["./bin/start"]

108

B.2. Dockerfile for s390x Mesos 109

B.2 Dockerfile for s390x Mesos

FROM s390x/ubuntu:16.04

RUN apt-get update && apt-get install wget build-essential python-dev \

python-six python-virtualenv libcurl4-nss-dev libsasl2-dev \

libsasl2-modules maven libapr1-dev libsvn-dev zlib1g-dev

WORKDIR /tmp

RUN wget https://download.docker.com/linux/static/stable/s390x/\

docker-17.06.0-ce.tgz && \

tar -xf docker-17.06.0-ce.tgz && \

cd docker && cp docker /usr/bin/

ADD mesos-1.1.1_s390x.deb .

RUN dpkg -i mesos-1.1.1_s390x.deb

RUN rm -rf /tmp/*

B.3 Dockerfile for s390x Mesos master

FROM ibm/mesos-base-s390x

CMD ["--registry=in_memory]

ENTRYPOINT ["mesos-master"]

B.4 Dockerfile for s390x Mesos agent

FROM ibm/mesos-base-s390x

CMD ["--registry=in_memory]

ENTRYPOINT ["mesos-slave"]

Appendix C

Mesos build files

C.1 Patch file for IBM Java SDK

diff --git a/configure.ac b/configure.ac

index 6421ec6..2ad5493 100644

--- a/configure.ac

+++ b/configure.ac

@@ -891,6 +891,9 @@ __EOF__

fi

fi

+ # Determine if current JDK is IBMJDK or not.

+ test -f $JAVA_HOME/include/jniport.h; IS_IBMJDK=$?

+

Determine linker flags for Java if not set.

if test "$OS_NAME" = "darwin"; then

dir="$JAVA_HOME/jre/lib/server"

@@ -898,10 +901,17 @@ __EOF__

JAVA_JVM_LIBRARY=$dir/libjvm.dylib

elif test "$OS_NAME" = "linux"; then

for arch in amd64 i386 arm aarch64 ppc64 ppc64le s390 s390x; do

- dir="$JAVA_HOME/jre/lib/$arch/server"

+ if test "$IS_IBMJDK" = "1"; then

+ dir="$JAVA_HOME/jre/lib/$arch/server"

+ else

+ dir="$JAVA_HOME/jre/lib/$arch/default"

+ fi

if test -e "$dir"; then

Note that these are libtool specific flags.

JAVA_TEST_LDFLAGS="-L$dir -R$dir -Wl,-ljvm"

+ if test "$IS_IBMJDK" = "0"; then

+ JAVA_TEST_LDFLAGS="$JAVA_TEST_LDFLAGS -ldl"

+ fi

JAVA_JVM_LIBRARY=$dir/libjvm.so

break;

110

C.2. Mesos DEB build control file 111

fi

C.2 Mesos DEB build control file

Package: mesos-1.1.1

Architecture: s390x

Maintainer: Patrick.Kleindienst

Priority: optional

Version: 0.1

Depends: build-essential, python-dev, python-six, python-virtualenv, maven

libcurl4-nss-dev, libsasl2-dev, libsasl2-modules, libapr1-dev, libsvn-dev

Description: Apache Mesos for s390x

Bibliography

[1] K. Arnold, J. Gosling, and D. Holmes. The Java programming language. Addison
Wesley Professional, 2005.

[2] U. Bacher. Docker CE for all distributions. June 2017. URL: http://contain
erz.blogspot.com/2017/06/docker-ce-for-all-distributions.
html (visited on 08/15/2017).

[3] U. Bacher. First CE for s390x by Docker. June 2017. URL: http://container
z.blogspot.com/2017/06/first-ce-for-s390x-by-docker.html
(visited on 08/15/2017).

[4] U. Bacher. New Docker Engine in SLES 12 Containers Module. July 2017. URL:
http://containerz.blogspot.com/2017/07/new-docker-engine-
in-sles-12-containers.html (visited on 08/20/2017).

[5] L. A. Barroso, J. Clidaras, and U. Hölzle. The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines, Second Edition. Morgan &
Claypool Publishers, San Rafael, Calif., Aug. 2013.

[6] N. Brown. The Overlay Filesystem. May 2015. URL: http://windsock.io/
the-overlay-filesystem/.

[7] M. Brož. Device mapper (kernel part of LVM2 volume management). URL: ht
tps://mbroz.fedorapeople.org/talks/DeviceMapperBasics/dm.
pdf (visited on 08/27/2017).

[8] M. Burrows. The Chubby Lock Service for Loosely-coupled Distributed Sys-
tems. In Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, Berkeley, CA, USA, 2006.

[9] J. Calcote. Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and Libtool.
No Starch Press, 2010.

[10] Canonical Ltd. Ubuntu – Package Search Results – docker.io. 2017. URL: htt
ps://packages.ubuntu.com/search?suite=all&arch=s390x&
searchon=names&keywords=docker.io (visited on 08/15/2017).

[11] D. Cole. Data center infrastructure management. 2012. URL: http://iisgrou
pllc.com/wp-content/uploads/2013/02/Data-Center-Knowlede-
DCIM-Guide.pdf (visited on 10/10/2017).

112

http://containerz.blogspot.com/2017/06/docker-ce-for-all-distributions.html
http://containerz.blogspot.com/2017/06/docker-ce-for-all-distributions.html
http://containerz.blogspot.com/2017/06/docker-ce-for-all-distributions.html
http://containerz.blogspot.com/2017/06/first-ce-for-s390x-by-docker.html
http://containerz.blogspot.com/2017/06/first-ce-for-s390x-by-docker.html
http://containerz.blogspot.com/2017/07/new-docker-engine-in-sles-12-containers.html
http://containerz.blogspot.com/2017/07/new-docker-engine-in-sles-12-containers.html
http://windsock.io/the-overlay-filesystem/
http://windsock.io/the-overlay-filesystem/
https://mbroz.fedorapeople.org/talks/DeviceMapperBasics/dm.pdf
https://mbroz.fedorapeople.org/talks/DeviceMapperBasics/dm.pdf
https://mbroz.fedorapeople.org/talks/DeviceMapperBasics/dm.pdf
https://packages.ubuntu.com/search?suite=all&arch=s390x&searchon=names&keywords=docker.io
https://packages.ubuntu.com/search?suite=all&arch=s390x&searchon=names&keywords=docker.io
https://packages.ubuntu.com/search?suite=all&arch=s390x&searchon=names&keywords=docker.io
http://iisgroupllc.com/wp-content/uploads/2013/02/Data-Center-Knowlede-DCIM-Guide.pdf
http://iisgroupllc.com/wp-content/uploads/2013/02/Data-Center-Knowlede-DCIM-Guide.pdf
http://iisgroupllc.com/wp-content/uploads/2013/02/Data-Center-Knowlede-DCIM-Guide.pdf

Bibliography 113

[12] M. E. Conway. Conway’s Law. 2017. URL: https://www.melconway.com/
Home/Conways_Law.html (visited on 07/28/2017).

[13] M. E. Conway. How do committees invent. Datamation, 14(4):28–31, 1968. (Vis-
ited on 08/22/2017).

[14] Docker Inc. About images, containers, and storage drivers. 2017. URL: https:
//docs.docker.com/engine/userguide/storagedriver/imagesan
dcontainers/#images-and-layers (visited on 08/30/2017).

[15] Docker Inc. About Registry. 2017. URL: https://docs.docker.com/regi
stry/introduction/ (visited on 08/29/2017).

[16] Docker Inc. Deploy a registry server. 2017. URL: https://docs.docker.
com/registry/deploying/ (visited on 09/21/2017).

[17] Docker Inc. Docker. 2017. URL: https://www.docker.com/ (visited on
09/11/2017).

[18] Docker Inc. Docker tag | Docker Documentation. 2017. URL: https://do
cs.docker.com/engine/reference/commandline/tag/ (visited on
08/28/2017).

[19] Docker Inc. Get Docker CE for CentOS. Sept. 2017. URL: https://docs.
docker.com/engine/installation/linux/docker- ce/centos/
(visited on 09/22/2017).

[20] Docker Inc. Get Docker CE for Ubuntu. Aug. 2017. URL: https://docs.
docker.com/engine/installation/linux/docker- ce/ubuntu/
(visited on 08/16/2017).

[21] Docker Inc. HTTP API V2. 2017. URL: https://docs.docker.com/regis
try/spec/api/ (visited on 08/30/2017).

[22] Docker Inc. Image Manifest V 2, Schema 2. 2017. URL: https://docs.dock
er.com/registry/spec/manifest-v2-2/ (visited on 08/30/2017).

[23] Docker Inc. Library/alpine - Docker Hub. 2017. URL: https://hub.docker.
com/_/alpine/ (visited on 10/15/2017).

[24] Docker Inc. Overview of Docker Compose. 2017. URL: https://docs.dock
er.com/compose/overview/ (visited on 09/26/2017).

[25] Docker Inc. Plugins API. Sept. 2017. URL: https://docs.docker.com/
engine/extend/plugin_api/ (visited on 05/09/2017).

[26] Docker Inc. Select a storage driver. Aug. 2017. URL: https://docs.docker.
com/engine/userguide/storagedriver/selectadriver/.

[27] Docker Inc. Swarm mode overview. 2017. URL: https://docs.docker.
com/engine/swarm/ (visited on 03/08/2017).

https://www.melconway.com/Home/Conways_Law.html
https://www.melconway.com/Home/Conways_Law.html
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/#images-and-layers
https://docs.docker.com/registry/introduction/
https://docs.docker.com/registry/introduction/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://www.docker.com/
https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/reference/commandline/tag/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://hub.docker.com/_/alpine/
https://hub.docker.com/_/alpine/
https://docs.docker.com/compose/overview/
https://docs.docker.com/compose/overview/
https://docs.docker.com/engine/extend/plugin_api/
https://docs.docker.com/engine/extend/plugin_api/
https://docs.docker.com/engine/userguide/storagedriver/selectadriver/
https://docs.docker.com/engine/userguide/storagedriver/selectadriver/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

Bibliography 114

[28] Docker Inc. Test an insecure registry. 2017. URL: https://docs.docker.
com/registry/insecure/ (visited on 09/21/2017).

[29] Docker Inc. Understand the Notary service architecture. Oct. 2017. URL: http
s://docs.docker.com/notary/service_architecture/ (visited on
10/09/2017).

[30] Docker Inc. Use the AUFS storage driver. 2017. URL: https://docs.docke
r.com/engine/userguide/storagedriver/aufs-driver/ (visited on
08/16/2017).

[31] Docker Inc. Use the BTRFS storage driver. Aug. 2017. URL: https://docs.
docker.com/engine/userguide/storagedriver/btrfs-driver/
(visited on 08/28/2017).

[32] Docker Inc. Use the Device Mapper storage driver. Aug. 2017. URL: https:
//docs.docker.com/engine/userguide/storagedriver/device-
mapper-driver/ (visited on 08/27/2017).

[33] P. Estes. A big step towards multi-platform Docker images. Apr. 2016. URL:
https://integratedcode.us/2016/04/22/a- step- towards-
multi-platform-docker-images/ (visited on 08/30/2017).

[34] P. Estes. Storage Drivers in Docker: A Deep Dive. Aug. 2016. URL: https:
//integratedcode.us/2016/08/30/storage-drivers-in-docker-
a-deep-dive/ (visited on 09/21/2017).

[35] M. Fowler. Microservice Trade-Offs. Jan. 2015. URL: https://martinfow
ler.com/articles/microservice- trade- offs.html (visited on
07/21/2017).

[36] M. Fowler and J. Lewis. Microservices. Mar. 2014. URL: https://martinfow
ler.com/articles/microservices.html (visited on 07/17/2017).

[37] J. Grundy. Firmware Validation: Challenges & Opportunities. 2013. URL: http
://memocode.irisa.fr/2013/Final/Tutorial-3-GrundyMelham-
FirmwareValidation.pdf (visited on 10/04/2017).

[38] M. Herlihy. The Art of Multiprocessor Programming. Morgan Kaufmann Publish-
ers, 2008.

[39] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S.
Shenker, and I. Stoica. Mesos: A Platform for Fine-grained Resource Sharing
in the Data Center. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation. USENIX Association, Berkeley, CA, USA,
2011.

[40] D. Holth. Wheel — wheel 0.29.0 documentation. 2012. URL: https://wheel.
readthedocs.io/en/latest/ (visited on 08/21/2017).

[41] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free Coordi-
nation for Internet-scale Systems. In Proceedings of the 2010 USENIX Conference

https://docs.docker.com/registry/insecure/
https://docs.docker.com/registry/insecure/
https://docs.docker.com/notary/service_architecture/
https://docs.docker.com/notary/service_architecture/
https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/
https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/
https://docs.docker.com/engine/userguide/storagedriver/btrfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/btrfs-driver/
https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/
https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/
https://docs.docker.com/engine/userguide/storagedriver/device-mapper-driver/
https://integratedcode.us/2016/04/22/a-step-towards-multi-platform-docker-images/
https://integratedcode.us/2016/04/22/a-step-towards-multi-platform-docker-images/
https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/
https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/
https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://memocode.irisa.fr/2013/Final/Tutorial-3-GrundyMelham-FirmwareValidation.pdf
http://memocode.irisa.fr/2013/Final/Tutorial-3-GrundyMelham-FirmwareValidation.pdf
http://memocode.irisa.fr/2013/Final/Tutorial-3-GrundyMelham-FirmwareValidation.pdf
https://wheel.readthedocs.io/en/latest/
https://wheel.readthedocs.io/en/latest/

Bibliography 115

on USENIX Annual Technical Conference. USENIX Association, Berkeley, CA,
USA, 2010.

[42] S. Hykes. Introducing runC: a lightweight universal container runtime. June
2015. URL: https://blog.docker.com/2015/06/runc/.

[43] R. Ignazio. Mesos in Action. Manning Publications, Shelter Island, NY, May
2016.

[44] M. Jones, S. Piersall, T. B. Mathias, J. Gay, D. Herrington, F. Schumacher, J.
Eggleston, E. Berman, T. Simkulet, R. Planutis, B. Valentine, F. Heaney, E. Wein-
man, J. Miller, D. Simpson, P. Kirkaldy, B. Tolan, M. Clark, B. Boisvert, C. Smith,
and B. Ogden. Introduction to the System z Hardware Management Console. Of Red-
books. Endicott, NY, Feb. 2010.

[45] Linux on z Systems Open Source team. Building Apache Mesos. Aug. 2017.
URL: https://github.com/linux-on-ibm-z/docs (visited on 08/25/2017).

[46] D. Merkel. Docker: Lightweight Linux Containers for Consistent Development
and Deployment. Linux j., 2014(239), Mar. 2014.

[47] Mesosphere. Docker-containers: Dockerfiles and assets for building Docker con-
tainers. Oct. 2016. URL: https://github.com/mesosphere/docker-
containers (visited on 09/22/2017).

[48] Mesosphere. Marathon Documentation. 2016. URL: https://mesosphere.
github.io/marathon/docs/ (visited on 09/06/2017).

[49] Mesosphere, Inc. DC/OS Documentation. 2017. URL: https://dcos.io/
docs/1.10/ (visited on 09/17/2017).

[50] Mesosphere, Inc. Marathon: A container orchestration platform for Mesos and
DC/OS. 2016. URL: https://mesosphere.github.io/marathon/ (vis-
ited on 10/18/2017).

[51] Mesosphere, Inc. Marathon: Application Deployments. 2016. URL: https://
mesosphere.github.io/marathon/docs/deployments.html (visited
on 10/13/2017).

[52] Mesosphere, Inc. Marathon: Constraints. 2016. URL: https://mesosphere.
github.io/marathon/docs/constraints.html (visited on 10/08/2017).

[53] Mesosphere, Inc. Marathon: Deploy and manage containers (including Docker)
on top of Apache Mesos at scale. 2017. URL: https://github.com/mesosp
here/marathon (visited on 10/03/2017).

[54] Mesosphere, Inc. Marathon: Stateful Applications Using Local Persistent Vol-
umes. 2016. URL: https://mesosphere.github.io/marathon/docs/
persistent-volumes.html (visited on 10/18/2017).

https://blog.docker.com/2015/06/runc/
https://github.com/linux-on-ibm-z/docs
https://github.com/mesosphere/docker-containers
https://github.com/mesosphere/docker-containers
https://mesosphere.github.io/marathon/docs/
https://mesosphere.github.io/marathon/docs/
https://dcos.io/docs/1.10/
https://dcos.io/docs/1.10/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/docs/deployments.html
https://mesosphere.github.io/marathon/docs/deployments.html
https://mesosphere.github.io/marathon/docs/constraints.html
https://mesosphere.github.io/marathon/docs/constraints.html
https://github.com/mesosphere/marathon
https://github.com/mesosphere/marathon
https://mesosphere.github.io/marathon/docs/persistent-volumes.html
https://mesosphere.github.io/marathon/docs/persistent-volumes.html

Bibliography 116

[55] Mesosphere, Inc. Mesos-DNS: Installing and running Mesos-DNS. 2015. URL:
https : / / mesosphere . github . io / mesos - dns / docs/ (visited on
09/09/2017).

[56] Mesosphere, Inc. Mesos-DNS: Installing and running Mesos-DNS. 2015. URL:
https : / / mesosphere . github . io / mesos - dns / docs/ (visited on
09/24/2017).

[57] A. Mouat. Using Docker: Developing and Deploying Software with Containers. O’Reilly
Media, Dec. 2015.

[58] C. Negus and F. Caen. Ubuntu Linux Toolbox: 1000+ Commands for Ubuntu and
Debian Power Users. John Wiley & Sons, 2008.

[59] S. Newman. Building Microservices: Designing Fine-Grained Systems. O’Reilly Me-
dia, Inc., Feb. 2015.

[60] B. Nguyen. /proc. July 2004. URL: http://www.tldp.org/LDP/Linux-
Filesystem-Hierarchy/html/proc.html (visited on 08/17/2017).

[61] C. O’Hanlon. A Conversation with Werner Vogels. Queue, 4(4), May 2006.

[62] J. R. Okajima. Aufs4 – advanced multi layered unification filesystem version
4.x. 2017. URL: http://aufs.sourceforge.net/ (visited on 09/21/2017).

[63] J. Petazzoni. Docker storage drivers. Technology. Mar. 2015. URL: https://
www.slideshare.net/Docker/docker-storage-drivers (visited on
08/17/2017).

[64] Prometheus Authors. Prometheus - Monitoring system & time series database.
2017. URL: https://prometheus.io/ (visited on 10/01/2017).

[65] Red Hat, Inc. Chapter 39. File Systems. 2017. URL: https://access.redhat
.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/
7.3_Release_Notes/technology_previews_file_systems.html
(visited on 08/18/2017).

[66] Red Hat Inc. Red Hat Enterprise Linux Release Dates - Red Hat Customer Por-
tal. 2017. URL: https://access.redhat.com/articles/3078 (visited
on 08/18/2017).

[67] J. H. Saltzer. Protection and the control of information sharing in Multics. Com-
munications of the acm, 1974.

[68] V. Saraswat. Announcing the New Release of Docker Enterprise Edition. Aug.
2017. URL: https://blog.docker.com/2017/08/docker-enterprise
-edition-17-06/ (visited on 08/20/2017).

[69] A. Shraer, B. Reed, D. Malkhi, and F. Junqueira. Dynamic Reconfiguration of
Primary/Backup Clusters. In Proceedings of the 2012 USENIX Conference on An-
nual Technical Conference. USENIX Association, Berkeley, CA, USA, 2012.

https://mesosphere.github.io/mesos-dns/docs/
https://mesosphere.github.io/mesos-dns/docs/
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://www.tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
http://aufs.sourceforge.net/
https://www.slideshare.net/Docker/docker-storage-drivers
https://www.slideshare.net/Docker/docker-storage-drivers
https://prometheus.io/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/technology_previews_file_systems.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/technology_previews_file_systems.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/technology_previews_file_systems.html
https://access.redhat.com/articles/3078
https://blog.docker.com/2017/08/docker-enterprise-edition-17-06/
https://blog.docker.com/2017/08/docker-enterprise-edition-17-06/

Bibliography 117

[70] SUSE. Docker Guide | SUSE Linux Enterprise Server 12 SP2. 2017. URL: http
s://www.suse.com/documentation/sles-12/singlehtml/book_
sles_docker/book_sles_docker.html (visited on 08/20/2017).

[71] SUSE. Modules - SUSE Linux Enterprise Server. 2017. URL: https://www.su
se.com/products/server/features/modules/ (visited on 08/15/2017).

[72] The Apache Software Foundation. Apache Aurora. 2017. URL: https://aur
ora.apache.org/ (visited on 10/12/2017).

[73] The Apache Software Foundation. Apache Aurora: Aurora System Overview.
2017. URL: https://aurora.apache.org/documentation/latest/
getting-started/overview/ (visited on 10/18/2017).

[74] The Apache Software Foundation. Apache Aurora Documentation. 2017. URL:
https://aurora.apache.org/documentation/latest/ (visited on
09/06/2017).

[75] The Apache Software Foundation. Apache Aurora: Scheduler Configuration.
2017. URL: https://aurora.apache.org/documentation/latest/
operations/configuration/ (visited on 10/18/2017).

[76] The Apache Software Foundation. Apache Aurora: Scheduling Constraints.
2017. URL: https://aurora.apache.org/documentation/latest/
features/constraints/ (visited on 10/14/2017).

[77] The Apache Software Foundation. Apache Aurora: Service discovery. 2017.
URL: https://aurora.apache.org/documentation/latest/feat
ures/service-discovery/ (visited on 10/18/2017).

[78] The Apache Software Foundation. Apache Mesos. 2017. URL: http://mesos.
apache.org/ (visited on 10/10/2017).

[79] The Apache Software Foundation. Apache Mesos - Attributes and Resources.
2017. URL: https://mesos.apache.org/documentation/latest/
attributes-resources/ (visited on 10/14/2017).

[80] The Apache Software Foundation. Apache Mesos: Agent Recovery. 2017. URL:
https://mesos.apache.org/documentation/latest/agent-recov
ery/.

[81] The Apache Software Foundation. Apache Mesos Documentation. 2017. URL:
http : / / mesos . apache . org / documentation / latest/ (visited on
08/23/2017).

[82] The Apache Software Foundation. Apache Mesos: Getting Started. 2017. URL: h
ttps://mesos.apache.org/gettingstarted/ (visited on 10/04/2017).

[83] The Apache Software Foundation. Apache Mesos: Persistent Volumes. 2017.
URL: https://mesos.apache.org/documentation/latest/persist
ent-volume/.

https://www.suse.com/documentation/sles-12/singlehtml/book_sles_docker/book_sles_docker.html
https://www.suse.com/documentation/sles-12/singlehtml/book_sles_docker/book_sles_docker.html
https://www.suse.com/documentation/sles-12/singlehtml/book_sles_docker/book_sles_docker.html
https://www.suse.com/products/server/features/modules/
https://www.suse.com/products/server/features/modules/
https://aurora.apache.org/
https://aurora.apache.org/
https://aurora.apache.org/documentation/latest/getting-started/overview/
https://aurora.apache.org/documentation/latest/getting-started/overview/
https://aurora.apache.org/documentation/latest/
https://aurora.apache.org/documentation/latest/operations/configuration/
https://aurora.apache.org/documentation/latest/operations/configuration/
https://aurora.apache.org/documentation/latest/features/constraints/
https://aurora.apache.org/documentation/latest/features/constraints/
https://aurora.apache.org/documentation/latest/features/service-discovery/
https://aurora.apache.org/documentation/latest/features/service-discovery/
http://mesos.apache.org/
http://mesos.apache.org/
https://mesos.apache.org/documentation/latest/attributes-resources/
https://mesos.apache.org/documentation/latest/attributes-resources/
https://mesos.apache.org/documentation/latest/agent-recovery/
https://mesos.apache.org/documentation/latest/agent-recovery/
http://mesos.apache.org/documentation/latest/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/gettingstarted/
https://mesos.apache.org/documentation/latest/persistent-volume/
https://mesos.apache.org/documentation/latest/persistent-volume/

Bibliography 118

[84] The Apache Software Foundation. Apache Mesos: Scheduler HTTP API. 2017.
URL: https://mesos.apache.org/documentation/latest/schedul
er-http-api/ (visited on 10/15/2017).

[85] The Apache Software Foundation. Apache Mesos: Shared Persistent Volumes.
2017. URL: https://mesos.apache.org/documentation/latest/
shared-resources/.

[86] The Apache Software Foundation. Client Cluster Configuration. 2017. URL: h
ttps://aurora.apache.org/documentation/latest/reference/
client-cluster-configuration/ (visited on 09/25/2017).

[87] The Apache Software Foundation. Installing Aurora. 2017. URL: https://
aurora.apache.org/documentation/latest/operations/install
ation/ (visited on 09/25/2017).

[88] The Apache Software Foundation. Mesos Configuration. 2017. URL: https:
//mesos.apache.org/documentation/latest/configuration/
(visited on 09/24/2017).

[89] The Apache Software Foundation. Mesos: Containerizers. 2017. URL: http:
//mesos.apache.org/ (visited on 10/12/2017).

[90] The Apache Software Foundation. Task Health Checking and Generalized Checks.
2017. URL: https://mesos.apache.org/documentation/latest/
health-checks/ (visited on 09/29/2017).

[91] The Apache Software Foundation. The Mesos Replicated Log. 2017. URL: http
s://mesos.apache.org/documentation/latest/replicated-log-
internals/ (visited on 10/13/2017).

[92] The Apache Software Foundation. ZooKeeper: Because Coordinating Distributed
Systems is a Zoo. Aug. 2014. URL: https://zookeeper.apache.org/doc/
trunk/index.html (visited on 09/09/2017).

[93] The Apache Software Foundation. ZooKeeper Dynamic Reconfiguration. Nov.
2014. URL: https://zookeeper.apache.org/doc/trunk/zookeeperR
econfig.html (visited on 09/22/2017).

[94] The Apache Software Foundation. ZooKeeper Recipes and Solutions. July 2017.
URL: https://zookeeper.apache.org/doc/trunk/recipes.html
(visited on 10/13/2017).

[95] The CentOS Project. About CentOS. 2017. URL: https://www.centos.org/
about/ (visited on 09/22/2017).

[96] The ELRepo Project. ELRepo : HomePage. Nov. 2017. URL: https://elrepo.
org/tiki/tiki-index.php (visited on 08/18/2017).

[97] The freedesktop.org contributors. Systemd. Mar. 2017. URL: https://www.
freedesktop.org/wiki/Software/systemd/ (visited on 08/17/2017).

https://mesos.apache.org/documentation/latest/scheduler-http-api/
https://mesos.apache.org/documentation/latest/scheduler-http-api/
https://mesos.apache.org/documentation/latest/shared-resources/
https://mesos.apache.org/documentation/latest/shared-resources/
https://aurora.apache.org/documentation/latest/reference/client-cluster-configuration/
https://aurora.apache.org/documentation/latest/reference/client-cluster-configuration/
https://aurora.apache.org/documentation/latest/reference/client-cluster-configuration/
https://aurora.apache.org/documentation/latest/operations/installation/
https://aurora.apache.org/documentation/latest/operations/installation/
https://aurora.apache.org/documentation/latest/operations/installation/
https://mesos.apache.org/documentation/latest/configuration/
https://mesos.apache.org/documentation/latest/configuration/
http://mesos.apache.org/
http://mesos.apache.org/
https://mesos.apache.org/documentation/latest/health-checks/
https://mesos.apache.org/documentation/latest/health-checks/
https://mesos.apache.org/documentation/latest/replicated-log-internals/
https://mesos.apache.org/documentation/latest/replicated-log-internals/
https://mesos.apache.org/documentation/latest/replicated-log-internals/
https://zookeeper.apache.org/doc/trunk/index.html
https://zookeeper.apache.org/doc/trunk/index.html
https://zookeeper.apache.org/doc/trunk/zookeeperReconfig.html
https://zookeeper.apache.org/doc/trunk/zookeeperReconfig.html
https://zookeeper.apache.org/doc/trunk/recipes.html
https://www.centos.org/about/
https://www.centos.org/about/
https://elrepo.org/tiki/tiki-index.php
https://elrepo.org/tiki/tiki-index.php
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/

Bibliography 119

[98] The Kubernetes Authors. Extensions API Definitions. 2017. URL: https://
kubernetes.io/docs/api-reference/extensions/v1beta1/defin
itions/ (visited on 09/05/2017).

[99] The Kubernetes Authors. Kubernetes. 2017. URL: https://kubernetes.
io/ (visited on 03/08/2017).

[100] The Kubernetes Authors. Kubernetes Documentation. 2017. URL: https://
kubernetes.io/docs/home/.

[101] The Pants Community. Pants: A fast, scalable build system. 2017. URL: https:
//www.pantsbuild.org/ (visited on 10/14/2017).

[102] B. Wootton. Microservices - Not a free lunch! - High Scalability -. Apr. 2014.
URL: http://highscalability.com/blog/2014/4/8/microservice
s-not-a-free-lunch.html (visited on 07/27/2017).

https://kubernetes.io/docs/api-reference/extensions/v1beta1/definitions/
https://kubernetes.io/docs/api-reference/extensions/v1beta1/definitions/
https://kubernetes.io/docs/api-reference/extensions/v1beta1/definitions/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://www.pantsbuild.org/
https://www.pantsbuild.org/
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Motivation
	Thesis objectives and scope
	Outline

	Background
	About systems management
	Large-scale computing platforms
	What is systems management?

	Rethinking IBM System z firmware
	Monoliths vs. microservices
	The monolithic architectural style
	Drawbacks of monolithic applications
	The microservice architectural style
	Downsides and challenges of microservices

	Common requirements to microservice orchestration tools
	Challenges of hybrid microservice orchestration
	Summary and prioritization of requirements

	A microservice infrastructure based on Apache Mesos
	State-of-the-art microservice orchestration
	Relevant tools for microservice management
	Eligibility for clustering in hybrid computing environments
	The rationale behind using Apache Mesos

	Mesos fundamentals and overview
	Basic idea
	Architecture
	Fault tolerance

	High-level comparison between Marathon and Aurora
	Use case
	Architecture
	Resilience and reliability
	Application deployment and scaling
	Service discovery
	Persistent storage
	Scheduling constraints

	Coordinating Mesos with Apache ZooKeeper
	Why Mesos needs coordination
	Intent and purpose of ZooKeeper
	ZooKeeper internals
	How Mesos uses ZooKeeper

	Workload isolation with Linux containers and Docker
	What is a container?
	What is Docker?
	Mesos and containers
	Docker, containers and how they help with building a hybrid microservice infrastructure

	Practical implementation of a microservice infrastructure
	The interim goal
	Manual installation of Docker on CentOS
	Bringing Docker to our CentOS servers
	Fixing the Docker storage driver settings

	Hosting a private Docker registry
	Running an insecure registry
	Running a secured registry

	A ZooKeeper ensemble in Docker
	Deploying Mesos in Docker containers
	Mesos master containers
	Mesos agent containers
	Remarks to Mesos-DNS in Docker

	Marathon and Aurora in Docker
	Marathon
	Aurora

	Facilitating container management

	A hybrid cluster management setup
	A hybrid prototype as the next step
	Status quo of Docker on s390x Linux
	Docker CE on Ubuntu
	Docker CE on RHEL
	Docker CE on SLES
	Summing up: Docker on System z

	Docker Compose on IBM System z
	The porting of cross-platform components to s390x
	Apache ZooKeeper on s390x
	Marathon on s390x
	Apache Aurora on s390x

	Compiling Apache Mesos for IBM System z
	Preparing the compile process
	Repairing the configuration phase
	Maven build issues
	Creating a s390x DEB package for Mesos
	Installing Mesos to an Ubuntu-based Docker image

	Remaining s390x porting
	Job scheduling on hybrid clusters
	Homogeneous job scheduling
	Heterogeneous job scheduling

	Evaluation
	Resource consumption
	Disk space requirements
	Memory consumption

	Performance
	Reliability testing
	ZooKeeper
	Mesos
	Marathon
	Aurora
	Summary

	Evaluation of remaining mandatory requirements
	Current limitations and thinkable improvements

	Conclusions and future work
	Summary
	Outlook

	Appendices
	amd64 Dockerfiles, shell scripts & configuration files
	Mesos-DNS Dockerfile
	Aurora scheduler Dockerfile
	Aurora scheduler.sh script
	Aurora worker Dockerfile
	thermos.sh startup script
	Aurora CLI Dockerfile
	Aurora CLI sample clusters.json
	docker-compose.yml

	s390x Dockerfiles
	Dockerfile for s390x Marathon
	Dockerfile for s390x Mesos
	Dockerfile for s390x Mesos master
	Dockerfile for s390x Mesos agent

	Mesos build files
	Patch file for IBM Java SDK
	Mesos DEB build control file

	Bibliography

